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Resumen

Las tareas de mejora del habla son métodos que mejoran la calidad y la inteligibilidad
de las señales de audio ruidosas. Los modelos de mejora del habla se entrenan con
el objetivo de distinguir entre señales limpias y ruidos, para después eliminar dichos
ruidos de las señales originales. Las señales nítidas proporcionan una comunicación
más sencilla y agradable. Adaptar estos modelos a tareas cotidianas no está exento de
dificultades. Los modelos con los mejores resultados en cuanto a mejora del habla,
no son lo suficientemente ligeros para ser utilizados en dispositivos con recursos
limitados. Además, muchos modelos requieren excesivo tiempo para procesar audios
ruidosos, lo que impide su uso en tiempo real.

Recientemente, se ha prestado especial atención a la eficiencia de los modelos de
mejora del habla. Para popularizar el uso de este tipo de modelos, estos deben
poderse ejecutar en dispositivos de capacidad reducida. Con ello se mejoran las
prestaciones en relación a la privacidad de los usuarios. Para reducir la latencia,
tamaño y operaciones de los modelos, se han desarrollado técnicas de aprendizaje
profundo. Sin embargo, debido a la compensación entre eficiencia y rendimiento,
sigue siendo un reto obtener modelos eficientes y con buenos resultados a nivel de
mejora del habla.

En este proyecto se han diseñado tres modelos eficaces de mejora del habla. Los
modelos desarrollados son modelos de tiempo-frecuencia, lo que significa que se cen-
tran tanto en las características temporales como en las frecuenciales. El dominio de
la frecuencia se divide en la magnitud y la fase de la señal de audio. Los tres modelos
son redes generativas adversarias con una estructura codificador-decodificador en el
generador y mecanismos de atención en el espacio latente.

De los tres modelos, sólo uno de ellos, denominado MiniGAN, obtiene resultados
competitivos. Estos resultados incluyen métricas objetivas y subjetivas utilizadas
habitualmente en la mejora del habla. Dichas métricas hacen referencia a la calidad
e inteligibilidad de las señales de audio mejoradas. Los tres modelos son altamente
eficientes, tanto en tamaño, como en número de parámetros y operaciones. Además,
algunos de ellos pueden ser utilizados en aplicaciones en tiempo real. Este proyecto
contribuye al estado del arte en la mejora del habla, ya que propone modelos efi-
cientes y competitivos. El trabajo futuro debería centrarse en mejorar las métricas de
calidad e inteligibilidad obtenidas a través de los modelos.
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Abstract

Speech enhancement tasks are methods that improve the quality and intelligibility of
noisy audio signals. To that end, speech enhancement models are trained to distin-
guish between clean signals and noises, and then remove the noises from the original
signals. Enhanced signals provide easier and more pleasant communication. Adapt-
ing these models to everyday tasks is not without difficulties. The models with the
best speech enhancement results are not small enough to be used in devices with
limited resources. On top of that, many models require a long time to process noisy
audio, which prevents their use in real time.

Recently, a strong focus on how to make speech enhancement models efficient has
been developed. In order to extend the use of the models, they must be able to run
on low-resourced devices. This improves performance in terms of user privacy. To
reduce model latency, size and number of operations, deep learning techniques have
been developed. However, due to the trade-off between efficiency and performance, it
is still a challenge to obtain efficient models with good speech enhancement results.

In this project, three efficient speech enhancement models are designed. The models
developed are time-frequency models, which means that they focus both on time and
frequency characteristics. The frequency domain is divided into the magnitude and
phase of the signal. The three models are generative adversarial networks with an
encoder-decoder structure in the generator and attention mechanisms in the latent
space.

Of the three models, only one of them, called MiniGAN, obtains competitive results.
These results comprise the objective and subjective metrics commonly used in speech
enhancement. These metrics refer to the quality and intelligibility of the audio signals
enhanced through the neural networks. All three models are highly efficient, both in
size and in number of parameters and operations. In addition, some of them can
be used in real-time applications. This project contributes to the state of the art in
speech enhancement, as it proposes efficient and competitive models. Future work
should focus on improving the quality and intelligibility metrics obtained from the
models.
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Chapter 1

Introduction

Speech is one of the main means of communication for humans. Such communica-
tion partly determines our social nature as a species. Through speech we can send
and receive messages. Hence, being able to extract the content of a message from an
audio signal becomes a crucial task. Humans are able to do so by focusing on specific
parts of the audio signals we receive. This is known as selective auditory attention.
Although it may seem a trivial task, it is a much more complex one, as it is the result
of evolution and the long learning process we experiment in the early years of our life
(Gomes et al., 2000).

Similar to selective auditory attention, speech enhancement models focus on extract-
ing the relevant information from audio signals. Such information corresponds to the
clean speech signal. By having noisy signals as input, models distinguish between
the clean speech and the noises that degrade it. After that, noises can be eliminated
from the input signals, remaining only the clean speech that contains the relevant
information. Speech enhancement can be divided into several subgoals. The two
main ones include the improvement in the quality and intelligibility of the noisy sig-
nals (Bäckström et al., 2022, Gelderblom, 2023). The quality of an audio refers to
the opinion of a person about the signal. The intelligibility, to how much a person
understands the content.

To effectively create speech enhancement models, it is necessary to understand au-
dio data. Audio data is time dependent. Each audio is conformed by several time
points. Each time point is a sample with specific values. Because of the sequential
nature of audio data, the order of these samples, should be taken into account when
performing speech processing tasks. Audios are generally represented as waveforms
in time domain, showing how the amplitude of the signal varies with time. Transfor-
mations can be applied to obtain frequency domain signals. Frequency analysis is
quite common in speech tasks, as it allows studying the spectral content of the signal
(Mehrish et al., 2023).

To selectively extract the clean signal, speech models focus on different features from
the input signal. These features can represent time or frequency characteristics.
Therefore, speech enhancement models can be developed in time or frequency do-
main (Mehrish et al., 2023). Time domain is much simpler as no transformations of
the signals are required. However, frequency domain offers better results. The main
problem that arises from frequency domain is that it treats signals as time indepen-
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dent variables. As speech is non-stationary, another domain called time-frequency
domain is required (Bäckström et al., 2022, Ochieng, 2023). Recent trends in speech
enhancement involve models in time-frequency domain. This domain offers advan-
tages from using both time and frequency domains. The results obtained with time-
frequency domain models are generally better, but they imply higher computational
cost, as more computations are required.

Speech enhancement models are currently based on deep learning. It was not always
this way. Previously, statistical methods were used (Zheng et al., 2023). However,
deep learning allows to easily work with high amounts of data, offers more flexibil-
ity and better results. Several deep learning elements have been studied in speech
enhancement. Recurrent neural networks are employed because of their ability to
capture temporal dependencies (Zheng et al., 2023). Convolutions are used in most
of the speech enhancement models due to their efficiency in parameter sharing tech-
niques and faster training (Mehrish et al., 2023). Denoising autoencoders are also
quite popular in speech enhancement. They use the noisy signal as input and try
to reconstruct an enhanced signal that is as similar to the clean audio as possi-
ble (Vincent et al., 2010). Generative adversarial networks, in which the generator
is responsible for the enhancement, have also been explored (Skariah and Thomas,
2023). Finally, attention mechanisms are one of the most employed elements cur-
rently. Their ability to capture the most significant information from the noisy signal,
makes them an ideal element for speech enhancement tasks (O’Shaughnessy, 2024).

Speech enhancement methods face several difficulties. Some of them are related to
the variety of noises in real world applications, which makes the detection of noises
more difficult. The evaluation of enhanced audios is also challenging, as the assess-
ment of the enhanced signal quality is not a closed-formula operation. To that end,
subjective and objective metrics are employed (Benesty et al., 2006). Other chal-
lenge addressed by speech enhancement models involves the variability in the ratio
between the clean signal and noises. It is also difficult to use speech enhancement
models in real time. An increasingly important challenge comes in relation to the
implementation of speech enhancement models in small size devices (Zheng et al.,
2023). Deep learning introduces complexity in the models, increasing the number of
parameters and operations, and therefore limiting their efficiency.

The primary goal of this project is to develop an efficient and high performance speech
enhancement model with deep learning techniques. Speech enhancement models
have improved vastly in performance in recent years. However, the main problem of
most of the models remains: most of them cannot be used in daily life tasks as they
are not real time nor lightweight models. The focus of this work is precisely on this
limitation. To achieve this goal, three main actions are taken. First, a framework for
training and evaluating the models is developed, with strong focus on ensuring model
generalization ability. Second, several efficient deep learning algorithms are designed.
Finally, the models are trained, validated and evaluated. The models performance
and efficiency results are obtained and analysed.

This document is structured as follows. Chapter 2 reviews the state of the art in
speech enhancement. This chapter includes basic knowledge about speech enhance-
ment, the most popular databases, data augmentation techniques, deep learning
methods, objective and subjective metrics and the latest trends in speech enhance-
ment. Chapter 3 presents the problem statement and the main goal of this project.
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Introduction

Chapter 4 explains the methods used for the development of the models of this
project. This section does not only outline the design decisions, but also all the
reasons behind them. Chapter 5 shows and discusses the results obtained for the
models developed. Finally, Chapter 6 indicates the main conclusions drawn from this
work and the future lines of work. For ease of reading, each chapter begins with a
paragraph indicating the structure of the chapter.
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Chapter 2

Speech Enhancement: State of the
Art

In this chapter the state of the art in speech enhancement is explained. A first
section with basic knowledge about speech enhancement and audio data is intro-
duced. Then, common databases used as benchmarks in speech enhancement are
presented. Methods for increasing the volume of available data are also explored. Fol-
lowing, current trends of deep learning techniques employed for speech enhancement
are explained. The main networks include recurrent neural networks (RNN), convo-
lutional neural networks (CNN), autoencoders, generative adversarial networks (GAN)
and attention mechanisms. Losses used to train the networks are also included in
the deep learning section. The metrics used to evaluate the models in speech en-
hancement are as well covered in this chapter. It is important to understand the
metrics, as the results shown for this project are based on them.

Most of the speech enhancement models combine several elements of those explained
in this chapter. Therefore, the first five sections deal with elements common to mul-
tiple models and the last two sections refer to specific models. The second to last
section covers well-known models in speech enhancement. The last section explains
in detail the best state of the art models. This last section is crucial to understand
the models developed in this project.

2.1 Basic knowledge about speech enhancement

Humans are able to perceive noisy signals and discriminate between the desired sig-
nal and the unimportant information. This can be seen as an enhancement task,
in which we are able to clean the signal, or remove the noise, keeping only the
information corresponding to the part we are interested in. Speech enhancement
refers to methods which extract the noise, to make speech sounds more pleasant,
reduce listening effort and improve intelligibility (Bäckström et al., 2022). According
to Gelderblom, 2023, the goal of speech enhancement can be divided into two main
sub-purposes: improving the quality of the speech signal and improving the intelligi-
bility of the signal. The first idea refers to the opinion of a person about that signal.
The second, to how much a person understands the content.

Bäckström et al., 2022 indicate that speech enhancement has seven focuses: (i)
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noise attenuation, (ii) echo cancellation, (iii) bandwidth extension, (iv) deverberation,
(v) source separation, (vi) beamforming and (vii) active noise cancellation. Noise at-
tenuation is the most common one and it is based on extracting the desired, or clean,
signal that is originally distorted by background noises. Echo cancellation consist of
first identifying the signal that is repeated with delay and then remove its repetitions.
Bandwidth extension refers to methods which expand the frequency range of a signal
where the interesting content is placed. The deverberation is the process of remov-
ing the reverberation, or reverb of a signal. The reverberation refers to the effect of
room acoustics, due to signal reflections. Source separation methods isolate sounds
of a single source. Similarly, beamforming focus on extracting sounds coming from
a single direction. Finally, active noise cancellation, attenuates background noise by
adding a second sound specifically designed to counteract the noise. Overall, it can
be said that speech enhancement goal is to obtain an enhanced signal that resembles
the clean signal, using as input a noisy signal. Thus, the quality and intelligibility of
the input signal is improved.

Audio data is time dependent. A sound is time-varying motion of air (or some other
medium) with an accompanying change in pressure. This change in pressure, which
is time dependent, is an analogical signal. The analogical signal of the sound is
recorded by a device and converted to a digital signal (Puckette, 2014). The digital
signal represents the audio signal and is the one processed in speech enhancement
tasks.

To perform speech enhancement, and other speech processing tasks, speech features
are used. Speech features are numerical representation of speech signals used for
speech analysis (Mehrish et al., 2023). These features can be in time domain or
frequency domain. Therefore, speech enhancement tasks can be divided into time
domain and frequency domain, depending on the features the model focuses on.
Models in time domain focus on the amplitude or energy of the speech signals as a
function of time. Frequency features involve representing the signal as a function of
the frequency instead of as a function of time. This is done by the Discrete Fourier
Transform (DFT). The equation of the DFT is:

Xk =

N−1∑
n=0

xne
−i2π kn

N . (2.1)

where Xk are complex numbers that represent the magnitude and phase of an input
signal xn. Xk is the output in the frequency domain of the frequency index k. For a
time interval [0, N ], at each time point n, the input signal is multiplied by a complex
exponential term that represents the wave at frequency k/N . Overall, the result is a
complex number that represents the amplitude and phase of a signal as a function
of the frequency.

The main problem is that speech signals are not stationary (Bäckström et al., 2022,
Ochieng, 2023). Stationary signals have properties that do not change over time.
Speech signals show variations in both frequency and time. Hence, a third domain
known as the time-frequency (TF) domain is defined. This is known as short-time
analysis. The common approach is to compute a spectrogram which involves both
the frequency and time variables. This is done by computing the Short Time Fourier
Transform (STFT). This can be understood as the sum of DFT for different windows
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of small intervals of time (Bäckström et al., 2022). The equation for the STFT is:

Xk,m =
N−1∑
n=0

wnxn+mHe−i2π kn
N . (2.2)

Similarly to the DFT (equation 2.1), the STFT (equation 2.2) computes the magnitude
and phase information of a signal corresponding to a frequency k. The main difference
is that the STFT does so for each window of time w using a hop factor H which
represents the shift parameter in the time window used. Overall, the output Xk,m is
a time dependent variable. Models that use the STFT to transform the time signal
into frequency signal, also use the Inverse Short Time Fourier Transform (ISTFT).
The ISTFT does the inverse process, converting the output frequency signal into a
time signal. Hence, the enhanced signal is, as the input signal, in time domain. It
is common in the state of the art to refer to the time-frequency domain as frequency
domain, although they are not strictly the same (Zheng et al., 2023). They both obtain
frequency features. However, frequency domain only takes into account frequency
features, while TF domain focus on both time and frequency features.

In figure 2.1, the signals in the three domains can be seen. The time domain wave-
form on the left shows the amplitude against the time. The frequency domain plot
in the middle shows the spectral components of the audio. The graph represents the
magnitude of the complex spectrogram. Note that human speech has low frequency
values. Hence the amplitude of the speech signal shown in the figure is higher for low
frequencies. Finally, the magnitude of the spectrogram on the right, corresponding
to the TF domain, illustrates the frequency of the signal against the time. The am-
plitude is implicitly shown by the color of the plot. Yellow color correspond to higher
amplitude regions, while blue color indicates lower amplitudes (Malinverno, 2023).
Again, higher values correspond to low-frequency values.

Figure 2.1: Speech signal represented in time domain (left), frequency domain (mid-
dle) and time-frequency domain (right).

The results obtained with frequency domain methods tend to be better than those
obtained with time domain methods (Zheng et al., 2023). Also, time domain features
pose difficulties such as the large input space or impossibility to capture some con-
tents of the speech signal (Ochieng, 2023). Frequency domain features tend to be
more sparse (Zheng et al., 2023), making it easier to detect and eliminate noise. Cur-
rently, the best state of the art models focus on TF domain, as it offers the advantages
of time and frequency domain.
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2.2 Speech enhancement databases

Speech enhancement databases constitute crucial elements for the speech enhance-
ment field. The databases are conformed by noisy audios to be cleaned. The goodness
of each model is assessed by its ability to remove the noises from a noisy signal ob-
taining an enhanced signal as output. To build speech enhancement databases it
is common to mix automatic speech recognition (ASR) datasets and noises datasets.
Virtually, every combination of these two kinds of datasets can conform a speech en-
hancement database. The obvious advantage of this strategy is that clean signals are
known and therefore the comparison of the output of the models and clean signals is
easily done. Thus, the goodness of the model is defined as the similarity between the
output of the model and the clean signals. Different benchmarks have been defined
for speech enhancement tasks. In this section, the most common ones are explained.

The database VoiceBank + DEMAND (Valentini-Botinhao, 2017), also known as Valen-
tini after its developer, is created by combining the Voice Banking Corpus (Veaux et
al., 2016) and the DEMAND (Thiemann et al., 2013) databases. The first corresponds
to a clean speech database, while the second one is a database of noises. The Voice
Banking Corpus is conformed by approximately five hundred speakers. All the speak-
ers are native English speakers selected from different regions to capture the variety
of accents. The dataset includes speakers between twenty and ninety years old and
with males and females in similar proportions. The main drawback of the dataset
is that the number of speakers from the upper social class is much higher than
the number of speakers from the working class, which is almost non-existent. This
likely results in the under-representation of regional accents of working class. The
DEMAND dataset includes noises classified in six categories: (i) domestic, (ii) office,
(iii) public, (iv) transportation, (v) nature and (vi) street. Each category is further di-
vided into three subcategories. These noises try to represent real-world and common
noises.

The VoiceBank + DEMAND database combines sixty speakers from the Voice Banking
Corpus and thirteen types of noises from the DEMAND dataset. Two extra noises are
synthetically created to simulate noises caused by human speech. They correspond
to babble and speech-shaped noise. The babble noise is a mix of six speakers of the
VoiceBank database, while the speech-shaped noise correspond to white noise with
frequency of a male speaker. For each noise condition, different Signal-to-Noise Ratio
(SNR) are employed. Different speakers, noise types and SNR are employed in the
train and test set.

Deep Noise Suppression (DNS) Challenge (Reddy et al., 2020) again combines ASR
datasets with noises datasets. The clean, ASR, signal dataset is Librivox (McGuire,
2005), which has recordings of volunteers reading over ten thousand books in various
languages. Although some recordings are of good quality, the majority present back-
ground noises, speech distortions and other types of undesired signals. Therefore,
when the DNS database was created, a meticulous filtering was performed to select
only clean signals of high quality. The noises come from the Audioset (Sound and
video understanding teams at Google, 2017), Freesound (Music Technology Group of
Universitat Pompeu Fabra, 2005) and DEMAND (Thiemann et al., 2013) databases.
The first one is composed of two million videos of ten seconds from YouTube. The
samples from such dataset are selected so that it present class balance. Audios
with speech were deleted so that they do not affect the speech enhancement task.
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Some noises from Freesound and DEMAND databases were lastly added to the pool
of noises from the Audioset database.

Other common benchmark is ReVerb (REverberant Voice Enhancement and Recog-
nition Benchmark) Challenge (Kinoshita et al., 2013). The dataset is conformed by
recordings of one stationary and distant-talking speaker in a reverberant room. The
dataset has real recordings and simulated recordings obtained by merging clean sig-
nals with recorded background noises. The reverberation times are modified to have
a broader representation of the reverberation in the dataset. Other examples of pop-
ular datasets include WHAM! (Wichern et al., 2019) with data of two speakers in a
noisy environment, WHAMR! (Maciejewski et al., 2020) which adds synthetic rever-
berated sources to WHAM! and EasyCom (Donley et al., 2021) for the cocktail party
effect.

2.3 Data augmentation for speech enhancement

The speech databases used as benchmarks in speech enhancement are generally not
large. Hence, strategies to increase the volume of that data are required. Data aug-
mentation refers to methods used to reach such goal. These techniques are based
on applying transformations to the datasets, obtaining new data. By increasing the
volume of data, so does the variability of the datasets used to train models. Thus,
models are not limited to a specific type of signal and can generalize better. Data
augmentation is one of the most popular techniques used to avoid overfitting. In
databases with a small to medium volume of data, data augmentation becomes a
powerful strategy to obtain optimal results (Braun and Tashev, 2020). Multiple tech-
niques of data augmentation have been developed for audio data (Abayomi-Alli et al.,
2022, Ferreira-Paiva et al., 2022, Alex et al., 2023). In this section the main data
augmentation techniques applied in speech enhancement tasks are explained.

Many speech enhancement databases are created by mixing audios with clean signals
and audios with noises. Consequently, it is not costly to apply data augmentation
techniques, as it is easy to create new combinations of noisy audios in time domain.
Noisy audios can be easily obtained by applying additive noise to the clean audios.
Transformations can be applied to the clean audios, the noises and/or the noisy
audios. As audio signals constitute a complex form of data with many features in
different domains, the range of possible transformations to be applied is very broad.

An easy strategy to increase the volume of data is based on corrupting audio with
white noise. This is because of two reasons: it is easy to generate and it helps
generalizing as it can cover all frequencies. The white noises are generated by a
Gaussian or random distribution. The noises are added to the clean signal at different
SNR. Many audios can be obtained from the same white noise and clean signal by
adjusting such SNR. Creating samples with low SNR, helps the model learn how to
remove noises even in highly noisy environment. The white noises can be stationary
or non-stationary (Loo, 2020).

One of the most common strategies is to add random background noises to the clean
signals. It is a very popular approach as noisy audios from speech enhancement
databases are created by mixing the clean audios and the noises. A random noise
from the noises collection can be selected and added to a clean audio, creating a new
variation of noisy audio. The SNR between the clean signals and background noises
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can vary. It has the same principle as the white noise addition, but instead of using
synthetic noises, it uses the noises that are already present in the database. It is is a
fairly simple but effective method.

