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Abstract 

The widespread adoption of Artificial Intelligence (AI) and Machine Learning (ML) 
algorithms in recent years across many domains has led to an increased 
reliance on automated decision making. While these algorithms have shown 
tremendous promise in improving decision-making efficiency and accuracy, 
they are not immune to errors and biases. Consequently, there is a growing 
concern about the trustworthiness of automated decision-making systems (AD-
MS). 

Trustworthiness refers to the degree to which an AD-MS can be relied upon to 
produce accurate, fair, robust, transparent, inclusive, and empowering results. 
Ensuring the trustworthiness of AD-MS is crucial in several domains, among 
many others, healthcare, finance, criminal justice, and human resources. For 

instance, biased or inaccurate automated credit scoring systems can result in 
unfair denial of loans to certain individuals, while biased recruitment systems 
can perpetuate discrimination in the workplace. Consequently, there is a need 
for tools and approaches to improve the trustworthiness of AD-MS. 

This project aims to explore the challenges and opportunities in achieving 
trustworthy automated decision-making. Specifically, it seeks to investigate the 
limitations of machine learning algorithms, the importance of trustworthiness, 
and the tools and approaches for improving trustworthiness. The project also 
aims to examine the ethical, legal, and social implications of AD-MS and present 
case studies that illustrate the practical application of the proposed tools and 
approaches. The project concludes by discussing future directions for research 
in this field. 
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1 Introduction 
 

 

1.1 Background and Context 
 
Artificial intelligence (AI) has come a long way since its inception in the 1950s. 
and can be traced back to the Dartmouth Conference of 1956, where the term 
"Artificial Intelligence" was coined (McCarthy, J., 1955). In the following decades, 
researchers made significant progress in the development of AI technologies, 
with notable breakthroughs such as the introduction of expert systems in the 
1970s and the development of neural networks in the 1980s. However, progress 
was slow, and it was not until the early 2000s that AI algorithms began to gain 
widespread adoption. 
 
Today, the field of AI is rapidly evolving, with advances in deep learning, natural 

language processing, and computer vision, and AI and machine learning (ML) 
algorithms are used in decision-making processes across many domains, 
including finance, healthcare, criminal justice, and human resources. These 
automated decision-making systems (AD-MS)1 have the potential to enhance 
efficiency, accuracy, and speed, leading to better outcomes. However, they are 
not safe from biases and discrimination, leading to a growing concern about the 
trustworthiness of these systems. There are limitations to these systems, such 
as the inability to explain their decision-making processes fully. This lack of 
transparency can lead to distrust and limit the adoption of these systems. 
It is essential to ensure that AD-MS are fair, transparent, robust, and inclusive, 
especially when used to make decisions about individuals that may impact their 
lives. 
 
Bias and unfairness in AD-MS can result from the use of protected attributes 
such as gender, race, ethnicity, age, or disability in decision-making processes. 
A series of domains with a myriad of known cases of bias and discrimination 
are briefly mentioned without being an exhaustive overview: 
 
Recruiting2 
AD-MS have been used in the recruitment process to screen resumes and 
applications, reducing the workload of recruiters. However, these systems can 
perpetuate gender or racial biases if they use historical data that reflects those 

 
 

1 Trustworthy AD-MS, AI systems and ML systems are sometimes used interchangeably 
in this project. However, the primary differentiating factor among trustworthy AD-MS, 
AI systems, and ML systems lies in their focus and underlying principles. Trustworthy 
AD-MS prioritize transparency, fairness, and accountability in decision-making 
processes, specifically targeting the need for explainability and interpretability. On the 
other hand, AI systems encompass a broader set of technologies that emulate human 
intelligence, encompassing perception, reasoning, and decision-making capabilities. ML 
systems, as a subset of AI, primarily leverage statistical models and learning algorithms 
to extract patterns from data and make predictions or decisions (e.g. Varshney, K., 
2022). 
2 In 2016, Amazon created an experimental AI-driven hiring tool designed to identify top 
talent from a pool of job applicants. However, it was discovered that the algorithm was 
biased against female candidates, as the system had been trained on resumes submitted 
to Amazon over a 10-year period, which were predominantly from men (Dustin, J., 2018). 
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biases. For example, if historical data shows that men are more likely to be hired 
for particular jobs, the automated system may replicate that bias. This can lead 
to discrimination against women or minorities, impacting their career 
opportunities (E. Kazim, A., 2021). 

 
Credit Scoring 
Automated credit scoring systems use ML algorithms to evaluate the 
creditworthiness of individuals. These systems consider various factors such as 
credit history, employment, and income. However, the use of protected 
attributes such as race, ethnicity, or gender in credit scoring can result in 
discrimination against certain groups. For example, studies have shown that 
automated credit scoring systems are more likely to deny loans to individuals 
from minority communities (Kozodoi, N., et al., 2022 / Pagano, T., et al., 2023). 
 
Pre-trial Recidivism Screening3 
AD-MS have been used in pre-trial recidivism screening to predict the likelihood 
of an individual committing a crime again in the future. However, these systems 

can perpetuate racial biases if they use historical data that reflects those biases. 
For example, if historical data shows that individuals from certain racial or 
ethnic groups are more likely to reoffend, the automated system may replicate 
that bias. This can lead to discrimination against individuals from those 
communities (Mitchell, S., et al., 2021). 
 
Salary and Promotion4 
AD-MS have been used in determining salaries and promotions in organizations. 
However, these systems can perpetuate gender or racial biases if they use 
historical data that reflects those biases. For example, if historical data shows 
that men are more likely to receive higher salaries and promotions, the 
automated system may replicate that bias. This can lead to discrimination 
against women or minorities, impacting their career opportunities. 
 
Healthcare Health Insurance 5 
AD-MS have been used in healthcare to suggest treatments for patients. 
However, these systems can perpetuate biases if they use historical data that 
reflects those biases. For example, if historical data shows that certain 

 

 

3 The COMPAS case involves an algorithm used to predict the likelihood of a defendant 
committing future crimes, which was used by judges in several U.S. states to inform 
decisions about pretrial detention, sentencing, and parole. In 2016, investigative news 
organization ProPublica published a study that found that the algorithm, called 
COMPAS (Correctional Offender Management Profiling for Alternative Sanctions), was 
biased against African American defendants, as it was more likely to incorrectly predict 
that they would commit future crimes (Angwin, J., et al., (ProPublica), 2016). 
4  Most articles refer to the US Census “Adult” dataset from 1994 to investigate 
algorithmic biases (e.g., Li, S., et al., 2022) and unfortunately, the datasets of known 
cases are not publicly available. However, one of the many cases is the Goldman Sachs 
Case: In 2021, a group of Goldman Sachs employees filed a lawsuit alleging that the 
company's automated system for setting salaries and bonuses was biased against 
women. The lawsuit claims that the system systematically undervalued women's 
contributions to the company and paid them less than their male colleagues. The trial 
commences on June 5, 2023 (Chen-Oster v. Goldman Sachs class action, 2018). 
5 Most authors use the Medical Expenditure Panel Survey (MEPS) dataset to investigate 
algorithmic bias in healthcare and health insurance, probably also due to the fact that 
most datasets are not publicly available. 
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treatments are less effective for individuals from certain racial or ethnic groups, 
the automated system may replicate that bias. This can lead to unequal health 
outcomes for individuals. 
AD-MS have also been used in health insurance to evaluate risk and set 

premiums. However, the use of protected attributes such as gender, age, or 
health status in determining premiums can result in discrimination against 
certain groups. For example, if an automated system considers age as a factor, 
older individuals may have to pay higher premiums, leading to discrimination 
(e.g., Creedon, T., et al., 2022). 
 
Computer Vision and Object Recognition in Images6 
AD-MS have been used in computer vision and object recognition in images. 
However, these systems can perpetuate biases if they use historical data that 
reflects those biases. For example, if historical data shows that certain objects 
are more likely to appear in images from certain regions or demographics, the 
automated system may replicate that bias. This can lead to inaccurate object 
recognition and biased decisions based on image analysis. 

 
Therefore, it becomes evident that these developments cause a major impact on 
how our societies have been constructed, and it seems doubtful that these high-
impact problems will be solved in a self-regulatory manner by the agents who 
adopted automated decision-making processes based on AI, i.e., there is a need 
for legal frameworks that govern the use of AD-MS. To name just a few of them, 
in the European Union, the General Data Protection Regulation (GDPR) sets 
rules for data protection, including automated decision-making. The GDPR 
requires that individuals have the right to contest automated decisions and to 
receive information about how those decisions are made. In the United States, 
the Equal Credit Opportunity Act (ECOA) prohibits credit discrimination based 
on protected attributes. The ECOA requires that creditors provide applicants 
with the reasons for credit denials.  
 
In a technical context, how fairness and bias mitigation are handled relies 
heavily on a precise definition of fairness metrics, which in turn are essential in 
evaluating the performance of AD-MS. Demographic parity, equalized odds, and 
opportunity equality are some of the commonly used fairness metrics. 
Demographic parity refers to the proportion of individuals receiving a positive 

outcome, irrespective of their protected attribute status. Equalized odds refer 
to the equality of true positive rates and false positive rates across protected 
attributes. Opportunity equality ensures that individuals have an equal 
chance of receiving a positive outcome, regardless of their protected attribute 
status. 
 
These metrics, among many others, are used in a series of publicly available 
tools to analyze and mitigate bias and fairness in ML. There are several tools 
and frameworks that can analyze and mitigate bias, e.g., AIF360 is an open-
source toolkit that provides algorithms for fairness metrics computation, bias 

 
 

6 In 2015, a Google Photos user reported that the app had automatically tagged a photo 
of him and a friend as "gorillas." This incident highlighted the potential for facial 
recognition algorithms to perpetuate racial biases and reinforce harmful stereotypes. 
Google issued an apology and took immediate action to address the issue, including 
removing the "gorilla" tag from the app's lexicon and improving its image recognition 
algorithms to better recognize people of all races (Dougherty, C., NYT, 2015). 
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mitigation, and fairness visualization. FairLearn is another open-source toolkit 
that provides a variety of ML algorithms for fair classification. TensorFlow 
Responsible AI is a framework that provides tools for building and deploying 
responsible AI models. Aequitas is an open-source bias audit toolkit that 

evaluates ML models for disparate impact, all of which are analyzed in detail in 
section 3.6 Tool-based Bias Mitigation. 
 
Piecing together the previous building blocks, this project aims to investigate 
the challenges and opportunities in achieving trustworthy automated decision-
making in ML. By exploring the legal frameworks, fairness metrics, and bias 
mitigation tools available for ML algorithms, this project seeks to provide 
practical solutions for mitigating bias and ensuring fairness in AD-MS. By 
addressing bias and ensuring fairness in AD-MS, this project aims to contribute 
to the development of trustworthy systems that can serve the needs of all 
individuals. 
 
 

1.2 Rationale and Significance 
 

AD-MS are a subset of AI technologies that leverage ML models to make 
predictions or decisions based on input data. These systems can be applied 
across various domains, often automating complex and time-consuming tasks 
that would otherwise require human intervention. The primary advantage of 
AD-MS is their ability to process large amounts of data quickly and efficiently, 
leading to more informed and data-driven decisions. 

AI technologies have evolved significantly over the past few decades, with rapid 
advancements in ML techniques, computational power, and data availability. 
These developments have enabled AI systems to tackle more complex tasks and 
achieve unprecedented levels of performance, resulting in widespread adoption 
across various domains. From natural language processing to computer vision 
and robotics, AI technologies have permeated every aspect of modern society, 
transforming the way we live and work. 

The emergence of AI technologies in high-stakes decision-making systems has 
brought both opportunities and challenges. For example, AI-based credit 
scoring models can process vast amounts of data to assess an individual's 

creditworthiness more accurately and efficiently than traditional methods. 
Similarly, AI-driven healthcare applications can help clinicians diagnose and 
treat patients more effectively, while AI-powered criminal justice tools can assist 
in predicting recidivism and allocating resources more efficiently. However, 
these applications also underscore the need for fairness, transparency, and 
accountability in AI systems, as the consequences of biased or untrustworthy 
decision-making can be dire. 

Trustworthiness in AI systems is of paramount importance, as it directly 
impacts the public's perception, acceptance, and adoption of these technologies. 
Trustworthy AI systems must be designed with a focus on fairness, 
transparency, and accountability, ensuring that they do not perpetuate biases 
or exacerbate existing societal inequalities. A lack of trust in AI systems can 

hinder their adoption and limit the potential benefits that these technologies 
can bring to various domains. 

In recent years, the rapid development and widespread application of ML and 
AI in general have significantly impacted various aspects of modern society. 
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From healthcare to finance and criminal justice, data-driven decision-making 
has become an integral part of our lives. This reliance on ML and AI systems, 
however, raises concerns about their fairness, transparency, and accountability, 
which are the focus of this project. 

The consequences of using untrustworthy AI systems can be far-reaching and 
severe, particularly when these systems are deployed in high-stakes decision-
making processes. Unfair and biased AI systems can lead to discriminatory 
outcomes, causing harm to individuals and marginalized communities. Such 
consequences can result in legal liabilities, reputational damage to 
organizations, and a loss of public trust in AI technologies. 

One of the most significant assumptions in data-driven decision-making is the 
supposed objectivity of these decisions. It is often believed that machines, being 
free from human prejudices and biases, can make fair and unbiased decisions. 
However, this is far from the truth, as ML algorithms are trained on historical 
data, which may contain inherent biases and prejudices. These biases can be 
inadvertently learned and perpetuated by the algorithms, resulting in unfair and 

discriminatory outcomes. 

Companies that deploy ML models often prioritize factors such as ease of 
implementation, runtime scalability, and low risk of failure over fairness and 
ethical considerations. This is primarily due to the competitive nature of the 
market and the need for businesses to maintain efficiency and profitability. 
However, such an approach can lead to the implementation of models that 
inadvertently perpetuate biases and discrimination, causing significant harm to 
marginalized communities. 

Discrimination, in the context of ML and AI, refers to the unequal treatment of 
individuals or groups based on certain protected attributes, such as race, 
gender, and age. There are two primary forms of discrimination: disparate 
treatment and disparate impact. Disparate treatment occurs when a decision-
making system explicitly treats individuals differently based on their protected 
attributes. This form of discrimination is illegal in many legislations, e.g., under 
the US Civil Rights Act or the EU Equality Treatment Framework Directive 
(2000/78/EC), among many others. Disparate impact, on the other hand, 
occurs when a decision-making system, even if unintentionally, has a 
disproportionate adverse effect on a protected group. Legal remedies for 
disparate impact are not as clear-cut, and it is a matter of ongoing debate. 

The use of uninterpretable black-box models in ML further exacerbates the 
issues of fairness and accountability. These models, which include complex 
neural networks and ensemble methods, often produce highly accurate 
predictions but are difficult to interpret or explain. This lack of interpretability 
makes it challenging to identify and rectify potential biases, which can lead to 
unintended discriminatory consequences. White-box models, on the other hand, 
are inherently transparent and can be easily interpreted such as linear or 
logistic regression or simple decision tree models.  

A common misconception is that the removal of protected attributes from the 
data used to train ML models will ensure fairness and prevent discrimination. 
However, this approach is often insufficient, as biases can still be introduced 
through correlated proxies. For example, if an ML model is trained on a dataset 

that excludes gender but includes occupation, the model may still learn gender 
biases if certain occupations are predominantly associated with one gender. 
This highlights the need for more robust bias mitigation measures to ensure 
fairness in ML models. 
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Considering the potential risks associated with untrustworthy AI systems, there 
is a pressing need for research in this area. Developing and implementing 
effective fairness metrics and bias mitigation measures can help ensure that AI 
systems are designed and deployed responsibly, minimizing the potential for 

harm, and maximizing the benefits of these technologies. Furthermore, research 
in this area can contribute to the establishment of guidelines and best practices 
for the development, deployment, and monitoring of AI systems, promoting 
transparency and accountability. 

In conclusion, this project aims to address the crucial issue of trustworthy 
automated decision-making by exploring fairness metrics and bias mitigation 
measures in machine learning. By doing so, it seeks to provide a foundation for 
more ethical, transparent, and accountable AI systems, which will ultimately 
lead to better decision-making processes and greater trust in these technologies. 
The significance of this research is underscored by the increasing reliance on AI 
and ML in various sectors of society, as well as the potential consequences of 
perpetuating biases and discrimination through automated decision-making. 

 

1.3 Research Questions and Objectives 
 

In this master project the following main research questions and objectives are 
addressed: 

1) How can methods and techniques be applied to develop AD-MS that 
enhance transparency and interpretability, thereby improving their 
explainability? 

2) In what ways do data-driven approaches unintentionally encode 
human biases and introduce new ones, and what are the implications of 
these biases for fairness in AD-MS? 

3) How can fairness in AD-MS be effectively measured, particularly 
considering the complex relationships between input features, protected 
attributes, and target variables? 

4) What are the key trade-offs between performance and fairness in 
machine learning models, and how can these trade-offs be navigated in 
practice to balance optimal outcomes with fairness considerations? 

5) What methods can be investigated and applied to minimize the 

potential for AI systems to introduce and perpetuate discriminatory 
practices, reproduce, reinforce, and exacerbate existing biases, and 
create feedback loops from deployed systems? 

6) How can effective methods for incorporating causality into fairness-
aware AD-MS be applied to mitigate bias and discrimination in decision-
making processes? 

7) How can multimodal input features be handled in fairness-aware 

models, and what strategies can be employed to mitigate non-apparent 
bias? 

The research questions and objectives contribute to the overall field of AI and 
ML by addressing critical ethical and practical challenges that arise in the 
development and deployment of AD-MS. In particular, the focus on fairness 
metrics, tradeoffs, and potential biases in data-driven approaches aligns with 

the growing recognition of the importance of trustworthiness, transparency, and 
accountability in AI. 

A key challenge in ensuring fairness in AD-MS is the tradeoff between 
performance and fairness. As models strive to minimize average error, they may 
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inadvertently fit the majority population while neglecting the needs of minority 
groups. Furthermore, data-driven approaches can unintentionally encode 
human biases and introduce new ones, leading to the potential for AI systems 
to perpetuate discriminatory practices. 

Overall, the research objectives will help advance the field of AI and machine 
learning by providing new insights into the measurement and mitigation of 
biases in AD-MS, as well as by offering practical guidance on how to balance 
fairness and performance in real-world applications. As AI technologies 
continue to evolve and play an increasingly prominent role in various domains, 
ensuring fairness and trustworthiness will be essential for realizing their full 
potential and addressing the ethical challenges they present. 

 

1.4 Methodology 
 

The methodology of this project is designed to provide a comprehensive 

understanding of the issues and challenges related to fairness and bias in 
algorithmic decision-making processes. It encompasses a combination of 
approaches, including theoretical frameworks, mitigation techniques, legal and 
ethical implications, and practical applications in the form of case studies. The 
methodology consists of the following steps: 

1) Foundation of theoretical framework with state-of-the-art research on 
algorithmic fairness and bias:  
The study begins with a thorough review of current literature and research 
on algorithmic fairness and bias. This provides a solid theoretical foundation 
that is necessary to understand the context, challenges, and limitations of 
existing ML algorithms. The theoretical framework also includes a 
discussion on the importance of trustworthiness in automated decision-
making and the concepts of trustworthy AI. 
 

2) Mitigation of algorithmic bias, research, and tools:  
The second step involves identifying and evaluating various techniques and 
tools available to mitigate algorithmic bias. These approaches include: 
a) Automated data cleaning and correction 
b) Algorithm-agnostic methods 

c) Model interpretability and explainability 
d) Causality-based fairness methods 
e) Tool-based bias mitigation solutions such as AI-Fairness 360, What-if 

Tool, Fairness Flow, Aequitas, and Themis AI. 
 

3) Legal and ethical implications:  
The study also examines the legal and ethical implications of implementing 
fairness and bias mitigation measures in machine learning. This includes 
exploring transparency, responsibility, preventing unintended consequences 
and bias, and balancing accuracy, fairness, and privacy concerns. 
 

4) Assembling the building blocks in three case studies based on the CRISP-
DM methodology:  
The project adopts the CRISP-DM (Cross-Industry Standard Process for Data 
Mining) methodology to structure the case studies. The CRISP-DM 
framework consists of six stages:  
a) Business understanding 



1.5 Outline of the Project 

8 
 

b) Data understanding 
c) Data preparation 
d) Modeling 
e) Evaluation 

f) Deployment.  

This allows for a systematic investigation of fairness and bias mitigation 
measures in three different real-world applications:  

a) HR recruitment process, 
b) Automated credit scoring, 
c) Predictive policing and recidivism profiling (COMPAS). 

The case studies take into account: 

1) Pre-processing (e.g., relabel, reweight, resample): The data preprocessing 
stage involves techniques such as relabeling, reweighting, and resampling to 
reduce biases present in the data before feeding it to the machine learning 
algorithms. 

2) In-processing (e.g., augmented cost function, fairness regularizer): In-
processing methods are applied during the model training phase. They include 
techniques like augmented cost functions and fairness regularizers that modify 
the learning process to ensure fairness while optimizing for accuracy. 

3) Post-processing (based on holdout set): Post-processing techniques are 
applied after the model has been trained, using a holdout set. These methods 
aim to adjust the algorithm's predictions or decisions to reduce unfair outcomes. 

By employing this comprehensive methodology, the project aims to address the 
challenges of fairness and bias in algorithmic decision-making, provide practical 
solutions, and contribute to the development of more trustworthy AI systems. 

 

1.5 Outline of the Project 
 

In this project, the topic of trustworthy automated decision-making is 
investigated, with a particular focus on fairness and bias mitigation measures 
in ML. The following sections provide an overview of the different chapters and 
their contents: 

 
Chapter 1 provides an introduction to the topic, discussing the background and 
context of the research, the rationale and significance of the study, and the 
research questions and objectives. The chapter also outlines the methodology 
used in the study, which includes a review of relevant literature and case studies. 
 
In Chapter 2, the theoretical framework that underpins the study is presented. 
The chapter discusses the limitations of ML algorithms and the importance of 
trustworthy AI. Furthermore, the concepts of trustworthy AI and what it means 
for an AI system to be considered trustworthy are explored. 
 
Chapter 3 examines the tools and approaches that can be used to improve the 
trustworthiness of AD-MS. The chapter covers automated data cleaning and 

correction, algorithm-agnostic approaches, model interpretability and 
explainability, causality-based fairness methods, and tool-based bias mitigation. 
The most widely used tool-based bias mitigation frameworks, such as IBM: AI-
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Fairness 360, Google: What-if Tool, Facebook: Fairness Flow, Carnegie Mellon: 
Aequitas, and Themis AI are also presented in detail. 
 
In Chapter 4, the ethical, legal, and social implications of trustworthy AD-MS 

are explored. The chapter discusses the importance of ensuring transparency 
and responsibility, preventing unintended consequences and bias, and 
balancing accuracy, fairness, and privacy. 
 
Chapter 5 presents case studies that demonstrate the application of the tools 
and approaches discussed in previous chapters. A methodological approach is 
provided, which includes data collection and preprocessing, model selection and 
training, evaluation and validation metrics, and quantifying bias and fairness. 
The case studies focus on HR recruitment processes, automated credit scoring, 
and predictive policing and recidivism profiling, with a specific focus on the use 
of the COMPAS system. 
 
In Chapter 6, the results of the case studies are discussed, and conclusions are 

drawn based on the findings. Recommendations for future research directions 
that can contribute to improving the trustworthiness of AD-MS are also provided. 
 
Finally, Chapter 7 provides an overview of the main contributions of the study 
and the limitations of the research. Recommendations for practitioners and 
policymakers who are involved in the development and deployment of 
trustworthy AI systems are also presented. 
 
The study aims to provide a comprehensive understanding of trustworthy AD-
MS, with a particular emphasis on the role of fairness and bias mitigation 
measures in ML. The theoretical and practical contributions of the study can 
help inform the development and deployment of trustworthy AI systems in 
various domains. 
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2 Theoretical Framework 
 

This chapter delineates the conceptual basis upon which this research is 

constructed. The chapter bifurcates into two primary domains. 

1) "Understanding Shortcomings of AI Systems," scrutinizes the inherent 
limitations of Artificial Intelligence systems, including common sources and 
types of bias. This examination offers a comprehensive understanding of the 
pitfalls and challenges that encumber the pursuit of optimized AI systems, 
thereby offering a vantage point from which to approach their potential 
amelioration. 

2) "Building Trustworthy AI: Principles and Approaches," delves into the 
constitution of trustworthy AI systems. Informed by the understanding of AI 
limitations and biases, this domain encompasses critical dimensions of 
trustworthiness, including transparency, fairness, and robustness, and 
expounds on the integral role trustworthiness plays in the effective 

deployment of AI systems. This chapter also elucidates essential tools for 
fostering trust in AI, namely fairness metrics and explainable AI, thus 
providing a practical dimension to the theoretical discourse. 

The chosen theoretical framework represents a fusion of critical analysis of AI 
challenges with a forward-looking perspective on trustworthiness enhancement. 
This balance equips readers with a nuanced understanding of both the 
challenges inherent in AI and the potential solutions offered by transparent, fair, 
and robust AI systems. 

 

2.1 Understanding Shortcomings of AI Systems 
 

The journey to harness the potential of AI systems comes with several 
complexities and challenges. While these systems are powerful tools for 
processing large amounts of data and making predictions, they also have 
inherent limitations. The understanding of these limitations forms the 
foundation for the exploration of AI's trustworthy attributes. 

 

2.1.1 Artificial Intelligence Systems and Their Limitations 
 

AI systems, ranging from simple rule-based algorithms to complex deep learning 
models, can process vast volumes of data, uncover patterns, make predictions, 
and even simulate human-like decision-making processes. 

However, along with their numerous advantages, AI systems inherently carry 
important limitations. Their functionality and efficiency are significantly reliant 
on the quality and the nature of the input data they are trained and tested on. 
Moreover, their ability to make predictions or decisions is confined to their 
training experiences and the patterns they have learnt, which may not always 
fully encapsulate the complexity of real-world situations. Consequently, any 
bias present in the training data, whether unintentional or deliberate, may 

result in biased predictions or decisions. 

Moreover, the 'black box' nature of many complex AI models, particularly deep 
learning systems, can make their decision-making processes obscure and 
difficult to interpret. This lack of transparency undermines user trust and poses 
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challenges to their wider acceptance and application. Another key limitation is 
that AI systems lack the ability to comprehend context or understand meaning 
in the same way humans do. They perform tasks based on their training, 
without an inherent understanding of the task’s significance. 

Without claiming to be exhaustive, table 2-1 is an attempt to categorize the most 
common limitations of AI systems which manifest in many different ways. It is 
beyond the scope of this project to delve into all these issues in detail, however, 
a short explanation is provided. The compilation and categorization are based 
on a myriad of sources, among others Suresh, H. et al. (2021), Thampi, A. (2022), 
and Varshney, K. (2022). 

Subsection 2.1.2 Common Sources and Types of Bias and Their Limitations, on 
the other hand, summarizes the most commonly known biases as their 
understanding is a prerequisite for the subsequent analyses in the remaining 
sections.  

 

Category Specific Issues 

Data-Related Issues 

Data Bias, Sampling Bias, Measurement Bias, 
Availability Bias, Temporal Bias, Unrepresentative 
Features, Data Drift 

Modeling Issues 

Labeling Bias, Aggregation Bias, Misclassification, 
Overfitting, Underfitting, Overemphasis on Certain 
Features, Neglect of Correlated Variables, Model 
Drift, Lack of Robustness 

User-Related Issues 

Confirmation Bias, Automation Bias, Confirmation 
Bias in Interpretation, Lack of Trust, Cognitive 
Overload 

Societal Impact 

Prejudice Bias, Exclusion, Unfair Punishment, 
Economic Inequality, Digital Divide, Environmental 
Impact, Job Displacement, Information 
Manipulation 

Design and Usability 
Issues 

Lack of Transparency, Accessibility and Usability, 
Misinterpretation of AI outputs, Bias in Design, 
Complexity of AI systems 

Privacy Concerns Privacy Violations, Data Security, Inference Attacks 

Ethics and Legal 
Issues 

Ethical Considerations, Accountability and Liability, 
Regulation and Oversight 

Table 2-1: AI Systems' Problems and Risks from Different Viewpoints 

 

Data-Related Issues 

Data Bias: This occurs when the dataset used to train an AI model is not 
representative of the real-world environment it is expected to operate in, 
skewing the model's performance and predictions. It can arise due to 
biases in data collection, labelling, and curation. 

Sampling Bias: It arises when the data used for training the AI model is 
not randomly selected and does not adequately represent the broader 
population or phenomenon, which can lead to systematic error and 
skewed results. 
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Measurement Bias: This occurs when there are consistent errors in the 
way data is collected or measured, affecting the model's learning and 
prediction capabilities. 

Availability Bias: It is the bias that results from over-relying on readily 

available or easily accessible data for model training, leading to an 
unrepresentative sample and skewed results. 

Temporal Bias: This occurs when the data used to train an AI model 
does not adequately account for changes over time. It can cause a model 
to learn outdated patterns or miss emerging trends. 

Unrepresentative Features: This occurs when the features used in the 
AI model do not adequately represent the problem space, leading to 
inaccuracies or biases in the model's outputs. 

