2024
- Abad L (2024). Towards an Efficient and Accurate Speech Enhancement by a comprehensive ablation study (supervised by B. Mihaljevic and J. Luque).
- Álvarez A (2024). Predicción de separaciones en aeronaves mediante redes bayesianas (supervised by J.A. Fernandez del Pozo and A. Jiménez).
- Amesti J (2024). Estimation of distribution algorithms for generative adversarial and convolutional neural network hyper-parameter optimization(supervised by C. Bielza and P. Larrañaga).
- Fernandez del Pozo J (2024). Explainable Anomaly Detection in Induced Draft Fans with Dynamic Bayesian Networks (supervised by C. Bielza and P. Larrañaga).
- García C (2024). Red Bayesiana gamma-gaussiana para la mejora de eficiencia computacional en la detección de anomalías (supervised by C. Bielza and P. Larrañaga).
- Henríquez D (2024). Ajuste del modelo de probabilidad y de preferencias de un diagrama de influencia basado en reglas (supervised by J.A. Fernandez del Pozo).
- Jiménez J (2024). Monitorización y predicción de la vida útil remanente de herramientas de maquinaria de mecanizado (supervised by C. Bielza and P. Larrañaga).
- Mejías P (2024). Most relevant explanations in semiparametric Bayesian networks applied to proactive maintenance of water pumps in large desalination plants (supervised by C. Bielza and P. Larrañaga).
- Mellado A (2024). Use of Discrete and Continuous Wavelet Transform in Surface Electromyographic signals for human gait characterization (supervised by B. Mihaljevic and J. Moreno).
- Moreno O (2024).Visualización de Flujo de Datos Multidimensional (supervised by J.A. Fernandez del Pozo).
- Muñoz L (2024).Cognitive modeling of the Alzheimer’s disease continuum using graphical models(supervised by B Mihaljevic).
- Órtiz L (2024). Novel approaches for concept dirft detection in ADIF infrastructures (supervised by C. Bielza and P. Larrañaga).
- Rubio M (2024). Algoritmos de estimación de distribuciones para el clustering ascendente jerárquico (supervised by C. Bielza and J.A. Fernandez del Pozo).
- Salvador V (2024). Algoritmos de estimación de distribuciones para la modelización de redes neuronales profundas (supervised by C. Bielza and P. Larrañaga).
- Zaragoza D (2024) Probabilistic reasoning interpretability in Bayesian networks with estimation of distribution algorithms (supervised by C. Bielza and P. Larrañaga).
2023
- Alejandre V (2023). Interpreting Bayesian network-based Clustering (supervised by C. Bielza and P. Larrañaga).
- Alonso M (2023). Facilitating the inference interpretation in Bayesian networks (supervised by C. Bielza and P. Larrañaga).
- Amigo N (2023). Explainable cascading system for network intrusion detection in industry (supervised by C. Bielza and P. Larrañaga).
- Angulo J (2023). Predicción de capacidad de difusión de monóxido de carbono a largo plazo en pacientes de COVID-19 con Redes Bayesianas (supervised by C. Bielza and P. Larrañaga).
- Camarena L (2023). Análisis e impacto de datos faltantes en modelos de machine learning (supervised by B. Mihaljević).
- Cerro L (2023). Estudio empírico de algoritmos de aprendizaje de Redes Bayesianas a partir de datos (supervised by J.A. Fernandez del Pozo).
- Frontero NA (2023). Use of supervised learning to predict suicidal and non-suicidal self harm risk (supervised by B. Mihaljević).
- Jiménez E (2023). Síntesis de explicaciones en tablas de decisiones óptimas (supervised by J.A. Fernandez del Pozo).
- Ramis B (2023). Síntesis de explicaciones en redes Bayesianas (supervised by J.A. Fernandez del Pozo).
- Saavedra A (2023). Predicción de la distancia de separación de umbral entre aeronaves mediante aprendizaje automático (supervised by J.A. Fernandez del Pozo).
- Sojo R (2023). Improving machine learning-based bridge health monitoring systems scalability with transfer learning (supervised by C. Bielza and P. Larrañaga).
- Solbas A (2023). Analysis of cognitive domains in mild cognitive impairment and Alzheimer’s disease using a graph theory approach (supervised by B. Mihaljević).
- Tello I (2023) Interactive structure learning for discrete Bayesian network classifiers (supervised by C. Bielza and P. Larrañaga).
- Wolters S (2023). Trustworthy machine learning: mitigating bias and promoting fairness in automated decision systems (supervised by J.A. Fernandez del Pozo).
2022
- Casajús J (2022). Autocodificador evolutivo de red Bayesiana para detección de anomalías aplicado a ciberseguridad (supervised by C. Bielza and P. Larrañaga).
