
Escuela Técnica Superior de Ingenieros Informáticos

Universidad Politécnica de Madrid

Learning Interpretable Gene Regulatory
Networks via Merging Bayesian Networks

Trabajo Fin de Máster

Máster Universitario en Inteligencia Artificial

AUTOR: Nikolas Bernaola
TUTORES: Concha Bielza y

Pedro Larrañaga

Julio 2019



ii



Acknowledgements

To Mario for his incalculable help in implementing FGES-Merge and his work on the Neurosuites
visualization tool with which most images in this work were made. Also to Sergio for his contri-
butions to the visualization tool.
To my professors, Pedro and Concha, for their help and guidance through the year.
To all my lab mates at CIG, Bojan, Fernando, David, David, Gabriel and Mario for their help and
their company which kept me sane and solved a lot of the problems I kept having.
This project has received funding from the European Union’s Horizon 2020 Framework Programme
for Research and Innovation under Specific Grant Agreement No. 785907 (HBP SGA2).

iii



iv ACKNOWLEDGEMENTS



Resumen

Nuestro trabajo empieza con la necesidad de reconstruir una red de regulacion genética para el
genoma humano usando datos del cerebro. Para conseguirlo, estudiamos el problema biológico de
como aprender una red de regulación genética y revisamos la literatura para ver cuales son los
metodos mas populares para resolver este problema, junto con sus ventajas y limitaciones. Al
final, decidimos que el metodo que mejor se ajusta a nuestras necesidades son las redes bayesianas,
sobre todo por su interpretabilidad. En este trabajo presentamos un nuevo algoritmo, FGES-
Merge, capaz de aprender la estructura de una red de regulación genética mediante la unión de
varias redes bayesianas aprendidas localmente alrededor de cada uno de los genes, utilizando una
variante del Fast Greedy Equivalence Search (FGES). El método es competitivo con el estado del
arte en su capacidad de recuperar la estructura original y ademas es mucho más rápido y escala
a decenas de miles de variables. Tambien presentamos una solución al problema de inferencia
para redes bayesianas con miles de variables. FGES-Merge y la herramienta de inferencia estan
disponibles publicamente en Neurosuites y pueden ser utilizadas por la comunidad de biología para
guiar su investigación hacia las interacciones entre genes que nuestro modelo predice.

v



vi RESUMEN



Abstract

Our work was motivated by the need of learning a genome-wide regulatory network for the human
brain from the Allen Human Brain Atlas dataset. To achieve this, we studied the biological
problem and we reviewed the literature for different methods for learning gene regulatory networks,
noting their advantages and limitations. We decided to use Bayesian networks because of their
interpretability and so we present a new method for learning the structure of gene regulatory
networks via merging of locally learned Bayesian networks, based on the Fast Greedy Equivalent
Search algorithm. The method is competitive with the state of the art in recall of the true structure
while also being much faster and scaling up to the tens of thousands of variables. We also solved
the problem of inference for large numbers of variables in Bayesian networks. Both the structure
learning algorithm and the inference tool are available publicly at Neurosuites and can be used to
guide biological research by testing new gene interactions that are predicted with high confidence
by the model.

vii



viii ABSTRACT



Contents

Acknowledgements iii

Resumen v

Abstract vii

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.4 Structure of this document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature Review 3
2.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 GRNs and their properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Methods for learning GRNs . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Structure Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Parameter learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Probabilistic inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Applications of Bayesian networks . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 Advantages and limitations of Bayesian networks . . . . . . . . . . . . . . . 12

3 Problem statement 15
3.1 Learning genome-wide regulatory networks for the human brain . . . . . . . . . . . 15
3.2 Differential analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Proposed solution 17
4.1 Learning a genome-wide regulatory network . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 FGES-Merge: Our implementation . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Probabilistic inference in a massive regulatory network . . . . . . . . . . . . . . . . 20

4.2.1 Gaussian Bayesian networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Results 23
5.1 Benchmark tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Human brain regulatory network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.1 Network examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2 Topological properties of the learned GRNs . . . . . . . . . . . . . . . . . . 26

ix



x CONTENTS

6 Conclusions and future research 31
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Scientific Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliografía 33



Chapter 1

Introduction

1.1 Introduction

Since the advent of high-troughoutput measurement technologies in biology in the 1990s, like in-
situ hybridization[1] [2] or RNA microarrays [3], it has been possible to collect information for
tens of thousands of genes from every tissue sample or even at the level of a single cell. Since
most of the information about the development and function of every living being is codified in its
genome, we can study the level of expression of each gene in different conditions. This makes it
possible to reconstruct the underlying regulatory relationships between the genes and, therefore,
understand their function [4][5]. Due to the combinatorial nature of gene regulation [6] and the size
of the genome, it would be intractable to experimentally determine all of the regulatory links. To
solve this problem, many computational methods have been proposed to infer the gene regulatory
network (GRN) from expression data. The models learned can then be used to guide biological
research by letting researchers test the interactions predicted by the net.

1.2 Motivation

The main objective of this work is to present an algorithm capable of reconstructing the GRN for
the whole human genome using gene expression data from the human brain to obtain a model that
is accurate, easily interpretable and capable of quantitative prediction. To this end we decided to
use Bayesian networks (BNs) which are a very powerful model backed by probability theory that is
also very intuitive to understand. Their main limitation is the computational cost of learning them
and so being able to scale them to the massive sizes required for full genome networks without
using massive high-performance computing resources would be a boon for biological research.

1.3 Objectives

The main goal is to create a BN that represents the relationships between all protein-coding genes
in the human brain. The algorithm that generates this BN should have a reasonably good accu-
racy that is comparable with the state of the art. It should also be able to learn the network in a
reasonable time without using high-performance computing and should be capable of performing
inference in real time.

To achieve this we first studied the literature to see the advantages and limitations of different

1



2 CHAPTER 1. INTRODUCTION

methods to learn GRNs. Then we decided that BNs had the properties we wanted if we could scale
the learning algorithms to the required number of variables. In addition, we present an algorithm,
the FGES-Merge, based on the Fast Greedy Equivalence Search (FGES) [7] that solves the usual
problems that BNs have when dealing with very big networks. Finally, we tested the algorithm in
a popular benchmark for the problem to fine tune it and then apply it to human brain data and
obtain regulatory networks for the full brain.

1.4 Structure of this document

Chapter 2 starts with a review of the literature in which we first discuss the biological background
required to understand gene regulation and pose the problem of learning GRNs. Then we review
different methods of learning with a summary of their advantages and limitations. Finally we
introduce BNs, their theoretical background and applications and review their application to the
field of GRNs focusing mainly on the limitations that need to be overcome.

Chapter 3 defines the problems we want to solve: scaling a learning algorithm to the required
number of variables and being able to compare networks derived from different conditions.

Chapter 4 presents our proposed solution, reviewing the limitations of previous learning algo-
rithms for BNs and how we overcome then to achieve our desired goal.

Chapter 5 shows our results when using our algorithm with a common benchmark for GRNs
to compare our accuracy with other methods. We also compare ourselves in the time we require to
solve the problem against other BN structure learning algorithms. Finally we present the networks
we obtain when applying our algorithm to real human brain data.

Chapter 6 concludes the work with some final remarks on our algorithm, the results obtained
and some ideas on what to improve and some further research that could be done.



Chapter 2

Literature Review

2.1 Literature review

In this chapter we will introduce the biological background to the problem of reconstructing GRNs
from data. Then we will briefly summarize some of the most important methods for learning GRNs
with their main advantages and limitations. Finally, we will introduce BNs as the model of choice
for the problem at hand, discuss the theoretical background of the model, previous work done with
BNs in the field and the main limitations we need to overcome to solve the problem of inferring a
full genome network from data for the human brain.

2.1.1 Genetics

One of the most important scientific advancements of last century was the discovery that all heri-
table information in a living organism is encoded biochemically and stored in chromosomes, very
long polymers of double stranded, helical DNA [8]. Information stored in DNA can be dynami-
cally read in a process which is also biochemically consistent among most species. One of the DNA
strands gets transcribed into RNA, a single stranded polymer of nucleic acids, which acts as an
information carrier which gets in turn translated into proteins in ribosomes. Proteins are polymers
of amino-acids which depending on the folding structure can carry out almost all cellular functions.
The flow of information through the cell is of the uttermost importance in biology and has been
names the central dogma of molecular biology [9] 2.1 One of the most important facts about gene
expression is that every RNA strand encodes one, and only one, protein. This is because every
triplet of nucleic acids in the RNA strand maps to a unique amino-acid in a way that is consistent
across species. This mapping is called the genetic code. [10]

The full complexity of every living organism has to arise from interactions between these bio-
chemical components. Therefore, there is a strong scientific interest in understanding these inter-
actions both to improve our fundamental understanding of how life arises from biochemistry and
because of the important practical applications in medicine and drug manufacturing. The main
problem is that probing live cells to measure interactions directly is incredibly difficult so studying
them directly is almost out of the question. However, thanks to the unique mapping between RNA
strands and proteins, we can substitute the questions about protein interactions with questions
about the concentration of the messenger RNA (mRNA) that encodes for each of the proteins. And,
thanks to the advances in high-throughoutput sequencing technology during the last two decades,
measuring the abundances of different biochemical components (including mRNA) is much more
manageable so it is possible to do it at a very large scale for relatively cheap. The abundances

3



4 CHAPTER 2. LITERATURE REVIEW

Figure 2.1: Flow of information in a cell. Diagram explaining the Central Dogma of Molecular
Biology.

don’t give us the full picture of the interactions, but this trend in the availability of data has given
a powerful motivation to try to reconstruct the interaction structure that underlies gene expression
computationally. These structures are called GRNs and their reconstruction is one of the central
efforts in the field of Systems Biology.