Data Drift: It refers to changes in input data distribution over time, 
which can result in a decrease in model performance as the data it was 
trained on no longer reflects the current environment. 

 

Modeling Issues 

Labeling Bias: This occurs when the labels used in supervised learning 
models are inaccurately assigned, often due to human bias, leading to 
errors in the model's learning and prediction capabilities. 

Aggregation Bias: It arises when data from different groups are 
improperly aggregated, potentially hiding significant group-specific 
trends or characteristics. 

Misclassification: This refers to errors in predictive models where 
instances are incorrectly assigned to classes. It can result from data or 
modeling issues and may disproportionately affect certain groups, 
leading to fairness concerns. 

Overfitting: It refers to a modeling error that occurs when an AI model 
is excessively complex and captures noise or random fluctuations in the 
training data, leading to poor generalization performance on unseen data. 

Underfitting: Describes a model that is too simple to capture the 

underlying structure of the data. An underfitted model has poor 
performance not only on the test data but also on the training data, as it 
fails to capture the complexity of the data distribution and relationships 
between variables. 

Overemphasis on Certain Features: This occurs when an AI model 
assigns excessive importance to certain features, potentially leading to 
skewed predictions and overlooking important relationships with other 
variables. 

Neglect of Correlated Variables: It occurs when an AI model fails to 
account for variables that are correlated, leading to an oversimplified 
model and potentially skewed results. 

Model Drift: It is a phenomenon where the model's performance 
degrades over time because the statistical properties of the target variable, 
which the model is trying to predict, change. 
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Lack of Robustness: It refers to the vulnerability of AI systems to minor 
alterations in the input data, noise, outliers, or adversarial attacks, which 
can drastically impact their performance. 

 

User-Related Issues 

Confirmation Bias: This is a type of cognitive bias where users prefer 
information that confirms their existing beliefs, potentially leading to 
incorrect or biased decision-making when interpreting AI outputs. 

Automation Bias: This occurs when users overly rely on AD-MS and 
ignore other sources of information, including their own judgment, 
leading to potential errors and over-trust in the AI system. 

Lack of Trust: It arises when users are reluctant to rely on AI systems 
due to a variety of factors such as lack of transparency, perceived 
inaccuracy, fear of job loss, or privacy concerns. 

Cognitive Overload: This occurs when an AI system provides too much 
information or too complex information, overwhelming users and 
potentially leading to decision paralysis or misuse of the system. 

 

Societal Impact 

Prejudice Bias: It refers to biases in AI outputs that can lead to unfair 
disadvantages or harm to certain groups based on characteristics such 
as race, gender, or age, reflecting and amplifying existing societal 
prejudices. 

Exclusion: This refers to the unintentional marginalization of certain 
groups due to biases in AI system design, implementation, or outcomes, 
limiting their access to benefits or opportunities. 

Unfair Punishment: This occurs when an AI system's biased or 
erroneous decisions result in unjust negative consequences for 
individuals or groups. 

Economic Inequality: This can arise when the benefits and 
opportunities created by AI technologies are unevenly distributed, 

exacerbating existing economic disparities. 

Digital Divide: This refers to the gap between those who have access to 
computers, the internet, and AI technologies and those who do not, 
leading to inequality in opportunities and benefits. 

Environmental Impact: The energy consumption of large-scale AI 
systems contributes to environmental harm, while the use of AI in 
environmental monitoring and prediction can also have significant 
implications for sustainability. 

Job Displacement: It relates to the potential loss of jobs due to 
automation and AI technologies, which can lead to societal and economic 
disruption. 

Information Manipulation: This applies to the use of AI technologies in 
disseminating false or misleading information, affecting public opinion 
and trust. 
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Design and Usability Issues 

Lack of Transparency: It pertains to the 'black box' nature of many AI 
systems, where the logic behind their decisions is not clear to users, 

undermining trust and accountability. 

Accessibility and Usability: This refers to the ease with which diverse 
users can access and effectively use AI technologies, which can be 
impacted by factors such as design complexity, user literacy, and 
language capabilities. 

Misinterpretation of AI outputs: This occurs when users, especially 
non-experts, misinterpret the results or recommendations of an AI 
system, potentially leading to incorrect decisions or actions. 

Bias in Design: This concerns biases that can be introduced during the 
design of an AI system, which can affect the way it interacts with users 
and its overall performance and outcomes. 

Complexity of AI systems: The complexity of AI models, particularly 

deep learning systems, can make them difficult for users to understand 
and use effectively, potentially limiting their adoption and impact. 

 

Privacy Concerns 

Privacy Violations: This relates to potential breaches of personal privacy 
due to data collection, storage, and processing practices in AI systems, 
which can expose sensitive information and lead to harm. 

Data Security: This implies the measures in place to protect data used 
in AI systems from unauthorized access, alteration, or damage, which is 
critical for maintaining privacy and trust. 

Inference Attacks: These are attacks where an adversary uses AI system 
outputs to infer sensitive information about the training data, 
representing a significant privacy risk. 

 

Ethics and Legal Issues7 

Ethical Considerations: These encompass a broad range of concerns, 
including respect for autonomy, fairness, accountability, and 
transparency, that are essential for the responsible development and use 
of AI technologies. 

Accountability and Liability: These refer to the mechanisms in place to 
assign responsibility for the outcomes of AI systems, which can be 
complex due to the automated nature of these systems and the potential 
for unintended consequences. 

Regulation and Oversight: This refers to the legal and regulatory 
frameworks governing the use of AI, including standards for privacy, 
fairness, and transparency, which can shape the development and 
deployment of AI technologies and their societal impact. 

 
 

7 cf. Section 4. Ethical, Legal, and Social Implications 
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After this short introduction to the great variety of limitations in AI systems, 
those which are most relevant to this project are described in detail in the 
following subsection.  

 

2.1.2 Common Sources and Types of Bias in AI Systems 
 

This section delves into the common sources and types of bias inherent in AI 
systems. Building upon the foundational understanding of AI system limitations 
established in the preceding section, this segment aims to explicate the various 
origins and categories of bias that can infiltrate and influence these systems. 
Seven critical types of bias, namely historical, representation, measurement, 
aggregation, learning, evaluation, and deployment biases, are discussed in 
detail. Each type of bias is examined from its genesis to its potential impact on 
AI systems. The objective is to provide an exhaustive understanding of how bias 
can manifest within AI systems, which forms the foundation for subsequent 

discussions on trustworthiness, fairness, and the mitigation of these biases in 
the development and application of AI. Figure 2-1 (Harini, S. et al., 2021) shows 
the first three biases all of which are explained below. 

 

Figure 2-1: Bias Sources in the Data Generation Pipeline 

Historical Bias: Historical bias manifests when the training data incorporates 
biases that have existed over time in the society or system it represents. The 
learned model, even when accurately reflecting the training data, may therefore 

perpetuate these biases and cause harmful outcomes. 

An illuminating example of historical bias lies within predictive policing models. 
These systems are trained on past crime data, aiming to predict future crime 
hotspots and allocate resources accordingly. However, the training data, 
composed of historical police records, often reflects not just the actual crime 
rates but also the biases and discriminatory practices of the past law 
enforcement system (Lum, K. et al., 2016). For example, if a particular 
neighborhood was historically over-policed due to racial or socio-economic 
biases, the records will show an inflated crime rate in that area, and the 
predictive model would continue to target the same region disproportionately. 
This could cause a feedback loop, perpetuating a cycle of over-policing and 
exacerbating social inequities. 

Researchers like Barocas et el. (2016) have highlighted this aspect of data 
mining in their work, arguing for a more careful approach to model construction, 
and the necessity of considering the societal context from which data originates. 
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Representation Bias: Representation bias is a type of bias that arises when the 
sample used to train an ML model does not adequately reflect the target 
population, resulting in a model that generalizes poorly to certain subgroups 
within the population. This bias can manifest in a variety of ways: 

Inaccurate Target Population Definition: If the defined target population does not 
correspond to the actual user population, representation bias can arise. For 
example, a model trained using data representative of the population of Madrid 
may not perform well when applied to the population of Barcelona due to 
regional differences. Moreover, the temporal aspect is crucial as well, since data 
representing Madrids's population 30 years ago may not accurately reflect the 
current population, given demographic shifts, cultural changes, and other 
factors. 

Underrepresented Groups within Target Population: The presence of minority 
groups within the target population that are underrepresented in the training 
data can lead to representation bias. For instance, if a medical dataset defines 
its target population as adults aged 18-40, and only 5% of this population 

consists of pregnant individuals, the model may perform poorly for this 
subgroup due to the lack of sufficient training data. Despite perfect sampling, 
the model's robustness could be compromised for these underrepresented 
individuals. 

Flawed Sampling Methods: Even when the target population is accurately 
defined, biased sampling methods can lead to representation bias. For example, 
in modeling an infectious disease, the target population might be all adults, but 
the available medical data may only include individuals who were deemed severe 
enough for further screening. Consequently, the model's training data 
represents a skewed subset of the target population, a situation often referred 
to as sampling bias in statistical literature. 

These instances demonstrate how representation bias can result in ML models 
that fail to deliver reliable or fair predictions for all sections of the population. 
Researchers have stressed the importance of mitigating representation bias to 
ensure more robust and equitable models. Zhang, J., et al., (2018), for instance, 
discuss methods to correct for sampling bias in causal inference, a concept that 
can be extended to a broader ML context. 

An apt example of representation bias is presented in the realm of facial 
recognition technologies. Commercial gender classification systems have been 
found to perform poorly on darker-skinned and female faces, as a result of 
underrepresentation of these groups in the training data. 

This issue is meticulously studied by Joy Buolamwini et al. (2018) in their paper, 
"Gender Shades: Intersectional Accuracy Disparities in Commercial Gender 
Classification". In their research, they compared commercial gender 
classification systems from IBM, Microsoft, and Face++. They found that all 
three systems displayed lower accuracy rates for female faces compared to male 
faces, and lower accuracy rates for darker-skinned individuals compared to 
lighter-skinned individuals. 

Moreover, the highest disparities were observed for darker-skinned females, the 
group that is least represented in many facial analysis benchmarks. For 

instance, the error rates for classifying gender of lighter-skinned males were less 
than 1% for all three systems, whereas for darker-skinned females, the error 
rates were as high as 34.7% in one system. 
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This example underscores how representation bias can lead to substantial 
disparities in model performance across different subgroups. It also highlights 
the necessity of ensuring diverse and representative training data in developing 
machine learning models to avoid unfair outcomes and discriminatory practices. 

 

Measurement Bias: This form of bias arises when the selection, collection, or 
computation of features and labels in a ML model introduces errors or 
inconsistencies. This typically occurs when a proxy measurement is used to 
represent an abstract construct, leading to inaccuracies when the proxy poorly 
reflects the target construct or is generated differently across groups. This can 
occur under the following scenarios: 

Oversimplified Proxies: In some instances, the proxy chosen oversimplifies a 
complex construct, leading to a lack of nuances that could impact the model's 
performance. For example, in predicting student success for college admissions, 
the algorithm designers might resort to using GPA as a proxy. However, the 
construct of a "successful student" encapsulates much more than academic 

performance alone, such as emotional intelligence, perseverance, and creativity. 
The use of a simplified proxy such as GPA ignores these varied indicators of 
success and can lead to a model that misrepresents the full complexity of 
student success (Duckworth, A. et al., 2015). 

Varying Measurement Methods: When the method of measurement varies across 
groups, it can introduce bias. Consider a scenario where factory workers at 
different locations are monitored for the number of errors they commit, with the 
observed errors being a proxy for work quality. If one location is scrutinized 
more stringently or frequently, it may appear that workers at that location 
commit more errors. This could trigger a feedback loop, where this group is 
subject to increased monitoring due to the apparent higher error rate (Frey, C. 
B., et al., 2017). 

Inaccurate Measurement Across Groups: There can be instances where the 
accuracy of measurement varies across groups, contributing to measurement 
bias. In medical contexts, "diagnosed with condition X" is often used as a proxy 
for "has condition X." However, structural discrimination can lead to 
systematically higher rates of misdiagnosis or underdiagnosis in certain groups 
(Smedley, B. D., et al., 2004). For instance, gender and racial disparities have 
been observed in the diagnosis of conditions involving pain assessment (Green, 
C. R. et al., 2003). 

By recognizing and addressing measurement bias, we can work towards 
creating more equitable ML systems that better represent the constructs they 
aim to predict. 

A representative example of measurement bias is apparent in healthcare 
systems, specifically in the context of predictive models for patient readmission. 
These models often use proxies for health status, such as previous healthcare 
utilization, to predict future healthcare needs. 

One such study, conducted by Obermeyer et al. (2019), titled "Dissecting racial 
bias in an algorithm used to manage the health of populations", examined a 
commercial algorithm used in healthcare that predicts which patients will 

benefit from extra care management resources. The algorithm predicts future 
healthcare utilization using past healthcare costs as a proxy for health needs. 

The study found that this algorithm displayed a significant bias against Black 
patients. Despite equal levels of risk as determined by the algorithm, Black 
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patients had more chronic illnesses and worse health outcomes than White 
patients. The key issue was that the algorithm used past healthcare costs as a 
proxy for health needs, overlooking the fact that Black patients generally have 
lower healthcare costs due to systemic biases, including reduced access to care. 

As a result, the algorithm under-predicted the health needs of Black patients, 
contributing to disparities in healthcare provision. 

This example demonstrates how measurement bias can result in unfair 
outcomes, even in widely used, seemingly objective algorithms. It underscores 
the importance of carefully selecting and validating proxies to ensure they 
accurately represent the intended construct across all groups. 

2-2 ((Harini, S. et al., 2021) shows the following biases which are also described 
in detail below. 

 

 

Figure 2-2: Bias Sources in the Model Building and Implementation Phases 

Aggregation bias manifests when a uniform model is applied to a dataset where 
there exist distinct groups or types of examples that necessitate differential 
treatment. It arises from the erroneous assumption that the relationship 
between inputs and outputs is consistent across all subsets of data. In reality, 
this is often not the case, as individual datasets might represent diverse groups 
with differing backgrounds, cultures, or norms, thereby meaning that a given 
variable can have different implications across these groups. Aggregation bias 

can result in a model that is suboptimal for all groups, or a model that caters 
only to the dominant population, especially when representation bias is also 
present. 

A classic example of aggregation bias is found in the field of social media 
analysis. Patton et al. (2017) conducted an analysis of Twitter posts by gang-
involved youth in Chicago. Recognizing that a standard language model might 
not accurately interpret the nuances and subcultures in these tweets, they 
employed domain experts from the local community to interpret and annotate 
the tweets. 

This strategy enabled them to identify several limitations of non-context-specific 
Natural Language Processing (NLP) tools. For instance, specific emojis or 
hashtags held particular meanings that a generic model trained on a larger 
Twitter corpus would likely miss. Similarly, words or phrases that may denote 
aggression in a different context were, in some cases, lyrics from a local rapper. 
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Neglecting this group-specific context in favor of a more general model designed 
for all social media data would likely result in harmful misclassifications of 
tweets from this population, potentially reinforcing stereotypes or 
misunderstanding critical communications within the community. 

This example underscores the importance of recognizing and addressing 
aggregation bias in machine learning models to ensure accurate and fair 
outcomes across diverse groups. 

 

Learning or algorithmic bias occurs when certain choices made during the 
modeling process exacerbate disparities in performance across various subsets 
of the data. A key aspect of this bias involves the selection of the objective 
function, which an ML algorithm seeks to optimize during training. However, 
certain problems may arise if the prioritization of one objective (such as overall 
accuracy) detrimentally impacts another (such as disparate impact). 

A practical example of learning bias can be seen in the context of optimizing 

machine learning models for privacy or compactness. An instance of this is 
presented in a study by Bagdasaryan, E. et al. (2019), which investigated the 
implications of training models that preserve differential privacy. Differential 
privacy aims to prevent models from inadvertently revealing excessive 
identifying information about training examples during their use. 

However, the researchers found that while differentially private training did 
enhance privacy, it also diminished the influence of underrepresented data on 
the model. This in turn led to decreased performance on that data compared to 
a model trained without differential privacy. In other words, an algorithmic 
choice intended to protect privacy inadvertently introduced a bias against 
underrepresented data, leading to worse outcomes for those groups. 

Another study by Hooker, S., et al. (2020) showed a similar issue with models 
optimized for compactness, for instance, using techniques like pruning. The 
study demonstrated that the prioritization of compact models can amplify 
performance disparities on data with underrepresented attributes. This occurs 
because, given limited capacity, the model learns to retain information about 
the most prevalent features, often neglecting the less frequent, yet potentially 
important features. 

These examples illustrate how learning or algorithmic bias can inadvertently 
produce models that perform poorly for certain groups or examples within the 
data, highlighting the importance of considering fairness and representation 
when making algorithmic decisions. 

 

Evaluation bias arises when the benchmark data utilized to assess the 
performance of a model does not adequately represent the population in which 
the model is expected to be used. This form of bias operates on a larger scale 
than other bias types, as a misrepresentative benchmark can inadvertently 
encourage the development and deployment of models that perform well only on 
the data subset represented by the benchmark data. 

The GLUE benchmark (General Language Understanding Evaluation) has been 

widely used in the evaluation of various NLP models, such as BERT, GPT-3, and 
RoBERTa, among others (Wang, A., et al., 2018). It includes a diverse set of 
resources that measure a model's ability to understand various aspects of 
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language, such as sentiment analysis, question answering, and textual 
entailment. 

However, the GLUE benchmark has been critiqued for not fully representing the 
diversity and complexity of natural language use. In a paper by Jia R. et al. 

(2017), they demonstrated how models that achieved high scores on standard 
evaluation sets, such as those included in the GLUE benchmark, were still 
prone to making errors when confronted with adversarial examples—modified 
inputs designed to induce model errors. 

In this case, the evaluation bias arises because the GLUE benchmark, while 
diverse, might not fully capture the variety of language usage in real-world 
settings, and especially in adversarial situations. This leads to an 
overestimation of a model's capabilities when it comes to handling language 
understanding tasks, as the model might perform well on the benchmark but 
fail in more complex or unanticipated scenarios. 

This situation suggests that it is important for evaluation datasets and metrics 
to be diverse and comprehensive enough to account for the complexity and 

variety of real-world applications. Careful consideration needs to be given to the 
ways in which the performance of ML models is evaluated to ensure that they 
can handle the breadth of scenarios they will encounter in practice. 

 

Deployment bias refers to the mismatch between the problem the model is 
designed to solve and the manner in which it is actually used in the real world. 
Deployment bias often surfaces when a model, built and validated under certain 
assumptions, operates within a complex sociotechnical system influenced by 
institutional structures and human decision-makers. This bias can lead to 
unintended harmful consequences due to phenomena such as automation bias 
(over-reliance on automated decision-making) and confirmation bias 
(interpreting information in a way that confirms one's preexisting beliefs). 

A pertinent example of deployment bias can be seen in the application of ML 
models in predictive policing. Ensign et al. (2018) discuss how deployment bias 
can manifest in this context. Predictive policing algorithms are designed to 
predict crime rates and help law enforcement allocate resources more effectively. 
However, these models can unintentionally perpetuate historical bias if the data 
they are trained on reflect past policing biases. 

Furthermore, the use of these models can lead to a feedback loop: areas 
predicted to have high crime rates receive more police attention, which leads to 
more recorded crimes, which in turn strengthens the model's prediction of high 
crime in those areas. Despite the model's accuracy in replicating historical data, 
its deployment can reinforce existing biases and inequalities in policing 
practices. This highlights the risk and complexity of deploying machine learning 
systems in real-world settings, and the need for careful consideration of broader 
social and institutional contexts. 
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2.2 Building Trustworthy AI: Principles and Approaches 
 

This section presents a comprehensive exploration of the core concepts, 

standards, and techniques that underpin the development and evaluation of 
trustworthy AI systems. The focal point of this section is the multidimensional 
construct of trustworthy AI, which is characterized by attributes of 
transparency, fairness, and robustness. These dimensions are further 
elaborated in Subsection 2.2.1, underscoring their critical role in fostering trust 
and reliability in AI systems. 

Subsequent subsections delve into specific strategies and tools employed in the 
pursuit of trustworthiness. Subsection 2.2.3 introduces fairness metrics, 
sometimes also referred to as statistical fairness, which are quantitative 
measures that provide a means to evaluate and monitor the equity of AI systems. 
This framework serves as an essential reference point in identifying and 
mitigating biases in AI outputs. 

Subsection 2.2.4 turns attention towards Explainable AI (XAI), a burgeoning 
field within AI research that addresses the transparency aspect of trustworthy 
AI. By enabling human users to understand, interpret, and consequently trust 
AI systems' decisions, XAI contributes significantly to the trustworthiness of 
these systems. 

This section underscores that building trustworthy AI is not a singular, linear 
process but rather a multifaceted endeavor requiring attention to various 
principles and the application of specific approaches. It demonstrates that 
trustworthiness is achieved through a combination of transparency, fairness, 
robustness, quantitative fairness evaluation, and explainability of the AI 
systems. 

 

2.2.1 Defining Trustworthy AI: Transparency, Fairness & Robustness 
 

Trust, an intangible yet critical component of human relationships, finds its 
roots in a multitude of disciplines including psychology, sociology, economics, 
organizational management, and philosophy. Mayer, R. et al. (1995) succinctly 
define trust as "the willingness of a party to be vulnerable to the actions of 

another party based on the expectation that the other will perform a particular 
action important to the trustor, irrespective of the ability to monitor or control 
that other party". This definition elegantly captures the essence of trust in the 
context of human-machine interaction, providing a foundation for 
operationalizing trust in ML. 

However, it is crucial to differentiate between 'trusted' and 'trustworthy' systems. 
Trustworthiness refers to the inherent properties of the system that make it 
deserving of trust. Still, a system being 'trustworthy' does not imply it is 'trusted'. 
The act of trusting, subject to cognitive biases and other factors, is a decision 
made by the trustor, which may or may not align with the system's 
trustworthiness (Hardin, R., 2001). 

Trust and trustworthiness encompass a wide array of attributes in both human 

and technological contexts. For individuals, these traits include availability, 
competence, consistency, discreetness, fairness, integrity, loyalty, openness, 
promise fulfilment, and receptivity, among others (Dietz, G, et al., 2006). 
Information systems, on the other hand, may be considered trustworthy based 
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on characteristics like correctness, privacy, reliability, safety, security, and 
survivability (Schneider, F., 1998). 

In the realm of ML, trustworthiness may encompass diverse topics such as 
interpretability, adversarial examples, causality, fairness, privacy-preserving 

statistics, and robust statistics (Conference on Machine Learning, 2019). The 
European Commission's High-Level Expert Group on Artificial Intelligence 
(2019) has also identified lawful, ethical, and robust (both technically and 
socially) characteristics as being fundamental to trustworthy AI systems. 

However, given the broad and disparate nature of these attributes, they are best 
viewed as rough guidelines. By distilling these characteristics, a set of distinct 
sub-domains can be identified that form a framework for trustworthiness, each 
of which can be examined in isolation. 

• Basic Performance: For ML, competence can be equated to basic 
performance, such as the accuracy of a model. Effective performance, 
quantified based on the specifics of the problem and application, is a 
necessity for any real-world task. 

• Reliability: This includes the safety, security, and fairness of ML models 
and systems. ML systems need to maintain good and correct performance 
across varying operating conditions. Different conditions could come 
from natural changes in the world or from human-induced changes. 

• Human Interaction: This encompasses aspects of openness and human 
interaction with the ML system. It includes communication from the 
machine to the human through comprehensibility of models by people as 
well as transparency into overall ML system pipelines and lifecycles. It 
also includes communication from the human to the machine to supply 
personal and societal desires and values. 

• Aligned Purpose: The alignment of the ML system's purpose with societal 
wants. The creation and development of ML systems is not independent 
of its creators. It is crucial for ML development to be intertwined with 
matters of societal concern and applications for social good, especially if 
the most vulnerable members of society are empowered to use ML to meet 
their own goals. 

Given the complexity of these attributes, they may have entangled 
interrelationships, with some being trade-offs while others are not. 

Policymakers must reason about these relationships to decide a system's 
intended operations. 

In sum, a trustworthy ML system can be defined as one that demonstrates 
sufficient basic performance, reliability, meaningful human interaction, and 
alignment with societal purposes. The focus should be on making ML systems 
worthy of trust rather than pursuing other means of making them trusted 
(Varshney, K. 2022).  

The concept of trustworthiness as defined above presents a springboard towards 
understanding three integral attributes of trustworthy AI systems: robustness, 
fairness, and transparency. All three concepts are repeatedly referred to in this 
research, and therefore, the following explanations are meant as a first 
conceptual overview. 
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Robustness 

Robustness embodies the reliability aspect of trustworthiness. A robust AI 
system consistently maintains its high-quality performance across various 
operating conditions, showing resilience against alterations in the environment 

or manipulations aimed at misleading the system (Tsipras, D. et al., 2018). 

Distributional robustness pertains to an AI system's resilience when the 
input data deviates from the training distribution. This type of robustness 
is critical as real-world data often vary due to changing environmental 
conditions or population dynamics. For instance, a facial recognition 
system trained on a particular demographic should be robust enough to 
accurately identify faces from a diverse range of demographics. 

Adversarial robustness involves an AI system's capability to withstand 
adversarial attacks that aim to manipulate its outputs by introducing 
carefully crafted perturbations to the input data. A striking example of 
the importance of adversarial robustness is found in autonomous driving, 
where a minor alteration to a stop sign (such as applying a sticker) can 

lead an AI model to misclassify it, leading to potentially severe 
consequences. 

Model robustness is related to the AI model's ability to provide reliable 
performance across different model configurations or settings. For 
instance, if a small change in a model's parameters leads to significantly 
different results, the model may lack robustness. 

Lastly, there's robustness to concept drift, which is the capability of an 
AI system to adapt to changes in the underlying concept or relationship 
between the input features and the target variable over time. This form 
of robustness is essential in dynamic environments where data 
distributions change over time, such as in predicting customer behaviour 
or market trends. 

Fairness 

Fairness, deeply connected with societal alignment, implies that AI systems 
should operate in a way that respects the norms and values of the society they 
serve. Fair AI ensures equitable treatment for all users and avoids 
discriminatory biases, thereby promoting social justice and inclusivity. 

Algorithmic fairness, while embedded in the technical realm, extends into the 
broader sphere of social justice, making it a complex and often contentious 
aspect of AI systems. This topic is intertwined with concepts of justice, 
encompassing:  

• distributive justice (equality in outcomes),  

• procedural justice (sameness in decision-making processes),  

• restorative justice (reparation of harm), and  

• retributive justice (punishment of wrongdoers), (Rawls, J., 1971). 

Fairness is inherently political, often reflecting power imbalances within society. 
As AI systems are employed in tasks that involve allocation of resources or 
decision-making, issues of fairness arise. It is generally accepted that AI 
systems can be discriminatory in their allocation, for example, in the 
distribution of health care resources to the more chronically ill patients. 
However, it becomes problematic when this allocation systematically privileges 
certain groups and disadvantages others. Such privilege is defined by groups 
that have historically been more likely to receive favorable outcomes in ML tasks, 



2.2 Building Trustworthy AI: Principles and Approaches 

24 
 

such as employment opportunities, loan approvals, and health care services 
(Dwork, C. et al, 2012). 

Protected attributes such as ethnicity, gender, religion, and age often delineate 
privileged and unprivileged groups. These attributes are not universally fixed 

but are context-dependent and influenced by laws, regulations, and policies 
within specific jurisdictions and domains (Zliobaite, I., 2015). 

Fairness in AI systems is typically categorized into two primary types: group 
fairness and individual fairness.  

• Group fairness refers to the requirement for average classifier behavior 
to be the same across groups defined by protected attributes.  

• Individual fairness stipulates that individuals with similar features 
should receive similar model predictions, with a special case being 
counterfactual fairness, where individuals differing only in one protected 
attribute should be treated the same (Kusner, M., et al., 2017). 

Exploring the principles and approaches to building trustworthy AI systems, it 

is crucial to take into account both forms of fairness, despite the emphasis often 
placed on group fairness due to regulatory mandates. Balancing these two forms 
of fairness can guide the creation of more robust, equitable, and trustworthy AI 
systems. 

Transparency 

Transparency is closely related to the attribute of human interaction in 
trustworthy AI. Transparent AI systems provide clarity about their decision-
making processes, helping humans understand and interpret their actions. This 
transparency fosters open communication between human operators and AI 
systems, leading to improved trustworthiness. 

The principle of transparency in AI systems is a pivotal aspect of 
trustworthiness, providing a mechanism through which the decisions made by 
these systems can be understood, examined, and audited. The inclusion of 
transparency measures in AI systems can help mitigate potential harms and 
biases, while ensuring that these systems are accountable and reliable. 

• Factsheets, inspired by the idea of nutrition labels on food products, offer 
one approach to improving transparency. They provide a standardized 
summary of a model's key characteristics, performance metrics, training 

data, and potential biases, among other relevant information (Hind, M. et al, 
2018). 

• Quantitative testing is a vital part of transparency, offering concrete and 
measurable insights into the system's performance across a variety of 
dimensions. This may involve testing for specific dimensions of 
trustworthiness such as fairness, reliability, and robustness, and evaluating 
performance on these dimensions under different conditions and scenarios 
(Doshi-Velez, F. et al., 2017). 