Data augmentation techniques can also be based on reverberation (Tang et al., 2018,
Defossez et al., 2020). Reverberation occurs because sounds reflect off the surfaces
of an enclosed space before reaching the recording microphone. When the reflected
sound is distinguishable from the original sound, it is known as an echo. Rever-
beration is a consequence of room acoustics. It can be easily simulated. The audio
at a point of time is selected, extracted and added to the signal with a certain delay
and lower amplitude. This can be repeated several times for the same sound, using
different delays and amplitude levels. In this way the model is trained to be able to
eliminate the reverberation and the volume of data can be easily increased.

Modifications cannot only be made in time domain, but also in frequency domain.
BandMasking techniques (Defossez et al., 2020) refer to strategies that mask specific
frequency bands by setting the amplitude to zero. Different filters can be applied. By
masking specific and different bands of frequency, the number of audios increases
and the model can learn to focus on specific robust signal features. This is specially
useful to mask frequencies that are not human-perceivable, so that the model does
not focus on them. Similarly, time masking, in which a time band amplitude is set
to zero, can be performed. SpecAugment (D. S. Park et al., 2019), a famous data
augmentation technique in speech enhancement, combines both time and frequency
masking. Specaugment also involves time warping, in which the speed of some parts
of the audio is increased, while the speed of other parts is reduced.

Time stretch and pitch shift strategies have also been employed for data augmenta-
tion in speech tasks (Wei et al., 2020). Time stretch refers to changing the speech
speed and therefore the duration of the audio, while maintaining the pitch. Pitch
shift refers to the opposite operation, in which the pitch is modified, while the speed
of the audio is unchanged. The pitch can be modified to different semitones.

2.4 Deep learning for speech enhancement

Deep learning has not always been the standard procedure for speech enhancement
(Zheng et al., 2023). Actually, it was not until Y. Wang and Wang, 2012 proposed
using deep learning to deal with the cocktail party problem, that neural networks
started being used for speech enhancement. Before, statistical methods were used.
Statistical methods assume that the clean signal and the noises are independent and
that one of them follows a specific distribution. Therefore, statistical or traditional
methods are based on statistical treatment of one of the signals, clean signal or noise,
that conform the input. These techniques were quickly replaced by deep learning.
Deep learning techniques pose an incredibly well suited strategy to perform speech
enhancement. The results of speech enhancement tasks have improved by using
neural networks (Zheng et al., 2023).

Neural networks are representation-learning method as they obtain the representa-
tion needed to perform an specific task from raw data (LeCun et al., 2015). Their
main unit is called neuron. Neurons are organized in layers and each layer is con-
nected to the next one. Each connection has a weight assigned and each layer a bias.
By adjusting the weights and biases, the model learns to give more or less importance
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to specific features of the input data in order to obtain the desired result. The weights
and biases are adjusted by the backpropagation gradient (Rosenblatt, 1962). A loss
is fixed to compare the output of the model and the target output. By minimizing the
loss, the gradient is computed and backpropagated so that weights and biases are
adjusted. Training a neural network can be understood as finding the best trainable
parameters so that the loss is minimized.

In this section, the main deep learning motifs used in speech enhancement are ex-
plained. The types of neural network elements include (i) Recurrent Neural Networks
(RNNs), (ii) Convolutional Neural Networks (CNNs), (iii) autoencoders, (iv) Generative
Adversarial Networks (GANs) and (v) attention mechanisms. The enumerated ele-
ments are explained in the first five subsections. The last subsection of this section
refers to the losses commonly used to train speech enhancement models. This sec-
tion does not include the explanation of specific speech enhancement models, but of
the elements they are conformed of. This section is used to ensure a solid foundation
in the different elements of deep learning that are employed by speech enhancement
models. Specific models are detailed in later sections with reference to the elements
described in this section.

2.4.1 Recurrent Neural Networks

Recurrent neural networks (RNN) (Rumelhart et al., 1986) are neural networks that
use feed back loops in contrast to traditional feed forward neural networks (FFNN),
which only allow forward connections between neurons (Zell, 1994). In RNN the out-
put of a neuron can be used as input of that neuron or neurons from previous layers
as shown in figure 2.2. Since input can be given sequentially and the output of
one neuron can affect neurons in the same or previous layers, it follows that previ-
ously processed elements affect subsequently processed elements. In other words,
the output of a neuron depends on previous elements of the sequence that were pro-
cessed before. This makes RNN excellent architectures to work with sequential data
as speech signals. RNN are said to have inherent memory, as previous elements in
the sequence influence current and future learning.

Figure 2.2: Recurrent neural network with two hidden layers and recurrence between
different layers and within the same layer (Arias et al., 2022)

Traditional RNN have two main problems: the context at each stage depends only on
previous elements, not future elements, and they suffer from short time memory. The
short time memory is a consequence of the vanishing gradient problem. Earlier words
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are forgotten as their gradient vanishes earlier (Wisam, 2022). Some modifications of
traditional RNN have been developed in order to overcome these problems.

Bidirectional Recurrent Neural Networks (BRNN) (Schuster and Paliwal, 1997) focus
on the first problem. They can be understood as a combination of two RNN: one
which uses previous elements to determine current elements, and other that goes
in the other direction, using future elements to affect the current ones. This can be
useful, for example, to decipher a word from a sentence, where future words may give
more information than earlier words.

Long Short Time Memory (LSTM) (Hochreiter and Schmidhuber, 1997) deals with the
second problem. LSTM learns only the important information and forgets the irrele-
vant one. This is desirable when the current learning depends on elements that are
not in the recent past. To do so, LSTMs use three gates: input gate, output gate and
forget gate. By using the forget gate, the network eliminates the information that is
not relevant and the crucial information is passed to the memory. The memory at
each unit is combined with the input to obtain the output. The process of selecting
only the important information to modify the memory is repeated at each unit. Bidi-
rectional Long Short Term Memory networks (BiLSTM) (Graves and Schmidhuber,
2005) are a combination of BRNN and LSTM.

Gated Recurrent Units (GRU) (Cho et al., 2014) also cope with the short time memory
of RNN. Instead of input, forget and output gates used by LSTM networks, GRU use
update and reset gates. The update gate determines the information that goes to the
next state, while the reset gate determines the information that is discarded.

The main advantage of recurrent neural networks is that they do not assume that
outputs and inputs are independent. Hence, RNN are very well suited for sequential
data, which is the scenario in speech enhancement. However, because of its archi-
tecture, RNN can be very slow to process, both during training and inference (Shelf,
2024).

2.4.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) (LeCun et al., 1989) are other type of neural
networks commonly used in speech enhancement. CNNs have three types of layers:
convolution layer, pooling layer and fully-connected layer. The first layer is typically
a convolution layer and the last one a fully-connected layer. Between them, several
convolution and pooling layers are placed.

Convolution layers use the input data, the feature map and a filter or kernel. The
kernel moves across the input data checking if a feature is present. A dot product
is computed between the input and the kernel. The dot product is passed to the
output and the kernel shifts by a stride. This is repeated until the kernel has been
applied to the whole input data. This process is known as convolution. Thus, the
name of the layer. The number of filters, the stride and the padding need to be set
as hyperparameters in this type of layer. The number of filters determine the output
depth. The stride is the number of data samples that the kernel moves over the input
matrix, before performing the next convolution operation. Padding is used when
the kernels do not perfectly fit the input data. Padding refers to adding artificial data
samples to the input data so that it fits the kernels and dot products can be performed
without any loss of edges information. The most typical padding is zero-padding in
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which elements that are outside the input are set to zero, although different padding
strategies can be used.

After convolution layers, generally a pooling layer or downsampling layer is used. This
type of layer conducts dimensionality reduction. It uses another filter to aggregate
different data samples and reduce dimensionality. Generally, average or max pooling
is used. In the first one, the average value of the data samples of the input data,
selected by the pooling filter, replaces the whole section. Similarly, the second one
replaces the group of data samples by the maximum value of the input data group.
In this layer, a lot of information is lost but it makes convolution neural networks
more efficient. CNN tend to have several convolution layers followed by pooling layers
before reaching the last layers. Serialized convolutions and pooling layers extract the
main features which are fed to the fully connected layers. Based on this information,
the fully connected layers classify the input.

Figure 2.3 illustrates an example of CNN in which the network classifies images de-
pending on the object they present. It can be seen how the hidden layers are com-
posed by several convolution and pooling layers. The last layer, which is fully con-
nected, is used to classify the input image. Two activation functions are indicated
in the image: Rectified Linear Unit (ReLU) after convolution layers and softmax after
fully connected layers.

Activation functions are employed to transform the output of neurons depending on
the input, weights and biases (Nwankpa et al., 2018). Activation function can be
either linear or non-linear. In figure 2.3 a linear and a non-linear activation function
are employed. The ReLU, which is a linear activation function, gives a value of zero to
the output of the neuron when it is equal or lower than zero. For positive values of the
output, it maintains the output value. The softmax function is not linear and is used
in classification tasks, as its output is within the range [0, 1] (Nwankpa et al., 2018).
Non-linear activation functions generally help with the vanishing gradient problem
and are used in the output layer of a classification task, such as the one of figure 2.3.

The main problem of convolutional networks is their inability to capture long range
dependencies. When this type of dependencies are needed, many layers are required.
A solution is to use dilated convolutions (F. Yu and Koltun, 2016). Dilated convolu-
tions imply expanding the kernel by skipping some data samples in the kernel. In
other words, dilated convolutions apply a separation between data samples of the
kernel so as to cover a broader region of the input data. Therefore, longer range
dependencies can be captured with practically the same computational cost.

Another important architecture based on convolutional networks is the U-net (Ron-
neberger et al., 2015). The U-net has a contracting path and an expansive path. The
contracting path can be understood as traditional hidden layers of a convolutional
network. The expanding path upsamples the data instead of downsampling it. Skip
connections are used between the corresponding layers of the contracting and ex-
panding path. Skip connections allow the combination of outputs of different layers
that are not sequential, obtaining an overall improvement of the results. The first
layer of the contracting path connects to the last of the expanding path, the second
of the contracting to the second last of the expanding, and so on. In the end, the
network presents a U-shape from which it inherits its name.

Bai et al., 2018 standardized the term Temporal Convolutional Network (TCN) to refer
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Figure 2.3: Convolutional neural network. The input data is taken by a convolution
layer followed by a pooling layer. Hidden layers are defined by a varying number
of convolution and pooling layers. After those, the fully connected layer is used to
classify the image (Pingel and Patel, 2017).

to a family of CNN architectures that are causal. A causal model is one that uses
current information and past information, not future information. This is useful
in real time applications, where future data is not known. Because of this causality
property, TCNs are employed for real time speech enhancement. TCNs intend to solve
the CNNs inability to capture temporal dependencies.

Other type of CNN are the Convolutional Recurrent Neural Network (CRNN) (defined
by Keren and Schuller, 2017 based on the work of Pinheiro and Collobert, 2013).
CRNN mix CNN and RNN to combine the advantages of the two network types. The
convolution and pooling layers of CNN are used for feature extraction and dimen-
sionality reduction, while the recurrent layers capture temporal dependencies. CRNN
pose a solution to the main problem of CNN, which is the inability to effectively cap-
ture temporal dependencies. However, CRNN introduce high computational cost as-
sociated with RNN.

Convolutions are quite popular in speech enhancement for two reasons. First, they
allow efficient feature extraction. Second, they are fast to train and have low num-
ber of trainable parameter, due to their parallel processing and parameter sharing
property.

2.4.3 Autoencoders

Autoencoders (Kramer, 1991) are other important structure in speech enhancement.
Autoencoders are conformed of an encoder, a code or latent space and a decoder.
As figure 2.4 shows, the encoder and decoder are symmetrical. In the encoder, the
number of neurons per layer decreases from one layer to the next one, while in the
decoder it increases. The encoder is responsible of reducing the dimension of the
input. The decoder is responsible of reconstructing the input from the latent space.

Autoencoders have several applications including anomalies detection, dimensional-
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ity reduction or denoising. In speech enhancement autoencoders become popular
architectures as they are used for the denoising task. According to O’Shaughnessy,
2024 an encoder-decoder structure is one of the most appropriate architectures for
speech enhancement. The encoder finds the embeddings, or hidden vector repre-
sentations, of the input signal. It learns the most important features of an input.
The decoder is trained to reconstruct the input signal. Therefore, if the most impor-
tant features learned by means of the encoder do not include noises, the decoder
reconstructs a clean version of the input signal.

Figure 2.4: Autoencoder. The input data enters the encoder. The encoder learns the
most important features and reduce the dimensionality of the data in the latent space
or code. The encoded data is given as input to the decoder which reconstructs the
data. (Flores, 2019).

Variational autoencoders (Kingma and Welling, 2022) are a type of autoencoders in
which the latent space is defined by a distribution. Hence, the latent space is de-
signed to be smooth and continuous, so any point of the it can generate significant
outputs. This is useful in applications like speech enhancement, as it allows for
more reliable and robust reconstruction of the enhanced signal. Conversely, if ran-
dom points are picked from the latent space in traditional autoencoders, they may
produce distorted outputs, which can lead to issues known as hallucinations.

Denoising autoencoders (Vincent et al., 2010) are the type of autoencoders that are
most common in speech enhancement. Standard autoencoders compare the output
of the decoder to the input of the encoder and try to minimize the difference between
them. Conversely, in denoising autoencoders, the output of the decoder is not com-
pared to the input of the encoder, as it corresponds to the noisy signal. Instead, it is
compared to the clean version of the input signal. Thus, the difference between the
enhanced signal and the clean signal is minimized.

Denoising autoencoders are, by far, one of the most common architectures in speech
enhancement. They are more than appropriate structures to subtract noises from
the noisy signals. However, it should be taken into account that autoencoders can
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easily overfit the data. Since they learn the distribution of noises and clean signals
of the training data, they have difficulties generalising given noises or speech signals
that follow different distributions.

2.4.4 Generative Adversarial Networks

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are neural networks
that involve two separate networks: the generator and the discriminator. Figure 2.5
gives the overall structure of GANs. The generator goal is to produce data indistin-
guishable from the training dataset. It takes as input a simple distribution, such as
uniform or Gaussian, and by means of the inverse transform, searches for a trans-
formation so that its output resembles the training data. Note that in figure 2.5, the
input noise does not refer to noises from the noisy audios used in speech enhance-
ment, but to the random distribution from which the fake data is generated. The
discriminator purpose is to be able to differentiate between the real training data and
the fake data created by the generator. The weights of the generator are updated in
order to try to deceive the discriminator into labeling its generated data as real data.
The weights of the discriminator are updated in order to easily differentiate between
the data coming from the train set and the data generated by the generator.

During the early epochs of the training process, the generator does not fool the dis-
criminator. Later, the generator learns to create data more similar to the data in the
train set and begins to fool the discriminator. At the end of training, the generator
produces data practically indistinguishable from the train set data and the discrimi-
nator is unable to distinguish between real and generated data.

Figure 2.5: Generative adversarial network. The input noise, which follows an specific
distribution, is used by the generator to produce fake data. The real and fake data
are given as input to the discriminator. The discriminator then labels the data as real
or fake (Verma, 2019).

In speech enhancement, the generator uses the noisy signals as input and outputs
an enhanced version of the input. The generator goal is to clean the noisy signal so
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well, that the discriminator is not able to distinguish between enhanced and clean
data. Therefore, the generator is the one that performs the speech enhancement task,
while the discriminator is used to assessed how well the generator is performing the
enhancement. In figure 2.5 the input noise (z) corresponds to noisy audios, the fake
data to enhanced audios and the real data to clean audios. The discriminator labels
the data as clean or enhanced.

GANs have been used by several models in speech enhancement (Skariah and Thomas,
2023). They are gaining popularity in recent years, as they are achieving impressive
results in speech enhancement (Cao et al., 2022, Zadorozhnyy et al., 2022, Y.-X. Lu
et al., 2023, Z. Liu et al., 2024). GANs offer high-quality enhanced signals. However,
their training process is quite unstable and they have a higher number of hyperpa-
rameters to be optimized than other networks.

2.4.5 Attention based architectures

Attention mechanisms were introduced by Bahdanau et al., 2014. They are based
on the idea of focusing on specific sections of the input. They assign weights to
different parts of the input, determining their relative importance. The weights can
change dynamically. It was not until the work of Vaswani et al., 2017 that attention
mechanisms became a standard practice in many deep learning tasks.

Vaswani et al., 2017 define a new architecture based on attention mechanisms, called
transformers. Transformers have gained importance in language processing tasks
due to their ability to focus on specific parts of the input. Because of the success
of encoder-decoder structures in language processing tasks, the first transformer
was also composed of these elements. However, transformers can also be used in
encoder-only or decoder-only mode (Tay et al., 2022).

Figure 2.6 indicates the main structure of the encoder-decoder transformer. From
left to right it includes information of the attention mechanism, the multi-head self-
attention, the encoder and the decoder of the transformer.

The scaled-dot product that defines the attention mechanism, shown on the left of
figure 2.6, is based on three elements: queries (Q), keys (K) and values (V). A query
refers to the element for which information is sought. A key is the information against
which the query is compared. A value is the information associated to each element.
The values are weighted by the score obtained from the comparison of query and
keys, which means that queries more similar to the keys, have higher values and
therefore more influence in the output. The attention formula over the queries, keys
and values can be defined as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2.3)

where dk refers to the dimension of the keys vector. Its square root is used as a
scaling factor to stabilize the training. The softmax function normalizes the weights.
KT refers to the transpose of the keys used to compute the dot product with the
queries.

Figure 2.6 shows that transformers use variants of this general attention mechanism.
Four variants of the attention mechanism are combined and used in transformers.
These variants are (i) self-attention, (ii) cross-attention, (iii) multi-head attention and
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Figure 2.6: Transformer architecture. From left to right: scaled dot product attention,
multi-head self attention, encoder of the transformer and decoder of the transformer.
Q, K and V refer to Queries, Keys and Values respectively. (Tay et al., 2022)

(iv) masked attention. Self-attention allows the model to pay attention to parts of the
same input sequence that is being processed. This means that the keys and queries
used are from the same sequence. Cross-attention uses keys and queries from differ-
ent sequences, fostering attention between different sequences (Kosar, 2022). Multi-
head attention, refers to the fact of performing multiple times attention in parallel
and then concatenate the outputs, obtaining a much richer result. This is shown in
the second element from the left of figure 2.6. Finally, in masked attention, future
inputs are masked at −∞ in order to maintain the causal property. Hence, models
cannot use information about the future (Kierszbaum, 2020, Vaswani et al., 2017).
The original transformers combine these elements giving raise to the multi-head self-
attention of the encoder and the masked multi-head self-attention and multi-head
cross-attention mechanisms of the decoder.

Figure 2.6 also shows the encoder and decoder structure of the transformer, on the
two elements on the right-hand side of the figure. The encoder is composed of N
layers, where N = 6 in the original paper. Each layer has two sublayers: a multi-head
self-attention layer and a feed forward layer. The output of each sublayer is added
to the input of the sublayer and normalization is applied. The decoder is again com-
posed of N layers, where N = 6 in the original paper. Each layer is composed of three
sublayers: a masked multi-head self-attention sublayer, a multi-head cross-attention
sublayer and a feed forward sublayer. The multihead-cross attention sublayer uses
keys and values from the encoder output and queries from the previous sublayer of
the decoder output. Analogously to the encoder, the output of each sublayer is added
to the layer’s input and normalized. A linear transformation and softmax activation
function is applied to the decoder output to obtain the output probabilities.

Motivated by the success of transformers and CNN in speech tasks, Gulati et al.,
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2020 defined a variation of the transformer called conformer. The conformer is based
on the idea that merging convolutional architectures and self-attention mechanisms
gives better results than using them separately (Bello et al., 2019). Conformers are
mainly used in an encoder-only mode, as Gulati et al., 2020 do not focus on the de-
coder part of the architecture. Figure 2.7 shows the overall structure of this encoder-
only conformer architecture.

Figure 2.7: Conformer encoder structure. It has a macaron net structure with two
feed forward modules with half-step residuals at the beginning and end of the en-
coder. After the first feed forward module a multi-head self-attention module is placed
and followed by a convolution module. The two of them use residual connections.
After the last feed forward module, layer normalization is performed (Gulati et al.,
2020).

The conformer is similar to the transformer but it has some differences. Instead of an
encoder with two modules, the conformer encoder employs four modules. Note that
the modules of the conformers are the equivalent of the sublayers of the transformers.
First a feed forward module is placed and followed by a multi-head self-attention
module. After that, a convolution module is used. Finally, another feed forward
module is employed (Y. C. Liu et al., 2021). The output of each module is added to its
input and normalized. After the last feed forward module a layer normalization takes
place. The 1/2x in the residual connections of figure 2.7 refer to half-step residual
connections instead of standard connections. The output of each feed forward module
is multiplied by 1/2 before being added to its input and passed to the next module.
This structure with two feed forward modules with half-step residuals is known as
Macaron Net. It shows better results and lower error than using only one feed forward
module with standard residual connections as a first module (Y. Lu et al., 2019).

Branchformers are other architectures that use attention mechanisms (Peng et al.,
2022). They are similar to conformers. The main difference is that the attention
module and convolution module are not used in series but in parallel. They have
different branches that focus on local and global dependencies. The local dependen-
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cies are captured through the convolution module, while the global ones are obtained
through the attention module. The branches are merged before the last feed for-
ward module. In ASR, the state of the art is based on the E-branchformer (K. Kim
et al., 2022). E-branchformer is a variation of branchformers in which the merging
mechanisms of the two branches is improved.