Data collection

As was mentioned in the previous section, direct measurements of interactions at the cellular level
are almost impossible and direct measurement of the protein products requires a very complex
analysis pipeline which makes it worse than using transcriptomic measurements [11]. Micro arrays
and in-situ hybridization are the most common methods to collect data. Microarrays are an older
method that works by lining a chip with microprobes that puncture a biological sample and take a
sample of cytoplasm. Each probe in the array is lined with the complementary chain to the RNA
we want to detect (a different one in each probe) in such a way that after washing out the array,
only the bound RNA will be found in each probe. The bonding strands are made as to induce a
fluorescent molecule to emit light when bound so that each probe will emit light corresponding to
the amount of binding RNA found in the sample. By a process of calibration, the level of light
measured at each point on the chip can be mapped to a concentration level for the bound gene.
The main limitations of microarrays are that we can only measure known transcripts (since the
complementary strand has to be designed onto the chip) and that they give a measurement of a
population of cells in the tissue sample and since there might be many different cell types in the
population the measurement will not be representative of any one of them.
In-situ hybridization (ISH) is a newer method that consists in taking a sample of cytoplasm from
a single cell, filtered to keep only mRNA, reverse transcribed into DNA. Finally, a PCR process
is used to amplify the amount of DNA in the sample up to a level where it can be more precisely
measured. By knowing how much the amplification factor is we can then estimate the original
level of RNA in the cell. This process is much more precise and can give measurements for single
cells which makes it much more interesting since a single tissue sample used for microarrays can
have multiple types of cells each of which would have different levels of expression for each gene.



2.1. LITERATURE REVIEW 5

So microarrays give an average expression level for the tissue sample while ISH can give accurate,
single-cell measurements [12].
The dataset we used was the Allen Human Brain Atlas dataset [13], which was created using
microarrays. Although there was also some ISH data available it was not complete and we decided
not to include it to avoid problems of mixing two data sources (specially since we did not have ISH
data for all areas of the brain)

Genetic regulation

The processes that regulate which genes are expressed and how much of the protein is synthesized
are the topic of study of genetic regulation. In general we are interested in seeing how differ-
ent environmental conditions (internal or external) change the amount by which each protein is
synthesized. Gene expression can change due to hormonal responses, any physical or chemical
changes in the external environment, internal chemical changes, or the expression of other genes.
The whole process of gene regulation is thus combinatorial, taking into account many factors for
each gene. The process is dynamic since it is always responding to environmental changes and
feedback (usually negative), and stochastic, since even in the same conditions we can only say that
the level of expression will also be similar due to the imperfections of biological processes and the
inherent instability of chemical processes.

Although the most correct model we have for the behaviour of gene expression is as a system
of stochastic partial differential equations [14] this model is generally intractable for the study of
even the simplest of organisms if we are interested in more than a few tens of genes. One common
way of simplifying the model onto one which is usually good enough is to assume that all regu-
lations can be modeled as genetic interactions. This means that we assume that any non-genetic
factor (hormones, temperature, chemical changes in the environment...) will not have an effect
on the level of expression of genes except indirectly, via mediation by another gene. This way,
we can eliminate all external factors from our model and be left with only interactions between
genes. This network structure of interactions is the GRN. In this work we will make the further
very common assumption of taking the steady-state expression level, this means we will work with
static instead of dynamic models.

2.1.2 GRNs and their properties

As we saw in the last section, we have ways to collect massive amounts of data that can be used to
reverse engineer the structure of the GRN. We are interested in both the topology of the network to
be able to see the interactions between genes but we are also interested in being able to accurately
predict changes in the level of expression of some genes given changes in the level of other genes.
In this section, we will briefly discuss the mathematical formalism required to properly define these
GRNs, some of the most important biological properties that can be used to constraint the space of
possible structures and the multiple available methods for learning them. Finally, we will discuss
why we have chosen BNs as our prefered method, review the work done on using BNs for GRNs,
address their limitations and show how we have solved them with our new method. For a more in
depth review of these methods we recommend [5].

Notation

For the representation of a GRN, we will use a directed or undirected graph G (depending on the
method). G is a pair (V,E), where V is the finite set of vertices or nodes indexed by I and E is
a subset of I × I, with element (i, j) indicating an edge between nodes i and j. If the network is
undirected, then the set of edges is symmetric under swapping the indices of its members, that is
(i, j) ∈ E ⇐⇒ (j, i) ∈ E.



6 CHAPTER 2. LITERATURE REVIEW

In the context of GRNs, the set of nodes always represents the level of expression of genes with
each node associated to one gene. Edges are interpreted as relationships between genes, but the
precise definition of the relationship will depend on the mathematical model being used. Neverthe-
less, the topological structure of the network is useful by itself as it gives a visual intuition of the
interactions at play. Some things we can know just from the structure are the presence or absence
of hubs, which are nodes with higher than average number of edges attached; the density of the
network, which is the ratio of edges per node; or calibrating with known relationships by checking
if edges exist between the nodes they should.

Most models will add more structure to the network, both to the nodes (usually a base level
of expression, but sometimes more information, i.e., the standard deviation in a Gaussian BN
4.2.1) and to the edges (i.e., regression coefficients, correlations...). This information will be used
to predict the changes in level of expression along the network and to estimate the strength of
relationships between genes.

We will be learning the GRNs from a dataset D = {x(1), ...,x(N)} ∈ R
G×N where x(i) = (x

(i)
1 , ..., x

(i)
G ),

with N the number of measurements and G the number of genes.

Topological properties of GRNs

Some of the most important information we can extract from the topology of the network is the
degree distribution which is given by the number of edges attached to each node of the network.
In the case of directed networks we can further distinguish between the in-degree and out-degree,
which relate to the number of edges going into or out of each node respectively. This information
can be compared to the known properties of real GRNs to see if the methods are working correctly
or the information can be used beforehand to restrict the space of structures that will be searched
over.
For a more in depth overview of topological properties of GRNs see [6], [15] and [16]. We will
summarize them here:

• Locally dense but globally sparse: GRNs have a small number of edges compared with the
maximum possible. Let n be the number of genes in the network. Then, the maximum
number of edges would be n2 (if we allow for self-edges). The actual number of edges in
GRNs varies depending on the network but is O(n) normally with a small (� 10) constant.
This means that the network is sparse. However, the degree distribution is very fat-tailed,
so that instead of finding that most nodes have one edge, we find many with no edges and
we find hubs with many edges. This means that, connected components of the network are
dense but there are many disconnected components which makes the network sparse. This
translates to a limited number of edges in the network and although it seems like it should
make the problem more tractable it is very problematic for many methods of learning that
require sparsity, since, to the best of our knowledge, they usually require local sparsity.

• The in-degree distribution is a Laplace distribution with an upper limit: The in-degree of a
node in a GRN is the number of regulators a gene has. This number is usually small since most
genes require just one regulatory factor, although it can be higher in more complex processes
that require multiple things at the same time. However, there is a physical restriction to the
number of regulators. In the case of transcription factors, the only way they can affect the
expression of a gene is to be physically close to that gene and affect the DNA directly. Since
there is limited space around each gene, there can only be a limited number of transcription
factors and thus, a limited number of regulators. This number is lower in prokaryotes than
in eukaryotes, since there are other mechanisms in eukaryotes that can be affected from a
distance (i.e. hystone coiling). This translates to an upper bound in the number of parents
for each node.



2.1. LITERATURE REVIEW 7

• The out-degree distribution is scale-free distributed at the tail: As mentioned before, we can
find many more hubs with more edges going out than would be expected from a Laplace
distribution. This means that these hubs are regulators of transcription and that they are
used in many processes at the same time. Biologically, this is due to using hubs being more
evolutionary stable. Any useful adaptation can be constructed on top of already existing
regulatory machinery which is easier than having a new regulatory network emerge simulta-
neously with the new adaptation. The more processes pile up on the same regulatory hub,
the more likely it is that any deleterious mutation to the hub will kill the individual early
instead of just making the process unusable. This makes it so that there are less points of
failure for the genes in the process. (From the point of view of the gene, individuals that
die early matter much less than individuals that don’t carry a copy of the gene since dead
individuals mostly don’t compete for resources.)