• Generating and testing edge cases, the situations that test the limits of 
the system's capabilities, are also an integral part of transparency. They 
provide insights into how the system performs under extreme or uncommon 
circumstances and help identify potential weaknesses or points of failure. 

• Uncertainty quantification, the process of estimating the likely errors or 
variances in AI predictions, plays a crucial role in transparency. It allows 
users to understand the confidence level of the system's outputs and adjust 
their trust in the system accordingly (Guo, C. et al., 2017). 
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• Effective communication of test results and uncertainty is paramount to 
transparency. This involves providing clear, understandable explanations of 
the system's performance and potential errors to the end-users, thus 
enabling them to make informed decisions based on the system's outputs. 

• Lastly, maintaining provenance, the record of the system's development 
process including data sources, model specifications, and performance 
evaluations, is another important aspect of transparency. This 
documentation provides a comprehensive overview of the system's creation 
and validation, offering a transparent record of its life cycle and quality 
control measures (Varshney, K., 2022). 

In the following sections, we delve into a more detailed exploration of these key 
attributes and their critical roles in building trustworthy AI systems. 

 

2.2.2 The Importance of Trustworthiness in AI Systems 
 

The trustworthiness of AI systems, particularly in terms of fairness, robustness, 
and transparency, holds significant bearing on broader societal issues. When 
these attributes are neglected, AI can inadvertently amplify existing human 
biases, exclude marginalized groups, unfairly punish individuals, and distort 
economic systems, among other impacts. 

Three case studies are presented in section 5 in detail, however, the following 
three examples already illustrate the deep implications of neglecting trustworthy 
AI systems. 

1) Bias in Word Associations: A study by Princeton University researchers 
demonstrated how AI systems could inadvertently propagate and amplify 
existing societal biases (Caliskan, A. et al., 2016). The team used a ML 
model to analyze and link 2.2 million words, revealing that the system 
associated European names with more positive attributes compared to 
African-American names. It also associated women and girls more with 
arts, while men and boys were more linked to science and math. Such 
biases, if used in applications like search engine ranking algorithms or 
auto-complete tools, could perpetuate and reinforce racial and gender 
biases in digital systems. 

2) Bias in Online Ads: Harvard researcher Latanya Sweeney found that 
online search queries for African-American names were more likely to 
return ads from services offering arrest records compared to searches for 
white names (Sweeney, L., 2013). This bias extended to the targeting of 
financial products, with African-Americans offered higher-interest credit 
cards, despite comparable financial backgrounds to whites. Such 
disparities illustrate the potential unfairness that can arise in AI systems 
when biases in data or algorithms are not adequately addressed. 

3) Bias in Facial Recognition Technology: The robustness of AI systems 
is crucial for their effectiveness, as illustrated by the research of MIT 
researcher Joy Buolamwini (2018). She found that commercially 
available facial recognition systems failed to accurately recognize darker-
skinned complexions. The error rates for darker-skinned women reached 
up to 34 percent, compared to less than one percent overall. Such 

inaccuracies reflect the need for robustness in AI, ensuring that systems 
perform effectively across varied conditions and inputs, and do not 
disproportionately disadvantage certain groups. 
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The exacerbation of historic human bias, as witnessed in the AI word-
association and online ad examples, can compound societal inequalities. Biased 
AI can propagate stereotypes, limit opportunities, and exacerbate exclusion of 
marginalized groups. Furthermore, unfair punishment may occur when biased 

AI systems are used in sensitive areas like law enforcement or judicial systems, 
potentially affecting individuals' livelihoods and freedoms based on flawed or 
biased data. 

In terms of economic inequality, AI systems that lack robustness could lead to 
labor market distortions. For example, an AI system used in hiring processes 
that is not robust to variations in data could consistently favor certain 
demographics over others, contributing to unemployment or underemployment 
among certain populations. 

Regarding privacy concerns, a lack of transparency in AI systems can lead to 
violations of privacy and unchecked data collection. Without transparency, 
users may be unaware of what data is collected, how it is used, and what 
measures are taken to protect it. This can lead to misuse of personal data, 

erosion of privacy, and potential exploitation. 

Lack of transparency and fairness in AI design can also result in accessibility 
and usability issues. If an AI system is not transparent, users may not 
understand how it works, making it difficult for them to use it effectively or trust 
its outputs. Similarly, if an AI system is not designed with fairness in mind, it 
might not be usable by all individuals equally, creating accessibility barriers. 

In summary, lack of trustworthiness in AI, characterized by deficits in fairness, 
robustness, and transparency, can lead to broad and significant societal 
repercussions. Achieving trustworthiness in AI is therefore not just about 
optimizing AI systems; it's about ensuring these systems contribute positively 
to society rather than leading to dystopian outcomes. 

 

2.2.3 Statistical Fairness Metrics 
 

Statistical fairness metrics serve as initial quantifiable approaches to assessing 
and mitigating biases within AI systems. These metrics, grounded in statistical 
theory, can provide useful insights into potential disparities across different 
demographics or groups, offering a method to discern the initial degree of 
fairness of an algorithm. However, it is crucial to recognize the inherent 
limitations of such metrics. Statistical fairness metrics, while valuable, offer 
only a simplified, reductionist view of the complex, multidimensional nature of 
fairness. Fairness is an intricate socio-technical construct, and its realization 
cannot be solely determined through mathematical formulations. Consequently, 
while statistical fairness metrics can contribute to the broader discourse on 
algorithmic fairness, they are not panaceas and should be contextualized within 
a more comprehensive approach that includes ethical, legal, and social 
considerations. 

There are numerous fairness metrics used in ML and AI. Here, an overview of 
some of the most common metrics is provided, along with their explanations. 
This list is not exhaustive, as new fairness metrics continue to be developed and 

explored, but it gives a comprehensive introduction to the most common metrics 
which can be found in current academic literature.  
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The metrics are described and categorized into broader groups based on their 
focus, and a selection of the most used ones is presented, including examples 
and use cases within their respective contexts. This categorization is rather 
based on technical characteristics and serves as an overview, however, section 

3.3 Post-Processing: Evaluation Metrics & Outcome Manipulation introduces a 
combination of different criteria that are common in the academic AI fairness 
literature.  

 

The following variables are used throughout the formulas below: 

𝑻𝑷: True positives - the number of instances correctly classified as positive. 

𝑻𝑵: True negatives - the number of instances correctly classified as negative. 
𝑭𝑷: False positives - the number of instances incorrectly classified as positive. 
𝑭𝑵: False negatives - the number of instances incorrectly classified as negative. 
 
As expressed in the well-known confusion matrix: 
 

  Predicted Condition 

 Total Population 
Positive + Negative 

Positive (PP) Negative (PN) 

A
c
tu

a
l 

C
o
n

d
. 

Positive (P) 𝑻𝑷 
True positives 

𝑭𝑵 
False negatives 

Negative (N) 𝑭𝑷 
False positives 

𝑻𝑵 
True negatives 

 
𝑨: Protected attribute - a binary variable indicating membership in a protected 
demographic group (e.g., gender, race, or age group), with A = p (privileged 
group) or A = u (unprivileged group) 
𝒀: Target variable - a binary variable representing the true class label (1 = 
positive or 0 = negative) for an instance. 

𝒀̂: Prediction variable - a binary variable representing the predicted class label 
(positive or negative) for an instance. 
 

A. Metrics based on differences and ratios: 

These metrics typically compare the difference or ratio of a specific outcome or 

error rate between different demographic groups. The difference usually ranges 
from -1 to 1 (inequality in both extremes), zero representing equality, and the 
ratios from 1 (equality) to infinity (the greater the ratio the greater the inequality), 
sometimes zero by swapping numerator and denominator, depending on the 
author’s definition of the ratio. The most common metrics include: 

A.1 Statistical/Demographic Parity Difference (SPD) 

Difference in the probability of a positive outcome between two groups 
concerning a protected attribute (e.g., race). 

SPD = P(Ŷ = 1|A = p) − P(Ŷ = 1|A = u) 

Equation 2-1: Statistical/Demographic Parity Difference (SPD) 

Where: 

𝑃(𝑌̂ = 1|𝐴 = 𝑝) is the probability of a positive outcome given that the 

individual belongs to the 'privileged' group, 
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𝑃(𝑌̂ = 1|𝐴 = 𝑢) is the probability of a positive outcome given that the 

individual belongs to the 'unprivileged' group, 

𝑌̂ = 1 represents a favorable outcome, 
𝐴 = 𝑝 indicates that the individual is from the privileged group, 

𝐴 = 𝑢 indicates that the individual is from the unprivileged group. 
 
The SPD is a deterministic metric that quantifies the difference in the 
probabilities of a positive outcome for the privileged and unprivileged 
groups. The range of the SPD is from -1 to 1, where 0 is the best value 
indicating perfect fairness (equal probabilities for both groups), -1 
indicates maximum unfairness in favor of the unprivileged group, and 1 
indicates maximum unfairness in favor of the privileged group. 
Threshold values can vary depending on the acceptable level of fairness 
for a given context. In many cases, absolute values close to 0 would be 
considered good as it indicates fairness. 
 
It can also be expressed as (in-)equality between the two positive 

outcomes and is then referred to as statistical parity or demographic 
parity. Demographic parity is achieved when the probability of receiving 
a positive outcome is equal for all groups, irrespective of their protected 
attributes. 

P(𝑌̂ = 1|𝐴 = 𝑝) = P(𝑌̂ = 1|𝐴 = 𝑢) 

Example: In a hiring process, a company uses an AI system to screen job 
applicants. Demographic parity is achieved if the proportion of applicants 
from different gender groups who are selected for interviews is the same. 

Context use case: It is used where the goal is to ensure equal 
representation of different groups in a positive outcome, such as hiring, 
college admissions, or loan approvals. However, it may not account for 
differences in qualifications or risk profiles. It measures the difference in 
selection rates across groups. This metric is appropriate when the goal is 
to ensure that the percentage of individuals selected for a particular 
outcome is roughly the same across different demographic groups (e.g., 
race, gender, age). 

 

A.2 Demographic Parity Ratio (DPR): Ratio of the probability of a 
positive outcome between two groups which measures the ratio of 
selection rates across groups. This metric is similar to A.1 SPD, but 
accounts for differences in the base rate of the outcome across groups. 

DPR =
p(Ŷ = 1|A = u)

p(Ŷ = 1|A = p)
 

Equation 2-2: Demographic Parity Ratio (DPR): 

Where: 

𝑃(𝑌̂ = 1|𝐴 = 𝑢) is the probability of a positive outcome given that the 

individual belongs to the 'unprivileged' group, 

𝑃(𝑌̂ = 1|𝐴 = 𝑝) is the probability of a positive outcome given that the 

individual belongs to the 'privileged' group, 

𝑌̂ = 1 represents a favorable outcome, 
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𝐴 = 𝑝 indicates that the individual is from the privileged group, 

𝐴 = 𝑢 indicates that the individual is from the unprivileged group. 

The range of the DPR is from 0 to infinity, where 1 is the best value 

indicating perfect fairness (equal probabilities for both groups), values 
below 1 indicate a bias in favor of the privileged group, and values above 
1 indicate a bias in favor of the unprivileged group. However, what is 
considered an acceptable deviation from 1 can depend on the specific 
context and the degree of fairness required. 

Example: A healthcare provider uses a ML model to predict whether a 

patient should be recommended for a particular treatment (𝑌̂=1) or not 

(𝑌̂=0). The provider wants to ensure that the model is not biased against 
any demographic group (e.g., race, gender, age). Suppose the privileged 
group is patients with private insurance, and the unprivileged group is 
patients with public insurance. The healthcare provider can calculate 
DPR to evaluate whether both groups have a similar likelihood of being 

recommended for the treatment. A DPR close to 1 would suggest that the 
model treats both groups fairly. 

 

A.3 Equalized Odds Difference (EOD): Difference in true positive rates 
and false positive rates between two groups. Equalized odds require that 
the true positive rate (TPR) and the false positive rate (FPR) are equal for 
all groups. In other words, the probability of a positive outcome given the 
true label and the protected attribute should be equal for all groups. 

P(𝑌̂ = 1|𝑌 = 1, 𝐴 = 𝑝) = P(𝑌̂ = 1|𝑌 = 1, 𝐴 = 𝑢) 

P(𝑌̂ = 1|𝑌 = 0, 𝐴 = 𝑝) = P(𝑌̂ = 1|𝑌 = 0, 𝐴 = 𝑢) 

Or alternatively, as difference:  

EOD
= |𝑃(𝑌̂ = 1|𝑌 = 1, 𝐴 = 𝑝) − 𝑃(𝑌̂ = 1|𝑌 = 1, 𝐴 = 𝑢)|

− |𝑃(𝑌̂ = 1|𝑌 = 0, 𝐴 = 𝑝) − 𝑃(𝑌̂ = 1|𝑌 = 0, 𝐴 = 𝑢)| 

Equation 2-3: Equalized Odds Difference (EOD) 

Where: 

𝑃(𝑌̂ = 1|𝑌 = 1, 𝐴 = 𝑝) is the probability of a TP for the privileged group. 

𝑃(𝑌̂ = 1|𝑌 = 1, 𝐴 = 𝑢) is the probability of a TP for the unprivileged group. 

𝑃(𝑌̂ = 1|𝑌 = 0, 𝐴 = 𝑝) is the probability of a FP for the privileged group. 

𝑃(𝑌̂ = 1|𝑌 = 0, 𝐴 = 𝑢) is the probability of a FP for the unprivileged group. 

The range of the EOD is from -2 to 2, where 0 is the best value indicating 
perfect fairness (equal odds for both groups). Sometimes only the TPR or 
the FPR are compared in which case the range is from -1 to 1. Positive 
values indicate bias in favor of the privileged group, and negative values 
indicate bias in favor of the unprivileged group. What is considered an 
acceptable deviation from 0 can depend on the specific context and the 

degree of fairness required. 

Example: A healthcare provider uses an AI system to predict the 
likelihood of patients developing a certain medical condition. Equalized 
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odds are achieved if the true positive rate and false positive rate of the 
model's predictions are equal for different racial groups. 

Context use case: It is used where it is essential to minimize both false 
positives and false negatives for all groups, such as medical diagnoses, 

fraud detection, or criminal risk assessments. 

 

A.4 Equalized Odds Ratio (EOR): A fairness metric that compares the 
ratio of true positive rates (TPR) to false positive rates (FPR) between 
privileged and unprivileged groups. A value of EOR close to 1 indicates 
that the classifier's performance is similar across both groups, which 
implies fairness. 

𝐸𝑂𝑅 =
𝑝(𝑌̂ = 1|𝑌 = 1, 𝐴 = 𝑢)/𝑝(𝑌̂ = 1|𝑌 = 0, 𝐴 = 𝑢)

𝑝(𝑌̂ = 1|𝑌 = 1, 𝐴 = 𝑝)/𝑝(𝑌̂ = 1|𝑌 = 0, 𝐴 = 𝑝)
 

Equation 2-4: Equalized Odds Ratio (EOR) 

Where the different probabilities are the same as in the previous equation 
for EOD. The range of EOR is from 0 to ∞. A value of 1 is the best, 
indicating equal odds for both groups (perfect fairness). A value less than 
1 indicates bias towards the unprivileged group, while a value greater 
than 1 indicates bias towards the privileged group. The degree of fairness 
required depends once again on the specific context. 

Example: In criminal recidivism prediction, the criminal justice system 
can assess whether the model's performance, in terms of both true 
positive rates (correctly identifying individuals who will reoffend) and 
false positive rates (incorrectly identifying individuals as reoffenders 
when they will not reoffend), is similar across both racial groups. An EOR 
close to 1 would indicate that the model treats both white (privileged) and 
minority individuals fairly, without bias. A biased model could 
disproportionately affect minority individuals by over-predicting their 
likelihood of reoffending, leading to unfair treatment in parole decisions, 
sentencing, or rehabilitation programs. 

 

A.5 Treatment Equality Difference (TED): Measures the difference in 

positive predictive value across groups. 

𝑇𝐸𝐷 = 𝑝(𝑌 = 1|𝑌̂ = 1, 𝐴 = 𝑝) − 𝑝(𝑌 = 1|𝑌̂ = 1, 𝐴 = 𝑢) 

Equation 2-5: Treatment Equality Difference (TED) 

Where: 

𝑝(𝑌 = 1|𝑌̂ = 1, 𝐴 = 𝑢) is the Positive Predictive Value (PPV), or precision, 

for the unprivileged group. 

𝑝(𝑌 = 1|𝑌̂ = 1, 𝐴 = 𝑝) is the PPV, or precision, for the privileged group. 

The range of TED is from -1 to 1. A value of 0 is the best, indicating equal 
PPVs for both groups (perfect fairness). A value less than 0 indicates 
higher PPV for the unprivileged group, while a value greater than 0 
indicates higher PPV for the privileged group. Again, the desired degree 
of fairness depends on the context. 
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Example: A financial institution uses a ML model to predict whether a 
transaction is fraudulent (Y=1) or legitimate (Y=0). The institution wants 
to ensure that the model is not biased against customers from specific 
demographic groups (e.g., race, age, gender). Using TED, the institution 

can evaluate whether the model is equally accurate in detecting 
fraudulent transactions for both privileged and unprivileged groups. A 
low TED value would indicate that the model is treating both groups fairly 
and accurately identifying fraudulent transactions. 

Context use case: This metric is appropriate when the goal is to ensure 
that the probability of a positive prediction being correct is roughly the 
same across different demographic groups.  

 

A.6 Treatment Equality Ratio (TER): Measures the ratio of positive 
predictive value across groups. This metric is similar to A.5 TED, but 
accounts for differences in the base rate of the outcome across groups. 

𝑇𝐸𝑅 =
𝑝(𝑌 = 1|𝑌̂ = 1, 𝐴 = 𝑢)

𝑝(𝑌 = 1|𝑌̂ = 1, 𝐴 = 𝑝)
 

Equation 2-6: Treatment Equality Ratio (TER) 

Where the probabilities of the PPV are the same as in the previous 
example for TED. TER measures the ratio of positive true outcomes (Y=1) 
between unprivileged and privileged groups, given that the classifier 

predicted a positive outcome (𝑌̂=1). The ideal value of TER is 1, which 
indicates that both privileged and unprivileged groups have the same PPV. 
A value less than 1 indicates a higher PPV for the privileged group, and a 
value greater than 1 indicates a higher PPV for the unprivileged group. 

 

A.7 Predictive Equality Difference (PED): Measures the difference in 
positive predictive value and false discovery rate across groups.  

𝑃𝐸𝐷
= |𝑝(𝑌 = 1|𝑌̂ = 1, 𝐴 = 𝑝) − 𝑝(𝑌 = 1|𝑌̂ = 1, 𝐴 = 𝑢)|

− |𝑝(𝑌 = 0|𝑌̂ = 1, 𝐴 = 𝑝) − 𝑝(𝑌 = 0|𝑌̂ = 1, 𝐴 = 𝑢)| 

Equation 2-7: Predictive Equality Difference (PED) 

Where the probabilities of the PPV are the same as before and: 

𝑝(𝑌 = 0|𝑌̂ = 1, 𝐴 = 𝑢)  is the False Discovery Rate (FDR) for the 

unprivileged group. 

𝑝(𝑌 = 0|𝑌̂ = 1, 𝐴 = 𝑝) is the FDR for the privileged group. 

The ideal value of PED is 0, which indicates equal PPV and equal FDR 
between the privileged and unprivileged groups. Positive values indicate 
bias favoring the privileged group, while negative values indicate bias 
favoring the unprivileged group. However, mostly both PPV and FDR are 
compared separately across groups.  

Context use case: This metric is appropriate when the goal is to ensure 
that the probability of a positive prediction being correct and the 
probability of a negative prediction being incorrect are roughly the same 
across different demographic groups. 



2.2 Building Trustworthy AI: Principles and Approaches 

32 
 

Example: An insurance company uses a ML model to predict whether a 
customer is likely to file a claim (Y=1) or not (Y=0). The model takes into 
account various factors, such as the customer's age, driving history, 
location, and other relevant factors. The insurance company wants to 

ensure that the model is not biased against any demographic group (e.g., 
race, gender, age) based on historical data. Using PED, the insurance 
company can assess whether the model is treating customers from 
different demographic groups fairly when it comes to predicting the 
likelihood of filing a claim. A low PED value would suggest that the model 
is treating customers from different demographic groups fairly in terms 
of both PPV (correctly predicting claims) and FDR (correctly predicting no 
claims). 

 

A.8 Predictive Equality Ratio (PER): Measures the ratio of positive 
predictive value and false discovery rate across groups. This metric is 
similar to A.7 PED, but accounts for differences in the base rate of the 

outcome across groups. 

FDR Ratio =
𝑝(𝑌 = 0|𝑌̂ = 1, 𝐴 = 𝑢)

𝑝(𝑌 = 0|𝑌̂ = 1, 𝐴 = 𝑝)
   PPV Ratio =

𝑝(𝑌 = 1|𝑌̂ = 1, 𝐴 = 𝑢)

𝑝(𝑌 = 1|𝑌̂ = 1, 𝐴 = 𝑝)
 

Equation 2-8: Predictive Equality Ratio (PER) via FDR and PPV Ratios 

Where the PPV and FDR are the same as in the previous equation for 
PED. The ideal value of PER is 1, indicating equal PPVs and FDRs 
between the privileged and unprivileged groups. Values above 1 indicate 
bias favoring the privileged group, and values below 1 indicate bias 
favoring the unprivileged group. 

Example: An online advertising platform uses a ML model to predict 
which users are likely to click on a specific ad (y=1) or not (y=0). The 
model considers various factors, such as user's browsing history, 
interests, demographics, and other relevant factors. The advertising 
platform wants to ensure that the model is not biased against any 
demographic group (e.g., race, gender, age) based on historical data. 
Using PER, the advertising platform can assess whether the model is 
treating users from different demographic groups fairly when it comes to 

predicting the likelihood of clicking on an ad. A PER value close to 1 
would suggest that the model is treating users from different 
demographic groups fairly in terms of their PPV, meaning that the 
proportion of true positive predictions (clicks) among the predicted 
positive instances (ad impressions) is similar for both groups. 

 

B. Aggregate metrics: 

These metrics provide an overall assessment of fairness by considering multiple 
aspects of the model's performance: 

 

B.1 Average Odds Difference (AOD): The Average Odds Difference 

measures fairness with respect to the separation criterion. It is the 
average of the differences in true positive rates (TPR) and false positive 
rates (FPR) between two groups (p - privileged and u - unprivileged) 
concerning a protected attribute (e.g., race). 
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𝐴𝑂𝐷 =
1

2
[(

𝑇𝑃𝑝

𝑇𝑃𝑝 + 𝐹𝑁𝑝
−

𝑇𝑃𝑢

𝑇𝑃𝑢 + 𝐹𝑁𝑢
) + (

𝐹𝑃𝑝

𝐹𝑃𝑝 + 𝑇𝑁𝑝
−

𝐹𝑃𝑢

𝐹𝑃𝑢 + 𝑇𝑁𝑢
)] 

Equation 2-9: Average Odds Difference (AOD) 

Where all variables are already explained in the introductory part of this 
section. The range of the AOD can be from -1 to 1. An AOD of 0 indicates 
perfect fairness. An AOD greater than 0 indicates a bias in favor of the 
privileged group, while an AOD less than 0 indicates a bias in favor of the 
unprivileged group. 

Example: In a credit approval process, a financial institution uses a ML 
model to predict the likelihood of a loan applicant defaulting. The AOD 
metric is used to check whether the model is fair across different racial 
groups. A lower AOD value indicates that the model has a more similar 
performance across the groups in terms of both true positive rates and 
false positive rates. 

Context use case: The AOD metric is useful in situations where the goal 

is to ensure that the model performs equally well for different groups with 
respect to both positive outcomes (correctly approving creditworthy 
individuals) and negative outcomes (correctly identifying individuals who 
are likely to default). It is related to the separation area of fairness, which 
focuses on whether the model's predictions are equally accurate across 
different groups. The AOD metric takes into account both true positive 
rates and false positive rates and provides a single value to assess 
fairness. This metric is particularly relevant in high-stakes decision-
making contexts such as credit approval, medical diagnosis, and fraud 
detection, where both types of errors are important to consider. 

 

B.2 Conditional Demographic Disparity (CDD): The Conditional 
Demographic Disparity measures fairness with respect to the separation 
criterion. It is the difference in demographic disparity between two groups 
(privileged and unprivileged) concerning a protected attribute (e.g., race) 
conditional on a specific outcome or error rate. In other words, CDD 
measures how the disparity between the groups changes when 
considering different outcomes or error rates. 

𝐶𝐷𝐷(𝑌 = 𝑦, 𝐴 = 𝑎) = 𝑃(𝑌̂ = 𝑦|𝐴 = 𝑝, 𝑌 = 𝑎) − 𝑃(𝑌̂ = 𝑦|𝐴 = 𝑢, 𝑌 = 𝑎) 

Equation 2-10: Conditional Demographic Disparity (CDD) 

Where: 

𝑃(𝑌̂ = 𝑦|𝐴 = 𝑝, 𝑌 = 𝑎) is the probability of a certain predicted outcome 𝑌̂ =

𝑦 given the actual outcome is 𝑌 = 𝑎 and the attribute is privileged (A=p). 

𝑃(𝑌̂ = 𝑦|𝐴 = 𝑢, 𝑌 = 𝑎) is the probability of a certain predicted outcome 𝑌̂ =

𝑦 given the actual outcome is 𝑌 = 𝑎  and the attribute is unprivileged 

(A=u). 

𝑌 = 𝑦 represents a specific outcome or error rate. 

The range of the CDD can be from -1 to 1. A CDD of 0 indicates perfect 
fairness. A CDD greater than 0 indicates a bias in favor of the privileged 
group, while a CDD less than 0 indicates a bias in favor of the 
unprivileged group. 
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Example: In a hiring process, a company uses a ML model to screen job 
applicants. CDD can be used to evaluate the fairness of the model with 
respect to different demographic groups, considering both positive 
outcomes (invitations for interviews) and negative outcomes (rejections) 

for each group. By calculating CDD for different outcomes, the company 
can better understand how the model's performance varies across groups 
and make adjustments if needed. 

Context use case: The CDD metric is useful when the goal is to 
understand how demographic disparities change depending on different 
outcomes or error rates. It is related to the separation area of fairness, 
which focuses on whether the model's predictions are equally accurate 
across different groups. The CDD metric helps in identifying potential 
sources of bias in the model's predictions and can be used to guide 
adjustments to the model to improve fairness. This metric is particularly 
relevant in contexts where the impact of different outcomes or error rates 
on different groups needs to be assessed, such as hiring, college 
admissions, or loan approvals. 

 

C. Metrics based on probabilistic predictions: 

These metrics assess the reliability and consistency of the model's predicted 
probabilities across different groups: 

C.1 Calibration: Calibration can be used as a fairness metric by 
assessing it separately within each demographic group defined by the 
protected attributes. This is sometimes referred to as "group calibration" 
(Barocas, S. et al., 2019). When considering fairness, the principle is that 
the model's prediction probabilities should be well-calibrated not just 
over the entire population, but also when considering each demographic 
group individually. In other words, for any particular group defined by 
the protected attributes, when the model predicts an event with a 
probability of p, that event should happen about p percent of the time 
within that group. 

𝐸[𝑌̂|𝑌 = 𝑦, 𝐴 = 𝑎] = 𝑦 

Equation 2-11: Calibration 

Where: 

𝐸[ ] denotes the expectation, 

𝑌̂ is the predicted label, 

𝑌 is the true label, 

𝑌 = 𝑦 is a specific value of the label, 𝐴 = 𝑎 a specific value of the attribute. 

This formula expresses that, for each subgroup defined by the protected 
attribute and for each level of the predicted probability, the average true 
outcome should be equal to the predicted probability. 

Violations of group calibration can indicate that the model is 
systematically over- or under-predicting certain outcomes for certain 

groups, which could be considered unfair. 

It is worth noting that achieving perfect group calibration can be 
challenging or even impossible in practice, especially if the base rates of 
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the outcome variable differ across groups or if the model's predictive 
performance varies across groups. 

Example: A weather forecasting system uses an AI model to predict the 
probability of rain for different regions. Calibration is achieved if, for each 

region and predicted probability, the proportion of days with actual rain 
matches the predicted probability. 

Context use case: Used in contexts where ensuring equal confidence in 
the model's predictions across different groups or regions is important, 
such as weather forecasting, financial risk assessments, or demand 
forecasting. 

 

C.2 Probability Integral Transform (PIT): The Probability Integral 
Transform is a measure of calibration, which evaluates how well the 
predicted probabilities of a model are aligned with the actual observed 
probabilities. PIT compares the distribution of predicted probabilities to 

a uniform distribution. A well-calibrated model should have a PIT 
distribution that closely follows a uniform distribution. 

