
Universidad Politécnica de Madrid
Facultad de Informática

Master Thesis
MASTER IN ARTIFICIAL INTELLIGENCE RESEARCH

bayeclass: an R package for
learning Bayesian network
classifiers. Applications to

neuroscience

Author: Bojan Mihaljevic
Supervisor: Pedro Larrañaga Múgica

Supervisor: Concha Bielza Lozoya

July 2013

Acknowledgements

First, I want to thank my supervisors Concha Bielza and Pedro Larrañaga for their
trust, for all the valuable advice, and for the patience during the execution of this
Master’s Thesis.

I would like to thank Javier deFelipe and Ruth Benavides-Piccione from the
Laboratorio Cajal de Circuitos Corticales(CSIC) for their contributions to this work.

This Master’s Thesis would have not been possible without the financial support
of the Spanish Economy and Competitiveness Ministry through Cajal Blue Brain
(C080020-09) and TIN2010-20900-C04-04 projects.

I want to thank my colleagues from the Computational Intelligence Group and
the Máster Universitario en Inteligencia Artificial for their company and guidance.
Also to the rest of my friends, be they in Madrid or somewhere else. Finally, I want
to thank my parents and my sister for their love and support.

2

Resumen

El aprendizaje automático proporciona herramientas para el análisis automatizado de
datos. Un tipo de algoritmo de aprendizaje automático, el clasificador supervisado,
aprende la correspondencia entre las caracteŕısticas descriptivas de un objeto y el
conjunto de clases posibles, a partir de un conjunto de datos.

Los clasificadores supervisados basados en redes Bayesianas son particularmente
útiles. Existen muchos algoritmos para el aprendizaje de tales clasificadores. Sin
embargo, sólo dos de ellos están disponibles en software de libre acceso. El entorno
de software R es el sistema de código abierto ĺıder para la computacion estad́ıstica.
Proporcionamos una implementación de clasificadores Bayesianos avanzados para
entorno R, en forma de un paquete al que llamamos bayesclass.

El clasificador Bayesiano más conocido es el naive Bayes. Este clasificador asume
que las caracteŕısticas son independientes dada la clase. En muchos ámbitos, es
posible obtener una clasificación más precisa relajando de estos supuestos. El mod-
elo semi-naive Bayes elimina los supuestos de independencia condicional dentro de
subconjuntos disjuntos de caracteŕısticas. El algoritmo de aprendizaje backward se-
quential elimination and joining (BSEJ), tiende a producir modelos semi-naive Bayes
con pequeños subconjuntos de caracteŕısticas relacionadas, eliminando pocos de los
supuestos de independencia del naive Bayes. Extendemos el algoritmo BSEJ con un
segundo paso que elimina algunos supuestos de independencia injustificados. Nuestro
clasificador supera a la BSEJ y otros cinco clasificadores Bayesianos en un conjunto
de bases de datos de referencia.

La clasificación de neuronas es un problema importante en neurociencia. An-
teriormente, 42 expertos clasificaron un conjunto de neuronas de acuerdo a una
taxonomı́a propuesta. Los expertos no coincidieron en muchos de los términos de la
taxonomı́a. Los datos recogidos permiten construir un modelo computacional obje-
tivo que podŕıa resolver los conflictos asignando etiquetas de clase definitivas. Un
clasificador supervisado puede aprender el mapeo entre los descriptores cuantitativos
neuronales y las elecciones taxonómicas de los expertos. Un problema es que hay
hasta 42 etiquetas de clase por neurona y la etiqueta más votada no es siempre fiable
(puede tener pocos votos). Construimos los clasificadores utilizando únicamente las
neuronas con etiquetas fiables y aśı obtenemos una alta precisión en la predicción.

3

Abstract

Machine learning provides tools for automatized analysis of data. The most com-
monly used form of machine learning is supervised classification. A supervised classi-
fier learns a mapping from the descriptive features of an object to the set of possible
classes, from a set of features-class pairs. Once learned, it is used to predict the class
for novel data instances. The Bayesian network-based supervised classifiers are par-
ticularly useful. They have a solid theoretical basis in probability theory and provide
competitive predictive performance. Many algorithms for learning Bayesian network
classifiers exist. However, only two are provided in freely available software. The
R software environment is the leading open-source system for statistical computing.
We provide an implementation of state-of-the-art Bayesian network classifiers for the
R environment, in the form of an add-on package called bayesclass.

The best-known Bayesian network classifier is the naive Bayes. It assumes that
the features are independent given the class. In many domains, more accurate clas-
sification is obtained by relaxing these assumptions. The semi-naive Bayes model
removes all assumptions of conditional independence within disjoint subsets of fea-
tures. Its state-of-the-art learning algorithm, the backward sequential elimination
and joining (BSEJ) algorithm, tends to produce semi-naive Bayes models with small
subsets of related features. Such a model removes only a few of naive Bayes’ inde-
pendence assumptions. We extend the BSEJ algorithm with a second step which
removes some of its unwarranted independence assumptions. Our classifier outper-
forms the BSEJ and five other Bayesian network classifiers on a set of benchmark
databases, although the difference in performance is not statistically significant.

Classification of neurons is an important problem in neuroscience. Previously,
42 experts classified a set of interneurons according to a proposed taxonomy. They
disagreed on many of the terms of the taxonomy. The gathered data allows for
constructing an objective computational model that could resolve the conflicts by
assigning the definitive class labels. A supervised classifier can learn the required
mapping from quantitative neuronal descriptors to the experts’ taxonomical choices.
A challenge is that there are up to 42 class labels per neuron and the most voted
label is not always reliable (i.e. has many votes). We use only the cells with reliable
class labels to build the classifiers and obtain high predictive accuracy.

4

Contents

1 Introduction 2
1.1 Fundamentals . 4
1.2 Learning Bayesian Networks from Data 5

1.2.1 Tests of Independence and Conditional Independence 5
1.2.2 Learning Bayesian Network Classifiers 5

1.3 Naive Bayes . 6
1.3.1 Weighted Naive Bayes . 6

1.4 Selective Naive Bayes . 8
1.4.1 The Forward Sequential Selection Algorithm 9
1.4.2 The Filter Forward Sequential Selection Algorithm 9

1.5 Semi-naive Bayes . 9
1.5.1 The Backward Sequential Elimination and Joining Algorithm 10
1.5.2 The Filter Forward Sequential Selection and Joining Algorithm 10

1.6 Tree Augmented Naive Bayes . 11
1.6.1 Selective Tree Augmented Naive Bayes 11

1.7 Other Bayesian Network Classifiers 12

2 Augmented Semi-naive Bayes 14
2.1 Augmented Semi-Naive Bayes . 14
2.2 Experimental Evaluation . 16

2.2.1 Setup . 16
2.2.2 Results . 17

2.3 Concluding Remarks . 18

3 bayesclass: an R Package for Learning Bayesian Network Classifiers 20
3.1 The R Environment for Statistical Computing 21
3.2 Discrete Bayesian Network Classifiers in R 21

3.2.1 The bnlearn Package . 21
3.2.2 Other Implementations . 21

3.3 the bayesclass Package . 21

i

Contents ii

3.3.1 Implementation . 22
3.4 Sample Session . 23

3.4.1 Learning a Bayesian Network Classifier from Data 23
3.4.2 Predictive Performance Assessment 24

3.5 Concluding Remarks . 25

4 Bayesian Network Classifiers for Discriminating between Cortical
Interneurons 27
4.1 Background . 28

4.1.1 The Neuron Classification Problem 28
4.1.2 An Axonal Features-based Taxonomy 29

4.2 Materials . 30
4.2.1 Morphometric Parameters . 30
4.2.2 Data Preprocessing . 31

4.3 Methodology . 32
4.3.1 Discretization . 32
4.3.2 Thresholded Majority Vote Label 32

4.4 Experimental Evaluation . 33
4.4.1 Classifier Parameters and Predictive Performance Evaluation . 33
4.4.2 Predicting Axonal Features Independently 34
4.4.3 Simple Axonal Features as Predictors of Interneuron Type . . 36

4.5 Concluding Remarks . 40

5 Conclusions 44
5.1 Future Work . 44

A bayesclass Package Documentation 46

Bibliography 49

List of Figures

1.1 Network structures of different Bayesian network classifiers 7

2.1 Network structures of the semi-naive Bayes and the augmented semi-
naive Bayes . 15

3.1 Network structures learned for the car data set 25

4.1 Class count per vote threshold . 35
4.2 Classifiers’ accuracy for predicting axonal features individually from

morphological data . 37
4.3 Classifiers’ kappa for predicting axonal features individually from mor-

phological data . 38
4.4 Class count per vote threshold on F5 with vote threshold 21 for F1-F4 41
4.5 Accuracy and Cohen’s kappa for predicting interneuron type with sim-

ple axonal features as predictors . 42

iii

List of Tables

2.1 Data sets used to assess the augmented semi-naive Bayes classifier . . 17
2.2 Average Friedman’s ranks of the compared Bayesian network classifiers 18
2.3 Estimated accuracies of the compared Bayesian network classifiers . . 19

4.1 Sensitivity and specificity of the TAN classifier for predicting interneu-
ron type using morphometric parameters as predictors. Vote threshold
25 is applied to F5 . 36

4.2 Sensitivity and specificity of the TAN classifier for predicting interneu-
ron type using simple axonal features as predictors. Both 2D and 3D
cells are used, with threshold 21 for simple axonal features and thresh-
old 27 for interneuron type. 39

4.3 Sensitivity and specificity of the FSS classifier for predicting interneu-
ron type using simple axonal features as predictors. Only 3D cells are
used, with threshold 21 for simple axonal features and threshold 25
for interneuron type. 40

4.4 Sensitivity and specificity of the AWNB classifier for predicting in-
terneuron type using simple axonal features and morphometric pa-
rameters as predictors . 40

1

Chapter 1

Introduction

An enormous amount of data is being generated every day. Analysing big data sets
is impossible without the help of automated procedures. Machine learning [7, 48]
provides these procedures. The most commonly used form of machine learning is
supervised classification [7, 15]. Its goal is to learn a mapping from the descriptive
features of an object to the set of possible classes, given a set of features-class pairs.

Probabilities play a central role in modern machine learning [7, 31, 48]. Prob-
abilistic graphical models (PGMs) [39] have emerged as a general framework for
describing and applying probabilistic models [7]. A PGM allows us to efficiently
encode a joint distribution over some random variables by making assumptions of
conditional independence. Bayesian networks [51] are the most commonly used kind
of graphical models.

A Bayesian network classifier (BNC) [21] is a Bayesian network applied to the
classification task. BNCs have many strengths, including: interpretability, possibil-
ity of including prior knowledge about a domain, and competitive predictive perfor-
mance. They have been successfully applied in practice (e.g. [8, 40]).

Many algorithms for learning BNCs from data have been proposed [2, 18]. Only
a couple, namely the naive Bayes [47] and the tree augmented naive Bayes [21],
are provided in freely available software. R [53] is a programming language and
an environment for statistical computing and graphics. It is free software, released
under the GNU General Public License (GPL) and runs on all common operating
systems. It is the leading open-source system for statistical computing [16, 34]. R
consists of a base distribution and add-on packages, contributed by members of its
open-source community. Through the add-on packages, many models for supervised
classification are available [42]. However, only a pair of Bayesian network classifiers
are provided.

We set out to extend the R platform with implementations of state-of-the-art
algorithms for learning Bayesian network classifiers from data. We provide our code

2

Chapter 1. Introduction 3

in the form of an add-on package called bayesclass. Chapter 3 describes the
implementation of this package.

The above-mentioned naive Bayes classifier is the best-known Bayesian network
classifier. It assumes that the features are independent given the class. These as-
sumptions are violated in many domains and more accurate classification can often
be obtained by relaxing them [21]. The semi-naive Bayes [50] model removes all
assumptions of conditional independence within disjoint subsets of features. The
state-of-the-art algorithm for learning a semi-naive Bayes is the backward sequential
elimination and joining (BSEJ) algorithm [50]. This algorithm tends to form small
subsets of related features and therefore removes few of the independence assump-
tions of the naive Bayes [21].

We extend the BSEJ algorithm with a second step which removes some of its
unwarranted conditional independence assumptions. We use statistical tests of con-
ditional independence to assess whether an assumption of conditional independence
holds in the data. We refer to our proposed classifier as augmented semi-naive Bayes.
In Chapter 2 we describe this proposal and report an empirical comparison with the
BSEJ algorithm and with five other reference Bayesian network classifiers.

Classification of neurons according to their morphology is an important problem
in neuroscience. In a previous study, 42 experts were asked to classify a representative
set of interneurons according to a proposed taxonomy. They disagreed on many of
the terms of the taxonomy. The gathered data allows for constructing an objective
computational model that could resolve the conflicts by assigning the definitive class
labels. A supervised classifier can learn the required mapping from quantitative
neuronal descriptors to the experts’ taxonomical choices. A challenge is that there
are up to 42 class labels for each interneuron and the most voted label is not always
reliable. We use only the cells with reliable class labels (i.e. those backed by many
votes) to build the Bayesian network classifiers. We show that classifiers learned in
this way can achieve high predictive accuracy.

This dissertation is organized as follows: in the rest of the present chapter we
introduce discrete Bayesian network classifiers and describe the Bayesian network
classifiers that are referred to in the remaining chapters; in Chapter 2, we present the
augmented semi-naive Bayes classifier; in Chapter 3 we describe the bayesclass
package for learning Bayesian network classifiers; in Chapter 4 we describe the ap-
plication of Bayesian network classifiers to the classification of interneurons into
morphological classes; and finally, in Chapter 5, we sum up with conclusions and an
outline of future work.