2.1.3 Methods for learning GRNs

Now that we have discussed some basics of the structure and notation used in the field of learning
GRNs we will dedicate this section to summarizing the different approaches there are for the task
of reconstruction with a brief explanation of some of the most important methods and current
work. We will also emphasize the advantages and disadvantages of each method and explain why,
in the end, we decided to work with BNs. We will not adress some more complex methods that
involve combinations of multiple approaches or methods for modelling dynamic GRNs, a recent
review of these methods can be found in [17].

Basic statistical methods

This first group of methods is based on basic statistical methods that can be used to measure
dependencies between variables. They start from a fully connected network and then associate a
weight to each edge. The output can then be thresholded to try to get a reasonable approximation
of the topology of the network. The main advantage of these methods is that they use very
common statistical techniques and so are readily available and computationally cheap. They are
also reasonably accurate in finding the network topology which makes them some of the most
popular.

Correlation networks This method is based on calculating the pairwise Pearson correlation (al-
though other measures are possible) between all pairs of genes. For two genes, xi,xj , the pairwise
Pearson correlation is given by:

ρij =
E [(xi − E(xi))(xj − E(xj))]

VarxiVarxj
(2.1)

where the norm is the Euclidean norm. For a dataset with N measurements and G genes, we have
a data matrix D ∈ R

N×G. Then we compute the pairwise correlation between the columns of D
to obtain a correlation matrix, C ∈ R

G×G. This matrix is used to assign a weight to each of the
edges of the network. Then, we can apply a threshold which will depend on the level of sparsity we
want to obtain the GRN structure. Since correlation is symmetric, the network will be undirected.
The advantages of this method are that the complexity is O(N) and O(G2) [Complexity of cor-
relation] which makes it very popular for genome-wide or other massive studies. The underlying
biological assumption that interacting genes should have correlated expressions is plausible and
correlation methods are consistently reliable [18]. The main limitations of correlation networks are
that they fail to distinguish between direct and indirect regulation, they don capture non-linear
interactions well, they are undirected and they are not predictive. They can’t distinguish between
direct and indirect regulation since if gene A regulates gene B which in turn regulates gene C, it
is very likely that the correlation between A and C will be high. This is worsened by the presence



8 CHAPTER 2. LITERATURE REVIEW

of hubs in GRNs which make all their children correlated to each other and to them so that it is
really hard to discern which of them is the true regulator. Since Pearson correlation is linear, it
cannot capture more complex types of interaction but this is usually not a problem in practice.
The lack of direction makes it impossible to distinguish regulator from regulated without other
expert knowledge. Finally, they are not predictive since correlation is just a statistical measure of
association and so it cannot be used to make quantitative predictions about expression levels.

Mutual information networks As a way to relax the assumption of linearity implicit in correlation
methods some groups have considered an alternative measure based on information theory. They
use mutual information in the same way correlation was used in the previous method. Let X and
Y be two discrete random variables and let P (X,Y ) be their joint probability distribution. The
mutual information between the two random variables is defined as:

MI[X,Y ] =
∑
xi,yi

P (xi, yj) log
P (xi, yj)

P (xi)P (yj)

=
∑
xi,yj

P (xi, yj) log
P (xi|yj)
P (xi)

(2.2)

Where xi, yj are the values that X and Y can take, P (X), P (Y ) are the marginal probability
distributions for X and Y and P (X|Y ) is the conditional probability distribution of X given Y .
Mutual information is zero when two variables are independent.
The main idea is to estimate the probability distributions from the data and then calculate the
mutual information for each pair of genes. The resulting mutual information matrix gives a score
to each edge in the fully connected network which will be undirected. This can be thresholded to
obtain a so called relevance network. [19] Some of the most popular methods are ARACNE [20],
CLR [21] and MRNET [22].
The advantage of MI networks is that they are almost as computationally cheap as correlation
networks while being able to capture non-linear relationships. The main drawbacks are that, again,
they don’t offer a predictive framework, that the estimation of the probability distributions will be
highly sensitive to noise in the samples when the sample size is small and that they overestimate
the relationships since they can’t distinguish between direct or indirect regulation.

Regression networks The previous methods used basic statistic measures to compute the depen-
dencies between genes. A different way to approach the problem is to try to predict the expression
level of one gene given the rest. One obvious way to do this is with a regression model, the simplest
of which would be a linear regression model. In the context of GRN the model would be learnt by
regressing each gene in turn against all others and the coefficient for each gene in the regression
would be used as the weight for the edges of the network. That is, for every gene x, we would have
an expresion level xi for sample i given by:

xi =
∑

j �=i∈G

wjixj + εi (2.3)

where εi is a noise term and solving the regression problem would give the wji associated to the
edge between genes xj and xi. Note that unlike previous methods, regression based networks are
directed (and can even have bidirectional edges). As in the other methods, a threshold can be
applied to the weights of the edges to prune the network.

Regression based methods are generally very powerful since they give both a structure for the
network and a model that can predict gene expression. They were considered to be the state of the
art in the last DREAM (Dialogue for Reverse Engineering of Models) challenge [23]. In particular,
TIGRESS [?] uses a linear regression method with L1 regularization to force some of the wjg to



2.1. LITERATURE REVIEW 9

be zero which avoids using an arbitrary threshold. Another variation on this theme is GENIE3,
which was also used in the DREAM challenge, uses random forest regression to make the method
more flexible and non-parametric. [24][25][26].

Regression models are only slightly more computationally intensive than the previous methods
and can, theoretically, capture higher order conditional dependencies between genes. In practice,
however, regression models tend to fail with limited data, since the highly correlated structure of
gene expression makes it so that regression networks (even when regularized) give spurious results
in the same way as the methods discussed above.

Deep learning methods

Nowadays we can also find deep learning methods to outperform linear regression based methods for
inferring gene expression [27]. However there are two downsides to these approaches: they require
a huge amount of data, which is not always easily available and they don’t give the structure of
the network, just a black box approach to the inference problem. Since we are interested in the
structure of the network and don’t have an abundance of data for the problems we wish to work
on, we don’t use deep learning methods.

Probabilistic models

The models above work by defining some measure of dependency in a pairwise or all-to-one way.
However, none of them define a probabilistic model of the data explicitly (although there is an
implicit model in the regression). In this section we briefly introduce Gaussian graphical models
and then introduce and review the work done with BNs which will be the main focus of the article
afterwards.

Gaussian graphical models One of the simplest probabilistic models we can consider is a multi-
variate normal distribution. The probability density distribution for a multivariate normal vector
x ∈ R

G is given by:

p(x|μ,Σ) =
1√

2π|Σ| exp−
1

2
(x− μ)TΣ−1(x− μ) (2.4)

where μ is the mean vector and Σ is the covariance matrix.
Gaussian models give us the whole power of probabilistic inference, which allows us not only
to make predictions about gene expression but to quantify our uncertainty. Furthermore, they
have a very important property in that the inverse of the covariance matrix, the precision matrix
W = Σ−1, contains the partial correlations between the entries in x. The partial correlation is
the residual correlation between two variables once the effect of all other variables has been sub-
stracted. Therefore, it is a better measurement of the strength of the relationship between genes
and is less vulnerable to making spurious associations due to the highly correlated nature of the
GRN.
This result is used by Gaussian graphical models [28] which are learnt by treating the measure-
ments of expression as a multivariate normal random vector and inferring the precision matrix
from the samples using maximum likelihood estimation. The number of parameters is of the order
of G2 so regularization techniques are used. Mainly sparse regularization like L1 because they
have the benefit of having a topological interpretation to build the network structure, that is, the
non-zero entries of the precision matrix are the edges of the underlying GRN.
Gaussian models are generally a very good model that has all the properties we want. It’s prob-
abilistic, interpretable and has both a topological and a predictive component. However, it is
limited mainly by the fact that it is generally very difficult to estimate a high-dimensional preci-
sion matrix from limited data even being theoretically impossible when the number of samples is



10 CHAPTER 2. LITERATURE REVIEW

less than the number of dimensions of the matrix (although an estimate can be found but with no
guarantees of correctness). There is also the assumption of normality for the expression data which
implies linearity in the relationships. Although this is a strong assumption we have seen in corre-
lation networks, linear regression networks and Gaussian graphical models that it seems to be a
reasonable approximation which is very effective in practice and simplifies computation enormously.

2.2 Bayesian Networks

Every method we have discussed until now uses a top-down approach to the task of learning the
topology of the network, in the sense that we start with a fully connected network and prune it
afterwards or start with the full joint distribution of all the parameters and then threshold it to
make it sparse. The class of methods we will focus on, BNs, have a similar objective to Gaussian
models in that they try to build a joint probabilistic model but they approach it in a bottom-up
way; building the model up from local conditional parts.