PIT is defined for a model with predicted probabilities 𝑝𝑖 for each instance 

𝑖, and corresponding binary outcomes 𝑦𝑖: 

𝑃𝐼𝑇𝑖 =
1

𝑁
∑ 𝐼(𝑝𝑗 ≤ 𝑝𝑖)

𝑁

𝑗=1
 

Equation 2-12: Probability Integral Transform (PIT) 

Where: 

𝑁 is the total number of instances, 

𝑝𝑖 is the predicted probability of the positive class for instance 𝑖, 

𝐼 is the indicator function, equal to 1 if 𝑝𝑗 ≤ 𝑝𝑖 and 0 otherwise. 

PIT is a probabilistic metric where PIT values should follow a uniform 
distribution in [0,1] for a well-calibrated model. The average value should 
be around 0.5 for a well-calibrated model. Deviation from 0.5 indicates a 
miscalibrated model. There are no specific thresholds, but the closer the 

PIT distribution is to a uniform distribution, the better. To interpret this 
metric, one needs to understand the idea of calibration in probability 
predictions and how it impacts model fairness. A plot of the PIT values (a 
PIT histogram) can be helpful in visually assessing model calibration. 
This metric is not specific to any protected attribute. 

Context use case: The PIT metric is useful in situations where the goal is 
to assess the reliability of a model's predicted probabilities, ensuring that 
they are well-aligned with the actual observed probabilities. It is related 
to the calibration area of fairness, which focuses on the consistency of 
the model's predictions across different demographic groups. The PIT 
metric can be applied in various contexts, such as weather forecasting, 
disease prediction, customer churn prediction, or any other application 
where probabilistic predictions are important. In these cases, having 
well-calibrated probabilities is crucial for making informed decisions and 
managing risks. 
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C.3 Normalized Mutual Information (NMI): The Normalized Mutual 
Information is a measure of the mutual dependence between the 
predicted probabilities and the true outcomes, normalized by the entropy 

of the true outcomes. NMI evaluates the degree of shared information 
between the predicted probabilities and the actual outcomes, with higher 
NMI values indicating a stronger relationship between the predictions 
and the true outcomes. 

NMI is defined as: 

𝑁𝑀𝐼 =
𝐼(𝑌; 𝑌̂)

√𝐻(𝑌)𝐻(𝑌̂)

 

Equation 2-13: Normalized Mutual Information (NMI) 

Where 𝐼(𝑌; 𝑌̂) is the mutual information between the true outcomes 𝑌 

and the predicted probabilities 𝑌̂ and 𝐻(𝑌) and 𝐻(𝑌̂) are the entropies of 

the true outcomes and predicted probabilities, respectively. 

The NMI is also a probabilistic metric which ranges from 0 (no mutual 
information, worst) to 1 (complete mutual information, best). The average 
value indicates the degree of shared information between the predicted 
probabilities and the actual outcomes. A higher average value indicates 
a stronger relationship. There is no universal threshold, but closer to 1 
is generally better. This metric is not specific to any protected attribute 
but evaluates the overall quality of the model's probabilistic predictions 
and is therefore often additionally used in a fairness context.  

Example: The AI model is trained to predict whether a customer would 
default or not on a loan, and based on that, the bank decides to grant or 
deny a loan. The true outcomes Y are whether the customers actually 

defaulted or not and the predicted outcomes 𝑌̂ are the predictions made 
by the model. If the model is fair, it should make the same predictions for 
individuals who are alike except for the protected attribute (e.g., race, 
gender). In terms of mutual information, this means that the mutual 

information between 𝑌  and 𝑌̂  should not be affected by the protected 

attribute. Therefore, for a fair model, the NMI should be similar across all 
groups defined by the protected attribute. 

Context use case: The NMI metric is useful in situations where the goal is 
to assess the strength of the relationship between a model's predicted 
probabilities and the true outcomes, and to determine how much 
information is shared between them. This metric can be applied in 
various contexts, such as medical diagnosis, customer churn prediction, 
or any other application where the quality of probabilistic predictions is 
important. In these cases, having a high NMI value can indicate that the 
model's predictions are more informative and better aligned with the true 
outcomes, which can lead to better decision-making and improved 
performance. 

 

D. Metrics based on information theory and distance measures: 

These metrics quantify the divergence or distance between the distributions of 
predicted outcomes or features for different demographic groups: 
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D.1 Generalized Entropy Index (GEI): The Generalized Entropy Index 
is a measure of inequality that quantifies the dispersion of predicted 
outcomes or features within and between different groups. GEI is 

particularly useful for evaluating fairness in the sufficiency area, as it 
helps assess the informativeness of the model's predictions for each 
group defined by the protected attribute. 

The Generalized Entropy Index is defined as: 

𝐺𝐸𝐼(α) =
1

𝑛(α − 1)(1 − α)
∑ [(

𝑝𝑖

μ
)

α−1

− 1]
𝑛

𝑖=1
 

Equation 2-14: Generalized Entropy Index (GEI) 

where 𝑛  is the number of instances, 𝑝𝑖  is the predicted outcome or 
feature value for instance 𝑖, μ is the mean of the predicted outcomes or 
features, and α is a parameter that controls the sensitivity of the index to 

differences in predicted outcomes or features. When α =  2 , the GEI 
becomes the widely-used Theil index. 

This metric is not probabilistic, the range is [0, +∞) with the best value 
being 0 (indicating perfect equality) and the worst value being +∞ 
(indicating maximum inequality). The average value indicates the level of 
inequality in the predicted probabilities across instances. Threshold 
values are domain-specific and would depend on what level of inequality 
is considered acceptable. This metric is usually interpreted in the context 
of the specific application, the protected attribute(s), and the domain-
specific knowledge of what constitutes acceptable levels of inequality. 

Context use case: The GEI metric is useful when the goal is to assess the 
dispersion of predicted outcomes or features within and between different 
groups, particularly in the context of fairness and sufficiency. It is 
relevant in various applications, such as education, health care, or any 
other situation where understanding inequality and potential biases in 
predicted outcomes is crucial. By identifying disparities in the model's 
predictions, the GEI metric can help guide adjustments to the model to 
improve fairness and informativeness for different demographic groups. 

 

D.2 Kullback-Leibler Divergence (KLD): The KLD is a measure of the 
divergence between the distributions of predicted outcomes or features 
for different demographic groups. KLD can be useful for evaluating 
fairness in the independence area, as it helps assess the discrepancy 
between the model's predictions for each group defined by the protected 
attribute. 

KLD is defined as: 

𝐾𝐿𝐷(𝑃 ∥ 𝑄) = ∑ 𝑃(𝑖)
𝑖

log
𝑃(𝑖)

𝑄(𝑖)
 

Equation 2-15: Kullback-Leibler Divergence (KLD) 

where 𝑃(𝑖) is the probability distribution of the predicted outcomes or 
features for the privileged group, and 𝑄(𝑖) is the probability distribution 
of the predicted outcomes or features for the unprivileged group. 
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This metric is not probabilistic. The range is [0, +∞), where 0 is the best 
value (indicating that 𝑃 and 𝑄 are the same distribution), and +∞ is the 
worst value (indicating that 𝑃  and 𝑄  are completely different). The 
average value can be understood as the average difference between the 

two distributions in terms of information content. There are no fixed 
threshold values, as they would be domain-specific and depend on the 
acceptable level of divergence between the distributions. To interpret this 
metric, it's necessary to have context on the specific application, the 
protected attribute(s), and the understanding of what level of divergence 
between distributions for different groups is considered acceptable. 

Example: In a recommendation system for online platforms, a model 
predicts the probability of users engaging with certain content. The KLD 
can be used to measure the divergence between the predicted 
engagement probabilities for different demographic groups (e.g., gender, 
race, age). By calculating KLD, platform developers can identify potential 
disparities in the predicted outcomes and address any biases in their 

recommendation algorithms. 

Context use cases: The KLD metric is useful when the goal is to assess 
the discrepancy between the distributions of predicted outcomes or 
features for different demographic groups, particularly in the context of 
fairness and independence. It is relevant in various applications, such as 
recommendation systems, marketing, or any other situation where 
understanding the divergence in predicted outcomes for different 
demographic groups is crucial. By identifying disparities in the model's 
predictions, the KLD metric can help guide adjustments to the model to 
improve fairness and reduce biases for different demographic groups. 

 

E. Metrics based on algorithmic fairness: 

These metrics focus on the fairness properties of the algorithm itself, often by 
incorporating fairness constraints or assumptions into the model: 

 

E.1 Counterfactual Fairness (CF): Counterfactual Fairness is a fairness 
metric that requires the model's prediction to remain the same if the 

protected attribute were counterfactually changed (not be confounded 
with attribute flipping). CF is particularly useful for evaluating fairness 
in the independence area, as it aims to ensure that the model's 
predictions are not influenced by the protected attribute. 

While Counterfactual Fairness does not have a single formula, it is based 
on the idea of counterfactuals. A model is counterfactually fair if for any 

individual 𝑖 and any values of the protected attribute 𝐴 =  𝑝 and 𝐴 =  𝑢: 

𝑃 ( 𝑌𝑖
𝑝̂ = 𝑦 ∣

∣ 𝑋𝑖 , 𝐴𝑖 = 𝑝 ) = 𝑃( 𝑌𝑖
𝑢̂ = 𝑦 ∣∣ 𝑋𝑖 , 𝐴𝑖 = 𝑢 ) 

Equation 2-16: Counterfactual Fairness (CF) 

where 𝑌𝑖
𝑝̂
 and 𝑌𝑖

𝑢̂ represent the counterfactual predictions for individual 𝑖 
if their protected attribute were 𝑝 (privileged group) and 𝑢 (unprivileged 
group), respectively, and 𝑋𝑖 denotes the observed features for individual 

𝑖 . This metric is not probabilistic. The range is not applicable in the 
traditional sense because this metric does not produce a numerical value, 
but rather a boolean evaluation of whether the model is counterfactually 
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fair or not. The best and worst values would be that the model is or is not 
counterfactually fair, respectively. There is no specific threshold for this 
metric, as it is a binary (fair/unfair) assessment. The context needed to 
interpret this metric includes understanding the nature of the protected 

attribute, the possible values it can take, and the counterfactual 
scenarios considered. 

To implement CF in practice, one needs to have a causal graph that 
captures the relationships between variables, including the protected 
attribute, proxy variables, and the target variable. This causal graph can 
be used to compute counterfactual predictions under different values of 
the protected attribute while accounting for potential correlations with 
proxies. By doing so, CF helps to ensure that the model's predictions are 
not influenced by the protected attribute, either directly or indirectly 
through proxies. 

Example: If a recidivism model (cf. case study 5.4) predicts that a black 
individual with a specific set of features (age, number of past offenses) is 

likely to reoffend, to test counterfactual fairness, a counterfactual world 
would be considered where this individual is white. In this counterfactual 
world, due to different systemic interactions, the number of past offenses 
might be lower for this individual. If this feature is adjusted accordingly 
in the counterfactual scenario, the model's prediction should ideally 
remain the same to satisfy counterfactual fairness. 

Context use cases: The CF metric is useful when the goal is to ensure that 
a model's predictions are not influenced by the protected attributes, 
particularly in the context of fairness and independence. It is relevant in 
various applications, such as credit scoring, hiring, medical diagnosis, or 
any other situation where understanding and mitigating the impact of 
protected attributes on predicted outcomes is crucial. By adhering to the 
principle of Counterfactual Fairness, decision-makers can help reduce 
biases in their models and promote fair treatment of individuals across 
different demographic groups. 

 

E.2. Fairness Through Unawareness (FTU): Fairness Through 
Unawareness is a naive approach to achieving fairness by removing the 
protected attributes from the model's input features. FTU is based on the 
idea that if a model is not provided with the protected attribute, it cannot 
discriminate based on that attribute. However, this approach often falls 
short in addressing fairness, as it fails to account for the potential 
correlations between the protected attribute and other input features, 
which can still lead to biased predictions. 

FTU does not have a specific formula. Instead, it involves training a model 
on a modified dataset where the protected attribute, 𝐴, is removed from 
the input features: 

Model: 𝑓(𝑋−𝐴) → 𝑌̂ 

Equation 2-17: Fairness Through Unawareness (FTU) 

where 𝑋−𝐴  represents the set of input features without the protected 

attribute, and 𝑌̂ is the predicted outcome. 

Context use cases: While FTU is a simple and intuitive approach to 
fairness, it is often insufficient for effectively addressing biases in a model, 
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particularly in cases where there are correlations between the protected 
attribute and other input features. It can be considered as a first step in 
fairness-aware modeling but should generally be supplemented with 
more advanced fairness techniques that account for correlations with 

proxies and indirect discrimination. In various applications such as 
hiring, credit scoring, or medical diagnosis, it is crucial to use more 
comprehensive fairness techniques to ensure fair treatment of 
individuals across different demographic groups. 

 

E.3 Indirect Bias (Dwork et al, 2012): is based on the notion that a 
model is fair if its predictions are not influenced by the protected attribute, 
either directly or indirectly through other correlated features. This 
concept, also known as "fairness under composition," aims to ensure that 
biases do not accumulate or propagate through a sequence of decision-
making processes that involve multiple models or stages. 

Dwork's Indirect Bias does not have a specific formula but is rather a 

conceptual approach to fairness. It involves evaluating the influence of 
the protected attribute on the model's predictions, taking into account 
the correlations with other features, and examining the potential for 
indirect discrimination. 

Context use cases: Dwork's Indirect Bias is relevant when considering 
fairness in complex, multi-stage decision-making processes, or when 
there are strong correlations between the protected attribute and other 
input features. This approach helps to ensure that biases do not 
accumulate or propagate through the decision-making process, leading 
to fair outcomes for individuals across different demographic groups. 
Applications may include college admissions, hiring pipelines, or any 
other situation involving multiple models or stages where fairness is a 
concern. To effectively address Dwork's Indirect Bias, it is essential to 
combine this approach with other fairness techniques that account for 
correlations with proxies and indirect discrimination. 

 

E.4 Fairness Constraints (Hardt et al., 2016): A family of fairness 
constraints that can be incorporated into the learning process to ensure 

that the model's predictions satisfy specific fairness criteria, such as 
equalized odds or demographic parity. These constraints can be used to 
balance fairness and accuracy objectives during model training. Hardt's 
Fairness Constraints are a part of the independence area, as they aim to 
reduce the relationship between the protected attribute and the model's 
predictions. 

The idea behind the Fairness Constraints is to explicitly incorporate 
fairness criteria into the optimization problem during the training process. 
The specific constraints depend on the fairness metric being considered. 
For example, for Demographic Parity (DP), the constraint would be: 

|𝑃(𝑌̂ = 1|𝐴 = 𝑝) − 𝑃(𝑌̂ = 1|𝐴 = 𝑢)| ≤ ϵ1 

Equation 2-18: Fairness Constraints 

where 𝐴 =  𝑝 and 𝐴 =  𝑢 represent the privileged and unprivileged groups, 

respectively, and ϵ1 is a predefined tolerance level for fairness violations. 
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 For Equalized Odds (EO), the constraints would be: 

|𝑃(𝑌̂ = 1|𝑌 = 1, 𝐴 = 𝑝) − 𝑃(𝑌̂ = 1|𝑌 = 1, 𝐴 = 𝑢)| ≤ ϵ1 

 And: 

|𝑃(𝑌̂ = 1|𝑌 = 0, 𝐴 = 𝑝) − 𝑃(𝑌̂ = 1|𝑌 = 0, 𝐴 = 𝑢)| ≤ ϵ2 

 where ϵ1 and ϵ2 are predefined tolerance levels for fairness violations. 

Context use cases: Fairness Constraints are useful when the goal is to 
balance fairness and accuracy during model training, particularly in 
cases where the protected attribute may be related to the model's 
predictions. By incorporating these constraints into the learning process, 
decision-makers can promote fair treatment of individuals across 
different demographic groups while maintaining good predictive 
performance. Applications may include hiring, credit scoring, medical 
diagnosis, or any other situation where fairness is a concern and the 
model's predictions should satisfy specific fairness criteria. 

  

F. Metrics focused on specific error rates: 

These metrics focus on the differences or parity in specific error rates between 
demographic groups: 

 

F.1 False Negative Rate Difference (FNRD): The False Negative Rate 
Difference is a fairness metric that measures the difference in false 
negative rates between two demographic groups. It falls into the 
separation category, as it compares error rates across different groups 
without considering the relationship between the protected attribute and 
other input features. 

FNRD = |
𝐹𝑁𝑝

𝐹𝑁𝑝 + 𝑇𝑃𝑝
−

𝐹𝑁𝑢

𝐹𝑁𝑢 + 𝑇𝑃𝑢
| 

Equation 2-19: False Negative Rate Difference (FNRD) 

where 𝐹𝑁𝑝  and 𝐹𝑁𝑢  represent the number of false negatives for the 

privileged and unprivileged groups, respectively, and 𝑇𝑃𝑝  and 𝑇𝑃𝑢 

represent the number of true positives for the p - privileged and u- 
unprivileged groups, respectively. 

Context use cases: The False Negative Rate Difference is relevant when it 
is crucial to monitor and minimize the differences in false negative rates 
between different demographic groups. It is particularly useful in 
situations where the consequences of false negatives are significant, such 
as medical diagnosis, fraud detection, or public safety. This metric helps 
ensure that the model's predictions do not disproportionately impact 
certain demographic groups, promoting fairness and reducing the 
potential for discrimination. 

 

F.2 False Positive Rate Difference (FPRD): The False Positive Rate 
Difference is a fairness metric that measures the difference in false 
positive rates between two demographic groups. It falls into the 
separation category, as it compares error rates across different groups 
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without considering the relationship between the protected attribute and 
other input features. 

FPRD = |
𝐹𝑃𝑝

𝐹𝑃𝑝 + 𝑇𝑁𝑝
−

𝐹𝑃𝑢

𝐹𝑃𝑢 + 𝑇𝑁𝑢
| 

Equation 2-20: False Positive Rate Difference (FPRD) 

where 𝐹𝑃𝑝  and 𝐹𝑃𝑢  represent the number of false positives for the 

privileged and unprivileged groups, respectively, and 𝑇𝑁𝑝  and 𝑇𝑁𝑢 

represent the number of true negatives for the privileged and unprivileged 
groups, respectively. 

Context use cases: The False Positive Rate Difference is relevant when it 
is crucial to monitor and minimize the differences in false positive rates 
between different demographic groups. It is particularly useful in 
situations where the consequences of false positives are significant, such 
as credit scoring, hiring, or college admissions. This metric helps ensure 
that the model's predictions do not disproportionately impact certain 
demographic groups, promoting fairness and reducing the potential for 
discrimination. 

 

F.3 Positive Predictive Parity (PPP) or Predictive Parity: The Positive 
Predictive Parity is a fairness metric that measures the difference in 
positive predictive values (PPV) between two demographic groups. It falls 
into the separation category, as it compares the predictive performance 
across different groups without considering the relationship between the 
protected attribute and other input features. 

PPP = |
𝑇𝑃𝑝

𝑇𝑃𝑝 + 𝐹𝑃𝑝
−

𝑇𝑃𝑢

𝑇𝑃𝑢 + 𝐹𝑃𝑢
| 

Equation 2-21: Positive Predictive Parity (PPP) 

where 𝑇𝑃𝑝  and 𝑇𝑃𝑢  represent the number of true positives for the 

privileged and unprivileged groups, respectively, and 𝐹𝑃𝑝  and 𝐹𝑃𝑢 

represent the number of false positives for the privileged and unprivileged 
groups, respectively. 

Example use case: In a job application screening process, the Positive 
Predictive Parity can be used to ensure that the model's predictions do 
not disproportionately favor applicants from different demographic 
groups (e.g., gender or race) in terms of true positive predictions, which 
could lead to unfair hiring decisions or a biased workforce. 

 

Similar metrics such as the Negative Predictive Parity can be easily 
derived from the previous explanations and are not listed here.  

G. Metrics based on overall model performance: 

These metrics focus on the parity in overall model performance between 
demographic groups: 

G.1 Overall Accuracy Parity (OAP): The Overall Accuracy Parity is a 
fairness metric that measures the difference in overall accuracy rates 
between two demographic groups. It falls into the separation category, as 
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it compares the overall performance across different groups without 
considering the relationship between the protected attribute and other 
input features. 

OAP = |
𝑇𝑃𝑝 + 𝑇𝑁𝑝

𝑇𝑃𝑝 + 𝑇𝑁𝑝 + 𝐹𝑃𝑝 + 𝐹𝑁𝑝
−

𝑇𝑃𝑢 + 𝑇𝑁𝑢

𝑇𝑃𝑢 + 𝑇𝑁𝑢 + 𝐹𝑃𝑢 + 𝐹𝑁𝑢
| 

Equation 2-22: Overall Accuracy Parity (OAP) 

where 𝑇𝑃𝑝  and 𝑇𝑃𝑢  represent the number of true positives for the 

privileged and unprivileged groups, respectively; 𝑇𝑁𝑝 and 𝑇𝑁𝑢 represent 

the number of true negatives for the privileged and unprivileged groups, 
respectively; 𝐹𝑃𝑝 and 𝐹𝑃𝑢 represent the number of false positives for the 

privileged and unprivileged groups, respectively; and 𝐹𝑁𝑝  and 𝐹𝑁𝑢 

represent the number of false negatives for the privileged and 
unprivileged groups, respectively. 

Context use cases: The Overall Accuracy Parity is relevant when it is 

crucial to monitor and minimize the differences in overall accuracy rates 
between different demographic groups. It is useful in situations where 
the accuracy of the model is important across various contexts, such as 
recommendation systems, content moderation, or customer support. 
This metric helps ensure that the model's predictions do not 
disproportionately impact certain demographic groups, promoting 
fairness and reducing the potential for discrimination. 

 

Table 2-2 summarizes the fairness metrics discussed in this section. A few 
clarifying comments should be made: Firstly, the categories of Treatment 
Equality Difference (TED) and Treatment Equality Ratio (TER) appear to be 
hardly used within the established literature on fairness metrics and require 
further elucidation; therefore, they do not appear in the table. Secondly, the 
characterization of Fairness Through Unawareness (FTU) as a metric could be 
misleading; it is more appropriately categorized as an approach that disregards 
sensitive attributes in the pursuit of fairness. However, it's important to note 
that this method does not inherently provide a measure of fairness, as it often 
fails to consider proxy variables correlated with sensitive attributes. 

Thirdly, Counterfactual Fairness (CF) and Indirect Bias, while vital conceptual 
tools in the study of algorithmic fairness, are not typically represented as 
quantifiable metrics. Similarly, the fourth observation pertains to Fairness 
Constraints as proposed by Hardt et al., 2016. This is not a metric but rather 
an algorithmic approach that incorporates fairness constraints into the 
optimization process during model training. Thus, it may seem inappropriate to 
present it as a quantifiable metric, however, in combination with other metrics 
it is a widely used approach and has therefore been included in this section.  
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Table 2-2: Fairness Metrics Comparison 
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2.2.4 Explainable AI (XAI) 
 

As ML models and algorithms become increasingly sophisticated, their decision-
making processes often grow more complex and less transparent. This 
phenomenon, sometimes referred to as the "black box" problem, presents 
challenges to trustworthiness and fairness, particularly in contexts where 
understanding the basis for decisions is paramount. This issue is tackled head-
on by the field of explainable artificial intelligence (XAI), a rapidly growing area 
within the broader AI discipline. 

XAI is premised on the belief that to be trusted and effectively used, an AI 
system's decisions should be interpretable and explainable to its users. It seeks 
to create systems whose actions and decisions can be easily understood by 
humans. This is particularly important in high-stakes domains such as 
healthcare, finance, and criminal justice, where opaque decision-making can 
lead to disastrous outcomes and exacerbate existing biases. 

Explainable AI or XAI has been regarded as an increasingly important part of 
AI/ML both in- and outside the AI community, as it helps explain the reasons 
why a certain prediction has been made and besides and probably most 
importantly, it bridges part of the gap to the outmost important debate around 
bias and fairness in automated decision-making processes as can be observed 
in recent legal foundations such as the GDPR (e.g., article 22 on automated 
decisions) or the new EU Act on AI (yet to be passed), to name a few.  

XAI is usually organized into the categories of so-called white-box (WBM) and 
black-box models (BBM). As white-box models are transparent and relatively 
easily interpretable, the focus lies on the black-box models, however, a short 
introduction to the most common white-box models is provided first and then a 
deep-dive into different explainability techniques for black-box models based on 
a specific HR recruitment tool example serving as a red thread throughout this 
section.  

Figure 2-3 (Thampi, A., 2022) illustrates the roadmap of this section: 

 

Figure 2-3: Map of Interpretability Techniques 
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As black-box models do not offer an intuitive explanation of their outcome and 
are inherently opaque and less interpretable, yet they usually outperform white-
box models and have higher predictive power, the focus lies on the various 
interpretability techniques usually applied in the XAI area for black-box models. 

Figure 2-4 (Thampi, A., 2022) shows where BBM and WBM are placed on the 
interpretability (x-)axis and predictive power (y-)axis: 

 

Figure 2-4: Models and Predictive Power 

1) White-box models 

In the realm of Explainable AI (XAI), white-box models refer to ML algorithms 
that provide inherently interpretable outcomes. Due to their transparency, the 
predictions made by these models can be clearly traced back to the input 
features. Common examples of white-box models include linear and logistic 
regression, decision trees, and generalized additive models (GAMs). Some of 
them are only briefly explained as they usually do not pose any real challenges 
when it comes to interpreting their outcomes.  

Linear and Logistic Regression: Linear regression models assume a linear 
relationship between the input features and the output variable. The coefficient 
of each feature in the regression represents the change in the output variable 
for a one-unit change in that feature, while holding all other features constant. 
Logistic regression is used for binary classification problems, and its output can 
be interpreted as the logarithm of the odds of the positive class. The coefficients 

have similar interpretations to those in linear regression. 

Decision Trees: Decision trees are graphical models that make decisions based 
on a set of binary rules. Each internal node of the tree tests a particular feature 
of the input, each branch corresponds to a result of the test, and each leaf node 
assigns a prediction to the input. The interpretation of a decision tree follows 
the path from the root to a leaf. 

Generalized Additive Models (GAMs): GAMs are an extension of linear models 
that allow the response variable to depend on smooth transformations of the 
predictors, offering more flexibility. GAMs maintain the property of additivity, 
making them interpretable while also capable of capturing more complex 
patterns in the data. 
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2) Black-box models 

Black-box models are ML models that are typically more complex and not as 
easily interpretable as their white-box counterparts. These models, which 
include tree ensembles, deep neural networks (DNNs), convolutional neural 

networks (CNNs), and recurrent neural networks (RNNs), can generate highly 
accurate predictions but do not readily disclose how they reach their decisions, 
making them the primary focus for XAI techniques. 

Tree Ensembles: Tree ensembles, such as Random Forests and Gradient 
Boosting Machines, are powerful ML models that combine predictions from 
multiple decision trees to make a final prediction. While individual decision 
trees are interpretable, ensembles of trees lose this interpretability because their 
predictions are derived from many trees, each potentially having a different 
structure (e.g., Friedman, J., 2001). 

Deep Neural Networks (DNNs): DNNs are a type of artificial neural network 
with multiple hidden layers between the input and output layers. The internal 
workings of these networks are not easily interpretable due to the large number 

of parameters and complex transformations they use (LeCun, Y. et al., 2015). 

Convolutional Neural Networks (CNNs): CNNs are a type of deep learning 
model primarily used for image processing. The complex layers of convolutions 
and transformations make it challenging to interpret their decision-making 
process (Krizhevsky, A., et al., 2012). 

Recurrent Neural Networks (RNNs): RNNs are deep learning models used for 
sequential data. They incorporate loops to allow information to persist across 
timesteps, adding another layer of complexity that makes them harder to 
interpret (Elman, J., 1990). 

For illustration purposes, the HR recruitment tool is used as a red thread and 
an example, which in turn also enhances the discussion of the case study in 
section 5.2 HR Recruitment Process.   

Interpreting Model Processing 

Black-box models require additional interpretability techniques to understand 
their decisions. These techniques are usually divided into two categories: Global 
and local interpretability.  

Global interpretability refers to an overall understanding of the model's 
behavior across the feature space. This includes identifying which features are 
most important for the model's predictions on average, as well as how features 
interact with each other to affect predictions. Two commonly used techniques 
for global interpretability are Partial Dependence Plots (PDPs) and feature 
interaction. 

• Partial Dependence Plots (PDPs): PDPs are graphical visualizations that 
show the marginal effect one or two features have on the predicted 
outcome of a ML model (Friedman, J., 2001). PDPs are a powerful tool for 
the exploration and interpretation of complex model behaviors, allowing 
users to visualize the average model prediction behavior for different 
values of the chosen feature(s), while marginalizing over the distribution 
of the other features. For a global perspective, PDPs can summarize the 

influence of selected features over the entire dataset by integrating out 
the other features. 
In the HR recruitment scenario, PDPs could be used to understand how 
specific applicant attributes such as "years of experience" or "level of 
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education" broadly influence the model's recommendation for interview 
selection. For instance, a PDP plot showing the effect of "years of 
experience" might reveal a positive trend, indicating that as the years of 
experience increase, the model's propensity to recommend the candidate 

for an interview also increases. 