Chapter 1. Introduction 4

1.1 Fundamentals

We use upper-case letters to denote variables (X) and lower-case letters (x) to de-
note variable values. We use boldface letters to denote multidimensional vectors of
variables (X) and variable values (x). Let X = (X1, . . . , Xn) be a vector of n dis-
crete predictor random variables or features, with xi ∈ {1, . . . , ri} and let C the the
class variable, with c ∈ {1, . . . , rc}. The supervised classification problem consists
in inducing from a random sample D = {(x(1), c(1)), . . . , (x(N), c(N))}, of size N , a
classifier able to assign labels to new instances given by the values of their features.
A Bayes classifier assigns an instance x to the most probable class, i.e.

c∗ = arg max
c

p(c|x) = arg max
c

p(c,x).

A Bayesian network classifier [21] uses a Bayesian network [?] to encode p(c,x). A
Bayesian network consists of two components: a directed acyclic graph (DAG) G =
(X,A) and a set of parameters Θ. The nodes X in G correspond to random variables
and the arcs represent direct dependencies between them. The graph structure
encodes conditional independence assumptions about the variables: a variable X is
independent of its non-descendants given Pa(X), its parents in G. From there it
follows that

p(c,x) = p(c|pa(c))
n∏
1

p(xi|pa(xi)).

The number of parameters is then exponential in the size of the conditioning sets
Pa(X) rather than in n. Many Bayesian network classifiers use the following factor-
ization

p(c,x) = p(c)
n∏
1

p(x|c),

that is, they fix the class as the root of the network (i.e., Pa(C) = ∅). They differ in
how they factorize p(x|c), that is, in the assumptions of class-conditional indepen-
dence among the features they make. For example, the naive Bayes (Section 1.3)
assumes that all features are conditionally independent given the class:

p(x, c) ∝ p(c)
n∏

i=1

p(xi|c).

The parameters of a Bayesian network, Θ, quantify conditional probability distribu-
tions implied by G. That is, θXi|Pa(Xi) = p(Xi | Pa(Xi)) and Θ = (θX1|Pa(X1), . . . ,θXn|Pa(Xn)).
Once a structure is fixed, we can estimate Θ from D. Standard methods include
maximum likelihood and Bayesian estimation. Using a Dirichlet prior with all hy-

Chapter 1. Introduction 5

perparameters equal to α, the Bayesian estimate of p(Xi = k|Pa(Xi) = j) is

Nijk + α

N.j. + riα
, (1.1)

where Nijk is the frequency in D of cases with Xi = k and Pa(Xi) = j, and N.j.is the
frequency of cases with Pa(Xi) = j. Maximum likelihood estimation can be seen as
a special case of Equation 1.1 where α = 0.

1.2 Learning Bayesian Networks from Data

Learning Bayesian networks from data is a two-step procedure: structural learning
and parameter fitting. These two steps correspond to the identification of the graph G
and the parameters of local probability distributions, Θ, respectively. The methods
for structural learning can be divided into two categories:

� Constraint-based methods, which use tests of conditional independence to find
conditional independences between groups of variables.

� score+search methods, which assign a score to each candidate network and use
a search algorithm to explore the space of networks (DAGs). Since learning
the optimal Bayesian network is NP-hard [11], heuristic search algorithms are
generally used. Typical scores include the log-likelihood and the penalized
log-likelihood (e.g. the Bayesian information criterion).

1.2.1 Tests of Independence and Conditional Independence

Two statistics are commonly used to test for conditional independence of variable
sets X and Y given Z: the mutual information X and Y given Z, I(X; Y|Z), and
Pearson’s χ2 statistic [49]. The χ2 statistic and 2NI(X; Y|Z) asymptotically follow
the χ2

(rX−1)(rY−1)rZ distribution, where rX =
∏

X∈X |X|, and analogously for rY and
rZ. We can use this distribution to obtain a p-value for the hypothesis of conditional
independence. When Z = ∅ then rZ = 1 and we are testing for (unconditional)
independence.

1.2.2 Learning Bayesian Network Classifiers

Learning Bayesian network classifiers is a special case of Bayesian network learning.
The typical goals of the latter include the discovery of knowledge and a good ap-
proximation of the underlying distribution, while in the former case we are primarily
interested in learning a model that maximizes predictive performance. It seems that

Chapter 1. Introduction 6

the two goals do not imply each other so the two procedures can differ. For example,
when learning a Bayesian network classifier it generally makes sense to omit some
features from the model as long as that improves predictive performance. Similarly,
it makes sense to use the predictive accuracy of a network as its score. These opera-
tions seem to make little or no sense in general Bayesian network learning. Generally,
any operation that improves predictive accuracy appears to be useful in the context
of Bayesian network classifier learning.

Predictive Accuracy as Network Score

The predictive accuracy of a network structure G can be estimated with cross-
validation [9]. The network’s parameters are estimated from the training set and
the performance of the resulting network determined against the validation set. The
average performance over the test sets gives the cross-validated estimate.

Restricted Network Structures

Most of the algorithms for learning Bayesian network classifiers impose constraints
on the network structure. The network structure of the tree augmented naive Bayes
(Section 1.6), for example, consists of a tree in the features subgraph and an arc
from the class node to each feature (the class has no parents). Most methods fix the
class as the root of the network. Given the restrictions on network structure, general
search heuristics are often not suitable and specific search algorithms are used for
learning Bayesian network classifiers.

1.3 Naive Bayes

The naive Bayes model [47] assumes that all features are independent given the class:

p(c|x) ∝ p(c)
n∏

i=1

p(xi|c)

See Figure 1.1a for the corresponding network structure. When all variables are
discrete, decision surface of the naive Bayes is a hyperplane [52]. Nonetheless, it
shows competitive performance in several domains [30]. Its low variance (due to its
simplicity) can be useful when N is small or n is high compared to N .

1.3.1 Weighted Naive Bayes

Extending the naive Bayes with additional parameters can improve its accuracy.
The attributed weighted naive Bayes [27] is a simple filter method for setting feature

Chapter 1. Introduction 7

(a) a (b) b (c) c

(d) d (e) e

Figure 1.1: a) Naive Bayes (Section 1.3); b) Selective naive Bayes (Section 1.4); c)
Tree augmented naive Bayes (Section 1.6); d) Selective tree augmented naive Bayes
(Section 1.6.1); e) Semi-naive Bayes (Section 1.5)

weights, obtaining

p(c|x) ∝ p(c)
n∏

i=1

p(xi|c)wi . (1.2)

A feature weight wi ∈ [0 − 1] is inversely proportional to the dependence of Xi on
the rest of features. A features’s dependency is estimated by constructing unpruned
decision trees and looking at the depth at which attributes are tested in the tree. A
bagging procedure is used to stabilize the estimates. The weight of a feature Xi is
given as

wi =

∑M
j=1

1√
dij

M
,

where M is the number of bagged trees and dij the minimum depth that Xi is
tested at in j-th tree (dij = 0 if Xi does not appear in j-th tree). Implicit feature
subset selection is performed as a weight wi = 0 omits the effect of Xi on prediction.
The size of the bootstrap sample and the number of samplings (i.e. trees) are the
parameters of this method.

The adjusted probability naive Bayes classifier (APNBC) [59] assigns a numeric
weight wc ∈ [0,∞) to each class. Upon classification, the class posterior is multiplied
by this weight. Then, we have

p(c|x) ∝ wcp(c)
n∏

i=1

p(xi|c).

The weights are found with a hill-climbing search that maximizes resubstitution ac-
curacy. All weights are initialized to 1, and at each step a weight w∗c which maximizes
resubstitution accuracy is identified. If w∗c improves resubstitution accuracy (see be-

Chapter 1. Introduction 8

low), it is incorporated into the classifier (i.e. wc = w∗c) and the process is repeated;
otherwise the search halts.

Weights are continuous values so the search space is infinite. However, only
2Nm candidate weights that are computed at each step, where Nm is the number
of misclassified instances. For each misclassified instance x(i), candidate weights are
computed for its true class c(i) and the class assigned to it by the classifier, a(i), as
follows:

wic(i) =
wa(i)p(a

(i)|x(i))

p(c(i)|x(i))
+ ε, (1.3)

and

wia(i) =
wc(i)p(c

(i)|x(i))

p(a(i)|x(i))
− ε,

where ε is a small positive value. The best weight, w∗c , is the wic(i) or wia(i) which
maximizes resubstitution accuracy (in case of ties, the weight which least differs from
current weight is selected).

Before being included in w (i.e. before setting wc = w∗c), w
∗
c is replaced by a

midpoint between its value and a ”critical” value b. If w∗c > wc (i.e. w∗c was obtained
with Equation 1.3) then b is the highest value less than w∗c such that setting wc = b
results in a higher classification error than wc = w∗c . Analogously, when w∗c < wc, b
is the lowest value greater than w∗c which results in a higher classification error than
w∗c .

To manage the risk of overfitting due to the maximization of resubstitution accu-
racy (instead of an honest estimate of accuracy), w∗c is only included in w if it leads
to an improvement in accuracy that is unlikely to have been obtained by chance.
If it is not, then the search is halted. The probability of the improved accuracy,
accimpr, is the probability of observing it after N trials when the true probability of
the underlying Binomial distribution is acccurr, the current accuracy. The threshold
α for determining whether this probability is higher than chance is a parameter of
the APNBC method.

1.4 Selective Naive Bayes

Redundant features degrade the predictive performance of the naive Bayes [43].
Pruning the feature set can alleviate this problem [43]. If we denote the pruned
feature set with XF , F ⊆ {1, . . . , n}, then

p(c|x) ∝ p(c)p(xF |c) = p(c)
∏
i∈F

p(xi|c).

Chapter 1. Introduction 9

See Figure 1.1b for the network structure of the selective naive Bayes. Finding the
optimal feature subset is an instance of the feature subset selection task. There are
two main approaches to this task: the filter approach and the wrapper approach.
The filter approach selects features without considering their effect on the classifier.
It usually scores feature subsets using statistics, such as the mutual information,
computed from the empirical distribution. Most filter methods do not account for
correlations between features but tend to be robust to overfitting [56]. The wrapper
approach [38] uses the classifier as a black box to score feature subsets. Any measure
of predictive performance, such as accuracy or the AUC, can be used as a score. A
wrapper typically uses a resampling technique, such as cross-validation, to assess the
predictive performance of a classifier; it is therefore, in general, more computation-
ally costly than the filter. In the case of Bayesian network classifiers, accuracy is
estimated as explained in Section 1.2.2

A major issue in feature subset selection is how to search the space of feature
subsets since its cardinality is 2n. Except for a small n, we need to use a search
heuristic. Coarse heuristics, such as the forward search (explained below), are faster
and tend to be more robust to overfitting than more sophisticated ones [26].

1.4.1 The Forward Sequential Selection Algorithm

The forward sequential selection (FSS) algorithm [43] is a wrapper algorithm for
learning a selective naive Bayes. It uses the forward selection heuristic to traverse
the search space: starting from an empty set, features are progressively incorporated
into the classifier. The search stops when there is no improvement in accuracy.

1.4.2 The Filter Forward Sequential Selection Algorithm

The filter forward sequential selection (FFSS) algorithm [8] is a filter approach for
learning a selective naive Bayes. It incorporates in the models all features that
are not independent from the class, as deemed by the test of independence based
on mutual information (see Section 1.2.1) with threshold α. The threshold α is a
parameter of this method.

1.5 Semi-naive Bayes

Naive Bayes’s assumptions of conditional independence are violated in many domains
and more accurate classification can often be obtained by dispensing with assump-
tions unwarranted by the data [21]. A common approach to this is to augment the
structure of naive Bayes with arcs between features, obtaining an augmented naive
Bayes model [21]. The semi-naive Bayes [50] is an example of such a model. It

Chapter 1. Introduction 10

assumes that correlations exist only within disjoint subsets of features. No inde-
pendence assumptions are made within a feature subset, i.e., each feature depends
directly on every other. This means that the structure of a naive Bayes is augmented
with an arc between every pair of features in the same feature subset. For simplic-
ity, we depict the a subset of related features with a compound node corresponding
to the Cartesian product of the features within the subset (see Figure 1.1e). The
semi-naive Bayes model might omit some of the features (i.e. it performs embedded
feature subset selection). According to the semi-naive Bayes model,

p(c|x) ∝ p(c)
∏
j∈Q

p(xSj
|c), (1.4)

where Sj ⊆ {1, . . . , n} is the j-th feature subset, Q = {1, . . . , K} is the set of indices
of feature subsets, and the following conditions hold: ∪j∈QSj ⊆ {1, 2, ..., n} and
Sj ∩ Sl = ∅, j 6= l.

The number of possible partitions of the feature set into disjoint subsets grows
faster than exponential in n. That justifies the use of heuristics for learning a semi-
naive Bayes from data.

1.5.1 The Backward Sequential Elimination and Joining Al-
gorithm

The backward sequential elimination and joining (BSEJ) algorithm [50] is probably
the best-known method for learning a semi-naive Bayes from data. Its bias compo-
nent of error is low [64] which suggests that it is suitable when N is large. It uses a
greedy search which, starting from the structure of a naive Bayes (where each feature
is a singleton feature subset), considers two operations in each step:

a) Removing a feature Xi from the model

b) Creating a new subset of related features XSk
by merging two subsets, XSj

and XSi
, i 6= j

A cross-validation estimate of predictive accuracy is used to evaluate the candidate
operations and the better one is chosen. If no operation improves the accuracy of
the current structure, the search stops.