Bayesian networks [29] are probabilistic models that combine probability and graph theory to be
able to efficiently represent the probability distribution of a set of variables X = {X1, X2, ..., Xn}.
BNs model probabilistic conditional dependencies and independencies between the variables in X
in terms of directed acyclic graphs (DAGs) and a series of conditional probability distributions
(CPDs) [?]. Each of the nodes in the graph represents a variable in X with the arcs representing
conditional dependencies between the variables. Each of the CPDs is associated to a variable Xi

and gives the probability distribution of that variable conditioned on its parents in the graph, that
is, the nodes that have edges directed towards Xi which we call Pa(Xi). The formula for the joint
distribution of the variables given all the CPDs is:

P (X1, ..., Xn) =
n∏

i=1

P (Xi|Pa(Xi)) (2.5)

2.2.1 Structure Learning
The structure of a BN can be learned from a dataset in many ways, which are usually categorized
into two different groups:

• Constraint-based These methods treat BNs as a representation of the conditional indepen-
dencies between triplets of the variables. These class of methods was originated with the
Inductive Causation algorithm [30] which uses conditional independence tests to build the
structure of the DAG attempting to reflect as accurately as possible the true underlying in-
dependencies. [31] [32] [33] Some of the most popular methods in this group are parents and
children, (PC) [32] and light mutual min (LMM) [34]. These methods usually start with a
fully connected network and remove edges every time a conditional independence test passes.
Most methods try to do independence tests with an increasingly big conditioning set of vari-
ables to try to find separating variables for every pair of nodes. This is computationally
intractable for a large number of variables and so there is usually a limit to the size of the
conditioning set. Furthermore, these methods are very sensitive to false positives in the tests
since they can confound the process of construction. This makes the methods not work well
when the sample size is small and the number of variables high since it is more likely to make
mistakes the more tests it has to run and the less data there is.

• Score and search Score-based methods explore a predefined space of structures with a score
function that assigns a score to each of the structures. The objective is to return the structure



2.2. BAYESIAN NETWORKS 11

that maximizes the score. When the number of nodes is not very big we can enumerate and
score all possible networks to return the maximum but the number of possible structures
grows super-exponentially with the number of nodes [Robinson, 1977] which implies that
searching for the structure with the maximum score is an NP-hard problem [35]. Because
of this, the usual way to carry out the search is via heuristic algorithms. Some of the most
commonly used scoring functions are the Bayesian information criterion (BIC) [36] [37], the
minimum description length principle (MDL) [38], Bayesian Dirichlet equivalence (BDe) [39],
Akaike’s information criterion (AIC) [40] and K2 [41]. The main advantage of score-based
methods is that they take into account the whole structure of the network to score so they are
less sensitive to individual edge failures. Furthermore, some search algorithms like the Greedy
equivalent search (GES) [42] can be guaranteed to reach the optimal structure. Generally,
most algorithms work by doing local changes to the structure of the network and accepting
them if they increase the score which means that they avoid the computational cost of having
to calculate the whole score for the network at each step. Some limitations of score-based
methods are that they cannot separate between all structures with the same optimal score
and that they can overfit the dataset (since there is no guarantee that the optimal network
for a given score is the true underlying network). One important algorithm which we will
discuss in chapter 4 is the fast greedy equivalence search [7] which scales well to thousands
of variables or up to hundreds of thousand in sparse networks.

2.2.2 Parameter learning
Learning the parameters of a BN is usually the simplest part. It requires a modelling assumption
which gives the type of distribution that each node will have. The most common might be dis-
crete with any umber of states, continuous following a Gaussian or a mixture of Gaussians. Other
distributions are possible and, although it’s usually the case that all nodes follow the same type
of distribution, hybrid networks can be built too. Once the distributions have been chosen we
usually just do maximum likelihood estimation for the parameters of the distributions given the
dataset, although some of the scores mentioned in the previous section, like K2 and BDe are based
on Bayesian approximations with prior distributions over the variables.

2.2.3 Probabilistic inference
BNs contain all information to compute the joint probability distribution of all the variables and
any distribution (conditional, marginal or joint) for any subset of the variables. One of the main
objectives of building a BN model is precisely to answer any probabilistic queries about the vari-
ables. BNs can perform three types of inference:

• Deductive inference Answers questions about the consequences of a given series of events.

• Inductive inference Answers questions about the causes of a given series of events.

• Abductive inference Answers questions about the most probable hypothesis about the state
of the variables given a series of events.

More concretely, the most common queries posed to a BN model are:

• Diagnosis and prediction: The inference process used for both inductive and deductive rea-
soning is probability propagation. Given a series of events (observed values for some of the
variables in the model) we calculate the conditional probability distribution of any other
subset of variables conditioned on the evidence.

• Maximum a posteriori (MAP): An abductive inference problem in which given some evidence
we are to find the most likely values for a subset of the variables.



12 CHAPTER 2. LITERATURE REVIEW

• Most probable explanation (MPE): An abductive inference problem in which given some
evidence we are to find the most likely values for all the variables for which we have no
evidence.

Ideally, we would like our methods of inference to be able to return the exact results for the queries
given the structure and CPDs of the network. This type of inference is called exact inference. One
of the most important methods in this category is the message passing algorithm (MP) [43] which
is very efficient for evidence propagation but only works if the structure of the network is that of
a polytree. This is a very strong restriction which does not generally apply for real world data.
Instead, a clustering method is used to group nodes in a general network to give it the structure
of a polytree and then apply MP. The intermediate structure is called a junction tree [44].
When it’s not possible to do exact inference due to the size of the network, we use approximate
inference [41]. This reduces the complexity substantially, but will obviously introduce some error
in the results. Some of the most important algorithms for approximate inference are probabilistic
logic sampling,[45] likelihood weighting [46] and Markov Chain Montecarlo [47].

2.2.4 Applications of Bayesian networks

BNs are models with a very solid theoretical backing and many algorithms to choose from depend-
ing on the task at hand. Futhermore, they are easily interpretable since every node maps to a
single variable and edges indicate probabilistic dependence. Thanks to all these advantages BNs
have been the models of choice for many different applications like medicine [48], sports [49] or
neuroscience [50].

In the field of GRNs one of the earliest approaches was by Friedman in [51] which used a simple
approach of searching the whole space of structures for the one with the maximum likelihood. We
also have Spirtes et al. [52] which used the PC algorithm on microarray data to obtain a GRN.
Some more recent advances include [53] which uses a variant of the Chow-Liu algorithm to be able
to learn a BN in quadratic time but with a severe limitation on the structure since it must be a
tree. In [23], there are several BN based methods of which the best use simulated annealing to
add a stochastic element to the reconstruction and average the results to increase their resiliency
against possible errors. In [16], the authors use topological information to restrict the space of
structures and accelerate the search. Work like [54] presents a paralelized approach to learning a
genome-wide network that is implemented in a supercomputer. One of the most recent advances
is [55] in which the authors learn small local networks around each node and then combine them.

2.2.5 Advantages and limitations of Bayesian networks

Bayesian networks did not show a good overall performance in the DREAM 5 challenge [23] but
their interpretability makes them a good model to try to improve. They readily encode the regu-
latory network in their graph structure and the way they are built avoids the problem of finding
a complete network, like in regression or pairwise methods. This reduces the need to use an arbi-
trary threshold to cut some edges, since they are taken out in a less arbitrary way by testing for
conditional independence and it can capture indirect regulation well. Their probabilistic nature
is specially important in this domain because it allows us to run inference through the learned
structure which is done by setting some genes as evidences and then querying another genes to
check their variability, sometimes helping us view how some genes influence the expression of the
rest (although not always since BNs do not generally represent causal influences).

As we have seen above the main disadvantage we face when using these models is that for them
to be scalable to genome-wide datasets we require either restrictions on the structure or high-
performance computing to deal with genome-wide networks. The fastest method that doesn’t use



2.2. BAYESIAN NETWORKS 13

either is [55] but it’s biggest network is orders of magnitude smaller than what we need and their
code was not made available so we could not replicate their results. We take the two best BN
methods in the DREAM 5 challenge, which use a simulated annealing approach, and the method
in [55] which learns and merges local networks as the state of the art for learning GRN. These
approaches gave us some hints as to what lines of work to pursue to improve on them.



14 CHAPTER 2. LITERATURE REVIEW



Chapter 3

Problem statement

3.1 Learning genome-wide regulatory networks for the hu-
man brain

The main goal of this work is to find an efficient way of reconstructing full genome regulatory net-
works and apply it to learning a GRN for the human brain. Full genome networks for humans can
have from 20,000 to 50,000 nodes (depending on whether non protein coding genes are considered
or not). As discussed in the previous chapter, this size of network is usually very hard to work
with due to the computational cost. Not many algorithms scale well to this size and most need
high-performance computing resources to be able to deal well with it.
As our dataset we have the Allen Brain Institute Human Brain Atlas of which we used the mi-
croarray data. The dataset has measurements for 20,708 protein-coding genes with 3500 samples
gathered from different areas of the brain.
We want our network to have some good properties for analysis so that it is useful for biological
research. That means we prefer models that offer a predictive framework for gene expression and
are easy to interpret.