• Feature Interaction: Feature interactions provide insight into how 
combinations of feature values can affect the output of the model. They 
can reveal complex dependencies that are not visible from the inspection 
of individual features. When two features interact, the effect of one 
feature on the output changes depending on the value of the other feature 
(Greenwell, B. et al., 2018). 
For the HR recruitment tool, we consider the features "years of 
experience" and "level of education". An interaction effect could be 
observed if the effect of "years of experience" on the model's interview 
recommendation changes based on the "level of education". For instance, 
the model could place a higher weight on experience for applicants with 
a bachelor's degree compared to those with a master's degree, indicating 
an interaction between these features. 
 

Local interpretability focuses on understanding the model's predictions at the 
individual instance level. This includes understanding why the model made a 
specific prediction for a specific data point. LIME, SHAP, and Anchors are 
commonly used techniques for local interpretability. 

• Local Interpretable Model-agnostic Explanations (LIME) aims at 
explaining individual predictions. The fundamental premise of LIME is to 
locally approximate complex models with simpler, more interpretable 
models (Ribeiro, M.T. et al., 2016). To generate a LIME explanation, the 
following steps are typically taken: 

a) Choose an instance requiring explanation. 
b) Perturb this instance, producing a dataset of similar instances, 

and make predictions for these instances using the original 
model. 

c) Assign each instance in the perturbed dataset a weight based 
on its similarity to the original instance. 

d) Fit an interpretable model (e.g., a linear regression or decision 

tree) to the weighted perturbed dataset, with the original 
model’s predictions serving as the target. 

e) Extract feature importance from the interpretable model to 
serve as the explanation for the original instance. 

Consider the HR recruitment scenario where an AI model is used to 
predict which candidates should be shortlisted. If a particular candidate 
is not recommended by the model, LIME can be used to understand the 
reasons behind this decision. The candidate’s data is selected as the 
instance requiring explanation. Perturbed versions of this data are 
generated by slightly modifying feature values (e.g., experience, skills, 
qualifications). The model’s predictions for these perturbed instances are 
obtained and used to fit a simpler model, from which feature importance 
is extracted to explain the model’s original prediction. This might reveal, 

for instance, that the candidate’s lack of specific skills or experience 
contributed most to the model’s decision not to recommend them. 

 



2 Theoretical Framework 

49 

 

• SHAP (SHapley Additive exPlanations) values are grounded in Shapley 
values from cooperative game theory and serve to distribute the 
prediction value fairly among the features (Lundberg, S. et al. 2017). 
SHAP values offer the average contribution of each feature to the 

prediction for a specific instance, considering all possible combinations 
of features. The computation of SHAP values involves: 

a) Identifying all possible subsets of features. 

b) For each feature, calculating the contribution it makes to the 
prediction when added to different subsets of features. 

c) Calculating the Shapley value for each feature by averaging its 
contributions across all possible feature subsets. 

Using the same HR recruitment scenario, if a candidate is recommended 
by the model, SHAP can be used to identify which features contributed 
most to this decision. All possible subsets of features (e.g., combinations 
of experience, skills, qualifications) are considered. The contribution of 

each feature to the prediction is calculated when it is included in these 
different subsets. The average of these contributions gives the SHAP 
value for each feature, providing a measure of how much each feature 
contributed to the decision to recommend the candidate. This could 
reveal that the candidate’s particular skillset and years of experience 
were the main contributors to the model's decision. 

• Anchors are model-agnostic rules that explain individual predictions 
with high precision (Ribeiro, M.T. et al., 2018). Anchors are derived from 
the concept of anchor points in geometry, which remain fixed and provide 
a reference point for other measures. In terms of interpretability, anchors 
are features that provide a "sufficient condition" for a certain prediction, 
meaning that as long as the anchors hold true, the prediction will remain 
the same. 
In the context of the HR recruitment tool, let's assume that an applicant 
is predicted by the model to be highly suitable for an interview. To 
generate an anchor for this prediction, the tool would generate multiple 
similar profiles by slightly modifying the applicant's features. The tool 
would then identify which features, when unchanged, result in the same 
prediction of interview suitability. These identified features form the 

anchor for the prediction and provide a basis for interpreting the model's 
recommendation. 

 

Saliency mapping techniques are used to highlight regions in the input that 
are most relevant for a model's prediction. While saliency mapping is most often 
used in image-based models, the techniques can be conceptually applied to 
other data types. 

• Gradients: The gradient of the output with respect to the input, often 
known as a gradient saliency map, gives an idea of how the model output 
changes with small changes to the input. For example, a deep learning 
model used in an HR recruitment context may take a variety of factors 
into account, like qualifications, skills, experience, etc. By computing the 
gradient of the output with respect to each of these factors, we can 
understand which factors have the largest impact on the hiring decision 
(Simonyan, K. et al., 2013). 



2.2 Building Trustworthy AI: Principles and Approaches 

50 
 

• Guided Backpropagation: This method modifies the standard 
backpropagation algorithm to focus only on positive contributions to the 
output. It effectively provides a 'guided' tour of the factors that led to the 
final prediction, by discarding any factors that had a negative or neutral 

influence on the decision. In our HR scenario, if a candidate is rejected, 
guided backpropagation can help us identify the features that were most 
instrumental in this decision (Springenberg, J.T. et al., 2014). 

• SmoothGrad: This technique reduces noise in gradient saliency maps by 
taking an average over multiple noisy versions of the input. For an HR 
tool, this could help in understanding whether small changes in a 
candidate's profile significantly alter the hiring recommendation. If the 
tool's recommendation changes dramatically with small alterations to a 
candidate's profile, it may indicate that the tool is overly sensitive to 
certain features (Smilkov, D. et al., 2017). 
In the HR recruitment example, these techniques could be used to 
interpret a model that uses textual data from resumes. For instance, a 
deep learning model could be trained to classify applicants based on the 
textual content of their resumes, and a saliency map could reveal which 
words or phrases are most influential in the model's decision-making 
process. For instance, the phrase "project management certification" 
might be highlighted as being particularly influential in positive 
recommendations. 

 

Interpreting Model Representations 

Apart from understanding the process by which a model makes a prediction, it 
is also crucial to understand the internal representations that a model learns. 

Understanding layers and units 

Deep learning models, such as neural networks, learn representations of data 
in a hierarchical manner, where each layer of the network captures different 
levels of abstraction in the data. Interpreting these representations can provide 
insight into what the model has learned. 

• Transfer Learning involves using a pre-trained model (typically on a 
large benchmark dataset) and adapting it for a new, similar task 
(Yosinski, J. et al., 2014). When the layers of the pre-trained model are 

examined, the initial layers often capture universal features like edges 
and curves, while the deeper layers capture more task-specific features. 

• Network Dissection is a technique for quantifying the interpretability of 
latent representations of CNNs by evaluating the alignment between 
individual units and a set of semantic concepts (Bau, D. et al., 2017). The 
technique uses a broad set of semantic segmentation labels to annotate 
the units with human-interpretable concepts. 

In the HR recruitment tool, imagine a model pre-trained on job descriptions 
to recommend candidates for an interview is used. By using transfer learning, 
we can understand which aspects of the job descriptions (e.g., required skills 
or qualifications) are most important for the model. With network dissection, 
we could identify which units in the network align with key concepts, such 

as "leadership experience" or "Python programming", providing further 
insight into the model's decision-making process. 
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Understanding Semantic Similarity (PCA, t-SNE) 

Dimensionality reduction techniques such as Principal Component Analysis 
(PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) can be used to 
visualize high-dimensional data, such as the representations learned by a model, 

in two or three dimensions (Van Der Maaten, L. et al., 2008). 

In the context of the HR recruitment tool, imagine the tool learns a high-
dimensional representation of each candidate based on their resume. Applying 
PCA or t-SNE could allow us to visualize these representations in 2D or 3D, 
potentially revealing clusters of similar candidates. This could provide valuable 
insights, such as the grouping of candidates with similar skills or experience 
levels, and could help in understanding the model's decision-making process. 

 

2.2.5 Fairness vs. Accuracy and other Trade-offs 
 

The discussion of fairness and accuracy trade-offs forms an essential 
component of understanding the ethical implications of AI algorithms, 
particularly those used in high-stakes decision-making scenarios. These trade-
offs primarily involve balancing societal norms of 'fairness' and the potential 
social costs that come with prioritizing one over the other. 

Corbett-Davies, S. et al. (2017) addressed this tension in their study of the 
COMPAS algorithm (cf. section 5.4), demonstrating that optimizing for public 
safety results in decisions that negatively impact defendants of color, thus 
revealing a conflict between the minimization of violent crime and satisfying 
common notions of fairness. Their conclusion highlighted a significant 
implication: satisfying legal and societal fairness definitions may result in a 
higher release rate of high-risk defendants, which could detrimentally affect 
public safety. 

Moreover, this negative impact on public safety might disproportionately affect 
different demographic groups, subsequently engendering another form of 
'fairness cost.' This highlights that fairness is not a one-dimensional construct 
but rather a multifaceted concept with far-reaching implications. 

As such, the challenge faced by developers and operators of these algorithms is 
determining how to mitigate potential biases without reinforcing existing 
societal inequalities. One possible strategy is to explore avenues for reducing 
disparities between groups without compromising the overall performance of 
the AI model. In particular, this becomes critical in scenarios where there 
appears to be a trade-off between fairness and accuracy. 

Notably, some scholars and practitioners posit that there are opportunities for 
improving both fairness and accuracy in algorithms simultaneously. One 
approach is through the thorough investigation and resolution of bugs in the 
software, which might impede the model from maximizing overall accuracy. 
Another strategy involves addressing under-representation in the training data 
sets. Including more diverse data could improve accuracy in decision-making 
and reduce unfair results, as demonstrated in Buolamwini's facial detection 
experiments (Buolamwini, J., et al., 2018). 

Additionally, as highlighted by Sara Holland from Google (Barton, N., et al. 
2019), understanding and managing the risk tolerance associated with these 
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types of trade-offs is critical . Decisions about whether the social costs of the 
trade-offs are justifiable, whether stakeholders are open to algorithm-based 
solutions, or if human intervention is necessary for framing the solution, need 
careful deliberation. 

Hence, understanding and navigating the trade-offs between fairness, accuracy, 
and other societal objectives is integral to the development and deployment of 
AI algorithms, especially those with high societal impact.  
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3 Tools and Approaches for Improving 
Trustworthiness 

 

Chapter 3 provides a comprehensive examination of the tools and approaches 
designed to enhance the trustworthiness of AI systems. Trustworthiness in this 
context encompasses various dimensions including data quality, algorithmic 
fairness, transparency, and system robustness. 

In the first three sections, some techniques of bias mitigation lay the 
groundwork. This approach comprises several intricate and closely intertwined 
stages—namely pre-processing, in-processing, and post-processing—which 
correspond respectively to data collection and pre-processing, model selection 
and training, evaluation and validation, and quantifying bias and fairness as 
shown in figure 3-1: 

 

Figure 3-1: Bias Mitigation in Different Stages of the ML Pipeline 

In the preprocessing phase, techniques for data collection and preprocessing 
are paramount. These include methods to ensure representative data sampling 
and robust preprocessing techniques to mitigate initial data bias, such as 
disparate impact analysis, reweighing, and optimized preprocessing. 

The in-processing stage, on the other hand, concentrates on model selection 
and training. The choice of algorithm, fairness constraints integrated into the 
optimization function, adversarial de-biasing, and regularization techniques are 
examples of the critical choices to be made at this stage. Each choice can have 
a profound impact on the model's capacity to offer fair predictions. 

The postprocessing phase is concerned with model evaluation, validation, and 
adjustment based on evaluation outcomes. Techniques to evaluate and validate 
model outcomes include multiple bias detection methods, fairness metrics (such 
as equality of opportunity, demographic parity), and adjustment techniques like 
threshold adjusting and equalized odds postprocessing. 

Section 3.4 discusses the role of Explainable AI (XAI) in fortifying system 
robustness and transparency, while Section 3.5 investigates causality-based 
fairness methods and their potential in bias mitigation. 

Section 3.6 delivers a comparative overview of selected tool-based bias 
mitigation solutions, such as IBM's AI Fairness 360, Google's What-if Tool, 
Meta's Fairness Flow, Carnegie Mellon's Aequitas, and Themis AI. A summary 
comparison in Section 3.6.6 concludes the chapter by providing a succinct 
appraisal of these tools. 

Through a comprehensive exploration of these aspects, chapter 3 contributes to 
a deeper understanding of strategies and tools intended for improving 
trustworthiness in AI systems. 
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3.1 Pre-Processing: Data Collection and Cleaning 

During preprocessing, techniques such as data cleaning, feature extraction, and 
sampling are employed to structure the data for the ML model. The fundamental 

goal in this stage is to ensure a robust, unbiased dataset that serves as the 
basis for a fair and accurate ML model. 

Table 3-1 provides an overview of the most commonly applied techniques to 
mitigate unfairness at this stage: 

Category Technique Description 

Bias Mitigation 
Techniques 

Reweighing Assigning instance weights to data 
points to ensure balanced 
representation across different 
groups 

Reject Option-
Based 

Classification 

Changing predictions to make them 
fairer by providing favorable 

outcomes to unprivileged groups and 
unfavorable outcomes to privileged 
groups in a confidence band around 
the decision boundary with the 
highest uncertainty 

Disparate Impact 
Remover 

Modifying feature values to increase 
group fairness while preserving rank-
ordering within groups 

Data 
Augmentation 
Techniques 

Counterfactual 
Data 
Augmentation 

Augmenting the dataset by 
generating synthetic instances 
through flipping protected attribute 
values 

Sampling-
Based 
Techniques 

Oversampling Artificially boosting the number of 
instances in the less-represented 
class in an imbalanced dataset 

Undersampling Balance the class distribution by 
reducing the number of instances in 

the majority class 

Data 
Transformation 
Techniques 

Optimized 
Preprocessing 

Learning a probabilistic 
transformation to modify the features 
and labels in the training data to 
reduce bias 

Learning Fair 
Representations 

Learning a transformed 
representation of the data that 
minimizes the ability to predict 
protected attributes 

Correlation or 
Proxy Remover 

Removing features that are highly 
correlated with protected attributes 

Data Editing 
Techniques 

Relabeling Modifying labels in the dataset to 
reduce bias 
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Massaging the 
Dataset 

Changing class labels for a chosen 
subset of instances to enforce 
demographic parity 

Cluster-Based 
Techniques 

Fair k-Means 
Clustering 

Implementing k-means clustering 
algorithm to ensure equal cluster 
distributions across protected and 
unprotected groups 

Table 3-1: Pre-Processing Mitigation Techniques 

The most common of these techniques are described in detail and illustrated by 
an example which will bring forward some of the discussions on credit scoring 
and loan approval of section 5.3 Automated Credit Scoring where we consider a 
scenario where an organization is building a ML model to predict whether a 
person will default on a loan. The available data includes various features such 
as age, income, employment status, credit history, and a protected attribute like 
gender. The goal is to build a model that makes accurate predictions while being 

fair and not discriminating against any gender. 

Bias Mitigation Techniques 

Reweighing is a pre-processing technique employed to ensure fairness 
in ML. It involves the assignment of weights to instances in the training 
dataset in such a way that fairness constraints are satisfied in 
expectation across different demographic groups. It is a mechanism 
employed to mitigate potential biases, specifically by providing equalized 
odds across distinct demographic groups. 

In the loan approval scenario, gender can be considered a protected 
attribute. If an original dataset is imbalanced and demonstrates 
differences in the proportion of loan approvals across gender groups, it 
may result in the learning model acquiring a gender bias. This is where 
reweighing becomes essential. 

The process of reweighing involves assigning different weights to the 
instances of the dataset such that the statistical parity difference between 
the two gender groups is minimized. In simple terms, this ensures that 
the odds of loan approval are similar for individuals across gender lines. 
This technique, thus, alters the importance of instances from different 

demographic groups in a way that contributes towards reducing bias in 
the decision-making model. It is important to note that reweighing does 
not modify the features or the labels, but it impacts the way the ML 
algorithm learns from the instances. 

The method of reweighing was introduced by Kamiran, F. et al. (2012) in 
their paper "Data Preprocessing Techniques for Classification without 
Discrimination". They proposed this technique to alter the distribution of 
training data such that discrimination and bias were minimized while 
maintaining the rank order of instances within each group. 

Reject Option-based Classification (ROC) is a fair ML pre-processing 
technique introduced by Kamishima et al. (2012) in their work "Fairness-
Aware Classifier with Prejudice Remover Regularizer". This technique 

operates on the principle of avoiding potentially unfair classification 
decisions by abstaining from making a prediction when uncertainty is 
high. 
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In the context of loan approval, where gender serves as the protected 
attribute, ROC can be instrumental in promoting fairness. The classifier, 
equipped with ROC, may abstain from making a loan approval or 
rejection decision if the predicted probability is within a predefined 

threshold of uncertainty. 

This specific area of uncertainty, often referred to as the "rejection region", 
is situated around the decision boundary. It is typically set where the 
classifier's confidence in making a prediction is low. This abstention from 
potentially unfair decisions is especially beneficial in ensuring fairness 
when prediction errors could disproportionately affect the less privileged 
gender group. 

Although ROC is a post-processing method, it can be implemented at the 
pre-processing stage if abstained instances are removed from the dataset 
or relabeled before training the classifier. 

The Disparate Impact Remover (DIR) is a pre-processing technique 
used in fair ML pipelines to address discrimination and bias. The 

methodology behind the DIR is to adjust feature values to enhance group 
fairness while keeping within-group rank ordering unaltered. It 
addresses a specific type of discrimination called disparate impact, where 
a decision disproportionately disadvantages individuals from a certain 
group. 

Considering a loan approval scenario, where gender is the protected 
attribute, DIR can be implemented by adjusting the feature values for 
both gender groups to mitigate potential disparities. For example, if a 
feature like "credit score" disproportionately impacts loan approval 
decisions across genders, the DIR can be used to modify credit scores 
such that their distribution becomes similar for both genders. 

The DIR works by first ranking the individuals within each group (e.g., 
male and female) based on the value of the feature that may cause 
disparate impact (e.g., credit score). Then it adjusts the feature values 
such that the distributions across the gender groups become similar 
while maintaining the relative order of the individuals within each group. 
This adjustment ensures that the disparate impact caused by this feature 
is minimized. 

The Disparate Impact Remover was first introduced by Feldman, M. et al. 
(2015) in their paper "Certifying and Removing Disparate Impact". This 
method is particularly effective for tackling indirect discrimination that 
arises due to certain seemingly innocuous features being correlated with 
both the protected attribute and the outcome. 

Sampling-Based Techniques 

Synthetic Minority Over-sampling Technique (SMOTE) is a robust 
method used for addressing class imbalance in datasets, which can 
contribute to bias in ML models. This approach was introduced by 
Chawla, N. et al. (2002) in their paper "SMOTE: Synthetic Minority Over-
sampling Technique". 

Unlike conventional oversampling methods, which replicate minority 
class instances, SMOTE generates synthetic examples that enhance the 
feature space of the minority class. It works by selecting instances that 
are close in the feature space, drawing a line between these instances, 
and creating new instances along this line. 
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In the context of a loan approval scenario where gender is a protected 
attribute, SMOTE can be applied to the class representing the minority 
gender, which may be underrepresented in the loan approval instances. 
If, for example, fewer females are approved for loans in the original 

dataset, SMOTE can help to generate synthetic female profiles who have 
been approved for loans. These synthetic instances will be a blend of 
features from female borrowers who have been approved for loans, thus 
increasing the representation of this group in the approval class.  

Similar undersampling techniques exist for the majority class and are not 
further explained here.  

Data Transformation Techniques 

Optimized Preprocessing is a fair ML pre-processing technique that 
involves learning a probabilistic transformation, which modifies the 
features and labels in the training data to achieve a fairer model. This 
technique was presented by Calmon, F. et al. (2017) in the paper 
"Optimized Preprocessing for Discrimination Prevention". 

The primary goal of Optimized Preprocessing is to learn a transformation 
that maps instances in the original dataset to instances in a new dataset, 
where this transformation is chosen to optimize for a number of 
objectives, such as preserving as much information as possible from the 
original data, improving the accuracy of a predictive model, and satisfying 
fairness constraints. 

In a loan approval scenario, where gender is the protected attribute, 
Optimized Preprocessing can be utilized to transform the dataset in a way 
that reduces gender-based disparities. This could involve modifying 
features like credit history, employment status, or income levels in a way 
that reduces their correlation with gender, while still retaining the overall 
patterns and relationships within the data necessary for accurate 
predictions. 

The transformations generated through this technique ensure that the 
decision-making process is less influenced by the protected attribute, 
helping to prevent potential discrimination. However, it is crucial to 
ensure that the transformed data still maintains sufficient utility for 
accurate prediction. 

Learning Fair Representations (LFR) is a pre-processing technique that 
aims to create a fair representation of the input data by minimizing the 
ability to predict the protected attribute from the transformed data. The 
technique was introduced by Zemel, R. et al. (2013) in their paper 
"Learning Fair Representations". 

The primary objective of LFR is to find a transformation of the original 
dataset into a new representation that preserves as much useful 
information as possible for prediction purposes while simultaneously 
reducing any bias related to the protected attribute. It employs a variant 
of adversarial training to achieve this goal. 

In the context of a loan approval scenario, where gender serves as the 

protected attribute, LFR would strive to find a new representation of the 
dataset where it becomes challenging to predict the gender based on the 
transformed features. This could involve transforming features like credit 
score, income, and employment status in such a way that the correlation 
between these features and the gender attribute is minimized. 
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By creating a representation in which gender cannot be easily inferred, 
LFR aims to ensure that the subsequent classifier built on this 
representation is less likely to rely on gender when making loan approval 
decisions, thereby reducing potential discrimination. 

However, it's essential to ensure that the transformed data maintains 
enough utility for accurate prediction. This balance between fairness and 
accuracy is a key challenge in implementing LFR and similar techniques. 

The Correlation or Proxy Remover is a preprocessing technique 
employed in fair ML to reduce or remove the correlation between the 
protected attribute and the predictor variables in the dataset. This 
approach seeks to mitigate discrimination by ensuring that the predictor 
variables used by a ML model do not serve as proxies for the protected 
attribute. 

In a loan approval scenario, where gender is the protected attribute, there 
may exist certain predictor variables like occupation or educational 
background, which might indirectly correlate with gender. These 

variables, if not treated, can potentially serve as proxies, leading the 
model to indirectly discriminate based on gender. 

The Correlation or Proxy Remover methodology involves identifying these 
proxies and either removing them or adjusting their values such that 
their correlation with the protected attribute is minimized. This can 
involve statistical techniques such as residualization or decorrelation 
methods. 

The concept of removing correlation or proxies has been an integral part 
of fairness-related research, but it's not necessarily associated with a 
single paper. However, it is significantly featured in works like "Fairness 
through Awareness" by Dwork, C. et al. (2012) and "A Survey on Bias and 
Fairness in Machine Learning" by Mehrabi, N. et al. (2019). 

It is crucial to mention that this technique, while effective, should be used 
cautiously as removing or altering variables could lead to loss of critical 
information required for the prediction task. 

Data Editing Techniques 

Relabeling is a pre-processing technique used in fair ML to adjust labels 
of instances in a dataset to mitigate potential bias and ensure fairness. 
It involves changing the labels of certain instances based on a specified 
fairness criterion or objective. 

Considering the loan approval scenario where gender is the protected 
attribute: If the original dataset exhibits bias, such as an uneven 
approval rate between genders, relabeling can be applied to adjust the 
labels (approved or not approved) of some instances to reduce this 
disparity. 

The instances to be relabeled can be chosen in various ways. For example, 
borderline instances, whose classification confidence is low, can be 
relabeled to promote fairness. It is also possible to perform relabeling in 
a way that balances the number of positive and negative instances for 

each group, thereby enforcing demographic parity. 

Relabeling was introduced and utilized in several works to mitigate bias. 
One such study is "When Worlds Collide: Integrating Different 
Counterfactual Assumptions in Fairness" by Kusner, M. et al. (2017), 
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which introduces a technique for relabeling based on counterfactual 
fairness. 

"Massaging the Dataset" is a pre-processing technique employed in fair 
ML to amend biases in datasets, and it involves the modification of class 

labels to improve fairness measures. This technique is related to 
relabeling, but with more specific adjustments targeting a defined 
fairness criterion. 

In the loan approval scenario, massaging would involve adjusting the 
labels (approved or not approved) of some instances to decrease any 
discrepancies in approval rates between genders. The instances for which 
the labels are modified are typically those that are closest to the decision 
boundary of a classifier trained on the original dataset. 

The term "Massaging the Dataset" was coined by Kamiran, F. et al. (2012) 
in their work "Data preprocessing techniques for classification without 
discrimination". While it may sound informal, it is a widely recognized 
term in the academic literature on fairness in ML. 

Cluster-Based Techniques 

Fair k-Means Clustering is an adaptation of the standard k-means 
clustering algorithm, aimed at ensuring that the generated clusters 
respect fairness criteria with respect to a protected attribute. The method 
was proposed by Chierichetti et al. in their work "Fair Clustering Through 
Fairlets". 

Fair k-Means Clustering first partitions the dataset into smaller sets, 
referred to as "fairlets", in such a way that each set satisfies a specified 
fairness condition. For example, each fairlet may be required to contain 
an equal number of instances from each category of a binary protected 
attribute. Then, the standard k-means algorithm is run on these fairlets 
to form the final clusters. 

Taking the loan approval scenario where customer segmentation needs 
to be performed fairly with respect to gender: Using Fair k-Means 
Clustering, the customer data can be divided into fairlets in a way that 
each fairlet contains an equal number of male and female applicants. The 
k-means algorithm is then applied to these fairlets to generate the final 
customer segments, ensuring that the clusters are fair with respect to 
gender. 

It is not claimed that these preprocessing steps are a complete list of all existing 
bias mitigation techniques at this stage of the data pipeline, however, it provides 
an overview of the most widely used techniques, some of which are also applied 
in the following case studies. 

 

3.2 In-Processing: Model Selection and Training 

In-Processing techniques apply bias mitigation during the model training phase. 
Here, fairness constraints are directly incorporated into the optimization 
process of a learning algorithm, or fairness regularization terms are added to 

the objective function that the algorithm seeks to minimize. The following list of 
in-processing techniques is not exhaustive, but it provides some of the mostly 
applied ones. An in-depth description of these techniques is beyond the scope 
of this project.  
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• The Prejudice Remover method, introduced by Kamiran et al. (2012), is an 
example of an in-processing algorithm where a regularization term is 
included in the logistic regression's objective function. This regularizer 
specifically penalizes discriminatory predictions on the basis of a protected 

attribute, such as gender. 

• The Adversarial Debiasing technique, introduced by Zhang et al. (2018), 
involves a two-player game in which a classifier is trained to make 
predictions while an adversary is trained to predict the protected attribute 
from the classifier's predictions. The aim is to train a classifier that not only 
performs well on the task at hand but also confuses the adversary, thereby 
reducing the ability to predict the protected attribute, hence reducing the 
discrimination. 

• The Exponentiated Gradient Reduction approach, introduced by Agarwal 
et al. (2018), aims at reducing discriminatory behavior by learning a 
probabilistic classifier as a mixture of classifiers that minimizes both the 
empirical risk and a chosen notion of disparity. 

• The GerryFair Classifier introduced by Kearns et al. (2017), ensures 

fairness by adding a fairness regularizer to the objective function that 
corresponds to the fairness violation in terms of a chosen disparity measure. 

• Grid Search Reduction, as presented by Agarwal et al. (2018), uses a grid 
search to select hyperparameters that generate fair classifiers. It combines 
multiple disparity metrics with traditional error metrics to arrive at a 
satisfactory trade-off. 

• The Meta-Fair Classifier proposed by Celis et al. (2019) is an approach that 
treats fairness constraints as penalties in a Lagrangian framework. The 
classifier works by optimizing both fairness and accuracy measures. 

 

Example: Loan approval 

The loan approval decision system uses logistic regression as a base algorithm, 
and gender is a protected attribute. One way to ensure fairness during the model 
training phase is to use the Prejudice Remover method. A regularization term 
that penalizes discriminatory predictions based on gender is added to the 
objective function. The trained model would then not only aim for accurate 
predictions but also consider the fairness constraints related to gender 
discrimination during the prediction. 

In the Adversarial Debiasing scenario, an adversarial network would be trained 
in parallel to the loan decision classifier. The classifier would predict loan 
approval, and the adversarial network would attempt to predict the applicant's 
gender from the classifier's loan approval predictions. The classifier's goal is to 
make accurate loan approval decisions while ensuring that the adversarial 
network cannot accurately predict the applicant's gender, thereby reducing bias. 

For other techniques like Exponentiated Gradient Reduction, GerryFair 
Classifier, Grid Search Reduction, and Meta-Fair Classifier, the key idea would 
be similar: modifying the classifier's training process to enforce fairness by 
reducing disparity on the protected attribute (gender), while maintaining 
performance on the loan approval prediction task. 

