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Resumen 
 

 

La enfermedad inflamatoria intestinal (EII) engloba la enfermedad de Crohn y la 
colitis ulcerosa, dos patologías crónicas relacionadas con la inflamación del 
tracto gastrointestinal. Si bien se desconoce la causa exacta de la EII, existe 
una conexión clave entre la comunidad microbiana en el intestino, los genes y 
el sistema inmunológico. Lo mismo ocurre con otras enfermedades relacionadas 
con estos factores, como asma, diabetes, obesidad o cáncer colorrectal. Por esta 
razón, la investigación del microbioma humano se está convirtiendo en un foco 
de interés cada vez mayor en la salud humana y ha atraído la atención de 
grandes consorcios de investigación como el proyecto NIH Human Microbiome 
en Estados Unidos o MetaHIT en Europa. 

Los conjuntos de datos de microbiomas son únicos en su caracterizada alta 
dimensionalidad y dispersión. Además, las comunidades microbianas son 
dinámicas y su composición cambia con el tiempo. Los avances recientes en la 
secuenciación de alto rendimiento han llevado a una explosión de datos multi-
ómicos de diferentes fuentes que pueden proporcionar importantes 
conocimientos biológicos. Por lo tanto, los desafíos actuales en el estudio de los 
datos del microbioma humano implican el manejo de datos multidominio 
(heterogéneos), con alta dimensionalidad, así como el análisis de series 
temporales (datos irregularmente espaciados y escasos). 

Sin embargo, las soluciones actuales para comprender mejor las relaciones 
entre el microbioma humano y las enfermedades no se han abordado en 
profundidad. En consecuencia, se deben explorar y desarrollar nuevos métodos 
explicables, dinámicos y multiómicos para el análisis del microbioma. Las redes 
bayesianas posibilitan un enfoque interesante ya que nos ayudan a comprender 
las formas básicas en que las diferentes entidades biológicas (taxones, genes, 
metabolitos) interactúan entre sí en un entorno determinado (por ejemplo el 
intestino humano). 

En este trabajo se han desarrollado un conjunto de pasos de preprocesamiento 
para limpiar, filtrar, seleccionar e integrar con éxito datos longitudinales de 
metagenómica, metatranscriptómica y metabolómica procedentes del proyecto 
del microbioma humano. Proponemos un enfoque de red bayesiana dinámica 
que puede ayudar a construir modelos dinámicos que capturen el 
comportamiento del microbioma humano para comprender cómo la comunidad 
microbiana se comunica con el huésped y contribuye a la enfermedad. En 
concreto para este proyecto, estudiaremos enfermedades inflamatorias del 
intestino (EII): la enfermedad de Crohn y la colitis ulcerosa. Nuestra solución 
propuesta será muy valiosa para la actual y emergente medicina de precisión. 
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Abstract 
 

Inflammatory bowel disease (IBD) encompasses Crohn’s disease and ulcerative 
colitis, two chronic disorders involving inflammation of the gastrointestinal tract. 
While the exact cause of IBD remains unknown, there is a key connection 
between the microbial community in the gut, genes, and the immune system. 
The same occurs with other disease conditions related to these factors such as 
asthma, diabetes, obesity, or colorectal cancer. For this reason, microbiome 
research is becoming an increasing major focus of interest in human health and 
has attracted the attention of large research consortiums such as the NIH 
Human Microbiome project in United States or MetaHIT in Europe.  

Microbiome data sets are unique in their characterized high dimensionality and 
sparsity. Moreover, microbial communities are dynamic, and their compositions 
change with time. Recent advances in high-throughput sequencing have led to 
explosion of multi-omic data from different sources that are able to provide 
important biological insights.  Thus, current challenges of studying microbiome 
data involve multidomain data (heterogeneity), high dimensionality and  time 
series analysis (sparse and irregularly spaced data).  

However, current solutions to better understand relationships between the 
human microbiome and disease have not been dealt with in depth. 
Consequently, new explainable, dynamic, and multi-omic methods to 
microbiome analysis must be explored and developed. Bayesian networks are 
an interesting approach as they help us understanding of the basic ways the 
different biological entities (taxa, genes, metabolites) interact with each other in 
a given environment (human gut).  

We develop a set of preprocessing steps to successfully clean, filter, select and 
integrate informative metagenomics, metatranscriptomics and metabolomics 
longitudinal data from the Human Microbiome Project. We propose a dynamic 
Bayesian network approach that can assist in building dynamic models to 
capture the behavior of the human microbiome to understand how the microbial 
community communicates with the host and contributes toward disease. 
Specifically for this project, we will study inflammatory bowel diseases (IBD): 
Crohn's disease and ulcerative colitis. Our proposed solution will be very 
valuable  for current and emerging predictive precision medicine.  
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1 Introduction 
 
 

1.1 Introduction 
 

Over the past decade the microbiome has been receiving increasing attention, 
especially with international initiatives like the Human Microbiome Project 
launched by the National Institute of Health in the United Sates or MetaHIT 
funded by the European Commission with over 14 institutions and more than 
100 scientists collaborating. With the rise of high-throughput technologies and 
omic sciences, there has been increasing evidence that the human microbiome 
plays an important role in many disease status such as obesity, diabetes, 
C.difficile infection or colorectal cancer, among many others, generating 
significant attention in clinical applications for current and emerging diseases.  

In this context, there is a lot of research activity in developing therapeutics and 
diagnostics. Even though important efforts have been put into the field, the 
functions, dynamics, and causation of dysbiosis state performed by the 
microbial community remains unclear. Machine learning models can help 
elucidate important connections, functions, and relationships between 
microbial community in the human host that can advance the discovery of novel 
therapeutic approaches.  

 

1.2 Motivation 
 

The community has raised some concerns with current studies of human 
microbiome research. Most studies only focus on describing static taxonomic 
composition of the human microbiome, overlooking temporal variability thus 
causing a major drawback in real world clinical applications as many diseases 
are characterized by periods of remission and exacerbation in symptoms. The 
present work aims to focus on longitudinal microbiome data in order to yield 
insights into the dynamic behavior of microbiota.  

The project pursues to develop a machine learning methodology for microbiome 
research that is explicable and transparent in dynamic scenarios, i.e., with 
longitudinal data. Moreover, the combination of multiple genomic data types 
has been proven to result in increased performance (Zhu, et al., 2008). Thus, 
with this study we would like to establish identification of predictive and 
discriminatory omics features. This work will serve as an initial step towards 
the common goal of current scientists in the field to potentially uncover novel 
predictive and prognostic markers.  

Bayesian networks are a suitable tool to model the interaction of many microbial 
communities in the human gut, as they are prepared for inferring complex 
networks from noisy data to predict clinical outcomes of relevance in a 
biologically interpretable manner (McGeachie, et al., 2016). 
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Therefore, the main objective of this work is to explore the state of the art of 
Bayesian networks applied to human microbiome data analysis identifying their 
current pitfalls and limitations as well as outlining solutions to be addressed in 
future research.  

Our study was further motivated by the accessibility to one of largest studies of 
the human microbiome completed to date, a public database collected in an 
international collaborative research program, the Human Microbiome project. 
Although for our study we focus on one specific condition, our approach could 
potentially allow us to develop future models based on Bayesian networks for a 
wide spectrum of diseases.   

Finally, we identified previous work failed to tackle a core issue in microbiome 
research which is usability and reproducibility. Currently, solutions are either 
solely focused on addressing the problem from a microbiology point of view, 
making it difficult to understand for machine learning experts, or centered on 
the technical aspect of machine learning models, leaving out the microbiology 
community. There is still a lack of a homogenous unification of both domains 
in studies, where high expertise is achieved and reflected in the design of 
machine learning pipelines applied to real world human microbiome data. For 
this reason, we will aim to develop a computational framework easy to use and 
interpret, that merge both the biotechnological aspect as well as the ML 
approach into building informative models of the dynamic human gut 
microbiome.   

 

1.3 Objectives 
 

The main goal is to develop new methodologies for analysis of human 
microbiome data through explainable models generated by machine learning 
techniques based on the concept of probabilistic graphical models. 

This work will focus on the analysis of longitudinal microbiome data in order to 
identify patterns of variation, and link these to patterns of host status, such as, 
the presence or absence of a particular disease. This approach will hopefully 
allow us to capture the influence of individual microbial classes and functions 
on each other over time.  

Moreover, this study will address both taxonomic composition and functional 
profile (both important and complementary) as most studies to date only 
investigate taxonomic composition. To do this, we will be integrating multi-
omics with microbiome data and clinical information. Multi-omics data analysis 
can help us identify potential metabolic biomarkers from metabolite 
characterization thus contributing to the development of precision medicine, a 
field which is currently receiving much attention and promises to revolutionize 
healthcare and medical treatments within the next decade (McGrath & Ghersi, 
2016). By integrating multi-omics in microbiome research, we aim to answer 
questions such as “What are microbes doing?” in order to find functions 
provided by the microbial community that are critical for human health, or “How 
do they interact?” characterizing host-microbiome interactions that can help us 
predict causal role of human microbes. 
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In particular we would like to perform inference of temporal interaction between 
the following three biological entities, as shown in Figure 1. 

 
Figure 1. Interactions among biological entities of the microbial communities in the human gut. 

Microbiome metagenomic, metatranscriptomics and metabolomic analysis 
permit gene-level and functional associations with disease. 

Our study aims to extend current knowledge of associations between the human 
microbiome and health and disease through the application of data-driven 
machine learning models. Even though machine learning models and Bayesian 
networks have already been applied to the field, our approach is focused around 
model interpretability. With this in mind, dynamic Bayesian networks are 
presented as the technique that will help scientists obtain transparent and 
interpretable intelligent systems in benefit of human health. Our work aims to 
shed new light on the applications of dynamic Bayesian networks to describe 
temporal variation of the gut microbiota and dynamic relationships between 
taxonomic entities and clinical attributes.   

 

An ambitious ultimate goal we considered was answering the question: “Are we 
able to move from correlation to causation?”. One of the objectives is to develop 
a methodology that can infer cause and not limited only to association. There 
have been many studies over the past years identifying and linking the 
composition of microbiota to health outcomes. However, an intriguing area in 
the field of microbiome research is being able to discriminate microbiome 
features that are causal for disease from those that are consequence of disease, 
being able to unveil if microbiota is actually causing or driving specific disease 
outcomes (Wang & Jia, 2016). Fecal transplants in germ-free mouse models 
have been an important starting point for research in this direction. Once we 
identify what or who is causing the disruption of the ecosystem, we will be able 
to shift research into exploring how to modify our microbiome to address disease 
status and establish microbial basis for secure and effective personalized 
treatments.   

 

For all the above reasons, a key goal for us with this work is to build a general-
purpose framework/protocol to study microbiome characteristics using 
machine learning that would be easy to use for either microbiology experts or 
computer scientists.  
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1.4 Structure of this document 
 

The master thesis is organized as follows. 

Chapter 2 starts with a review of the scientific literature in which first, the 
biological background required to understand the clinical problem, is 
introduced. Then we review general applications of machine learning methods 
to the problem summarizing their advantages and limitations. Finally, dynamic 
Bayesian networks are described. In Chapter 3 the proposed framework and 
analysis are explained.  Chapter 4 presents our results. Finally, Chapter 5 
describes the conclusions drawn from the project and discusses lines for future 
research. 
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2 Literature Review  
 

 

The purpose of this chapter is to primarily introduce the clinical and biological 
background to the problem of human microbiome research (Section 2.1). 
Applications of machine learning for analysis of microbiome data will be 
reviewed (Section 2.2) with focus on two models: (1) Bayesian networks (BNs), 
presented as the proposed model, its theoretical background and previous work 
done with human microbiome data and (2) one of the most used models; random 
forests. Finally, we will end (Section 2.3) with current and upcoming limitations 
and challenges in the field.  

 

2.1 Biological and clinical background 
 

 

2.1.1 Human microbiome 
 

The human body consists of about 100 trillion microbial cells vs 10 trillion 
human cells (Ursell, Metcalf, Wegener, & Knight, 2012) (Bull & Plummer, 2014). 
In genome terms, humans have around 20,000 human genes and around 2-20 
million microbial genes (Gilbert, et al., 2018). Microbiome research is the 
discipline studying behavior and functions of the microbiota. Microbiota refers 
to the community of microorganisms such as bacteria, viruses, fungi and 
archaea residing within an environment while microbiome is the term used to 
describe the collection of all the genes which are contained in the human 
microbial community. 

The field of human microbiome is a relatively new field of research which focuses 
on studying the microbial genes in the human or in other words the collection 
of all the genes which are contained in the human microbial community. 
Advances in the field have been driven mainly by: (i) cost reduction of high-
throughput sequencing techniques which allowed for parallel analysis of 
DNA/RNA molecules; (ii) appearance of novel bioinformatics tools and 
computational pipelines that enable the analysis of microbiome sequencing data  
(Caporaso, et al., 2010) and (iii) availability of larger datasets (Turnbaugh, et al., 
2007) (McDonald, et al., 2018).  

Although microbiome research is currently being studied for many applications 
such as ecology, agriculture, biotechnology or plant health (Mueller & Sachs, 
2015), (Moran, 2015)  (Louca, Parfrey, & Doebeli, 2016) (Hou & Kolodkin-Gal, 
2020), (Trivedi, Leach, Tringe, Sa, & Singh, 2020) there is a particular growing 
interest in Medicine  in order to understand how the community of bacteria in 
the human body shape our health. Not only understanding “who is there”, but 
also “what are they doing”, “how are they doing it” and their interaction with the 
human host.  This is, among others, due to the increasing published studies 
proving how the dysbiosis of microbes in different parts of the human body (oral, 
skin, gut, vaginal) are related to numerous health conditions and their risk and 
severity (Duvallet, Gibbons, Gurry, Irizarry, & Alm, 2017). Next, we detail the 
most relevant. 
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Colorectal carcinoma: (Zeller, et al., 2014) works identifying taxonomic makers 
for colorectal cancer (CRC) patient screening using a LASSO logistic regression 
classifier. (Wirbel, et al., 2019) carried out a meta-analysis  of 768 subjects to 
define CRC functional taxonomic signatures for future early diagnosis. (Thomas, 
et al., 2019) and (Su, et al., 2020) developed a search-based strategy for disease 
detection and classification based on phylogeny-based composition, (Ai, et al., 
2017) assessed different models for fecal microbiota-based CRC prediction 
whereas (Kharrat, et al., 2019) main goal was to identify microbiota that can 
have a causal role in developing CRC.  

Autoimmune diseases: (Vatanen, et al., 2016) followed 222 infants from 
different regions with the aim of characterizing gut microbiome development in 
early life and identifying critical microbes that can contribute to immune 
modulation altering its normal course. Also, (Cornejo-Pareja, et al., 2020) 
results demonstrated altered gut microbiota in patients with common 
autoimmune thyroid diseases (Graves-Basedow’s or Hashimoto’s) and pointed 
out the relationship between them.  

Metabolic disorders such as obesity or diabetes constitute a popular area of 
application of human microbiome research. Motivated by the goal of 
accelerating the development of new therapeutic strategies for the prevention of 
type II diabetes (Koivula, et al., 2014), or microbiota taxonomic and functional 
diversity association with type I diabetes (Leiva-Gea, et al., 2018), there has 
been intense research with promising outcomes (Qin J. , et al., 2012); (Zhou, et 
al., 2019); (Sikalidis & Maykish, 2020); (Doumatey, et al., 2020); (Kostic, et al., 
2015).  
Asthma/allergy: numerous studies have explored the association between gut 
microbiota and the risk of developing childhood asthma or allergies (Depner, et 
al., 2020). Findings from longitudinal studies in (Joseph, et al., 2016) and 
(Metwally, et al., 2019) show potential of using microbiome profiles for allergy 
prediction.  
Thus, there are many reasons that are contributing to generate considerable 
interest in terms of explaining the role of the human microbiome in health.   

 

Microbiota is essential for the correct functioning of our organism in many ways. 
Further, it enlarges the genetic and functional capability of its host. There has 
been intense study of the role and function of the human microbiome in 
maintaining a healthy state. Some of the tasks that the microbial community 
performs, that contribute to healthy state are: (i) protecting against infections 
and harmful pathogenic organisms by shaping the immune response and being 
partly responsible of maintaining and developing a healthy immune system 
(Hooper & Gordon, 2001), (Bengmark, 2013) and (Weng & Walker, 2013), (ii) 
providing essential nutritional compounds (chemical transformations), (iii) 
participating in the metabolism of xenobiotics (Clayton, Baker, Lindon, Everett, 
& Nicholson, 2009), (Carmody & Turnbaugh, 2014) and drugs (Li, He, & Jia, 
2016) (Weersma, Zhernakova, & Fu, 2020), (iv) degradation of indigestible 
components of the host diet like polysaccharides (Turnbaugh, et al., 2009) and 
general aid in the digestion of food.  