- Cifolillo P (2022). Idbn-mining: Data mining in knowledge bases by graphical models evaluation (supervised by J.A. Fernandez del Pozo).
- Cordero P (2022). Anomaly-based network intrusion detection system using semi-supervised models (supervised by C. Bielza and P. Larrañaga).
- Crucera P (2022). Estimation of conditioned mutual information between discrete, continuous and mixed variables (supervised by J.A. Fernandez del Pozo).
- Fernández J (2022). Monitorización de puentes y detección de cambios de concepto con Redes Bayesianas dinámicas (supervised by C. Bielza and P. Larrañaga).
- Gallego J (2022). A genetic atlasing toolbox with a standalone web interface and basic functionality plugin in the EBRAINS Interactive atlas viewer (supervised by C. Bielza and P. Larrañaga).
- González A (2022). Redes Bayesianas de consenso para la inicialización de sistemas de monitorización y detección de anomalías (supervised by C. Bielza and P. Larrañaga).
- Jiménez J (2022). Análisis post-Covid19 con herramientas de aprendizaje automático (supervised by C. Bielza and P. Larrañaga).
- López I (2022). Redes Bayesianas semiparamétricas para la monitorización y detección de anomalías con aplicaciones al deterioro de los puentes de la Red de Carreteras. (supervised by C. Bielza and P. Larrañaga).
- Uttamchandani R (2022). Hidden structure- continuous time Bayesian networks. (supervised by C. Bielza and P. Larrañaga).
- Valero E (2022). Explanations for dynamic Bayesian networks: a case study in climate science (supervised by C. Bielza and P. Larrañaga).
2021
- Díez J (2021). Score-based Bayesian networks for the discovery of effective connectivity in fMRI data with the use of the Balloon model (supervised by C. Bielza and P. Larrañaga).
- González-Carvajal S (2021). Cadena de clasificadores bayesianos en tiempo continuo (supervised by C. Bielza and P. Larrañaga).
- Laccourreye P (2021). Explainable machine learning for longitudinal multi-omic microbiome (supervised by C. Bielza and P. Larrañaga).
- Li C (2021). Network intrusion detection for industrial devices using continuous time Bayesian networks (supervised by C. Bielza and P. Larrañaga).
- Maiza I (2021). Detección de anomalías en fundiciones industriales de hornos de arco eléctrico desarrollando una técnica de clustering de series temporales multivariantes (supervised by C. Bielza and P. Larrañaga).
- Múgica I (2021). Bridge online condition monitoring with linear gaussian Bayesian networks-based dynamic clustering (supervised by C. Bielza and P. Larrañaga).
- Riaño MA (2021). Avances en arboles de decisión y su aplicación para clasificar enfermos críticos de COVID-19 (supervised by C. Bielza and P. Larrañaga).
- Timermans R (2021). Explicación en bases de conocimiento de sistemas de ayuda a la decisión (supervised by J.A. Fernandez del Pozo).
2020
- Alderisi S (2020). Machine learning applied to COVID-19 (supervised by C. Bielza and P. Larrañaga).
- Althoff I (2020). Industrial assets downtime estimation using a machine learning model and vibration data (supervised by J.A. Fernandez del Pozo).
- Angulo LE (2020). Redes bayesianas en R: análisis de los paquetes software disponibles (supervised by B. Mihaljević and C. Bielza).
- Cheng S (2020). Extending the bnclassify R package: Bayesian network classifiers with continuous variables (supervised by B. Mihaljević and P. Larrañaga).
- Gonzalez O (2020). Extensión del paquete bnclassify para clasificadores basados en redes bayesianas (supervised by B. Mihaljević). Internacional Menéndez Pelayo (UIMP) and Asociación Española para la Inteligencia Artificial (AEPIA).
- Gutiérrez A (2020). Corrección de errores de OCR de Google de documentos en castellano (supervised by B. Mihaljević). Universidad Internacional Menéndez Pelayo (UIMP) and Asociación Española para la Inteligencia Artificial (AEPIA).
- Mazuelos MT (2020). Bayesian network learning with nominal, ordinal and continuous data (supervised by J.A. Fernandez del Pozo).
- Nugra H (2020). Machine learning implementations on Neurosuites software (supervised by C. Bielza and P. Larrañaga).
- Pérez-Soloviev V (2020). Optimización de un proceso de una refinería usando algoritmos evolutivos basados en Redes bayesianas gaussianas (supervised by C. Bielza and P. Larrañaga).
2019
- Arlandis J (2019). Generative modeling and calcium imaging (supervised by C. Bielza and P. Larrañaga).
- Bernaola N (2019). Learning interpretable gene regulatory networks via merging Bayesian networks (supervised by C. Bielza and P. Larrañaga).