3.2 Differential analysis

One of the most common uses of genetic data is to test different conditions and see which genes
have a different level of expression. This is usually done with simple hypothesis testing to see if
both expression levels could be samples from the same distribution or not.
Comparing GRNs built in different conditions would allow for a more nuanced analysis where
instead of just saying if two expression levels are different we could quantify how different the
expression level is and also see if the relationships to other genes have changed.

15



16 CHAPTER 3. PROBLEM STATEMENT



Chapter 4

Proposed solution

As is obvious from the title of this work, we chose Bayesian networks as our model to solve the
problem. Bayesian networks fulfill all of our criteria of offering a predictive framework, being easy
to interpret and being useful for nuanced differential analysis.
In Chapter 2 we discussed some of the main limitations of Bayesian networks and some of them
apply here. Mainly, we are dealing with massive networks of 20,000 nodes which are usually
intractable to learn and even harder to do inference in. In this Chapter we will review these
limitations and discuss how we addressed them with a new algorithm for structure learning that
learns smaller local networks and merges them and restricting the CPDs of the network to be linear
Gaussian distributions.

4.1 Learning a genome-wide regulatory network

The first problem we need to solve is how to scale learning algorithms so that they can deal with
the number of nodes we have in a genome-wide GRN. For this, we combine two main insights. The
first is that we use a score-based algorithm based on the FGES algorithm [7] which is an improved
version of the greedy equivalence search (GES) [42]. The GES algorithm starts with an empty
graph and explores the space of the equivalence classes of DAGs to search for edge additions (or
deletions in the second phase) maximizing a decomposable score like the Bayesian Information
Criterion (BIC). The equivalence class of DAGs that represent the same probability distribution
is called the Markov Equivalence Class (MEC) and can be represented by a completed partial di-
rected acyclic graphs (CPDAGs), and it has directed and undirected edges but no directed cycles.
A CPDAG is defined as the set of all DAGs G having the same undirected adjacencies as G and the
same "v-structures" (i.e. non-shielded colliders) — substructures X → Y ← Z, where X,Y, Z ∈ G
and X,Z are not adjacent.

This algorithm learns the structure by maximizing a decomposable score like the BIC. Doing
the search in the space of CPDAGs reduces the size of the space and makes the search faster, but
the speed-up is not big enough since the space of equivalence classes still grows super exponentially
with the number of nodes [56]. The main problem with this approach is that BIC and similar scores
need a DAG to be calculated so we need to transform the CPDAG to a DAG and back at every
step. Fortunately, this can be easily done since the local nature of the algorithm means that we
don’t change much of the network on each step (so we only need to work on small parts of the
graph) and by using Meek’s rules [57] which guarantee that we preserve the v-structures when
undirecting the DAG to get the CPDAG.

FGES aims to improve the GES speed by including some modifications over it. The first main

17



18 CHAPTER 4. PROPOSED SOLUTION

modification consists in caching the possible edges addition scores to reutilize them in the future
(or discard them in case of breaking any rule that would result in a graph not being a CPDAG).
The second main modification sets up a searching phase where parallelization can be used. This is
possible because the scores calculation for every edge addition doesn’t depend on the other edges
addition for the current graph. If then, some possible edges additions are no longer valid, they are
discarded by a check of minimum graph properties to maintain a correct CPDAG.

FGES, like GES, has two main steps, the forward equivalence search phase (FES) and the back-
ward equivalence search (BES) phase. In the first one, it follows a sequential procedure that at
each point computes the possible edge additions and adds the single one with the greater BIC
score. The procedure finishes when there are no possible arc additions that increase the BIC. Then
in the backward phase, the same procedure is done but this time removing one edge at each step,
until no more edges deletion can improve the BIC. Finally, the resulting CPDAG is transformed to
a specific DAG by removing the cycles and directing the possible edges while not creating any cycle.

Even with FGES, the scale of the problem at hand is still enormous and we need something
else to be able to get a solution in a reasonable time. This second insight is that we can divide the
large problem into many small ones and then combine the local results as in [55]. This method has
no theoretical guarantee of optimality but in practice works well enough and is, to the best of our
knowledge, one of the only ways to deal with massive networks in reasonable times. The method
consists in creating n local graphs (being n the number of features) and the combining the graphs
with the pure union method (i.e. every arc in a local graph will always be in the global graph).
For each feature, a set of the most probable related features to it is selected. This selection is
done by computing the pairwise continuous mutual information matrix and then running a hy-
pothesis test for every row that will identify the point of separation between the distribution of the
related genes and the not related ones. Once every feature has its set of nodes to learn its local
graph, the learning is done by running greedy equivalence search of which FGES is an improvement.

None of these two methods alone, FGES or local networks, could deal with the problem on their
own. Ramsey et al [7] claim to be able to scale up to a million variables but we were not able to
replicate this even after personal communication with the authors to set up the algorithm. We
expect that this is because GRNs are not locally sparse and it seems to be a requirement for FGES
to work well. Liu et al. [55] don’t try networks of the size we wanted to test and did not release
their code so we couldn’t replicate their results, however since, to the best of our knowledge, FGES
is much faster than GES in all instances we expect that our version combining both will be faster.

4.1.1 FGES-Merge: Our implementation
The original FGES implementation by [7] is not scalable in terms of CPU and memory when the
graph is not sparse (when the graphs have more than 60.000 edges it causes out of memory errors
for regular computers with 64 GB of RAM storage). On the other hand, the local-to-global method
in [55] is scalable but still doesn’t have a great speed as it uses a regular greedy score-based method.
To combine the best of both worlds, modifications are necessary.

Here we propose the FGES-Merge method that consists in learning n local graphs, one per gene,
with a modification of the FGES algorithm. This allows our algorithm to deal with much more
dense networks than the original FGES which is necessary to be able to learn the networks for
the full human genome in reasonable time. The combination of the local graphs has been also
modified to be able to prune the not so relevant edges and uses a simulated annealing approach to
induce variation in the arcs that are learned on each local graph. Then, only the arcs that appear
consistently are added to the global network thus increasing the robustness of the final result.



4.1. LEARNING A GENOME-WIDE REGULATORY NETWORK 19

As our algorithm learns the graphs by maximizing their BIC score, we run a hypothesis test
that separates the BICs for each gene assuming they are drawn from two separate distributions.
Then, we use the genes that have been determined to be drawn from the higher scoring distribution
assuming they will be more relevant for predicting our target. By using the BICs instead of the
mutual information which [55] use, we improve the speed as the initial BIC scores are already
calculated and will then be reutilized by the FGES algorithm in each graph. Note that the number
of related features for a specific node can still be a large number so it is also possible to limit the
maximum number of related features if necessary.

To combine all the local graphs, we propose a modification of the union method used in [55].
The union method has the problem of adding every arc even if it is only present in one of the n
local graphs. We implemented a greedy pruning strategy to not join every arc. Once the global
graph has been created with the union method, we have the option to run a loop iterating through
every local graph. We identify the less important arcs (by the same hypothesis test describe be-
fore, checking how much BIC is added by each arc) and also by the number of appearances in local
graphs and we remove them from the global graph. The most important speed-up of FGES-Merge
is the embarrassingly parallel nature of the local graphs learning. See figure 4.1 for a diagram
explaining FGES-Merge.

We had to use an additional scaling strategy consisting in limiting the exhaustive search of the
subset of possible parents for each node, following [58] who implemented a greedy search to solve
this. We included a fixed maximum length of the subset to constrain this exponential cost.

Finally, we followed a parallelization strategy to take advantage of all the computing resources.
The lower level of parallelization consists of using multiple cores in a single processor. The most
computationally costly parts are the initial BIC calculation for the initial arrows and the forward
pass of the FGES, the FES. To implement this kind of parallelism we chose multithreading as it is
more efficient than multiprocessing in terms of memory.

Python can not use multithreading in a pure concurrent way because of the Global Interpreter
Lock (GIL) so we opted to use the Numba library to compile the Python code to optimized ma-
chine. Numba does this by using their just in time compilation (JIT) using the LLVM compiler
library. This way allows us to make use of concurrent multithreading by avoiding the GIL and
using the OpenMP threading layer, while we still preserve the clear Python syntax.

The higher level of parallelism is cluster computing (e.g. HPC environments). The same mul-
tithreading parts plus the local graphs learning were also implemented using cluster parallelism
so all the computer resources are fully used. We opted to use the MPI protocol because of its
adoption in most of the HPC centres, and its efficiency compared to another software like Spark
or Hadoop. We include this feature with the mpi4py package for Python [59]. For the results
presented in this work we did not need to use HPC but we did divide the full work load between
three desktop computers at our laboratory.