Transformers, conformers and branchformers are popular architectures in speech
processing tasks. Their main advantage is that they can focus on relevant informa-
tion and capture long-range dependencies. They can also handle huge amounts of
data. Their main drawback is that they require a high number of parameters and
are quite complex and computationally expensive. Many studies have proposed mod-
ifications of these architectures in order to develop more efficient structures. Tay
et al., 2022 review a number of these strategies, all of which take into consideration
the complexity-performance trade-off. For example, Luo et al., 2022 propose using
parameter sharing, Sun et al., 2020, reducing layer sizes and S. Chen et al., 2022
and Sanh et al., 2019, using online knowledge distillation. Online knowledge distilla-
tion is a process where a smaller, student model, learns from a larger, teacher model,
continuously. This strategy allows to have a small model but with high performance
(Ochieng, 2023).

In addition to these general strategies, some approaches have been developed specif-
ically for attention structures. Some examples of this include the longformer (Beltagy
et al., 2020), the reformer (Kitaev et al., 2020), the linformer (S. Wang et al., 2020)
and the fastformer (C. Wu et al., 2021). The longformer uses sparse, or dilated, atten-
tion mechanisms, reducing the number of computations. The reformer uses locality
sensitive hashing attention mechanism. This means that instead of computing val-
ues for all pairs of keys and queries, the reformer defines some buckets and only
computes values for keys and queries in the same bucket. The linformer uses lin-
ear projections to decompose the original attention matrix into smaller matrices and
therefore with lower computational cost associated. The fastformer uses additive at-
tention mechanisms instead of dot product, reducing also the computation attached.
These elements do not only show remarkable attention capabilities, but are also ef-
ficient. On top of that, many ASR models integrate these efficient elements. As ASR
constitutes the main task in speech processing, it sets trends that other tasks, as
speech enhancement, typically follow.

2.4.6 Losses

Deep learning models are based on finding the parameters of the neural network
so that it presents a determined behaviour. The learnable parameters include the
weights of each connection between two neurons of adjacent layers and the bias of
each layer. Other parameters may also be learnable, such as batch normalization pa-
rameters. This learning process is done by the backpropagation gradient (Rosenblatt,
1962). The network with a specific set of parameters produces an output. With the
output and the target values, the loss is computed, capturing the difference between
them. The training process goal is to obtain output values that resemble as much as
possible the target values. Thus, the goal can be understood as minimizing the loss.
The gradient of the loss function, representing the direction and rate of change in the
loss with respect to the parameters, is computed by deriving the loss function with
respect to the parameters. This gradient is then propagated backwards to update the
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parameters. They are adjusted to minimize the loss. Note that in the case of GANs,
two losses are required, one for the generator and another for the discriminator.

Neural networks learn their parameters based on the loss selected. Hence, the loss
formula is quite an important factor in deep learning. In speech enhancement many
formulas have been used. In the following equations, y represents the target value
and ŷ the output of the model. y and ŷ can represent different features from the target
and output signal, both in time and frequency domain.

Some of the most common loss formulas include the Mean Square Error (MSE) or L2
loss and the Mean Absolute Error (MAE) or L1 loss. Their formulas correspond to:

L2 =
1

n

n∑
i

(yi − ŷi)
2 (2.4)

L1 =
1

n

n∑
i

|yi − ŷi| (2.5)

Other metric, commonly used in speech enhancement, is the Logarithmic Spectral
Distance (LSD). It is similar to MSE, but the magnitudes are transformed to loga-
rithmic scale with base ten. This arises from the fact that the human hearing has
logarithmic perceptual nature. The LSD formula is:

LSD =
1

n

n∑
i

(log10(yi)− log10(ŷi))
2 (2.6)

In speech enhancement, ratios are also employed as loss functions. The main ad-
vantage of using ratios is that they are scale invariant and thus more stable. This
equation is:

LR =
||y − ŷ||i
||y||i

(2.7)

where || · ||i refers to L1 or L2 depending on the loss function employed from equations
2.4 and 2.5.

Most speech enhancement models employ a loss with several terms (S.-W. Fu et al.,
2017). Each term measures the difference between the target and the output, focus-
ing on different features of the signal. Each term has the form of one of the equations
explained above. The most common one is the MSE (equation 2.4). However, the
remaining loss formulas explained and many others, as indicated by Braun and Ta-
shev, 2021, can be used.

Based on the feature that y represents, several loss terms can be defined. According
to Zheng et al., 2023, the losses used in speech enhancement can be divided in three
groups: (i) frequency domain, (ii) time domain and (iii) perceptual losses. Williamson
et al., 2016 propose combining losses from frequency domain and time domain. This
has become an standard practice in speech enhancement models that work in the
time-frequency domain. The most common losses in frequency domain are Lmag, LRI

and Lphase. In the first one, the y represents the magnitude. The second one, which
compromises two terms, has y as the real and imaginary parts of the signal. In the
third one, the y represents the phase of the signal. In time domain a unique term,
Ltime, in which the y refers to the waveform signal, is commonly employed.
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In the case of perceptual losses, the y refers to speech enhancement perception met-
rics. The most common metrics include the Perceptual Evaluation of Speech Quality
(PESQ) (Rix et al., 2001) and the Short-Term Objective Intelligibility (STOI) (Taal et al.,
2011). The first measures the quality of the enhanced signal, while the second mea-
sures the intelligibility of the signal, although quality and intelligibility are closely
related. These metrics are also used to evaluate model performance. Note that if
the same metric is used for the loss calculation and for the evaluation of the model,
the results obtained after the evaluation can be misaligned (de Oliveira et al., 2024).
However, since multiple metrics are used for model evaluation, there is usually a bal-
ance in the final assessment. This is because compensation by the other metrics not
used in the loss, takes place (S.-W. Fu et al., 2019).

2.5 Metrics for speech enhancement

In speech enhancement, and other deep learning tasks, specific metrics are required
to asses the goodness of the model. Several metrics for speech enhancement have
been proposed. In this section, the most common ones are elucidated. These metrics
aim to capture human perception. The metrics can be either subjective or objective
(Bäckström et al., 2022). Subjective metrics are those based on human evaluation.
The main aspects that are evaluated by the listener are (i) the sound or speech quality,
(ii) the interaction and communication quality and (iii) the service quality and user
experience. The first one includes characteristics like the noisiness, the distortion
and the intelligibility. The second one includes the delay or the echo of the signal.
The last one refers to the system, device or interface.

Subjective metrics can be divided into two types depending on the listeners who
evaluate the audios. The listeners could be experts or naïve. If the listeners are ex-
perts, the standard applied is the Multiple Stimuli with Hidden Reference and Anchor
(MUSHRA), recommended in ITU, 2003, where each sample is rated from 1 to 100.
ITU stands for International Telecommunication Union. Higher ratings correspond
to better audio qualities. As the listeners are experts, a low number of them is re-
quired. However, quality control with expert listeners is not as common as with naïve
listeners.

For non-expert listeners, the standard applied is the Mean Opinion Score (MOS) rec-
ommended in ITU, 1996, although many other recommendations can also be imple-
mented (Streijl et al., 2016). Each sample is rated from 1 to 5, with better qualities
corresponding to higher ratings. Some MOS metrics that are commonly applied in-
clude SIG, BAK and OVRL which measure the speech signal, the background noise
and the overall quality respectively, as Hu and Loizou, 2006 indicate. In their work,
the authors compare these subjective metrics with objective metrics. They show that
some objective metrics lack the ability to efficiently capture human perception and
seem uncorrelated with subjective measures. Therefore, even thought obtaining sub-
jective measures is more expensive, due to the need of experimental set up, subjective
metrics are desired.

In order to reduce the cost of subjective metrics, models have been developed to pre-
dict MOS. Manocha and Kumar, 2022 develop a model which do so by comparing the
target enhanced audio and clean audios of the database. The clean audios selected
are known as Non-Matching Reference (NMR). This means, that the clean audios em-
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ployed to compute the MOS of an enhanced audio are not the clean version of the
enhanced audio. The NMR audios, which are clean, are assigned the highest MOS
value, due to the lack of background noise, the good quality and the intelligibility
of the clean signals. The MOS score of the enhanced audio is computed using the
NMR clean audio and a deep learning algorithm. The better the quality, the more
resemblance between the enhanced and clean audio, and the higher the computed
MOS value. The computed MOS values of their algorithm show low MSE with respect
to real MOS values. Therefore, their model offers a plausible solution to easily obtain
computed subjective metrics. Speech Quality and Intelligibility Measures (SQUIM)
(Kumar et al., 2023) implements their model.

The second type of metrics, objective metrics, refer to measures that try to estimate
the quality of a signal based on human perception (Bäckström et al., 2022). These
type of metrics are the most common ones. Subjective metrics are expensive and not
completely consistent, as the listeners who rate the signals are not always the same.
Objective metrics are more widespread as they are cheaper, easier to obtain and more
consistent. The six most common metrics that are used to compare the goodness of
speech enhancement models are explained in what follows.

The Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001) measures the
quality of the enhanced signal. It is the most common and most valued metric to
indicate the goodness of a speech enhancement model. It is measured from -0.5 to
4.5, with 4.5 being the best value. The best state of the art models have a PESQ over
3.5. Other common measure is the Short-Term Objective Intelligibility (STOI) (Taal
et al., 2011). STOI measures the intelligibility of the signal instead of the quality.
STOI scores range from 0 to 1, with higher values indicating more intelligible signals.
Current state of the art models have a STOI around 0.95. The computation of PESQ
and STOI is quite complex and does not imply a simple closed-form formula. PESQ
focus on distortions, time alignment and amplitude. STOI focus on frequency bands,
short time analysis of the signal and the overall signal.

Another common metric is the Segmental Signal to Noise Ratio (SSNR) (Hansen and
Pellom, 1998), which is a modification of the SNR measure. The main difference
between the SNR and the SSNR is that the second one computes the SNR for short
frames of time and then obtains the mean over the segments. The higher granularity
in the sample processing, makes SSNR a preferred metric over SNR. This is because
even very short audios can vary greatly over their duration, making it meaningless
to obtain the difference in SNR over the entire audio. It makes more sense to get the
difference for small frames and then obtain the average value over all those frames.
On top of that, SSNR shows higher correlation with subjective metrics than SNR
(Hansen and Pellom, 1998). The SSNR is computed as the mean of the SNR over
different segments of fixed length. Its formula is:

SSNR =
1

K

K∑
k=1

10 log10


(k+1)N−1∑

n=kN

X(n)2

(k+1)N−1∑
n=kN

[X(n)−X(n)]2

 (2.8)

where X is the clean signal, X the enhanced signal, K the number of frames and
N the length of each segment. The numerator refers to the signal, by using only the
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clean signal, which has no noise. The denominator refers to the remaining noise after
the enhancement, by computing the difference between the clean signal, which has
no noise, and the enhanced signal. Note that the SNR for each segment is computed
using the logarithm in base ten. Alternatively to the SSNR, measures such as the
Signal-to-Distorsion Ratio (SDR) or the Scale Invariant Signal-to-Distortion Ratio (SI-
SDR) can be used. These measures are other representations of the ratios between
the signal and noise of an audio (Le Roux et al., 2019).

The three remaining objective measures are the computed SIG, computed BAK and
computed OVL, commonly found in literature as CSIG, CBAK and COVL respectively.
They were developed by Ding et al., 2015 based on SIG, BAK and OVRL. Therefore,
CSIG, CBAK and COVL are objective measures which again focus on the speech sig-
nal, the background noise and the overall quality respectively. These metrics are
within the range 1 to 5, with higher values being more desirable. Current state of
the art models have values around 4.5, 3.75 and 4 for CSIG, CBAK and COVL re-
spectively. The three metrics are computed using the PESQ, SSNR, weighted spectral
slope (WSS) and the log-likelihood ratio (LLR) mean.

The WSS measures the difference in the spectral slopes of the clean and enhanced
signals. The spectral slope is the rate of change of the magnitude spectrum of a
speech signal. It is computed for different segments of the signal. After that, the
mean over the segments is obtained. The LLR mean measures the distortion in linear
predictive coding coefficients of clean and enhanced signals. Linear predictive coding
is based on modeling the speech signal at a time point, based on the speech signal
at previous time points. LLR computes the linear predictive coding coefficients for
both the clean and enhanced signals. Then, the logarithm of the coefficients ratio is
computed for each segment. After that, the mean over all the segments is obtained.
The CSIG, CBAK and COVL equations are:

CSIG = 3.093− 1.029LLR + 0.603PESQ − 0.009WSS (2.9)

CBAK = 1.634 + 0.478PESQ − 0.007WSS + 0.063SSNR (2.10)

COVL = 1.594 + 0.805PESQ − 0.512LLR − 0.007WSS (2.11)

Besides measuring the quality and intelligibility of the enhanced signal, it is common
to analyse if speech enhancement models can be used in real time. This is measured
by the Real-Time-Factor (RTF) (Pratap et al., 2020). The RTF is the ratio between the
time taken to process an input sample and the input duration. For example, if an
audio lasts five seconds, the RTF of the model on that sample is computed as the time
it takes to process that audio divided by five. A real time system is one with RTF not
greater than one. In the case of the five second audio, it would mean that the model
processes the audio in a maximum of five seconds. RTF can be considered a metric
of the efficiency of the model. To measure the efficiency of models other factors are
taken into account. Some examples are the number of trainable parameters of the
model, the number of operations performed by the model or the size of the model.

2.6 Speech enhancement models

In this section, some of the models with the elements explained in previous sections
are reviewed. Note that as most models combine several elements of those explained,

24



Speech Enhancement: State of the Art

a classification of the models becomes a difficult task. Most of the speech enhance-
ment models employ an encoder-decoder structure with multiple convolutions. In the
last years, attention mechanisms and generative adversarial networks have gained
popularity. They are architectures which are being explored at the moment.

X. Lu et al., 2013 introduced the use of autoencoders in speech enhancement. The
use of the encoder-decoder structure quickly became a widespread practice in speech
enhancement and it is currently present in the vast majority of speech enhancement
models. Denoising autoencoders (Vincent et al., 2010) generally lead to good results
in speech enhancement. C. Yu et al., 2020 developed a Denoising AutoEncoder with
Multibranched Enconder (DAEME). In this model, the data is divided into clusters
and each cluster is used as input of an encoder. Hence, each encoder learns a differ-
ent distribution. Each encoder can fit better the data of its corresponding cluster. The
decoder combines the output of the multiple encoders. Despite being an innovative
idea, it did not achieve outstanding results.

Recurrent Neural Networks were one of the firsts approaches used in speech en-
hancement due to their ability to capture temporal dependencies (Zheng et al., 2023).
Weninger et al., 2015 perform speech enhancement using LSTM networks. They also
explore the use of BiLSTM, but do not obtain remarkable results. Z. Chen et al., 2015
explore the use of BiLSTM to create a model that performs simultaneously speech en-
hancement and automatic speech recognition, obtaining better results than previous
models.

Wichern and Lukin, 2017 study the use of BRNN in real time speech enhancement.
The main problem of BRNN is that they take long time to train and are bidirectional
models. As future information is required to enhance previous elements, they are
not suited for speech enhancement in real time. The authors propose two strategies
to cope with the two problems. To solve the high computational cost, they propose
using block-wise operations. For the second problem, they suggest replacing the
second direction going from future to current event by a look-ahead strategy (C. Wang
et al., 2016). The look-ahead strategy is based on using information about near
future for the current learning. Hence, only little information about the future is
required at each time point. Their model is faster than traditional BRNN but does not
offer significantly good results. Also, the look-ahead strategy does not solve the real
time problem. Valin, 2018 employs a GRU architecture in their speech enhancement
model. GRUSE (Cámbara et al., 2022) employs an encoder-decoder structure with
GRU in their latent space. In the same work, the authors also propose RESSE, which
has a similar structure but employs residual blocks and convolutions in its latent
space.

Convolutional recurrent neural networks (CRN or CRNN) have also been used in
speech enhancement. Tan and Wang, 2018 define a CRN which has an encoder-
decoder structure. In the encoder and decoder, convolutional layers are used. In the
latent space, several LSTM are placed. Similarly, Tan and Wang, 2019 explore this
strategy and study the effect of more than one decoder, code and encoder, focusing
on real and imaginary features of the audios. Their results show that using two de-
coders pose better results. On this basis, many models include two decoders in their
structure.

Tan and Wang, 2020 follow such line of work and define the Gated Convolutional
Recurrent Network (GCRN). The GCRN uses one encoder and two decoders, one for
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the real part and other for the imaginary part of the signal. The encoder and decoders
contain convolutional layers that connect via skip connections. In the latent space,
two layers of LSTM are placed. Le et al., 2021 develop a model called Dual Path
Convolution Recurrent Network which uses an encoder and a decoder again with
convolution layers and skip connections. The main difference is that the authors
do not use two LSTM layers, but an intrachunk with a BiLSTM and an interchunk
with LSTM. The intrachunk is used to learn short range dependencies, while the
interchunk learns long range dependencies. The interchunk is placed after the in-
trachunk in the latent space. Using intrablocks to get local dependencies followed
by interblocks that get global information, has also become a widespread trend in
speech enhancement.

A popular model that combines convolutional layers and recurrent layers is Demucs
(Defossez et al., 2020). Demucs is one of the most famous architectures in speech
enhancement. It is based on an encoder-decoder structure in which both the encoder
and decoder use convolutions and skip connections between layers of the encoder and
decoder, obtaining a U-shape architecture. In the latent space, LSTM is employed.
The model allows to use unidirectional LSTM for real time speech enhancement tasks
and BiLSTM for non causal tasks. Demucs is commonly used as a model against
which the performance of new architectures is compared. Currently, the results of
the new architectures exceed the results of Demucs. However, at the time of its
publication it achieved results that were very competitive with the state of the art
models.

Although recurrent neural networks are commonly used in speech enhancement be-
cause of their ability to capture temporal dependencies, they suffer from slow train-
ing and high computational cost. Convolutional neural networks offer a plausible
solution to this problem by allowing parallel computation and therefore being faster
(Mehrish et al., 2023). This is crucial if the speech enhancement is done in real
time. Currently most of the speech enhancement models use convolutions. Wave-U-
Net (Macartney and Weyde, 2018) is an example of architecture that employs mul-
tiple convolution layers in the U-net architecture. Wave-U-Net is a popular model
in speech enhancement and is one of the models against which the performance of
models is also compared.

Pandey and Wang, 2019 propose a model with an encoder-decoder structure that is
based on a temporal convolution network. The encoder and decoder contain convo-
lutions and the latent space dilated convolutions. This model allows for real time
speech enhancement. A modification of this model is proposed by A. Li et al., 2020.
The authors defined a model with two encoder-decoder structures that focus sepa-
rately on the magnitude and the complex spectrum of the signal. All of the elements
of their model are based on TCN. The PHASEN model (Yin et al., 2019) also separates
the signal in two paths: one for the magnitude and other for the phase. Both struc-
tures are defined by multiple convolutional layers. PHASEN model is also used for
performance comparison of new models.

Since the definitions of transformers (Vaswani et al., 2017), attention mechanisms
have also become a common practice in speech enhancement models. Many refer-
ence models for the performance comparison include attention mechanisms in their
architectures. One example is the Two Stage Transformer Neural Network (TSTNN)
(K. Wang et al., 2021). The TSTNN employs a two stage transformer consisting of a

26



Speech Enhancement: State of the Art

local transformer and a global transformer. The local transformer is applied to differ-
ent parts of the input, obtaining local or short range dependencies. Then, the global
transformer fuzzes those outputs, obtaining global or long range dependencies.

Oostermeijer et al., 2021 propose a variation in which only local attention mecha-
nisms are employed. Hence, the computational cost is reduced significantly. How-
ever, the long range dependencies are not captured in their lightweight model, com-
promising its performance. Another model which focus on local dependencies is the
SETransformer (W. Yu et al., 2022). The SETransformer has an encoder-only struc-
ture. The encoder is similar to the original encoder of the transformer architecture,
but includes two modifications in each layer of the encoder: the feed forward sub-
layer is replaced by a convolutional sublayer and before the multi-head self-attention
a local LSTM module is placed. This module is the main responsible for the local
focus of the model.

Conversely, the model developed by Z. Wu et al., 2020 uses attention mechanisms to
obtain global dependencies. Their model is a two branch structure in which one of
the branches uses attention to obtain global dependencies, and the other uses con-
volutions to get local dependencies. As CNN and attention mechanisms have given
good results for speech enhancement it is common to combine them in speech en-
hancement. For example, Lin et al., 2021 propose a multi-stage strategy for speech
enhancement, in which each part employs a self-attention and a temporal convolu-
tional network block.

The Dual Path Transformer Full-Band Sub-Band network (DPT-FSNet) (Dang et al.,
2022) also employs an encoder-decoder structure with convolutions and attention
blocks. Based on the TSTNN (K. Wang et al., 2021) they employ a two stage trans-
former with an intratransformer and an intertransformer. The intratransformer cap-
tures the local dependencies while the intertransformer captures the global ones.
The Full-Band and Sub-Band terms in the name of the model refer to the global and
local dependencies respectively. The term band refers to the frequency band. The
dual path transformer is placed in the latent space between the encoder and the de-
coder. The encoder and the decoder utilize several convolution layers. The results
obtained by this model are remarkable. The DPT-FSNet is also commonly used for
performance comparison of new architectures.

Another standard model for performance evaluation, which uses a similar structure
to DPT-FSNet and has outstanding results, is the DB-AIAT (G. Yu et al., 2022). The
Dual-Branch Attention-In-Attention transformer (DB-AIAT) has two branches, each
with an encoder-decoder structure. The two paths in this case correspond to the
magnitude and complex features. The complex branch includes information about
the real and imaginary parts of the audio. The magnitude path suppresses almost
all the noise. The complex beam focuses on fine-grained details that the first branch
may have not captured. The two paths have an encoder and an attention-in-attention
module in the latent space. The attention-in-attention module is conformed by four
encoder-only transformers and an adaptive hierarchical attention module that com-
bines the transformers outputs. The magnitude branch has then a decoder, while the
complex branch has two decoders, one for the real part and other for the imaginary
part of the signal.

