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Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is
well known that pyramidal cell branching structure differs in the various cortical areas, the principles that
determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a
von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of
intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and
occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in
these distinct functional and cytoarchitectonic cortical areas, there are common design principles that
govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas.

M
ost synapses in the brain are established with dendrites which represent the main neuronal region
specialized to receive and process inputs in neurons. Since there is a great diversity of dendritic
morphologies which are specific for each brain region, it follows that there is a large diversity in the

design of synaptic circuits. In the cerebral cortex, pyramidal cells are the most common neuron (they constitute
approximately 70–85% of the total population of neurons1. These neurons are projection cells and they are located
in all layers except layer I. Furthermore, pyramidal cells are the major source of intrinsic excitatory cortical
synapses, and their dendritic spines are the main postsynaptic target of excitatory synapses1–6. Thus, understand-
ing the principles that determine dendritic geometry of pyramidal cells is essential to comprehend how neuronal
circuits operate in the cerebral cortex. Several studies have shown quantitative differences in the size and
complexity of the dendritic arbors and in the density and size of dendritic spines in various cortical areas of
several rodent and primate species, including humans7–13. These variations result in fundamental functional
differences between the cells, making the study of dendritic properties of considerable interest. For example,
the complexity of their dendritic structure determines their biophysical properties, thus influencing their func-
tional capacity and potential for plastic change14–18.

In a recent study by our group19, a class of probabilistic graphical model called Bayesian networks was applied
to model real dendrites and simulate virtual dendrites of the mouse cortex, including primary sensory, motor, and
association areas. We observed that terminal segments in basal dendrites were longer than intermediate segments.
In fact, dendrites usually branch when they are close to the soma, producing short segments; whereas the
segments that do not branch spread away from the soma. Moreover, we showed that segment orientation is
mainly controlled by the orientation of the previous segments. Therefore, the dendritic trees tend to first spread
rapidly when they are close to the soma and then, once they have reached a minimum size, grow straight away
from the soma (see also ref. 20, 21). Furthermore, it has been proposed that branching patterns can be predicted
based predominantly on wiring principles and that flatness of 3D dendritic bifurcations (i.e., the condition of a
surface where all elements are in one plane) are characteristic of wiring cost optimization22–28. However, there are
no studies that address possible differences in the branching angle geometry in different cortical areas that would
shed light on the branching regional pattern design. Here we analyzed and modeled with a von Mises distribution
the branching angles between the two sibling segments growing from a bifurcation in 3D reconstructed basal
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dendritic arbors of hundreds of intracellularly injected cortical pyr-
amidal cells in different cortical regions of the mouse (Figure 1).

Results
In the present study, we specifically analyzed branching angles of a
database of 345 3D reconstructed basal dendritic arbors of intracel-
lularly injected layer III pyramidal neurons from seven different
cortical areas of the frontal, parietal, and occipital cortex (see
Materials and Methods for details). For this purpose, dendritic angles
between two dendritic segments growing from a given bifurcation
were grouped according to two different ordering schemes, based on
the order in which the bifurcations occurred (see Figure 2A). These
two ordering schemes were chosen in order to analyze angles from
different perspectives. In the case of the standard order, the cell body
is taken as the ‘starting point’ from which the bifurcations are pro-
gressively numbered 1, 2, 3, etc. By contrast, in the case of the inverse
order, it is the distal end of the dendrites that is taken as the ‘starting
point’ from which the bifurcations are progressively numbered – in
this case as 19, 29, 39, etc.

A visual inspection of the rose diagrams (Figure 2B and
Supplementary Figure S2 for all cortical areas examined) showed
that the distributions of the angles were clearly unimodal and sym-
metric around the mean in almost all branch orders and cortical
areas. Thus, we proposed modeling the bifurcation angles using
the von Mises distribution29 and performed goodness-of-fit tests to
check this hypothesis. We concluded that the von Mises distribution
seems to be appropriate for modeling bifurcation angles of the same
branching order in both standard and inverse branch order repre-
sentations (see Supplementary Tables 2–5).