1.5.2 The Filter Forward Sequential Selection and Joining
Algorithm

The filter forward sequential selection and joining (FFSSJ) ([8]) algorithm uses a
variant of the forward search to learn a semi-naive Bayes. Starting from a network

Chapter 1. Introduction 11

structure which contains no features (i.e just the class node), it evaluates two ways
of including a feature Xi in the model:

a) As independent of other features

b) As related to every feature Xj in a subset of related features XSk

Each of the operations produces a candidate subset of related features XSnew . The
XSnew produced by a) is a singleton {Xi} and that produced by b) is Xi∪XSk

. Each
XSnew is scored with the p-value of the test of independence of XSnew and C (see
Section ??) and the best XSnew is selected. If its x-value lower than a threshold α
then it is incorporated into the model; otherwise the search stops.

1.6 Tree Augmented Naive Bayes

The tree augmented naive Bayes (TAN) [21] is a well-known Bayesian network clas-
sifier which outperforms naive Bayes in many domains [21]. It augments the naive
Bayes with a tree in the features subgraph. That is, it conditions every feature ex-
cept one (the root of the tree) on exactly one other feature (see Figure 1.1c for the
network structure). According to the TAN model,

p(c|x) ∝ p(c)p(xr|c)
∏
i 6=r

p(xi|xj(i), c),

where Xr is the root of the tree. The augmenting tree which maximizes the like-
lihood of the TAN is found efficiently using a variant of Chow-Liu’s [12] algorithm
given in [21]. First, class-conditional mutual information I(Xi;Xj|C) is computed
for every pair of features. A complete graph, GCL = (X,E), is then built, with
class-conditional mutual information values I(Xi;Xj|C) as edge weights. Then, the
maximum weighted spanning tree (MWST) is found using by applying Kruskal’s
algorithm [41] on GCL. The MWST tree is directed by choosing a root node (does
not matter which one) and directing the arcs away from it. This gives the directed
augmenting tree which is added to the structure of a naive Bayes. The TAN does
not perform feature subset selection and always it always augments the naive Bayes
with n− 1 arcs.

1.6.1 Selective Tree Augmented Naive Bayes

The selective tree augmented naive Bayes (STAN) algorithm [8] is a a variant of TAN
which performs feature subset selection and may augment naive Bayes with less than
n − 1 arcs. Before learning the augmenting tree(s), STAN filters out features and

Chapter 1. Introduction 12

inter-feature dependencies (i.e. its GCL is not necessarily complete). If all direct
dependencies between some pair of feature sets are filtered out (their edges omitted
from GCL), then a single spanning tree cannot be built, as no edges exist between
these sets of features (nodes) in GCL. In this case, a maximum spanning tree is
obtained over each connected set of features. Each of these trees is then directed
as in the case of TAN and then added to the naive Bayes network structure (see
Figure 1.1d). Then, according to the STAN model,

p(c|x) ∝ p(c)
∏
i∈R

p(xi|c)
∏

i∈F\R

p(xi|xj(i), c),

where XF , F ⊆ {1, . . . , n} are the features that are included in the model, R ⊆ F
are the roots of the trees, and {Xj(i)} = Pa(Xi) \ C, i 6∈ R, are the parent features
of Xi.

The first step of the STAN algorithm is feature subset selection. It selects all
features that are not independent from the class, as deemed by the test of inde-
pendence based on mutual information (see Section 1.2.1) with threshold α. This
is the same as running the filter forward sequential selection (FFSS) algorithm (see
Section 1.4.2). In the second step, STAN discards dependencies that are not war-
ranted by the data. That is, if the hypothesis of class-conditional independence of
two features is not rejected at some threshold α, then this dependence will not be
included in GCL. The authors develop a heuristic for testing conditional indepen-
dence: if Xi and Xj are independent given some class value c (as deemed by the
test of independence based on mutual information) then Xi and Xj are considered
as conditionally independent given C. Finally, the augmenting tree(s) are obtained
by running Kruskal’s algorithm on GCL1, i.e., in the same way as in the TAN algo-
rithm. Even though GCL might not be connected (there might be no edges between
some subgraphs), running Kruskal’s algorithm over the entire graph will return the
MWST for each of the connected subgraphs [48, p. 912].

1.7 Other Bayesian Network Classifiers

There are many other Bayesian network classifiers which are not used in this disser-
tation. For example, the k-dependence Bayesian classifier [57] extends the TAN to
allow a feature to have up to k parent features. The SuperParent-One-Dependence
Estimator (SPODE) [36] is a special case of TAN where a single feature is parent
of all other features. The NBTree [37] is a hybrid classifier combining the naive
Bayes and decision trees. It partitions the training data using a tree structure and

1The authors of [8] run Kruskal’s algorithm on each connected component of GCL, which is
equivalent to what is described here.

Chapter 1. Introduction 13

establishes a local naive Bayes with non-tested variables in each leaf. We refer the
interested reader to reviews by [18] and [2] and the empirical comparison by [64].

Chapter 2

Augmented Semi-naive Bayes

As we have seen, the semi-naive Bayes (Section 1.5) removes some of naive Bayes’
conditional independence assumptions. It assumes that correlations exist only in-
side disjoint subsets of features and these correlations are ”full”, i.e., each feature
depends directly on every other. The backward sequential elimination and joining
(BSEJ) algorithm induces semi-naive Bayes classifiers which are competitive with
other Bayesian network classifiers [50, 64]. This algorithm does not, in general, form
large subsets of related features, since these lead to a poor cross-validated estimate
of prediction accuracy [21]. Therefore, the BSEJ tends to partitions the feature set
into many small subsets. Since the subsets are conditionally independent given the
class, it captures only a few correlations among the features.

We set out to extend the BSEJ algorithm with a second step which removes
some of its unwarranted (by the data) independence assumptions. Our procedure is
inspired by the selective tree augmented naive Bayes algorithm [8].

We perform an empirical comparison of our proposal with the BSEJ algorithm
and with five other Bayesian network classifiers. The rest of this chapter is organized
as follows: Section 2.1 describes the proposed extension of the BSEJ algorithm;
Section 2.2 reports the empirical evaluation of our proposal; and, finally, Section 2.3
provides some concluding remarks.

2.1 Augmented Semi-Naive Bayes

We set out to improve the predictive accuracy of a semi-naive Bayes by correlating
some of its disjoint (and conditionally independent) feature subsets. Just before out-
putting the final semi-naive Bayes model, the BSEJ algorithm considers correlating
each pair of feature subsets (see Section 1.5.1, list item b)) and finds that no corre-
lation improves its estimate of accuracy. We incorporate several (up to K−1, where
K is the number of disjoint feature subsets) of those correlations in the model, as

14

Chapter 2. Augmented Semi-naive Bayes 15

Figure 2.1: a) Semi-naive Bayes (Section 1.5); b) Augmented semi-naive Bayes

long they are warranted by the data. This way, a structure that was not considered
by the BSEJ is obtained. The computational cost of this augmenting step is small
compared to that of the BSEJ algorithms, which is wrapper-based.

The structure of an augmented semi-naive Bayes (ASB) is a forest (a set of trees)
over the subsets of related features (see Fig. 2.1). Then,

p(c,x) = p(c)
∏
i∈R

p(xSi
|c)

∏
i∈Q\R

p(xSi
|xj(i), c),

where Q and Si are defined as in Equation (1.4), R ⊆ Q are indices of feature subsets
that are root(s) of the augmenting trees(s), and {Xj(i)} = Pa(XSi

) \ C.

The augmenting trees are obtained by maximizing the likelihood of the ASB
model. The procedure is similar to that used by the STAN algorithm but adapted to
add arcs between non-singleton feature subsets. A node Qj of the complete graph,
GCL = (Q,E), corresponds to subset of related features XSj

and the weights are
the conditional mutual information values I(XSi

; XSj
|C). If the hypothesis of class-

conditional independence of two disjoint subsets of features, XSi
and XSj

, is not
rejected at some threshold α, then the corresponding edge will be omitted from
GCL. We use the test of conditional independence based on mutual information (see
Section 1.2.1). The maximum weighted spanning tree(s) (MWSTs) are obtained
by running Kruskal’s algorithm on GCL and they are then directed as described
in Section 1.6. The directed MWST trees T encode the augmenting dependencies
between feature subsets and specify how to relate the individual features that they
comprise. For each arc from a node Qi to a node Qj in Ti ∈ T , we include in the
semi-naive Bayes an arc from each Xl ∈ XSi

to each Xk ∈ XSj
. See Algorithm 1 for

pseudo-code of the full procedure.

The χ2 approximation used in the test of conditional independence is not reliable
when there are little cases in the contingency table over the variables being tested
(XSi

, XSj
, and C, in this case) [1]. In order to avoid spurious arcs due to low

reliability of the χ2 approximation, we omit from GCL an edge Qi–Qj whenever the
asymptotic test of independence for XSi

and XSj
given C in not reliable. Following

[63], we consider a χ2 approximation to be reliable if the average cell count in the
contingency table is at least 5.

Our procedure differs from the STAN algorithm in four aspects: it does not

Chapter 2. Augmented Semi-naive Bayes 16

perform feature subset selection; it can relate non-singleton feature subsets; it uses
a more standard conditional independence test; and it verifies that the conditional
independence test is reliable (assumes independence if it is not).

Algorithm 1 Augmented semi-naive Bayes

1. GSB ← a semi-naive Bayes network structure
2. S← (S1, . . . , SK) : Sj is a set of features correlated in GSB
3. for all j = 1, . . . , K do
4. rSj

←
∏

l∈Sj
rl

5. end for
6. GCL ← (Q,E), a complete undirected graph
7. Weight of e(i, j), the edge between i and j, ← I(XSi

; XSj
|C)

8. for all i, j = 1, . . . , K,i < j do
9. if N

rSj
rSi

rc
≥ 5 and p-value of 2NI(XSi

;XSj
|C) from X2

(rSi
−1)(rSj

−1)rc > α

then
10. remove edge e(i, j) from E
11. end if
12. end for
13. T ← MWST(s) obtained by running Kruskal’s algorithm on GSB
14. T ′ ← for each T ∈ T choose a root node at random and direct edges away from

it
15. for all i, j such that arc(i, j) ∈ T ′ do
16. augment GSB with arcs from each Xl in XSi

to every Xk in XSj

17. end for

2.2 Experimental Evaluation

2.2.1 Setup

We compare the augmented semi-naive Bayes (ASB) algorithm to six reference al-
gorithms for learning Bayesian network classifiers. Two of those algorithms learn
a selective naive Bayes (SNB) [43] model. The forward sequential selection (FSS)
algorithm [43] performs a greedy search guided by predictive accuracy while the fil-
ter forward sequential selection (FFSS) omits from the model the features that are
deemed independent of the class by the χ2 independence test. Besides SNB, we
consider the naive Bayes (NB), the tree augmented naive Bayes (TAN), the selective
tree augmented naive Bayes (STAN), and the backward sequential elimination and
joining (BSEJ) algorithm.

Chapter 2. Augmented Semi-naive Bayes 17

Table 2.1: Data sets. #Instances column displays the number of complete instances.

No. Data set #Features #Instances #Classes

1 Balance Scale 4 625 3
2 Breast Cancer (Wisconsin) 9 683 2
3 Car 6 1728 4
4 Chess (kr vs. kp) 36 3196 2
5 Dermatology 34 358 6
6 Ecoli 7 336 8
7 House Voting 84 16 232 2
8 Ionosphere 34 351 2
9 Lymphography 18 148 4
10 Molecular Biology (Promoters) 57 106 2
11 Molecular Biology (Splice) 61 3190 3
12 Primary Tumor 17 132 22
13 Tic-tac-toe 9 958 2
14 Wine 13 178 3

We compare the classifiers over 14 natural domains from UCI repository [6] (see
Table 2.1). Prior to classifier comparison, we removed incomplete rows and dis-
cretized numeric features with the MDL method [17].

For the BSEJ and the FSS, we used 5-fold stratified cross-validation to estimate
predictive accuracy. For statistical tests of (conditional) independence we used a
significance level of 0.05 and applied the criterion of χ2 approximation reliability. In
FFSS, if a test of independence of Xi and C is not reliable, then independence is
assumed and Xi is omitted from the model. For STAN, we used the same test of
conditional independence as for ASB. Laplace’s correction of maximum likelihood
was used to estimate parameters. We estimated predictive accuracy of the classifiers
with 5 repetitions of 5-fold stratified cross-validation.

2.2.2 Results

Following [22], we performed Friedman’s test [19, 20] and Iman and Devenport’s
correction [35] to compare the classifiers over all the data sets. Our proposal outper-
forms the other methods (see Table 2.2 for Friedman’s ranks) although the difference
is not statistically significant1.

1The p-value from both Friedman’s and Iman and Davenport’s test was 0.2

Chapter 2. Augmented Semi-naive Bayes 18

Table 2.2: Average Friedman’s ranks. Lower ranking means better performance.
ASB = augmented semi-naive Bayes, STAN = selective tree augmented Bayes, FSS
= forward sequential selection, BSEJ = backward sequential elimination and joining,
FFSS = filter forward sequential selection, NB = naive Bayes, TAN = tree augmented
naive Bayes.

Algorithm Friedman’s ranks

ASB 3.11
STAN 3.96
FSS 5.21
BSEJ 3.57
FFSS 4.35
NB 3.53
TAN 4.25
p-valueFriedman 0.20
p-valueIman-Davenport 0.20

The ASB significantly2 improves on BSEJ on four data sets (car, chess, iono-
sphere, and tic-tac-toe. See Table 2.3 for accuracies.). The BSEJ outputs a model
similar to the NB on those data sets (e.g. on ionosphere it removes a single feature
and accounts for one interaction) while the ASB heavily augments the BSEJ (e.g.
on ionosphere it builds a full tree among feature groups). This shows that useful
interactions missed by BSEJ can be recovered by ASB.