The importance of microbiome research has been presented, but to reveal 
valuable insights for clinical applications, realistic and accurate analysis of the 
microbiota must be done.  Therefore, in this work we will focus on investigating 
the dynamics of human microbiome which is in fact its real nature.  The 
microbiome of a human being matures and establishes in early life and keeps 
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changing across lifetime. That is why many studies have focused on 
characterizing microbial communities following infant subjects from pre-term 
throughout their first months of life (La Rosa, et al., 2014), (Lugo-Martinez, 
Ruiz-Perez, Narasimhan, & Bar-Joseph, 2019), (Kostic, et al., 2015) and 
(Rouhani, et al., 2020). Some interesting areas of research related to the human 
microbiome dynamics are the temporal variability in healthy adults, the 
response (dynamic) to external and internal perturbations such as diet or 
environment and the associations of microbiome changes with host disease 
(Gerber, 2014). MDSINE (Bucci, et al., 2016) is a computational tool 
incorporating an algorithm for predicting dynamics of host-microbial 
interactions using time-series data. However, some limitations of this work need 
to be addressed. The framework presented is relatively general (captures only 
pairwise microbe-microbe interactions) and relies on a series of approximations 
to the underlying dynamical systems model (Lotka-Volterra dynamical systems). 
Moreover, results only cover simple systems (mice) instead of the complex 
human microbiota. (Ridenhour, et al., 2017) presented a study of the temporal 
variation of microbial communities. They used an ARIMA model with elastic net 
regularization to estimate ecological interactions and microbial dynamics from 
16S sequencing data. In (Faust, Lahti, Gonze, de Vos, & Raes, 2015) authors 
studied the potential of time-varying networks and time series tools to capture 
temporal variation of microbial communities in response to perturbations. Their 
results pointed out how longitudinal analysis can reveal insights into microbial 
ecosystem dynamics and aid to explain what perturbations (external or internal 
factors) modulate microbe dynamics and stability.  These studies remark the 
importance of developing robust time-series analysis in order to uncover 
insights into microbial interactions and dynamics.  

There are several different factors that have been clearly identified for driving 
the changes in the microbial community such as: (i) antibiotics (Buffie, et al., 
2012), (Pérez-Cobas, et al., 2013), (Theriot, et al., 2014), (Ramirez, et al., 2020), 
(Pérez-Cobas, et al., 2013); (ii) human dietary lifestyle and habits (David, et al., 
2014), (Asnicar, et al., 2021), (Berry, et al., 2020), (McNulty, et al., 2013); (iii) 
host internal process such as hormonal cycles; (iv) pregnancy (Romero, et al., 
2014), (Ferrocino, et al., 2018), (Rothenberg, Wagner, Hamidi, Alekseyenko, & 
Azcarate-Peril, 2019); (v) host disease status (Silverman, 2019), (Baldini, et al., 
2020), (Qin J. , et al., 2012); (vi) other microbe-microbe interactions and 
exchange with external environment or other hosts.  

One of the most important features of microbiome is its diversity. We know that 
microbiome can differ within the same organism, for example, microbiome of 
the small intestine differs from the oral microbiome. Furthermore, the diversity 
of the  microbiome between two different individuals (only share 10-20%) is 
immense compared to the differences between their genomes (99.9% identical) 
(Ursell, Metcalf, Wegener, & Knight, 2012). The fact that individual species are 
not commonly shared across the human ecosystem makes the field of microbial 
research both intriguing and complex at the same time. Moreover, in this 
context of microbiome diversity, recent findings suggest that, rather than 
focusing on identifying the microbiome composition of each individual, the 
importance of microbiome research lies in its functionality given that different 
microbial species can carry out equivalent metabolic functions and the same 
species, different functions. 

Findings have revealed there is a relationship between microbiome and disease 
status, but is this association causal or causative? Is it due to causation or 
correlation? Microbiome research studies have already demonstrated 
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correlation and they are starting to transition towards causation. Although this 
remains a major challenge in current studies, recent publications have shown 
promising results for validating causal relationships. For example, (Sanna, et 
al., 2019) observed significant causal relationship between a specific microbial 
pathway (4-aminobutanoate degradation) and an increase in insulin secretion. 
(Koh, et al., 2020), identified in an animal model a microbe that produced a 
metabolite, Imidazol propionate, that promotes insulin resistance and impairs 
glucose metabolism. Therefore, this could act as a potential biomarker for type 
II diabetes. (Ridaura, et al., 2013), used the Missouri adolescent female twin 
study (MOAFTS) cohort to study fecal microbiota from twins discordance for 
obesity to demonstrate the influence of host obesity-associated phenotype. 
(Koeth, et al., 2013) results suggest that trimethylamine-N-oxide (TMAO) 
produced by gut microbiota contributes to atherosclerosis and cardiovascular 
disease risk.  (Sampson, et al., 2016) reported that altered gut microbiota 
promotes α-synuclein-mediated motor deficits and brain pathology reducing 
microglia activation and enhancing Parkinson’s disease neurological and motor 
dysfunction.  

Experimental evidence through fecal microbiota transplantation (FMT) has been 
a major contributor in explaining the causal role of microbiota in disease. This 
procedure consists of transplanting microbial communities from mice, humans, 
and other organisms into germ-free (GF) animals (de Groot, Frissen, de Clercq, 
& Nieuwdorp, 2017). It is important to be aware that this approach may not be 
valid to every condition. Several studies have employed FMT to demonstrate 
causality and relationship between gut microbiota and disease (Turnbaugh, et 
al., 2009), (Arrieta, et al., 2015) and (Lopez & Grinspan, 2016). (Korpela, et al., 
2020) showed the ability of maternal FMT during postnatal period for restoring 
the intestinal microbiota in cesarean section born infants. In 2013, the United 
States Food and Drug Administration approved FMT for clostridium difficile (C. 
difficile) infection in patients who have not responded to standard therapies 
(Wang, et al., 2019). Nevertheless, serious adverse events have been reported 
and have raised the alert of potential risks associated with this procedure 
limiting its use to experimental studies with human microbiota associated 
(HMA) murine models, rather than clinical use as a microbiome therapy. HMA 
murine models remain an interesting approach to establish causal relationships 
between altered (dysbiotic) gut microbiomes and human disease.  

Latest studies are starting to move towards multi-omic approaches. The 
development of innovative systems biology techniques –such as genomics, 
metabolomics, transcriptomics, and proteomics– present an opportunity to 
understand the complex interactions and nature of pathologies. They allow 
direct analysis of genes, transcripts, metabolites, and proteins from biological 
samples of the microbiota (Segal, et al., 2019). Approaches that combine 
information from multiple data sources, such as metatranscriptomics, 
metaproteomics and metabolomics, have gained popularity due to their ability 
to provide deeper understandings into functional changes that occur in the 
microbiome over time (Gerber, 2014). Incorporating multi-omics in our study is 
key to answer the main questions we are interested in such as ‘What are 
microbiomes doing’ ‘What functional chemistry is being carried out?’ or ‘What 
environmental products are consumed and excreted?’. Also, it is essential to 
answer questions like ‘How are they doing it?’, ‘Which enzyme pathways are 
present?’ or ‘How is the pathway activity?’ In this study, we will aim to give 
answer to four specific key questions outlined in Section 3.1. Figure 2 shows an 
overview of the different multi-omic approaches in microbiome research that we 
will present next.  
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Figure 2: Overview of multi-omic approaches. 

 

Promising results from (Yang, Karr, Watrous, & Dorrestein, 2011), (Lamendella, 
VerBerkmoes, & Jansson, 2012), (Mallick, Franzosa, Vatanen, Morgan, & 
Huttenhower, 2017) or (Cammarota, et al., 2020) have remarked the usefulness 
of integrating omic datasets to help unravel taxonomic and functional changes: 
what are microbes doing and how do they interact between them across time 
(Bodein, Chapleur, Droit, & Lê Cao, 2019). 

 
Figure 3: Meta-omic approaches (Vanwonterghem, Jensen, Ho, Batstone, & Tyson, 2014). 

 



 
 

10 
 

Metagenomics consists of the analysis of sequenced reads, namely genetic 
material, or metagenome, of microbial community or environment to determine 
the profile of microbial taxa (Figure 3). (Handelsman, Rondon, Brady, Clardy, & 
Goodman, 1998) described for the first-time metagenomics, a DNA sequencing 
approach to study the complex gut microbial community. This methodology 
allows us to analyze the bacteria in their natural state and define the whole 
structure of microbial communities.  
 
Metatranscriptomics is the field that studies the genes that are expressed by 
the microbiota genes (or the community). Therefore, the analysis of 
metatranscriptomics data enables understanding how the microbiome responds 
to the environment (Figure 3). It helps answering questions of interest such as 
“What are the microorganisms doing?” and “Which functions are performed by 
the microorganism?”. HUMAnN (Franzosa, et al., 2018) is the tool used to 
identify functions and pathways of expressed genes (gene family abundances) 
and how they contribute to microbiota community. It is crucial to analyze the 
different omics together in order to avoid wrong interpretation of results. When 
analyzing metatranscriptomics data isolated, the transcript abundance can be 
confounded with the underlying gene copy number. For example, transcript X 
may be more abundant in sample A relative to sample B because there are more 
copies of gene X in sample A relative to sample B (all of which are equally 
expressed) (Jagtap, et al., 2021).  
 
Metaproteomics was originally defined (and still holds) as the characterization 
of the protein complement of environmental microbiota at a given time point 
(Wilmes & Bond, 2004), namely the study of proteins expressed by members of 
the microbiota (microbial proteome). The main advantage of metaproteomics is 
that it provides the phenotypes of microorganisms on the molecular level. This 
means it can help scientists study the structure, metabolism, and physiology of 
microbial community members.  
 
Metabolomics is the study of metabolites originated by the microbiota. 
Metabolomics, the latest of the ‘omics’ sciences, has progressively been gaining 
dominance and importance since it started emerging at the beginning of the 
1990’s. Metabolomics studies the set of metabolites present in a biological 
system, particularly in biofluids such as urine or blood. While genomics and 
proteomics give us information of what could have happened (in a living 
organism), metabolomics can reveal what is happening at present, and therefore 
help characterize phenotype of organisms. This can be very interesting in 
personalized medicine, where knowledge of metabolomic variables can serve to 
predict the reaction of a human to the administration of drugs, in such a way 
that the treatment could be individualized for each patient, choosing the best 
active ingredient and the most effective dose, reducing the risk to a harmful 
reaction. In metabolic pathways, a series of linked reactions take place, where 
an input (product of one reaction) is processed to produce an output product 
(substrate for next reaction), just as a fundamental software tool is programmed 
following an input-process-output model. Being able to identify, characterize, 
and simulate metabolic pathways constitutes a research area of broad and 
current interest. Scientists believe these small molecules are the means of 
communications between microbes and microbes and with their host (human 
cells). As seen earlier in this work, gut microbiota is involved in the creation of 
specific metabolites that affect important immune functions crucial for 
preventing health disorders.  
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As a whole, microbiome research has proven to have immense potential in the 
field of personalized medicine since each individual has different traits and a 
unique signature that can be represented by the microbiome. This will represent 
a relevant growing area of microbiome research in the upcoming years.  

Biomarkers serve a crucial role in clinical research as they provide us with: 

 Pharmacokinetics analysis  
 Monitoring effectiveness 
 Early detection of relapses  
 Monitoring of safety/toxicity parameters 
 Learning the drug mechanism of action 
 Exploration of resistance mechanisms 

For example, personalized medicine could be used to develop precision oncology 
for creating targeted therapy and immunotherapy. The microbiome signature 
we aim to characterize through our model could potentially serve as a biomarker 
for patient condition prediction and stratification. Increased use of 
metabolomics in the study of the microbiome will possibly allow broadening the 
search of biomarkers involving the presence of metabolites derived from 
microbial activity with certain pathologies and thus reducing interindividual 
variability. Some examples of potential biomarkers identified in the literature 
are Fusobacterium nucleatum (colon cancer), Faecalibacterium praustnitzii 
(Crohn’s disease). 

 

In order to fully understand our problem and our data it is important to first 
introduce how microbiome data is generated. The sampling method, sequencing 
strategy and experimental setup you choose will affect the makeup of the 
studied community and the perceived abundance of bacteria in that ecosystem. 
Traditionally, scientist used to cultivate bacterial communities by isolating a 
specific strain, purifying it and sequencing its genomes, but the problem is the 
majority of bacteria in the environment is uncultivable. The field of 
computational biology and genomics experienced a major development due to 
high-throughput sequencing technologies. Over the years it became 
increasingly dependent on using DNA/RNA sequencing techniques. Currently 
data generation reaches the order of tens of thousands of genes sequenced in a 
single experiment (McGuire, et al., 2020).  For metagenomics and microbiome 
analyses, we will be introducing 16S ribosomal RNA (rRNA) sequencing. A 
common strategy is to sequence a specific region of the genome, such as the 
16S rRNA. This region is a ubiquitous conserved region used to identify, amplify, 
and sequence the genes. Most microbiome data are generated either by (a) 
targeted amplicon sequencing (usually region of 16S ribosomal RNA gene) or (b)  
by metagenomic shotgun sequencing.  

A summary of the complete overview of the workflow for microbiome data 
analysis is presented in Figure 4. Once the data is generated, it is common for 
data relating to the microbiota to be organized into so-called operational 
taxonomic units (OTUs), that is, clusters of similar gene sequences. OTUs 
represent the abundance of particular bacteria.  
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Figure 4: The general workflow for microbiome data analysis for both amplicon sequence variants 

(ASVs) and operational taxonomic units (OTUs).  

 

In our goal of making microbiome research straightforward and comprehensible 
to computer scientists or other researchers initiating in the field, in Table 1 we 
present a comparison between both approaches pointing out their 
corresponding advantages (highlighted in green) and disadvantages in order to 
aid in the decision of  what would be the best technique according to the aim of 
their microbiome study.  

 
SEQUENCING METHOD 

Amplicon (e.g.: 16S rRNA marker 
gene) 

Whole Genome Shotgun (WGS) 

 Most widely used so more 
available data sets and analysis 
pipelines. 

Expensive sequencing cost.  

Technical variation from multiple 
sources and batches. Technical 
factors include DNA extraction, PCR 
primers, sequencing platforms or type 
of sequence reads (Costea, 2017). 

 Less sensitive to technical 
differences in temporal dynamics 
of microbiome (Wirbel, et al., 
2019), (Voigt, 2015).  

 Most common and cost-effective. 

 

Higher computational cost (both data 
and computing intensive for 
analysis). Memory-RAM intensive. 

Only genus level resolution.    Expanded taxonomic resolution to 
species-level. 

Bacterial coverage only. Able to identify species from all 3 
taxonomic domains (bacteria, 
eukaryotes and archaea). 
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Does not directly quantify gene and 
functions. Limited applicable range 
for functional profiling. 

 Allows analysis of gene functions. 

Reliability of bacterial classification 
decreases below genus level. It has 
poor specificity.  

 Offers the possibility to analyze 
strain or even SNP level dynamics 
of the microbiome. 

 Low risk of false positives. High risk of false positives.  
Table 1: Amplicon sequencing vs. shotgun metagenomic WGS: sequencing methods comparison. 

 

Apart from relative abundances of taxa, microbiome diversity can be analyzed 
by two methods: α-diversity analysis and β-diversity analysis. α diversity 
describes the diversity within sample/community, that is, species richness and 
evenness. For instance, the gut microbiota of lean individuals has been found 
to be significantly more diverse that those of obese individuals. βeta diversity on 
the other hand, describes diversity between communities/samples, namely 
differences in microbial composition between communities. It is a useful 
measure to understand how samples vary against each other. This rational is 
similar to the  ‘clustering’ algorithms that show differences or similarities among 
samples. Popular metrics used to estimate distance between communities on 
16S rRNA gene-based studies are those based on phylogenetic similarity. Once 
β diversity has been measured, the dataset can be visualized by principal 
coordinate analysis (PCoA). PCoA is an ordination technique widely described in 
the literature for analyzing the composition of different microbiomes. For 
example, explaining the differences in gut microbiome between non IBD and 
IBD patients. Some popular distance metrics used for comparing microbial 
communities are: UniFrac (Lozupone & Knight, 2005), Weighted UniFrac 
(Lozupone, Hamady, Kelley, & Knight, 2007), Bray-curtis (Bray & Curtis, 1957), 
Jaccard similarity coefficient.  
Once data is generated and grouped into clusters, microbiome data analysis 
techniques to be performed can be placed into four general categories (Dhariwal, 
et al., 2017): 

1. Taxonomic profiling: to characterize community compositions based on 
methods developed in ecology such as α-diversity (within-sample diversity) 
or β-diversity (between-sample diversity) 
 

2. Functional profiling: to assign genes into different functional groups (i.e. 
metabolic pathways or biological processes) to understand their collective 
functional capacities. Usually when functional profiling is required, shotgun 
sequencing technique is preferably used. 
 