Comparison of angles of different branch orders. We first com-
pared angles of different branch orders in general, according to the
standard and inverse branch orders. Since classical linear boxplots are
not suitable for conveying angular data, here we propose an
adaptation of the boxplot for displaying the summary statistics
computed for a dataset of angles, which we called circular boxplot
(see Materials and Methods for further details). As shown in
Figure 2C,D, angles tended to significantly decrease when standard
branch order increases, whereas the opposite was found for inverse
branch orders. This was the case for all cortical regions examined
(Supplementary Figure S3, and Supplementary Tables 6–7
[standard] and 10–11 [inverse] for statistical significance results).
Statistically significant differences are also seen in the test-based

diagrams. First, motor (M1, M2) and somatosensory (S1, S2) areas
behaved similarly for the standard branch order, since only orders 3
and 4 (out of the possible 6 pairwise comparisons) were not
significantly different, as shown by the edge between nodes 3 and 4
in the test-based diagrams (Figure 2C,D and Supplementary Figure
S3). Second, in the secondary visual cortex (V2) area, all standard
orders were significantly different (there are no edges between nodes).
Finally, the primary visual cortex (V1) and prelimbic/infralimbic
cortex (PrL) had a statistically significant difference between orders
1 and 3 (in V1 also 2 and 3). In both areas, orders 1–2, 1–4, 2–4 and
3–4 (and 2–3 for PrL) had similar mean angles (there are edges
connecting these pairs). Then, we compared angles of different
branch orders originating from dendritic trees of similar complexity
(i.e. different dendritic trees were grouped according to their
maximum branch order, in each cortical region). This analysis
(Figure 2E and Supplementary Figure S4 for all cortical areas
examined, and Supplementary Tables 8–9 [standard] and 12–13
[inverse] for statistical results) showed even greater statistical
differences between the branching angles of different orders. The
test-based diagrams also show this difference, with no links between
nodes except for the pair 3–4 (standard order) and 39–49 (inverse).
Thus, bifurcations nearer to the soma (lower standard branch orders)
have wider angles than bifurcations at higher orders (with these
differences being statistically significant). Accordingly, lower inverse
branch orders have significantly narrower angles than higher inverse
orders. This is clearly the case when angles are selectively grouped
according to the maximum branch order of their dendritic trees.

Comparison of angles of the same branch order that belong to
dendritic trees of different complexity. We then compared angles
of the same branch order but coming from dendritic trees with
different maximum branch order (i.e. order 1 angles that belong to
dendritic trees of different complexity were then directly compared).
This analysis (Figure 3 left, first row in Supplementary Table 14 and
first block of rows in Supplementary Table-15) revealed that, for a
particular cortical region, the standard branch order 1 angle is wider
in dendritic trees that have higher orders, with the largest ones
showing the most complex dendritic trees (statistical differences
were only found in M1, M2, S1 and PrL, where some edges are
absent in their test-based diagrams). We also found some statisti-
cally significant differences between angles at intermediate standard
orders (2 and 3) for all cortical regions (see Supplementary Figure S5,
second and third rows in Supplementary Table 14 and second and
third blocks of rows in Supplementary Table-15). Thus, bifurcations
at lower standard branch orders seem to require wide angles to
accommodate the rest of the dendritic tree, suggesting that the
dendritic trees grow to fill up the space defined by the lowest order
angle (standard branch order 1).

By contrast, the inverse branch order 19 angle was similar for the
majority of the dendritic trees of a particular region (except in V2),
regardless of their complexity, as shown by the high connectivity
between nodes in the test-based diagrams (see Figure 3 right, first
row in Supplementary Table 16 and first block of rows in Supplemen-
tary Table 17). Also, intermediate inverse orders (2 and 3) were
deemed not significantly different for the majority of the dendritic
trees of a particular region, regardless of their complexity (see Supple-
mentary Figure S5, second and third rows in Supplementary Table 16
and second and third blocks of rows in Supplementary Table 17).

Comparison between cortical areas. We finally compared angles,
per branch order, between different cortical regions (Figure 4 and
Supplementary Tables 18–21) and we found that the mean standard
branch order 1 angle (Figure 4 top left) was rather similar in the
various cortical regions (first column in Supplementary Table 18
and first block of rows in Supplementary Table 19). This is
captured by the dense test-based diagram. By contrast, the mean
inverse branch order 19 angle (Figure 4 top right) was remarkably

Figure 1 | Examples of Neurolucida drawings of basal dendritic arbors of
layer III pyramidal neurons, as seen in the plane of section parallel to the
cortical surface, in the seven cortical areas analyzed: primary (M1) and
secondary (M2) motor cortex, primary (S1) and secondary (S2)
somatosensory cortex, primary (V1) and secondary (V2) visual cortex
and prelimbic/infralimbic cortex (PrL/IL) (modified from30). Neurons in

different cortical areas are colored according to the color code used for

Figure 4. Scale bar: 100 mm.
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different in the seven cortical regions (first column in Supplementary
Table 20 and-first block of rows in Supplementary Table 21). In
particular, M1, M2 S1 and V2 showed smaller final bifurcation

angles than V1, S2 and PrL. These areal features show that, in
general, cortical regions with larger dendritic trees30 have smaller
final bifurcation angles.