There is no significant difference between ASB and BSEJ on the remaining data
sets. The ASB degrades BSEJ on only three data sets and the degradation is minor
(by at most 0.6% accuracy). On four data sets the ASB model is identical to the
BSEJ. One of those data sets - primary tumor - has many classes (22) and not many
cases (132). This yields the conditional independence test unreliable for every pair of
features and therefore no arcs are be added. On the other three data sets, lowering
the significance threshold would have would have produced augmented BSEJ models
(i.e. arcs would have been added).

2.3 Concluding Remarks

We have presented the augmented-semi naive Bayes (ASB) algorithm, a method for
removing some of the unwarranted independence assumptions of a semi-naive Bayes
model. The ASB is computationally inexpensive compared to the BSEJ algorithm

2According to Wilcoxon’s signed rank test at 5% significance level

Chapter 2. Augmented Semi-naive Bayes 19

Table 2.3: Estimated accuracies (in %) of the compared classifiers. The best per-
forming classifiers on a data set are marked in bold. Some data set names are shorter
than in Table 2.1 but the order is the same. ASB = augmented semi-naive Bayes,
STAN = selective tree augmented Bayes, FSS = forward sequential selection, BSEJ
= backward sequential elimination and joining, FFSS = filter forward sequential
selection, NB = naive Bayes, TAN = tree augmented naive Bayes.

No. Data set ASB STAN FSS BSEJ FFSS NB TAN

1 Balance Scale 72.9±2.5 73.2±2.9 73.6±2.2 72.8±2.3 73.3±2.3 73.3±2.3 73.2+-2.9
2 Breast Cancer 97.1±1.1 97.1±1.1 96.9±1.4 97.5±1.0 97.5±1.0 97.5±1.0 97.1±1.1
3 Car 93.3±1.6 93.5±1.5 70.0±0.1 90.0±1.8 85.1±1.7 85.3±1.4 94.1±1.6
4 Chess 94.1±1.1 92.6±0.8 94.1±1.0 92.2±1.1 87.8±1.4 87.8±1.4 92.4±0.9
5 Dermatology 98.2±1.5 98.0±1.6 95.1±3.4 98.2±1.5 98.0±1.6 98.0±1.6 97.1±1.7
6 Ecoli 85.7±3.4 85.7±3.4 83.4±2.8 85.7±3.4 85.7±3.4 85.7±3.4 84.5±3.2
7 House Voting 84 94.3±2.8 92.9±2.8 97.0±2.4 91.2±4.5 91.3±4.5 91.2±4.4 93.6±2.7
8 Ionosphere 92.0±3.7 91.9±3.7 90.7±3.6 90.7±3.8 90.7±4.1 90.7±4.1 92.2±3.1
9 Lymphography 85.4±6.1 82.7±5.6 78.4±7.3 85.0±6.5 82.7±7.1 84.6±6.2 83.4±6.0
10 Promoters 89.8±6.4 90.5±5.0 84±11.2 89.8±6.4 90.5±5.0 91.7±6.2 48.7±1.2
11 Splice 94.9±0.7 95.0±0.8 93.5±0.8 95.5±0.8 95.4±0.9 95.5±0.8 52.5±0.3
12 Primary Tumor 46.5±9.4 21.3±2.0 42.5±7.7 46.5±9.4 21.3±2.0 48.3±9.3 41.6±8.0
13 Tic-tac-toe 75.3±3.2 74.8±2.9 69.6±3.4 71.7±3.7 70.4±3.9 70.4±3.8 75.8±2.9
14 Wine 98.7±1.6 98.7±1.6 95.4±2.9 98.9±1.4 98.9±1.4 98.9±1.4 96.9±2.6

used for learning semi-naive Bayes models. Our experiments show that ASB improves
BSEJ in some domains without degrading it others. The ASB outperformed BSEJ
and five other Bayesian network classifiers on 14 benchmark data sets, although the
improvement in performance is not statistically significant. Further experiments,
over more data sets, might give more conclusive results. Since ASB seems to improve
BSEJ, it might be interesting to extend the approach into augmenting other Bayesian
network classifiers learned by maximizing predictive accuracy, such as the forward
sequential selection algorithm for learning a selective naive Bayes.

Chapter 3

bayesclass: an R Package for
Learning Bayesian Network
Classifiers

Recently, many of the developments of software for graphical models (of which
Bayesian network are a special case) have happened within the R platform, either
in form of interface to an existing software or through new R packages [33]. The
grahical models taskview in R at http://cran.r-project.com/web/views/
gR.html lists around 30 packages. It is expected that this number will grow con-
siderably, and the packages will be extended and modified.

Regarding Bayesian network classifiers, only the naive Bayes and the tree aug-
mented naive Bayes are currently available in R. We provide an implementation of
state-of-the Bayesian network classifiers in the form of an add-on package called
bayesclass. More precisely, we implement the classifiers described in Section 1
and the augmented semi-naive Bayes classifier, described in Section 2. Besides algo-
rithms for learning Bayesian network classifiers from data, bayesclass provides
network structure plotting and easy assessment of predictive performance, thanks to
its integration with other add-on packages.

This chapter is structured as follows: Section 3.1 introduces the R software en-
vironment; Section 3.2 surveys the currently available implementations of Bayesian
network classifiers; Section 3.3 describes the main functionalities and the implemen-
tation of the bayesclass package; Section 3.4 showcases some of the functionali-
ties; and finally, Section 3.5 sums up with a brief discussion of the implementation
and on outline of future work.

20

http://cran.r-project.com/web/views/gR.html
http://cran.r-project.com/web/views/gR.html

Chapter 3. bayesclass: an R Package for Learning Bayesian Network Classifiers21

3.1 The R Environment for Statistical Computing

R [53] is a programming language and an environment for statistical computing and
graphics. It is free software, released under the GNU General Public License (GPL)
and runs on all common operating systems. It is the leading open-source system for
statistical computing [16, 34]. R consists of a base distribution and add-on pack-
ages, contributed by members of its open-source community. The base distribution
contains R’s basic functonality, such as the plotting functions and statistical mod-
els. Add-on packages extend R with diverse functionalities, such as graph handling,
machine learning algorithms, and advanced plotting capabilities. Both the base dis-
tribution and the add-on packages are distributed through the Comprehensive R
Archive Network (CRAN) 1. Currently, there are 4689 packages on CRAN (only
around 30 of those belong to the base distribution).

3.2 Discrete Bayesian Network Classifiers in R

Only the naive Bayes and the tree augmented naive Bayes are currently available in
R.

3.2.1 The bnlearn Package

bnlearn [58] is a package for learning general Bayesian networks from data. It can
learn the naive Bayes and tree augmented naive Bayes. It provides maximum like-
lihood and Bayesian parameter estimation of parameters. Cross-validation can be
used to estimate the predictive performance of an algorithm or of a network struc-
ture. The network structures can be inspected by plotting or by viewing structured
text output. A model can be easily modified by the user (e.g. add/remove/reverse
arc). Learning algorithms can be forced to include or exclude certain arcs (black and
white lists). bnlearn only operates on complete data.

3.2.2 Other Implementations

The e1071 [45] and CORElearn [55] packages provide implementations of the naive
Bayes. They only provide parameter learning and prediction.

3.3 the bayesclass Package

The main functionalities provided by the bayesclass package are the following:

1http://cran.r-project.org

Chapter 3. bayesclass: an R Package for Learning Bayesian Network Classifiers22

� Ten learning algorithms corresponding to those described in Section 1 and the
Augmented semi-naive Bayes, described in Section 2.

� The χ2 asymptotic test of conditional independence for vectors of variables,
described in Section 1.2.1

� Cross-validated estimate of predictive performance of a network structure, de-
scribed in 1.2.2. It is straightforward to perform a paired comparison of learning
algorithms.

� Network structure plotting, via the Rgraphviz package.

� Maximum likelihood and parameter estimation, via the gRain package

3.3.1 Implementation

bayesclass is complete implemented in the R programming language. Many of
the underlying functionalities comes from other add-on R packages. We here describe
the tasks for which bayesclass relies on those packages.

Graph Manipulation and Algorithms

The graph package [24] provides the basic class definitions and functionality, such as
graph construction, node/edge/arc addition/removal, and so on. The Rgraphviz
package [25] provides plotting functionality. Different layout algorithms are provided
and many details, such as node plotting, line type and color, can be controlled by
the user. The RBGL package [10] provides an interface to many graph algorithms
(such as shortest path, connectivity etc).

Predictive Performance Assessment

The caret package [42] provides resampling estimation of predictive performance.
Available metrics are accuracy and Cohen’s kappa index. Custom metrics can also
be implemented. Resampling techniques include bootstrapping and stratified k-fold
cross-validation.

Bayesian Networks Parameter Estimation and Inference

The gRain package [32] implements the estimation of parameters from data. Both
maximum likelihood and Bayesian estimation are provided. In the latter case, a
single hyperparameter α has to be used for all parameters in the network. gRain
implements exact inference, class prediction, and posterior probability computation.
It can handle incomplete data during both parameter learning and inference.

Chapter 3. bayesclass: an R Package for Learning Bayesian Network Classifiers23

3.4 Sample Session

3.4.1 Learning a Bayesian Network Classifier from Data

Once the bayesclass package is loaded, the car data set can be loaded by calling
the data function.

library(bayesclass)
data(car)
str(car)

'data.frame': 1728 obs. of 7 variables:
$ buying : Factor w/ 4 levels "low","med","high",..: 4 4 4 4 4 4 4 4 4 4 ...
$ maint : Factor w/ 4 levels "high","low","med",..: 4 4 4 4 4 4 4 4 4 4 ...
$ doors : Factor w/ 4 levels "2","3","4","5more": 1 1 1 1 1 1 1 1 1 1 ...
$ persons : Factor w/ 3 levels "2","4","more": 1 1 1 1 1 1 1 1 1 2 ...
$ lug_boot: Factor w/ 3 levels "big","med","small": 3 3 3 2 2 2 1 1 1 3 ...
$ safety : Factor w/ 3 levels "high","low","med": 2 3 1 2 3 1 2 3 1 2 ...
$ class : Factor w/ 4 levels "unacc","acc",..: 1 1 1 1 1 1 1 1 1 1 ...

The car data frame contains seven discrete variables, stored as factors. We will
predict the class variable and use the remaining variables as predictive features.

In order to learn a Bayesian network classifier we need to call the bnc function
and supply the data set as the first argument. If we do not specify which column
corresponds to the class, bnc will assume that we want to predict the last column.
The learner argument of bnc tells it which learning algorithm to use.

tan.car <- bnc(car, learner = "tan", smooth = 0.01)

The bnc function returns an object of class bayesclass. We can view its
network structure with the plot function.

plot(tan.car)

This produces the plot in Figure 3.1a. We can see that the structure corresponds
to a tree augmented naive Bayes model. We can view the associated probability
tables by accessing the cptlists element of the bayesclass object. To view the
conditional probability distributions for the buying feature, we need to access the
first element of cptlists.

tan.car$cptlist[[1]]

class
buying unacc acc good vgood

low 0.2132 0.2318 0.6664253 0.5997847
med 0.2215 0.2995 0.3332851 0.3999077
high 0.2678 0.2812 0.0001448 0.0001538
vhigh 0.2975 0.1875 0.0001448 0.0001538

Chapter 3. bayesclass: an R Package for Learning Bayesian Network Classifiers24

If the learning algorithm accepts some specific parameters, we specify them in
the lrn_args argument of the bnc function. The following produces a selective
tree augmented naive Bayes with α = 0.01 threshold for tests of (conditional) inde-
pendence.

stan.car <- bnc(car, learner = "stan", lrn_args = list(alpha = 0.1),
smooth = 0.01)

Plotting the network structure we can see that it is more sparse than the TAN
model (Figure 3.1b). Infact, the STAN model omits the doors feature, probably
due to the low α threshold for statistical tests. We can obtain get a list of all the
features in a model with the features function.

features(stan.car)

[1] "buying" "maint" "persons" "safety" "lug_boot"

3.4.2 Predictive Performance Assessment

A bayesclass object can be used to obtain class or probability predictions. For the
latter, we need to set the result argument of the predict function to "prob".
The following prints out the class posterior probabilities for the first five instances
in the car data set.

pred.tan <- predict(tan.car, car, result = "prob")
head(pred.tan)

unacc acc good vgood
[1,] 1 1.639e-08 9.852e-06 1.722e-05
[2,] 1 2.377e-09 3.337e-12 9.870e-06
[3,] 1 7.375e-09 1.335e-08 2.367e-12
[4,] 1 2.591e-08 1.750e-05 2.795e-08
[5,] 1 9.777e-09 1.247e-08 2.246e-08
[6,] 1 1.338e-08 1.167e-08 1.103e-11

To obtain the predicted classes, we would just need to omit the result argu-
ment.

We can estimate the predictive performance of a model with resampling using
the assess function. The following runs two repetitions of stratified 5-fold cross-
validation for the tree augmented naive Bayes.

pred_performance <- assess(tan.car, car, k = 5, repeats = 2)
pred_performance

learner smooth Accuracy Kappa AccuracySD KappaSD
1 tanbc 0.01 0.9427 0.8764 0.008508 0.01837

Chapter 3. bayesclass: an R Package for Learning Bayesian Network Classifiers25

buying

class

maint

doors

lug_boot persons

safety

(a)

buying

class

maint

persons

safety

lug_boot

(b)

Figure 3.1: Network structures learned for the car data set. a) Tree augmented
naive Bayes; b) Selective tree augmented naive Bayes with α = 0.01

The two leftmost columns of the output specify the learning algorithm: the TAN
with a smoothing value of 0.01. The remaining columns provide the estimates of
accuracy and Cohen’s kappa index.