The robustness of local-to-global method can be further improved by running the algorithm mul-
tiple times and then combining the resulting global graphs. During the DREAM5 competition,
two of the Bayesian network based methods with the highest scores were built using the simulated
annealing package for R, catnet. We implemented a modification in the FGES to add a stochastic
factor for choosing the next arc to add in the forward phase, so this will prevent the algorithm to
always add the arc with the greatest BIC in every step. This random factor to not always select
the arc with greatest BIC, decreases with every arc we include, so the first arcs are more prone
to be discarded in favor of a random arc with positive BIC. Since we take into account the BIC
added in the global network when we do the final pruning pass this randomness doesn’t have a



20 CHAPTER 4. PROPOSED SOLUTION

Figure 4.1: FGES-Merge algorithm diagram.

deleterious effect in the result because bad arcs can be easily eliminated but arcs which are better
in the global network than the local ones have a chance to be explored.

4.2 Probabilistic inference in a massive regulatory network

The second problem we need to solve is that even if we have learnt the structure of the network in
an efficient way we need to be able to do probabilistic inference in a reasonable time for the model
to be useful. Fortunately this problem is very easy to solve if we make a very strong but biologically
plausible and empirically tested assumption: gene expression is a random variable distributed like
a Normal distribution. More concretely, we assume that our Bayesian network is a linear Gaussian



4.2. PROBABILISTIC INFERENCE IN A MASSIVE REGULATORY NETWORK 21

Bayesian network.

4.2.1 Gaussian Bayesian networks
Gaussian Bayesian networks are a type of Bayesian networks where all the variables are continuous
and all of the CPDs are linear Gaussians. That is, that given a node X with j parents Pa(X) =
{X1, X2, ..., Xj}:

p(X|Pa(X)) = N
(
β0 + βTPa(X);σ2

)
(4.1)

where 0 is the average expression level of X. As a result of this restriction on the form of the CPDs
we have that a linear Gaussian Bayesian network is a factorized representation of a multivariate
Gaussian. This relates this Bayesian networks to the Gaussian graphical models we discussed pre-
viously, inheriting all the advantages of that model without the main limitation of the precision
matrix being too hard to learn with limited data. This is beacause the factorization of the distri-
bution makes the required number of learnt parameters smaller than quadratic on the number of
nodes, with the gains depending on how sparse the network is. That is, the sparser the network,
the less parameters we have to learn compared to estimating the full joint from the beginning.
This restriction on the form of the CPD brings another advantage to the method in that when
calculating the BIC for learning the structure with FGES if the distribution of the variables is a
linear Gaussian, the BIC is a lot easier to calculate since, for a given edge, it only depends on the
variance of the child given its parents and the number of parents. More concretely, let Pa(Y ) be
the set of parents of Y in the graph. Then the BIC difference of adding X to Pa(Y ) is given by:

BIC(X,Y,Pa(Y )) = −m/2 ln s2 − ck lnm (4.2)

where n is the sample size, s2 is the mean squared error of the regression of Pa(X) ∪ X on Y
(which is also the likelihood of the distribution) c is the penalty discount which is a free parameter
of the algorithm and k is the cardinality of Pa(Y )∪X which is the number of parameters to learn.
The higher the penalty term c is chosen, the more sparse the network will be since only arcs with
positive BIC difference will be added.

Parameter Learning

Parameters for Linear Gaussian Bayesian Networks are very easy to estimate once the structure of
the network is known. For each node we do a multilinear regression against the set of its parents.
The parameters of the regression give the mean of the CPD for the node while the mean square
error of the regression is the variance of the CPD.

Inference in Gaussian Bayesian networks

The main advantage of Gaussian bayesian networks is that the joint distribution is a multivariate
Normal distribution and although we saw that exact inference in discrete Bayesian networks is a
very hard problem in general it is only O(n3) for a Gaussian Bayesian network. Following [?] we
implemented our own version of an algorithm to move from the factorized network to the joint
distribution and back to a conditional distribution with a way to input the inference. This is
now implemented in Neurosuites, a platform where all the neuroscience tools developed at the
Computational Intelligence Group 1 are available for public use. Both the implementation of
FGES-Merge and Gaussian network inference are available here 2. For an example, see figure 4.2

1http://cig.fi.upm.es/
2https://neurosuites.com/morpho/mlbayesiannetworks



22 CHAPTER 4. PROPOSED SOLUTION

(a) Set the evidence in a specific gene using the Neurosuites
platform.

(b) P (Q|E) marginal distribution of a specific gene. In this case
the network predicts a relationship between schizophrenia and
malignant breast neoplasm. We have found some evidence for
this in the literature [60]

Figure 4.2: Example of inference using the Neurosuites tool. The backend was implemented as
part of this work and the frontend was done by Mario Michiels and Sergio Paniego.



Chapter 5

Results

5.1 Benchmark tests

We decided on two ways to test our method. We wanted to compare ourselves in our ability to
recover the underlying structure against a variety of algorithms, even those which don’t use BNs.
But we also wanted to compare ourselves to other BN methods as a way to show that our algorithm
transcends the usual difficulty for learning them and is capable of scaling to thousands of nodes.

For both benchmarks of our model we decided to use the data from the DREAM challenge in
its fifth edition [23] so that we could compare ourselves to the networks recovered by many other
methods without having to recompute them ourselves (which would have been almost impossible
since not all of the methods are publicly available). Following [23] we did not use experiment 2, so
we compared ourselves with the networks extracted for experiments 1, 3 and 4.

Most Bayesian network methods do not assign a confidence level to their arcs and so cannot
be correctly evaluated by simply using a threshold on their predicted edge probabilities. Proper
calibration for this would require repeating the construction with some random variation and using
frequency analysis of the arcs to estimate probabilities.

Prior probability of arcs should be around 1/nodes since regulatory networks are known to be
sparse with nodes arcs. If we assign a threshold of 0.5 as is usual for a binary classification
level, we are making the accuracy of well calibrated methods incredibly high since its very easy
to just guess no arcs exist (an empty net has 99% accuracy for big networks.) There is a huge
class imbalance and so we need to either use a smaller threshold or use a score that accounts for this.

In [23] the score used is AUPRC (Area under the precision recall curve) which is usually a good
score for imbalanced problems but since it tries multiple thresholds, a good score here doesn’t
directly translate to usefulness of the method. When given one of these networks a biologist has
to make a choice on what interactions to test, whith the corresponding cost, so we need to make
sure we have a high ratio of true positives to edge predictions (high precision). At the same time,
we also need to be able to explore as many possible interactions as possible, so we are interested
in a mixture of recall and precision which is as high as possible. We use the Matthews Correlation
Coefficient (MCC)[61] since it takes into account the imbalance between the classes. The formula
for the MCC canbe calculated from the confusion matrix with the expression:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5.1)

MCC goes from 0 to 1, with 0 being the worst possible score and 1 meaning a perfect prediction. In

23



24 CHAPTER 5. RESULTS

Figure 5.1: MCC scores for network 1 (in silico) from the DREAM 5 challenge. Here FGES-Merge
is one of the top rating algorithms.

balanced problems it behaves similarly to F-score, but in imbalanced problems it punishes trying
to just guess the bigger class without trying to actually solve the prediction problem.

Our results are competitive with the best Bayesian network methods and, for some networks,
competitive with the whole set of methods as can be seen in Figures 5.1, 5.2 and 5.3. As can
be seen there, although we are not always the best Bayesian network method, we are much more
consistent even in the harder networks.

As for our time comparison, we tested some of the most common Bayesian network learning
algorithms on the smallest network from the DREAM challenge. We were goin to show the per-
formance of various algorithms across different network sizes to see if FGES-Merge scaled better.
We expected that we would be beaten by Chow-Liu’s algorithm and similar due to those being
quadratic in time. In the end, we could not test more than one net since although our method
finished in slightly more than an hour, the other methods worked for more than a day and didn’t
finish. The results for network 1 are in Figure 5.4

5.2 Human brain regulatory network

Finally, we applied the method to solve the problem we were interested in: Learning the genome-
wide regulatory network for the human brain.

The main objective was to find the genome-wide GRNs for various areas of the brain (i.e. cortex,
white matter, cerebellum, hypothalamus...). These networks would be very useful tools for biolo-
gists who are interested in studying how the functional differences between brain areas might arise
from the differences in genetic expression.



5.2. HUMAN BRAIN REGULATORY NETWORK 25

Figure 5.2: MCC scores for network 3 (Escherichia Coli) from the DREAM 5 challenge. All
methods perform much worse in the in-vitro networks. FGES-Merge is average.

Figure 5.3: MCC scores for network 4 (Sacharomyces Cerevisiae) from the DREAM 5 challenge.



26 CHAPTER 5. RESULTS

Figure 5.4: Running times for network 1 (in silico) from the DREAM5 challenge for various
Bayesian network learning methods.

Thanks to the application of FGES-Merge, we managed all of our objectives. We were able to
obtain networks for various areas of the brain and an extra network for the average expression of
the whole brain. In this section we will show the networks generated (using software developed
by Mario Michiels and Sergio Paniego and available in Neurosuites). We will comment on the
topological properties of the learnt networks to see if they respect the known empirical properties
of GRNs as discussed in Section 2.1.2.