Figure 2 | (A): Schematic showing the branching angles measured between sibling segments, according to two schemes: standard and inverse branch

orders. (B): Example of the distribution of angles for standard branch order 1 coming from basal dendritic trees of pyramidal neurons in M2 area. The

(upper) rose diagram shows the proportion of data in each interval of angles (in degrees). The (lower) density plot shows the empirical histogram of the

dataset (bars) and the fitted von Mises density (thick black line). The dataset is shown with green crosses below the histogram. (C): The proposed circular

boxplots of the angles showing the summary statistics of a dataset as arcs inside a circle, for standard (upper diagram) and inverse (lower diagram) branch

orders. A black dot represents the median of the dataset, whereas the colored thick lines (same color code as in A) extend from the lower quartile (Q1) to

the upper quartile (Q3). The black lines extend from the minimum to the maximum values in the dataset included in the interval [Q1 2 1.5?IQR, Q3 1

1.5?IQR], where IQR 5 Q3 2 Q1 is the interquartile range. The small colored dots indicate data values that are not in this interval, and are considered as

outliers (see Supplementary Figure S1 for further details). (D): Test-based diagrams illustrating the pairwise comparisons of the mean angles from

datasets shown in (C). Two nodes (representing two datasets) are connected when the hypothesis of equal mean angles of the corresponding datasets

using Watson test cannot be rejected. Two nodes are not connected if the mean angles were deemed significantly different. See Supplementary Tables 6–7

(standard) and 10–11 (inverse) for further details on statistical tests. (E): Circular boxplots coming from basal dendritic trees of pyramidal neurons from

M2 region, grouped according to their branch complexity (same color code as in A). Test–based diagrams are presented next to each graph to show

comparison results between mean angles of different branch orders. See Supplementary Tables 8–9 and 12–13 for further details on statistical tests and

Supplementary Figures S2–S4 for the corresponding diagrams of the remaining cortical regions examined (M1, S1, S2, V1, V2 and PrL). O1–O4: standard

branch order 1–4; O19–O49: inverse branch order 1–4.
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Figure 3 | Circular boxplots showing comparison of angles of branch order 1 and 19 coming from dendritic trees with different maximum branch
order. Mean values are shown per standard branch order (on the left) and inverse branch order (on the right) from basal dendritic trees of the seven

cortical areas analyzed. Test-based diagrams illustrating the pairwise comparisons of the mean angles are shown next to each graph (nodes are denoted

starting with a ‘‘T’’, which stands for ‘‘tree’’). See Supplementary Tables 14–17 for further details on statistical tests. See Supplementary Figure S5 for the

corresponding diagrams of the remaining branch order comparisons (O2–O3).
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Discussion
The main findings in the present study are the following. First,
branching angles in pyramidal basal dendritic arbors can be modeled
with von Mises distributions. Second, the first bifurcation (angle 1) of
a particular basal tree is the widest and subsequent bifurcations
become progressively narrower. Third, the final bifurcation (angle
19) of a particular region is rather similar, regardless of the branch
order of the dendrite. Finally, standard mean branch order 1 angle
was rather similar in the various cortical regions whereas the mean
inverse branch order 19 angle was remarkably different in the seven
cortical regions.

The first finding that a theoretical distribution (von Mises) was
found for branching angles of pyramidal cells allows progress to be
made in the area of dendritic structure modeling of the pyramidal
cells in each cortical area. It demonstrates that these components of
cortical circuits are designed in accordance with the rules of math-
ematical functions. Furthermore, 90% of these angles fell within a
range of 20 to 97 degrees (per cortical area, mean angles ranged from
59 to 68 degrees and concentrations ranged from 5 to 8 degrees),
suggesting certain predictability in the synaptic connections of pyr-
amidal cells in all cortical areas. This is important since the vast
majority of synapses on pyramidal neurons are established with their
dendritic spines and the length of these spines is typically ,2 mm,
(e.g.12,31). Thus, as a consequence of the restrictions conferred by such
a short dendritic spine length, the rules that govern the dendritic

branching of pyramidal cells can in fact determine the connectivity
of the pyramidal cell.