We can do a paired comparison of two learning algorithms with the assess
function. We just need to supply a list of bayesclass objects as the first argument
to assess. The following compares the TAN algorithm and the STAN algorithm
with an α = 0.01.

compare <- assess(list(stan.car, tan.car), car, k = 5, seed = 0)

alpha learner smooth Accuracy Kappa AccuracySD KappaSD
1 0.1 stanbc 0.01 0.9184 0.8268 0.02284 0.04490
2 NA tanbc 0.01 0.9433 0.8776 0.01264 0.02703

The seed argument controls random number generation and can be used to
obtain reproducible results.

3.5 Concluding Remarks

The bayesclass extends the R platform with state-of-the-art Bayesian network
classifiers. A minor drawback of the current implementation is that inference with the
gRain package is very slow. The renders prediction and estimation of performance
quite slow. Also, some of our algorithms are implemented in a naive way and can be
further optimized.

Chapter 3. bayesclass: an R Package for Learning Bayesian Network Classifiers26

We plan to keep extending the bayesclass package. More discrete Bayesian
network classifiers are likely to be added in the future. We plan to implement
Bayesian network classifiers which can handle real-valued features and also to allow
more flexible prior probabilities for the parameters.

Chapter 4

Bayesian Network Classifiers for
Discriminating between Cortical
Interneurons

The problem of classifying and naming neurons has been a topic of debate for over
100 years. Nevertheless, a satisfactory consensus remains to be reached, even for
restricted neuronal populations such as the GABAergic interneurons of the cerebral
cortex [13]. A community-based approach towards establishing a common taxonomy
was adopted in [13]. The proposed taxonomy categorizes (cortical GABAergic) in-
terneurons according to six features of axonal arborization. One feature (that we will
refer to as F5) is the interneuron type - a name commonly associated in literature
with a certain pattern of axonal arborization. Other features correspond to four sim-
ple arborization patterns which are useful for interneuron classification (features F1
to F4), and the quality of the digital reconstruction of the axon - whether it is clear
enough to identify the remaining five features (feature F6). 42 expert neuroscientists
were asked to classify a representative set of interneurons according to the taxonomy.
There was little inter-expert agreement on feature F5, as several interneuron types
were found to be rather confusing (some were found to be easily distinguishable,
nonetheless). The agreement was high for features F1, F2, F3, F6, and, to a lesser
degree, F4.

Given the lack of consensus on interneuron types, it was concluded that a com-
mon nomenclature is currently untenable. However, a solution based on the axonal
feature-based taxonomy was envisioned. A computational model, which would learn
to map quantitative descriptions of interneurons into the experts’ taxonomical classi-
fication choices, could be used to objectively classify interneurons. The data gathered
in [13] allows machine learning [3] to be applied to produce such models. One family
of machine learning algorithms - supervised classifiers [15] - learn a mapping from

27

Chapter 4. Bayesian Network Classifiers for Discriminating between Cortical
Interneurons 28

inputs (e.g. neuronal descriptors) to outputs (e.g. taxonomical categories), given
a set of input-output pairs, called the training set. A conventional supervised clas-
sifier requires a single output label for every training example. Each interneuron
(input) is, however, associated with a taxonomical feature (output) through up to
42 labels, each due to a vote from one of the experts. The popular approach for
obtaining a unique label, known as majority vote, is to select the most commonly
assigned one [54]. [13] followed this approach to build supervised classifiers for the
six axonal features. They obtained low predictive accuracy for axonal features F5
and F4, fairly high for F1, F2, and F3, and very high for F6. Since some categories
of features F4 and F5 were confusing to the experts, it is possible that the majority
votes in these cases were often unreliable indicators of true morphological properties
(i.e. they might be backed by few votes). Therefore, we use only instances with re-
liable labels, that is, those whose majority vote count is above some threshold t, for
learning supervised classifiers. A high t yields reliable labels but reduces the amount
of data. Also, some taxonomical categories are omitted from the data when a high t
is used as they have few reliable examples. Therefore, the classification task can be
notably different between one vote count threshold t and another. We experiment
with different thresholds t and produce supervised classifiers for each of them.

As supervised classifiers we use the ten Bayesian network classifiers described
in Section 1. We use the thresholded majority vote approach for classifying cells
according to the morphological features F1, F2, F3, F4, and F5 ([13] showed that
predicting F6 is almost trivial). Furthermore, we use the simple axonal features F1
to F4 to predict the interneuron type, something that has not been studied yet.

The rest of this chapter is structured as follows: Section 4.1 describes the axonal
feature-based taxonomy for cortical GABAergic interneurons; Section 4.2 describes
how the was obtained and preprocessed; Section 4.3 explains the methodology used
for supervised classification; Section 4.4 reports the experimental results; and finally,
Section 4.5, sums up with conclusions and an outline of future work.

4.1 Background

4.1.1 The Neuron Classification Problem

Neurons have highly diverse morphological, molecular, and physiological features [5].
The scientific community has access to a vast amount of data about these features
but it lacks a classification system to organize the available knowledge. One popula-
tion of neurons, the GABAergic interneurons of the cortex, are remarkably variable.
This variability makes it hard to unambiguously identify a set of features which de-
fine an interneuron subtype. The Petilla terminology [5] provided a nomenclature
for characterizing interneurons according to their morphological, physiological, and

Chapter 4. Bayesian Network Classifiers for Discriminating between Cortical
Interneurons 29

molecular properties. However, it does not identify features which unambiguously
define an interneuron type.

4.1.2 An Axonal Features-based Taxonomy

As an alternative to the morphological characterization of the Petilla terminology,
[13] proposed a pragmatic taxonomy for cortical GABAergic interneurons. It clas-
sifies interneurons according to six features of their axonal arborization. The first
and second features (F1 and F2) are the laminar and columnar reaches of the axon,
respectively. They distinguish between cells whose axon is either confined to a single
cortical layer or column (intralaminar and intracolumnar axons) or not (translaminar
and transcolumnar). The third feature (F3) is the position of the dendritic arbor rel-
ative to the axonal arbor: it is either centered or displaced. The forth feature (F4) is
specific to the axons of translaminar and displaced interneurons: they either mainly
ascend towards the cortical surface (ascending), mainly descend towards the white
matter (descending), or both ascend and descend (both). The fifth feature (F5)
is the interneuron type. Ten type names have been proposed to the experts in an
experiment conducted by [13]: arcade (AR), Cajal-Retzius (CR), chandelier (CH),
common basket (CB), common type (CT), horse-tail (HT), large basket (LB), Mar-
tinotti (MA), neurogliaform (NG), and other (OT). Finally, the sixth feature (F6) is
in fact a feature of the digital reconstruction of the axon: whether it is clear enough
to identify the remaining five features (characterized) or not (uncharacterized).

To study the potential of this taxonomy for fostering consensus among neurosci-
entists, [13] asked 42 experts to classify a representative set of interneurons according
to the 6 features of the taxonomy. The experts agreed on the definitions of features
F1, F2, and F3: when classifying a cell according to one of those features, most
ascribed it to the same category. They agreed partially on F4, reaching consensus
on categories ascending and descending while disagreeing on category both. Regard-
ing interneuron type, they found some types to be easily distinguishable and others
rather confusing. High-consensus types include chandelier and Martinotti, while
low-consensus ones include arcade, Cajal-Retzius, common basket, large basket, and
common type cells. Regarding F6, 90% of the votes was for category characterized,
rendering the observed agreement high.

Supervised Classification

[13] learned a supervised classifier for each axonal feature. They used ten classifiers
available in the Weka[29] data mining software package, including the discrete naive
Bayes [47], an implementation of the C4.5 decision tree learner, and the random
forest technique. They computed 2, 886 morphological variables with the Neurolucida
(MicroBrightField) software. Besides considering the full predictor set, for each

Chapter 4. Bayesian Network Classifiers for Discriminating between Cortical
Interneurons 30

axonal feature they considered predictor subsets obtained with the ranking based
on gain-ratio (they used 500 top-ranked predictors) and with the correlation-based
feature selection technique [28] which selects relevant and non-redundant predictors.
They obtained a high accuracy, 99.17%, for F6, and fairly high accuracies for F1,
F2, F3: 85.48%, 81.33%, and 73.86%, respectively. Low accuracies for were obtained
for F4 and F5: 60.17%, and 62.24%, respectively. They estimated accuracy using
leave-one-out cross-validation.

4.2 Materials

The materials we use were collected and used in [13]. They consist of 320 interneurons
and the terminological choices regarding those neurons taken by 42 expert neurosci-
entists. The pool includes interneurons from different areas and layers of the cerebral
cortex of the mouse, rat, rabbit, cat, monkey and human.

241 of the cells were retrieved from the Neuromorpho.org [4] website and their
three-dimensional digital reconstructions are available. We used those reconstruc-
tions to obtain quantitative data about neuronal morphologies. With this data we
train supervised classifiers that can classify a neuron on the basis of its morphologi-
cal characteristics. The remaining 79 cells were obtained by scanning drawings from
published papers. We use these cells, along with the 241 digitally reconstructed ones,
to study if a neuron can be automatically classified into the correct interneuron type
using its simple axonal features as predictors.

4.2.1 Morphometric Parameters

We computed the following parameters for both the axonal and the dendritic arbors:

� Branched structure analysis. Number of endings, number of nodes (branching
points), total and mean dendritic tree length; total, mean, median and standard
deviation of segments’ length. The maximum number of segments in a path
between a root and an ending.

� Convex hull analysis. Area and perimeter of the 2D convex hull; volume and
surface of the 3D convex hull.

� Sholl analysis. The number of intersections of the processes with concentric
spheres centred at the soma. The radii of the spheres range from 60 µm to
960 µm for the axon and 300 µm for the dendrites, increasing by 60 µm for
each next enclosing sphere. In addition to the intersections, we measure the
number of endings, number of the nodes and the length of the arbor within a
sphere but outside its inner sphere.

Chapter 4. Bayesian Network Classifiers for Discriminating between Cortical
Interneurons 31

� Fractal analysis. The fractal dimension computed using the box-counting
method [44].

� Vertex analysis. The number of nodes of each of the following three types: Va
(nodes whose both child segments are terminal); Vb (nodes with one terminal
child segment); and Vc (nodes with no terminal child segments). Also the ratio
Va

Vb
.

� Branch angle analysis. The mean, standard deviation, and median of planar,
local and spline angles of the bifurcations.

� Fan-in analysis. Torsion ratio (a measure of length loss upon fan-in analysis).

� Polar histogram. Length according to direction of growth, measured for each
of the 36 10-degree-wide angle intervals between 0 and 360 degrees.

Additionally, two more parameters were measured for the dendrites: the number of
segments rooted at the soma and the number of branching points in which these
segments end. All together, we quantified the axon with 128 parameters and the
dendrites with 86, giving a total of 214 morphometric parameters.

Axonal Features F1 and F2

An expert identified a subset of the 214 morphometric parameters as suitable predic-
tors for the simple axonal features F1 and F2. The quantities correspond 57 metrics
that describe the axon: axonal length, number of endings, mean segment length,
torsion ratio, 2D and 3D convex hull measures, Sholl analysis of intersections, and
polar histogram analysis.

4.2.2 Data Preprocessing

Prior to computing morphometric measurements, we noticed that the digital recon-
structions of several cells had more than one axon, a situation impossible in practice
as neurons have a single axon. In most cases the cause appeared to be the omission of
one or more axonal fragments from the reconstruction, which caused the ”splitting”
of the axon into disconnected parts. For 36 such cases, an expert deemed the miss-
ing fragments as easily restorable and draw them manually using the Neurolucida
(MicroBrightField) software. For 4 interneurons, the missing axonal fragments were
considered either too large or too many and those cells were subsequently omitted
from analyses involving morphometric data. This effectively reduced our data set of
valid digitally reconstructed cells to 237 instances.

Chapter 4. Bayesian Network Classifiers for Discriminating between Cortical
Interneurons 32

4.3 Methodology

4.3.1 Discretization

The axonal morphometric measurements that we use as predictor variables are real-
valued. On the other hand, our Bayesian network classifiers assume discrete pre-
dictive variables. Learning such classifiers from morphometric data requires that
continuous predictors first be converted to categorical ones.

The process of transforming quantitative data to qualitative (i.e. categorical)
data is known as discretization [62]. It consists in the partitioning a continuous do-
main into a finite number of non-overlapping intervals that are treated as categorical
values. It can reduce noise if it is present in the data ([23]) and for the naive Bayes it
often yields better accuracy than when normal distribution of predictors is assumed
([14]).

We use the Weighted Proportional k-Interval Discretization (WPKID) method
([61]) for discretization. WPKID adapts the better-known PKID discretization
method ([60]) for small data sets. A recent study ([23]), which did not consider
WPKID, found PKID to be the best discretization method for naive Bayes in terms
of predictive accuracy and Cohen’s kappa.

The WPKID is a variant of equal-frequency discretization (see e.g., [14]) where
the the number of bins (intervals) is a function of data set size:

sb = N
s = b+ 30

where b is the number of bins and N the size of the data set.

We do not discretize all of our data as a preprocessing step, that is, prior to
classifier induction and evaluation. Instead, we only discretize the training data,
mapping the real-valued test data to the intervals formed on training data.