5.2.1 Network examples

Figure 5.5 shows two networks obtained with the whole dataset. They represent the average GRN
for the whole brain. They have been learned with different penalty parameters and thresholds
for the number of arcs. We can readily see how the higher penalty network presents various
disconnected components unlike the lower penalty network. This is what we would expect since a
higher penalty forces sparsity.

5.2.2 Topological properties of the learned GRNs

Figure 5.6 shows the in-degree and out-degree distributions for the human brain GRN and the tail
of the total degree distribution. As we saw in section 2.1.2, most nodes have an out-degree of 0
(they are not regulators) but the ones that have children have many of them as expected from the
evolutionary argument (regulators have an average of over 600 children).

The in-degree distribution is also as expected. Most genes are regulated by a small number of
regulators and even the most regulated don’t have more than 80. Again, this is in agreement with
the biological argument that gene regulation requires physical interaction and there is not enough
room for having hundreds or more regulators.

Finally, from all three distributions we can see that the network is globally sparse but locally



5.2. HUMAN BRAIN REGULATORY NETWORK 27

dense. Most nodes have no children and around half of the nodes have less than 14 parents (with
most having just one or two). However, the tail of the total degree distribution shows that the
1000 nodes with the highest degree have an average of 500 neighbours with some of them having
well over a thousand of them.

All of these shows that our algorithm respects the topological properties of GRNs and although
it would be unfeasible to test all the interactions in the learned network this topological analysis
gives us strong reasons to believe that the inferred network is sound.



28 CHAPTER 5. RESULTS

(a) Our learned full human brain network. FGES penalty: 65, not removing any learned arc, Louvain
algorithm for coloring the nodes.

(b) Our learned full human brain network. FGES penalty: 45, number of arcs: 6n being n the number of
genes, only showing the connected arcs, Louvain algorithm for coloring the nodes.

Figure 5.5: FGES-Merge human genome network for the human brain with two different penalties.



5.2. HUMAN BRAIN REGULATORY NETWORK 29

(a) Histogram nodes with > 60 neighbors.

(b) Histogram nodes with > 0 children.

(c) Histogram number of parents

Figure 5.6: Nodes degree histograms for our learned full human brain network. The threshold for
the minimum number of neighbors and children has been adjusted for a proper visualization of the
histograms. FGES penalty: 45, with pure union as merging method. That is, no pruning.



30 CHAPTER 5. RESULTS



Chapter 6

Conclusions and future research

6.1 Conclusions

After reviewing the field of GRNs and presenting a novel scalable algorithm for learning them with
Bayesian Networks; in the final chapter of this document we will summarize the main conclusions
obtained both from the field of GRNs and from the development and application of our algorithm
using Bayesian networks.

• Learning GRNs is in general a very hard problem. Even the best methods have very low scores
on reconstruction, make many mistakes and scale poorly to the genome-wide environments
we are interested in.

• Any approach that tries to tackle genome-wide networks will have to use massive compu-
tational resources or make very strong assumptions on the structure and parameters of the
GRN.

• Methods that allow for quantitative predictions of expression levels require a very large
amount of data that is not available most of the time. This is one of the reasons why deep
learning methods were not chosen for this work.

• We have presented a method for learning GRNs that is competitive with the state of the
art in general methods while also beating most other methods that use Bayesian networks
and giving consistently good results even for the harder networks in the benchmarks. Fur-
thermore, our method can deal with the tens of thousands of genes involved in genome-wide
networks and gives results that respect the topological properties of real GRNs.

6.2 Future research

Given the results obtained, we can see there are various ways to continue with this work both in
terms of improving it or in direct applications. On the one hand, we have the multiple possibilities
of using the algorithm to build regulatory networks in different conditions to obtain biological
insights. One first obvious line of work would be to use the networks we have built for the hu-
man brain to try to determine which genes are involved in specialized functions of each brain region.

On the other hand, there are various variations to the algorithm that could be investigated. Main-
taining scalability to genome-wide networks is hard and a lot of limiting assumptions have been
made. One way forward that presents itself is to relax the assumption of gaussianity and use
different distributions, most likely, a mixture.

31



32 CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

We suspect that simple methods like correlation and mutual information networks perform equally
or even better than more complex methods because of the lack of data. More complex methods
have too many parameters and overfit the dataset and so fail to generalize to new data or make
correct predictions in novel situations. This would also explain why making simplifying assump-
tions for these methods, i.e. Gaussian Bayesian networks, work so well. This suspicion could be
tested by trying various methods with synthetic datasets of different sizes and seeing if and how
their relative performances change.

6.3 Scientific Dissemination

An early version of the algorithm presented here was presented as a poster at the HBPSC (Human
Brain Project Student Conference) in Ghent in February, 2019. An article including the algorithm
and a visualization tool is being prepared.



Bibliography

[1] G. J. Nuovo, “PCR in situ hybridization,” in In Situ Hybridization Protocols, Methods in
Molecular Biology, pp. 223–241, Humana Press, 1995.

[2] C. Thisse and B. Thisse, “High-resolution in situ hybridization to whole-mount zebrafish
embryos,” Nature Protocols, vol. 3, pp. 59–69, 2008.

[3] V. Trevino, F. Falciani, and H. A. Barrera-Saldaña, “DNA microarrays: A powerful genomic
tool for biomedical and clinical research,” Molecular Medicine, vol. 13, pp. 527–541, 2007.

[4] P. Larrañaga, I. Inza, and J. L. Flores, “A Guide to the literature on inferring genetic net-
works by probabilistic graphical models,” in Data Analysis and Visualization in Genomics
and Proteomics, pp. 215–238, Wiley-Blackwell, 2005.

[5] G. Sanguinetti and V. A. Huynh-Thu, eds., Gene Regulatory Networks: Methods and Protocols.
Methods in Molecular Biology, Springer, 2019.

[6] U. Alon, “Appendix C: Graph properties of transcription networks,” in An Introduction to
Systems Biology: Design Principles of Biological Circuits., Chapman and Hall/CRC, 2006.

[7] J. Ramsey, M. Glymour, R. Sanchez-Romero, and C. Glymour, “A million variables and more:
the fast greedy equivalence search algorithm for learning high-dimensional graphical causal
models, with an application to functional magnetic resonance images,” International Journal
of Data Science and Analytics, vol. 3, pp. 121–129, 2017.

[8] J. Watson and F. Crick, “Molecular structure of nucleic acids: A structure for deoxyribose
nucleic acid,” Nature, pp. 737–738, 1953.

[9] F. Crick, “Central dogma of molecular biology,” Nature, pp. 561–563, 1970.

[10] M. Nirenberg, P. Leder, M. Bernfield, et al., “RNA codewords and protein synthesis, vii. on
the general nature of the RNA code,” Proceedings of the National Academy of Sciences of the
United States of America, pp. 1161–8, 1965.

[11] M. Bantscheff, M. Schirle, G. Sweetman, J. Rick, and B. Kuster, “Quantitative mass spec-
trometry in proteomics: a critical review,” Analytical and bioanalytical chemistry, vol. 389,
no. 4, pp. 1017–1031, 2007.

[12] Z. Wang, M. Gerstein, and M. Snyder, “RNA-seq: a revolutionary tool for transcriptomics,”
Nature reviews genetics, vol. 10, no. 1, p. 57, 2009.

[13] M. J. Hawrylycz, E. S. Lein, A. L. Guillozet-Bongaarts, E. H. Shen, L. Ng, J. A. Miller, L. N.
Van De Lagemaat, K. A. Smith, A. Ebbert, Z. L. Riley, et al., “An anatomically comprehensive
atlas of the adult human brain transcriptome,” Nature, vol. 489, no. 7416, p. 391, 2012.

[14] K.-C. Chen, T.-Y. Wang, H.-H. Tseng, C.-Y. F. Huang, and C.-Y. Kao, “A stochastic dif-
ferential equation model for quantifying transcriptional regulatory network in Saccharomyces
cerevisiae,” Bioinformatics, vol. 21, no. 12, pp. 2883–2890, 2005.

33



34 BIBLIOGRAPHY

[15] A. Angelin-Bonnet, P. Biggs, and M. Vignes, “Gene regulatory networks: A primer in biological
processes and statistical modelling,” in Gene Regulatory Networks: Methods and Protocols,
ch. 15, pp. 347–378, Springer, 2019.

[16] A. Nair, M. Chetty, and P. P. Wangikar, “Improving gene regulatory network inference using
network topology information,” Molecular BioSystems, vol. 11, no. 9, pp. 2449–2463, 2015.

[17] M. Grzegorczyk, A. Aderhold, and D. Husmeier, “Overview and evaluation of recent methods
for statistical inference of gene regulatory networks from time series data,” in Gene Regulatory
Networks, pp. 49–94, Springer, 2019.

[18] B. Zhang and S. Horvath, “A general framework for weighted gene co-expression network
analysis,” Statistical applications in genetics and molecular biology, vol. 4, no. 1, 2005.