The second geometrical rule found is that the first bifurcation
(angle 1) of a particular tree is the widest and subsequent bifurcations
become progressively narrower. Additionally, the final bifurcation
(angle 19) of a particular region is rather similar, regardless of the
branch order of the dendrite. Hence, both 1 and 19 angles would
predict the final complexity of the dendritic tree for a particular
region in such a way that, given the apparently predetermined ampli-
tude of angle 19, the wider the angle 1, the greater the degree of
branching of the tree. These results reveal that there are rules that
govern the geometry of dendritic branching angles of pyramidal cells
and that these rules follow common design principles in all cortical
areas despite the different functional specializations. However, since
the final bifurcation angle 19 mean value was found to be statistically
different between cortical regions, our findings suggest that the
architecture of branching angles is also regulated regionally.

Finally, as reviewed in32, the process of dendrite formation is regu-
lated at multiple points by a combination of cell-intrinsic and
-extrinsic factors: first, the number of primary branches initiated
and maintained in any one direction; second, the mode of branching;
third, the frequency of branching; and fourth, the balance between
growth, stabilization and retraction of dendritic branches (for a
recent study, see33). Our findings are in line with the idea that genetic
control is a strong determinant of the general shape of the pyramidal

Figure 4 | Circular boxplots showing the comparison of angles, by branch order, of the seven different cortical regions analyzed for standard branch
order (left) and inverse branch order (right). Test-based diagrams are shown next to the corresponding boxplot. Node names are the cortical areas.

(see Supplementary Tables 18–21 for further details on statistical tests).

www.nature.com/scientificreports
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dendritic trees, whereas specific factors should be involved in the
shaping of the fine details of the pyramidal cell morphology char-
acteristic of each cortical area. Further, studies will be necessary to
establish if changes in the complexity of the dendritic trees that are
known to occur as a result of a variety of experimental factors
(e.g.31,34,35) are due to changes in branching angles. Similarly, in cases
of brain diseases whose underlying anatomical changes have not
been well established, such as autism and schizophrenia, determining
whether or not these angles change could represent a major step for
better understanding these diseases. The present results propose a
new geometrical approach that could help clarify these issues by
analyzing the rules of synaptic connections in the normal brain
and under experimental or pathological conditions.

Methods
Data acquisition and preparation. A set of 345 3D reconstructed pyramidal neurons
from seven different regions of the mouse neocortex was used for analysis. Pyramidal
neurons were intracellularly injected with Lucifer Yellow in layer III horizontal
sections to allow the complete inclusion of basal dendritic arbors. The regions
analyzed included cortical areas of the frontal, parietal, and occipital cortex: primary
(M1) and secondary (M2) motor cortex, primary (S1) and secondary (S2)
somatosensory cortex, primary (V1) and secondary (V2) visual cortex and prelimbic/
infralimbic cortex (PrL) (see Ballesteros-Yáñez et al., 2010 for further methodological
details). Reconstruction of the same neurons, using the Neurolucida package
(MicroBrightField) has been used previously in another study for different
purposes30. We measured the angle between the two sibling segments originating
from a bifurcation in the 3D reconstructions of the basal dendritic trees. Given a
bifurcation point O with coordinates (xo, yo, zo), and two points A 5 (xa, ya, za) and B
5 (xb, yb, zb) defining the end points of the segments growing from the bifurcation
(where the ‘‘end points’’ are either a terminal tip or another bifurcation point), the
angle Q between the vectors OA and OB is given by:

Q~arccos OA:OBð Þ= OAj jj j OBj jj jð Þð Þ ð1Þ

where ? represents the scalar product of the vectors and jjxjj is the magnitude of the
vector x. Branch order angles higher than O4 were not included in the analysis due to
their relatively low number (see Supplementary Table 1).

The von Mises distribution for angular data. Directional and angular data have
some distinctive properties that make classical statistics unsuitable for analyzing and
working with this kind of data. Directional statistics36–38 provides the theoretical
background and the tools necessary for correctly managing these data. The von Mises
(1918) distribution is the angular analog of the Gaussian distribution, and it is the
most commonly used distribution in directional statistics. Different visualization
tools from those used in classical linear statistics are necessary to convey directional
information (e.g. the linear boxplot disregards the periodicity of the domain and
wrongly estimates the summary statistics for the first dataset; see also Supplementary
Figure S1). Thus, rose diagrams were used instead of regular histograms to represent
the empirical distribution of a dataset of angles (Figure 2B). The domain of the von
Mises density is the unit circle which defines angles x g [0,2p]. A random variable X
following a von Mises density with parameters (m,k) is denoted M(m,k). The von
Mises distribution is a two-parameter distribution with probability density function:

f x,m,kð Þ~ 1
2pI0 kð Þ exp k cos x{mð Þð Þ ð2Þ

where m is the mean angle of X, k $ 0 is the concentration of the angles around the
mean and I0 is the modified Bessel function of the first kind of order 0:

I0 kð Þ~ 1
2p

ð2p

0
exp k cos xð Þ dx

The density of the points in the circle becomes uniform when k 5 0, whereas high
values of k yield points that are tightly clustered around m. The von Mises density is
unimodal and symmetric around the mean direction. The mean direction is also the
mode. The von Mises density is close to the Gaussian density when the concentration
k is high and close to the Cauchy density when k is low.