The Multi-view Attention Network for Noise ERasure (MANNER) model (H. J. Park
et al., 2022) is also one of the models in speech enhancement that shows noteworthy
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results and is used for performance comparisons. It is based in an encoder-decoder
structure with convolutions and multiview attention blocks in each layer. The mul-
tiview attention block does not only have the local and global branches of its prede-
cessors, but it adds a third branch known as channel branch. The channel attention
module learns the importance of each feature of the input data.

Other famous architecture in speech enhancement is based on combining attention
mechanisms with the U-shape encoder-decoder. The model presented by Y. Li et al.,
2023, uses a U-shaped architecture in which several attention layers alternate with
feed forward layers. It uses three types of attention blocks: time attention, low fre-
quency band attention and high frequency band attention. The U-former (Y. Fu et
al., 2022) combines the U-net and conformers with dilated convolutions. The archi-
tecture is dual-path: one path focuses on the magnitude and is responsible for the
majority of the enhancement and the other focuses on the complex spectrum and is
only used for small details, as in DB-AIAT. The conformers are placed in the latent
space, between the encoder and the decoder. Similarly, the SE-Conformer (E. Kim
and Seo, 2021) utilizes a U-net structure and has a conformer in the latent space.
The SE-Conformer model is other of the standard models used for performance com-
parison. The model proposed by Kong et al., 2022 is similar to the SE-Conformer but
employs a transformer in the latent space, instead of a conformer.

Pascual et al., 2017 developed the first GAN used in speech enhancement, known
as Speech Enhancement Generative Adversarial Network (SEGAN). In SEGAN, the
generator and discriminator networks employ convolutions and the generator net-
work exhibits an encoder-decoder structure. SEGAN is other standard model used
for performance analysis. Although new models outperform significantly this model,
the SEGAN model is considered quite important, due to the introduction of GANs
in speech enhancement. Pascual et al., 2019 extended the SEGAN architecture,
developing the SEGAN+ model. The authors included skip connections and larger
convolutional strides. This translates into a reduction of the model size, obtaining a
more efficient architecture and more stable results.

Other popular GAN model in speech enhancement is MMSEGAN (Soni et al., 2018).
This model focuses on the TF domain instead of the time domain of SEGAN. On top
of that, it uses MMSE error for the loss computation, hence its name. Previously,
many models used MAE losses. The use of MMSE gives better results. S.-W. Fu et
al., 2019 propose the MetricGAN model. MetricGAN uses perceptual metrics for the
discriminator loss computation. Several metrics related to speech signal intelligibility
or quality, such as STOI and PESQ, are suggested. The goal is to obtain a model
that learns to enhance signals using human-like criteria to update the parameters.
S.-W. Fu et al., 2021 improve the MetricGAN model, constituting the MetricGAN+.
MetricGAN+ includes noisy data into the learning process of the discriminator. A
term of the discriminator loss takes into account the noisy data, in addition to the
clean and enhanced data. MetricGAN and MetricGAN+ show outstanding results and
are examples of models frequently used to analyse the performance of new models.

S.-W. Fu et al., 2022 propose a neural network which only needs the noisy speech
to perform speech enhancement. It does not require the clean signal nor the noises
to compare the output to the clean signal or to the input signal with suppressed
noise. Therefore, the authors call it MetricGAN-U which stands for MetricGAN-
Unsupervised. Other example of generative adversarial network for speech enhance-
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ment is the M-CRGAN-MSE (Zhang et al., 2020) in which convolutional recurrent
networks and MSE are employed. A problem of GANs in speech enhancement is
that they tend to focus on local speech features and not so much on global features.
Therefore, long range temporal dependencies may not be captured. CPGAN (G. Liu
et al., 2020) intends to solve this by using two discriminators: one for the local de-
pendencies and other for the global dependencies.

In addition to autoencoders and convolutions, attention mechanisms and generative
adversarial networks have proven to give good results in speech enhancement. Re-
cently, many studies have focused on mixing both of them, creating new competitive
models. Some examples of this strategy are the Self-Attention SEGAN (SASEGAN)
(Phan et al., 2021) and the Multiscale Attention Metric GAN (MAMGAN) (Guo et al.,
2023). The SASEGAN has a generator with an encoder-decoder structure. The en-
coder and the decoder present skip connections in a U-shape form. The encoder
and the decoder also include self-attention layers coupled with convolutional layers.
The discriminator structure is similar to the encoder part of the generator. MAM-
GAN also uses attention-blocks in the discriminator and the generator, and also has
an encoder-decoder structure in the latter. By contrast to SASEGAN, the attention
blocks in the generator of MAMGAN are only placed in the latent space.

2.7 Best state of the art models in speech enhancement

This section explains a family of neural networks that yields the best results in speech
enhancement. Three models are explored: CMGAN (Cao et al., 2022), TPTGAN (Z. Liu
et al., 2024) and MPSE-Net (Y.-X. Lu et al., 2023). The three models are considered a
family of neural networks as they share the majority of their elements. This section
includes a deep description of the three models. It is important to understand each
element of their structure as they define some of the best architectures in speech
enhancement and are crucial for the development of this project.

The three models are generative adversarial networks, in which the generator has an
encoder-decoder structure and attention mechanisms in the latent space. On top
of that, the three generators use two decoders, one of which is always a magnitude
decoder. The magnitude decoder estimates a mask that is applied to the noisy signal
magnitude. Figure 2.8 and table 2.1 give the information about the common struc-
ture and main differences of these architectures, respectively. The common structure
and differences are analysed in what follows.

Attention
mechanism

Decoder II Generator
loss

Discriminator
loss

CMGAN Conformer Complex Eq. 2.16 Eq. 2.22
TPTGAN Transformer Complex Eq. 2.23 Eq. 2.24
MP-SENet Conformer Phase Eq. 2.25 Eq. 2.26

Table 2.1: Main differences between CMGAN (Cao et al., 2022), TPTGAN (Z. Liu et
al., 2024) and MP-SeNet (Y.-X. Lu et al., 2023). The three first columns refer to the
generator, while the last one to the discriminator.

The main differences between the models are within the generator due to its higher
complexity and importance in the denoising task. As shown in table 2.1, the dif-
ferences within the generator are three. First, the attention mechanism used in N
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Figure 2.8: Common structure of CMGAN (Cao et al., 2022), TPTGAN (Z. Liu et al.,
2024) and MP-SENet (Y.-X. Lu et al., 2023). Y is the noisy signal, X the clean signal
and X the enhanced signal. M is the estimated magnitude mask. The subindexes
refer to the magnitude (m) and the additional element (k) which could be either the
phase or the real and imaginary components. The apostrophe indicates compressed
feature.

blocks in the latent space of the encoder-decoder can be either a transformer or a
conformer. In both cases, each block is conformed by two attention mechanisms. In
the conformer block, one conformer is used for the frequency and the other for the
time domain. In the transformer block, a first transformer is used to obtain local
dependencies and the second to obtain global dependencies.

After the attention blocks of the latent space two decoders are used. The first decoder
is always used for the magnitude, while the second can be either for the complex
(real and imaginary) part of the signal, or for the phase. The last dissimilarity in the
generator comes from the loss equation, which are shown in equations 2.16, 2.23 and
2.25. Besides the differences in the generator, the loss equations of the discriminator
can also be dissimilar, as equations 2.22, 2.24 and 2.26 illustrate. It should be noted
that this is the only difference in the discriminator as the three models use the same
discriminator architecture. Common elements and differences in the architecture
elements are explained first. Then, the losses are analysed.

The three models work in the TF domain. A STFT is applied to the waveform of
the input before entering the model. A transformation is then performed to obtain
the magnitude and the real and imaginary or phase components. A power com-
pression is applied to the magnitude of the noisy signal, after performing the STFT
and prior to the generator. Power compression is used because human perception is
more sensitive to loud sounds than to quiet ones. By applying power compression
to the magnitude, the importance of these two types of sounds can be adjusted. The
compression factor used in these models is 0.3 as Wilson et al., 2018 suggest. The
power-law compression is based on raising the magnitude to the power indicated by
the compression factor. That means:

Y ′
m = Y c

m (2.12)

X ′
m = Xc

m (2.13)

M ′ = M c (2.14)
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where c = 0.3 is the compression factor, Ym the magnitude of the noisy signal, Xm the
magnitude of the enhanced signal and M the mask estimated by the magnitude mask
decoder. The compressed noisy signal magnitude, Y ′

m, and the other component val-
ues, Yk, are concatenated and fed to the model. The output of the generator is used to
obtain the final reconstructed signal. The two decoders output information about the
compressed magnitude mask, M ′, which is applied to the compressed noisy signal
magnitude, Y ′

m, and about the enhanced signal phase or real and imaginary compo-
nents. A decompression of the compressed enhanced magnitude, X ′

m, takes place.
The decompressed magnitude of the enhanced signal, Xm, and the other enhanced
component, Xk, are combined to obtain the spectrogram of the enhanced signal, X.
After that, through the ISTFT, the enhanced signal in time domain is obtained. This
whole process is shown in figure 2.8.

The encoder and decoders of the generator are composed by several convolution
blocks. These blocks include convolution layers, instance normalization (Ulyanov
et al., 2017) and Parametric Rectified Linear Unified (PReLU) activation (He et al.,
2015). In the case of TPTGAN, layer normalization, instead of instance normalization,
is used. Instance Normalization normalizes across each channel in each training ex-
ample. Note that this differs from layer normalization in which the normalization
is done for all channels in each sample and from batch normalization in which the
normalization is done for each channel in a batch of samples. The PReLU activation
function is defined as shown in equation 2.15. This equation is similar to the Leaky
ReLU activation function, but has one major difference. In the Leaky ReLU activation
function, the x is multiplied by a constant hyperparameter value given that it has a
negative value. Conversely, in PReLU the α value is a learnable parameter. PReLU
has become a standard activation function in speech enhancement. PReLU formula
is:

PReLU(x) =

{
x, if x ≥ 0
αx, otherwise

(2.15)

A dilated dense net (Pandey and Wang, 2020) is defined from the second to the fifth
block of the encoder, with dilation rates of 1, 2, 4 and 8, respectively. The 3x3 kernel
is applied over the input data with gaps between its values, controlled by the dilation
rates. This increases the receptive field, allows for multi-scale feature learning and
increases efficiency.

The blocks are identical in the encoder and the decoders. One of the differences
between the encoder and the decoders, is that in the first block of the encoder, the
number of channels is increased from two or three (magnitude and phase or mag-
nitude, real and imaginary) to sixty-four. In the remaining blocks, the number of
output channels is kept constant as sixty-four. However, the number of input chan-
nels increases as residual connections are employed. The output of each block is
concatenated to the input of the block. Therefore, the number of input channels
correspond to the number of input channels of the previous block plus sixty four.
Residual connections help with the vanishing gradient problem and make sure that
each block can see all the information that has been processed by previous blocks.
These connections allow the backpropagation to previous layers without significant
degradation. Hence, residual connections facilitate training deep networks with high
number of layers.

In the last convolution block of the encoder, the frequency dimension is halved to
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reduce the complexity of the attention mechanisms in the latent space. Note that
the original dimension of the frequency correspond to the number of points used to
perform the STFT and is therefore one of the specific hyperparameters used in speech
enhancement. Figure 2.9 shows the structure of the encoder. In such figure, and the
remaining ones of this section, B refers to the batch size, T to time frames, F to
frequency bins and C to channels. F ∗ is the downsampled frequency.

Ym', Yp

Dilations {1, 2, 4, 8}

Convolution block Convolution block of 
dilated dense net

Convolution block and
frequency downsampling

BxTxFxC
BxTxF*xC

Figure 2.9: Common structure of encoder in CMGAN (Cao et al., 2022), TPTGAN
(Z. Liu et al., 2024) and MP-SENet (Y.-X. Lu et al., 2023). Ym is the magnitude
of the noisy signal. Yp is the phase of the noisy signal. The apostrophe indicates
compressed feature. B refers to the batch size, T to time frames, F to frequency bins
and C to channels. F ∗ is the downsampled frequency

As sixty-four is the number of output channels of the encoder, the attention mech-
anisms in the latent space also have sixty-four input and output channels. The at-
tention mechanisms can be either conformer or transformers as table 2.1 indicates.
Each conformer or transformer block consist of two conformers or transformers re-
spectively. In the case of the conformers, the first one is used to obtain time depen-
dencies, while the second one focus on the frequency. Thus, they are called time and
frequency conformers respectively. To focus on one feature or the other, reshaping
the input is necessary. This is shown in figure 2.10. On the other hand, the trans-
former block employs an intratransformer to get local dependencies and after that an
intertransformer to obtain global range dependencies. Reshaping is not necessary in
this case as figure 2.11 shows. The structures of figures 2.10 and 2.11 are used four
times serially in the latent space of the generator.

Both, the conformers and transformers have the traditional structure in an encoder-
only mode. They perform the feature extraction while maintaining the dimensionality
of the data. The feature extraction determines the most important features of the
audio. If the enhancement is done correctly, these features include clean audio at-
tributes and exclude noise attributes. Hence, when the decoders reconstruct the
audio, noise is not present.

The number of output channels in the attention structures is sixty-four. Thus, con-
trary to the encoder, the number of input channels in the decoders is sixty four.
Therefore, a first convolution block that increases the number of channels is not nec-
essary. The dilated dense net is in this case conformed by the first to fourth block,
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Time conformer Frequency conformer

BF*xTxC BTxF*xC BxTxF*xC

Convolution moduleFeed Forward module Multihead self- attention 

Layer normalization Reshape

Figure 2.10: Conformer block of CMGAN (Cao et al., 2022) and MP-SENet (Y.-X. Lu
et al., 2023). B refers to the batch size, T to time frames, F ∗ to the downsampled
frequency bins and C to channels.

Figure 2.11: Transformer block of TPTGAN (Z. Liu et al., 2024). B refers to the batch
size, T to time frames, F ∗ to the downsampled frequency bins and C to channels.

and uses the same dilation rates. After the dilated dense net, a convolution block is
used to upsample the frequency dimension. This means that the dimension of the
frequency is doubled to reconstruct the original frequency dimension. Finally, a last
convolution layer is employed, only followed by an activation function in the mask
decoder (see the difference between figures 2.12 and 2.13) .

In MP-SENet, the last activation function of the mask decoder corresponds to a learn-
able sigmoid instead of PReLU, as the authors discover that using the learnable sig-
moid function improves the performance significantly. Also, in MP-SENet the last
convolution layer of the second decoder is replaced by two separately convolution
layers that are used in parallel and which output is merged in the end. This is be-
cause MP-SENet second decoder focuses on the phase. The last convolution layers
used in parallel obtain the real and imaginary components separately. Then the ar-
cotangent operation is performed to obtain the phase of the enhanced signal.

The discriminator compromises four convolution blocks. Then, an adaptative max-
pool layer is used to reduce the dimensionality. Finally, two linear layers are em-
ployed. The linear layers are employed as in standard CNN to perform the classifica-
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Dilations {1, 2, 4, 8}

Convolution layer

Convolution block 
of dilated dense net

Convolution block and
frequency upsampling
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Activation function

BxTxF*xC BxTxFxC

Figure 2.12: Common structure of magnitude mask decoder in CMGAN (Cao et al.,
2022), TPTGAN (Z. Liu et al., 2024), and MP-SENet (Y.-X. Lu et al., 2023). M is the
enhanced magnitude mask. The apostrophe indicates a compressed feature. B refers
to the batch size, T to time frames, F to frequency bins and C to channels. F ∗ is the
downsampled frequency.

Dilations {1, 2, 4, 8}

Convolution layer

Convolution block 
of dilated dense net

Convolution block and
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Xr, Xi 

Xp

Figure 2.13: Common structure of complex or phase decoder in CMGAN (Cao et al.,
2022), TPTGAN (Z. Liu et al., 2024), and MP-SENet (Y.-X. Lu et al., 2023). Xr, Xi and
Xp are the real part, imaginary part and phase of the enhanced signal respectively.
CMGAN and TPTGAN focus on real and imaginary parts, MP-SENet on the phase. B
refers to the batch size, T to time frames, F to frequency bins and C to channels. F ∗

is the downsampled frequency.

tion. In this case the classification is between real clean audios and fake or enhanced
audios. The first linear layer uses PReLU activation function and drop out. The drop
out is used to reduce the variance of the discriminator. Note that dropout is not only
present at this point of the model, but also in the latent space of the generator. This
is because conformers and transformers use it. The activation function of the last
linear layer corresponds to a learnable sigmoid. Employing a learnable sigmoid acti-
vation at the end of the discriminator helps adjusting the decision boundary between
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real and fake data and stabilizes convergence. This is a common choice in GANs.

In each block of the discriminator, spectral normalization is employed after the con-
volution or linear layer. Spectral normalization (Miyato et al., 2018) helps stabilizing
the discriminator training. This is crucial as the learning process of GANs is defined
by its instability. In spectral normalization, the maximum weight is used to normal-
ize all the weights, therefore limiting the scaled weights to a maximum value of one.
This strategy stabilizes the learning process of a neural network, favouring its con-
vergence. Figure 2.14 shows the common structure of the discriminator. Note that
such structure is exactly the same for the three models.

D

Xm

Xm

Convolution block Linear Layer

Dropout + PReLU Learnable Sigmoid

Pooling

Figure 2.14: Common structure of discriminator in CMGAN (Cao et al., 2022), TPT-
GAN (Z. Liu et al., 2024) and MP-SENet (Y.-X. Lu et al., 2023). Xm is the magnitude of
the clean signal. Xm is the magnitude of the enhanced signal. D is the discriminator
probability output.

The discriminator uses the magnitude of the enhanced signals and clean signals as
input and tries to discriminate between them. The discriminator output D corre-
sponds to the QPESQ, a normalized value of the PESQ. Therefore, the QPESQ range
is [0, 1], where the lowest value corresponds to an extremely noisy signal and the
highest value to the clean signal. The discriminator is trained to give the best en-
hanced signals a QPESQ closer to one, and the worst enhanced signals a QPESQ closer
to zero. The generator goal is to produce enhanced signals that obtain a QPESQ of
one and are therefore, indistinguishable from clean signals. The discriminator goal is
to, even for almost perfectly enhanced signals, be able to discriminate between clean
and enhanced signals.

TPTGAN has an extra input of Ym corresponding to the magnitude of the noisy signal.
This is because including noisy signals for the discriminator training process has
proved to give better results (Kawanaka et al., 2020, S.-W. Fu et al., 2021). Using
noisy signals, facilitates the detection and QPESQ computation of poorly enhanced
signals.

In each model different losses for the generator and the discriminator are used. CM-
GAN uses a generator loss, LGCMGAN

, with three terms:

LGCMGAN
= LTF + LT ime + LG (2.16)

where LTF is the loss in the time-frequency domain, that is between the spectrograms
of the clean and enhanced signals, LT ime is the loss in the time domain, that is in the
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waveform between the clean and enhanced signal, and LG is the loss of the generator,
referring to its enhancement capabilities. The LTF can as well be decomposed in:

LTF = LMag + LRI (2.17)

where LMag is the loss in the magnitude space and LRI is the loss in the real-
imaginary space. These are obtained by the two decoders of the generator. They
can be expressed in expectancy terms:

LMag = EXm,X̂m
[||Xm − X̂m||2] (2.18)

LRI = EXr,X̂r
[||Xr − X̂r||2] + EXi,X̂i

[||Xi − X̂i||2] (2.19)

where X is the clean signal and X̂ is the enhanced signal, and the subscripts m, r
and i refer to the magnitude, real and imaginary values of each signal. The second
term of the equation 2.16 can also be expressed in expectancy terms as:

LT ime = Ex,x̂[||x− x̂||1] (2.20)

where x is again the clean signal and x̂ the enhanced signal. They refer to the wave-
forms of the signals in the time domain. This is, before applying the STFT to the input
and after applying the ISTFT to the ouptut. This ensures that the signal is enhanced
focusing also in time domain (Abdulatif et al., 2021). The more similar the enhanced
and clean signals are, the lower the differences in equations 2.18, 2.19 and 2.20.
Finally, the third term of the generator loss, shown in equation 2.21, refers to the
loss of the generator, related to the discriminator judgement of the enhanced signal.
Its equation is:

LG = EXm,X̂m
[||D(Xm, X̂m)− 1||2] (2.21)

The generator purpose is to enhance the signal to fool the discriminator so that it
is not able to distinguish between clean and enhanced signal. By minimizing LG,
the generator learns to generate enhanced signals that the discriminator detects as
real clean signals. Each of the terms of the generator loss is multiplied by the same
coefficients which corresponds to 0.25 for the LMag, LRI , LT ime and LG. Apart from a
generator loss, the CMGAN model has a discriminator loss. Such loss is:

LDCMGAN
= EXm [||D(Xm, Xm)− 1||2] + EXm,X̂m

[||D(Xm, X̂m)−QPESQ(Xm, X̂m)||2] (2.22)

where QPESQ is the normalized PESQ score. As equation 2.22 shows, the loss of the
discriminator compromises two terms. The first term refers to the clean signal, while
the second refers to the enhanced signal. If the input signal in the discriminator is
clean, the discriminator output should be one. Therefore, the first term should be
minimized. For the second term, where the input of the discriminator is an enhanced
signal, the output should be a value which corresponds to how well was the signal
enhanced. By minimizing the LDCMGAN

the discriminator learns to give values close
to zero to poorly enhanced signals and close to one to clean and properly enhanced
signals. The terms of the discriminator loss are not multiplied by any coefficient.