3. Comparative analysis: to identify features that are significantly different 
among conditions under study. 
 

4. Meta-analysis: to integrate user data with public data or knowledge 
accumulated for improved statistical power or biological understanding. 

 

Resources as well as problems regarding downstream analysis of microbiome 
data are discussed in later sections. Nevertheless, a deeper analysis of the 
technologies and biological experimental setup for microbiome research is 
beyond the scope of this Master thesis.  
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2.1.2 Inflammatory Bowel Disease 
 

Inflammatory bowel disease is a chronic inflammatory disorder of the 
gastrointestinal tract which comprises Crohn’s disease (CD) and ulcerative 
colitis (UC) (Gubatan, et al., 2021). IBD affects several million individuals 
worldwide and is one of the most-studied imbalances between microbes and the 
immune system. Crohn's disease and ulcerative colitis are complex disorders 
that are heterogeneous at the clinical, molecular, genetic, and microbial levels. 
IBD is a chronic disease characterized by periods of relapse and remission 
(symptom-free periods) (Liverani, Scaioli, Digby, Bellanova, & Belluzzi, 2016).  

Still, after several years of research, scientists have not yet found a specific 
pathogen causing IBD, on the contrary to other diseases, and so it is believed 
that it is the overall microbial ecosystem dysbiosis causing IBD. Many studies 
have focused on demonstrating that disrupted composition of the gut microbiota 
is associated to patients with IBD (Franzosa, et al., 2019), (Lloyd-Price, et al., 
2019), (Madgwick, et al., 2020), (Hacilar, Nalbantoglu, O, & Bakir-Gungor, 
2020) and (Wang, et al., 2021). Even so, there is still a great need to develop a 
comprehensive map to understand the nature of microbial changes that will 
allow improvement of future diagnostic and therapeutic approaches in IBD.  

Aside from the medical relevance of this chronic disease, we chose to focus on 
this disorder as the gut microbiome has been the most widely investigated area 
of the human microbiome providing us with considerable biological and clinical 
background we could use for validation and interpretation of our results. 
Moreover, the integrative Human Microbiome Project (Integrative HMP (iHMP) 
Research Network Consortium., 2014) offered us a dataset with all the inclusion 
criteria we needed: longitudinal, multi-omic, publicly available human 
microbiome dataset.  

 

2.1.3 Databases, datasets and computational tools 
 

One of the most important research programs in the field of microbiome analysis 
is the Human Microbiome Project (HMP), supported by the National Institutes 
of Health (NIH) common fund. The main goal of the study was to accelerate the 
classification of human microbiota and its impact in human health and diseases 
(Peterson, et al., 2009). The project was divided in two phases. Phase 1 (2008-
2013) covered the characterization of the microbiomes of healthy human 
subjects at five major body sites: gastrointestinal tract, mouth, vagina, skin, 
and nasal cavity. The techniques used were 16S and metagenomic shotgun 
sequencing. Phase 2 (2013-2016), also known as the integrative human 
microbiome project (iHMP), generated resources to aid in the characterization of 
microbiome and human host from three different cohorts of microbiome-
associated conditions:  

 Pregnancy and preterm birth: MOMS-PI. 
 Onset of inflammatory bowel disease: IBDMDB.  
 Onset of type II diabetes: T2D. 

The techniques used are multiple omics technologies. The iHMP (Integrative 
HMP (iHMP) Research Network Consortium., 2014) is one of the largest open 
data resources for studying longitudinal microbiome alterations and relation to 
disease. It is open source, but its download is not intuitive and requires Aspera 
client. The HMP Data Portal can be accessed by the following link: 
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https://portal.hmpdacc.org/. Currently, Bioconductor package “HMP2Data” is 
under review to access the three datasets in the R environment which we have 
found to be more convenient and straightforward.  

In general terms, the field of microbiome research counts with a considerable 
amount of publicly available resources and databases designed to address a 
variety of problems. We aim to present the most common ones used in the 
literature that are readily encountered in the majority of studies.  

 ML Repo (Vangay, Hillmann, & Knights, 2019) (https://knights-
lab.github.io/MLRepo/). The Microbiome Learning (ML) Repo is a curated 
repository with the aim of explicitly defining a total of 33 classification and 
regression tasks. Metadata files are task specific. ML Repo includes both 
amplicon-based and shotgun metagenomics datasets. One of the advantages 
offered by this tool is, it is easily accessible web-based interface. In total it 
integrates data from 15 publicly available human microbiome datasets.  
 

 curatedMetagenomicData (Pasolli, et al., 2017) is a microbiome-based 
curated repository offering a collection of shotgun-metagenomics datasets 
with varying human sample types with gene, pathway, and taxonomic 
abundance tables. Its data is only accessible via Bioconductor package 
(https://www.bioconductor.org/) and are stored as ExpressionSet objects 
which integrate metadata and abundance data. It is relevant to point out 
that this tool is directed specially to bioinformatic experts.  

 
 MicrobiomeHD (Duvallet, Gibbons, Gurry, Irizarry, & Alm, 2017): is a 

microbiome-based curated repository presenting easily accessible taxonomic 
abundance tables with curated metadata. One drawback is its limitation 
only to amplicon-based sequencing data, human stool samples and case-
control responses.  

 
 GMrepo (Wu, et al., 2020): is a curated database of consistently annotated 

human gut metagenomes. GMrepo contains 66,133 human gut 
runs/samples from 295 projects; they are associated with 94 human 
phenotypes. 

 
 Mockrobiota (Bokulich, et al., 2016): is a public resource for microbiome 

bioinformatics benchmarking using artificially constructed communities. 
Mockrobiota ensures data integrity and facilitates the microbiome research 
community manages replication and consistency across studies. 

 
 KEGG: The Kyoto Encyclopedia of Genes and Genomes (Goto, et al., 1997) 

was developed by Kanehisa Laboratories in 1995 with the goal to store 
functional aspects of genomes based on the concept of binary relation 
between two molecules. Currently it can easily be considered one of the 
principal reference knowledge base sources of information of large-scale 
molecular data sets. Its specific database for pathway maps ’KEGG Pathway’ 
covers 537 pathway maps. Its latest new approach (Kanehisa, Sato, 
Furumichi, Morishima, & Tanabe, 2019) incorporates adequate knowledge 
representation for human genomes, specifically health-oriented information 
(human gene variants disease related). 

 
 MicrobiomeAnalyst (Dhariwal, et al., 2017): is a web-based application to 

support microbiome data analysis providing comprehensive statistical data 
analysis, visualization, and meta-analysis for abundance tables and BIOM 
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outputs. An important limitation of the tool is that it does not support multi-
omic approaches and only handles taxonomic data as input (e.g.: OTU table, 
taxon list).  

 
 QIIME (Caporaso, et al., 2010): is a widely extended analysis pipeline to deal 

with amplicon and metagenomic sequencing data. The tool helps scientist 
assign sequences to samples, cluster sequences of closely related organisms 
and perform statistical and visualization analysis. QIIME stands out for 
allowing the user to try many functionalities at different points of the whole 
analysis. For instance, when performing OTU picking the user can choose 
from diverse methods such as BLAST, UCLUST, CD-HIT or even mothur 
(Schloss, et al., 2009).  

 
Typically, software tools presented above will ask the user to input a raw 
sequence data file in one of the following common data formats found in 
microbiome research: 

 FASTA. A popular text format in the field of molecular biology for storing 
nucleotide and protein sequences.  

 FASTQ. A format used for the output text file produced by biological 
sequencing techniques. The file contains the sequence reads and quality 
metrics or score for each sequence. If FASTQ file of 16S sequences contains 
primers and barcodes, a de-multiplexing step is required in order to split 
sequences by barcodes and one file per sample. 

 BIOM, the biological observation matrix format (McDonald, et al., 2012) is a 
JSON-based file format for presenting sample and observation metadata. 

Other open-access repositories and data-sharing platforms that are frequently 
consulted when conducting microbiome studies include but not limited to: 

 Qiita microbial study management platform (https://qiita.ucsd.edu/).   
 NCBI-SRA, the National Center for Biotechnology Information (NCBI) 

Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra).  
 European Bioinformatics Institute (EBI) European Read Archive (EBI 

Metagenomics) (https://www.ebi.ac.uk/metagenomics/). 

Problems with these sites is that most samples are organized by study and 
stored as raw or clean DNA sequences. Furthermore, metadata among studies 
is generally not unified, that is, every scientist uses their own protocol and 
structure.   
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2.2 Machine Learning in Microbiome Research 
 

 

Machine learning (ML) methods are a well-suited solution for handling 
microbiome analysis, unlocking its full biological and clinical potential, as it is 
designed to be applied to large number of predictor variables, even sparse data 
and can learn predictive models indicating which predictor variables are 
important. Traditional biostatistical analytical methods are sometimes 
ineffective and limited compared to ML techniques given the inherently noisy 
and highly variable nature of microbiome data. The idea behind using ML and 
AI approaches is to aid in reducing the search of potential drivers of diseases 
coming from large scale human microbiota datasets. ML is also helpful when we 
have a hard classification task and there are no obvious keystone species 
identified by just using statistical analysis (Li, Zhang, Wu, Zhou, & Xu, 2018).  

Furthermore, the gaining relevance of ML is demonstrated by initiatives like the 
European Cooperation in Science and Technology COST Action CA18131: 
Statistical and machine learning techniques in human microbiome studies. The 
main aim and objective of the Action is to create productive symbiosis between 
discovery-oriented microbiome researchers and data-driven ML experts, and to 
optimize and then to standardize the use of said techniques, following the 
creation of publicly available benchmark datasets.  

There are many efforts into developing models and tools in the field. However it 
has not been until recent years, that more studies have been starting to explore 
the power of ML methods to predict host traits from microbiome patterns 
(Knights, Costello, & Knight, 2011), (Larsen & Dai, 2015), (Moitinho-Silva, et al., 
2017). In (Fukui, et al., 2020) the authors used LASSO regularized multiple 
logistic regression to analyze fecal gut microbiota data from IBD patients with 
the aim of establishing an objective diagnostic tool. Although preliminary results 
suffer from a number of limitations (e.g. lack of multi-omic integration) it 
represents a good example of the usefulness and power of ML in disease-
associated microbiome data. (Hacilar, Nalbantoglu, O, & Bakir-Gungor, 2020) 
used supervised and unsupervised ML algorithms to identify bacteria species 
as potential IBD biomarkers. Hacilar points out the importance of feature 
selection methodologies such as extreme gradient boosting (XGBoost) or 
conditional mutual information maximization (CMIM) to select features based 
on their relevance as metagenomic data is commonly characterized by having 
larger number of predictors (taxa) compared to the number of samples. The 
unsupervised learning approach described in (Shomorony, et al., 2020) also 
contributed to demonstrating the power of employing ML models on multimodal 
data for discovery of novel biomarkers and disease signatures. In addition, the 
study evidences the applicability of the approach on longitudinal data.  

A recent review of the literature on this matter (Namkung, 2020) found that the 
random forest has proven to outperform other ML methods when analyzing 
microbiome profiles associated with disease status. (Cammarota, et al., 2020) 
also offered an overview of the role and limitations of ML driven approaches and 
how their flexibility can be exploited to address numerous potential applications 
in clinical settings. The author alerts the reader about how the quality and 
amount of input data are determining factors in the whole ML process.  

Current research focus is shifting towards causality and complex modeling for 
clinical applications of diagnostics, prognostics, and therapeutics, where ML  
models have shown promising applications. Additionally, several studies have 
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pointed out the need for integrating metatranscriptomics and metabolomics to 
measure microbial functions (Heshiki, et al., 2020). For instance, (Gupta, et al., 
2020) used species-level abundances in their random forest-based classifier for 
prediction of disease. The solution presented, the Gut Microbiome Health Index 
(GMHI), is a robust index for evaluating health status based on the species-level 
taxonomic profile of a stool shotgun metagenome (gut microbiome) sample. 
However, (Gupta, et al., 2020) declared one main weakness of their study was 
precisely not incorporating metagenomic functional profiles.  

With this in mind, we would like to enumerate a series of  potential input 
features in microbial studies to build a richer and more informative classifier or 
ML model: relative abundance of taxa vectors (from 16S rRNA gene sequence), 
sample-by-taxon abundance matrix, abundances of functional genes, OTUs, α-
diversity and β-diversity, MetaPhlAn2 species-level relative abundances, 
MetaPhlAn2 strain-specific markers presence (or species) or relative abundance 
of each metabolic pathway (metatranscriptomics). 

 

There is still a lack of good standardized analytical framework protocols and ML 
knowledge in the microbiome community. Thus, further intense work is needed 
to bridge the gap between microbiome researchers and computer scientists in 
the correct implementation and usage of these approaches. ML models will 
assist to provide systematic insights into possible causal or contributing roles 
of the microbiome. However, many experts in the community contend there is 
still considerably uncertainty in causal mechanisms and thus this remains an 
active area of research (Topçuoğlu, Lesniak, Ruffin, Wiens, & Schloss, 2020).  

 

 

2.2.1 Bayesian networks  
 

 
Among all the different ML approaches and models, BN-based analysis is 
certainly one of the most biologically interpretable (Wang, et al., 2019). The need 
for explainable artificial intelligence models is highly demanded by microbiome 
researchers nowadays. Therefore, in this work, we will focus on the application 
of BN to the microbiome research field.  

A BN (Pearl, Probabilistic Reasoning in Intelligent Systems, 1988) can be defined 
as a graphical model used to describe the joint probability distribution over a 
set of random variables. By means of a directed acyclic graph (DAG), conditional 
(in)dependence relations (that can be causal under some circumstances) are 
represented by arcs, and random variables by nodes. This model offers an 
intuitive and solid approach to modelling uncertain knowledge.  

In order to construct a BN, the structure S (DAG) which expresses the 
conditional (in)dependencies among triplets of variables and the parameters θ 
of the model that determine the conditional probability distributions need to be 
learned from observational data. Nevertheless, this task is nontrivial 
(Chickering D. , 1996), and has aroused considerable interest in the scientific 
community as many other NP-hard problems. Methods that address the 
challenge of learning causal structure from data can be classified in three main 
groups: constraint-based, score-based and hybrid methods. 
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Constraint-based methods (Spirtes, Glymour, & Scheines, Causation, prediction, 
and search, 1993) involve the use of statistical tests to discover conditional 
independencies between variables which are then employed to define the 
structure that represents these relationships. The three main steps that every 
method of this kind follow, given observational data are: (1) learn the skeleton 
of the network (undirected graph), (2) set all the directions of the v-structures, 
and (3) set all the directions of other arcs. The main method is the PC algorithm 
(Spirtes, Glymour, & Scheines, Causation, prediction, and search, 1993).  

Score-based methods consists of giving a score to each DAG according to its 
ability to fit the given data based on a metric function and a heuristic method 
to search the space of solutions such as a greedy search (Cooper & Herskovits, 
1992). For other examples of this method and a deeper understanding of its 
mechanism, the following articles can be reviewed: (Chickering D. , 2002); (Cano, 
Gomez-Olmedo, & Moral, 2008) and (Niinimaki & Parviainen, 2012).  

Hybrid methods imply a combination of both above techniques in one algorithm 
such as the well-known technique Max-Min Hill Climbing (MMHC) 
(Tsamardinos, Brown, & Aliferis, 2006). 

Inductive causation (IC) algorithm (Pearl & Verma, 1991) provided the first 
framework for learning the skeleton of a Bayesian network by using a backward 
strategy that starts with a complete graph that will be pruned following the 
results of statistical tests for conditional independencies. IC was closely followed 
by SGS algorithm (Spirtes, Glymour, & Scheines, 2000) and by the most popular 
method, the PC algorithm which constitutes both the first practical 
implementation and the improvement of the former algorithms. PC algorithm 
composed of two principal steps: (i) find the skeleton (detection phase) and (ii) 
make orientation of the edges (orientation phase). They showed the relevance of 
causal Markov and causal faithfulness assumptions for linear models. The 
Markov blanket of a random variable X in a BN, under the faithfulness 
assumption, consists of the union of the set of nodes (parents, children, and 
parents of children) (Pearl & Verma, 1990) of X. Therefore, the Markov blanket 
is the minimal set of nodes for which X is conditionally independent of all other 
nodes (Borchani, Bielza, Martínez-Martínez, & Larrañaga, 2012).  