These techniques provide an opportunity to integrate fairness considerations 
directly into the model training process. However, as with all fairness 
interventions, it is important to ensure that these measures do not inadvertently 
introduce new forms of bias or unfairness, and therefore ongoing evaluation and 
validation is necessary. 
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3.3 Post-Processing: Evaluation Metrics & Outcome 
Manipulation  

There are a series of possible postprocessing techniques in the data pipeline, 
however, the first step is to quantify bias and fairness to be able to apply bias 
mitigation techniques. In section 2.2.3 Fairness Metrics a wealth of metrics was 
already introduced according to different purely technical categorization criteria. 
Here, on the other hand, the idea is to combine three of the independently 
applied criteria to provide a holistic understanding of these categories, i.e., 
group versus individual, observational versus causality-based, and 
independence versus separation versus sufficiency fairness criteria. Many 
academic papers refer to some of the categories, however, they do not combine 
all of them. Table 3-2 on page 63 is based on a series of different papers, among 
others, Dwork, C. et al. (2012), Hardt, M. et al. (2016), Castelnovo, A. et al. 
(2022). 

Group fairness and individual fairness are two contrasting conceptual 
frameworks used to characterize and evaluate fairness in ML algorithms.  

• Group fairness, also known as statistical or demographic fairness, 
operates on the principle of demographic parity. It advocates that an 
algorithm should yield similar outcomes, on average, for different 
demographic groups defined by a protected attribute. Metrics falling 
under this category, such as Demographic Parity Difference or Equalized 
Odds Ratio, often measure disparities in aggregate outcomes or error 
rates between these groups. They provide a high-level perspective on 
fairness, focusing on the distributional aspects of decisions across 
different groups, but do not account for differences among individuals 
within those groups. 

• Individual fairness, also known as similarity-based or instance-based 
fairness, focuses on treating similar individuals similarly, regardless of 
their group membership. It operates on the principle of treating similar 
cases alike. This principle posits that two individuals who are similar in 
terms of attributes relevant to a decision should receive similar outcomes. 
Individual fairness metrics such as Counterfactual Fairness or Fairness 
Through Unawareness tend to focus on ensuring fairness at an individual 

level, taking into account the heterogeneity within demographic groups. 

While both these frameworks aim to ensure fairness, they sometimes lead to 
conflicting outcomes due to their different underlying principles. Group fairness 
may lead to situations where similar individuals from different demographic 
groups are treated differently, while individual fairness might overlook systemic 
biases that affect entire demographic groups. Balancing the trade-off between 
these two fairness perspectives is an ongoing challenge in the field of ML fairness. 

Observational and causal fairness represent two distinct paradigms for 
fairness evaluation in ML, each focusing on different aspects of data and 
decision-making processes.  

• Observational fairness is based on the statistical relationships found in the 

observed data. In this approach, fairness metrics are computed from the 
joint distribution of predictions, outcomes, and protected attributes, without 
assuming any causal relationships among them. The key focus here is to 
ensure equal treatment across groups defined by the protected attributes 
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purely based on the observed statistics. Metrics like Demographic Parity 
Difference, Equalized Odds Ratio, or Calibration fall under this category. 
These observational metrics do not, however, capture the potential causes 
of unfairness, and therefore might fail to address underlying structural 

biases present in the data-generating process. 

• Causal fairness, on the other hand, takes into consideration the causal 
relationships among variables. It goes beyond observational data and seeks 
to capture the underlying causal structure that generates the data. The 
premise here is that the causes of unfairness often trace back to societal 
structures and systemic biases. Hence, fairness should be defined based on 
these causal structures. This perspective gives rise to fairness metrics such 
as Counterfactual Fairness or Fairness Through Unawareness. These causal 
metrics aim to ensure that the model's predictions would remain the same 
if the protected attribute were counterfactually changed, addressing biases 
that might not be apparent from observational statistics alone. 

While causal fairness provides a more principled way to handle fairness by 

considering the underlying causes of biases, it also demands a higher level of 
data requirement and methodological rigor. It often requires knowledge about 
the causal structure of the data, which might not be easily available or 
accurately discernible. 

Independence, separation, and sufficiency represent three key criteria for 
fairness evaluation in ML, each focusing on a specific relationship between the 
model's predictions, the protected attribute, and the true outcomes. 

• Independence: This criterion, also known as demographic parity or 
statistical independence, requires the model's predictions to be independent 
of the protected attributes. The idea here is to ensure that decisions do not 
depend on protected attributes, which could lead to disparate treatment of 
different demographic groups. A fairness metric adhering to the 
independence criterion, such as Demographic Parity Difference, would 
measure the disparity in outcomes across groups defined by the protected 
attribute. 

• Separation: Also known as conditional procedure accuracy equality, the 
separation criterion requires the model's errors to be independent of the 
protected attributes. This means the model should have similar performance, 
such as similar rates of false positives and false negatives, across different 

demographic groups. Metrics adhering to the separation criterion, such as 
Equalized Odds Difference or Treatment Equality Difference, measure the 
disparity in error rates across different demographic groups. 

• Sufficiency: Sufficiency, also known as conditional use accuracy equality, 
requires the predicted outcomes to capture all the information necessary for 
the decision, given the true outcome and the protected attribute. This means, 
for a given outcome, the decision should be the same across different 
demographic groups. Metrics adhering to the sufficiency criterion, such as 
Predictive Equality Difference, measure disparities in how the predictions 
relate to the true outcomes across different demographic groups. 

These three criteria provide distinct perspectives on fairness, focusing on 
different aspects of the decision-making process. However, it is important to 

note that these criteria cannot generally be satisfied simultaneously unless the 
outcome is independent of the protected attribute. This tension among the 
criteria illustrates the inherent complexity and trade-offs involved in achieving 
fairness in ML. Table 3-2 categorizes the metrics introduced in section 2.2.3: 
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ID Metric Name 
Group/ 
Individual 
Fairness 

Observational
/ Causal 
Fairness 

Independence
/ Separation/ 
Sufficiency 

A.1 
Statistical/Demographi
c Parity Difference Group Observational Independence 

A.2 
Demographic Parity 
Ratio Group Observational Independence 

A.3 
Equalized Odds 
Difference Group Observational Separation 

A.4 Equalized Odds Ratio Group Observational Separation 

A.5 
Treatment Equality 
Difference Group Observational Sufficiency 

A.6 
Treatment Equality 
Ratio Group Observational Sufficiency 

A.7 

Predictive Equality 

Difference Group Observational Sufficiency 

A.8 
Predictive Equality 
Ratio Group Observational Sufficiency 

B.1 
Average Odds 
Difference Group Observational Separation 

B.2 
Conditional 
Demographic Disparity Group Observational Separation 

C.1 Calibration Group Observational Sufficiency 

C.2 
Probability Integral 
Transform Group Observational Sufficiency 

C.3 
Normalized Mutual 
Information Group Observational Sufficiency 

D.1 
Generalized Entropy 
Index Group Observational Sufficiency 

D.2 
Kullback-Leibler 
Divergence Group Observational Independence 

E.1 
Counterfactual 
Fairness Individual Causal Independence 

E.2 
Fairness Through 
Unawareness Individual Causal Independence 

E.3 Indirect Bias Individual Causal Independence 

E.4 Fairness Constraints Individual Causal Independence 
Table 3-2: Categorization of Fairness Metrics 

Once the fairness metrics are evaluated, different postprocessing techniques 
can be applied.  

Postprocessing techniques are crucial when dealing with ML models that have 
already been trained and where the training data or process cannot be altered. 
This scenario might arise when using pre-trained models from a third party or 
when organizational or legal restrictions exist on modifying the training data. In 
these situations, bias mitigation is carried out by manipulating the output 

predictions to ensure fairness criteria are met. This essentially involves altering 
the predicted outcomes (e.g., loan approval or denial) to align with desired group 
fairness metrics. 
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The primary postprocessing strategies are generally based on thresholding, 
calibration, or equalized odds. Postprocessing can be carried out with or without 
the availability of validation data. When validation data is available, the 
postprocessing can follow the observational fairness perspective, i.e., "what you 

see is what you get." In the absence of validation data, the causal fairness 
perspective, i.e., "we're all equal," can be employed. 

Thresholding techniques involve manipulating the decision threshold for 
binary predictions. Predicted labels can be 'flipped' according to certain criteria. 
This might involve adjusting the decision threshold for a certain demographic 
group or flipping the predicted outcome for individuals whose predicted scores 
lie close to the decision boundary, similar to the massaging technique in 
preprocessing. However, a random selection of individuals for flipping might be 
seen as procedurally unfair. 

Calibration techniques, such as Platt Scaling, adjust the predicted probabilities 
to better match the observed probabilities in each group. These techniques are 
often used in conjunction with thresholding to ensure the model's predictions 

are not only fair but also reliable. 

The Equalized Odds Postprocessing method, proposed by Hardt et al. (2016), 
provides a principled approach to achieve equalized odds (similar true positive 
and false positive rates) across groups. This technique alters the predictions in 
a way that ensures equal opportunity for all demographic groups in terms of 
loan approval, given the true label. 

The Fairness-aware Classifier Calibration technique, introduced by Menon, A. 
et al. (2018), aims to calibrate the classifier's output scores to achieve fairness. 
This technique involves finding an optimal transformation of the predicted 
scores into a new score, which is then thresholded to a binary decision. It is a 
potent postprocessing tool and works well empirically without being 
computationally intensive. 

However, all of these approaches necessitate the availability of the protected 
attribute in the deployment data. For situations where the protected attribute 
is not available, techniques such as the Fair Score Transformer can be employed. 
The Fair Score Transformer works on the continuous scores output by the base 
classifier, making it a desirable choice in the category of postprocessing bias 
mitigation. 

Example: Loan approval system 

The system uses a ML model to predict whether a loan application should be 
approved or denied. Suppose that the model has already been trained and 
deployed, and it is discovered that it is resulting in unfair outcomes, particularly 
discriminating against female applicants. In such cases, various postprocessing 
techniques can be used to address this bias: 

1. Thresholding Techniques: 

Suppose that female applicants consistently receive lower scores from the model 
than they should, and as a result, they are denied loans more often. To address 
this, a unique decision threshold could be set for female applicants. The 
threshold for loan approval for this group could be lowered, such that applicants 

who would have previously been denied a loan (based on the original threshold) 
are now approved. This would result in more balanced loan approval rates 
between male and female applicants. However, careful tuning is required to 
ensure the threshold does not result in overcorrection and a different kind of 
unfairness. 
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2. Calibration Techniques: 

Calibration techniques like Platt Scaling can be employed to adjust the 
predicted probabilities of loan approval for female applicants. If it is found that 
the model's predicted probabilities do not align with actual loan repayment rates, 

Platt Scaling can be used to recalibrate these predictions. The objective here 
would be to ensure that, across the range of predicted probabilities, the model's 
confidence in its predictions is justified by the actual loan repayment rates. 

3. Equalized Odds Postprocessing: 

Equalized Odds Postprocessing, as proposed by Hardt et al. (2016), can be 
utilized to ensure fairness in both true positive and false positive rates between 
male and female applicants. This technique would adjust the predictions of the 
model in a manner that guarantees that, given the true label (loan repaid or not), 
the chance of being approved is the same across both demographic groups. 

4. Fairness-aware Classifier Calibration: 

The fairness-aware classifier calibration, proposed by Menon, A. et al. (2018), 

could also be implemented. Here, the continuous score output from the model 
would be transformed optimally into a new score. This new score would then be 
thresholded to make a binary loan approval decision, ensuring that the loan 
approval rates are fair across both male and female demographic groups. This 
technique is especially effective when the protected attribute is not available in 
the deployment data. 

In conclusion, postprocessing techniques offer the ability to manipulate the 
predictions of an existing model to achieve a fairer outcome. However, it is 
critical to continuously evaluate and validate these techniques to ensure that 
they're not introducing new forms of bias or unfairness. 
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3.4 Robust AI Systems with XAI 

The typical data mining process as described in the Cross-Industry Standard 
Process for Data Mining (CRISP-DM) methodology, comprises the phases of  (1) 

problem specification, (2) data understanding, (3) data preparation, (4) modeling, 
(5) evaluation, (6) deployment and monitoring, which are arranged in a 
continuous circle. Building on top of this well-known methodology and focusing 
on the interpretable and explainable part of the standard process, 
understanding or interpretation and explanation phases are embedded in the 
process as shown in figure 3-2 (Thampi, J., 2022) below.  

 

Figure 3-2: Embedded Interpretation and Explanation Phases in XAI 

1) Within the robust AI system, the learning phase unfolds within a 
development environment, utilizing two key subsets of data: the training set 
and the development set. The training set plays an instrumental role in 
enabling the ML model to learn the mapping function 'f' from the provided 
input features 'X'. Subsequent to this training process, the dev set is 
employed for validation purposes, serving as the basis for tuning the model. 

Tuning the model constitutes a vital iterative process that seeks to determine 
the optimum model parameters, also known as hyperparameters, which 
yield the highest performance. Such optimization revolves around the 
model's performance on the development set. The iterative nature of this 
process entails repeated cycles of adjustment and validation, which persist 
until the model demonstrates an acceptable level of performance. The 
learning phase, therefore, encapsulates the initial training and fine-tuning 
of the ML model, setting the foundation for the subsequent stages of robust 
AI system deployment. 

2) Upon completion of the learning phase, the focus transitions to the testing 
phase, carried out within the test environment. This stage introduces a novel 
subset of data known as the test set, distinct from the data used during 
training. The central aim of the testing phase is to garner an unbiased 

appraisal of the model's accuracy. At this juncture, stakeholders and experts 
are brought in to assess the system's functionality and the model's 
performance when applied to the test set. This additional layer of testing, 
often referred to as user acceptance testing (UAT), signifies the final stage in 
the software system's development process. UAT is intended to ensure that 
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the model meets the defined specifications and is ready for deployment, 
thereby promoting the integrity of the AI system. 

3) Preceding deployment and following the testing phase is the model 
understanding phase. This phase is dedicated to unraveling the underlying 

mechanisms of the model's decision-making process. The primary inquiry in 
this phase revolves around explicating how the model formulates its 
predictions based on the input features. This process includes the 
interpretation of significant features and their interactions within the model, 
comprehension of the patterns learned by the model, identification of any 
blind spots, and the assessment of potential biases in the data. This stage 
ensures that such biases are not carried forward by the model into its 
predictive functionality. The understanding phase plays a critical role in 
safeguarding the AI system from potential pitfalls such as data leakage and 
bias issues. By providing a deeper insight into the model's operations, this 
phase contributes to enhancing the trustworthiness and robustness of the 
AI system prior to its full deployment. 

4) The deploying phase signifies the transition of the learned model from the 

development environment into the production system. This critical juncture 
exposes the model to a new, previously unseen dataset, marking the 
commencement of the model's active function in real-world scenarios. Within 
this stage, the model is expected to perform its predictive duties effectively 
on the fresh data, delivering its predictions with a quantified confidence 
measure. These generated insights are then consumed and interpreted by 
system experts, who relay actionable information to the end users. Therefore, 
the deploying phase represents a significant milestone where the AI system 
transitions from a theoretical and development context to a practical and 
operational one. 

5) Following the deployment, the explaining phase takes precedence, the 
primary goal of which is to elucidate how the model arrives at predictions 
when exposed to novel data within the production environment. Interpreting 
the model's decisions on this new data allows the insights generated by the 
model to be exposed, if necessary, to expert users. These users may 
challenge or require further information regarding the decisions made by the 
deployed model. Additionally, the explaining phase seeks to construct a 
human-readable explanation that can be disseminated to a wider audience 
of end users within the AI system. Such an interpretation step is crucial for 

addressing potential regulatory noncompliance and enhancing the 
transparency and trustworthiness of the AI system. By ensuring that model 
predictions can be understood by various stakeholders, the explaining phase 
fosters greater accountability and reliability within the deployed AI system. 

6) The final phase within the robust AI system is the monitoring phase, 
executed within the production environment. The primary objective of this 
phase is to continually observe the data distribution as well as the 
performance of the deployed model. This tracking process is instrumental in 
identifying any changes in the data distribution or potential dips in the 
model's performance. Should such deviations occur, it necessitates a return 
to the learning phase. During this cycle, the new data gleaned from the 
production environment is incorporated into the existing datasets to retrain 
the models. The monitoring phase, therefore, provides a feedback loop within 

the AI system, ensuring that the model continues to learn, adapt, and 
maintain its performance and relevance in the face of evolving data trends. 
This iterative process contributes to the robustness and longevity of the AI 
system in the production environment. 
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3.5 Causality-Based Fairness Methods 

This section provides a short introduction to structural causal models (SCM) 
(Pearl, J., 2009) and how they can help explain fairness issues in a ML context. 

In order to avoid abstract explanations throughout this subsection, a reduced 
toy set of variables from the credit scoring and loan approval case study from 
section 5.3 Automated Credit Scoring is used to illustrate causal modelling, 
where a series of variables such as current income, credit history, current 
employment, loan amount repayment period, and gender as protected attribute, 
predict the binary target variable if the loan is approved or not by the banking 
institution. The objective is not to give a comprehensive overview of structural 
causal models built on Bayesian networks (Koller, D., 2009), but to set the 
context for the bias and fairness discussions from a different angle. 

SCMs offer a powerful approach to encapsulating and interrogating the cause-
and-effect relationships among a set of variables (Pearl, J., 2009). An SCM 
comprises two elements: structural equations and a graph. Structural 
equations dictate how each variable is generated as a function of its direct 
causes (parents) and an independent error term. The graph, expressed as a 
Directed Acyclic Graph (DAG), symbolizes the variables as nodes and causal 
relationships as directed edges. 

In the credit scoring example with the binary loan approval target, the nodes and 
edges could be expressed as follows in figure 3-3: 

 

 

Figure 3-3: Structural Causal Model 

In this SCM, variables are connected by functional relationships which 
represent potential causal relationships, and the noise terms represent 
unobserved factors that also influence these variables. 

Gender is not a function of other variables, it is an intrinsic attribute of the 

individual, so 𝑔𝑒𝑛𝑑𝑒𝑟 = 𝑓0(𝑈0). 
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Credit history might be dependent on gender, due to societal biases and some 
unobserved factors like the individual's financial habits or unexpected expenses. 

Thus, it can be modeled as 𝑐𝑟𝑒𝑑𝑖𝑡_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 = 𝑓1(𝑔𝑒𝑛𝑑𝑒𝑟, 𝑈1). 

Current income could be dependent on credit history and gender as people with 
good credit history may have stable income sources, and there might be a 
gender income gap due to societal biases. It is also dependent on some 
unobserved factors such as their education, skills, etc. Therefore, 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑛𝑐𝑜𝑚𝑒 = 𝑓2(𝑐𝑟𝑒𝑑𝑖𝑡_ℎ𝑖𝑠𝑡𝑜𝑟𝑦, 𝑔𝑒𝑛𝑑𝑒𝑟, 𝑈2). 

Current employment is dependent on gender, due to potential hiring biases, and 
unobserved factors like the local economy, the individual's professional skills, 
and their field of work, so it could be modeled as 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 =
𝑓3(𝑔𝑒𝑛𝑑𝑒𝑟, 𝑈3). 

Loan amount could be influenced by current income, current employment and 
gender as individuals with higher income and stable jobs might apply for larger 
loans, and there could be biases in how much loan men and women apply for. 
There could also be other unobserved factors like the purpose of the loan, so 

𝑙𝑜𝑎𝑛_𝑎𝑚𝑜𝑢𝑛𝑡 = 𝑓4(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑛𝑐𝑜𝑚𝑒, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡, 𝑔𝑒𝑛𝑑𝑒𝑟, 𝑈4). 

Repayment period could depend on loan amount and gender as larger loans 
typically have longer repayment periods, and women may choose longer 
repayment periods due to income instability. There could also be other 
unobserved factors like the individual's personal choice or the bank's policies, 

thus 𝑟𝑒𝑝𝑎𝑦𝑚𝑒𝑛𝑡_𝑝𝑒𝑟𝑖𝑜𝑑 = 𝑓5(𝑙𝑜𝑎𝑛_𝑎𝑚𝑜𝑢𝑛𝑡, 𝑔𝑒𝑛𝑑𝑒𝑟, 𝑈5). 

Finally, loan approval could depend on current employment, loan amount, 
gender and unobserved factors like the bank's internal policies or the credit 
officer's judgement, and hence, it can be modeled as 𝑙𝑜𝑎𝑛_𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 =
𝑓6(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡, 𝑙𝑜𝑎𝑛_𝑎𝑚𝑜𝑢𝑛𝑡, 𝑔𝑒𝑛𝑑𝑒𝑟, 𝑈6). 

In the language of SCMs, when we say we "do" or "intervene on" a variable, we 
mean we actively manipulate or set its value, which is represented by the 
𝑑𝑜(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 𝑥)  operator in the causal model. For instance, the conditional 
distribution of loan approval given a specific action or intervention on current 
employment and loan amount can be denoted as 

𝑃( 𝑙𝑜𝑎𝑛_𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 ∣∣ 𝑑𝑜(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 = 𝑥, 𝑙𝑜𝑎𝑛_𝑎𝑚𝑜𝑢𝑛𝑡 = 𝑦) ) . 

This formulation provides a way to express the idea of making an intervention 

in the system, as opposed to just passively observing it. With SCMs, it is possible 
to model complex phenomena, examine potential causal relationships, make 
interventions, and predict the outcomes of those interventions. In the context of 
fairness in AI, SCMs provide a way to make explicit the potential influence of a 
protected attribute (like gender in this example) on the target variable, offering 
a basis for mitigating bias. 

 

3.5.1 Basic Causal Structures 
 

In the context of causal analysis, the understanding of basic causal structures: 
chains, common cause (also known as forks), and common effect (also known 
as colliders) is pivotal. These structures describe different configurations of 

causal relationships among three variables and serve as the elementary building 
blocks for more complex causal diagrams (Spirtes, P., et al., 2001). 
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• Causal Chains are sequential relationships where one variable influences 
another, which in turn affects a third variable. In the credit scoring model 
described above, an example of a causal chain is credit_history -> 
current_income -> loan_amount. Here, the credit history of an individual 

may impact their current income, which subsequently influences the loan 
amount they are approved for. 

• Common Cause structures (or forks) occur when a single variable 
influences two other variables. For instance, gender acts as a common cause 
affecting both credit_history and current_employment in the credit scoring 
model. In such a scenario, it is important to consider that any observed 
correlation between credit_history and current_employment might be due to 
their common cause gender and not a direct causal relationship between 
them. 

• Common Effect structures (or colliders) involve a situation where two 
variables exert an influence on a third one. A common effect in the credit 
scoring model can be seen in the current_employment and loan_amount 
variables that together affect loan_approval. In this situation, loan_approval 

is the common effect of current_employment and loan_amount. 

These basic causal structures provide a preliminary understanding of how 
variables may causally relate to each other. By identifying these structures in a 
causal diagram, it is possible to better understand the complex interplay of 
factors that lead to the outcome of interest.  

 

3.5.2 Relationship Structures 
 

When delving deeper into the realm of causal modelling, complex relationships 
are encountered that involve more than three variables. Concepts like d-
separation, backdoor paths, and confounders become indispensable for 
identifying and addressing bias (Pearl, J., 2009). 

D-Separation is a criterion used to determine whether a set of variables are 
conditionally independent given a particular conditioning set in a given causal 
diagram. To put it simply, if two nodes in a graph are d-separated, then changes 
in one node do not influence the other. In our credit scoring example, given the 
nodes current income and loan amount, when we condition (or observe) on 

current employment, these two nodes are d-separated, implying that current 
income does not influence loan amount when current employment is observed.  

Figure 3-4 illustrates how the different structures are connected or separated 
depending on:  

- The structure itself (causal chain, common cause, common effect), and  
- The observed variable. 

Therefore, if the loan amount is not observed in a causal chain the structure is 
connected but becomes separated as soon as the loan amount is known. 
Similarly, in a common cause, if the current employment is not known the 
structure is connected and becomes separated as soon as the current 
employment is observed. In the common effect structure, however, the logic is 
reversed, i.e., if the variable is observed the structure is connected and 

separated if not observed ((gray-shaded when observed).  
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Figure 3-4: Connected and Separated Causal Structures 

 

A backdoor path is a sequence of steps along the edges in a causal graph, 
originating from the treatment (T) and ending at the outcome (Y), which starts 
with an edge pointing towards T (hence "backdoor"). These paths can introduce 
spurious associations between T and Y if they're not correctly accounted for, 
causing bias in estimating the treatment effect. 

In a causal diagram, a path is blocked if it includes any of the following: 

a) A causal chain (A->B->C) or common cause (A<-B->C) structure with the 
middle node being observed or conditioned upon. 

b) A common effect (A->B<-C, often called a "collider") structure with the 
middle node being unobserved or unconditioned upon. 

Backdoor paths can contain unblocked causal chains and unblocked common 
cause motifs, i.e., motifs where the middle node is not observed. The inequality 

between the interventional distribution 𝑃(𝑌|𝑑𝑜(𝑡))  and the associational 

distribution 𝑃(𝑌|𝑇) due to unblocked backdoor paths is known as confounding 
bias. The variables that form the middle node of common cause structures along 
a backdoor path are referred to as confounding variables or confounders. 

This can be illustrated with the credit scoring example in figure 3-5 with 
unobserved common cause or observed common effect: 

 

 

 

 

 

 

 

 

 

 
Figure 3-5: Backdoor Paths via Common Cause or Common Effect 
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For illustrative purposes, the original SCM is slightly reduced to show the two 
backdoor paths when conditioning (or observing) on current income as 
illustrated in figure 3-6:  

 

 

Figure 3-6: The Two Backdoor Paths in the Loan Approval Example 

 

It is now assumed that gender only influences the current income which in turn 
holds for almost all industrialized economies8. If the current income is observed, 
the common effect structure gets connected and both credit history and gender 
are confounders along the path towards the target loan approval. Likewise, if 
current employment is not observed as a common cause, a backdoor is opened 
through this structure.  

 

3.5.3 Types of Data in Causal Inference 
 

In causal inference, it is important to distinguish between two types of data: 
observational and interventional data (e.g., Hernán, M., et al., 2020). The 
fundamental difference between these two types of data lies in the way they are 
generated. 

Observational data are the kind of data collected in natural circumstances, 
without any interference in the system from which the data are drawn. For 
instance, when a bank collects data about customers' gender, age, credit history, 
current income, loan amount, and approval decisions in their everyday 
operations, that's observational data. This data reflects the current policies and 
patterns of the bank. 

 
 

8  World Economic Forum: Global Gender Gap Report 2022, 
https://www.weforum.org/reports/global-gender-gap-report-2022  

https://www.weforum.org/reports/global-gender-gap-report-2022
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Interventional data, on the other hand, come from situations where some 
variable in the system has been manipulated, typically in an experimental 
setting. If the bank decided to test a new policy and actively adjusted customers' 
loan amounts based on a specific criterion, the data collected under this new 

policy would be considered interventional data. 

The importance of this distinction comes to light when we consider the 
Structural Causal Models (SCMs). An SCM describes the data generating 
process under all possible interventions, not just the ones that have occurred 
naturally. The relationship between variables in an SCM is given by a set of 
equations that represent how each variable is influenced by its parents. When 
we intervene on a variable in an SCM, we effectively replace its equation with a 
new one. This is represented in our SCM by the 𝑑𝑜(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 𝑥) operator. For 

example, 𝑃(𝑌|𝑑𝑜(𝑇)) represents the distribution of Y when we set the value of T 

by intervention. 

In our loan approval example, an intervention might be something like "what 
would happen to the loan approval decisions if we were to change the loan 
amounts while keeping other factors the same?" To answer this question, we 
would use interventional data or apply methods that can emulate interventional 
data from observational data, such as adjusting for confounders. 

The crucial point is that while observational data allow us to estimate 
correlations, they often fall short of providing causal relationships because of 
potential confounding. Interventional data, on the other hand, gives us the 
ability to uncover causal effects directly, but they are more challenging to obtain 
due to the practical and ethical considerations involved in intervening in real-
world systems. 

 

3.5.4 Causal Discovery 
 

Causal discovery is a statistical process that involves deducing the causal 
relationships among different variables in a system. The key idea is to identify 
the structural connections between variables that are capable of explaining the 
observed correlations within the data, with the ultimate aim of building a causal 
graph. Such a graph can represent the data-generating process and aid in 

making predictions and interventions. Causal discovery is broadly divided into 
two primary branches: methods based on conditional independence testing and 
methods that rely on explicit assumptions about the form of the underlying 
causal mechanisms. 

Conditional Independence Testing 

The first branch is based on the principle of conditional independence testing 
(Spirtes, P., et al., 2001, PC algorithm), relying on a concept known as the 
"faithfulness" or "stability" assumption. This concept posits that the observed 
dependence and independence relationships among the variables reflect the 
underlying causal structure. 

Under this assumption, the goal is to find a graph (or, more precisely, an 
equivalence class of graphs known as a "Markov equivalence class") such that 

the graph's implied conditional independence relationships match those 
observed in the data. This approach is often referred to as constraint-based 
causal discovery. However, the fundamental limitation of this approach is that 
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it typically yields a class of equivalent models that cannot be distinguished 
based on the observed data. 

Causal Discovery Based on Explicit Assumptions 

The second branch is based on making explicit assumptions about the form of 
the causal relationships. For example, some methods assume that causal 
relationships are linear or involve additive noise. Other methods may use the 
entropy of the distribution of the residuals to distinguish between alternative 
models. This approach is often referred to as score-based causal discovery, as 
the aim is to find a model that best fits the data according to some scoring 
criterion. Unlike the conditional independence testing approach, these methods 
can yield a unique solution. However, they require stronger assumptions. 