TPTGAN has similar losses to those of CMGAN. The losses of the generator, LGTPTGAN
,

and discriminator, LDTPTGAN
, are indicated in equations 2.23 and 2.24 respectively:

LGTPTGAN
= LGCMGAN

(2.23)

36



Speech Enhancement: State of the Art

LDTPTGAN
= LDCMGAN

+ EXm,Ym [||D(Xm, Ym)−QPESQ(Xm, Ym)||2] (2.24)

The loss of the generator is equal to the loss of the CMGAN generator. Therefore,
no explanation of it is required. The coefficients in TPTGAN generator loss are 0.9,
0.1, 0.2 and 0.01 for the LMag, LRI , LT ime and LG respectively. The discriminator loss
however is slightly different as it adds a third term with respect to equation 2.22.
This difference arises from the use of noisy signals Y , as their magnitude is also used
as input of the discriminator. The noisy signal should obtain a QPESQ score close to
zero as they are far from being clean signals. Again, the discriminator loss terms are
not multiplied by any coefficient.

The last model of this section is MP-SENet. The losses of the generator, LGMP−SENet
,

and discriminator, LDMP−SENet
, are indicated in equations 2.25 and 2.26 respectively:

LGMP−SENet
= LGCMGAN

+ LPhase (2.25)

LDMP−SENet
= LDCMGAN

(2.26)

The loss of the discriminator is exactly the same as the CMGAN discriminator loss,
including the absence of coefficients, and therefore does not require any explanation.
However, the generator loss is slightly different to the CMGAN one, as it includes
a fourth term. This term corresponds to the phase features. Y.-X. Lu et al., 2023
indicate in their work that conventional phases losses, as L1 or L2 errors, are not
appropriate because of phase wrapping. Phase wrapping occurs when the phase
angle of a signal is not in the range [0, 2π], which can happen in audio processing.
When the angle is not in the range mentioned, distortions are common. Based on the
work of Ai and Ling, 2023, the MP-SENet developers propose a phase loss with three
terms as:

LPhase = LIP + LGD + LIAF (2.27)

where LIP , LGD and LIAF are the instantaneous phase loss, group delay loss, and
instantaneous angular frequency loss respectively. Each term, as indicated in equa-
tions 2.28, 2.29 and 2.30, uses antiwrapping functions, fAW , to avoid the error ex-
pansion issue caused by phase wrapping. The antiwrapping function ensure that the
angle x is within the range [0, 2π] by subtracting 2π to x given that x > 2π. It is applied
element-wise in each of the following equations:

LIP = EXp,X̂p
[||fAW (Xp − X̂p)||1] (2.28)

LGD = E∆DF (Xp,X̂p))
[||fAW (∆DF (Xp − X̂p))||1] (2.29)

LIAF = E∆DT (Xp,X̂p))
[||fAW (∆DT (Xp − X̂p))||1] (2.30)

where ∆DF is the differential operator in the frequency axis and ∆DT is the differen-
tial operator in the time axis. The instantaneous phase loss (LIP ) is the difference
between the phase of the clean and enhanced signals. The group delay loss (LGD)
and the instantaneous angular frequency loss (LIAF ) are used to ensure continuity
of the predicted phase along frequency and time axis respectively. The coefficients of
MP-SENet generator loss are 0.9, 0.1, 0.2, 0.05 and 0.3 for the LMag, LRI , LT ime, LG

and LPhase.

It should be noted that other models, based on these three ones, have been developed.
They also obtain outstanding results. Some examples are the SCP-GAN (Zadorozhnyy
et al., 2022) and the SEMamba (Chao et al., 2024) models.
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2.7. Best state of the art models in speech enhancement

SCPGAN is an improvement of CMGAN. It uses CMGAN as a baseline model and
improves it with a Self Correcting (SC) discriminator and Consistency Preservation
(CP). The self correcting discriminator fixes the problems associated with the unstable
discriminator training. This is done by introducing weights in its loss formula. The
consistency preservation tries to overcome the undesirable effects of the ISTFT on
the enhanced signal. Losses in the frequency domain, such as the magnitude loss
or the complex loss, do not take into account the effect of the ISTFT. They compare
the features for the clean and enhanced signals before the ISTFT. SCP-GAN modifies
CMGAN architecture and loss formulas to take into account the effects of the ISTFT
on the losses of the frequency domain.

SEMamba has a similar architecture to that of MP-SENet. It has an encoder, a latent
space and two decoders, one for the magnitude and other for the phase. In the latent
space, the Mamba model (Gu and Dao, 2024) is implemented instead of conformers.
As in the conformer block, two Mamba models are implemented in each block: the
first one for the time domain and the second one for the frequency domain. Mamba
blocks do not use attention mechanisms, which are computationally expensive, but
selective State Space Models (SSMs). SSMs are based on CNN and RNN. SSMs use
linear recurrence and global convolutions. Selective SSM increase the efficiency and
flexibility of SSM with input-dependent dynamics. Instead of using the basic Mamba
model, some modifications are introduced, obtaining an advanced Mamba. This new
model allows bidirectional processing, use the consistency loss of SCP-GAN and per-
ceptual contrast stretching (PCS). PCS is used to stretch the magnitude spectrum
as a function of the importance of specific frequency bands for human perception.
The more important the band for human perception, the more contrast and stretch
is applied to the band.

The architectures explored in this section seem to give raise to multiple models with
outstanding results. Exploring these architectures appear to be the future trend in
speech enhancement.
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Chapter 3

Problem Statement

Speech enhancement refers to methods that improve audio quality and intelligibil-
ity. Its main goal is to produce cleaner audios that are more pleasant to listen and
understand. As a consequence, the important information from audios can be more
easily extracted. Speech enhancement methods are designed to suppress background
noises, reverberation, and other forms of interference that degrade the audio quality
and intelligibility. It involves several techniques and algorithms that try to distinguish
the speech signal from the noises of an audio. Those noises can then be removed in
order to obtain a clean version of the input audio.

Deep learning is currently the most effective trend in speech enhancement. Previ-
ously, other methods, such as statistical methods, were used. However, deep learn-
ing models have surpassed by far other methods used in this area. Neural networks
offer high flexibility, are easily adapted to work with high amounts of data and can be
used in real time. Deep learning models are also able to easily generalize, enhancing
audios quite different from those they are trained on. On top of that, deep learning
models can be trained to erase only a specific type of noise, offering a solution for
domain specific tasks.

Speech enhancement is crucial for several applications, such as human-machine
speech interaction. Virtual assistants controlled by voice need to isolate speech sig-
nals from background noises. Therefore, a speech enhancement model may be used
to isolate the speaker commands. Hearing aids use speech enhancement models to
suppress background noises in real time. Speech enhancement can also be used
in telecommunication systems, such as phone or video calls, in which a clearer au-
dio implies better communication. Additionally, speech enhancement can be used
in automated transcription services, to allow voice-to-text transcription even in noisy
environments. Another crucial application of speech enhancement is to improve the
hearing experience of people with hearing impairments.

Currently, there is a growing demand for speech enhancement models that are ef-
ficient. High performance models have limited applications if they are not efficient.
Small models can be integrated in small devices such as phones, improving their
properties with respect to users privacy and models latency. Minimizing memory
requirement and computational cost is one of the main goals in most technologies,
as it is the way to make the models available to general population for daily-life
tasks. Some strategies that have been explored to make speech enhancement models
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efficient, include model compression with pruning techniques and knowledge distil-
lations strategies.

The main goal of this project is to develop a speech enhancement model that obtains
state of the art results and which is efficient. To measure the performance, the most
popular objective and subjective metrics in speech enhancement are computed. To
measure the efficiency, the number of parameters, the number of operations, the size
of the models and the ability to be used in real time applications are measured. There
is a trade-off between performance and efficiency. Therefore, by focusing on model
efficiency, a slight degradation on the model metrics with respect to state of the art
models is expected. The goal of this project can be divided in three subgoals.

The first subgoal of this project is to develop a framework for speech enhancement
models training and evaluation. A data preprocessing pipeline is developed and data
augmentation methods are implemented. Data augmentation techniques deal with
the overfitting problem. Data from the Valentini database is used, as it is one of
the most common benchmarks in speech enhancement. Training and evaluation
pipelines are also developed in order to treat different models the same way, obtaining
a reliable and consistent comparison of results.

The second subgoal of this project is to design an efficient deep learning algorithm
for speech enhancement. Several models are explored for this purpose. The models
developed in this project are based on the best state of the art models. They com-
bine different elements of deep learning networks such as conformers, convolutions,
autoencoders and generative adversarial networks. The models are developed with
low number of parameters and of operations, in order to be efficient. Once the al-
gorithms are defined, the models are trained. Several challenges are addressed in
this project. Hardware and time limitations affect vastly to the development of the
models. Strategies such as gradient accumulation and automated mixed precision
are explored. The instability of generative adversarial networks training, also pose
difficulties during the development of the project.

The third subgoal of this project is to validate, evaluate and analyse the results ob-
tained for the developed and trained models. To validate the models, a partition is
performed on the Valentini train set to obtain a train and a validation set. This parti-
tion ensures some differences between train and validation sets, in order to efficiently
detect and avoid overfitting. To evaluate the models, the most common objective and
subjective metrics are employed. In addition, the computational efficiency is anal-
ysed. The contribution of the different elements of the models is also studied. This
is done to find out which elements have a greater weight in the efficiency and the
performance of the models.
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Chapter 4

Development

The following chapter contains the information related to the development of this
project. The decisions made and all the reasons after them are explained. First, the
resources for the models development are indicated. After that, the dataset employed
and preprocessing steps are shown. A different section is used to explain the data
augmentation process. Next, the models architecture and losses are explained. Fi-
nally, information about the models training and evaluation processes is indicated.
The results obtained by the developed models are shown and discussed in the next
chapter.

4.1 Resources

For this project NVIDIA GeForce GTX 1080 Ti GPUs of 10 GB are employed. GPU
stands for graphics processing unit. The installed driver version is 550.54.15, and
CUDA version 12.4 is employed for GPU-accelerated computing tasks. These GPUs
are crucial for the computational tasks, reducing the training time for the models
significantly.

The programming language of this project is Python1, as it allows the use of several
tools for speech enhancement and for deep learning. Using Python offers several
advantages, such as its high versatility and available libraries. The deep learning
models are implemented and trained using PyTorch2. PyTorch is selected as it offers
great flexibility and is the preferred framework for deep learning with audio data. Its
dynamic approach for building models enables easier debugging and customization.
Torchinfo3 has also been employed to illustrate information about the models. This
is quite useful for model visualization, indicating the number of parameters that each
element of the model involves. To count the number of floating point operations per
second (FLOPS) of the models, Thop4 is used.

For audio data, the library Torchaudio5 from PyTorch is employed. Toarchaudio can
be easily integrated in PyTorch and offers easy preprocessing of the audio data. Tor-

1Python - https://www.python.org/
2PyTorch - https://pytorch.org/
3Torchinfo - https://pypi.org/project/torchinfo/0.0.1/
4Thop - https://pypi.org/project/thop/
5Torchaudio - https://pytorch.org/audio/stable/index.html
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4.2. Data and preprocessing

chaudio includes pipelines for the evaluation of deep learning models both with ob-
jective and subjective metrics. In this project, SQUIM6 from Torchaudio is employed.
SQUIM is defined as a non-intrusive speech assessment which allows for subjective
and objective evaluation. Apart from SQUIM, PESQ and STOI metrics are computed
using the pesq7 and pystoi8 modules from Python. Librosa9 is another package of
Python used for audio analysis. In the present project, librosa has been employed to
compute some of the evaluation metrics. IPhython10 is used to create audio objects.
These objects can be used for interactive computing, showing how audios change
before and after their enhancement.

Other libraries have been utilized in this project. To obtain graphical visualization
of the data, Matplotlib11 is selected. Seaborn12 complements Matplotlib, generat-
ing more complex graphs with a higher-level interface. Numpy13 and Scipy14 are
employed for mathematical and scientific operations. Audios are signals with sev-
eral features, that require mathematical computations. The models developed in this
project are TF models. Hence, the number of operations they require to process the
audios is significant. Consequently, the tools used for the computations must be
efficient. Pandas15 is selected to handle the dataset. Scikit-learn (Sklearn)16 is also
employed in this project for some of the hyperparameter selection. The tools that
Sklearn offer are based on machine learning algorithms.

4.2 Data and preprocessing

To train and evaluate the models, the database VoiceBank + DEMAND is employed.
The dataset is already divided into train and test set. In this project such established
partition is preserved in order to obtain results that allow a more reliable comparison
with other models from the literature. The dataset includes the clean and noisy wav
files of the train and test set. Two train sets are available. One includes twenty eight
speakers and other fifty six speakers. The latter is chosen. Preprocessing the data
obtained from the Valentini database is a crucial step for this project.

Three tsv files are employed to allocate information about the wav files. A first tsv
file provides information about the whole Valentini dataset, including the train set of
the fifty six speakers and the test set. This file involves information for each sample
about the sample identifier, path of the clean wav file, path of the noisy wav file,
audio length, language, transcription, recording device, speaker identifier, type of
noise and the database where it comes from. A second tsv file is derived from the first
one including only the information about the test set samples. This is done in order to
later identify the audios that correspond to the test set partition of the database, and
be able to respect such partition. Finally, a third tsv file comprises information about

6SQUIM - https://pytorch.org/audio/main/tutorials/squim_tutorial.html
7pesq - https://pypi.org/project/pesq/
8pystoi - https://pypi.org/project/pystoi/
9Librosa - https://librosa.org/

10IPhython - https://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html
11Matplotlib- https://matplotlib.org/stable/
12Seaborn - https://seaborn.pydata.org/
13Numpy - https://numpy.org/doc/stable/index.html
14Scipy - https://scipy.org/
15Pandas - https://pandas.pydata.org/
16Sklearn- https://scikit-learn.org/stable/
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Development

the noises of each sample of the train set. Such file is used for data augmentation
techniques, which are explained in the next section.

The overall number of audios of the Valentini dataset corresponds to 23899 noisy
audios with their corresponding 23899 clean version audios. The number of unique
speakers is sixty. The number of noise types in the whole dataset corresponds to fif-
teen. Figure 4.1 illustrates the distribution of audios dependent on the audio length.
As it can be appreciated, most of the audios last less than four seconds.

Figure 4.1: Distribution of Valentini audios based on audio length.

Figure 4.2 illustrates the distribution of audios as a function of signal to noise ratio.
The audios seem to follow two uniform discrete distributions with different densities.
The two distinct distributions are taken into account when performing the partition.
A high number of audios present a SNR of 0.0 dB, 5.0 dB, 10.0 dB, and 15.0 dB,
while a low number of audios have a SNR of 2.5 dB, 7.5 dB, 12.5 dB, and 17.5
dB. This distribution is possible because the Valentini dataset is a database with
synthetic audios that mix clean audios and noises adjusting them to different SNR
values. Note that the SNR is measured in dB which means that the SNR is computed
in logarithmic scale. Otherwise a SNR level of 0 would not be possible. A SNR of 0 in
logarithmic scale indicates the same signal and noise levels.

Figure 4.2: Distribution of Valentini audios based on SNR levels.

Figure 4.3 illustrates the distribution of the noises in the Valentini dataset audios,
before performing the partition. Ten noises are in high proportion, while five of them
are not that common. This is taken into account for the partitions creation. The
noises used in this database aim to represent common daily-life noises. Almost all
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4.2. Data and preprocessing

of them correspond to recordings of real noises. Babble and ssn, which stands for
speech-shaped noises, are not from the DEMAND dataset but synthetic noises. They
are used to simulate noises derived from people speechs.

Figure 4.3: Distribution of Valentini audios based on noise type

Using the three tsv files, the partition is performed and new tsv files are created. The
resulting files correspond to the train, validation and test partition files. The files
contain information of the samples corresponding to each set. The location of each
sample is specified in each entry of the tsv file. To obtain the test set, the partition
indicated by the creators of the Valentini dataset is respected. The remaining audios
are split in a 9:1 proportion into train and validation set. This partition is performed
to have different speakers in the train and validation sets, but the same types of
noises and SNR in a proportion of 9:1 in the two sets.

Table 4.1 contains information about each set after the partition. As it can be appre-
ciated, the train and validation set include the noises and clean audios that are mixed
after the partition. By adding the noises and the clean audios, new noisy audios are
obtained. In the case of the test set, the original noisy audios are the ones employed.
The clean test audios are used for comparison of the enhanced audios and the target
clean audios.

Noisy
audios

Clean
audios

Noises
audios

Unique
speakers

Types of
noises

Train set - 20592 20592 52 10
Validation set - 2483 2483 6 10
Test set 824 824 - 2 5

Table 4.1: Description of three sets. The train and validation set are defined as a mix
of clean audios and noises. For the test set, the original noisy audios are maintained.
The speakers are different in the three sets. The types of noises are the same for the
train and validation set, but different for the test set.

The number of unique speakers can also be appreciated. As it can be seen, the num-
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ber of unique speakers of the train set is much higher than the number of speakers
of the validation and test sets. Different speakers are employed in the three sets in
order to detect possible overfitting and improve generalization. This approach avoids
obtaining a model that learns to enhance audios of specific speakers only.

A similar strategy is employed for the noises. The noise types of the train and valida-
tion set are the same. However, in the test set, different noises are employed, so that
the results obtained are more reliable. Hence, good results on the test set should
indicate that the model is able to generalize and clean different types of noises from
those it was trained on. From figure 4.3, it can be appreciated that of the fifteen
original noises of the dataset, ten are in higher proportion than five of them. The
five less common - bus, cafe, living, office and psquare - correspond to the noises
used in the test set. The remaining noises are part of the train and validation set.
The same is done for the SNR values. Figure 4.2 shows that some SNR are in much
lower proportion than other SNR levels. The audios of SNR levels with higher density
correspond to train and validation set audios. The less common SNR levels involve
test set audios.

4.3 Data augmentation

Data augmentation techniques are crucial strategies to reduce the overfitting of mod-
els. Data augmentation is quite frequent in speech enhancement, as many of the
databases employed for this task do not contain a huge number of audios. In this
project four data augmentation techniques are implemented: white noise addition,
random background noise addition, revecho and bandmasking. Note that this is only
applied to the train and validation sets. In the case of the test set, the original noisy
audios of the database, without any modification, are the ones employed. This is
done in order to have a more reliable comparison of the results with respect to other
models of the literature.

After generating the partitions, the train and validation clean signals are separated
from the noises. Each clean audio is sliced into windows of size 32000. As the
sampling frequency corresponds to 16000, using a window size of 32000 produces
fragments of two seconds. These hyperparameters are commonly used in speech
enhancement scenarios. Hence, they are also used in this project for consistency
purposes. If some audio slice is smaller than the window size, padding strategies to
fill the absent audio signals are used.

After that, white noises can be added probabilistically. The probability is set to p = 0.5,
so that white noises are only added to half of the audio samples. The SNR range
between the white noises and the clean audios needs to be adjusted. To cover all
the SNR values of the test set, a range of [0, 20] is selected. The noise ranges are
bound to sample a uniform distribution. The white noises added in this project are
stationary. This means that the noise values are constant during the two seconds
of each windowed audio. The majority of the experiments performed in this project
do not include white noises, which means that p = 0. After that, some experiments
that include this strategy are run. The addition of white noise in such experiments is
explicitly indicated. If no mention of white noise is done, the experiments are trained
without it.

Background noises are generated from the noises entries of the train and validation
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sets. Random noises are selected, sliced to the same window as the clean audio,
adapted to the SNR level desired and added to the clean signal. The SNR used in this
case correspond to the range [5, 30]. This SNR is higher than the white noise SNR for
three reasons. First, other data augmentation techniques that degrade the clean sig-
nals are employed. Hence, using slightly higher SNR at this point, may be beneficial.
Second, it is a more faithful representation of common noisy environments. Third, for
robustness analysis, when enhancing test audios with lower SNR. The background
noise addition is done for every audio of the train and validation sets.

In the Revecho technique, reverberation is probabilistically applied to the clean au-
dios and noises. It is important to clarify that if the revecho technique takes place, it
should be applied before the background noises and clean audios are merged. This
is because the reverberated process applied on the noises and on the clean signal is
not the same. The noises are modified to take into account their own reverberation
and most of the reverberation of the clean signals. The clean signals only incorporate
a small proportion of their own reverberation.

The probability used is q = 0.5, which means that only half of the audios have rever-
beration. With the revecho technique, reverberation or echo can be introduced into
the samples so that the model also learns to clean it. To control the reverberation,
several hyperparameters are used. The echo is controlled by its maximum initial am-
plitude with respect to the original sound, the time it takes to reach a threshold value
(0.001), the time that it takes for the first delay to happen and the number of times an
echo is replayed. The two time parameters are not given a fixed value but a random
value within a time range. This is done to increase the variability of the echos. With
the same purpose, the jitter is defined as the proportion of variations that are added
to make each reverberation slightly different. Finally, the keep clean hyperparameter
refers to the proportion of the reverberation of the clean audio that is applied to the
clean audio. The rest of the clean audio reverberation is applied to the noise.

Bandmasking involves masking some frequency bands to focus on others, which gen-
erally correspond to low frequencies. This is because, human speech and perception
concentrate in low frequency ranges. The number of frequency bands in which the
input is segmented and the maximum bandwidth to be removed are some of the band-
masking hyperparameters. Using these two hyperparameters, the bandwidth can be
computed. Taking into account the number of bands and the computed bandwidth,
the low and midlow frequencies are defined. A filter is used to eliminate midlow fre-
quencies, focusing on lower frequencies. All of the hyperparameters used for data
augmentation are shown in table 4.2. Most of the hyperparameters values chosen
correspond to the standard practices in speech enhancement.