Other important local methods are: Grow Shrink, GS (Margaritis, 2003) and 
Incremental Association Markov blanket, IAMB (Tsamardinos & Aliferis, 2003) 
both of them follow a forward step-wise selection Markov blanket detection 
approach, so the learn in first place the Markov blanket of each node simplifying 
the identification of neighbors and hence reducing the number of conditional 
independence tests that need to be computed. 

Several algorithms have been proposed that extend the PC algorithm. First, 
some of them focus on improving the efficiency in high-dimensional spaces and 
increasing data size such as the semi-interleaved HITON-PC (Aliferis, Statnikov, 
Tsamardinos, Mani, & Koutsoukos, 2010), the PC extension of (Kalisch & 
Bühlmann, 2007) and (Harris & Drton, 2013), parallel PC (Le, et al., 2015) and 
the reduced-PC algorithm (Sondhi & Shojaie, 2019).  

A well-known extensions of IAMB algorithm is the Interleaved incremental 
association (Inter-IAMB) algorithm (Yaramakala & Margaritis, 2005) manages to 
reduce and avoid false positives in the Markov blanket detection phase.  

Second, some important variants of the PC algorithm are: PC-stable, 
Conservative PC and Adjacency Conservative PC algorithm.  The PC-stable 
algorithm (Colombo & Maathuis, 2014) manages to implement the order-
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independency of input variables and obtain solid results. Order-dependence is 
one of the mayor drawbacks of PC-based methods as it limits its applicability to 
real-world problems and introduces errors. It has been targeted and solved in 
other work such as (Qi, Fan, Gao, & Liu, 2019). Conservative PC (CPC) (Ramsey, 
Zhang, & Spirtes, 2006), is an extended version of PC that aims at detecting 
violations of orientation-faithfulness in the orientation phase. The Adjacency 
Conservative PC algorithm (ACPC) (Lemeire, Meganck, Cartella, & Liu, 2012) 
extends the CPC algorithm but in this case, it detects violations of adjacency-
faithfulness. 

Once the structure of the network is known, the conditional probability 
distributions of each random variable (node) given its parents can be estimated. 
One approach to learning parameters for BN modeling is maximum likelihood 
estimation. The goal of this statistical method is to maximize the probability of 
obtaining  for a specific value of , where  = {x(1), x(2),…,x(N)} represents the 
data set given the BN model . This operation results in the likelihood function    

. An alternative approach is to use Bayesian estimation based on prior 
knowledge as a prior joint distribution over the parameters or structures. 

When using BN, we would commonly be interested in capturing reasoning 
patterns under uncertainty. BNs allow us to do this by computing the 
distribution of some set of variables which we have not observed, a process 
known as probabilistic inference. In the simplest case, given an observation 
(evidence)  we can query the model to calculate the posterior probability of a 
target variable(s) or node Xj: . Multiple methods have been developed over 
the years to perform approximate inference  (Henrion, 1990), (Shachter & Peot, 
1990), (Golightly & Wilkinson, 2011) instead of exact inference as this latter 
case implies an intractable (NP-hard) problem for densely connected BNs. 
Nevertheless, (Dagum & Luby, 1993), demonstrated that even approximate 
inference is NP-hard.  

An important consideration to take into account when working with BNs is the 
type of data being studied. Variables included in the network can be discrete or 
continuous and according to this, a different type of assumptions and 
parametric distributions will be estimated for the nodes. In the case of 
microbiome data, we will typically be dealing with continuous data.  Most 
commonly used parametric distribution for this case would be Gaussian or 
Gaussian mixture model (Vatanen, et al., 2012) which models all conditional 
distributions as linear Gaussians and all continuous nodes follow a multivariate 
normal distribution N( x|μ, Σ). However, we could still be presented with the 
case where we have both continuous and discrete variables in the same dataset 
such as clinical variables (continuous) and pathway abundances (discrete).  

A conditional Gaussian Bayesian network (CGBN) models discrete nodes as 
conditionally independent probability distributions dependent on the values of 
their discrete parents and modeling continuous nodes as conditionally 
independent Gaussian distributions linearly dependent upon their Gaussian 
parents and with parameters conditioned on the values of the discrete parents.  

If the CGBN has a directed acyclic graph G over discrete variables Δ and 
continuous variables Ψ, where π(X) is the (possibly empty) set of parents of 
variable X according to G, and there is a set of conditional probability 
distributions P over Δ, and a set of conditional linear Gaussian density functions 
F over Ψ, then the model results in a multivariate normal mixture density over 
all variables (Madsen, 2008) is:  
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When π(X) is empty, P(X) and f(Y) are just (unconditional) probability or density 
functions, respectively.  

 

Therefore, as seen above, BN show great potential due to their ability to deal 
with uncertainties related to limited short and sparse data, and their power to 
detect informative patterns of the underlying system. Moreover, (Layeghifard, 
Hwang, & Guttman, 2017) discuss in their review the potential of network-based 
approaches applied to microbiome research. This work highlights that given the 
complexity and sparsity of microbiome data, network theory (e.g. probabilistic 
graphical models) provides a holistic approach for modeling biological systems 
and analyzing comprehensive interactions between microbial community 
members. Network biology constitutes a powerful tool for understanding of 
human microbiome, yet, due to its complexity in terms of implementation it still 
needs to be further developed.   

As seen in Section 2.1.1, being able to yield insights into the dynamic behavior 
of microbiota, identify patterns of variation in longitudinal microbiome data and 
link these to patterns of host status are key in the advance of microbiome 
research. In this context, dynamic Bayesian networks (DBNs) (Dean & 
Kanazawa, 1989) represent an important approach for time-series human 
microbiome data analysis. DBNs, extend BNs to model time-series data 
(dynamic systems) (Murphy K. , 2002), where at each (discrete) time instance t 
(or slice), nodes correspond to random variables at time t and directed edges 
correspond to conditional dependencies in the DAG.  

The edges of a DBN can be defined as (i) inter-slice arcs: the arcs that directly 
connect nodes from two consecutive time slices (ii) intra-slice arcs: the arcs that 
connect nodes from the same time slice. In DBNs certain assumptions are used: 
(i) first-order Markov assumption, i.e., so the probability of an observation at time 
t only depends on the observation at time t-1; (ii) stationarity, the data is 
generated by a distribution that does not change with time.  

The resulting DBN can be modeled for Xt = ( ,…, ), t = 1,…,T as shown in 
Figure 5 we have that, 

 

P(X1) (Xt  |Xt-1) = P(X1,…,XT) 

 

 
Figure 5: Example of a DBN. Prior BN (left) and transition BN (right) for three variables.  
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Due to the characteristics that microbiome data exhibit, with strong temporal 
fluctuations that we are interested in modeling, the use of DBNs can help us 
handle temporal behavior of the system, provide information about the ordering 
and dependencies between the time points or show how one 
taxon/pathway/metabolome influences another over time (the connections 
between nodes). Likewise, DBN are considered generative models which are an 
ideal tool for dealing with compositional data (microbiome data).  

Van Gerven and colleagues presented in 2008 one of the first publications to 
introduce the use of DBNs in the complex domain of medicine for prognostic 
prediction models.  DBNs have also been frequently applied in gene regulatory 
networks (Murphy & Mian, 1999), (Husmeier, 2003), (Zou, Denby, & Feng, 2009). 
Other studies like (Faust, Lahti, Gonze, de Vos, & Raes, 2015) did not cover the 
use of BNs, but they suggested that their method could be combined with DBNs 
to build a time varying DBN method. 

Despite the increasing interest microbiome research has arisen, to the best of 
our knowledge, very few studies have applied BN to human microbiome data. 
In Table 2 we resume the state of the art of BN applied to real human 
microbiome data. Studies appear in chronological order.  

 
# Study Method Dataset Longitudinal 

data 
Meta-
omics 

Goal 

1 (McGeac
hie, et 

al., 
2016) 

DBNs Prematu-
re infant 
gut (La 
Rosa, et 

al., 2014) Yes No 

Build a DBN 
model to identify 
important 
relationships 
between 
microbiome taxa 
and predict 
future changes 
in microbiome 
composition 

2 (Noyes, 
Cho, 

Ravel, 
Forney, 
& Abdo, 
2018) 

BNs Vaginal 
microbi-

ome 
(Ravel, et 
al., 2011) 

No No 

Demonstrate 
associations 
between 
women's sexual 
and menstrual 
habits, 
demographics, 
vaginal 
microbiome 
composition and 
symptoms and 
diagnostics of 
bacterial 
vaginosis (BV) 

3 (Lugo-
Martinez
, Ruiz-
Perez, 

Narasim

DBNs Infant 
gut (La 
Rosa, et 

al., 2014) 
Yes No 

Obtaining 
inferences from 
time-series data 
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han, & 
Bar-

Joseph, 
2019) 

4 (Howey, 
Shin, 

Relton, 
Davey 

Smith, & 
Cordell, 
2020) 

BNs Twins UK 
(Moayyeri

, 
Hammon
d, Hart, 

& 
Spector, 
2013) 

No No 

Possible causal 
relationships 
between 
metabolites and 
body mass index 
(BMI) 

5 (Jang, et 
al., 

2020) 

BNs Rectal 
cancer 

(Jang, et 
al., 2020) No Yes 

Reveal 
differential 
microbial 
communities 
and functions in 
terms of 
therapeutic 
responses 

6 (Kharrat 
N. A.-E., 

2019) 

BNs with 
the 

increm-
ental 

dynamic 
analysis 

(IDA) 
method 

Colorect-
al cancer 

(i) 
(Marchesi

, 2011) 
(ii) 

(Zeller, et 
al., 2014) 

No No 

Identify key 
species that are 
likely to be 
causal agents of 
colorectal 
cancer (CRC) 

7 (Sazal, 
Mathee, 

Ruiz-
Perez, 

Cickovsk
i, & 

Narasim
han, 
2020) 

BNs with 
co-

occurre-
nce 

networks 
(CoNs) 

Infant 
gut (La 
Rosa, et 

al., 
2014)Vag

i-nal: 
(Ravel, et 

al., 
2011), 

oral data 
(HMP) 

No No 

Make inference 
about 
colonization 
order 

8 (Ruiz-
Perez, et 

al., 
2021) 

DBNs IBDMD 
(inflam-
matory 
bowel 

disease 
multi-
omics 

database) 
(Lloyd-
Price, et 

al., 2019) 

Yes Yes 

Infer temporal 
relationships 
between entities 
in a microbial 
community and 
extend (Lugo-
Martinez et al., 
2019) to other 
omics.  

Table 2: State of the art of BNs models applied to human microbiome datasets. 
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The first report on the use of DBNs for human microbiome data analysis, 
according to authors, was (McGeachie, et al., 2016). Their work is the pioneer 
study to build a DBN model to capture the influence of individual microbial 
classes on each other over time. Most important pitfalls of this study are the 
simplification of data and models or vastly reducing the size of the data by 
aggregating the data at certain taxonomic levels. Moreover, the study was 
limited to taxonomic analysis only (non multi-omic) so the exact nature of the 
biological mechanisms underlying taxonomic relationships remain unknown.  

Subsequent study found in the literature (Noyes, Cho, Ravel, Forney, & Abdo, 
2018) was limited to the use of traditional BNs, thus data analyzed was static 
and the need, in some cases, to discretize the data could have probably resulted 
in loss of information. Nevertheless, their preliminary work reported interesting 
results and the learned BN model confirmed the importance of vaginal pH and 
Gardnerella as influencers on the Nugent score (bacterial vaginosis diagnostic).  

In study number three of Table 2 (Lugo-Martinez, Ruiz-Perez, Narasimhan, & 
Bar-Joseph, 2019), the focus of the learned model was restricted to providing 
knowledge on how the abundance of taxa depended on the abundance of other 
taxa and clinical variables. The study presents a novel approach to analyze 
longitudinal microbiome data using temporal alignments before learning a DBN 
to account for the different paces of biological processes. When compared to 
prior published methods, the developed approach outperformed both the 
baseline and previous methods for the same dataset (infant gut). Unfortunately, 
this computational pipeline is only able to analyze a single omic data set. As 
many others have highlighted, Lugo-Martinez’s approach needs to integrate 
additional molecular data (metabolomics/gene expression). Importantly, the 
author highlights critical challenges when dealing with time-series data such as 
sampling rates and missing values which could affect the accuracy of the 
network being modeled.  

Other recent studies which successfully applied conventional BNs to human 
microbiome data are (Howey, Shin, Relton, Davey Smith, & Cordell, 2020) and 
(Jang, et al., 2020). As an innovative novel approach, Howey’s work incorporates 
directed arcs representing genetic anchors to the BN analysis. Results of this 
study concluded that BNs outperform other recently-proposed methods and the 
model serves as a complementary approach to Mendelian randomization (Smith 
& Ebrahim, 2003) for analyzing causal relationships in complex biological 
scenarios. The dataset used in this case was comprised of fatty acid metabolites 
along with clinical metadata (body mass index). To learn the structure and 
parameters of the BN, authors used R package bnlearn with the integrated hill-
climbing score-based algorithm and Bayesian information criterion (BIC) score. 
Jang’s study used BNs to investigate species level of taxa in CR (complete 
response of rectal cancer treatment) vs non-CR patients by discretization of 
continuous variables (microbial taxa) into two states according to their relative 
abundance.  

An alternative approach was presented by (Kharrat N. A.-E., 2019), where in 
order to identify key species likely to cause colorectal cancer (CRC), a BN was 
combined with the “Interventional-calculus when the DAG is absent” (IDA) 
method (Maathuis, Kalisch, & Bühlmann, Estimating high-dimensional 
intervention effects from observational data, 2009), (Maathuis, Colombo, 
Kalisch, & Bühlmann, 2010) to generate a model for inference of causal 
relationships. 
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(Sazal, Mathee, Ruiz-Perez, Cickovski, & Narasimhan, 2020) constructed co-
occurrence networks (CoN) (Fernandez, Riveros, Campos, Mathee, & 
Narasimhan, 2015) using the Pearson correlation coefficient. A network was 
built for each cohort (medium BV and advanced BV). Next, the coefficients that 
were generated by the CoN were used to augment the BN. The combined output, 
referred to as the signed BN, a variant of BNs, was used to discover relationships 
present in the studied microbial community. The ultimate goal was to retrieve 
“colonization order” from bacterial abundance data.  

Finally, (Ruiz-Perez, et al., 2021) extended previous research groups activity 
(Lugo-Martinez, Ruiz-Perez, Narasimhan, & Bar-Joseph, 2019) to account for 
multi-omic dataset integration. Their pre-processing pipeline includes temporal 
alignment of the data to correct for the different progression rates of each 
individual. The sub steps of the pipeline include: (1) filtering abnormal and noisy 
samples by computing the mean and standard deviation of the alignment error, 
and (2) removing all samples from an individual where alignment error exceeded 
a certain threshold as previously described in (Lugo-Martinez, Ruiz-Perez, 
Narasimhan, & Bar-Joseph, 2019). (Ruiz-Perez, et al., 2021) work employs prior 
knowledge (two sets of constraints: skeleton and augmented) to constraint the 
resulting model and reduce overfitting. Their model used four types of omic 
data: taxa, genes, host genes and metabolites.  

As studied in this brief literature review, none of the existing studies cover all 
the objectives raised in Section 1.3. of this master thesis. Therefore, we believe 
that, even though similar work has been presented in very recent years in the 
literature, the specific focus of our work is novel and will provide relevant 
insights to the community.  

 

2.2.2 Random forests 
 

As (Moreno-Indias, et al., 2021) recent review of ML tools for microbiome 
research pointed out, the random forest (RF) remains the popular model of 
choice when applying ML models for disease-prediction tasks with microbiome 
data.  

RFs (Breiman, 2001) are defined as a type of ML classifier consisting of a 
collection of tree-structured classifiers obtained from independent identically 
distributed random vectors of rows and columns and each tree casts a unit vote 
for the most popular class as the final output. RF is an approach that combines 
bagging and randomization by introducing randomness in a complementary and 
different form.  

For our present study, using RFs was discarded for two main reasons: it was 
already broadly explored in the literature and moreover, even though their 
performance might be superior, it is not an intuitive model and acts as a “black 
box” which is far away from our goal of presenting a biological interpretable 
solution to the microbiology and clinical community. Nevertheless, in our work, 
we are interested in evaluating RF performance against the proposed DBNs as 
a benchmarking procedure in order to verify if RF also outperforms DBNs.  