In our loan approval example, one might start with a list of potential variables - 
including gender, credit history, current income, loan amount - and use a 
causal discovery algorithm to infer a plausible causal graph. The resulting graph 
can provide valuable insights into the causal mechanisms that underlie loan 
approval decisions. It is important to note, however, that any discovered graph 

should be interpreted cautiously. It provides a hypothesis about the causal 
structure, but this hypothesis needs to be validated using additional 
information, preferably from domain knowledge or intervention experiments. 

 

3.5.5 Causal Inference 
 

Causal inference involves estimating the effect of interventions from 
observational data. While the discovery process provides a hypothesis about the 
causal structure, it is often silent about the size or strength of the causal effects. 
Causal inference techniques fill this gap, allowing us to make quantitative 
predictions about the effect of potential interventions (Hernán, M., et al., 2020). 
One of the most common methods used in causal inference is adjustment for 
confounders. The idea here is to control for variables that can induce spurious 
correlations between the treatment and the outcome, as illustrated earlier with 
the loan approval backdoor path examples.  

Another approach is to use propensity score methods, which estimate the 
probability of receiving the treatment given the observed covariates. The 
propensity score can then be used to balance the treatment and control groups 
on the observed covariates, thereby reducing bias due to confounding. Detailed 
descriptions of causal inference go beyond the scope of this project, as the focus 
lies on fairness measures. 

 

3.5.6 Techniques to Improve Fairness 
 

In the field of fairness in ML, it is crucial to consider the underlying causal 
structure, since it directly influences the patterns of disparity and 
discrimination in predictions. The methods of imposing fairness constraints 
have been proposed in the context of causal models to ensure fair outcomes 
(Kusner, M. et al., 2017) and are Causal Fairness Constraints and 

Counterfactual Fair Loss Function 

Causal fairness constraints leverage the causal structure of the data to provide 
fairness guarantees. The central idea is to restrict the learning of predictive 
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models such that they only leverage the causal effects of the sensitive attributes 
that are considered fair according to some fairness criterion. 

Using the loan approval process as an example, suppose we want our model to 
be fair with respect to gender. A causal fairness constraint could ensure that 

the effect of gender on the loan approval decision, through paths other than the 
legitimate ones (e.g., through credit history), is eliminated. Thus, any disparity 
in loan approval rates between men and women can only be explained by these 
legitimate factors. The advantage of using causal fairness constraints is that 
they directly target the mechanisms that lead to unfair outcomes. However, the 
application of these methods requires knowledge about the causal structure, 
which is often not fully known in practice. 

Counterfactual fairness is a fairness criterion based on counterfactual 
reasoning. A predictor is said to be counterfactually fair if the prediction for an 
individual would have been the same in a counterfactual world where the 
individual's sensitive attribute was different. 

Counterfactual fairness can be achieved by constructing predictors that are 

functions of the "fair" variables. In the reduced loan approval example, a fair 
variable might be the credit history, which is not directly influenced by gender. 
A counterfactually fair predictor would only use information from these fair 
variables to make its prediction. 

To apply counterfactual fairness, a causal model needs to be specified that 
includes counterfactual variables. These are variables that capture what would 
have happened under different interventions. In the loan approval example, a 
counterfactual variable might be the credit history that a person would have 
had if they had been of a different gender. In that regard, it is not enough to 
simply change the gender which is commonly called “attribute flipping”.  

Both causal fairness constraints and counterfactual fairness provide a 
principled way of ensuring fairness in predictions. They leverage the power of 
causal reasoning to go beyond mere statistical parity, allowing us to capture 
more nuanced notions of fairness (Kilbertus, N. et al., 2017). 

Causality-based methods for fairness have become increasingly critical due to 
their ability to understand and act upon the causal structures that produce 
unfair outcomes. They move beyond correlation-based approaches, that treat 
observed variables as independent entities, and delve into the underlying 

mechanisms that drive relationships between these variables. By doing so, they 
enable a more nuanced understanding of fairness and discrimination, 
addressing the sources rather than the symptoms of unfairness. 

When using ML models for decision-making processes, such as in the loan 
approval example, fairness is a central concern. Traditional methods for 
enforcing fairness primarily focus on ensuring statistical parity, which entails 
that the decision outcomes are balanced across different sensitive groups. 
However, such approaches are limited in that they do not account for the 
inherent complexities and causal structures present within real-world data. 
Causality-based methods for fairness take into account these underlying 
structures and their impacts on outcomes. They provide a framework to analyze 
and mitigate direct and indirect forms of discrimination, allowing for a more 

comprehensive fairness analysis. 
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3.6 Tool-based Bias Mitigation 

In the realm of AI systems, the challenge of mitigating bias and ensuring 
fairness is substantial. Given the increasing integration of AI in decision-making 

processes, from loan approval to job recruitment, this challenge necessitates 
effective and efficient tools for bias detection and mitigation. Consequently, 
several state-of-the-art toolkits have been developed by leading tech companies 
and academic institutions to address these issues. Toolkits such as IBM's AI-
Fairness 360, Google's What-if Tool, Facebook's Fairness Flow, Carnegie 
Mellon's Aequitas, and Themis AI offer a variety of features and capabilities 
designed to improve the fairness of AI systems. This section will delve into the 
specifics of these toolkits, exploring their methodologies, functionalities, and 
potential application areas, thus providing a comprehensive understanding of 
the current landscape of tool-based bias mitigation in AI systems. 

 

3.6.1 IBM: AI-Fairness 360 
 

IBM's AI-Fairness 360 (AIF360) serves as an open-source library designed to 
facilitate the detection and mitigation of biases within ML models.9 As a Python 
package, it furnishes an extensive array of fairness metrics alongside bias 
detection and mitigation algorithms. Its applicability primarily rests with 
allocation or risk assessment problems where protected attributes are clearly 
demarcated. It therefore acts as a springboard for dialogue among stakeholders 
concerning decision-making workflows. 

Selecting suitable fairness metrics and bias mitigation algorithms from the 
extensive offerings of AIF360 depends on the specific application under 
consideration. Fairness metrics can be broadly categorized into two forms: 
individual and group fairness metrics. Furthermore, the latter can be segmented 
into metrics applicable to training data and those relevant to models. The 
selection of metrics largely hinges on the user's worldview, falling broadly under 
"we're all equal" (WAE) or "what you see is what you get" (WYSIWYG). Both 
versions of metrics—difference and ratio—are accessible, subject to user 
preference. The toolkit encompasses the following metrics and classes: 

 

1. Metrics: 
1.1  Individual Fairness: Use SampleDistortionMetric class. 
1.2  Group Fairness: 
1.3 Training data: Use DatasetMetric class (and its children classes, such 

as BinaryLabelDatasetMetric). 
1.4 Models: Use ClassificationMetric class. 

 

2. Group Fairness Metrics: 
2.1 We're All Equal (WAE) worldview: 

 

 

9  IBM used to provide an open web access to the AI Fairness 360 toolkit at 
http://aif360.mybluemix.net/, however, in June 2023 it was removed without any clear 
explanations. The source code of the library can still be accessed at 
https://github.com/Trusted-AI/AIF360 and  https://pypi.org/project/aif360/. 

http://aif360.mybluemix.net/
https://github.com/Trusted-AI/AIF360
https://pypi.org/project/aif360/
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2.1.1 Demographic parity metrics: disparate_impact and 
statistical_parity_difference. 

2.2 What You See Is What You Get (WYSIWYG) worldview: 
2.2.1 Equality of odds metrics: average_odds_difference and 

average_abs_odds_difference 
2.3 In-between worldviews: 

2.3.1 Other group fairness metrics (including some labeled as equality 
of opportunity): false_negative_rate_ratio, 
false_negative_rate_difference, false_positive_rate_ratio, 
false_positive_rate_difference, false_discovery_rate_ratio, 
false_discovery_rate_difference, false_omission_rate_ratio, 
false_omission_rate_difference, error_rate_ratio, and 
error_rate_difference. 

 

Bias mitigation algorithms within AIF360 are stratified into pre-processing, in-
processing, or post-processing, contingent upon the user's capacity to intervene 

within the ML pipeline. The earliest possible intervention category is 
recommended by AIF360. The selection of algorithms is influenced by a 
multitude of factors, such as dataset attributes, transparency prerequisites, 
and the specific fairness metric to be optimized. The consequence of 
ameliorating one fairness metric on others can be intricate. 

 

Figure 3-7 ((Bellamy, R. et al., 2018) shows the typical so-called fairness pipeline 
where fairness measures or bias mitigation techniques can be applied during 
pre-, in-, and post-processing:  

 

 

Figure 3-7: AI 360 Fairness Pipeline 

 

The available fairness measures are listed below per phase:  
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1. Pre-processing: 
1.1  Reweighing: Changes weights applied to training samples without 

altering feature or label values. 
1.2  Disparate Impact Remover: Yields modified datasets in the same 

space as the input training data. 
1.3  Optimized Pre-processing: Addresses both group fairness and 

individual fairness, while providing transparency on the 
transformation. 

1.4  Learning Fair Representations (LFR): Transforms dataset into a latent 
space. 

2. In-processing: 
2.1  Prejudice Remover: Limited to learning algorithms that allow for 

regularization terms. 
2.2  Adversarial Debiasing: Allows for a more general set of learning 

algorithms. 
3. Post-processing: 

3.1  Equalized Odds Post-processing: Two algorithms with a randomized 

component. 
3.2  Reject Option: A deterministic algorithm. 

 

Some of the AIF360 algorithms (for instance, optimized pre-processing and 
reject option) require the specification of which fairness metric to optimize, 
whereas others (for instance, disparate impact remover and equalized odds 
post-processing) do not have such a requirement. An enhancement in one 
fairness metric might have convoluted repercussions on other fairness metrics. 

It is noteworthy that the selection of a mitigation algorithm is not necessarily a 
straightforward task due to its dependence on numerous variables, such as the 
characteristics of the dataset, the requirements for transparency, and the 
specific fairness metric that is being optimized. As such, the careful evaluation 
of these factors is recommended in the selection process. 

For instance, the pre-processing algorithm 'Reweighing' changes weights 
attached to training samples without altering feature or label values, making it 
a good choice for scenarios where there's a need to maintain the original data 
integrity. On the other hand, 'Disparate Impact Remover', another pre-
processing algorithm, yields modified datasets in the same space as the input 

training data, making it a viable choice when it is acceptable to modify the data 
to achieve fairness. 

In the in-processing category, the 'Prejudice Remover' is limited to learning 
algorithms that allow for regularization terms. It is therefore most suitable for 
datasets and models where adding a regularization term is feasible. In contrast, 
'Adversarial Debiasing' allows for a more general set of learning algorithms, thus 
providing a more versatile option for a wide range of datasets and models. 

In the post-processing category, 'Equalized Odds Post-processing' includes two 
algorithms with a randomized component. It is best suited for applications that 
can tolerate a degree of randomness in the output. The 'Reject Option', in 
contrast, is a deterministic algorithm that is suitable for use cases where 
determinism in the outcome is of prime importance. 

The aforementioned algorithms within the AIF360 toolkit, however, may not 
always lead to the perfect balance in fairness metrics. This is due to the fact 
that improving one fairness metric may have complicated, and often unintended, 
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effects on other fairness metrics. This trade-off between different fairness 
metrics is an important factor to consider when choosing and applying these 
algorithms, and in many cases, it might require a careful and systematic 
evaluation to achieve the desired balance in fairness. 

 

 

3.6.2 Google: What-if Tool 
 

The Google What-If Tool10 is an integral part of the open-source TensorBoard 
web application and it aims to facilitate the task of analyzing ML models without 
the necessity for code. By offering an interactive visual interface for scrutinizing 
the input and output of ML models and their results, this tool empowers users 
to evaluate model performance across various data segments, dissect individual 
data points, and assess the effect of theoretical changes to input features. 

Inherent to the What-If Tool are numerous features such as the Facets-driven 

automatic visualization of datasets, the capability to manually edit examples 
within datasets to observe the consequential effects, and the automatic 
generation of partial dependence plots that illustrate the alteration of model 
predictions corresponding to changes in single features. 

Moreover, the tool provides support for counterfactual analysis, which enables 
users to juxtapose a datapoint to the most analogous point with a divergent 
model prediction. This assists in the understanding of the model's decision 
boundaries. In the context of the What-If Tool, counterfactuals represent the 
identification of the closest datapoint to a specific instance where the model 
offers a different prediction. Through the examination of counterfactuals, 
insights into the decision boundaries of the model can be attained, along with 
an understanding of the factors impacting its predictions. 

For instance, users can manually modify a datapoint to observe how these 
alterations influence the model's prediction. This practice assists in the 
identification of critical features that are instrumental in a model's decision-

 
 

10  The main documentation can be found at https://cloud.google.com/ai-
platform/prediction/docs/using-what-if-tool and on Github https://pair-
code.github.io/what-if-tool/.  

https://cloud.google.com/ai-platform/prediction/docs/using-what-if-tool
https://cloud.google.com/ai-platform/prediction/docs/using-what-if-tool
https://pair-code.github.io/what-if-tool/
https://pair-code.github.io/what-if-tool/
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making process, consequently leading to an improved understanding of the 
model's behavior. Figure 3-8 illustrates this with a mortgage example. 

 

Figure 3-8: Google What-if: Mortgage Example for Counterfactuals 

Suppose a user is examining a ML model built to determine the likelihood of 
mortgage approval for an applicant based on various input features such as 
income, credit score, agency, employment history, and the size of the loan. A 
specific instance - say, an applicant who was denied a mortgage - can be 
selected. The user can then employ the counterfactual analysis feature of the 
What-If Tool to find the most similar applicant who was approved a mortgage 
by the model. 

This helps to identify the specific features that might be influencing the model's 
decisions. For instance, it might reveal that a small increase in income or a 
marginal improvement in credit score could have resulted in mortgage approval 
for the original applicant. This analysis can be further deepened by manually 
altering datapoints, such as income or credit score, to observe how these 
changes affect the model's prediction. 

The manual exploration of counterfactuals, as facilitated by the What-If Tool, 
uncovers critical insights into the feature importance and decision-making 

process of the model. In our mortgage example, such insights could be crucial 
for understanding whether the model is making fair or biased decisions and 
could inform necessary improvements or alterations to the model to mitigate 
any identified bias. 

In addition to counterfactual analysis, the 'Analysis of Performance and 
Algorithmic Fairness' feature of the What-If Tool allows users to examine the 
impact of different classification thresholds on diverse numerical fairness 
criteria as shown in figure 3-9. For instance, users might want to compare the 
model's performance when trained on two different slices of data - say, 
applicants from urban areas versus rural areas - and adjust the classification 
thresholds to satisfy certain fairness constraints, such as equal opportunity. 
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This could reveal if the model is consistently fair across different demographic 
groups or if it is biased towards one group over another. 

 

 

Figure 3-9: Google What-if: Mortgage Example for Metrics and Performance 

 

The Google What-If Tool's interactive and visually driven approach not only 
simplifies the process of evaluating and debugging ML models but also provides 
users with an intuitive understanding of how their models operate, respond to 
changes, and make decisions. Therefore, it serves as an instrumental resource 
in developing transparent, fair, and reliable ML systems. 

 

3.6.3 Facebook / Meta: Fairness Flow 
 

Fairness Flow11 is a proprietary tool developed by Facebook, presently known 
as Meta, that functions as an aide to data scientists and engineers in their 
pursuit of ensuring their ML models' fairness. This instrument offers a selection 
of metrics that allow users to ascertain fairness and identify potential biases 
that may have inadvertently crept into their models. The tool is part of Meta's 
broader commitment to responsible AI technologies, which underscores the 
development of inclusive models that offer effective solutions and just treatment 
to all individuals and communities. 

The primary utility of Fairness Flow lies in its capability to detect statistical 
biases in artificial intelligence models and labels within Meta's internal 
applications. It attempts to highlight instances of model and label biases, which 
can transpire when a model systematically misestimates outcomes for different 
groups, or if human labelers impose inconsistent standards. 

Embedded within the Python library, Fairness Flow provides an application 
programming interface (API) for analyzing performance and fairness metrics. 
This tool facilitates an examination of the performance of models or human-
labeled training data across different groups, enabling engineers to discern if 
enhancements are necessary to ensure an equitable performance. The process 
may involve adjustments to the training or test dataset, an examination of the 

 
 

11 In-depth documentation can be found at https://ai.facebook.com/blog/how-were-
using-fairness-flow-to-help-build-ai-that-works-better-for-everyone/ and 
https://ai.facebook.com/resources/frameworks-and-tools/  

https://ai.facebook.com/blog/how-were-using-fairness-flow-to-help-build-ai-that-works-better-for-everyone/
https://ai.facebook.com/blog/how-were-using-fairness-flow-to-help-build-ai-that-works-better-for-everyone/
https://ai.facebook.com/resources/frameworks-and-tools/
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prominence of specific features, or exploration of varying degrees of model 
complexity. 

The operational mechanism of Fairness Flow involves segmenting the data into 
pertinent groups and subsequently calculating the model's performance for 

each group. The tool then scrutinizes several fairness metrics such as the 
representation of each group in the dataset, the model's proficiency in content 
classification or ranking, and whether the model over- or under-predicts for 
specific groups. Variations in performance across these groups might indicate 
fairness concerns that necessitate further investigation. 

Additionally, Fairness Flow assesses potential bias in labels by comparing labels 
assigned by annotators with labels produced by experts, assuming the latter to 
be the ground truth. This comparison aids in determining the accuracy of the 
labeling process and any biases that may have been introduced. 

Despite its strengths, Fairness Flow does have limitations. It cannot analyze all 
types of models, and the approach to fairness can differ depending on the goals 
of the AI system. The choice of the appropriate metric relies heavily on the 

specific product, its context, and the potential impacts of incorrect predictions 
on users and vulnerable groups. 

It is crucial to note that Fairness Flow is an internal tool, and the external 
evaluation of its effectiveness depends solely on the communications published 
by Meta. Despite Meta's assurances, there is some skepticism regarding the 
tool's ability to completely address bias and fairness issues (e.g. Greene, T., 
2021). 

 

3.6.4 Carnegie Mellon: Aequitas 
 

Aequitas12 was created by the Center for Data Science and Public Policy at the 
University of Chicago, and is maintained by Carnegie Mellon, to promote the 
use of data science in policy research and practice. Their work includes 
education, data science projects with various partners, and developing new 
methods and open-source tools for data-driven public policy and social impact 
in a fair and equitable manner. 

Aequitas is an open-source bias audit toolkit that automates the process of 
assessing fairness in binary classification models. It provides a flexible and 
extensible way to measure fairness and helps data scientists and policymakers 
understand, communicate, and act on algorithmic bias. 

It is a tool designed to audit risk assessment systems for two types of biases: 
biased actions or interventions and biased outcomes. To conduct these audits, 
data is needed about the overall population, protected attributes (e.g., race, 
gender, age, income), the set of individuals recommended for intervention or 
action, and actual outcomes for selected and non-selected individuals. 

Aequitas can be utilized through three methods: the Web Audit Tool, which 
generates a bias report; the Python Library, which allows for the generation of 

 
 

12 A general introduction can be found at http://www.datasciencepublicpolicy.org/our-
work/tools-guides/aequitas/, the online web tool at http://aequitas.dssg.io/ and the 
Python libraries on Github https://github.com/dssg/aequitas.  

http://www.datasciencepublicpolicy.org/our-work/tools-guides/aequitas/
http://www.datasciencepublicpolicy.org/our-work/tools-guides/aequitas/
http://aequitas.dssg.io/
https://github.com/dssg/aequitas
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bias and fairness metrics on data and predictions; and the Command Line Tool, 
which produces a report using one's own data and predictions. 

The tool provides a bias report, detailed fairness and bias statistics, and an 

interactive bias dashboard. 

The Web Audit Tool provides a first and reduced approach to bias and fairness 
via a series of metrics. Anyone can carry out the four basic steps at the link 
http://aequitas.dssg.io/, i.e.:  

 

1) Upload Data: 
The web tool only allows for binary target (label_value) and predicted 
(score) variables. All other features need to be categorical or are 
discretized into bins if continuous values are provided. 

2) Select Protected Attributes: 

One or several protected attributes (race, sex, age, etc.) can be selected 
manually, by majority group for every attribute, or automatically by 
choosing the group with the lowest bias metric.  

3) Select Fairness Metrics: 
A few fairness metrics can be selected. The complete list comprises Equal 
Parity, Proportional Parity, False Positive Rate Parity, False Discovery 
Rate Parity, False Negative Rate Parity, False Omission Rate Parity. 
Additionally, a fairness threshold (disparity intolerance) can be set, being 
defaulted to 80% as this is the threshold usually applied from a legal 
perspective.  

4) The Bias Report: 

All output fairness metrics are explained per protected attribute chosen in step 
2, explaining what the metric means, why it matters, and which groups failed 
the test. The following so-called fairness tree in figure 3-10 provides an overview 
of the possible metrics of the bias report: 

http://aequitas.dssg.io/


3.6 Tool-based Bias Mitigation 

84 
 

 

Figure 3-10: Fairness Tree for the Aequitas Bias Report13 

This is a simple and straightforward way to check for several basic fairness 
metrics for binary classifications.  

In a similar way, the Python library (https://pypi.org/project/aequitas/) also 
focuses on binary classification, however, 13 instead of only 6 metrics and an 
increased flexibility for initial data handling are provided. Besides, the data 
visualization can be enhanced via several out-of-the box graphs such bar charts 
and treemaps. Nonetheless, the underlying basic models have the same 
restrictions as the web audit tool, i.e., a simple binary classifier with categorical 
or discretized continuous variables.  

The command-line interface is simply an extension of the previous Python 
library, i.e., the tool can be accessed interactively through the CLI for the data 
upload, but the functionality and restrictions remain the same as for the other 

two utilization methods. Further details can be found at Github 
(https://github.com/dssg/aequitas).  

In summary, Aequitas is an easy-to-use tool and offers some interesting options 
for a first bias and fairness approach for binary classifiers. Nonetheless, further 
in-depth analysis is needed for a more comprehensive understanding of fairness 
issues in AI.  

 

 

3.6.5 Themis AI 
 

Themis ML is an AI fairness tool which was originally developed by the MIT 

Computer Science & Artificial Intelligence Laboratory (CSAIL) and allows users 

 
 

13 e.g. http://aequitas.dssg.io/audit/7cwgs8fa/compas_for_aequitas/ 

https://pypi.org/project/aequitas/
https://github.com/dssg/aequitas
http://aequitas.dssg.io/audit/7cwgs8fa/compas_for_aequitas/
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to evaluate the fairness of their ML models by comparing the model's 
performance on different subsets of data. It provides a set of easy-to-understand 
fairness metrics and visualization tools for understanding and improving model 
fairness (cf. Bantilan, N., 2017). 

In the context of Themis ML, discrimination is defined as biased preferences 
towards or against certain social groups, resulting in unfair treatment regarding 
specific outcomes. Fairness, on the other hand, is the opposite of discrimination. 
A ML algorithm is considered fair if its predictions do not favor one social group 
over another for outcomes with socioeconomic, political, or legal significance, 
such as loan approvals. 

Although Themis ML is still an open-source library and publicly accessible14 for 
anyone who wishes to make use of the ML fairness options, it has also emerged 
as a spin-off company (Themis AI, https://themisai.io/) with a more holistic 
approach throughout the entire AI cycle, including out-of-the-box industry-
focused solutions as the so-called AI Guardian and AI certification programs.  

The focus in this research lies on the publicly available open-source Python 
library, which in turn has been built on top of the Sci-kit Learn, Numpy and 
Pandas libraries and the corresponding data pipeline interfaces such as: 

- Transformer: Preprocess raw data for model training 
- Estimator: Train models to perform a classification task 
- Scorer: Evaluate performance of different models 
- Predictor: Predict outcomes for new data 

Therefore, applying Themis-ML can be performed in a similar way to Sci-Kit 
Learn. The Readthedocs and Github documentation present a rather reduced 
scope of functionalities (the items marked with an asterisk are listed on the 
documentation but currently not implemented):  

1. Measuring Discrimination: 
1.1 Mean difference: Measures the disparity in outcomes between two 

social groups. 
1.2  Normalized mean difference: Similar to mean difference but scales 

values based on the maximum possible discrimination in a dataset. 
1.3  Consistency:* Compares an observation's target label with those of 

its neighbors, with lower scores indicating less individual-level 
discrimination. 

1.4  Situation Test Score:* Assesses discrimination only for disadvantaged 
individuals by computing a score between 0 and 1, where 0 indicates 
no discrimination and 1 indicates maximum discrimination. 
 

2. Mitigating Discrimination: 
2.1 Preprocessing: 

2.1.1 Relabeling (Massaging): Modifies the original dataset by 
changing some instance labels to achieve a more balanced 
distribution. 

 
 

14 https://pypi.org/project/themis-ml/ and https://themis-
ml.readthedocs.io/en/latest/  

https://themisai.io/
https://pypi.org/project/themis-ml/
https://themis-ml.readthedocs.io/en/latest/
https://themis-ml.readthedocs.io/en/latest/
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2.1.2 Reweighing:* Assigns different weights to the instances in the 
dataset, emphasizing or de-emphasizing their influence on the 
learning algorithm. 

2.1.3 Sampling:* Involves oversampling the minority class, 
undersampling the majority class, or a combination of both to 
create a balanced dataset. 

2.2 Model Estimation: 
2.2.1 Additive Counterfactually Fair Estimator: A method that 

models the relationship between protected attributes and 
outcomes while accounting for confounding variables. 

2.2.2 Prejudice Remover Regularized Estimator:* A learning algorithm 
that minimizes discriminatory behavior by adding a penalty 
term based on the prejudicial impact of the model. 

2.3  Postprocessing: 
2.3.1 Reject Option Classification: Introduces a decision threshold in 

the classification process, allowing instances within the 
threshold to be reconsidered for fairer treatment. 

2.3.2 Discrimination-aware Ensemble Classification:* Combines 
multiple classifiers in an ensemble, taking into account their 
individual discriminatory behavior to improve fairness. 

The latest library updates date back to February 2018, and as mentioned above, 
most of the envisioned enhancements have never been implemented, which in 
turn seems to underpin the fact that further developments have been moved to 
the spin-off company Themis AI.  

 

3.6.6 Tool Summary Comparison 
 

The previous sections have provided a detailed exploration of various fairness 
tools developed by diverse entities. To distill the salient aspects of each tool, a 
comparative analysis is presented in table 3-3, highlighting the specific 
advantages and drawbacks of each tool. This approach aids in identifying the 
distinctive features and utility of each tool in different contexts. 

A common advantage across many of the tools is the emphasis on ease of use. 
This aspect is primarily facilitated by interactive interfaces, detailed 
documentation, and an emphasis on user-friendly metrics. For instance, 
Google's What-if Tool and MIT's Themis AI prioritize visualization and simple 
metrics, making them accessible to non-experts. Such features enhance the 
usability of the tools and encourage broader adoption by data scientists, 
engineers, and even stakeholders with limited technical expertise. 

Another key strength is the comprehensive range of metrics and algorithms that 
some tools offer. IBM's AI Fairness 360, for example, provides a broad selection 
of fairness metrics and bias mitigation algorithms. This feature gives users the 
flexibility to choose the best fit for their specific use-case, thus enhancing the 
tool's versatility. 
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Tool Pros Cons 

IBM: 
AI-Fairness 
360 

Comprehensive set of 
metrics and algorithms 

Requires some understanding of 
fairness metrics and mitigation 
techniques 

  
Open-source and well-
documented 

May require more effort to 
integrate with existing model 
pipelines 

Google: 
What-if Tool 

Interactive and visual 
interface 

Limited to specific ML 
frameworks 

  
Easy to use for non-
experts 

Primarily focused on 
understanding model behavior 
rather than mitigating bias 

Facebook: 
Fairness Flow 

Focuses on model 
evaluation and 
understanding biases 

Limited to specific ML 
frameworks 

  
Provides actionable 

insights 

Only for internal Facebook use, 

no open source 

Carnegie 
Mellon: 
Aequitas 

Automation of bias 
auditing 

Focused on binary classification 
models only 

  Flexible and extensible 
Requires deep understanding of 
fairness metrics 

MIT: 
Themis AI 

Easy-to-understand 
metrics 

May not provide as much depth 
or customizability as other tools 

  Visualization tools 
Open source but not updated 
anymore, now also a spin-off 
company  

Table 3-3: AI Fairness Toolkit Comparison 

However, these tools are not without their limitations. One common 
shortcoming is the restrictive applicability of some tools, often limited to specific 
ML frameworks or types of models. For example, Google's What-if Tool and 
Facebook's Fairness Flow are only compatible with certain ML frameworks. 
Furthermore, Aequitas by Carnegie Mellon University primarily focuses on 
binary classification models, limiting its scope of application. 

Another notable constraint is the lack of support for intersectional protected 
attributes in many tools. This absence can pose a significant challenge as biases 
often operate at the intersection of multiple attributes, and tools lacking this 
feature may not fully detect or mitigate such biases. 

Lastly, the accessibility of some tools, such as Facebook's Fairness Flow, is 
restricted as they are for internal use only. This limitation curtails their 
application beyond the organization that developed them. 