4.3.2 Thresholded Majority Vote Label

A problem domain in supervised learning is modelled with a vector of n predictive
variables X = (X1, . . . , Xn) and a class variable C ∈ Ωc = {1, . . . , rc}. We have a
data set with N instances Dv = {(x(1),v(1)), . . . , (x(N),v(N))}. The true class label
of the instances in Dv is unknown. Instead, some of M experts provide a single class
label for each instance x(i) in Dv. This is encoded this with a vector of vote counts
for each label: v(i) = (v

(i)
1 , . . . , v

(i)
rc) ∈ {0, . . . ,M}rc .

We form a data set D = {(x(1), c(1)), . . . , (x(N), v(N))}, with a single class label
per instance, by choosing the single most voted class for each instance in Dv (if there

Chapter 4. Bayesian Network Classifiers for Discriminating between Cortical
Interneurons 33

is a tie for the most voted class then we exclude the instance from D):

D = {(x(i), c(i) = rk), ∀i : v
(i)
k > v

(i)
j , j 6= k}.

We can then form subsets of D such that all data instances have a minimum of
label reliability. We define label reliability as the number of voters (experts) that

selected the most common label, v
(i)

c(i)
, of a data instance (x(i), c(i)) . Then, we form

a subset Dt, where t is the label reliability, as

Dt = {(x(i), c(i)), ∀i : v
(i)

c(i)
> t}.

When discussing a data subset Dt we will refer to t as the vote threshold of Dt.

Thresholded Majority for Several Axonal Features

When using all axonal features as predictive variables, we need a single value for each
of them. Axonal feature F4 is not applicable to all cells (only to translaminar and
displaced cells) and imposing the same threshold on F4 as on other axonal features
would omit cells to which F4 is not applicable from our data set. The reason behind
this is that an expert only categorizes a cell according to an axonal feature when
he/she finds that feature to be applicable. Therefore, even when most experts think
that F4 is not applicable to an interneuron, its most voted category will be either
ascending, descending, or both (provided they have at least one vote). The number
votes for the ascribed label will be low (because the majority did not vote) and the
cell will be discarded at a high vote threshold. We avoid discarding such cells by
making explicit the opinions of experts who consider F4 as inapplicable. We replace
their missing votes with votes for a dummy category.

4.4 Experimental Evaluation

4.4.1 Classifier Parameters and Predictive Performance Eval-
uation

For the learning algorithms which maximize cross-validation estimate of accuracy
(the FSS and BSEJ algorithms), we set the number of folds to k = 5, and use a single
run of stratified cross-validation (using several repetitions can be very costly). For
the APNBC algorithm, we set the α parameter to α = 1, so that any improvement
in resubtitution accuracy is considered as unlikely to have been obtained by chance
(this is the same as not performing the test). For all statistical tests, except that
of the APNBC, we use α = 0.05 as threshold. For the AWNB algorithm we use

Chapter 4. Bayesian Network Classifiers for Discriminating between Cortical
Interneurons 34

bootstrap samples of size N
2

and create 20 such samples. We estimate the parameters
of the Bayesian networks the Laplace correction for maximum likelihood. We used
5 repetitions of 5-fold stratified cross-validation to estimate predictive performance.

4.4.2 Predicting Axonal Features Independently

Vote Thresholds

Vote thresholds can be in the range between 0 and 41. Choosing a low threshold
would be similar to applying the majority vote rule (no threshold), while a high
one might leave us with too few cases. The number of instances available at some
threshold t differs among the axonal features (see Figure 4.1) so we consider different
vote threshold ranges for different features. As the lower bound on a threshold range
for an axonal feature we choose some low threshold which produces a data set Dt

that is roughly different from the full data set. We choose the upper bound rather
arbitrarily but impose the condition that it yields at least five instances of at least
two different classes. For axonal features F1, F2, and F3, we use the range of 19 to
39. As Figure 4.1 shows, a threshold t < 19 would produce a data set similar to the
full data set, and a t > 39 would leave us with less than 5 intralaminar cells.
For axonal feature F4 we use the range 11 to 39. For axonal feature F5 we use the
range 13 to 27. We can see that for t < 13 there is practically no difference with the
full data set. At threshold D27 there are 5 CB, 1 CH, 1 CT, 3 HT, 10 LB and 20 MA
cells.

The above-mentioned ranges contain 131 different thresholds. That would pro-
duce 131 data sets. On each we would evaluate 10 classifiers with repeated cross-
validation, which can be time consuming. In order to reduce the runtime of the
experiments, we only use every second threshold in a range.

Interneuron Type

The best predictive accuracy is achieved by TAN (see Figure 4.2e) at vote threshold
25 and it equals 77%. At this threshold there are 22 MA, 12 LB, 11 CB, 4 HT, 1 CH,
and 1 CT cells. To further analyse the discrimination among classes, we compute the
sensitivity and specificity for each class. First, we estimate TAN’s confusion matrix
by averaging its confusion matrices over 5 runs of 5-fold cross-validation. Then, we
compute the sensitivities and the specificities from the averaged confusion matrix.
We can see that MA, HT, and CB have relatively high sensitivity and specificity (all
above 0.80, see Table (4.1)). LB’s sensitivity is somewhat lower but still relatively
high. The sensitivity of CH and CT is 0 because there is a single instance of each of
those classes.

Chapter 4. Bayesian Network Classifiers for Discriminating between Cortical
Interneurons 35

0 5 10 15 20 25 30 35 40

0
25

50
75

10
0

12
5

15
0

17
5

20
0

22
5

Vote threshold

In
st

an
ce

 C
ou

nt
Intralaminar
Translaminar

(a) F1

0 5 10 15 20 25 30 35 40

0
25

50
75

10
0

12
5

15
0

17
5

20
0

22
5

Vote threshold

In
st

an
ce

 C
ou

nt

Intracolumnar
Transcolumnar

(b) F2

0 5 10 15 20 25 30 35 40

0
25

50
75

10
0

12
5

15
0

17
5

20
0

22
5

Vote threshold

In
st

an
ce

 C
ou

nt

Centered
Displaced

(c) F3

0 5 10 15 20 25 30 35 40

0
25

50
75

10
0

12
5

15
0

17
5

20
0

22
5

Vote threshold

In
st

an
ce

 C
ou

nt

Ascending
Descending
Both

(d) F4.

0 5 10 15 20 25 30 35 40

0
25

50
75

10
0

12
5

15
0

17
5

20
0

22
5

Vote threshold

In
st

an
ce

 C
ou

nt

Common Basket
Chandelier
Common Type
Horse Tail
Large Basket
Martinotti
Neurogliaform

(e) F5

Figure 4.1: Class count per vote threshold. The dotted horizontal line is at y = 5.
The dashed horizontal lines indicate the boundaries of vote threshold ranges.

Chapter 4. Bayesian Network Classifiers for Discriminating between Cortical
Interneurons 36

Table 4.1: Sensitivity and specificity of the TAN classifier for predicting interneuron
type using morphometric parameters as predictors. Vote threshold 25 is applied to
F5. Interneuron type name abbreviations: CB = common basket, CH = chandelier,
HT = horse-tail, LB = large basket, MA = Martinotti.

CB CH CT HT LB MA
Sensitivity 0.8000 0.0000 0.0000 0.800 0.6800 0.8400
Specificity 0.9143 0.9795 0.9846 1.000 0.8800 0.9000

Simple Axonal Features

Axonal feature F1 is unbalanced – there are much more translaminar than intralam-
inar cells (see Figure 4.1a). Therefore, several classifiers seem to be achieving high
accuracy by always predicting the translaminar class, as suggested by their 0 kappa
index (see e.g. the FSS classifier on threshold 37, Figure 4.2a and Figure 4.3a).
The APBNC classifier achieves the highest accuracy (93.92%), and its kappa (0.55)
indicates that it can correctly identify some of the intralaminar cells. The highest
accuracy is achieved at threshold 39, with 77 translaminar and 6 intralaminar cells.

For the axonal feature F2, the best accuracy (94.02%) is achieved by the FSS
classifier on threshold 39 (see Figure 4.1b), where there are 27 intralaminar and 29
transcolumnar cells. The estimated kappa is 0.88.

For the axonal feature F3, the best accuracy (92.98%) is achieved by the APNBC
classifier on threshold 39 (see Figure 4.1c). On this threshold, there are 15 centered
and 37 displaced cells. The kappa is 0.83.

For the axonal feature F4 the highest accuracy is 87.60%, reached by the TAN
at threshold 35 (see Figure 4.1d). At this threshold there are 21 ascending and 21
descending cells (no both cells). The sensitivity and specificity of the model are both
0.88. The kappa is 0.71.

4.4.3 Simple Axonal Features as Predictors of Interneuron
Type

It is interesting to know whether simple axonal features are useful for predicting
neuronal type name. If they are, then it might be possible to improve automatic
classification of interneurons by predicting simple axonal features from data and
using those predictions to (help) discriminate among interneuron types.

We use a single predictor variable for each simple axonal feature. We assign
values to these variables using the thresholded majority vote (see Section 4.3.2 and
Section 4.3.2).

Since are we only using experts’ terminological choices to build the classifiers, we

Chapter 4. Bayesian Network Classifiers for Discriminating between Cortical
Interneurons 37

19 21 23 25 27 29 31 33 35 37 39

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Vote threshold

A
cc

ur
ac

y

STAN
FFSS
FFSSJ
APNBC
AWNB

NB
FSS
TAN
ASB
BSEJ

(a) F1

19 21 23 25 27 29 31 33 35 37 39

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Vote threshold

A
cc

ur
ac

y

STAN
FFSS
FFSSJ
APNBC
AWNB

NB
FSS
TAN
ASB
BSEJ

(b) F2

19 21 23 25 27 29 31 33 35 37 39

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Vote threshold

A
cc

ur
ac

y

STAN
FFSS
FFSSJ
APNBC
AWNB

NB
FSS
TAN
ASB
BSEJ

(c) F3

11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Vote threshold

A
cc

ur
ac

y
STAN
FFSS
FFSSJ
APNBC
AWNB

NB
FSS
TAN
ASB
BSEJ

(d) F4

13 15 17 19 21 23 25 27

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Vote threshold

A
cc

ur
ac

y

STAN
FFSS
FFSSJ
APNBC
AWNB

NB
FSS
TAN
ASB
BSEJ

(e) F5

Figure 4.2: Classifiers’ accuracy for predicting axonal features individually from
morphological data. Note that the minimum value on the y-axis and the range of
the x-axis can differ between graphs.

Chapter 4. Bayesian Network Classifiers for Discriminating between Cortical
Interneurons 38

19 21 23 25 27 29 31 33 35 37 39

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Vote threshold

K
ap

pa

STAN
FFSS
FFSSJ
APNBC
AWNB

NB
FSS
TAN
ASB
BSEJ

(a) F1

19 21 23 25 27 29 31 33 35 37 39

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Vote threshold

K
ap

pa

STAN
FFSS
FFSSJ
APNBC
AWNB

NB
FSS
TAN
ASB
BSEJ

(b) F2

19 21 23 25 27 29 31 33 35 37 39

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Vote threshold

K
ap

pa

STAN
FFSS
FFSSJ
APNBC
AWNB

NB
FSS
TAN
ASB
BSEJ

(c) F3

11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Vote threshold

K
ap

pa
STAN
FFSS
FFSSJ
APNBC
AWNB

NB
FSS
TAN
ASB
BSEJ

(d) F4

13 15 17 19 21 23 25 27

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Vote threshold

K
ap

pa

STAN
FFSS
FFSSJ
APNBC
AWNB

NB
FSS
TAN
ASB
BSEJ

(e) F5

Figure 4.3: Classifiers’ kappa for predicting axonal features individually from mor-
phological data. Note that the range of the x-axis can differ between graphs.

Chapter 4. Bayesian Network Classifiers for Discriminating between Cortical
Interneurons 39

may include in our data sample the 79 neurons scanned from publications and the
4 cells with poor digital reconstructions (this corresponds to the full data sample).
This gives us a data sample notably larger than the one corresponding to (correctly)
digitally reconstructed, analysed in the previous section. We will consider the full
data set and the data subset corresponding to digitally reconstructed cells.

We impose a vote threshold on all five axonal features. We arbitrarily choose
to fix 21 as vote threshold for the simple axonal features while varying the vote
threshold for the neuronal type within the range used when predicting interneuron
type from morphological data: 13 to 27 (see Figure 4.4 for class counts).

Full Data Set

Best accuracy is at threshold 27, by TAN, and it is 79.46% (see Figure 4.5a). MA,
HT, and NG types are identified with maximum sensitivity (see Table 4.2), LB with
medium sensitivity and, unlike when learning from morphological data, CB with
relatively low sensitivity (0.36). CB cells were mostly misclassified as NG.

Table 4.2: Sensitivity and specificity of the TAN classifier for predicting interneuron
type using simple axonal features as predictors. Both 2D and 3D cells are used,
with threshold 21 for simple axonal features and threshold 27 for interneuron type.
Interneuron type name abbreviations: CB = common basket, CH = chandelier, CT
= common type, HT = horse-tail, LB = large basket, MA = Martinotti, NG =
neurogliaform.

CB CH CT HT LB MA NG
Sensitivity 0.36 0.4 0 1 0.63 1 1
Specificity 0.97 0.99 1 0.97 0.97 0.97 0.88

Digitally Reconstructed Cells

Best accuracy, 88.10%, is achieved by the FSS at threshold 25 for interneuron type
(see Figure 4.5c). At this threshold there are 21 MA, 11 LB, 9 CB, 4 HT, 1 CH, and
1 CT cells. FSS can correctly identify MA, HT, LB, and, to a lesser degree, CB cells
(see Table 4.3). This data set contains all but 4 of the instances from the data set
for which the best prediction on F5 given morphological parameters were obtained
(see Section (4.4.2). The accuracy is much higher in this case, reaching 88.10%, as
opposed to 77% when using morphological variables as predictors.