Table 3 serves as an example of published performance of RF (Pasolli, Truong, 
Malik, Waldron, & Segata, 2016). Prediction performance was evaluated by the 
area under the curve (AUC) metric. In each paper, RF was the method that 
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outperformed the rest: support vector machines (SVM) (Cortes & Vapnik, 1995), 
Lasso (Tibshirani, 1996) and elastic net (Zou & Hastie, 2005).  

 

Dataset Num. 
Samples 

Metric Method Value 

Liver cirrhosis 
(Qin, et al., 

2014) 
232 AUC 

RF 0.95 

SVM 0.92 

Elastic net 0.91 

Lasso 0.88 

Colorectal 
cancer  

(Zeller, et al., 
2014) 

121 AUC 

RF 0.87 

SVM 0.81 

Elastic net 0.79 

Lasso 0.73 

IBD  

(Qin J. , et al., 
2010) 

110 
AUC 

 

RF 0.89 

SVM 0.86 

Elastic Net 0.83 

Lasso 0.81 

Obesity  

(Le Chatelier, et 
al., 2013) 

253 AUC 

RF 0.66 

SVM 0.65 

Elastic net 0.64 

Lasso 0.60 

Table 3. Benchmark of various machine learning techniques prove the superiority of random forest 
when applied to different metagenomic datasets (Pasolli, Truong, Malik, Waldron, & Segata, 

2016). 

Other papers have also elucidated the competitive and accurate performance of 
RFs when compared to other methods (Zhou & Gallins, 2019). A newly 
published study (Sarrabayrouse, et al., 2021) by the prestigious Vall d'Hebron 
Research Institute in Spain also selected RF as the ML method of choice to 
classify unaffected relatives of IBD patients, discriminate CD from UC, and 
predict disease relapse with a good average performance. 

 

2.2.3 Explainable AI 
 

We could arguable state that, although not a novel trend, explainable Artificial 
Intelligence (XAI) is of broad and current interest. In recent years, innovative 
ML and AL algorithms such as deep learning have become increasingly complex 
and sophisticated (Castelvecchi, 2016), (Holzinger, Biemann, Pattichis, & Kell, 
2017). Consequently, there is an unprecedent need, requested by non-experts 
in the domain, of developing transparent and understandable models. Specially 
in the clinical field, being able to explain the reasoning behind the decisions and 
results is of critical importance for applicability in medicine (Barredo Arrieta, et 
al., 2020).  
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To the best of our knowledge, this line of research hadn’t been applied to 
microbiome research until this past year and in a minor number of publications 
(Prifti, et al., 2020), (Carrieri, et al., 2021), (Wong, et al., 2021), emphasizing the 
novelty of our approach.  

 

2.3 Limitations and Challenges 
 

The main challenges and opportunities encountered in the field of microbiome 
data analysis can be grouped into four areas: 

 

I. Data Size 

Current datasets lack large-scale data. Sample size keeps coming up as a 
protagonist limiting factor in the full potential of results. Rather than  
focusing on gathering volumes of low-quality data, studies need to 
concentrate on setting up experimental protocols that guarantee regular 
sampling and sufficient time-points for downstream analysis. Currently, 
studies suffer from economic and logistic constraints that limit and affect 
data collection standards. Further advantages could be taken once we define 
how to decode large-scale microbiome data in a precise and efficient manner 
(Su, Jing, Zhang, & Wu, 2020).  

 
II. Comparability and reproducibility 

The lack of validated clinical models and differences in methodologies is 
preventing the translation of valuable results into the real-world clinical 
practice. Analysis of human microbiome data involves preprocessing of raw 
sequences and there is a latent need to develop manual curation and 
standardized protocols to prevent from derived variations in results. Linked 
to the following point, human microbiome presents huge host-to-host 
variability (heterogeneity) causing difficulties when trying to extend models 
to other cohorts (Duvallet, Gibbons, Gurry, Irizarry, & Alm, 2017).  

 

III. Inherent characteristic of microbiome data 

Sparsity, compositionality, high variability (Aitchison, 1982), (Gloor, 
Macklaim, Pawlowsky-Glahn, & Egozcue, 2017) are the main statistical 
properties that describe microbiome data and present computational 
challenges. High-throughput RNA-seq technologies used in the process of 
generating microbiome data from the sample often introduce technical 
artifacts that translate into errors and noise. For that reason, the bottleneck 
has shifted from data generation to data analysis, which is essentially 
influenced by the way the data is generated in a first instance. Moreover, 
microbial communities are highly complex, nonlinear, evolving systems that 
can be chaotic and therefore unpredictable (Faust & Raes, 2012). 

Furthermore, microbiome data is compositional so instead of looking at 
absolute abundances of cells, we are mapping reads and there is a fixed 
sequencing depth, i.e., 4 reads/sample, given by the technology used to 
obtain the sequences. The number of reads is inferior to the number of cells 
in the experiment, so we are examining proportions of reads.  
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As seen in the below taxon-per-sample abundance matrix (Figure 6), most 
taxa are confined to a relatively small fraction of samples (sparsity). 

 
Figure 6: Visual example of inherent characteristics of microbiome data. Metadata include 

microbiome area (gut, skin, mouth) and if subject is female (F) or male (M).  

 

IV. Interpretability  
 

With rapid advances in microbiome research, the community has raised 
some concerns related to the interpretability of models. After a detailed 
analysis of the  state-of-the-art, we cannot emphasize enough the 
advantages of integrating multi-omic datasets with the goal of building a 
holistic view of microbial community and their interactions. Incorporating 
phylogenetic and functional relationships among organisms into unified 
dynamic models of human microbiome is crucial. Studies need to start 
moving away from unique taxonomic composition analysis which limits 
discovering the whole picture.  

 

Other opportunities in the field, as pointed out in (Su, Jing, Zhang, & Wu, 2020), 
will be how microbial profiling methods will benefit from prospect improvements 
of species or strain-level resolution with full-length 16S and reduction in 
sequencing costs for WGS-based profiling through shallow WGS. 

In general, even though BN and other ML models offer numerous advantages 
versus traditional statistical analysis they also suffer from a number of pitfalls. 
ML approaches find difficulties estimating the true real-life performance of the 
model. In our particular longitudinal data type, due to the complex dynamics of 
the microbiome, estimating confidence in predictions becomes more 
complicated.  

Most studies involving time-series data (longitudinal studies) have mentioned 
having few unevenly spaced time points (Bodein, Chapleur, Droit, & Lê Cao, 
2019) as a major limitation to accurate realistic results. However, we have 
detected an absence of studies addressing the sampling frequency problem 
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associated with temporal data. Determining how frequently should a host-
microbial ecosystem be sampled has been overlooked and remains unclear. This 
matter will probably depend on time-scale changes of interest. Nevertheless, 
careful consideration should be put into sampling frequency as undersampling 
could lead to temporal aliasing (Gerber, 2014). As in many other ML applications, 
identifying variables or attributes (e.g., OTUs) that will produce both good 
discrimination within the training data and good generalization to feature tests 
data is still a challenge. 

 

  



 
 

30 
 

3 Materials and Methods 
 

 

3.1 Problem definition 
 

Research questions that motivated this work and are: 

 Q1: Which microorganisms are present in our sample? 
 Q2: What functions are performed by the organisms? 
 Q3: Can we identify a biomarker for IBD prediction and stratification? 
 Q4: What is the microbiome profile (functions and communications) for 

each condition type? 

The goal of this work is to use DBNs to find a biological interpretable model of 
gut microbial ecosystem in IBD patients that will give answer to the above 
questions.  
 

3.2 Tools 
 

Programming languages used for this project include: 

 R: used for visualization and application of statistical analysis.  
 Python: used for the preprocessing steps. The following specific packages 

were used: Scikit-learn, numpy, pandas. 
 Matlab: used for DBN learning and inference. 

We used open-source available software package Cytoscape (Shannon P. M., 
2003) for interpretation and visualization of the resulting network.  

 

3.3 Dataset  
 

3.3.1 Description 
 

We describe the data on which we test our dynamic Gaussian BN model and 
inference.  

We used the dataset from the Inflammatory Bowel Disease Multiomics database 
(IBDMDB) iHMP study (Lloyd-Price, et al., 2019). As part of the Integrative 
Human Microbiome Project (HMP2 or iHMP), IBDMDB followed 132 subjects 
over the period of one year to generate integrated longitudinal molecular profiles 
of host and microbial activity during disease (up to 24 time points each). The 
IBDMDB dataset is a comprehensive multi-omics dataset that includes 
metatranscriptomics, metagenomics, proteomics, viromics, serology, host 
transcriptomics, 16S and metabolomics data. The results provide longitudinal 
profiling of the biological properties of the human gut microbiome in IBD and a 
comprehensive view of functional dysbiosis in the gut microbiome during IBD 
activity (Integrative HMP (iHMP) Research Network Consortium., 2014). Raw 
sequence data can be download from the BioProject NCBI site with accession 
code PRJNA398089.  
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The study's resources, results, and data, which are available through the 
IBDMDB webpage http://ibdmdb.org, provide the most comprehensive 
description to date of host and microbial activities in inflammatory bowel 
diseases. 

As described in Figure 7 clinical metadata such as disease activity, treatment 
and interventions information and diet and environment details were collected. 
The data set contains a total of 2951 samples and participants were classified 
attending to their disease status into one of the three classes: non-IBD or 
controls with a total of 46 subjects, ulcerative colitis with a total of 46 subjects 
and Crohn’s disease with 86 participants.   

 

 
Figure 7: Characterizing the gut microbial ecosystem for diagnosis and therapy in inflammatory 
bowel disease: sample collection, assay, and data generation workflow (Integrative HMP (iHMP) 

Research Network Consortium., 2014).  

 

Publicly available data repository shows high level results over all of the HMP2 
pipelines. Thus, a series of preprocessing steps were applied by the research 
group leading the project before making the data available publicly. Raw data 
files are also accessible through the same repository for those interested in 
manipulating sequences with the complete process (e.g. QIIME), although it was 
not handled in the present study as bioinformatic analysis was not the focus 
and scope of this master thesis. For additional information on clinical, sample 
handling and data generation protocols, the following link can be consulted 
https://ibdmdb.org/cb/browser/. 
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As introduced in Section 2.1.1, the choice of sequencing technology will have 
certain influence in data composition, characteristics, and quality. The type, 
platform and source of high-throughput technologies used in HMP2 IBD study 
are described in Table 4.  

 

Type Source Platform Number of 
Oligos/SNPs 

SNP 
Batch Id 

Whole exome 
sequencing 

Illumina HGSC VCRome 
2.1 design (42Mb, 
NimbleGen, hg19) 

N/A N/A 

Whole transcriptome 
shotgun sequencing 

(RNA-seq) 

Illumina HiSeq N/A N/A 

Methylome 
sequencing 

Illumina HiSeq N/A N/A 

Amplicon 
sequencing 

Illumina HiSeq N/A N/A 

Table 4. Molecular data. 

Selecting the dataset to be used for our implementation and proof of concept 
was fairly easy, as limited number of studies were eligible given our selection 
criteria: longitudinal, multi-omic, human and disease related data. However, 
considerable amount of time was dedicated to understanding and breaking 
down data files for downstream analysis. We elaborated a comprehensive 
summary table (Table 5) in aim of helping future researchers interested in using 
the same dataset accelerate their data inspection phase. The  enormous 
dimensions of some files support the advantage of using AI algorithms versus 
traditional biological statistical analysis to efficiently extract full knowledge from 
data.  

 

 File name File description Dimension 

Metadata hmp2_metadata.csv Full sample metadata 
table. Samples as rows 
and metadata as 
columns 

178 490 

16S taxonomic_profiles.tsv Biopsy 16S data. 
Contains OTUs IDs 

982 178 

Metabolomics iHMP_metabolomics.csv Metabolomics profiles 81867 553 

Metagenomics 

ecs_relab.tsv MGX EC abundances 
with stratification 

 

taxonomic_profiles.tsv MetaPhlAn2 taxonomic 
profiles 

1479 1639 

pathabundance_relab.tsv MGX pathway 
abundances with 
stratification 

10884 1639 

species_counts_table.tsv Species count for each 
sample (total and after 
filter) 

1300 2 
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hmp2_mgx_taxonomy.tsv Taxonomic profiles 
(pilot study) 

932 1639 

hmp2_mgx_pathabundance.t
sv 

MGX pathway 
abundances without  
stratification 

22113 1639 

ecs_3.tsv MGX EC abundances 
without stratification 

108433 1639 

Metatranscript
omics 

pathabundance_relab.tsv MTX pathway 
abundances with 
stratification 

6061 736 

hmp2_mtx_pathabundance.t
sv 

MTX pathway 
abundances (pilot 
study) 

8562 818 

genefamilies.tsv Gene families 
annotated using UniRef 
database  

2164739 736 

ecs_3.tsv MTX EC abundances 
without stratification 

83226 818 

ecs_relab.tsv MTX EC abundances 
with stratification 

70711 736 

Table 5: Structure of data files in the Human Microbiome Project II - IBD (Lloyd-Price, et al., 2019) 
study. Green rows highlight the files used in the present study for subsequent analysis.   

 

Another example of non-intuitive information that had to be carefully analyzed 
and deduced in order to fully understand was the choice of nomenclature 
(Figure 8).  

 
Figure 8: Example of nomenclature for taxa. P, phylum; c, class; o, order; f, family; g, genus; s, 

species. Taxonomic levels that lack information (e.g., f___.g____.s____) did not match named taxa 
present in the GreenGene database (http://greengenes.lbl.gov) a 16S rRNA gene database.  

Through the whole analysis we work with a column named “Participant ID” in 
order to identify subjects. The chosen nomenclature consisted of a capital letter 
in first place followed by four integers as seen in the following examples:  

 M2014 
 P6005  
 C3001  
 H4001  
 E5009 

Capital letter correspond to the site where the subject was recruited: M for 
Massachusetts General Hospital (38 participants), P for MGH Pediatrics (17 
participants), C for Cedars-Sinai Medical Center (33 participants), H for 
Cincinnati Children’s Hospital (33 participants) and E for Emory University 
Hospital (11 participants).  
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We filtered the complete dataset in order for subjects to meet certain inclusion 
criteria. The inclusion criteria used for our study in particular was to have a 
minimum of four measured timepoints for all three omic types: metagenomics, 
metatranscriptomics and metabolomics. We filtered the subjects of interest with 
the information given in the metadata set. These restrictions yielded a total of 
93 subjects: 47 with Crohn disease, 23 with ulcerative colitis and 23 controls 
or non-IBD. Further on, during preprocessing stage and data inspection we had 
to remove an additional group of two subjects as metatranscriptomics path 
abundance dataset did not satisfy the threshold of four time points, contrary of 
what metadata described. Therefore, the data used for downstream analysis 
contained a total of 91 subjects. Full details can be consulted in Appendix II.  
 

3.3.2 Data inspection with bioinformatic tools 
 

HMP2Data is a Bioconductor package (in R) providing the data of the integrative 
Human Microbiome Project (iHMP), the second phase of HMP project (HMP2). It 
contains 16S rRNA sequencing data from all three longitudinal studies: 1) 
MOMS-PI, pregnancy and preterm birth; 2) IBD, gut disease onset, 
inflammatory bowel disease; and 3) T2D, onset of type 2 diabetes and 
respiratory viral infection. In a preliminary stage, for data inspection purposes, 
raw data files were downloaded from the HMP Data Analysis and Coordination 
Center. Processed data is provided as matrices, SummarizedExperiment, 
MultiAssayExperiment, and phyloseq class objects. A straightforward preliminary 
inspection workflow was executed in order to understand the data before 
constructing the ad hoc preprocessing script.  

Step 1: Load 16S data as a matrix, rows are SILVA IDs, columns are sample 
names as can be seen in Figure 9. 

 

 
Figure 9: 16S data matrix. 

Step 2: Load the SILVA taxonomy table as a matrix, rows are SILVA IDs, 
columns are taxonomic ranks as seen in Figure 10.  

 

 
Figure 10: Taxonomy table.  
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Step 3: Load the 16S sample annotation data as a matrix, rows are samples, 
columns are annotations as seen in Figure 11.  

 

 
Figure 11: Metadata file with clinical information.  

Table 6 shows the summarized information of dimensions of the files that were 
analyzed.  

 

 Rows Columns  

OTU table 982 taxa 178 samples 

Sample data 178 samples 490 sample variables 

Taxonomy table 982 taxa 6 taxonomic ranks 
Table 6: Summary table for data visual inspection analysis output. 