In this project, data augmentation is performed on-the-fly. This means that every
time a batch is loaded, the data augmentation techniques are applied. The number
of audios employed in each epoch correspond to the original number of clean audios
of the train and validation sets (20592 and 2483 respectively according to table 4.1).
However, in each epoch, the data augmentation techniques generate different audios
from the same clean audio. Overall, the model is exposed to different transformed
audios in each epoch. Using on-the-fly data augmentation techniques, poses benefits
as not having to store the newly generated audios and generating a vastly diversity
of audios. Figure 4.4 indicates the data augmentation process that takes place every
time an audio is loaded as input for the model. For ease of understanding, clean au-
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Hyperparameter Value
Sampling frequency 16000

Window size 32000
SNR white noise [0, 20]

Probability of white noise (p) 0.5
SNR background noise [5, 30]

Probability of RevEcho (q) 0.5
Maximum amplitude of first echo 0.3

Time for 0.001 amplitude (s) (0.3, 1.3)
First delay (s) (0.01, 0.03)

Number of echo repetitions 3
Jitter 0.1

Keep clean 0.1
Number of frequency bands 120

Maximum bandwidth to be removed 0.2

Table 4.2: Data augmentation hyperparameters.

dios and background noises are indicated in turquoise and orange color respectively.

Figure 4.4: Data augmentation process. Clean audios (turquoise) and random back-
ground noises (orange) are adjusted to a window length. White noises can be added
probabilistically to clean audios. The SNR value is adjusted between the clean au-
dios and white noises. The SNR values between the clean audios, with or without
the white noises, and the background noises are also adjusted before being merged.
The reverb addition is done probabilistically and in parallel to the background noise
addition. Finally, the frequency mask filter is applied.

Figure 4.5 illustrates the waveform and spectrogram of an audio during the data aug-
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mentation process. The first step is to select a window of two seconds. Then, white
noise can be added. The noisier signal can be easily appreciated by looking at the
waveform which has higher amplitude across the whole window. The spectrogram
also indicates that the signal has become noisier with more blurred signals. After
that, background noise is added. As it can be seen, after applying the background
noise, the signal gets even noisier. Note the differences in the waveform of the signal
before and after applying background noises. Reverberation can be added probabilis-
tically. The reverberation is easily detected by looking at the waveform graph. Certain
peaks of sound seem to reappear and propagate in time and gradually fade away. The
masking of some frequency bands can be easily appreciated in the last spectrogram.

Figure 4.5: Waveform and spectrogram of one audio of the train set during the process
of data augmentation. The process starts on the top left corner and continues along
the top row. First, the window size is adjusted, then white noise is probabilistically
added. After that, it follows the bottom row with the background noise and the
probabilistically reverberation addition (RevEcho). It ends at the bottom right corner
with the frequency masking process (BandMask).

In figure 4.5, the white noise addition and reverberation process are shown, although
they do not always take place. On top of that, the hyperparameters used for the
reverberation and bandmasking techniques are higher than those shown in table
4.2. This is done to appreciate visually the effect of each technique on the signal.
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4.4 Models development

In this project three models are developed: LitGAN, MidGAN and MiniGAN. In this
section the development process of the three models is explained, along with their
structure and losses equations.

The models of this project are based on the best state of the art models for speech
enhancement. Before generating the models architectures, the CMGAN, TPTGAN and
MP-SENet models are compared and implemented using the same building blocks.
This is done because the three models share most of the elements. Hence, the com-
parison between their scripts becomes an easier task when merged. The initial ap-
proach is to train from scratch the models, but given the hardware limitations it has
not been possible.

The three models developed are, as the models on which they are based, generative
adversarial networks, conformed by a generator and a discriminator. Each genera-
tor has an encoder-decoder structure. In the latent space attention mechanisms are
employed. The losses employed by the models are again multiterm. Several contri-
butions are made in this project, defining new architectures based on state of the
art models. Such models are modified in order to obtain more efficient ones. The
contributions of this project are explained in what follows.

First, a modification of the encoder-decoder structure is developed. In LitGAN, the
encoder compromises five convolution blocks. Each block has a convolution layer,
instance normalization and PReLU activation. The initial number of channels is two:
one for the magnitude and the other for the phase of the signal. In each convolution
layer, the number of channels is doubled. This is done for the extraction of more
complex and abstract features from the input data. The encoder learns to hierarchi-
cally capture higher-level features in each convolution block. Note that this is a main
difference with respect to CMGAN, TPTGAN and MP-SENet models. Those models
increase the number of channels in the first convolution block of the encoder and
then maintain the number of channels throughout the next convolution blocks. In
LitGAN, the number of channels increases in each block, until reaching the attention
mechanisms in the latent space, which uses sixty-four channels.

Another difference in the encoder is that the frequency downsampling is not per-
formed. This is because the complexity reduction is not necessary in this case, as the
network is simplified with other strategies. In LitGAN, dilations are employed from
the second to the last block in the encoder. The dilation rates correspond to 1, 2, 4
and 8. The 3x3 kernel is applied over the input data with gaps between its values,
controlled by the dilation rates. Figure 4.6 shows the structure of this encoder.

A third modification comes in the latent space. An important simplification of the
state of the art models takes place at this point. In the latent space, only one con-
former block is employed. It has a conformer for time domain and a conformer for
frequency domain. Before each conformer, the data is reshaped so that the conformer
focuses on the respective dependencies. The conformer block is exactly the same as
the one of CMGAN and MP-SENet. It is selected over the transformer block because
of the superior performance of CMGAN and MP-SENet with respect to TPTGAN. Its
structure can be seen in figure 2.10.

In the decoder, the opposite operation to the encoder is performed, reducing the
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Ym', Yp

Dilations {1, 2, 4, 8}

Convolution block Convolution block 
with dilations

Figure 4.6: LitGAN encoder structure. Ym is the magnitude of the noisy signal. Yp is
the phase of the noisy signal. The apostrophe indicates compressed feature.

number of channels from sixty four to one in each decoder. The decoders and encoder
are symmetrical. Dilations are used from the first to fourth block with the same
rates used in the encoder but in inverse order. The decoders are composed of five
convolution blocks in which the last block does not halve the number of channels
but reduce it to a fourth. This is because the encoder input is of two features and, as
two decoders are used separately, the output of each decoder is just one feature.

The LitGAN model employs a magnitude decoder and a phase decoder. The magnitude
decoder uses a a learnable sigmoid activation instead of PReLU in the last convolution
block. This is because the MP-SENet model shows in the ablation study, that this
practice improves the model notably. In the phase decoder, the last convolution is
performed separately on real and imaginary parts. Then, the arcotangent function
is applied to obtain the phase of the enhanced signal. Figure 4.7 and 4.8 show the
magnitude mask decoder and phase decoder structures of LitGAN.

Dilations {8, 4, 2, 1}

Convolution block 
with dilations Convolution layer

Learnable Sigmoid

M'

Figure 4.7: Magnitude mask decoder of LitGAN. M is the enhanced magnitude mask.
The apostrophe indicates compressed feature.

The loss of the generator is defined as a three term loss:

LGLitGAN
= LTF + LT ime + LG (4.1)

where LTF is the loss in the TF domain LT ime the loss in time domain and LG the loss
with respect to the discriminator output. The loss in the time-frequency domain is
defined as:

LTF = LMag + LPhase (4.2)
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Figure 4.8: Phase decoder of LitGAN. Xp is the phase of the enhanced signal.

where LMag is the loss in the magnitude space and LPhase is the loss in the phase
space. The magnitude and phase losses can be expressed as:

LMag = EXm,X̂m
[||Xm − X̂m||2] (4.3)

LPhase = LIP + LGD + LIAF (4.4)

where LIP , LGD and LIAF are the instantaneous phase loss, group delay loss, and
instantaneous angular frequency loss respectively. They can be expressed as:

LIP = EXp,X̂p
[||fAW (Xp − X̂p)||1] (4.5)

LGD = E∆DF (Xp,X̂p))
[||fAW (∆DF (Xp − X̂p))||1] (4.6)

LIAF = E∆DT (Xp,X̂p))
[||fAW (∆DT (Xp − X̂p))||1] (4.7)

where fAW is the antiwrapping function, ∆DF the differential operator in the fre-
quency axis and ∆DT the differential operator in the time axis. The antiwrapping
function is used to avoid the error expansion caused by phase wrapping, ensuring
that the angle x is within the range [0, 2π]. The differentials are used to ensure con-
tinuity of the predicted phase along frequency and time axis. The time domain loss,
LT ime, is expressed as:

LT ime = Ex,x̂[||x− x̂||1] (4.8)

where x refers to the waveform of the signals. Finally, the loss of the generator ability
to fool the discriminator is defined as:

LG = EXm,X̂m
[||D(Xm, X̂m)− 1||2] (4.9)

As it can be appreciated, the multiterm loss of the generator in LitGAN is similar
to the MP-SENet loss. The main difference arises from the absence of the real and
imaginary term loss shown in equation 2.19. This is because the ablation study of
the MP-SENet shows little effect of this term and because using a phase loss and
a real and imaginary loss can become redundant. Eliminating this term reduces
the number of operations and seems to have little impact on the performance. This
defines another contribution of this project.

The discriminator, which uses the magnitude of the signals as input, compromises
three convolutional blocks. Then, an adaptative maxpool layer is used to reduce the
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dimensionality. Finally, two linear layers are employed to classify real clean audios
and fake, or enhanced by the generator, audios. The first linear layer uses PReLU
activation function and drop out. The activation function of the last linear layer
corresponds to a learnable sigmoid. The discriminator is almost the same as in the
CMGAN, TPTGAN and MPSE-Net models, shown in figure 2.14. The main difference
is that it includes one less convolutional block, to improve its efficiency.

The loss of the discriminator is simplified vastly. This is done because calculating
the normalized PESQ, QPESQ, makes the speech enhancement task exceedingly time
consuming. Therefore, training the discriminator to output a value as close as pos-
sible to the QPESQ, increases the training time notably. In LitGAN, the discriminator
is trained to output a one is the audio corresponds to a clean audio and zero if the
audio is an enhanced audio by the generator. This reduces the training time to ap-
proximately one third. Removing the metric discriminator is a central modification of
this work. The loss of the discriminator can then be defined as:

LDLITGAN
= EXm [||D(Xm, Xm)− 1||2] + EXm,X̂m

[||D(Xm, X̂m)− 0||2] (4.10)

As in the best state of the art models, all the terms of the generator loss are multiplied
by specific coefficients. The discriminator loss terms are not multiplied by any coef-
ficient. These hyperparameters are presented in the next section. Figure 4.9 shows
the whole structure of the LitGAN model.
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Figure 4.9: LitGAN structure. Y is the noisy signal, X the clean signal and X the
enhanced signal. M is the enhanced mask of the magnitude. The subscripts m and
p refer to the magnitude and phase. The apostrophe indicates compressed feature.
LitGAN is conformed by a generator and a discriminator. The generator uses an en-
coder, a conformer block with the time and frequency conformers and two decoders.
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From LitGAN, two other architectures are derived: MidGAN and MiniGAN. They are
quite similar models. The difference between MidGAN and LitGAN is that the first
employs two conformer blocks in the latent space instead of one. The second block
is implemented after the first block, as in CMGAN and MP-SENet which employ four
blocks in series. The multiterm loss for the generator and discriminator of MidGAN
are the same as for LitGAN. Figure 4.10 illustrates the MidGAN structure.
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Figure 4.10: MidGAN structure. Y is the noisy signal, X the clean signal and X the
enhanced signal. M is the enhanced mask of the magnitude. The subscripts m and
p refer to the magnitude and phase. The apostrophe indicates compressed feature.
MidGAN is conformed by a generator and a discriminator. The generator uses an
encoder, two conformer blocks with the time and frequency conformers in each block
and two decoders.

MiniGAN is more different. It differs in the encoder and decoder structure, being
more similar to MP-SENet. Instead of using an autoencoder structure in which the
convolution channels increase in the encoder and decrease in the decoder, MiniGAN
employs the dilated dense net with residual connections of CMGAN, TPTGAN and
MP-SENet. In this case, the number of initial channels correspond to two: one for
the magnitude and other for the phase. In the first convolution block of the encoder,
the number of channels is increased to thirty two channels. The dilated dense net
is then employed with dilation rates of 1, 2, 4 and 8, and residual connections.
The residual connections increase the number of input channels of each convolution
block by thirty two. The number of output channels is always thirty two. After the
dilated dense net, a last convolution block in the encoder is used to downsample the
frequency dimension, in order to reduce complexity of the attention mechanisms.

In the latent space a conformer block is placed with the time and frequency conform-
ers. The conformer block is exactly the same as the other models. The only difference
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is that in MiniGAN, the number of channels used in the latent space is thirty two and
the frequency is downsampled. Hence, the complexity of the attention mechanisms
is remarkably reduced.

The decoders have a dilated dense net with the same structure as the encoder. Then,
a convolution block is used to upsample the frequency dimension to its original one.
Finally, a convolution layer is used in the magnitude mask decoder, followed by a
learnable sigmoid. In the phase decoder two convolution layers are utilized to obtain
the real and imaginary parts of the signal. The phase is computed as the arcotangent
of both of them. The multiterm loss for the generator and discriminator of MiniGAN
are the same as for LitGAN. Figure 4.11 shows the overall structure of MiniGAN. The
encoder and decoders are shown in figures 2.9, 2.12 and 2.13, as they are based on
the best state of the art models.
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Figure 4.11: MiniGAN structure. Y is the noisy signal, X the clean signal and X the
enhanced signal. M is the enhanced mask of the magnitude. The subscripts m and
p refer to the magnitude and phase. The apostrophe indicates compressed feature.
MiniGAN is conformed by a generator and a discriminator. The generator uses an
encoder with a dilated dense net, a conformer block with the time and frequency
conformers and two decoders which also employ a dilated dense net.

The three models work in TF domain. From the audio signal in time domain, the
magnitude and phase of the signal are obtained trough the STFT. The magnitude is
compressed. The power-law compression is performed to give the same importance to
louder and quieter noises. The compressed magnitude and the phase of the noisy sig-
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nal are concatenated and used as input of the encoder. After being processed by the
attention mechanisms of the latent space, the magnitude and phase are separately
processed by the decoders.

The first decoder obtains the magnitude mask. Such mask is used to multiply the
magnitude of the noisy signal, obtaining the magnitude of the enhanced signal. A
decompression of the enhanced magnitude is required to reverse the compression
previously performed. The phase decoder obtains the phase of the enhanced signal
as the arcotangent of the real and imaginary part of the signals. The phase and
magnitude of the enhanced signal are used to obtain the enhanced signal in time
domain, through the ISTFT. The magnitude of the enhanced signal is used as input
for the discriminator. The discriminator also uses the magnitude of the clean signal
as input. It discriminates between magnitude of clean and enhanced signals.

As it can be appreciated, the architectures developed during this project are much
more smaller than current speech enhancement models. This can be reflected on the
number of trainable parameters. Table 4.3 shows this information for each of the
components of the three models.

Components Parameters
LitGAN

Parameters
MidGAN

Parameters
MiniGAN

Generator

Encoder 24.984 24.984 96.064
Conformer block 224.896 449.792 187.072
Magnitude decoder 24.982 24.982 96.071
Phase decoder 24.730 24.730 95.938
Total for generator 299.592 524.488 347.273

Discriminator 25.810 25.810 25.810
Total 325.402 550.298 373.083

Table 4.3: Number of trainable parameters of LitGAN, MidGAN and MiniGAN. The
parameters are shown for each of the elements of the three models.

4.5 Models training

This project involves a huge number of hyperparameters. The data augmentation
hyperparameters are not the only ones that need to be adjusted. Parameters related
to the audio processing and to the training process are required. In this section, the
remaining hyperparameters and the training pipeline are shown. The reasons after
each decision are explained.

The three GANs work in the TF domain, which means that the audio signal must
suffer a STFT before being fed to the model and an ISTFT after being output from the
model. These transformations have several parameters. The Number of points for
the Fast Fourier Transform (NFFT) is the number of points used in each segment, to
perform the transformation. The hop parameter is the number of samples between
each successive transformation. The NFFT and hop parameters employed correspond
to 512 and 100 respectively, which are the standard parameters in speech enhance-
ment. After performing the STFT, the magnitude and the phase of the signal are
extracted. These are concatenated and used as input of the network.

The magnitude of the noisy signal is used to multiply the estimated mask by the mag-
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nitude mask decoder. The output of this operation is the magnitude of the enhanced
signal. Note that a power-law compression is performed on the magnitude. This is
done to assign similar importance to loud and quiet sounds. The compression factor
used in this project is 0.3, as the state of the art tendency. The hyperparameters
related to the audio processing are indicated in table 4.4.

Hyperparameter Value
NFFT 512

Hop size 100
Compression factor 0.3

Table 4.4: Audio data hyperparameters.

The main limitation encountered during this project is the training time. The number
of epochs of the training process is 120. Most speech enhancement models use 100
epochs. A slightly higher number of epochs is chosen to ensure convergence. The
models developed in this project are optimized so that they take the least time to train
as possible. Despite that, the training time is not low. The training times for LitGAN,
MidGAN and MiniGAN are approximately seven, twelve and four days, respectively.
Note that all training is performed with GPU. Yet, the time required is remarkable.
Parallel programming is discarded as several experiments are run at the same time
in all the available GPUs.

Strategies such as automatic mixed precision have also been explored. Automatic
mixed precision allows working with data types of 16 bits instead of always working
with 32 bits. This reduces the computational time for some of the operations. The
main problem of working with 16 bits instead of 32 bits is that the gradient vanishes
more easily. To prevent that, a gradient scaler can be used. However, even when
using the gradient scaler, the vanishing gradient problem occurs. Therefore, this
strategy is also discarded.

Another problem in this project arises from the instability of the discriminator in the
early epochs. Some times such instability leads to exploding gradients. To solve
that, gradient clipping is used. Gradient clipping computes the gradients, normalize
them and use a maximum value as threshold. Hence, gradients cannot grow vastly,
causing problems in the training process. The gradient threshold is set to 0.5. Gra-
dient clipping is only used in the experiments in which the training process becomes
extremely unstable.

With the same purpose, initialization of the parameters is employed in the unstable
experiments. Initializers set the initial values of the parameters to determined val-
ues. In this project uniform Kaiming or He initializers are selected, as they are the
preferred initializers to work with the PReLU activation function used in the models.
Patience is used during the training of the models of this project. Patience allows for
the model to stop training after a determined number of epochs, if no improvement
has occurred. As GANs are quite unstable, a patience of 75 epochs is used.

The batch size is set to 1 and gradient accumulation is employed. This is because
the memory requirements are too high to allow a higher batch size. The gradient
accumulation is employed to update the parameters every 16 batches. As the batch
is of size 1, the gradient accumulation strategy serves as an alternative to simulate
using a minibatch size of 16. Hence, the gradient accumulation enables using small
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batch sizes but not having unstable learning curves as stochastic learning.

The optimizer employed in this project is the AdamW optimizer. AdamW is an im-
provement of Adam optimizer in which the learning rate and weight decay are opti-
mized separately, conversely to what Adam does. Instead of applying weight decay
directly to the loss, AdamW applies the weight decay directly to the weights updates.
This generally leads to better generalization and improves the training process.

The initial learning rate is set to 0.001 and halves every 30 epochs for both the gener-
ator and the discriminator. These parameters are chosen because of the good results
obtained in other deep learning models for speech enhancement. Other models em-
ploy smaller learning rates for the generator. However, due to slow convergence,
higher rates are selected. In exceptional occasions, some of the experiments show
extremely high instability. A learning rate of 0.0005 for the generator is used in
such cases. The models do not have problems converging even when using a smaller
learning rate as enough epochs are used to train the models.

As the loss of the generator and discriminator are multi-term, the weights of each
loss term are other hyperparameters that need to be adjusted. CMGAN employs the
same weights for each of the terms. MP-SENet indicates a clear improvement when
adjusting the weights. They offer a set of weights which gives the best results for
their architecture. However, the set of weights they propose, does not yield the best
results in the models developed in this project. As parameter optimization, using a
metaheuristic for example, is discarded because of the training time requirements,
other strategies to select the losses weights are studied.

A parameter grid strategy to analyse the importance of each term during the early
epochs is used. A study of the correlation between the PESQ and the loss terms
of the generator is conducted. Linear regression is used over each loss term with
the PESQ. The magnitude loss and the first term of the phase loss seem the most
correlated terms to the PESQ. Hence, they obtain the highest weights. The term
which refers to the output of the discriminator shows little relation with the PESQ.
Hence, it obtains the lowest weight.

TPTGAN and MP-SENet include a study of the loss term weights. Although the
weights they propose do not yield the best results in the models of this project, the
relative importance they give to the magnitude term and the discriminator term is in
agreement. In the models described in this section, the phase loss seems to also have
huge relevance. The weights of the generator loss are set to 0.2, 0.2, 0.1, 0.1, 0.1
and 0.05 for the magnitude loss, the instantaneous phase loss, the group delay loss,
the instantaneous angular frequency loss, the time loss and the generator loss with
respect to the discriminator respectively. That is, in equation 4.11:

LGenerator = α1LMag + α2LIP + α3LGD + α4LIAF + α5LT ime + α6LG (4.11)

α1 = 0.2, α2 = 0.2, α3 = 0.1, α4 = 0.1, α5 = 0.1, α6 = 0.05. The two terms of the discrimi-
nator loss are given the same weight.

Table 4.5 shows the hyperparameters chosen for the training process of the mod-
els. Note that LitGAN, MidGAN and MiniGAN have different architectures. In order
to have a more reliable comparison between them, the hyperparameters used are
the same. The hyperparameters marked with * are only used in extremely unstable
experiments.
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Hyperparameter Value
Training epochs 120

Gradient clipping factor* 0.5
Patience epochs 75

Batch size 1
Gradient accumulation steps 16

Initial learning rate 0.001
Initial generator learning rate* 0.0005

Decay factor 0.5
Epochs for decay 30

Generator loss terms weights ( 0.2, 0.2, 0.1, 0.1, 0.1, 0.05)
(α1, α2, α3, α4, α5, α6)

Table 4.5: Training hyperparameters. The hyperparameters marked with * are only
used in extremely unstable experiments. The explanation of each α can be found on
equation 4.11.