Chapter 4. Bayesian Network Classifiers for Discriminating between Cortical
Interneurons 40

Table 4.3: Sensitivity and specificity of the FSS classifier for predicting interneu-
ron type using simple axonal features as predictors. Only 3D cells are used, with
threshold 21 for simple axonal features and threshold 25 for interneuron type. Neu-
ronal type names abbreviations: CB = common basket, CHND = chandelier, CT
= common type, HT = horse-tail, LB = large basket, MA = Martinotti, NRG =
neurogliaform.

CB CHND CT HT LB MA
Sensitivity 0.71 0 0 1 0.93 1
Specificity 0.97 1 1 0.97 0.93 0.99

Simple Axonal Features and Morphometric Measurements as Predictors

Inspecting the data showed that there are many instances with identical simple
axonal feature values belonging to different neuronal types. This suggests that a
more refined feature space could improve prediction. We therefore augment the
feature set with the 214 morphometric parameters. We use the same vote thresholds
as previously: in the range from 13 to 27 for interneuron type and vote threshold 21
for simple axonal features.

Best predictive performance, 87.86%, is achieved by AWNB at vote threshold
25 (see Figure 4.5e). This is very similar to the best performance when using only
simple axonal features as predictors. The sensitivities and specificities also very
are similar (see Table 4.4). Using morphometric parameters together with simple
features seems to improve accuracy on low thresholds while at high thresholds it
degrades the performance of most classifiers (compare Figure 4.5e and Figure 4.5c).

Table 4.4: Sensitivity and specificity of the AWNB classifier for predicting interneu-
ron type using simple axonal features and morphometric parameters as predictors.
Vote threshold for the simple axonal features is 21 and for the interneuron type it is
25. Neuronal type names abbreviations: CB = common basket, CH = chandelier,
CT = common type, HT = horse-tail, LB = large basket, MA = Martinotti.

CB CH CT HT LB MA
Sensitivity 0.93 0 0 0.7 0.93 0.99
Specificity 0.95 1 1 1 0.98 0.92

4.5 Concluding Remarks

Previous study of supervised classification of interneurons [13] achieved low accuracy
for features F5 and F4. Although our results are not directly comparable, as they

Chapter 4. Bayesian Network Classifiers for Discriminating between Cortical
Interneurons 41

0 5 10 15 20 25 30 35 40

0
25

50
75

10
0

12
5

15
0

17
5

20
0

22
5

Vote threshold

In
st

an
ce

 C
ou

nt
Common Basket
Chandelier
Common Type
Horse Tail
Large Basket
Martinotti
Neurogliaform
Other

(a) Full Data Set

0 5 10 15 20 25 30 35 40

0
25

50
75

10
0

12
5

15
0

17
5

20
0

22
5

Vote threshold

In
st

an
ce

 C
ou

nt

Common Basket
Chandelier
Common Type
Horse Tail
Large Basket
Martinotti
Neurogliaform

(b) Digitally Reconstructed Cells

Figure 4.4: Class count per vote threshold on F5 with vote threshold 21 for F1-F4.
The dotted horizontal line is at y = 5. The dashed horizontal lines indicate the
boundaries of vote threshold ranges. For a), the threshold for simple axonal features
is 25 and for b) it is 21.

were obtained from different subsets of the data set used in [13], they show that
using reliable cells can improve accuracy.

For the interneuron type, our model can accurately discriminate between reliable
examples of the MA, LB, CB, and HT neuronal types. MA and HT are well-defined
and therefore useful neuronal types while the usefulness of common and large basket
cell types is questioned as these two types are commonly confused by the experts
[13]. However, both types have ”typical”, easily recognizable examples: cells that
are assigned to them with high confidence.

Our model could be used to resolve the confusion. As shown, it can correctly
discern between the typical (reliable) instances of the CB and LB types. When
presented with an ambiguous cell, the model would probably assign it to either LB
or CB. Whatever choice the model makes, it will be based on the opinions of many
experts.

For feature F4, our model can discriminate between reliable examples of ascending
and descending cells. As with interneuron type, this model can be used to resolve
the confusion present among experts by ascribing all cells to either the ascending
or the descending class. Furthermore, we show that axonal features F1, F2, F3, F4
are can discriminate between interneuron types. Additionally, we show that using
simple axonal features together with morphometric parameters helps discriminating

Chapter 4. Bayesian Network Classifiers for Discriminating between Cortical
Interneurons 42

13 15 17 19 21 23 25 27

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Vote threshold

A
cc

ur
ac

y

STAN
FFSS
FFSSJ
APNBC
AWNB

NB
FSS
TAN
ASB
BSEJ

(a)

13 15 17 19 21 23 25 27

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Vote threshold

K
ap

pa

STAN
FFSS
FFSSJ
APNBC
AWNB

NB
FSS
TAN
ASB
BSEJ

(b)

13 15 17 19 21 23 25 27

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Vote threshold

A
cc

ur
ac

y

STAN
FFSS
FFSSJ
APNBC
AWNB

NB
FSS
TAN
ASB
BSEJ

(c)

13 15 17 19 21 23 25 27

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Vote threshold

K
ap

pa

STAN
FFSS
FFSSJ
APNBC
AWNB

NB
FSS
TAN
ASB
BSEJ

(d)

13 15 17 19 21 23 25 27

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Vote threshold

A
cc

ur
ac

y

STAN
FFSS
FFSSJ
APNBC
AWNB

NB
FSS
TAN
ASB
BSEJ

(e)

13 15 17 19 21 23 25 27

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Vote threshold

K
ap

pa

STAN
FFSS
FFSSJ
APNBC
AWNB

NB
FSS
TAN
ASB
BSEJ

(f)

Figure 4.5: Accuracy and Cohen’s kappa for predicting interneuron type with simple
axonal features as predictors. a) and b) are results obtained with the full data
set (both scanned images and digitally reconstructed cells), c) and d) are results
obtained only on digitally reconstructed cells, and e) and f) were obtained with both
simple axonal features and morphological parameters as predictive variables. Note
that the minimum value on the y axis differs between plots of accuracy and plots of
kappa.

Chapter 4. Bayesian Network Classifiers for Discriminating between Cortical
Interneurons 43

between interneuron types.
Future work involves the use of predicted values for axonal features F1, F2, F3,

and F4 to predict the interneuron type.

Chapter 5

Conclusions

The contributions of this Master’s Thesis are three-fold. The first contribution is the
implementation of state-of-the-art Bayesian network classifiers for the R environment
for statistical computing, through the bayesclass add-on package. This package
has been submitted to the CRAN repository and is awaiting maintainer’s approval
for publication. It has been presented with a talk entitled ’bayesclass: a package
for learning Bayesian network classifiers’ at the ninth R User Conference, on July
11th 2013, in Albacete, Spain (see http://www.edii.uclm.es/˜useR-2013/
docs/useR2013_abstract_booklet.pdf).

The second contribution is methodological: the proposal of a novel, promising
classifier; the augmented semi-naive Bayes. It will be presented with a talk at the
fifteenth Conference of the Spanish Association for Artificial Intelligence, to be held
in Madrid, Spain, in September, 2013. The corresponding article is accepted for
publication in the associated volume of Lecture Notes in Computer Science. Find
the bibliographical information here [46].

The third contribution is the application of the developed tools, both the bayesclass
package and the augmented semi-naive Bayes classifier, towards solving a challenging
problem in neuroscience. Promising results are obtained, indicating that the imple-
mented algorithms and employed methodology are suitable to the task of automatic
classification of interneurons.

5.1 Future Work

We plan to keep extending the bayesclass package. More discrete Bayesian net-
work classifiers are likely to be added in the future. We plan to implement Bayesian
network classifiers which can handle real-valued features and also to allow more
flexible prior probabilities for the parameters.

44

http://www.edii.uclm.es/~useR-2013/docs/useR2013_abstract_booklet.pdf
http://www.edii.uclm.es/~useR-2013/docs/useR2013_abstract_booklet.pdf

Chapter 5. Conclusions 45

Regarding the augmented semi-naive Bayes classifier, further experiments ought
to be carried out to determine if there is statistically significant improvement over
the competing algorithms.

Regarding the classification of GABAergic interneurons, future work involves
the use of predicted values for axonal features F1, F2, F3, and F4 to predict the
interneuron type.

Appendix A

bayesclass Package
Documentation

The following is the package documentation for bayesclass, produced by typing
help(package='bayesclass') in R. It provides basic information about the
package and lists the implemented functions.

Information on package 'bayesclass'

Description:

Package: bayesclass
Title: Algorithms for learning Bayesian network classifiers
Description:
Version: 0.1
Authors@R: c(person("Mihaljevic","Bojan",email="b.mihaljevic@fi.upm.es",role=c("aut","cre")),

person("Bielza","Concha",email="mcbielza@fi.upm.es",role="aut"),
person("Larra<f1>aga","Pedro",email="pedro.larranaga@fi.upm.es",role="aut"))

Depends: R (>= 2.1.0),gRain,gRbase(>= 1.6.5),graph,RBGL,Rgraphviz,caret,e1071
License: MIT
Collate: 'ci_tests.R' 'classifiers.R' 'information_theory.R' 'predict.R' 'package_doc.R'

'data_structures.R' 'caret_integration.R' 'search.R' 'assessment.R' 'selective.R' 'tan.R'
'graph.R'

Packaged: 2013-07-03 13:06:28 UTC; CIG
Author: Mihaljevic Bojan [aut, cre], Bielza Concha [aut], Larra<f1>aga Pedro [aut]
Maintainer: Mihaljevic Bojan <b.mihaljevic@fi.upm.es>
Built: R 3.0.0; ; 2013-07-03 14:06:33 UTC; windows

Index:

assess Uses cross-validation to assess a set of
Bayesian network classifiers

assess_model Uses cross-validation to assesses a specific
Bayesian network classifier

assess_params Uses cross-validation to assess Bayesian
network classifiers on a data set

assess_search_state A wrapper for 'assess_model'
assess_simple Returns the classifier's accuracy on a data set
assessment_args Returns a list of arguments for 'assess_model'
augment_nb Augments the given network with arcs from the

46

Appendix A. bayesclass Package Documentation 47

class node to all others
augmenting_forest Returns the undirected augmenting forest for a

tree augmented naive Bayes.
augmenting_tree Returns the undirected augmenting tree
bayesclass Returns a bayesclass object
bayesclass_fit Learns the parameters of a Bayesian network.
bnc Learns a Bayesian network classifier from data
bnc_args Extract bnc arguments from a named vector
caret_model Induces a Bayesian network classifier and

(optionally) performs data pre-processing
caret_parameters Returns a data frame with parameters of

Bayesian network classifier learners
chisq_cond_independence_test

Chi-squared tests of conditional independence
chisq_independence_test.mi

Chi-squared independence test based on mutual
information (the G2 statistic)

chisq_independence_test.x2
Chi-squared independence test based on
Pearson's X2 statistic

class_cond_dependencies
Returns a graph of pairwise class-conditionally
dependent features.

complete_graph Returns a complete unweighted graph with the
given nodes

cond_independence_test
Chi-squared tests of conditional independence

cond_independence_test_cond_mi
Conditional independence test based on
conditional mutual information

conditional_mi Returns the conditional mutual information
I(X;Y|Z).

direct_away Directs edges away from node 'r'
direct_graph Directs an undirected graph
directed_acyclic_graph Directs an undirected graph.
extract_parameters Extracts model parameters from a list of

bayesclass objects
features Returns the features of a Bayesian network

classifier
ffss Returns a selective naive Bayes with the

features for which the hypothesis of
independence is rejected using the chi-squared
test of independence.

fss Uses the forward sequential selection algorithm
the learn a selective naive Bayes

get_graph_weights Returns graph weights
greedy_search Performs a greedy search in the space of

Bayesian network structures
inclusions Returns the possible search states obtained by

including a single candidate in the model
independence_test Chi-squared test of independence for sets of

variables
learner_function Returns the function that implements the

learning algorithm.
lists_to_dataframe Converts a list of lists into a data.frame
max_likelihood_tree Returns the undirected augmenting tree
mi Returns the mutual information between two

variable sets
naiveBayes Returns the independence network of a naive

Bayes
nvalues Returns the number of combinations of the given

Appendix A. bayesclass Package Documentation 48

variables
pairwise_conditional_mi

Returns the graph with feature pairwise
class-conditional mutual information

predict.BayesClassifier
Return class predictions or the class posterior
distribution

predict.bayesclass_fit
Return class predictions or the class posterior
distribution

revert_arcs Reverts the arcs of a dag
search_state Returns a search state
set_graph_weights Adds weights to graph edges
stan_pairwise_class_conditional_mi

Returns the filtered pairwise class conditional
mutual information network

stanbc Returns the selective tree augmented naive
Bayes (Blanco et al., 2005).

tan Returns the independence network of a tree
augmented naive Bayes

tan_structure Remove edges for interactions that we are not
confident about

tanbc Returns the independence network of a tree
augmented naive Bayes

tree_augmented Returns the independence network of a tree
augmented naive Bayes

tree_augmented_impl Returns a tree augmented naive Bayes.
valid_chisq_approximation

Check whether the chi-squared approximation is
reliable

valid_chisq_approximation.expected
Check whether Cochrane's conditions for the
reliability of the chi-squared approximation
are met

vector_list_2_dataframe
Converts a list of vectors into a data.frame

weight_conditional_mi Sets edge weights to the class-conditional
mutual information between feature pairs

Bibliography

[1] A. Agresti. Categorical Data Analysis. Wiley, 1990.