[19] Butte, A.J. and I. Kohane, “Mutual information relevance networks: Functional genomic
clustering using pairwise entropy measurements.,” in Pacific Symposium on Biocomputing,
2000, p. 418–429, World Scientific.

[20] A. A. Margolin et al., “ARACNE: An algorithm for the reconstruction of gene regulatory
networks in a mammalian cellular context,” in BMC bioinformatics, vol. 7, p. S7, BioMed
Central, 2006.

[21] J. J. Faith et al., “Large-scale mapping and validation of escherichia coli transcriptional regu-
lation from a compendium of expression profiles,” PLoS biology, vol. 5, no. 1, p. e8, 2007.

[22] P. E. Meyer, K. Kontos, F. Lafitte, and G. Bontempi, “Information-theoretic inference of
large transcriptional regulatory networks,” EURASIP journal on bioinformatics and systems
biology, vol. 2007, pp. 8–8, 2007.

[23] D. Marbach, J. C. Costello, et al., “Wisdom of crowds for robust gene network inference,”
Nature Methods, vol. 9, pp. 796–804, 2012.

[24] A. Irrthum, L. Wehenkel, P. Geurts, et al., “Inferring regulatory networks from expression
data using tree-based methods,” PloS one, vol. 5, no. 9, p. e12776, 2010.

[25] V. Huynh-Thu, L. Wehenkel, and P. Geurts, “Gene regulatory network inference from systems
genetics data using tree-based methods.,” in Gene network inference: verification of methods
for systems genetics data., p. 63, Berlin: Springer, 2013.

[26] V. Huynh-Thu and G. Sanguinetti, “Combining tree-based and dynamical systems for the
inference of gene regulatory networks.,” Bioinformatics, p. 1614–1622, 2015.

[27] Y. Chen, Y. Li, R. Narayan, A. Subramanian, and X. Xie, “Gene expression inference with
deep learning,” Bioinformatics, vol. 32, pp. 1832–1839, 2016.

[28] J. Schäfer and K. Strimmer, “An empirical bayes approach to inferring large-scale gene asso-
ciation networks,” Bioinformatics, vol. 21, no. 6, pp. 754–764, 2004.

[29] J. Pearl, Probabilistic Reasoning in Intelligent Systems. Elsevier, 1988.

[30] T. Verma and J. Pearl, “An algorithm for deciding if a set of observed independencies has a
causal explanation,” in Uncertainty in Artificial Intelligence, pp. 323–330, Elsevier, 1992.

[31] P. Spirtes and C. Meek, “Learning Bayesian networks with discrete variables from data.,” in
KDD, vol. 1, pp. 294–299, 1995.

[32] P. Spirtes, C. N. Glymour, et al., Causation, prediction, and search. MIT press, 2000.



BIBLIOGRAPHY 35

[33] J. Cheng, R. Greiner, J. Kelly, D. Bell, and W. Liu, “Learning Bayesian networks from data:
An information-theory based approach,” Artificial Intelligence, vol. 137, no. 1-2, pp. 43–90,
2002.

[34] R. Mahdi and J. Mezey, “Sub-local constraint-based learning of Bayesian networks using a joint
dependence criterion,” The Journal of Machine Learning Research, vol. 14, no. 1, pp. 1563–
1603, 2013.

[35] D. M. Chickering, “Learning Bayesian networks is NP-complete,” in Learning from Data:
Artificial Intelligence and Statistics V, Lecture Notes in Statistics, pp. 121–130, Springer,
1996.

[36] G. Schwarz et al., “Estimating the dimension of a model,” The Annals of Statistics, vol. 6,
no. 2, pp. 461–464, 1978.

[37] J. Rissanen, “Stochastic complexity and modeling,” The Annals of Statistics, pp. 1080–1100,
1986.

[38] R. R. Bouckaert, “Probabilistic network construction using the minimum description length
principle,” in European Conference on Symbolic and Quantitative Approaches to Reasoning
and Uncertainty, pp. 41–48, Springer, 1993.

[39] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian networks: The com-
bination of knowledge and statistical data,” Machine Learning, vol. 20, no. 3, pp. 197–243,
1995.

[40] H. Akaike, “A new look at the statistical model identification,” in Selected Papers of Hirotugu
Akaike, pp. 215–222, Springer, 1974.

[41] G. F. Cooper and E. Herskovits, “A Bayesian method for the induction of probabilistic net-
works from data,” Machine Learning, vol. 9, no. 4, pp. 309–347, 1992.

[42] D. M. Chickering, “Optimal structure identification with greedy search,” Journal of Machine
Learning Research, vol. 3, no. Nov, pp. 507–554, 2002.

[43] J. Pearl, “Fusion, propagation, and structuring in belief networks,” Artificial Intelligence,
vol. 29, no. 3, pp. 241–288, 1986.

[44] S. L. Lauritzen and D. J. Spiegelhalter, “Local computations with probabilities on graphical
structures and their application to expert systems,” Journal of the Royal Statistical Society:
Series B (Methodological), vol. 50, no. 2, pp. 157–194, 1988.

[45] M. Henrion, “Propagating uncertainty in Bayesian networks by probabilistic logic sampling,”
in Machine Intelligence and Pattern Recognition, vol. 5, pp. 149–163, Elsevier, 1988.

[46] R. Fung and K.-C. Chang, “Weighing and integrating evidence for stochastic simulation in
Bayesian networks,” in Machine Intelligence and Pattern Recognition, vol. 10, pp. 209–219,
Elsevier, 1990.

[47] A. Golightly and D. J. Wilkinson, “Bayesian parameter inference for stochastic biochemi-
cal network models using particle markov chain monte carlo,” Interface focus, vol. 1, no. 6,
pp. 807–820, 2011.

[48] M. B. Sesen, A. E. Nicholson, R. Banares-Alcantara, T. Kadir, and M. Brady, “Bayesian
networks for clinical decision support in lung cancer care,” PloS ONE, vol. 8, no. 12, p. e82349,
2013.



36 BIBLIOGRAPHY

[49] A. C. Constantinou, N. E. Fenton, and M. Neil, “pi-football: A Bayesian network model for
forecasting association football match outcomes,” Knowledge-Based Systems, vol. 36, pp. 322–
339, 2012.

[50] C. Bielza and P. Larrañaga, “Bayesian networks in neuroscience: A survey,” Frontiers in
Computational Neuroscience, vol. 8, 2014.

[51] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using Bayesian networks to analyze
expression data,” Journal of Computational Biology, vol. 7, no. 3-4, pp. 601–620, 2000.

[52] P. Spirtes, C. Glymour, et al., “Constructing Bayesian net-
work models of gene expression networks from microarray data.”
https://kilthub.cmu.edu/articles/ConstructingBayesianNetworkModelsofGeneExpressionNetworksfromM icroarrayD

[53] D. Edwards, G. C. De Abreu, and R. Labouriau, “Selecting high-dimensional mixed graphical
models using minimal AIC or BIC forests,” BMC Bioinformatics, vol. 11, no. 1, pp. 1–8, 2010.

[54] C. J. Needham, I. W. Manfield, A. J. Bulpitt, P. M. Gilmartin, and D. R. Westhead, “From gene
expression to gene regulatory networks in Arabidopsis thaliana,” BMC Systems Biology, vol. 3,
no. 1, p. 85, 2009.

[55] F. Liu, S.-W. Zhang, W.-F. Guo, Z.-G. Wei, and L. Chen, “Inference of Gene Regulatory Network
Based on Local Bayesian Networks,” PLoS Computational Biology, vol. 12, 2016.

[56] S. B. Gillispie and M. D. Perlman, “Enumerating Markov equivalence classes of acyclic di-
graph dels,” in Proceedings of the Seventeenth conference on Uncertainty in Artificial Intelligence,
pp. 171–177, Morgan Kaufmann Publishers Inc., 2001.

[57] C. Meek, “Causal inference and causal explanation with background knowledge,” arXiv:1302.4972,
2013.

[58] J. I. Alonso-Barba, L. delaOssa, J. A. Gámez, and J. M. Puerta, “Scaling up the greedy equivalence
search algorithm by constraining the search space of equivalence classes,” International Journal of
Approximate Reasoning, vol. 54, pp. 429–451, 2013.

[59] H. Asaadi, D. Khaldi, and B. Chapman, “A comparative survey of the HPC and big data paradigms:
Analysis and experiments,” in 2016 IEEE International Conference on Cluster Computing, pp. 423–
432, IEEE, 2016.

[60] V. Ajdacic-Gross, A. Tschopp, M. Bopp, F. Gutzwiller, and W. Rössler, “Cancer comortality
patterns in schizophrenia and psychotic disorders: A new methodological approach for unique
databases,” International Journal of Methods in Psychiatric Research, vol. 23, no. 1, pp. 19–24,
2014.

[61] B. W. Matthews, “Comparison of the predicted and observed secondary structure of T4 phage
lysozyme,” Biochimica et Biophysica Acta (BBA) - Protein Structure, vol. 405, pp. 442–451, 1975.