4.6 Models evaluation

Apart from keeping track of the training progress of the three models, the enhanced
audios are analysed and evaluated. The trained models are evaluated using the
test set. The audios of the test set are not preprocessed. They do not suffer any
transformation, such as data augmentation techniques. The audios are also not
adjusted to a two second window. Whole audios are used to test the models. Some of
the audios are too long to be processed by the generative adversarial networks. Those
audios are identified, cut to the half and processed as two separated audios in the
test step. This is taken into account when computing the metrics.

To compare the results obtained for the three architectures of this project, three
other models are trained. The models are trained using the same hyperparameters
and under the same conditions as LitGAN, MidGAN and MiniGAN, for consistency
purposes. The models are called CRN, GRUSE and RESSE. It is important to train
different models under the same conditions, in order to carry out a more reliable
comparison of results. Although many studies do not include this process, it is
considered a crucial element in this project.

CRN, GRUSE and RESSE present an encoder-decoder structure with convolution
blocks in the encoder and the decoder, that increase the number of channels and
reduce them respectively. The major difference between them is within the latent
space. The CRN employs a LSTM in the latent space, GRUSE employs GRU and
RESSE residual blocks with convolutions. As they do not use attention mechanisms
in the latent space, the number of channels can be significantly higher, without cre-
ating a training time bottleneck.

The three models have one input channel in the encoder and one output channel in
the decoder. The encoder increases the number of channels up to two hundred fifty
six. This is the number of channels used by the elements of the latent space. The
decoders then reduce the number of channels to one, starting from such high number
of channels. CRN, GRUSE and RESSE are in time domain, which also reduces the
training time vastly. This is because the STFT and the ISTFT are not required.
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In order to perform a reliable comparison of the results, the same pipeline is used
to compute the objective and subjective metrics of all the models. Objective and
subjective metrics are computed separately. In both cases, the metrics for the clean
and noisy audios of the test set are also computed. Hence, the enhanced audios
results can be better analysed.

The objective metrics used include the PESQ, STOI, SSNR, CBAK, CSIG and COVL.
They are computed using the pesq, pystoi and librosa packages of python. Sometimes
objective metrics fail to reproduce human perception. Thus, obtaining subjective met-
rics is interesting. The main problem of subjective metrics is that they are expensive
to obtain, as an study with several listeners is required.

Algorithms have been developed to obtain an approximation of those subjective mea-
sures. To compute the subjective metrics, SQUIM is employed. SQUIM uses a clean
non reference match, which is given a MOS value of five. Using it as reference, SQUIM
computes the predicted MOS for the enhanced audios. The non reference match used
in this project is a random clean audio from the train set. This is done to ensure that
the selected audio is a NMR for all the audios in the test set. Note that even though
SQUIM offers a great method to predict subjective metrics, there is high dependence
on the NMR audio selected. Therefore, similar results, but not exactly the same,
would be obtained if other NMR audio is selected.

Apart from measuring the objective and subjective metrics, an analysis of the models
efficiency is performed. In this case, the results of the three models are compared
to the MP-SENet results. This is because, the three models are mainly inspired by
MP-SENet and the main goal of this project is to obtain more efficient models than
it. To illustrate the efficiency of the models, four variables are measured. First, the
number of parameters of the models is measured. Second, the number of Floating
point Operations Per Second (FLOPS) is computed. The model sizes in Mega Bytes
(MB) is also obtained. Finally, the real time factor is computed. For a model to be
used in real time, its RTF has to be lower than the unit. The results show which of
the models developed in this project can be used in real time.

After the performance and the efficiency studies, it is clear that one of the models
developed in this project is both better in performance and in efficiency. Hence, vari-
ation and ablation studies with some modifications of the best model are performed.
The same pipelines used for the training and evaluation of the models are employed
in these studies. The objective metrics are computed for the modifications of the best
model.
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Chapter 5

Results

In the following chapter, the results of this project are shown. The first section refers
to the training losses of the generator and discriminator. Then, an example of en-
hanced signal is shown and analysed. The objective and subjective metrics obtained
are also shown and discussed. The results of an efficiency analysis are illustrated. Fi-
nally, a modification of the network and an ablation study on MiniGAN is performed.

5.1 Training progress overview

All the models developed in this project are generative adversarial networks. The
generators and discriminators are trained using different losses. Such losses are
shown in figures 5.1, 5.2 and 5.3 for LitGAN, MidGAN and MiniGAN respectively.
The figures illustrate the train and validation set losses. The losses history are shown
separately for the generator and discriminator, because of the difference in scale.

Figure 5.1: LitGAN losses history for the generator (left) and discriminator (right).
The losses for the train set are shown in blue and the losses for the validation set are
shown in orange.

It can be appreciated in the three models that the generator losses decrease dras-
tically in the first twenty epochs approximately. From that moment, the losses are
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Figure 5.2: MidGAN losses history for the generator (left) and discriminator (right).
The losses for the train set are shown in blue and the losses for the validation set are
shown in orange.

Figure 5.3: MiniGAN losses history for the generator (left) and discriminator (right).
The losses for the train set are shown in blue and the losses for the validation set are
shown in orange.

slightly reduced. In LitGAN, the generator loss converges around 0.37 for the train
set and 0.38 for the validation set. In MidGAN, the generator loss converges around
0.36 for the train set and 0.38 for the validation set. In the last epochs of MidGAN
training, the generator loss of the train set seems to slightly decrease while the gen-
erator loss for the validation set slightly increases. This could indicate a possible
overfitting of the model. Note that this model is also the one that has the highest
difference between the train and validation generator losses. Finally, in the case of
MiniGAN, the generator loss converges around 0.36 for the train set and 0.37 for the
validation set.

In the discriminator, the losses of the train and validation set for the three mod-
els converge around 0.002. Initially, the losses values are quite unstable. This can
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be due to the rapid learning of the discriminator. Initially, the generator does not
produce enhanced signals of good quality. Thus, the discriminator rapidly learns to
distinguish between the clean and enhanced signals. In the three models it can be
appreciated how the loss of the validation set is lower in the first epochs. This can be
due to the overfitting of the generator. At the beginning of the training, the generator
enhances significantly better signals from the train set, than from the validation set.
The enhanced and clean signals of the validation set are more easily distinguishable.
Its loss is therefore lower than for the train set in the early epochs of the discrimi-
nator. Overall it can be said that the generator has more difficulties in learning how
to enhance the noisy signals, than the discriminator learning how to discriminate
between clean and enhanced signals.

Perhaps, by not using the QPESQ for the computation of the discriminator loss, the
discriminator converges very fast. Although this may seem beneficial, if the dis-
criminator converges so fast and at such a low value, it means that the generator-
enhanced samples are easily distinguishable from the clean samples. Nevertheless,
the generator learns even after the discriminator converges, as the generator loss is
multiterm, and only one term refers to the output of the discriminator. On top of
that, the term of the generator loss that refers to the discriminator, is the one that
obtains the lowest weight.

Both in the generator and discriminator, the number of epochs for training seems
enough to reach convergence. A higher number of epochs may lead to overfitting,
as illustrated in the MidGAN generator losses. As figures 5.1, 5.2 and 5.3 show, the
generator losses curves, principally for the validation set, seem quite unstable. This
is due to the low minibatch size. The batch used in this project is of one. How-
ever, through the gradient accumulation strategy a minibatch of sixteen is simulated.
Using higher minibatch sizes may lead to smoother learning curves.

The learning rate is another important hyperparameter for the learning process of the
three models. In the case of the generator, it seems that the learning rate allows for an
initial rapid learning and convergence afterwards. For the discriminator of the three
models, the learning rate may affect to the initial instability. A lower initial learning
rate for the discriminator may be a better choice. All the loss curves show for both
the train set and validation set consistent convergence. AdamW optimizer improves
generalization by adjusting the learning rate and updating the weights separately. In
this scenario, where there is little difference between the losses of the train set and
validation set, it seems that AdamW optimizer is an appropriate choice. Nevertheless,
there is still some difference between the generator losses of the validation and train
sets.

In the training process of LitGAN, MidGAN and MiniGAN no specific initializers are
used. The use of initializers may have produced a more stable learning process. How-
ever, their absence does not seem to affect significantly the results. The activation
functions, excluding the last layer of the discriminator and magnitude decoder, cor-
respond to PReLU. PReLU is a highly flexible activation function, which may have
influence in the relatively smooth learning process of the generator. In the discrim-
inator, spectral normalization is most likely one of the responsible factors for the
stability of the discriminator learning process, after the first epochs. Instance nor-
malization also influences the learning process of these models. It helps stabilizing
the learning curves treating each instance separately. Instance normalization is not
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5.2. Waveform and spectrogram of an enhanced audio.

affected by small batch sizes.

The bias-variance trade-off indicates that there is a balance between how well the
model adjusts to the data and their generalization ability. In these models, the dis-
criminators are poorly adjusted to the data at the beginning of their training process.
However, they stabilize after some epochs and both the discriminators and generators
learn to efficiently adjust to the data. This is a result of highly complex models, high
number of iterations and appropriate optimization algorithms. With respect to the
model ability to generalize, it can be seen that the discriminators show no difference
in the losses of the train and validation sets after some epochs. However, in the case
of the generator, the validation set always present a higher loss than the train set.
Even though data augmentation has been applied, more data may be required to cope
with the overfitting problem. Also, some regularization techniques could be added to
the generator encoder and decoders to cope with this problem. The only difference
in the train and validation set is the speakers. Although the difference is not vast, it
should be noted that the models enhance better the audios that include the speakers
they have been trained on, than audios with different speakers.

5.2 Waveform and spectrogram of an enhanced audio.

In this section, the waveform and spectrogram of an audio of the test set are anal-
ysed. Figure 5.4 shows both the waveform in time domain and the spectrogram in TF
domain of an audio of the test set. Those representations are illustrated for the noisy
audio, the enhanced audio by each of the three models and the clean audio.

The clean audio in figure 5.4 shows the desired output of the models for both the
waveform and the spectrogram. The noisy audio, which is used as input of the model,
exhibits significant noise. The differences in the waveform and spectrogram of the
noisy audio and clean audio arises from the presence of noise in the noisy audio. As
it can be seen the amplitude in the waveform is higher for the noisy audio at many
points of time. Those points are where noise is present. In addition, the noisy audio
spectrogram seems more blurry. This is because, as more noise is present in the
audio, the energy spreads across different frequencies. Note that as human voice has
low frequency, higher amplitudes, shown in yellow, are in low frequency regions.

The enhanced audio by LitGAN seems cleaner in its waveform but still presents some
irregularities and noises. The same happens for MidGAN. The spectrogram shows
how for most of the frequencies during the whole audio the amplitude is quite high.
The speech components do not seem as clear as in the clean audio. Both models
imply noise reduction, as can be easily seen in the time domain. However, some
noises remain, as the waveforms of LitGAN and MidGAN differ significantly to the
clean audio waveform.

The irregularities, which are easily identified in the LitGAN and MidGAN waveforms,
are called artifacts. Artifacts refer to unwanted distortions or noises that occur due to
the processing of the signals. From their presence and the unexpected high amplitude
at some regions of the spectrogram, it can be said that LitGAN and MidGAN introduce
distortions that foul the enhanced signals. They can indicate that the models are not
complex enough to enhance audios or that they do not adapt well to the audio used
as an example. Artifacts can appear when the models encounter sounds they are
not familiar with. Note that test set audios are quite different to those of the train
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Figure 5.4: Waveform and spectrogram images of an audio of the test set in its noisy
form (top left), enhanced by LitGAN (top middle), enhanced by MidGAN (top right),
enhanced by MiniGAN (bottom left) and clean form (bottom right).

and validation sets. It is possible that LitGAN and MidGAN do not learn to properly
generalize.

Finally, MiniGAN, seems to efficiently enhance the audio signal. As it can be appre-
ciated the enhanced audio resembles the clean audio both in waveform and spec-
trogram. The noise is clearly reduced and the clean signal, which corresponds to
the speaker voice, is easily distinguished. Overall MiniGAN seems the most effective
model for noise reduction, offering the best enhanced signal from the models devel-
oped. However, no conclusions can be drawn from this section, as it only illustrates
the enhancement of one of the test set audios. An analysis of the whole test set is
required. The results of such study are shown in the following sections.

5.3 Objective metrics

The metrics used in speech enhancement can be divided in objective and subjective
metrics. The former are covered in this section, while next section focuses on the
latter. In both cases, the metrics are computed using the audios of the test set. The
objective metrics commonly used involve the PESQ, the computed SIG, BAK and OVL,
the segmental SNR and the STOI.
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Table 5.1 illustrates the metrics obtained for several models when enhancing the
audios of the test set. First, it shows the results for the noisy audios without being
enhanced. This is done to obtain a baseline of the metrics. Then, the results obtained
by other state of the art models are indicated. A horizontal line separates the state
of the art models from the models trained in this project. Models trained but not
designed in this project are marked with *. Such models are used for comparison
purposes. The last three entries correspond to the three models developed in this
work. Apart from the objective metrics, the number of parameters and the input
form are shown for each model. Bold letters refer to best results in the state of the
art models and in the models trained.

Model Input Param.
(M)

PESQ↑ CSIG↑ CBAK↑ COVL↑ SSNR↑ STOI↑

Noisy - - 1.97 3.48 2.55 2.74 1.68 0.92
SEGAN W 97.47 2.16 3.48 2.94 2.80 7.73 0.92
MetricGAN M - 2.86 3.99 3.18 3.42 - -
DEMUCS W 18.87 3.07 4.31 3.40 3.63 - 0.95
MANNER W - 3.21 4.53 3.65 3.91 - 0.95
DB-AIAT M+C 2.81 3.31 4.61 3.75 3.96 10.79 0.96
DPT-FSNet C 0.91 3.33 4.58 3.72 4.00 - 0.96
CMGAN M+C 1.83 3.41 4.63 3.94 4.12 11.10 0.96
TPTGAN M+C 1.03 3.35 4.59 3.83 4.02 11.63 -
MP-SENet M+P 2.05 3.50 4.73 3.95 4.22 10.64 0.96
CRN* W 1.58 2.39 4.01 2.97 3.23 4.37 0.92
GRUSE* W 1.31 2.34 3.97 2.97 3.19 4.52 0.93
RESSE* W 2.45 2.24 3.93 2.90 3.11 4.38 0.92
LitGAN M+P 0.325 2.05 3.64 2.64 2.88 1.50 0.93
MidGAN M+P 0.550 2.07 3.71 2.73 2.91 1.53 0.93
MiniGAN M+P 0.373 2.95 4.36 3.46 3.72 7.49 0.94

Table 5.1: Objective metrics obtained for different models on the test set. Horizontal
lines separate the metrics obtained for the noisy audios of the test set, the metrics
obtained by other state of the art models, and the metrics obtained for the models
used for comparison (*) and developed in this project. Bold numbers indicate the best
results of each category. The input form and number of parameters, in millions, are
also shown. W stands for waveform, M for magnitude, C for complex and P for phase.

The input column indicates the form of the input. It can be the waveform (W) in time
domain or magnitude (M), complex (C), magnitude and complex (M+C) and magnitude
and phase (M+P) in the TF domain. The three models used for comparison are in
time domain, while the three models developed in this project are in TF domain.
The current trend is to use TF domain combining the magnitude with the phase
or complex characteristics of the audio signals. The numbers of parameters of the
six trained models are remarkably low. Note that LitGAN, MidGAN and MiniGAN
employ numbers of parameters much lower than those used by popular state of the
art models. The lower the number of parameters, the better as the goal of this project
is to obtain an efficient model. For the objective metrics the higher the value, the
better, as they define the performance of the models.

LitGAN and MidGAN show little improvement with respect to to the noisy audios of
the test set. LitGAN and MidGAN do not generalize well. Thus, when the models
encounter the noisy audios of the test set, which are quite different, both in noise
type and speakers, to those used to train and validate the model, the results are far
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from desirable. This can be due to the small number of channels that they use in the
first layers of the autoencoder. Using such small number may lead to information
loss which translates into poor enhancement. It is clear, given that MidGAN uses
the double number of conformers than LitGAN but obtains similar results, that the
limitation in their results must not be present on the latent space.

CRN, GRUSE and RESSE obtain better results but have a higher number of param-
eters. MiniGAN obtains the best results for all the objective metrics. This indicates
that the audios enhanced by MiniGAN are those of better quality and intelligibility.
MiniGAN has a slightly higher number of parameters than LitGAN. MiniGAN is still
a smaller model than those used in the state of the art by far. The difference in
the objective metrics of MiniGAN and LitGAN, suggest that increasing the number
of channels in the first convolution block and using residual connections is a better
strategy than using an autoencoder structure per-se. This conclusion is reached as
LitGAN and MiniGAN only differ in their encoder and decoders structures.

The metrics obtained by other state of the art models are significantly better than
those obtained in this project. It would be desirable to obtain higher metrics. How-
ever, the main goal of this project is to develop a speech enhancement model more
efficient than those of the state of the art. An improvement in the efficiency is accom-
panied by a worsening of the performance as expected. Nevertheless, considering the
small size of MiniGAN, outstanding performance results are still obtained for it. Table
5.1 indicates the objective metrics means for each of the models. That information
is valuable but limited as the variance in the computations is not known. Figure 5.5
shows the objective metrics means and standard deviations in a bar-plot form.

In the bar-plot, the higher the height of the bars the better score. Smaller error bars
are desired. Note that the different metrics are represented in different scales so
that the graphs analysis becomes an easier task. The metrics for the noisy audios
and enhanced audios of the six models are shown. The metrics for the clean audios
are not shown, as they simply take the maximum values of each metric. Such values
correspond to 4.5 for the PESQ, 5 for the CSIG, CBAK and COVL, 35 for the SSNR and
1 for the STOI. The standard deviations are almost none existent in such scenario.
In addition to taking expected and known values, in some of the metrics, such as the
SSNR, plotting the metrics of clean audios only hinders the graphs interpretation.
This is because of the difference in scale.

Figure 5.5 shows that the variance of the metrics in each of the six models is quite
high in comparison to the metric scale. This indicates that some of the enhanced
audios of the test set obtain much better scores than others. The error bars in all
the models are of similar sizes, indicating that all models suffer from this. Note that
LitGAN and MidGAN have smaller variation errors in the CBAK and the SSNR. This
is because they introduce distortions that increase the noise in the enhanced audios,
obtaining for most of the audios low values of CBAK and SSNR. It is also remarkable
that the SSNR standard deviations are quite high for the rest of the enhancement
models and the noisy audios. This, and the fact that the SSNR of the clean audios
correspond to 35, indicates that speech enhancement models are yet not able to
completely subtract in an effective way the noises from noisy signals. Note that even
the best state of the art models do not have a SSNR above 12, as table 5.1 indicates.
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Figure 5.5: Objective metrics for the noisy audios and the six models trained on this
project. The bar-plot height indicates the mean of the objective metrics obtained on
the test set. The error bars refer to the standard deviation for each of the metrics in
each model.

5.4 Subjective metrics

Figure 5.6 shows the computed Mean Opinion Score (MOS) obtained for the noisy
and clean audios of the test sets, the models developed for this project, and the other
models trained for performance comparison purposes. MOS values range from 1 to 5.
Higher values indicate better opinion about the audio. It is important to emphasise
that in this work no subjective study with people as listeners is included. Instead, an
algorithm is used to obtain the computed MOS.

Violin plots, as in figure 5.6, give different information. The coloured shape indicates
the density of the audios that have a given computed MOS (y axis). The black box
inside each blue shape indicates the values between the 25th and 75th percentile (or
Q1 and Q3). The interquartile range (IQR), which is defined as the difference between
Q3 and Q1, should be as small as possible. The horizontal white line inside the
coloured box indicates the median. The higher the median, the better. The thinner
vertical lines out of the box indicate all the range of values of computed MOS that the
samples take. The maximum and minimum values should be as high as possible.
Note that the computed MOS take values, at most, between two and five. The blue
shapes bellow two or above five do not indicate that there are audios that take these
scores. It is merely a question of the design of the graphs that are intended to indicate
the trend of the data.

Although the 25th, 50th (median) and 75th percentiles are different for each model,
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Figure 5.6: Computed Mean Opinion Score values for the noisy audios, enhanced
audios by several models and the clean audios of the Valentini test set.

the minimum and maximum values, approximately two and five respectively, seem to
be similar for the noisy and enhanced audios. This arises from two reasons. First, in
each of the cases, some audios seem to be difficult to clean, while others are easily
enhanced. These audios are not the same for the different models, as each model
learning process is different. For some of the models, some audios are easy to clean,
while for others it becomes a difficult task. Note that this also affects the objective
metric scores and can be one of the reasons why figure 5.5 shows high variance in
the metrics. Second, SQUIM computes subjective metrics. It makes sense that even
some of the noisy audios get high MOS values and some of the clean audios get low
MOS values. This is because SQUIM attempts to represent the values that would
be obtained from a subjective study of audio quality and intelligibility. The listeners
used in such studies are not professionals, which sometimes implies that the values
assigned by them are not consistent.

In the case of the noisy audios, the median is around 3 and the 25th and 75th
percentile correspond to approximately 2.2 and 3.8 respectively. The violin plot shows
how the region with more density of audios is around 2. The CRN median is above
3.5 which indicates an improvement. Also, its 25th and 75th percentile are around
2.7 and 4.2. It can be seen how its most common metric score is around 4. RESSE
and GRUSSE show similar values. RESSE has a slightly lower median.

The audios enhanced by LitGAN and MidGAN have wider IQR than the enhanced
audios by the rest of the models. The medians of the two models are quite similar to
those of CRN, RESSE and GRUSE. Even tough the 75th percentile is higher for the
audios enhanced by these two GANs than for the audios enhanced by CRN, RESSE
and GRUSE, the 25th percentile is lower. From the violin shape, it can be seen that
some audios get MOS scores of almost 5, while some of them are around 2. From
this it can be derived that LitGAN and MidGAN do not generalize well.