 

As seen in Table 6, only three type of data files are integrated in the current 
version of the HMP2Data package, presenting a major drawback for our desired 
application, thus we decided to discard its use for this project. However, 
exploring these files gave us a broad initial idea of what our data looked like, 
and we highly recommend researches unfamiliar with microbiome data to look 
into it as an initial step due to its accessibility and friendly use.  

We computed the corresponding histogram for each data attribute in order to 
visualize the distribution of sample depths (16S taxonomic profiles) (Figure 12) 
and OTU frequencies (Figure 13).  

 

 
Figure 12: Histogram of depths. 
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Figure 13: Histogram of OTU counts. 

 

Species distribution typically follow a negative binomial: many subjects have 
small relative abundance of that species, and a very few subjects exist with a 
high relative abundance of a specific species. For visualization purposes as well 
as downstream analysis we know remove OTUs present in <10% of samples. 
Figure 14 shows the resulting histogram. 

 
Figure 14: Histogram of OTU counts after filtering OTUs present in <10% of samples. 

 

After these first steps of data inspection one of the metrics we are interested in 
exploring when analyzing microbiome data or any other genomic related dataset 
is diversity. Two of the most important metrics for biological diversity are α 
diversity and β diversity (see Section 2.1.1).  

α diversity measurement is constrained by the sequencing depth (total number 
of reads per sample). Rarefying (e.g., through vegan R package: rarefy), selecting 
the appropriate sample depth, is necessary before calculating α diversity.  

By computing α diversity (Figure 15) to study diversity within a sample, we could 
observe how dysbiosis states (UC and CD) manifested an expected lower 
diversity measure compared to healthy state (Wright, et al., 2015) (Lloyd-Price, 
et al., 2019).  
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Figure 15: Comparison of α diversity measured by observed species, Chao1 index, Shannon 
diversity and Simpson. CD cluster is shown in red, UC in blue and nonIBD subjects in green. 
Healthy control samples are significantly different from IBD samples. Shannon and Simpson 

indicate the uniformity of the abundance of different species in a sample. 

 

β diversity describes how samples vary against each other taking into account 
the whole distribution of species in a community. β diversity can help us discern 
between clusters (non IBD and IBD patients), for instance in our case, 
understand if sample A is more similar in composition to sample B (non IBD) or 
C (IBD). Results of comparing beta diversities from a qualitative and quantitative 
strategy are shown in Figure 16. We used both Jaccard and Bray-Curtis indexes, 
although similar results where reported, we wanted to analyze if there was an 
advantage in using one of them for our particular data. Commonly, Jaccard 
index is recommended when dealing with large spatial scales and datasets with 
presence/absence of data. Bray-Curtis on the other hand is preferred when 
taking into account abundances. β diversity analysis elucidate dissimilarities 
between samples (UC, CD and healthy). 

 
Figure 16: Beta diversity for IBD dataset. Jaccard distance vs. Bray-Curtis dissimilarity.   
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These kinds of metrics are useful to build a preliminary idea of our data. 
However, given the complexity and diversity of microbiome data, further 
computational tools and analysis need to be applied to fully understand our 
data.  

 

3.3.3 Preprocessing 
 

This stage involves interpretation of the data format, the definition of the data 
structures for their management and correction tasks including elimination of 
noise and errors among others. 

Figure 17 sums up the necessary previous steps (preprocessing workflow) 
followed to obtain the dataset prior to the analysis in the preprocessing stage. 
For more information of each step, the following links can be consulted: 

 Center for Metagenomics and Microbiome Research (CMMR): link. 
 UPARSE (Edgar, 2013): https://drive5.com/uparse/ 

 

 
Figure 17: IBDMDB protocol followed for data preprocessing.  

 

a) Raw sequences data file 

 

The starting point for microbiome data analysis is the “raw data file” quality 
check and processing. Every sequencing apparatus and experiment protocol will 
provide different characteristics and measurements in the raw data file, and it 
is vital to understand the type of raw data to be analyzed before any downstream 
analysis is performed.   

In our case, for quality control processing, metagenomic and 
metatranscriptomic data samples were run through KneadData which first 
trimmed reads to preserve high quality sequence and removed any adapter 
contaminants. Surviving sequences were filtered to remove any human 
contaminants using the human genome (hg38). Data are organized by paired 
and orphan reads. When one read in a pair passes a filtering step and the other 
does not the surviving read is an orphan. 
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b) Taxonomic profiling 

 

One common adopted approach is to collapse OTUs to genus or higher 
taxonomic levels.  In general, two approaches can be applied depending on the 
data units we have: (i) clustering if we deal with OTUs; (ii) denoising if we deal 
with amplicon sequence variants (ASVs). 

Taxonomic profiles of metagenomic data were generated using MetaPhlAn2. 
MetaPhlAn2 is a taxonomic classification computational tool for metagenomic 
phylogenetic analysis. It allows profiling the composition of a microbial 
community from metagenomic sequencing data by assigning DNA sequence to 
its microbial species of origin (taxa). MetaPhlAn2 generates: 

 

 Species-level taxonomic profiles expressed as relative abundance from 
kingdom to strain level. 

 Presence of unique, clade-specific markers. 
 Abundance of unique, clade-specific markers. 

 

A common step in microbiome data preprocessing is the low count removal. 
Species abundances are passed through a basic filter requiring each species to 
have at least 0.01% abundance. This step aims to counteract sequencing errors. 
A total of 540 species were identified. After basic filtering 109 species remained. 

Figure 18 shows a hierarchical clustering of samples and species, using top 25 
species with highest mean relative abundance among samples. Abundances 
were log10 transformed prior to clustering, and the “average linkage” clustering 
on the Euclidean distance metric was used to cluster samples. The species 
dendrogram is based on pairwise (Spearman) correlation between species. 
Samples are columns and species are rows. The color bar represents relative 
abundances on a log10 scale. The use of double dendrogram colored heatmaps 
is ubiquitous in the microbiome literature.  
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Figure 18: Top 25 species based on average relative abundances. Heatmap was generated using 

Hclust2 (https://ibdmdb.org/) . 

 
Figure 19 presents a stacked barpot of the 15 most abundant species among 
samples. This information can be interesting for validation of our final results 
in order to understand if our model is capturing true interactions of the studied 
microbial community.   
 

 
Figure 19: Top 15 species by average abundances. Stacked barplot of 15 most abundant species 

among samples. (https://ibdmdb.org/). 
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c) Functional profiling 
 
 

HUMAnN2 is a pipeline for functional profiling which comprises profiling the 
presence or absence and abundance of microbial genes and pathways in a 
community from metagenomic or metatranscriptomic sequencing data using 
the UniRef and MetaCyc databases. With this analysis we are able to describe 
the metabolic potential of a microbial community. Thanks to function profiling 
we are able to answer to the question “What are the microbes in the community 
of interest doing or capable of doing?” 

HUMAnN2 generates: 

 Abundance of gene families 
 Metabolic pathway coverage 
 Metabolic pathway abundance 
 Enzyme commission (EC) enzyme modules 

For metatranscriptomics pathway abundances in IBDMDB, hierarchical 
clustering was executed using top 50 pathways with highest mean relative 
abundance among samples. The “average linkage” clustering on the Euclidean 
distance metric was used to cluster samples. The pathway dendrogram is based 
on pairwise (Spearman) correlation between pathways. Samples are columns 
and pathway are rows. The heatmaps were generated with Hclust2. The most 
abundant DNA features are not necessarily those with the highest transcription 
(RNA) levels. From the dendrogram of the left side of Figure 20 we can see which 
RNA pathways are more correlated to each other.  

 
Figure 20: Top 50 pathways by average abundance (log10). Color bar represents relative 

abundances on a log10 scale. Abundances were log10 transformed prior to clustering 
(https://ibdmdb.org/). A dendrogram is added on the side that is created with hierarchical 

clustering. 
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d) Dimensional reduction 

 

Principal coordinate analysis (PCoA) using distance measures of Bray-Curtis 
dissimilarity is useful for microbiome data. PCoA can be applied to visualize 
high-dimensional microbiome data patterns. PCoA performs a rotation of the 
inter-sample distance matrix (after centering) to represent those distances as 
accurately as possible in a small number of dimensions. For the PCoA plot, 
relative abundances are passed through a basic filter requiring each terminal 
taxa to have at least 0.01 % abundance in at least 10 % of all samples. 

Figure 21 show PCoA of variance among samples, based on Bray-Curtis 
dissimilarities between species profiles of samples. Numbers in parenthesis on 
each axis represent the amount of variance explained by that axis. Distances 
quantify the similarity in terms of taxonomic species abundances.   

 
Figure 21: Ordination of species abundances. Principal coordinate analysis of variance among 
samples, based on Bray-Curtis dissimilarities between species profiles of samples. Numbers in 

parentheses on each axis represent the amount of variance explained by that axis 
(https://ibdmdb.org/). 

 

After the first tasks of data exploration through specific bioinformatics tools and 
popular statistical methods used in microbiome research, we developed our own 
Python preprocessing script to prepare the dataset that will be used in further 
analysis as the input to our model. The resulting ad hoc scripts can be consulted 
through the following link https://github.com/muia2021pl/TFM_microbiome.  

We first loaded the corresponding original datasets in .csv and .tsv formats with 
the information corresponding to the whole genome shotgun sequencing. A total 
of five datasets are imported: metadata with clinical variables, metabolomics, 
metagenomics with taxonomic profiles abundances and metatranscriptomics 
with path abundances (see Table 5). In the latter case, the information is divided 
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in two different datasets: HMP2 and HMP2 pilot. Data matrix (tables) we will be 
preprocessing are expressed as abundances.  

Next, a series of preprocessing steps are performed on each dataset separately. 
Tasks involved removal of subjects with limited measured time points (threshold 
set at minimum of four time-points across three omics), rearrange indexes and 
columns, adding data type identifiers to each variable (column) or removing 
unnecessary columns for the problem in scope. In this preprocessing stage, log 
transformation and normalization were applied to the data (for continuous 
variables). To be able to apply ML techniques, we might need to transpose the 
data set. This is since biological data has the predictor variables as rows (instead 
of columns).   

 

Interpolation 
 

At this point we considered applying some approach to overcome irregular 
sampling. Spline modelization (Interpolation) is a popular approach that uses 
continuous curves to interpolate time points that might be missing or are 
inconsistent between different types of data (Bodein, Chapleur, Droit, & Lê Cao, 
2019).  Some proposed approaches include smoothing spline ANOVA (Paulson, 
Talukder, & Bravo, Longitudinal differential abundance analysis of microbial 
marker-gene surveys using smoothing splines, 2017), negative binomial 
smoothing splines (Metwally, et al., 2018) or Gaussian cubic splines (Luo, 
Ziebell, & An, 2017). One limitation that these approaches share is the fact that 
they are univariate and cannot infer ecological interactions. Although we 
explored the possibility of including these technique in our preprocessing 
framework, we finally decided not to implement it as further research must be 
done in order to appropriately exploit its potential. More will be discussed in 
Section 5.2.  

 

Normalization  
 
As presented in Section 2.3, we do not have equally spaced time points in our 
data. Moreover, each omics technology produces count or abundance tables 
with samples in rows and features in columns (genes, proteins, species, ...) and 
each data type has a variable number of columns depending on the technology 
and number of identified features. 

Consequently in every analysis in microbiome research (as in many other fields) 
one of the first things to be done in the preprocessing stage is data normalization 
and transformation. Microbiome data are compositional, because of technical, 
biological, and computational reasons, thus interpreted into relative counts. 
Taxa abundance needs to be adjusted for compositionality. In case 
normalization needs to be applied to the data, the use of log-ratios 
transformation is recommended for microbial taxa data normalization (Gloor, 
Macklaim, Pawlowsky-Glahn, & Egozcue, 2017), (Mars, et al., 2020). There are 
a number of standard normalization methods used in the literature with the 
same final goal: removing technical bias in compositional data (Paulson, Stine, 
Bravo, & Pop, 2013), (Badri, Kurtz, Müller, & Bonneau, 2018).  
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(1) Centered log-ratio (CLR) Transformation introduced by (Aitchison, 1982) 
converts the relative abundances (or OUT counts) to ratios between all parts by 
calculating the geometric mean of all values (whole composition). This was the 
method of choice for our dataset, implemented in the ad-hoc preprocessing 
Python script.   

It is defined for a composition x as follows: 

clr ( )=  [ ,…,  ] 

where  is the j-th sample and gm(xj)=( xi )1/D  is the geometric mean (row-
wise) of vector x. 

(2) Total sum scaling (TSS) divides each individual feature count with the total 
library size (OUT counts in a sample) to yield the relative proportion of counts 
for that feature. The total sum sums up to 1. 

(3) Cumulative Sum Scaling (CSS) calculates a scaling factor as the quantile of 
the count distribution of samples assuming that at this range, counts are 
derived from a common distribution. It was developed by (Paulson, Stine, Bravo, 
& Pop, 2013) in addition to metagenomeSeq Bioconductor package for differential 
analysis implementation. 

It is worth mentioning other methods that can yield correct performance  such 
as relative log expression (RLE) proposed by (Anders & Huber, 2010), trimmed 
mean of M-values (TMM) proposed by (Robinson & Oshlack, 2010) or upper 
quantile (Bullard, Purdom, Hansen, & Dudoit, 2010).  

Other preprocessing steps 

Other useful preprocessing steps could be dealing with missing values. 
Technical problems during experiments commonly occur and result in missing 
values in the data set. Important to note that removing samples (rows) or 
variables (columns) can have limitations such as reducing knowledge (data size) 
and prediction power. Several longitudinal studies have explored additional 
complementary preprocessing steps such as interpolation and detrending with 
the aim of making time points equidistant and comparable. These last 
approaches were not tackled in our study but will be discussed in Section 5 as 
future lines of research.  

 

3.3.4 Features 
 

The feature sets, grouped by type, included in this work are: 
 
Clinical features (metadata) 
- Variables to identify subjects (e.g., "Subject.ID") 
- Variables to identify time steps for sample time series ("week")  
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- Variables to indicate the phenotype/cluster of each sample (named as 
"diagnosis"). 

- Variables to indicate external perturbations ("antibiotic") 
 

Metagenomic features 
- Taxonomic profiles. Type: continuous. Taxonomic features correspond to the 

relative abundance in percentage or counts per million.  
 
Metatranscriptomic features 
- Relative abundance of each metabolic pathway. Type: continuous. 

 
Metabolomics features 
- Metabolic concentrations. Type: continuous.  
 

One major challenge with integrating multi-omics is that combining different 
types of biological information increases the number of analyzed features while 
keeping the number of observations/samples (subjects) constant (Figure 22). 
Feature selection can therefore improve prediction accuracy of our model. 

 
Figure 22: Multi-omics integration (Yugi, Kubota, Hatano, & Kuroda, 2016). 

 
Feature subset selection techniques are an essential step in every ML analysis 
pipeline. Some of the advantages it offers involve reducing overfitting, making 
interpretability easier, improving accuracy by reducing misleading or noisy data 
and reducing training time, as less input data will accelerate training times. 
As a preprocessing dimensionality reduction step, we first filtered predictor 
variables with near zero variance using VarianceThreshold() class from the 
sklearn.feature_selection module.  

 

In our case, features with a training-set variance equal to the zero threshold will 
be removed. The default is to keep all features with non-zero variance, i.e. 
remove the features that have the same value in all samples.  

For simplicity in our case, we focus on univariate feature selection filter 
algorithms. Common univariate feature selection works by selecting the best 
features based on univariate statistical tests. These tests are easy and simple 
to use but they do not account for intercorrelation among features.  We applied 
Select-K-Best to select the k most important features with the highest scores 
based in Chi-squared statistics. As we are using sparse data, chi2 and mutual 
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information scikit-learn Python implementation offer a good solution as they 
will deal with the data without making it dense (processing sparse matrices 
without casting them internally to dense numpy arrays). Next step, we used 10-
fold cross-validation linear support vector classifier as the external estimator 
implemented with Python scikit-learn package. We chose this particular 
variation of support vector machines as it is recommended for optimal 
performance with sparse data and handles multiclass. At last, we further 
discard features using the Bayes factor as explained in subsequent Section 
3.4.1.  

 

 
 

For performance assessment purposes, univariate Chi2, ANOVA and mutual 
information will be tested and compared to perform feature selection on the full 
dataset for each omic type. The result is a set of informative features that can 
be utilized for downstream ML analysis, Table 7.  