Given a dataset with N angles {x1,…,xN} randomly sampled from M(m,k), the
maximum likelihood estimator of m is the sample mean direction. On the other hand,
the maximum likelihood estimator of k cannot be computed analytically and
numerical approximations have to be used36,37. Here, the ‘circular’ package for R was
used to compute the maximum likelihood estimators of the parameters. See some
examples in Supplementary Figure S2, where a histogram and the fitted von Mises
density are superimposed for data from the same cortical area and branch order.

Graphical representations of angular data. In this section, we describe the two
graphical representations used in this study to portray the results of the analyses.

Rose diagrams. In a rose diagram, the circumference is divided into K sectors with the
same arc length and the area of each sector shows the number of angles contained in a
given interval of angles. To achieve this, the radius of each sector needs to be pro-
portional to the square root of the number of angles in the interval. In this study we
used K 5 20 sectors. See some examples in Supplementary Figure S2.

Circular boxplots for angular data. We introduce here a circular analog of the well-
known boxplot, that we termed circular boxplot. The summary statistics of a dataset
are shown as arcs inside a circle (Figure 2C). The median of the dataset is shown with a
marked dot. The colored thick lines extend from the lower quartile (Q1) to the upper
quartile (Q3) of the dataset. The whiskers (thin black lines) extend from the minimum
to the maximum values in the dataset included in the interval [Q1 2 1.5?IQR, Q3 1

1.5?IQR], where IQR 5 Q3 2 Q1 is the interquartile range. Data values outside this
range are considered outliers and shown with small colored dots. This representation
allows the boxplots of different datasets to be displayed in the same graph, by plotting
the corresponding arcs at different distances from the circle’s center. The angles at the
bifurcations in basal dendrites have values from 0 to 180 degrees. Therefore, the
circular boxplots were displayed over a semicircle instead of the complete circle (see
Supplementary Figures S3–S5).

Statistical tests. Tests of goodness-of-fit to a von Mises distribution. We tested whether
or not the datasets of bifurcation angles at different standard/inverse orders can be
modeled with a von Mises density, M(m,k), with unknown parameters. We performed
a Watson test for goodness-of-fit to a von Mises distribution39, using the quantiles
computed as in40. Based on these quantiles, the intervals for the p-value of each test are
those reported in Supplementary Tables 2–5. A significance level a 5 0.05 was used.

Analysis of variance for angular data. We looked for statistically significant differences
between the mean angles of several datasets. Given a number S of different datasets of
angles, we applied the Watson–Williams test41,42 to check the null hypothesis of equal
means in all the datasets, i.e., (H0: m1 5 m2 5…5mS). The Watson–Williams test
assumes that the S datasets follow von Mises distributions (verified by our data) with
equal concentrations. However, this test has proven to be robust against deviations
from these assumptions43. See Supplementary Tables 6, 8, 10, 12, 14, 16, 18 and 20.

Non-parametric tests for comparing the means of two datasets of angles. When the
Watson–Williams tests found statistically significant differences, we performed all
the pairwise comparisons between the S datasets and looked for specific differences in
their mean angles. We applied a non-parametric test to look for differences between
two datasets without assuming a known generating parametric distribution. Watson
test44 was used to check the null hypothesis of equal means of the two datasets (H0: m1

5 m2). We used a significance level a 5 0.05. See Supplementary Tables 7, 9, 11, 13, 15,
17, 19 and 21.

Test-based diagrams. Here, we propose a novel way to show graphically the results of
the Watson tests of all the pairwise comparisons between S different datasets (see
previous section). We built a graph with S nodes, one for each dataset in the com-
parison. Two nodes were connected by an edge when we could not reject the null
hypothesis of equal mean angles using Watson test. Thus, two nodes were not con-
nected if the mean angles of the corresponding datasets were deemed significantly
different. These statistical diagrams are shown in Figures 2D, 2E, 3 and 4 of the main
text and Supplementary Figures S3–S5.
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