The audios enhanced by MiniGAN present a median above 4, which is the higher
value for all the models studied in this project. The IQR is more similar to those of
CRN, RESSE and GRUSSE than to LitGAN and MidGAN. Most of the enhanced audios
obtain computed MOS metrics above 3.5. MiniGAN obtains better subjective results
and generalize better than the other two models developed in this project. Note that
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the shape of the MiniGAN model widens at the top and narrows at the bottom. This
is desirable, as the aim is to make its shape as similar as possible to that of the clean
audios.

The clean audios have a median of almost 5 which makes sense, considering that
the audios are clean and of good quality. Most of the clean audios have a computed
MOS score of almost 5. Clean audios have the smallest IQR indicating their high and
consistent quality. Several outliers are in the region between MOS values of 2 and 3.
This is known because the violin shape widens in the region around 2.5, while the
minimum value, indicated by a thin vertical line, is above such region.

5.5 Efficiency study

Apart from measuring the objective and subjective metrics, an analysis of the models
efficiency is performed. The results for the three GANs developed and MP-SENet are
provided in table 5.2. MP-SENet is used for comparison in this case, as the goal of
this project is to develop a model based on such model but much more efficient. To
illustrate the efficiency of the models, four variables are measured: the number of
parameters in millions, the number of floating point operations per second (FLOPS)
in millions, the model size in Mega Bytes (MB) and the real time factor (RTF). The RTF
has no units as it is defined as a ratio between the time taken to process one audio
and the audio duration. Again, bold letters indicate the best results of each variable.
The RTF is computed on CPU.

Model Parameters (M) ↓ FLOPS (M) ↓ Size (MB) ↓ RTF ↓
MP-SENet 2.05 47489.35 8.227 1.1529
LitGAN 0.325 10958.02 1.246 0.5572
MidGAN 0.550 18832.60 2.106 1.0822
MiniGAN 0.373 9022.93 1.427 0.2404

Table 5.2: Efficiency comparison of MP-SENet and the models developed in this
project. Four parameters are shown: the number of parameters, the number of loat-
ing point operations (FLOPS), the size of the models and the real time factor (RTF).

The number of parameters of the model ought to be as low as possible. In that
matter, LitGAN shows the best values. MiniGAN closely follows LitGAN and MidGAN
also has a quite small number of parameters compared to current state of the art
models. LitGAN and MidGAN have a small number of parameters in their encoder
and decoders, as table 4.3 shows. MiniGAN has a higher number of parameters in
the encoder and decoders as the number of channels employed in them is higher.
However, the number of parameters used in the latent space by the conformers of
MiniGAN is lower. This is because the number of channels in the conformers of
MiniGAN is the half of those of LitGAN and MidGAN. MP-SENet has more than six
times the parameters of LitGAN, but is still quite small in number of parameters for
being one of the best state of the art models.

The three models of this project significantly reduce the number of FLOPS with re-
spect to MP-SENet. Even though LitGAN is smaller than MiniGAN in number of pa-
rameters, it implies more floating point operations per second. This may arise from
the downsampling of the frequency and the use of a lower number of channels in the
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latent space. Conformers are complex architectures that involve feed forward layers,
multi-head self-attention and convolution blocks. It is reasonable that if LitGAN and
MidGAN have conformers with higher number of channels, the number of operations
increases with respect to MiniGAN.

The size of the models, measured in MB, does not only take into account the number
of parameters and their size but also the buffer elements. Buffers are tensors that
are not considered parameters but that are linked to the model. They are similar to
parameters but are not learned though backpropagation. They can have fixed values
or statistically computed values. They are useful to obtain information about the
state of the model. As the size of the model is related to the number of parameters, it
is reasonable that LitGAN obtains the best values. MiniGAN follows closely. MidGAN
has a slightly higher model size, but is still quite small. As with the number of
parameters, MP-SENet is bigger, but still quite efficient for its performance.

Finally, the real time factor is measured. For a model to be used in real time applica-
tions, its RTF must be equal or lower than 1, as that means that the time required to
process an audio is equal or lower than the audio length. LitGAN and MidGAN have a
lower RTF than MP-SENet. That does not come as a surprise, as MP-SENet is a quite
complex model with a total of eighth conformers. On top of that, LitGAN can be used
in real time.

Although LitGAN and MidGAN obtain better results in that matter, the RTF does not
improve much with respect to MP-SENet. A reason for this could be that LitGAN and
MidGAN do not perform frequency downsampling. However, the number of conform-
ers is much lower with respect to MP-SENet. Further explanation can be found in the
number of parameters of the encoder and decoder. Higher number of parameters, as
in MP-SENet and MiniGAN, can lead to more efficient feature extraction. Therefore,
the workload in subsequent layers is reduced.

LitGAN and MidGAN perform a poor feature extraction in early layers of the encoder
as the number of channels is drastically low. This may explain why, although the
number of parameters of the models is remarkably low, the models are not as effi-
cient as MiniGAN and do not obtain good scores in the objective or subjective metrics
analysis. Artifacts, as the ones shown in figure 5.4, can also be explained by this in-
efficient feature extraction. This poor behaviour does not only degrade their efficiency
but also their enhancement and generalization abilities.

The best RTF is obtained for MiniGAN. This means that MiniGAN is the model that
enhances the audios the fastest. MiniGAN can be used in real time. Figure 5.7 shows
the PESQ values of MP-SENet and the three models of this project against the RTF.
The higher the PESQ and the lower the RTF, the better.

It can be seen how MP-SENet obtains the best performance but has the highest RTF.
MiniGAN obtains the second to best values in relation to the PESQ and has the lowest
RTF. It is also noticeable that LitGAN and MidGAN obtain almost the same PESQ but
very different values for the RTF, making LitGAN a model that can be used in real
time convesely to MidGAN. Two conclusions can be drawn from this.

First, the difference in the architecture, which is the number of conformers, sig-
nificantly affects the efficiency. The RTF of MidGAN is about twice that of LitGAN.
MidGAN has twice as many conformers as LitGAN. It follows that the low efficiency
of MP-SENet is indeed conditioned by its large number of conformers. However, con-
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Figure 5.7: PESQ against real time factor (RTF) for the three models developed in this
project and MP-SENet.

formers are not the only responsible for the models efficiency. MP-SENet has twice
as many conformers as MidGAN and its RTF is very similar to that of MidGAN. This
indicates that the frequency downsampling and the use of the dilated dense net, by
MP-SENet and MiniGAN, improves the efficiency of the models remarkably.

Second, the fact of LitGAN and MidGAN obtaining almost the same values in PESQ
confirms that using more conformers does not lead to a direct improvement in the
quality of the enhanced signal. The main limitation in their architectures is the en-
coder and decoders structures, which does not lead to to proper feature extraction.
Therefore it limits their enhancement abilities. This is in agreement with the conclu-
sions drawn from results shown in previous sections.

5.6 Network variations and ablation study

According to the results shown in tables 5.1, 5.2 and in figures 5.5, 5.6, 5.7, MiniGAN
is the best model, from those developed in this project, both in objective metrics,
subjective metrics and efficiency. This model is selected for a further analysis. A
network variation study and an ablation study are performed to analyse which of the
elements of such small model are responsible for its extraordinary results.

First, a variation of MiniGAN with the order of the conformers inverted, MiniGAN-FT,
is developed. The frequency conformer is placed before the time conformer. Second,
a variation of MiniGAN with forty eight channels instead of thirty two, MiniGAN-48,
is defined. Note that the number of channels affects both the encoder, the decoders
and the conformers. After that, two modifications to see the effect of the data aug-
mentation process are obtained. A modification of MiniGAN without data augmen-
tation, MiniGAN-NDA, is studied. Finally, a modification of MiniGAN trained with
white noise, on top of the other data augmentation techniques, MiniGAN-DA+WN, is
developed.

Table 5.3 shows the objective metrics for MiniGAN and its two variations in the net-
work structure: MinGAN-FT and MiniGAN-48. Table 5.4 shows the objective metrics
for MiniGAN and its two variations in relation to the data augmentation: MiniGAN-

72



Results

NDA and MiniGAN-DA+WN. For the white noise addition, initializers, clipping gra-
dients and lower learning rates for the generator are employed. This is because the
instability of the learning process increases when processing highly noisy audios. The
convergence of the losses is ensured in order to obtain a more reliable comparison of
results. Values marked in bold indicate the best values for each metric. The scores
obtained are practically the same in all the cases. The reasons for this are explained
in what follows.

Model PESQ↑ CSIG↑ CBAK↑ COVL↑ SSNR↑ STOI↑
MiniGAN 2.95 4.36 3.46 3.72 7.49 0.94
MiniGAN-FT 2.93 4.36 3.52 3.71 8.43 0.94
MiniGAN-48 2.95 4.34 3.46 3.71 7.62 0.95

Table 5.3: Objective metrics for MiniGAN and its two network variations. MiniGAN-
FT has the frequency conformer before the time conformer. MiniGAN-48 has forty
eight channels through all the network instead of thirty two.

The MiniGAN in which the order of the conformers is altered, MiniGAN-FT, shows
an improvement in the CBAK and in the SSNR. Given that the CBAK focuses on
the background noise and the SSNR measures the segmental signal to noise ratio,
it makes sense that an improvement in one of them is related to an improvement in
the other. This improvement may happen because the frequency conformer learns
the most important features of the signal to be enhanced better than the time con-
former. However, the difference in the metrics are not noteworthy enough to reach a
conclusion.

The MiniGAN with forty eight channels, MiniGAN-48, only shows an improvement in
the STOI metric. The scores for the objective metrics are in general very similar to
those of MiniGAN. This argues that the results obtained for MiniGAN are not because
of its size but the complexity of the overall architecture. Hence, an efficient model as
the one developed in this project is possible.

Model PESQ↑ CSIG↑ CBAK↑ COVL↑ SSNR↑ STOI↑
MiniGAN-NDA 2.96 4.31 3.43 3.70 7.06 0.94
MiniGAN-DA 2.95 4.36 3.46 3.72 7.49 0.94
MiniGAN-DA+WN 2.82 4.27 3.47 3.59 8.48 0.94

Table 5.4: Objective metrics for MiniGAN and its two variations of the ablation study.
MiniGAN without data augmentation. MiniGAN-NDA, only adds background noises
to clean audios. The original MiniGAN, MiniGAN-DA, also uses reverberation and
bandmasking. MiniGAN with data augmentation including white noise, MiniGAN-
DA+WN, also adds white noises.

The MiniGAN trained without data augmentation, MiniGAN-NDA, shows a slightly
improvement in the PESQ metric. The results obtained by the MiniGAN without data
augmentation, indicate that the data augmentation techniques applied in this project
do not cause a noteworthy improvement in the test results. They avoid overfitting,
but do not cause an improvement in the metrics. This raises the question of whether
more data augmentation strategies are required. To reach conclusions about the
model and the audios of the test set, a last experiment with the addition of white
noise is performed.

The MiniGAN trained with data augmentation including white noise, MiniGAN-DA+WN,
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shows the best results in the CBAK and SSNR. As the model is trained using noisier
signals, it comes to no surprise that it extracts the noise more efficiently, obtaining
enhanced signals with higher CBAK and SSNR. However, the PESQ results are the
worst of all the experiments. The STOI values obtained for the three models of table
5.4 are the same.

A further analysis on the effect of data augmentation is performed. Figure 5.8 shows
the PESQ obtained for the validation set during the training process of MiniGAN
without data augmentation (orange), with data augmentation (blue) and with data
augmentation including white noise (green). The PESQ values obtained for the vali-
dation set, increase in the first sixty epochs and then seem to stabilize. The dashed
lines indicate the PESQ obtained for the test set in the three cases.

Figure 5.8: PESQ values for the validation sets (continuous lines) and test sets
(dashed lines) of three different MiniGAN models. The orange model does not include
data augmentation (MiniGAN-NDA). The blue values correspond to the trained model
with data augmentation or original MiniGAN (MiniGAN-DA). The green model includes
white noise in addition to the data augmentation techniques (MiniGAN-DA+WN).

The model trained without data augmentation, MiniGAN-NDA, obtains much higher
values in the validation set that in the test set. This indicates that overfitting takes
place if no data augmentation process is performed. The model trained with data
augmentation, MiniGAN-DA, which correspond to the original MiniGAN, obtains sim-
ilar values of PESQ for the validation and test set. The model trained with data
augmentation including white noise MiniGAN-DA+WN, obtains worse PESQ values in
the validation set than in the test set. Remember that the data augmentation tech-
niques are only applied in the train and validation sets. Hence, it makes sense that
validation sets get lower values in the PESQ than test sets, in those cases in which
data augmentation has been applied (green and blue). However, the difference in the
test set results (dashed lines) indicate that using white noises in the training and
validation process may lead to local minima during the learning process. Hence, the

74



Results

PESQ obtained in the test set for this case is significantly lower than for the other
two cases.

Using background noises, reverberation and bandmasking is the most consistent
scenario to obtain similar results between the validation and test set. This is the
practice used for the original MiniGAN. In such case, the PESQ of the validation set
is slightly lower than the PESQ of the test set. From the information shown in figure
5.8, it can be deduced that data augmentation techniques do not improve results of
these models, but they clearly avoid overfitting.

Another conclusion can be drawn looking at the results obtained in this section. The
train and validation set are not different enough to analyse the model robustness
and ability to generalize. Note that the train and validation set compromise different
audios with different speakers but the same type of noises. The test set includes au-
dios with different speakers and different types of noises. One of the main problems
of speech enhancement models arises from the variety of noises. Most models are
trained with a limited number of noise types. Hence, they have difficulties enhancing
noisy audios with other types of noises. A possible solution for this problem would be
to split the train and validation set so that they compromise different types of noises
as well of different speakers.

The results of this section indicate that there is not much difference between the vari-
ations of MiniGAN. This can be due to (i) the variations tested not being significantly
different to the original model and (ii) some of the audios of the test set causing a
stagnation in results. Both reasons are responsible for the results. For MiniGAN and
all its variations, specific audios received the best and worst scores in all the cases.
This arises because the models trained here are not different enough to show a huge
difference in the metrics.

In the ablation studies of MP-SENet and CMGAN, modifications that change dras-
tically the model architecture are analysed. For example, they eliminate one of the
decoders, the attention mechanisms or the discriminator. They also train models
without one or more loss terms, in order to see the difference in the learning process.
Seeing the virtually non existent differences in the study performed here, other severe
modifications to the MiniGAN model could shed light on the most important elements
of the model.
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Chapter 6

Conclusions and future work

In this work, several efficient speech enhancement models are developed. In the
following chapter, the main conclusions drawn from this project are set out. Future
work lines are also indicated.

6.1 Conclusions

The main goal of this work is to develop an efficient and high performance speech
enhancement model. For that, a state of the art review on the current methods and
tendencies of speech enhancement is performed. Three models are designed using
deep learning elements, including convolutions, attention mechanisms, autoencoders
and generative adversarial networks. As speech datasets are not big, data augmen-
tation techniques are implemented to simulate more data.

Several difficulties have been present along the whole project. To begin with, be-
cause of hardware limitations, only a batch size of one can be used. The generative
adversarial networks of this project take long to train, which also limits the num-
ber of experiments and the parameter optimization process. The training process of
some of the experiments becomes very unstable in the early epochs due to exploding
gradients. Many strategies are studied and developed to deal with these setbacks.

The three models built for this project are very efficient. However, two of them, LitGAN
and MidGAN, do not obtain suitable results and are not able to generalize. The third
model, MiniGAN, obtains outstanding results, both in performance and in efficiency.
It is clear that elements that distinguish MiniGAN, such as the dilated dense net
with residual connections or the frequency downsampling, have a huge impact on its
performance and efficiency.

MiniGAN effectively generalizes and is a robust model that can enhance noisy audios
with different speakers and noises from those it is trained on. MiniGAN is smaller
than state of the art models and can be used in real time. The balance between
performance and efficiency proves that MiniGAN is a model with extraordinary prop-
erties. The purposes of this work have been achieved thanks to this model.

The framework of this project is based on some of the best state of the art mod-
els. Approaches on how to make such high performance models more efficient are
pursued. The opposite process can be followed from MiniGAN. Multiple performance-
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enhancing improvements can be made to obtain an extremely efficient model with
even higher performance metrics. This work does not only contribute to the current
state of the art, but also opens the way to further research. MiniGAN has practical
implications. Due to its small size and its ability to work in real time, it can be used
in a broad variety of daily life applications.

6.2 Future work

Three main approaches can define the future lines of work on the basis of the results
obtained.

1. The first line would be to optimize the model. Because of time limitations, hy-
perparameter optimization is not possible. A future line of work is to design or
employ existent metaheuristic algorithms to perform model optimization. For
example, the use of genetic algorithms or simulated annealing are suitable
strategies to perform hyperparameter optimization. On top of that, prunning
strategies could be applied to MiniGAN to analyse the relative importance of
each architecture element. Removing one of the decoders or one of the con-
formers are some of the examples to be analysed. In order to improve MiniGAN
performance, once the relative importance of each element is defined, least sig-
nificant elements could be removed and higher complexity could be added to the
most important elements.

2. An alternative line of work would be to explore other deep learning elements that
can replace certain elements of MiniGAN. Particularly, an interesting option is
to explore attention mechanisms that could be used in the latent space instead
of conformers. There is currently a strong focus on research into attention-
based architectures that promote efficiency, such as longformers and fastform-
ers. They can replace the conformers. As they are efficient, a higher number of
those elements could be used. Consequently, MiniGAN performance can be im-
proved without severely compromising its efficiency. State Space Models have
also shown outstanding results. Their use instead of attention mechanisms
should also be analysed.

3. Finally, two paths could be followed regarding MiniGAN generalization and adapt-
ability. On the one hand, it could be interesting to improve MiniGAN generaliza-
tion capacity by testing the model on more diverse datasets. A different partition
between the train and validation set is recommended, in order to include differ-
ent types of noises. Therefore, when training MiniGAN variations, their ability to
generalize can be more faithfully followed. In this scenario, more regularization
techniques may be required. On the other hand, adapting MiniGAN to domain
specific tasks pose a striking alternative. MiniGAN could be adapted for people
with hearing and speech impairment. This defines an interesting alternative to
improve accessibility and the quality of life of these people.
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Appendix A: Legal Assessment

The speech enhancement models of this project are developed for research purposes.
Hence, the Artificial Intelligence Regulation does not apply. However a legal assess-
ment is conducted in this appendix.

The speech enhancement models could be classified as a minimal risk or limited
risk system, depending on their use. These two categories have the same trans-
parency obligations. If these models were commercialized, users should be informed
of the presence of the AI systems behind them. Also, the scope and limitations of the
systems should be disclosed. The systems are trained so that the enhanced signal
resembles as much as possible the clean signal. As a consequence, users receive
more clear information, which could translate into making more informed decision
and preserving human autonomy.

The data used in this project is obtained from a public database, called VoiceBank +
DEMAND. To avoid possible biases, an analysis of the dataset distribution is stud-
ied, previous to the development of the model. It should be noted that people over
seventy years old is underrepresented, as well as unemployed people or people from
working class. The female-male ratio is approximately the same and there is no bias
with respect to different english accents. Although there is no explicit mention of it
in the Valentini dataset report, one should also take into account the digital bias.
People from upper classes have access to modern technology with better quality mi-
crophones. This implies that the audios from people from the upper social classes
have better quality, which can affect the speech enhancement models learning.

Apart from biases regarding people, the models developed in this project are trained
using specific types of noises. One should take into account that these models may
not be appropriate for other types of noises. Also, speech enhancement models could
be used to suppress audio which is not noise. This should be carefully supervised
as these models could pose a risk in speech communications between machines and
humans. For example, a malicious application could be designed to obtain tainted
consent from customers. This could be done by suppressing audio with information
to be consented to, violating the principle of informed consent. It could also fail to
properly clean up a human being’s voice in a recording, in order to misinterpret their
words.

The data is anonymised by the public dataset in order to protect personal data. There
is no sensitive data that would require special treatment within the dataset. Human
oversight and monitoring have been present during the whole development of these
systems. Several reviews and updates took place during the implementation of the
models. Technical documentation is obtained during the model training and several
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records are kept for security reasons and for the analysis of the systems traceability.

Overall, in this project several principles are taken into account to give raise to a
trustworthy AI. These principles include privacy protection, bias and fairness analy-
sis, performance assessment, transparency and security.
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Appendix B: Waveforms and
spectrograms of various audio

This appendix illustrates the waveforms and spectrograms of noisy and enhanced
audios. The audios are not synthetic but recorded specifically for this project. The
same version of the audios, with the same speaker and in the same environment
is recorded. The speaker speaks in english and spanish. The noisy and enhanced
audios in english and spanish are shown in figures 1 and 2 respectively. The models
have been trained using only english audio. However, there is no significant difference
when enhancing spanish or english audios. The background noises correspond to
traffic noises, instrumental music and lyrical music. The models have been trained
with traffic background sounds. Music is harder to clean. Lyrical music causes even
more difficulties in the enhancing process, as the noise includes speech.
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Figure 1: Waveforms and spectrograms of english audios. The first column refers
to noisy audios. The second, third and fourth column correspond to the enhanced
audios by LitGAN, MidGAN and MiniGAN models respectively. The first row of wave-
forms refers to audios with instrumental music as noises, the second one to lyrical
music and the third one to traffic noises. The speaker is always the same.



Figure 2: Waveforms and spectrograms of spanish audios. The first column refers
to noisy audios. The second, third and fourth column correspond to the enhanced
audios by LitGAN, MidGAN and MiniGAN models respectively. The first row of wave-
forms refesr to audios with instrumental music as noises, the second one to lyrical
music and the third one to traffic noises. The speaker is always the same.
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