[2] K.M. Al-Aidaroos, A.A. Bakar, and Z. Othman. Naive Bayes variants in classi-
fication learning. In Proceedings of the International Conference on Information
Retrieval Knowledge Management (CAMP-2010), pages 276–281, 2010.

[3] Ethem Alpaydin. Introduction to machine learning. The MIT Press, 2004.

[4] Giorgio A Ascoli, Duncan E Donohue, and Maryam Halavi. Neuromorpho. org:
a central resource for neuronal morphologies. The Journal of Neuroscience, 27
(35):9247–9251, 2007.

[5] Giorgio A Ascoli, Lidia Alonso-Nanclares, Stewart A Anderson, German Bar-
rionuevo, Ruth Benavides-Piccione, Andreas Burkhalter, György Buzsáki,
Bruno Cauli, Javier Defelipe, Alfonso Fairén, et al. Petilla terminology: nomen-
clature of features of gabaergic interneurons of the cerebral cortex. Nature Re-
views Neuroscience, 9(7):557–568, 2008.

[6] K. Bache and M. Lichman. UCI machine learning repository, 2013. URL http:
//archive.ics.uci.edu/ml. http://archive.ics.uci.edu/ml.

[7] Christopher M. Bishop. Pattern Recognition and Machine
Learning (Information Science and Statistics). Springer,
2007. ISBN 0387310738. URL http://www.amazon.com/
Pattern-Recognition-Learning-Information-Statistics/
dp/0387310738%3FSubscriptionId%3D0JYN1NVW651KCA56C102%
26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%
26creative%3D165953%26creativeASIN%3D0387310738.

[8] R. Blanco, I. Inza, M. Merino, J. Quiroga, and P. Larrañaga. Feature selection
in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated
with TIPS. Journal of Biomedical Informatics, 38(5):376–388, 2005.

[9] Remco Bouckaert. Bayesian network classifiers in Weka, 2004.

49

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387310738
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387310738
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387310738
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387310738
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387310738

Bibliography 50

[10] Vince Carey, Li Long, and R. Gentleman. RBGL: An interface to the BOOST
graph library. URL http://www.bioconductor.org. R package version
1.36.2.

[11] D.M. Chickering, D. Heckerman, and C. Meek. Large-sample learning of
Bayesian networks is NP-hard. Journal of Machine Learning Research, 5:1287–
1330, 2004.

[12] C.K. Chow and C.N. Liu. Approximating discrete probability distrivutions with
dependence trees. IEEE Transactions on Information Theory, 14(3):462–467,
1968.

[13] J. DeFelipe, P.L. Lopez-Cruz, R. Benavides-Piccione, C. Bielza, P. Larrañaga,
and et al. New insights into the classification and nomenclature of cortical
gabaergic interneurons. Nature Reviews Neuroscience, page in press, 2013. URL
http://dx.doi.org/10.1038/nrn3444.

[14] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsuper-
vised discretization of continuous features. In Machine Learning: Proceedings
of the Twelfth International Conference, pages 194–202, 1995.

[15] R. Duda, P. Hart, and D.G. Stork. Pattern Classification. John Wiley and Sons,
2001.

[16] Brian Sidney Everitt. A handbook of statistical analyses using R. CRC Press,
2010.

[17] U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-valued
attributes for classification learning. In Proceedings of the 9th International
Joint Conference on Artificial Intelligence (IJCAI-1993), pages 1022–1029. Mor-
gan Kaufmann, 1993.

[18] M. Julia Flores, José A. Gámez, and Ana M. Mart́ınez. Supervised Classification
with Bayesian Networks: A Review on Models and Applications, 2012.

[19] Milton Friedman. The use of ranks to avoid the assumption of normality implicit
in the analysis of variance. Journal of the American Statistical Association, 32
(200):675–701, 1937.

[20] Milton Friedman. A comparison of alternative tests of significance for the prob-
lem of m rankings. The Annals of Mathematical Statistics, 11(1):86–92, 1940.

[21] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Ma-
chine Learning, 29:131–163, 1997.

http://www.bioconductor.org
http://dx.doi.org/10.1038/nrn3444

Bibliography 51

[22] Salvador Garćıa, Alberto Fernández, Julián Luengo, and Francisco Herrera.
Advanced nonparametric tests for multiple comparisons in the design of experi-
ments in computational intelligence and data mining: Experimental analysis of
power. Information Sciences, 180(10):2044–2064, 2010.

[23] Salvador Garcia, Julian Luengo, Jose Antonio Saez, Victoria Lopez, and Fran-
cisco Herrera. A survey of discretization techniques: Taxonomy and empirical
analysis in supervised learning. Knowledge and Data Engineering, IEEE Trans-
actions on, 25(4):734–750, 2013. ISSN 1041-4347. doi: 10.1109/TKDE.2012.35.

[24] R. Gentleman, Elizabeth Whalen, W. Huber, and S. Falcon. graph: A package
to handle graph data structures. R package version 1.34.0.

[25] Jeff Gentry, Li Long, Robert Gentleman, Seth Falcon, Florian Hahne, Deepayan
Sarkar, and Kasper Daniel Hansen. Rgraphviz: Provides plotting capabilities for
R graph objects. R package version 2.4.1.

[26] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.
Journal of Machine Learning Research, 3:1157–1182, 2003.

[27] M. Hall. A decision tree-based attribute weighting filter for naive Bayes.
Knowledge-Based Systems, 20(2):120–126, 2007.

[28] M.A. Hall. Correlation-based Feature Selection for Machine Learning. PhD
thesis, Department of Computer Science, University of Waikato, 1999.

[29] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The weka data mining software: an update.
SIGKDD Explor. Newsl., 11(1):10–18, November 2009. ISSN 1931-0145. doi: 10.
1145/1656274.1656278. URL http://doi.acm.org/10.1145/1656274.
1656278.

[30] D. J. Hand and K. Yu. Idiot’s Bayes - not so stupid after all? International
Statistical Review, 69(3):385–398, 2001.

[31] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Sta-
tistical Learning. Springer, 2009.

[32] Søren Højsgaard. Graphical independence networks with the gRain package
for R. Journal of Statistical Software, 46(10):1–26, 2012. URL http://www.
jstatsoft.org/v46/i10/.

[33] Søren Højsgaard, David Edwards, and Steffen Lauritzen. Graphical models with
R. Springer, 2012.

http://doi.acm.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278
http://www.jstatsoft.org/v46/i10/
http://www.jstatsoft.org/v46/i10/

Bibliography 52

[34] Kurt Hornik, Christian Buchta, and Achim Zeileis. Open-source machine learn-
ing: R meets Weka. Computational Statistics, 24(2):225–232, 2009.

[35] R.L. Iman and J. M. Davenport. Approximations of the critical region of the
friedman statistic. Communications in Statistics, 9(6):571–595, 1980.

[36] E.J. Keogh and M.J. Pazzani. Learning the structure of augmented Bayesian
classifiers. International Journal on Artificial Intelligence Tools, 11(4):587–601,
2002.

[37] R. Kohavi. Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree
hybrid. In Proceedings of the 2nd International Conference on Knowledge Dis-
covery and Data Mining (KDD-1996), 1996.

[38] R. Kohavi and G.H. John. Wrappers for feature subset selection. Artificial
Intelligence, 97(1):273–324, 1997.

[39] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and
techniques. MIT press, 2009.

[40] Daphne Koller and Mehran Sahami. Hierarchically classifying documents using
very few words. 1997.

[41] J. B. Kruskal. On the shortest spanning subtree of a graph and the travel-
ing salesman problem. In Proceedings of the American Mathematical Society,
volume 7, pages 48–50, 1956.

[42] Max Kuhn. Building predictive models in r using the caret package. Journal of
Statistical Software, 28(5):1–26, 2008.

[43] P. Langley and S. Sage. Induction of selective Bayesian classifiers. In Proceedings
of the 10th Conference on Uncertainty in Artificial Intelligence (UAI-1994),
pages 399–406. Morgan Kaufmann, 1994.

[44] Benoit B Mandelbrot, Dann E Passoja, and Alvin J Paullay. Fractal character
of fracture surfaces of metals. 1984.

[45] David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel, and
Friedrich Leisch. e1071: Misc Functions of the Department of Statistics (e1071),
TU Wien, 2012. URL http://CRAN.R-project.org/package=e1071.
R package version 1.6-1.

[46] Bojan Mihaljevic, Pedro Larrañaga, and Concha Bielza. Augmented Semi-naive
Bayes Classifier. In Lecture Notes in Computer Science, number 8109. Springer,
2013. in press.

http://CRAN.R-project.org/package=e1071

Bibliography 53

[47] M. Minsky. Steps toward artificial intelligence. Transactions on Institute of
Radio Engineers, 49:8–30, 1961.

[48] Kevin P Murphy. Machine learning: a probabilistic perspective. The MIT Press,
2012.

[49] Radhakrishnan Nagarajan, Marco Scutari, and Sophie Lébre. Bayesian Net-
works in R with Applications in Systems Biology. Springer, 2013.

[50] M. Pazzani. Constructive induction of cartesian product attributes. In Proceed-
ings of the Information, Statistics and Induction in Science Conference (ISIS-
1996), pages 66–77, 1996.

[51] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann,
Palo Alto, CA, 1988.

[52] M. Peot. Geometric implications of the näıve Bayes assumption. In Proceedings
of the 12th Conference on Uncertainty in Artificial Intelligence (UAI-1996),
pages 414–419. Morgan Kaufmann, 1996.

[53] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2012. URL http:
//www.R-project.org/. ISBN 3-900051-07-0.

[54] Vikas C Raykar, Shipeng Yu, Linda H Zhao, Gerardo Hermosillo Valadez,
Charles Florin, Luca Bogoni, and Linda Moy. Learning from crowds. The
Journal of Machine Learning Research, 99:1297–1322, 2010.

[55] Marko Robnik-Sikonja and Petr Savicky. CORElearn: CORElearn - clas-
sification, regression, feature evaluation and ordinal evaluation, 2013. URL
http://CRAN.R-project.org/package=CORElearn. R package ver-
sion 0.9.41.

[56] Y. Saeys, I. Inza, and P. Larra naga. A review of feature selection techniques
in bioinformatics. Bioinformatics, 23(19):2507–2517, 2007.

[57] M. Sahami. Learning limited dependence Bayesian classifiers. In Proceedings
of the 2nd International Conference on Knowledge Discovery and Data Mining
(KDD-1996), pages 335–338, 1996.

[58] Marco Scutari. Learning bayesian networks with the bnlearn r package. arXiv
preprint arXiv:0908.3817, 2009.

http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/package=CORElearn

Bibliography 54

[59] G. I. Webb and M. J. Pazzani. Adjusted probability näıve Bayesian induction.
In Proceedings of the 11th Australian Joint Conference on Artificial Intelligence
(AI-1998). Lecture Notes in Computer Science, volume 1502. Springer, 1998.

[60] Ying Yang and Geoffrey Webb. Proportional k-interval discretization for naive-
bayes classifiers. Machine Learning: ECML 2001, pages 564–575, 2001.

[61] Ying Yang and Geofrey Webb. Weighted proportional k-interval discretization
for naive-bayes classifiers. Advances in Knowledge Discovery and Data Mining,
pages 565–565, 2003.

[62] Ying Yang, Geoffrey I Webb, and Xindong Wu. Discretization methods. In Data
Mining and Knowledge Discovery Handbook, pages 101–116. Springer, 2010.

[63] Sandeep Yaramakala and Dimitris Margaritis. Speculative Markov blanket dis-
covery for optimal feature selection. In ICDM ’05: Proceedings of the Fifth IEEE
International Conference on Data Mining, pages pp 809–812. IEEE Computer
Society, Washington, DC, USA, 2005.

[64] F. Zheng and G.I. Webb. A comparative study of semi-naive Bayes methods
in classification learning. In Proceedings of the 4th Australasian Data Mining
Workshop, pages 141–156. University of Technology of Sydney, 2005.

	Introduction
	Fundamentals
	Learning Bayesian Networks from Data
	Tests of Independence and Conditional Independence
	Learning Bayesian Network Classifiers

	Naive Bayes
	Weighted Naive Bayes

	Selective Naive Bayes
	The Forward Sequential Selection Algorithm
	The Filter Forward Sequential Selection Algorithm

	Semi-naive Bayes
	The Backward Sequential Elimination and Joining Algorithm
	The Filter Forward Sequential Selection and Joining Algorithm

	Tree Augmented Naive Bayes
	Selective Tree Augmented Naive Bayes

	Other Bayesian Network Classifiers

	Augmented Semi-naive Bayes
	Augmented Semi-Naive Bayes
	Experimental Evaluation
	Setup
	Results

	Concluding Remarks

	bayesclass: an R Package for Learning Bayesian Network Classifiers
	The R Environment for Statistical Computing
	Discrete Bayesian Network Classifiers in R
	The bnlearn Package
	Other Implementations

	the bayesclass Package
	Implementation

	Sample Session
	Learning a Bayesian Network Classifier from Data
	Predictive Performance Assessment

	Concluding Remarks

	Bayesian Network Classifiers for Discriminating between Cortical Interneurons
	Background
	The Neuron Classification Problem
	An Axonal Features-based Taxonomy

	Materials
	Morphometric Parameters
	Data Preprocessing

	Methodology
	Discretization
	Thresholded Majority Vote Label

	Experimental Evaluation
	Classifier Parameters and Predictive Performance Evaluation
	Predicting Axonal Features Independently
	Simple Axonal Features as Predictors of Interneuron Type

	Concluding Remarks

	Conclusions
	Future Work

	bayesclass Package Documentation
	Bibliography