- Fernández C (2019). Estudio y aplicación de métodos basados en interacciones para el aprendizaje automático sobre conjuntos de elementos (supervised by C. Bielza and P. Larrañaga).
- Paniego S (2019). Visualization and interpretation in large Bayesian networks (supervised by C. Bielza and P. Larrañaga).
- Parrales F (2019). Estudio de metodologías de preprocesamiento y clasificación multietiqueta para datos clínicos de pacientes con migraña (supervised by C. Bielza and P. Larrañaga).
- Ramos J (2019). Aprendizaje automático para flujos de datos (supervised by C. Bielza and P. Larrañaga).
- Zapatero J (2019). Continuous data imputation applied to massive instances (supervised by C. Bielza and P. Larrañaga).
2018
- Alcón A (2018). Modelos de aprendizaje automático sobre el juego del club Movistar Estudiantes (supervised by C. Bielza and P. Larrañaga).
- Gil-Begue S (2018). Nuevos clasificadores Bayesianos multi-dimensionales. Aplicaciones a la eficiencia energética en la Industria 4.0, confidential (supervised by C. Bielza and P. Larrañaga).
- Puerto-Santana C (2018). Asymmetric linear gaussian hidden Markov models with an application to determine nearings health state (supervised by C. Bielza and P. Larrañaga).
- Rodríguez-González A (2018). Aprendizaje automático aplicado al scouting futbolístico, confidential (supervised by C. Bielza and P. Larrañaga).
- Valero D (2018). Nuevo algoritmo de clasificación multietiqueta con Redes bayesianas. Aplicación a un problema industrial (supervised by C. Bielza and P. Larrañaga).
- Villa-Blanco C (2018). Estudio de la deriva térmica sobre una máquina de medición de alta precisión mediante análisis de regresión multi-respuesta, confidential (supervised by C. Bielza and P. Larrañaga).
2017
- Llera M (2017). A novel multi-dimensional regression model based on Gaussian Networks (supervised by C. Bielza and P. Larrañaga).
- Mesonero J (2017). Arquitectura para detección de anomalías en un proceso de templado laser (supervised by C. Bielza and P. Larrañaga).
- Ogbechie A (2017). Using dynamic Bayesian networks for the automated visual inspection and analysis of an industrial laser process (supervised by C. Bielza and P. Larrañaga).
- Vakaruk S (2017). Redes Bayesianas clasificadoras multidimensionales en tiempo continuo (supervised by C. Bielza and P. Larrañaga).
2016
- Atienza D (2016). Detección de anomalías durante un proceso de templado láser con un seguimiento espacio-temporal (supervised by C. Bielza and P. Larrañaga).
- Rodriguez-Sanchez F (2016). Multi-view clustering with Bayesian networks (supervised by C. Bielza and P. Larrañaga).
2015
- Anton-Sanchez L (2015). Computación evolutiva de bosques de expansión mínimos con restricción de grado y de rol (supervised by C. Bielza and P. Larrañaga).
- Córdoba-Sánchez I (2015). Fusión de redes Bayesianas Gaussianas (supervised by C. Bielza and P. Larrañaga).
- Lujan L (2015). Caracterización y simulación de arborizaciones dentríticas con redes bayesianas incluyendo variables angulares (supervised by C. Bielza and P. Larrañaga).
- Maraver P (2015). Clasificación supervisada de las neuronas de la base de datos NeuroMorpho (supervised by C. Bielza and P. Larrañaga).
2014
- Benjumeda M (2014). Learning Bayesian networks from data by the incremental compilation of new network polynomials (supervised by C. Bielza and P. Larrañaga).
- Fernandez-Gonzalez P (2014). Contributions to the truncated von mises distribution for the univariate and bivariate case (supervised by C. Bielza and P. Larrañaga).
- Luengo-Sanchez S (2014). Clustering basado en redes bayesianas con predictoras continuas: aplicaciones en neurociencia (supervised by C. Bielza and P. Larrañaga).
2013
- Mihaljević B (2013). BayesClass. An R package for learning Bayesian network classifiers. Applications to neuroscience (supervised by C. Bielza and P. Larrañaga).
- López-Adeva P (2013). Markov models for the multivariate von Mises distribution (supervised by C. Bielza and P. Larrañaga).
2012
- Perez J (2012). Replicated spatial point processes in neuroscience (supervised by C. Bielza and P. Larrañaga).
2010
- López-Cruz P (2010). Simulación de morfologías dendríticas mediante redes Bayesianas (supervised by C. Bielza and P. Larrañaga).
2009
- Ibáñez A (2009). Técnicas de aprendizaje automático aplicadas a la bibliometría (supervised by C. Bielza and P. Larrañaga).
- Abad MA (2009). Minería de datos dependiente del contexto en dispositivos ubicuos (supervised by C. Bielza).