 

Data FS technique Eval. Metric 
(Accuracy) 

Metagenomics Univariate Chi2 0.82 

Univariate ANOVA 0.78 

Univariate MI 0.73 

Metabolomics Univariate Chi2 0.67 

Univariate ANOVA 0.69 

Univariate MI 0.69 

Metatranscriptomics Univariate Chi2 0.55 

Univariate ANOVA 0.56 

Univariate MI 0.50 
Table 7: Classification report of univariate feature selection techniques. Results shown correspond 

to K=200 best features. When K=100 the accuracy decreased. 

  

LinearSVC
LinearSVC()

Li SVC

SelectKBest
SelectKBest(k=200)

S l tKB t

Pipeline
Pipeline(steps=[('selectkbest', SelectKBest(k=200)), ('linearsvc', LineaSVC())])
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3.4 Implementation 
 

Using the preprocessed multi-omics dataset our next step was to learn a 
graphical structure from temporal data collected from a dynamic system.  

 

3.4.1 Dynamic Bayesian network  
 
 
In order to select a software package to implement the DBN, we first evaluated 
and compared several options, see Table 8. 
 
 

Name Language Data type Learning Inference 
CGBayesNets 

(McGeachie, Chang, 
& Weiss, 2014) 

Matlab Discrete and 
continuous Yes Yes 

dbnR  
https://github.com/dkesada/dbnR  

R Continuous 
data (only) Yes Yes 

Bnlearn  
(Scutari, 2010) R Continuous 

and discrete Yes No 

Bnfinder 
(Wilczyński & Dojer, 

2009) 
Python Discrete and 

continuous* Yes Yes 

Table 8: Software packages benchmarking. (*only if 1 discrete parent and no children). 

 

The requirements we needed the software tool to meet, and support consisted 
of learning and inference of DBNs in the presence of both discrete and 
continuous data. As seen from Table 8 the options are quite limited and further 
implementations and capabilities extensions should be explored. However, 
these developments were out of the scope for the present work. 

CGBayesNets (McGeachie, Chang, & Weiss, 2014) builds a two-stage DBN of the 
microbiome population dynamics. It considers current time samples and the 
immediate previous ones. It performs inference with mixed continuous and 
discrete networks as a CGBN; while other packages do not. CGBayesNets uses 
Bayesian marginal likelihood to guide network search for inference. It also 
provides functions for employing cross-validation (CV) and bootstrapping for 
model performance and verification. CGBayesNets could be used with the 
ultimate goal of finding a network predictive of the phenotype (case/control 
status). Still, one limitation of this package is its inability to support the use of 
intra-edges. For this reason, we used the modified version of CGBayesNets 
implemented by (Lugo-Martinez, Ruiz-Perez, Narasimhan, & Bar-Joseph, 2019) 
where intra-edges are allowed and BIC and AIC networks scoring functions are 
included.  

dbnR package is an alternative good option. It covers learning and doing 
inference (forecast in the future) over Gaussian DBNs of arbitrary Markovian 
order. It extends some of the functionality offered by the 'bnlearn' package to 
learn the networks from data and perform exact inference. It offers two structure 
learning algorithms for DBNs and the possibility to perform forecasts of 
arbitrary length. A tool for visualizing the structure of the net is also provided 
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via the 'visNetwork' package. The only drawback with this package is the fact 
that it does not support discrete variables. In our case and in many other 
microbiome studies, clinical variables (discrete and continuous) bring valuable 
information to the model and have a key role in the analysis. A solution the 
author provides in order to deal with discrete data is to perform clustering on 
our data based on our discrete variables (clinical metadata in our case) and next 
train a continuous network model for each cluster.  

bnlearn package in R performs Bayesian network structure learning and 
parameter learning. This package implements constraint-based (e.g., PC, GS, 
IAMB, Inter-IAMB…etc.), pairwise (ARACNE (Margolin, et al., 2006)), score-
based (e.g., Hill-Climbing) and hybrid (MMHC (Tsamardinos, Brown, & Aliferis, 
2006), hybrid HPC (Gasse, Aussem, & Haytham, 2012)) structure learning 
algorithms for discrete, Gaussian, and conditional Gaussian networks, along 
with many score functions and conditional independence tests. In order to 
implement simulated dynamic functionality (not supported by the package) we 
could create a blacklist with restricted edges, in order to prohibit backward 
edges in time. Unfortunately, this solution will notably increase running time 
and computational resources. Lastly, bnlearn has the additional limitation of 
not implementing inference.  

BNfinder can also be used to infer DBN from time series data. It performs 
structure learning using two scoring criteria: Bayesian-Dirichlet equivalence 
(BDe) (Heckerman, Geiger, & Chickering, 1995) and minimal description length 
(MDL) (Rissanen, 1978), (Grünwald, 2007). These scores, although designed for 
discrete variables, are used in this implementation to handle continuous 
variables under the assumption that conditional distributions belong to a family 
of Gaussian mixtures (one discrete parent and zero children) (McGeachie, 
Chang, & Weiss, 2014). 

 
I. Learning the structure of a DBN 

 

First, the network structure is learned from the dataset. We need to set some 
parameters for the learning algorithm. Prior assumed distributions for each 
node are needed to determine the posterior probability of the data.  

- Prior equivalent sample size ν = 10. 
- Prior assumed standard deviation: σ2 = 1 
- Maximum number of parents =3.  

 

As filtering strategy, to prune dataset and reduce number of variables, we 
implement the Bayes factor of association with the phenotype (i.e. disease). 
Bayes factors can be computed for the dependence of each variable with the 
phenotype variable. It will help us determine the strength of association a 
variable has with the phenotype of interest. The Bayes factor is a Bayesian 
likelihood ratio test that computes the ratio of posterior probabilities of two 
quantities: 1) the probability of the variable being statistically dependent upon 
the phenotype, and 2) the probability of that variable being independent of the 
phenotype, both given in log scale.  For values > Bayes factor, the variable is 
more likely to be associated with the phenotype than not. This is suitable for 
filtering for domains with too many variables to be considered by usual Bayes 
network methods. Bayes factor reduces the dataset down to a manageable 
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number of informative variables by limiting further investigation to variables 
with log Bayes factor surpassing a predetermined threshold (in our case 5, 10 
and 15).   

CGBayesNets provides four types of network learning algorithms: (i) K2-style 
search (Cooper & Herskovits, 1992); (ii) greedy, exhaustive, hill-climbing search 
(every step adds arc that increases likelihood the most); (iii) pheno-centric 
search (Chang & McGeachie, 2011); (iv) simulated annealing (Kirkpatrick, Gelatt 
Jr, & Vecchi, 1983).  Theoretical foundation of CGBayesNet can be consulted in 
Appendix I.   

The main framework for learning DBNs consists of the following steps 1) 
combine time-series data into a larger column matrix with each time point 
matrix below the prior time point matrix, 2) learn the BN using 
StateTrackerSearch() function with dynamic Bayes net option enabled to allow 
cycles, allow self-loops, 3) unroll BN into a 2TBN: a 2-timepoint BN; all arcs are 
from time point one to time point two, 4) unroll dataset from timeseries matrix, 
5) use normal techniques to predict with unrolled 2TBN.  

MakeTSBNData(), assembles a 2-stage DBN dataset from times series data. It 
takes input data and arranges it, so the first time a subject id is encountered, 
its slotted into the T0 data.  The second time it is encountered, its slotted into 
both the T1 and the T0 data.  The last time it is encountered, it is only slotted 
into the TT data. 

Bootstrapping functionality is also implemented in the software that can be 
used to compare the performance of networks formed by starting with the 
phenotype node (‘diagnosis’) and then adding, in sequence, the most frequent 
edge occurring in the bootstrap networks and measuring the performance of 
that network on the dataset in cross-validation. Among models with equal or 
similar performance, we should opt for the most parsimonious model.  

FullBNLearn() performs an ‘exhaustive’ search through possible arcs using a 
hill-climbing algorithm to learn a CGBN on the data. Though the author refers 
to it as an exhaustive search, it is important to note, it does not consider all 
possible networks, but rather all possible legal arcs between any two nodes. 
Bayesian Dirichlet equivalent sample-size uniform (BDeu) measure of marginal 
likelihood of the data (Heckerman, Geiger, & Chickering, 1995), is used as the 
network scoring metric. 

It is important to note that we adapted original implementation scripts (code) 
(McGeachie, Chang, & Weiss, 2014) to serve our particular purposes as out data 
and final goal was different from similar studies that also used CGBayesNet 
(McGeachie, et al., 2016), (Lugo-Martinez, Ruiz-Perez, Narasimhan, & Bar-
Joseph, 2019), (Ruiz-Perez, et al., 2021).   

Furthermore, we performed DBN structure constraining by using an adjacency 
matrix as an input to the model. This matrix is configured in such a way that 
will only allow edges between specific nodes therefore reducing complexity and 
avoiding overfitting. The selected configuration was based on biological basic 
knowledge following (Ruiz-Perez, et al., 2021) model for reproducibility and 
comparison: clinical variables are independent, taxa is responsible for the 
expression of genes, and these genes are involved in metabolic pathways. In the 
same way, metabolites produced in ti will impact taxa abundance and growth in 
the next time slice ti+1.   
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II. Parameter learning 

 

Once we have the structure of the DBN, we have to fold our dataset and fit the 
parameters of the DBN. This can be done in by calling the LearnParams() function 
in CGBayesNet to learn the marginal distributions of each node in the BN based 
on the data and the Bayesian priors.  

As in (Lugo-Martinez, Ruiz-Perez, Narasimhan, & Bar-Joseph, 2019) and (Ruiz-
Perez, et al., 2021), we maximized the likelihood of the data for a given structure 
using maximum log-likelihood estimation (MLE). 

 

III. Visualization  

 

The model outputs both trivial Graph Format (.tgf) and GraphML (.graphml). For 
our implementation, we will use an output file GraphML version of the network, 
output_file.graphml, that can then be loaded into network visualization software 
such as Cytoscape (Shannon, et al., 2003). Additionally, we prepared an ad-hoc 
script in R to generate a custom style XML file for our output networks, encoding 
several properties of the underlying graph, such as node shape, arc line type 
and transparency of abundances to visualize in Cytoscape.  

 

IV. Inference and forecasting 

 

Once we have fitted the model, we can perform inference over the learned model. 
When using BN, any variable can be used as the target node of the inference. 
Furthermore, in our particular case, DBNs, variables in the next time slices are 
predicted from the values in the previous slices. 

CGBayesNet, implements the Cowell algorithm (Cowell, 2005) to perform 
inference in conditional linear Gaussian network nodes, as it is a numerically 
stable approach, combined with a simple variable elimination algorithm for 
inference between discrete nodes in the network (Koller & Friedman, 2009). 
 
3.4.2 Random forest 
 

To see whether BN approach generated a better performance in terms of 
predictive power of disease state, in comparison to the current gold standard for 
ML applications to microbiome data, a RF classification model was trained to 
classify disease outcome.  This part of the analysis was done with scikit-learn 
library in Python.  

The input features consisted of taxonomic profiles (metagenomes), relative 
abundance of each metabolic pathway (metatranscriptomics) and metabolic 
intensities, which were previously normalized in data preprocessing step. The 
RF model was learned from the training data, using hyperparameter tuning 
(hyperparameter grid search) and 5-fold cross-validation. Training, test, and 
validation sets were randomly chosen for learning and subsequent performance 
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evaluation. The performance of the model was evaluated on the training and 
previously unseen test datasets (Figure 23).   
 

 

 
Figure 23: RF classifier confusion matrix (heatmap). n_estimators = 500. Y-axis represents true 

labels and X-axis the predicted labels. CD =0, UC= 1 and nonIBD = 2.  

 

As the implementation of the RF was done in Python, we compute the Area 
Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction 
scores from sklearn.metrics as it is the implementation that can be used for 
multiclass problems. 

Next, we present the AUC score using the One-vs-Rest (OvR) and One-vs-One 
(OvO) schemes for multi-class classification. OvR splits a multi-class 
classification into one binary classification problem while OvO does the same 
split but for each pair of classes. We report both macro average, and a 
prevalence-weighted average, however, no substantial difference is presented: 

 

3.5 Performance assessment 
 

We can perform analysis of predicting performance for different learning 
algorithms by two approaches: k-fold cross-validation and bootstrapping 
(Friedman, 2000). Cross validation will commonly be applied to estimate the 
performance of the learned model on an unseen replication dataset.  
Bootstrapping will aid in obtaining estimates of the frequency of individual arcs 
within a given BN.  
In summary, the algorithms iteratively add the most frequent arc from the 
frequency matrix until a network of n nodes in the Markov blanket of the 
phenotype is achieved.   
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4 Results  
 

In this study we constructed a DBN model of the gut microbial ecosystem from 
the Inflammatory Bowel Disease Multi-omics dataset of the Human Microbiome 
Project.  We used a two-stage DBN model, where two slices are modeled and 
learned at time.  

Our ultimate purpose was to identify a bacterial signature that describes the 
dynamics of adult microbial gut as well as compare differences in signatures 
between subjects with UC, CD and healthy. In order to do this, we (i) prepared 
a framework that covered main microbiome analysis preprocessing steps, (ii) 
modeled interactions between different omics, (iii) construct and learned a 
dynamic structure for each disease state (UC & DC) to infer which is the most 
probable dynamics, i.e. identify a maximum a posteriori (MAP) (iv) construct a 
model adding a ‘diagnosis’ node to the network and study its outgoing arcs.  

The preprocessing steps, implemented through our ad-hoc script, involved 
filtering subjects with limited time points, integrating three omic types in one 
matrix, normalization, and feature selection. Based on these preprocessing 
steps, the resulting dataset used for modeling consisted of 91 subjects, 200 
microbial taxa, 200 expressed metabolic pathways and 200 metabolites. As 
clinical variables, the week in which the sample was obtained, and the use 
(binary) of antibiotics were included. In addition, Bayes factor score was used 
to further reduce the dataset. We used prior knowledge as input to the learning 
DBN algorithm in order to constraint the resulting output model and prevent 
overfitting.  

The full network learned by the model comprised of 182 nodes per time slice: 
37 microbial taxa; 19 gene pathways; 29 metabolites and three clinical variables.  
We constructed a model (i) with and without bootstrap (10 repetitions due to 
restricted computational tools), (ii) with restriction matrix (prior knowledge) as 
shown in Figure 24, and (iii) different Bayes factor score thresholds (threshold 
= 5, 10, 15) were explored as part of a hyperparameter tuning phase.  
Connections with largest Bayes factors are more likely to represent a true causal 
association. 

 

Figure 24: Restriction matrix. Self-loops identified by 1, inter-edges identified as 2 and intra-edges 
identified as 3. 
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For illustrative purposes, we trained a DBN model on a subset of the 50 best 
entities of each omic type and maximum number of parents of 3. Results for the 
combined diagnosis model (all health conditions in same model), are shown in 
Figure 25. Nodes represent bacterial taxon, metabolites, clinical data, or 
metabolic pathways.  

 

 

Figure 25: Learned DBN with ‘restriction matrix’ constraints on the top 50 best features per omic 
type. Green nodes represent time slice ti  and purple nodes the consecutive ti+1. Metabolite nodes 

are represented by squares, species (taxa) by circles, clinical variables by triangles and 
metabolic pathways by diamonds. Total number of nodes is 182, and total number of edges 

231. 

Our network is composed of the nodes grouped by typology, presented in Figure 
26, Figure 27 and Figure 28.   

 

Figure 26: Metagenomics (taxa) type nodes. 

 

 

Figure 27: Metatranscriptomics (RNA pathways) type nodes. 
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Figure 28: Metabolites type nodes. 

 

Additionally, we present Table 9 with comparison of different network search 
algorithms: (i) K2-style, (ii) pheno-centric search, and (iii) simulated annealing. 
We found CGBayesNet had one major disadvantage for our study when 
reporting performance (AUC) because the implementation is only available for 
binary phenotype and not multiclass as our case (UC, CD, healthy). For this 
reason, for predictive performance analysis we learned a DBN model for CD and 
non IBD subjects, i.e., transforming our problem to a binary one.  

 

Network Bootstrap 
realizations 

Total Continuous 
Nodes 

Total Discrete 
Nodes AUC (%) 

A 20 3 153 60.83 

B 20 3 153 54.04 

C 20 3 40 54.85 

Table 9: Results of four Bayesian networks from bootstrapping on microbiome multi-omic time-
series dataset. AUC is reported as a measure of predictive accuracy of the network. Number of 

continuous nodes = 150 and number of discrete nodes = 3.  

 

Table 9 shows the predictive performance of thre different networks on 
predicting IBD condition (diagnosis = CD) in the iHMP2 IBD dataset. Total nodes 
(continuous and discrete) reports the size of the network. AUC reports the 
convex hull of the area under receiver operator characteristic curve, which 
measures prediction at various sensitivity and specificity combinations. We 
used 20 bootstrap realizations of the dataset and computed networks at various 
edge frequencies. The consensus Markov-blanket had 71 nodes.  

The AUC values and general performance (Table 9 and Figure 29) was lower 
than we expected and there is certainly room for improvement. 
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Figure 29: Results of performance comparison of networks. A bootstrapping-produced continuous 
adjacency matrix is used to compare the performance of networks formed by starting with the 

phenotype node, and then adding, in sequence, the most frequent edge occurring in the bootstrap 
networks, and measuring the performance of that network on the dataset in cross-validation. 

Results for the independent models for each condition (CD, UC, healthy) are 
also reported in Figures 30, 31 and 32. Full name of nodes can be consulted in 
Appendix III.  

 

 

Figure 30: DBN for patients with UC with ‘restriction matrix’ constraints on the top 50 best 
features per omic type. Green nodes represent time slice ti  and purple nodes the consecutive ti+1. 

Metabolite nodes are represented by squares, species (taxa) by circles, clinical variables by 
triangles and metabolic pathways by diamonds. 
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Figure 31: DBN for CD patients with ‘restriction matrix’ constraints on the top 50 best features per 
omic type. Green nodes represent time slice ti  and purple nodes the consecutive ti+1. Metabolite 
nodes are represented by squares, species (taxa) by circles, clinical variables by triangles and 

metabolic pathways by diamonds. 

 

 

 
Figure 32: DBN for non-IBD (control) subjects with ‘restriction matrix’ constraints on the top 50 

best features per omic type. Green nodes represent time slice ti  and purple nodes the consecutive 
ti+1. Metabolite nodes are represented by squares, species (taxa) by circles, clinical variables by 
triangles and metabolic pathways by diamonds (due to network size, zoom in was required in 

order to show node labels, however, full network could not be displayed if zoomed in).  
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In preliminary results we did observe, as expected from results of previous 
studies in the literature, IBD is associated with overall community dysbiosis 
rather than a specific bacterial species. For instance, a combination of increase 
in Actinobacteria and Proteobacteria with decrease in Clostridium and 
Faecalibacterium is observed in subjects with this condition. Although taxa 
abundance analysis was not the goal of our work, it does indeed show the model 
points in the right direction.  

This sequence of analysis demonstrates the utility of DBNs ability to generate 
and test predictive models in human multi omic microbiome datasets.  The final 
model may be suggestive of a set of taxa, gene metabolic pathways and 
metabolites whose expression is dysregulated in patients with IBD. Also some 
of these attributes can be used for further biological inquiry as predictors of 
other attributes, thus used as a predictive model. For instance, metabolites in 
ti connected to taxa in ti+1 may be used as predictors. This relationship is found 
for our UC model, where we identified the following chain: 

NH4_C46:3 TAG (metabolite) in t0  Alistipes_putredinis in tn 

Also found in the literature to play a critical role in inflammation and disease 
(Parker, Wearsch, Veloo, & Rodriguez-Palacios, 2020). 

Important to note that we are aware that a possible source of error could be the 
XML style file created for visualization purposes (Cytoscape) which could have 
influenced the results obtained. Further studying of the visualization software 
should be conducted in order to obtain full potential and functionality.  

One of the objectives we set at the beginning of the project was to perform 
benchmark test of our model (DBN) compared to RF for the same dataset. 
However, in the end we did not produce enough performance data to do a correct 
assessment and establish conclusions.  
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5 Conclusions and Future Research 
 

 

5.1 Conclusions 
 

 

In this study we have examined the state of the art of different artificial 
intelligence techniques and methods to solve a current scientific problem of 
interest: analyzing the human microbiome temporal changes associated to 
disease state. We developed a tailored preprocessing script for the Inflammatory 
Bowel Disease Multiomics Dataset from the iHMP project, that covers an unmet 
need, as, to the best of our knowledge, data access, preparation, and integration 
of these datasets for machine learning models have not been developed yet.  
Furthermore, we have applied a powerful artificial intelligence approach, DBNs, 
to solve the problem with an innovative configuration and approach by 
integrating longitudinal multi-omic data for characterization of a model for each 
disorder (UC, CD) and the healthy state (non IBD). Also, our work has presented 
analysis of different software packages to construct the solution and selected 
one of them (CGBayesNet) for the implementation process.  

Our implementation consisted of the following steps: 

1. Preprocessing of data set. 
2. Fitting the DBN model in two step structure and parameter learning. The 

output of this step was a 2-stage dynamic Bayes net class object (DBN). 
3. Inference and test the DBN on a subset of variables given the evidence 

on the other variables. The output of this step was the predicted values 
and log probabilities of observing a less likely outcome for each variable 
than the value assigned to that variable by the input data. 

4. Network visualization and analysis for biological interpretation of results.  

 

We have shown DBNs can serve as a valuable approach to capture temporal 
variability in microbiome data and our results have found the 50 most 
important taxa, metabolic pathways, and metabolites for each condition.  

 

The usefulness of BNs for microbiome analysis has been presented in our study. 
The use of prior biological domain knowledge as input restrictions matrix 
allowed us to prove the value of this approach versus other popular ML models 
(e.g. RF) to build explainable interpretable models. However, BN have a series 
of limitations. First, heavy assumptions that can be easily violated are required 
for valid inference. Second, model search in presence of large number of 
variables (as in real human microbiome data) requires massive computational 
power and its performance is affected by overall sample size. Third, BNs cannot 
explain a cyclic or feedback relationship among variables.  

Our work clearly has some limitations that should be addressed in future 
research. Furthermore, a gold standard of human microbiome analysis needs 
to be established. Despite this, we are confident that our research will serve as 
a basis for future studies on dynamic Bayesian networks modeling of 
longitudinal human microbiome data.  
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5.2 Future research 
 

 

Even though intense research has been done in causal discovery from dynamic 
human microbiome data there are still some necessities and goals that need to 
be covered in order for this field to keep active. This research has given rise to 
many questions in need of further investigation. 

In terms of data preprocessing which we believe is determining for posterior 
quality of results and performance of model, some intriguing lines of research 
can be further explored. Firstly, spline interpolation method that combines 
time-course modeling with multivariate approaches to capture ecological 
interactions can result in increase of accuracy and performance of our model. 
Approaches such as multivariate analysis (Bodein, Chapleur, Droit, & Lê Cao, 
2019) and linear mixed model splines (LMMS), (Straube, 2015) implemented in 
R package lmms should be explored in future research. Also interesting along 
these same lines, being able to determine the ideal sampling frequency. It is 
known that different sampling frequencies change the associations inferred 
(Fuhrman, 2015) and that ideal sampling frequency depends on the system, so, 
can we determine a value for human microbiome studies? Secondly, feature 
selection. A different approach we could have followed would have been to obtain 
two different subsets by two different approaches and then obtain selected 
features that are the intersections of both subsets. Our focus has not been set 
on the literature review and state of the art of feature selection techniques for 
human microbiome analysis, therefore, this is a recommended matter to explore 
in future work.  As expected, the choice of variables due to the used feature 
selection techniques, have influenced the results obtained. Moreover, although 
we further applied preprocessing steps to reduce sparsity of our data, the input 
dataset used for learning and inference still contained sparse features with 
missing data.  

 

Concerning dataset selection, it would be convenient to test the model in 
multiple cohorts and potentially different class balances. For instance, exploring 
datasets that include geographically diverse populations. It has been seen that 
identical twins can become key in human microbiome studies because these 
subjects are not constrained by confounding factors (genetic confounding). The 
concept of impact of confounding factors on human microbiome analysis is still 
poorly understood, yet of critical importance (Bajaj, 2015). For studies focused 
on causal inference, as (Pasolli, Truong, Malik, Waldron, & Segata, 2016) 
advices, results will be biased in presence of confounding factors due to violation 
of the causal sufficiency assumption. This concept should be considered when 
designing a clinical study and selecting patient cohort, for instance, randomized 
controlled trial, a gold standard for causal inference, could be carried out in 
order to eliminate selection bias or confounding. The choice of dataset is one of 
the main limiting factor on the resulting performance of our model. For our 
study, we explored publicly available datasets, but we would like to point out 
for future studies an interesting cohort composed of identical twins, thus not 
subject to genetic confounding, namely TwinsUK (Verdi, 2019).  

Furthermore, we selected four specific types of data as our input features 
(clinical, taxa, metatranscriptomic pathways and metabolites) but alternatives 
such as host gene expression or other environmental features (diet, patient a 
smoker) could be used in future work to learn the structure of the DBN.  
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Finally, with regards to evaluation and performance assessment, further work 
should be done to improve and support accountability of conclusions and 
results. Our work did not include a detailed performance report in results 
section. Based on this, our goal in next stages of this study will be to: report 
multiple evaluation metrics with confidence intervals and perform model 
hypothesis interpretation based on feature importance. Moreover, it would be 
useful to use an additional dataset from a research institution or medical center 
to further validate the model’s performance (not used for training nor testing). 
For the validation of output, we suggest that the assistance of microbiology 
experts to interpret resulting models could greatly enrich conclusions and help 
point out new directions for future investigations.  

 

The gut microbiome has been extensively studied but due to its high complexity 
and inter-individual heterogeneity it is not yet fully understood. Although 
machine learning methods, and in particular dynamic Bayesian networks, are 
promising techniques to infer useful insights, there is still considerable work to 
be done in some areas.  Other suggestions of topics that have not been explored 
in this Master thesis, but evidence substantial interest could be the study of 
other microbes such as the skin microbiome, oral cavity microbiome or the 
respiratory system microbiome that can produce equally interesting results and 
that have not been widely explored and characterized yet. 
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7 Appendix 
 

 

 
I. Theoretical Foundation of CGBayesNet (McGeachie, Chang, & Weiss, 

2014) 
 

To determine the best network model of the data, CGBayesNet computes the 
marginal likelihood of candidate network structures, conditioned upon the data, 
and choose the network model that maximizes the marginal likelihood. The 
posterior probability of the Bayesian network model G, given the data D, is 
p(G|D)p(D), and it uses Bayes’ theorem to equate p(G|D)p(D) = p(D|G)p(G), or : 

, 

where p(G) is the prior probability of a network model and p(D) is the prior 
probability of the data, and p(D|G) is the marginal likelihood:  

. 

Here p(D| θ,G) is the likelihood of the data given the network G and distribution 
parameters θ, and p(θ|G) is the prior density of the parameters θ. The marginal 
likelihood p(D|G) is computed by averaging out the distribution parameters θ 
from the likelihood function, p(D|G, θ).  

The Bayesian network semantics provides a decomposition of the likelihood as 
follows: for a given set of distribution parameters θ, a dataset D of size |D| = d, 
variables yi in I = (Δ union Ψ)  realizing values yik in {yi1, yi2, … yid} in D, given 
parents π(yi) taking values uik when yi takes value yik: 

 

where p(yik| π(yi),θik) is the probability of yi having value yik in D with parent 
values uik and distribution parameters θ. Distribution parameters for discrete 
nodes are modeled with Dirichlet priors, priors for Gaussian nodes are described 
below.  In the discrete case, we denote by |yi| and |π(yi)| the number of 
different values that yi and π(yi) can assume, respectively; then the discrete 
nodes have (joint) likelihood: 

 

where nijk is the number of data points satisfying yi = k for π(yi) in configuration 
j, and αijk is the hyper parameter of the Dirichlet distribution indicating a prior 
assumed sample size. Γ(.) denotes the gamma function. Continuous nodes yi 
have Gaussian distributions with a mean that is a linear function of its 
continuous parents and depending on its discrete parents, with a conditional 
variance σ2ij = 1/τij. The joint likelihood of the continuous nodes is then 
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with xij the values of continuous parents of yi in case k, and βij the vector of 
regression parameters given discrete parents of yi = j. CGBayesNet follows 
(Sebastiani, Abad, & Ramoni, 2005) and use a Gamma prior distribution for τ 
and a conditional multivariate Gaussian prior density on regression parameters 
β. Thus, 

 

 And β is described by  

 

For the identity matrix I, and βij0 = E(βij | τij).  The above equations represent the 
main semantics of CGBayesNets.  

 

 

 

II. Number of samples per Omic type for each participant  
 

 Number of samples per omic type 

Participant ID Metabolites Metagenomics Metatranscriptomics Metatranscriptomics 
trimmed 

C3001 6 16 6 6 

C3002 6 15 7 7 

C3003 5 10 7 7 

C3004 5 24 20 20 

C3005 5 12 9 9 

C3006 5 11 7 6 

C3008 4 13 5 5 

C3009 6 12 8 6 

C3010 6 14 7 7 

C3011 5 22 5 5 

C3012 6 14 8 8 

C3013 5 22 5 5 

C3015 5 23 15 15 

C3016 7 20 15 14 

C3017 6 23 5 5 

C3021 4 9 7 7 

C3022 6 22 7 7 

C3023 7 12 7 7 

C3027 6 24 8 7 

C3028 5 12 5 5 

C3031 4 11 9 9 

C3034 5 10 6 6 

C3035 5 12 8 8 
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C3037 8 11 7 6 

E5001 5 13 9 9 

E5004 5 12 5 4 

E5009 0 11 4 0 

E5013 5 13 7 7 

H4001 8 12 5 5 

H4004 7 11 8 8 

H4006 6 23 19 19 

H4007 0 12 4 0 

H4008 6 24 8 8 

H4009 6 23 8 7 

H4010 7 13 7 6 

H4013 6 14 7 7 

H4014 6 12 8 8 

H4015 6 22 7 7 

H4016 6 14 5 4 

H4017 4 18 12 10 

H4018 6 13 7 7 

H4019 6 24 13 13 

H4020 5 23 18 18 

H4022 5 14 5 5 

H4023 5 22 8 8 

H4024 4 23 7 7 

H4027 5 11 5 5 

H4030 5 13 8 7 

H4031 5 12 7 7 

H4032 5 13 4 4 

H4035 7 24 18 16 

H4038 6 13 6 6 

H4039 4 13 9 9 

H4040 4 11 7 7 

H4043 5 10 4 4 

H4045 6 13 7 7 

M2008 6 17 12 12 

M2014 6 14 7 7 

M2021 4 8 5 5 

M2025 5 11 9 9 

M2026 5 17 7 7 

M2027 5 13 12 12 

M2028 5 20 5 5 

M2034 5 20 6 6 

M2039 5 15 10 10 

M2041 5 14 9 9 

M2042 5 23 8 8 
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M2047 6 14 10 9 

M2060 4 12 5 4 

M2061 7 13 10 10 

M2064 5 22 10 10 

M2068 4 26 8 8 

M2069 6 25 21 21 

M2071 5 10 9 9 

M2072 5 24 13 13 

M2075 6 11 5 5 

M2077 6 14 9 8 

M2079 5 14 8 8 

M2083 5 18 7 7 

M2084 6 23 8 8 

M2085 7 14 8 8 

M2097 5 11 7 7 

P6005 6 16 9 9 

P6009 6 22 7 7 

P6010 6 23 19 19 

P6013 4 23 6 6 

P6016 6 14 8 8 

P6018 5 25 17 17 

P6024 4 11 4 4 

P6028 6 11 8 6 

P6035 4 11 7 7 

P6037 4 8 7 7 

P6038 5 12 8 8 

Total 492 1448 777 749 
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8 Glossary 
 
 
 Microbe: microorganisms. For example: bacteria, eucarya and archea.  

 
 Microbiota: a collection or community of microbes. 

 
 Human microbiota: the particular community of microbes residing in and 

on the human body. Organism-level. 
 

 Human microbiome: the term is how scientists refer to microbial genes 
living in the human body. The full collection of all the genes which are 
contained in the human microbial community. Gene-level. Consists of about 
100 trillion microbial cells (vs 10 trillion human cells).  
 

 Dysbiosis: disrupted microbial ecosystem. Can lead to a variety of human 
disease states.  

 
 Transcriptomics pathway abundance: The abundance of a pathway in the 

sample is computed as a function of the abundances of the pathway’s 
component reactions, with each reaction’s abundance computed as the sum 
over abundances of genes catalyzing the reaction. The abundance is 
proportional to the number of complete “copies” of the pathway in the 
community. Unlike gene abundance, a pathway’s abundance at community-
level is not necessarily the sum of the abundance values of each species. 
Gene family and pathway abundances are in RPKs (reads per kilobase), 
accounting for gene length but not sample sequencing depth.  

 