In summary, while these tools offer valuable features for fairness evaluation and 
bias mitigation, they also come with certain constraints that need to be 
considered. Selecting the right tool would therefore depend on the specific 
requirements of the project, the technical expertise of the users, and the data 

and models being used.  
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4 Ethical, Legal, and Social Implications 
 

Chapter 4 of this analysis focuses on the Ethical, Legal, and Social Implications 

of artificial intelligence (AI) and AD-MS. This multifaceted exploration is 
organized into two significant sections. 

Section 4.1, "AI Bias and Fairness from a Legal Perspective," delves into a critical 
analysis of the legal frameworks that address issues of bias, fairness, and 
transparency in AI, with a particular focus on the EU, and to a lesser extent on 
the US and China. This includes examining various laws and directives such as 
the General Data Protection Regulation (GDPR) 15  and the future Artificial 
Intelligence Act (AIA)16 in the EU, the Algorithmic Accountability Act (AAA)17 in 
the United States, and the Personal Information Protection Law (PIPL)18 in China. 
The importance of accountability and transparency in AD-MS is highlighted in 
this subsection, emphasizing how biases in AI can impact legal aspects and the 
possible legal consequences therein. 

Section 4.2, "Ethical and Social Implications of AI," moves the discussion to the 
broader societal and ethical aspects of AI implementation and use. This includes 
a detailed exploration of the potential unintended consequences of AI, such as 
the amplification of existing societal biases and the potential for discrimination. 
This discussion will unpack how the current deployment of AI in society could, 
if not checked, inadvertently exacerbate social inequities. 

This section concludes with an overview of the need to strike a balance between 
accuracy, fairness, and privacy in AD-MS. This delicate interplay involves 
careful consideration of the trade-offs between these values and emphasizes the 
necessity for ethical decision-making in the design, development, and 
deployment of AI. By recognizing and addressing these issues, AI can be better 
harnessed to benefit society as a whole while minimizing potential harm and 
injustices. 

 

4.1 AI Bias and Fairness from a Legal Perspective 

This section outlines the major efforts of the lawmakers of the main players in 
the AI space, i.e., USA, China, and the EU. Although the first two have a clear 

head start, the focus lies on the EU for being the most active region in 
implementing new laws. Even the major companies in the ascending generative 
AI market urge to implement new laws and regulations such as Sam Altman, 
CEO of OpenAI, the creator of ChatGPT, although the reasons might deviate 
from the fairness discussion in this project.19  

 
 

15 Regulation (EU) 2016/679 - https://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:32016R0679  
16 Proposal for Artificial Intelligence Act - https://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:52021PC0206  
17 H.R.6580 - Algorithmic Accountability Act of 2022 - 
https://www.congress.gov/bill/117th-congress/house-bill/6580/text  
18 Personal Information Protection Law  - https://www.china-briefing.com/news/the-
prc-personal-information-protection-law-final-a-full-translation/  
19 The reasons for these companies might be rather related to create a so-called “moat” 
as their technology cannot be easily defended due to transfer learning.  

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021PC0206
https://www.congress.gov/bill/117th-congress/house-bill/6580/text
https://www.china-briefing.com/news/the-prc-personal-information-protection-law-final-a-full-translation/
https://www.china-briefing.com/news/the-prc-personal-information-protection-law-final-a-full-translation/
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Table 4-1 illustrates the recent legislators’ efforts to implement a legal AI 
framework. Only the most prominent laws and initiatives are mentioned, and it 
is not aimed at providing a comprehensive list.  

Law or 
Directive 

Year 
in 
Force 

Most 
Relevant 
Articles Region Short Description 

General Data 
Protection 
Regulation 
(GDPR) 2018 

Article 5(1)(a), 
5(1)(c), 22, 
Article 12, 
Article 13, 
Article 14, 
Recital 71 EU 

Ensuring transparency 
and responsibility, 
preventing unintended 
consequences and bias, 
and balancing accuracy, 
fairness, and privacy in 
the processing of 
personal data. 

Digital 
Services Act 
(DSA) 2022 

Article 11, 12, 
13, 14, 15, 24, 

27, 30, 42 
(Transparency)
, Article 16, 
17, 20, 21, 25, 
28, 31 
(Preventing 
Bias), Article 
26 (paragraph 
3), 54 
(Balancing 
Accuracy, 
Fairness, and 
Privacy) EU 

A regulation aimed at 
creating a safer digital 
space with European 
values and rules at its 
core. 

Artificial 
Intelligence 

Act (AIA) 

Not in 
force 
as of 
June 

2023 

Article 10, 
Article 15, 
Article 20, 
Article 41, 

Article 52 EU 

A proposal for regulation 
addressing transparency, 
responsibility, 
unintended 
consequences, bias, and 
balancing accuracy, 
fairness, and privacy for 

high-risk AI systems. 

 

 

Sam Altman on regulations in the NY Times: “OpenAI’s Sam Altman Urges A.I. 
Regulation in Senate Hearing”, 
https://www.nytimes.com/2023/05/16/technology/openai-altman-artificial-
intelligence-regulation.html  

https://www.nytimes.com/2023/05/16/technology/openai-altman-artificial-intelligence-regulation.html
https://www.nytimes.com/2023/05/16/technology/openai-altman-artificial-intelligence-regulation.html
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Guidelines 
from the High-
level Expert 
Group on 
Artificial 
Intelligence20 

 

2018 
 
2019 
 
 
2020 
 
 
2020 
 
  

The 
recommendati
ons from the 
group have 

acted as 
reference 
points for 
legislative 
actions 
undertaken by 
the 
Commission 
and its 
member 
states. EU 

• Ethics Guidelines for 

Trustworthy AI 

• Policy and Investment 
Recommendations for 
Trustworthy AI 

• The final Assessment 
List for Trustworthy 
AI (ALTAI)  

• Sectoral 
Considerations on the 
Policy and Investment 
Recommendations 

Algorithmic 
Accountability 
Act (AAA) 2022 N/A 

United 
States 

Legislation requiring 
companies to assess the 

impacts of automated 
systems they use and 
sell, providing new 
transparency about how 
these systems are used, 
and empowering 
consumers to make 
informed choices about 
the automation of critical 
decisions. 

Civil Rights 
Act, Title II 
and III 1964 

Title II - 
Section 202, 
Title III 

United 
States 

Legislation used to 
prevent discrimination in 
public spaces and 
facilities, extended to 
digital spaces to prevent 
bias in AI systems. 

Personal 
Information 
Protection Law 
(PIPL) 2021 Article 24 China 

A law equivalent to GDPR 
in China, requiring the 
explicit consent of 

individuals for 
automated decision-
making processes, 
including those involving 
AI. 

New 
Generation 
Artificial 
Intelligence 
Governance 
Principles 2019 N/A China 

A set of principles 
emphasizing ethical 
aspects that AI 
development should 
adhere to, such as 
fairness, justice, and 
respect for human rights. 

Table 4-1: Overview of the Most Important AI Laws and Regulations 

 
 

20 https://digital-strategy.ec.europa.eu/en/policies/expert-group-ai  

https://digital-strategy.ec.europa.eu/en/policies/expert-group-ai
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The latest initiative, ratified by the European Parliament in June 202321, is the 
AI Act, which is not supposed to come into force before 2026, however, it 
represents one of the most ambitious law initiatives in this context and is 
depicted more thoroughly. 

 

AI Act: 

The EU AI Act is a legislative proposal introduced by the European Commission 
in April 2021 and ratified by the European Parliament on June 14th, 2023. It 
aims to create a legal framework for artificial intelligence in the EU to ensure AI 
systems are developed and used safely and responsibly. The proposed AI Act 
addresses various aspects of AI, including transparency, accountability, and 
human oversight. 

The main objectives of the AI Act are to: 

1) Establish a single market for AI to facilitate the scaling up of AI solutions 
across the EU. 

2) Ensure that AI applications respect fundamental rights, EU values, and 
follow ethical guidelines. 

3) Promote investment in AI research and development to strengthen the 
EU's position in the global market. 

The AI Act categorizes AI systems into three risk categories: minimal, limited, 
and high risk. AI systems considered high-risk must comply with strict 
regulatory requirements, such as transparency, data quality, documentation, 
and human oversight. Limited-risk AI systems, like chatbots, should be 
transparent about their AI-driven nature. Minimal-risk AI systems will have 
limited regulatory intervention. 

An overview of some of the most important provisions and key concepts is 
provided: 

1) Scope and definitions (Articles 1-4): These articles define key terms and 
concepts used in the AI Act, such as "AI system," "provider," "user," and 
"high-risk AI system." They also set the scope of the regulation, which 
covers both AI systems developed in the EU and those imported into the 
EU. 

2) High-risk AI systems (Article 6): Article 6 outlines the criteria for 
identifying high-risk AI systems. Such systems may have a significant 
impact on people's rights, safety, or other important aspects of their lives. 
Examples include biometric identification, critical infrastructure 
management, and AI applications in employment and education. 

3) Conformity assessment (Articles 7-43): These articles establish the 
requirements for high-risk AI systems to ensure they meet legal 
compliance before being placed on the market. These requirements 
include transparency, data quality, documentation, and human 
oversight. High-risk AI systems must undergo a conformity assessment 
to verify that they meet the necessary requirements. 

 

 

21 e.g. Zakrzewski, C. et al.: “Europe moves ahead on AI regulation, challenging tech 
giants’ power”, Washington Post, June14th, 2023,   
https://www.washingtonpost.com/technology/2023/06/14/eu-parliament-approves-
ai-act/  

https://www.washingtonpost.com/technology/2023/06/14/eu-parliament-approves-ai-act/
https://www.washingtonpost.com/technology/2023/06/14/eu-parliament-approves-ai-act/
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4) Transparency obligations (Article 52): This article requires that AI 
systems intended to interact with humans, like chatbots, must be 
designed so that users are aware they are interacting with an AI system 
and not a human. This ensures that users can make informed decisions 

about whether to engage with the AI system. 
5) National competent authorities (Articles 58-60): These articles describe 

the role of national authorities in monitoring and enforcing the AI Act. 
Each EU member state must designate one or more national competent 
authorities to oversee the application of the AI Act. 

6) European Artificial Intelligence Board (Article 61): The AI Act proposes 
the establishment of the European Artificial Intelligence Board, an 
independent body that will advise and assist the European Commission 
and national competent authorities on AI-related matters. 

7) Fines and penalties (Articles 71-72): The AI Act sets out penalties for non-
compliance, including administrative fines that can be as high as 6% of 
a company's annual global turnover or €30 million, whichever is higher, 
for the most severe infringements. 

 

Focusing on the EU legislation, the following three principles seem of utmost 
importance from an AI fairness perspective: 

- Ensuring transparency and responsibility 
- Preventing unintended consequences and bias 
- Balancing accuracy, fairness, and privacy 

All of which are briefly summarized as to how they are reflected in the most 
prominent EU regulations, the GDPR and the upcoming AI Act. 

 

Ensuring Transparency and Responsibility 

• GDPR: 

Article 12: Transparent information, communication, and modalities for the 
exercise of the rights of the data subject. 

Article 13: Information to be provided where personal data is collected from the 
data subject. 

Article 14: Information to be provided where personal data has not been 
obtained from the data subject. 

• AI Act: 

Article 52: Transparency obligations for AI systems intended to interact with 
natural persons, ensuring that users are aware they are interacting with an AI 
system. 

Article 41: Record-keeping, requiring providers of high-risk AI systems to 
maintain documentation that demonstrates the system's compliance with the 
AI Act. 

 

Preventing Unintended Consequences and Bias 

• GDPR: 

Recital 71: Emphasizes the importance of preventing discriminatory effects on 
individuals due to automated decision-making, including profiling. 
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• AI Act: 

Article 10: Data and data governance, requiring high-risk AI systems to be 
trained, validated, and tested using high-quality datasets that are 

representative and respect privacy. 

Article 15: Testing and validating high-risk AI systems, ensuring their 
performance is consistent, accurate, and does not produce undesired effects. 

 

Balancing Accuracy, Fairness, and Privacy 

• GDPR: 

Article 5(1)(c): Data minimization principle, requiring personal data to be 
adequate, relevant, and limited to what is necessary for the purpose of 
processing. 

Article 22: Addresses automated decision-making, including profiling, that has 
legal or similarly significant effects on individuals, requiring organizations to 
provide meaningful information about the logic involved, the significance of the 
decision, and the consequences for the data subject. 

• AI Act: 

Article 20: Human oversight of high-risk AI systems, ensuring there is an 
appropriate level of human control to reduce the risk of errors and unintended 
consequences. 

Article 10: Data and data governance, requiring high-quality datasets for high-
risk AI systems that respect privacy, and helps balance accuracy and fairness 
while adhering to privacy requirements. 

 

4.1.1 AI Act Assessment by Different Key Stakeholders 
 

The proposed Artificial Intelligence Act (AIA) by the European Union has 
stimulated diverse responses from several key stakeholders. These stakeholders 

span academia, nonprofit organizations, legal and data experts, small and 
medium enterprises (SMEs), and think tanks. The following summarizes their 
viewpoints based on the EU Commission’s feedback initiative which received a 
total of 133 documents, however, the feedback period was already closed in 
August 2021. Some additional sources are added in the following brief overview: 

• The Future of Life Institute, an independent nonprofit, stresses the 
importance of AI providers considering the societal impact of their 
applications, beyond just individual-level implications (Future of Life 
Institute, 2021)22. 

• The Leverhulme Centre for the Future of Intelligence and the Centre for 
the Study of Existential Risk at the University of Cambridge underline the 
potential of the AIA to set global standards for reducing AI-related risks and 

 
 

22  https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12527-
Artificial-intelligence-ethical-and-legal-requirements/F2665546_en 
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enabling benefits. They propose more flexibility in changing the list of 
restricted and high-risk systems (University of Cambridge institutions, 
2021)23. 

• Access Now Europe, a digital rights organization, expresses concerns about 

the sufficiency of the AIA in protecting fundamental rights, particularly in 
relation to biometric applications like emotion recognition and AI polygraphs. 
They advocate for more robust measures such as outright bans (Access Now 
Europe, 2021)24. 

• Michael Veale and Frederik Zuiderveen Borgesius, legal and digital rights 
experts, reveal that the AIA heavily relies on self-assessment for compliance, 
raising questions about enforcement and the effectiveness of third-party 
verification (Veale, M. et al., 2021). 

• The Future Society, a nonprofit advocating for responsible AI adoption, 
recommends improvements in information flow between national and 
European institutions and emphasizes the importance of analyzing incident 
reports from member states (The Future Society, 2021)25. 

• Nathalie A. Smuha, Emma Ahmed-Rengers, and colleagues criticize the 

AIA's ability to accurately recognize wrongs and harms associated with AI 
systems and allocate responsibility. They also contend that it lacks an 
effective framework for enforcing legal rights and duties (Smuha, N. et al., 
2021). 

• The European DIGITAL SME Alliance, a network of ICT SMEs, calls for 
improvements to avoid overburdening SMEs and emphasizes the need for 
SMEs' active participation in the development of standards for conformity 
assessments (European DIGITAL SME Alliance, 2021)26. 

• The Center for Data Innovation has estimated that the AIA will cost €31 
billion over the next five years and reduce AI investments by nearly 20%. 
However, Meeri Haataja and Joanna Bryson argue that the Act will likely be 
much cheaper as it primarily covers a small proportion of high-risk AI 
applications (Center for Data Innovation27, 2021 / Haataja, M. et al., 2021). 

• Lastly, Nathalie Smuha distinguishes between societal harm and individual 
harm in the context of the AI Act. She argues that the Act's proposal focuses 
almost exclusively on individual harm, overlooking the need for protection 
against societal harms posed by AI (Smuha, N., 2021). 

These viewpoints highlight the importance of comprehensive and effective AI 
regulations that balance the protection of individual and societal rights, 

consider the potential cost implications, and ensure a flexible and practical 
approach for all stakeholders involved, but also show that the new challenges 
of AI and especially generative AI are not fully covered by the new AI Act. 

 

 
 

23  https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12527-
Artificial-intelligence-ethical-and-legal-requirements/F2665626_en 
24  https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12527-
Artificial-intelligence-ethical-and-legal-requirements/F2665462_en 
25  https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12527-
Artificial-intelligence-ethical-and-legal-requirements/F2665611_en 
26  https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12527-
Artificial-intelligence-ethical-and-legal-requirements/F2665574_en 
27 https://www2.datainnovation.org/2021-aia-costs.pdf 
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4.1.2 Assessment of Legal Frameworks in the EU, USA, and China 
 

One can claim that the legal landscapes for AI regulation and anti-
discrimination vary considerably across the European Union, United States, 
and China. There are several dimensions for comparison, including the scope of 
protections, enforcement mechanisms, and the emphasis on transparency, 
accountability, and privacy. 

In the European Union, a comprehensive regulatory approach is evident, 
particularly with the proposed Artificial Intelligence Act and the Digital Services 
Act, which cover a broad range of issues associated with AI, including 
transparency, bias, and accountability. Additionally, the EU's General Data 
Protection Regulation has provisions relevant to AI, such as data minimization, 
the right to explanation, and rules against solely automated decision-making. 
In the field of anti-discrimination law, the EU has established a series of 
directives such as the Race Equality Directive and Employment Equality 
Directive. While these directives primarily cover employment, they provide a 

legal basis for addressing algorithmic bias and discrimination. 

In contrast, the United States has a more sector-specific approach to AI 
regulation (cf. Barocas, S., et al., 2016). The Algorithmic Accountability Act of 
2022 mandates impact assessments for automated decision systems but does 
not cover all aspects of AI systems. Anti-discrimination laws, such as the Civil 
Rights Act, Fair Housing Act, and Equal Credit Opportunity Act, provide a legal 
framework to address discrimination and bias in AI systems, but these laws 
were not designed with AI systems in mind and may not cover all forms of 
discrimination that can arise from these systems. 

In China, the regulatory approach to AI is still developing, with draft provisions 
for AI security management released for public comment. The country's 
approach is characterized by a focus on security and state control, with less 
emphasis on transparency and individual rights (cf. Creemers, R., 2018).  In 
terms of anti-discrimination law, China has regulations against discrimination 
in employment, but a comprehensive anti-discrimination law is still under 
proposal. 

In conclusion, while the EU, US, and China have legal mechanisms to address 
bias and discrimination in AI, there are significant differences in the approach 

and scope of these mechanisms. The EU stands out for its comprehensive 
regulatory approach, while the US relies more on sector-specific laws and 
China's legal framework is still in development. Nevertheless, in all three regions, 
the existing legal frameworks may not fully cover the unique challenges posed 
by AI, indicating a need for further legal developments in this field. 

 

4.2 Ethical and Social Implications of AI Systems 

The ethical and social Implications of AI systems serve as a critical facet of study 
in the field of AI. As AI systems become pervasive in various spheres of society, 
it is paramount to understand and address the broader societal implications, 
design, and usability issues, as well as privacy concerns these technologies may 

engender. 

The societal impact of AI is multifaceted, encompassing issues such as prejudice 
bias, economic inequality, and environmental harm. These systems, though 
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designed to optimize certain tasks, may inadvertently contribute to societal 
disparities, propagate harmful stereotypes, or further burden the environment. 

Recalling the overview table of section 2.1, some of the issues and risks are 
treated in this section as marked in bold in table 4-2, whereas the others are 

briefly explained at the end of the section: 

Category Specific Issues 

Societal Impact 

Exacerbation of Historic Human Bias, Exclusion, 
Unfair Punishment, Economic Inequality, 
Environmental Impact, Labor Market Distortions  

Design and Usability 
Issues Lack of Transparency, Accessibility and Usability 

Privacy Concerns Privacy Violations, Data Collection 
Table 4-2: Specific AI Limitations 

Moreover, AI systems' design and usability can significantly affect their efficacy 
and fairness. A lack of transparency within AI models, often referred to as the 

'black box' problem, can lead to mistrust and confusion, hindering the system's 
adoption and undermining its potential benefits. Likewise, poor accessibility 
and usability can limit the reach and effectiveness of AI technologies, potentially 
excluding certain groups from their benefits. 

Privacy concerns arise due to the data-intensive nature of these AI systems. 
They require vast amounts of data for training and operation, raising concerns 
about data misuse, consent, and individuals' right to privacy. These concerns 
are compounded by the increasing use of AI in sensitive domains like healthcare, 
finance, and public services. 

This section aims to delve into a selection of thee issues, providing some 
additional notions of the ethical and social implications of AI systems, however, 
it is only meant to briefly describe some societal problems which arise due to 
the implementation of AI systems and cannot be understood as a complete view 
because of the project’s scope.  

 

• Environmental Impact 

The underpinnings of AI are deeply embedded in environmental concerns that 

stretch beyond mere considerations of carbon footprints. As the lifeblood of AI, 
electrical energy requires substantial carbon resources, and this is often 
overlooked amidst the tech sector's efforts to portray an image of sustainability 
and carbon neutrality. Despite attempts to diminish their environmental impact, 
massive digital infrastructures such as Amazon Web Services or Microsoft’s 
Azure are voracious consumers of energy, contributing to a perpetually 
increasing carbon footprint (Crawford, K., 2021).  

In parallel, the rapid growth of AI brings about the expansion of computational 
needs, which in turn intensifies these environmental concerns. AI model 
training requires significant energy, with initial investigations into this domain 
revealing startling figures. For example, one research found that running a 
single natural language processing (NLP) model generates more than 660,000 

pounds of CO2 emissions or the equivalent of 125 round-trip flights from New 
York to Beijing (Strubell, E. et al., 2019).  Moreover, it is not just model training 
that is energy-consuming. Data centers operating these models also have high 
electricity demands, with projections indicating that the power requirements of 
these centers could see a fifteenfold increase by 2030 (Belkhir, L. et al., 2019). 
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Efforts to counteract these environmental implications by corporations have 
been diverse. While companies like Apple, Google, and Microsoft have made 
commitments to carbon neutrality or even negativity, their involvement with 
fossil fuel companies offers a contradictory narrative. In essence, while they 

pledge to reduce their carbon footprints, they simultaneously enable the 
operations of the industries most responsible for climate change. 

Moreover, the environmental implications of AI are not constrained solely to 
energy consumption and carbon emissions. The high water demand of data 
centers presents another critical environmental challenge, and likewise, the rare 
mineral extraction with sometimes disastrous consequences across the world to 
build the numerous devices which are necessary to support the AI systems 
(Abrahams, D., 2017). 

Overall, the increasing computational requirements of AI contribute to a variety 
of environmental problems, contradicting the environmentally friendly image 
often promoted by the tech industry. The expanding footprint of AI systems 
underscores the urgent need for comprehensive environmental considerations 

within the tech industry's growth strategies. 

 

• Labor Market Impact 

The implications of Artificial Intelligence (AI) on the labor market are both 
transformative and profound, with observable consequences on job conditions 
and potential future disruptions across various industries. 

AI's influence on work conditions is palpable, with Amazon's logistic fulfillment 
centers serving as a telling example. These facilities have implemented AI-driven 
technologies, such as automation and robotics, to streamline their operations. 
As a result, the role of human labor has undergone significant changes, with 
employees needing to adapt to the increasingly mechanized environment. This 
adaptation has often manifested in strenuous physical labor and stringent 
productivity targets, leading to reported declines in job satisfaction and 
increases in workplace injuries (Crawford, K., 2021). The shift towards AI-driven 
workplaces raises essential questions about workers' rights and welfare, the 
quality of work, and the impact of AI on physical and psychological health. 

The long-term impact of AI on the labor market extends beyond altering current 

job conditions. A looming concern is the potential displacement of human 
workers as AI capabilities advance. For example, according to Kai-Fu Lee (2019), 
automation could dramatically reshape the labor landscape. In particular, 
repetitive, routine jobs and those that require less creativity and social 
interaction are at a higher risk of being replaced by AI technologies as shown in 
the figure 4-1 (Lee, K.-F., 2019) below: 
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Figure 4-1: Different Professions Being Threatened by AI Replacement 

This threat of automation spans across industries, from transportation, where 
self-driving technology might eliminate trucking jobs, to the service industry, 
where AI could automate tasks currently performed by cashiers, wait staff, and 
customer service representatives. In the manufacturing sector, where 
automation has already led to significant job displacement, AI could further 
amplify this trend. 

However, it is important to note that while AI has the potential to displace 
certain jobs, it can also create new ones and transform existing roles, requiring 
a shift in the skills workers need. The challenge is in managing this transition 
and ensuring that workers displaced by AI can be retrained and reskilled to take 
on new roles in the evolving job market, which is most likely not possible in the 
short run (European Commission and the Council of Economic Advisers in the 
US, 2021). 

In conclusion, the impact of AI on the labor market is multifaceted, with 
observable effects on work conditions and looming prospects of job 
displacement. A balanced and responsible approach to AI implementation is 
needed to mitigate adverse outcomes and leverage its potential benefits for labor. 
Such an approach might involve regulatory oversight, a commitment to workers' 
rights, and initiatives to support workforce transition through retraining and 
education programs. 

 

• Data Collection 

The practice of data collection in AI poses profound ethical, societal, and 
political challenges that require close examination (Seaver, N., 2018). An 
uncritical acceptance of data as an objective representation of reality is 

widespread, despite the underlying biases embedded in the training data that 
often reflect dominant cultural norms (Bolukbasi, T. et al., 2016). As a result, 
AI systems, though seemingly neutral, have the potential to inadvertently 
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perpetuate stereotypes and discriminatory behaviors (Barocas, S. et al., 2016). 
This poses considerable ethical dilemmas that necessitate immediate attention. 

The perspective of AI as a mathematical tool rather than a potential subject of 
research has historically minimized ethical scrutiny, a perspective that requires 

reconsideration in light of AI's integration into sensitive domains (Holstein et al., 
2019). Ethical issues are often downplayed by AI professionals and researchers, 
indicating a broader trend of overlooking the responsibility for potential harm 
arising from the deployment of these systems (Selbst, A. et al., 2019). It is vital 
for AI professionals to contemplate the repercussions of their work and realize 
that it could contribute to cultural harm if not conducted mindfully. 

The widespread culture of data extraction has led to the subtle privatization of 
what was formerly public data (Zuboff, S., 2019). Data collected, often without 
informed consent, is used to build AI systems with profound influence over 
various life aspects, leading to a power imbalance favoring private entities with 
large data pipelines (Pasquale, F., 2015). Far from being a neutral technical 
process, the collection and classification of data is essentially a social and 

political intervention with substantial implications (Boyd, D. et al., 2012). The 
power dynamics underlying these practices warrant closer scrutiny. 

In summary, these considerations highlight the need for an extensive overhaul 
in AI and data ethics, encompassing a rigorous examination of AI systems, a 
deep understanding of ethical implications, and a reassessment of the prevailing 
data extraction culture. It is crucial to uphold transparency, accountability, and 
fairness in these fast-evolving fields (Crawford, K. et al., 2019). 

 

Due to the focus if this master’s project the remaining topics are only briefly 
mentioned, but in-depth literature on all topics is added. 

 

• Exacerbation of Historic Human Bias: AI systems, built and trained on 
historic data, can inadvertently carry forward and amplify existing societal 
biases. This happens when the data the models learn from reflects ingrained 
human prejudices, leading to outcomes that might perpetuate these biases 
further, thereby influencing decision-making in areas such as hiring, law 
enforcement, and lending (O'Neil, C., 2016). 

 

• Exclusion: AI systems, if not designed inclusively, can result in exclusionary 
practices. This can occur when certain groups are not represented in the 
data on which the AI models are trained. For instance, voice recognition 
systems may fail to recognize certain accents if the training data is not 
diverse, leading to certain populations being denied the benefits of the 
technology (Buolamwini, J. et al, 2018). 
 

• Unfair Punishment: AI systems, specifically those deployed in the criminal 
justice system, have raised concerns of unfair punishment. These systems 
can impact parole, sentencing, and bail decisions. But, if not carefully 
regulated, they can reinforce existing systemic biases, leading to unjust 
outcomes (cf. section 5.4). 
 

• Economic Inequality: The broad deployment of AI can potentially amplify 
economic inequality. This can occur through job automation where AI and 
robotics replace certain job roles, affecting workers with lower levels of 
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education disproportionately and thus exacerbating income disparity 
(Brynjolfsson, E. et al., 2014). 
 

• Lack of Transparency: A significant challenge within AI systems is the lack 

of transparency. The complexity of these systems can make it difficult to 
understand their decision-making process, leading to what is often referred 
to as 'black box' AI. This opacity can hinder trust in these systems, making 
it crucial to develop techniques for better interpretability (Castelvecchi, D. 
2016). 

 

• Accessibility and Usability: The effective adoption of AI also depends on its 
accessibility and usability. However, if the design of these systems is not 
intuitive or does not consider the diverse needs of its users, it may limit their 
potential benefits (Giaccardi, E. et al., 2016). 

 

• Privacy Violations: AI systems often require vast amounts of data, raising 
significant privacy concerns. These systems can collect and analyze sensitive 

user data, posing potential risks to privacy if the data is misused or 
inadequately protected (Zuboff, S. 2019). 
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5 Case Studies 
 

The pursuit of understanding trustworthy ML and bias mitigation involves 

substantial theoretical discussions and the development of abstract principles. 
However, the application of these ideas and methods within a practical context 
provides the most meaningful evaluation of their strengths and weaknesses. To 
this end, this chapter introduces a series of case studies, serving as the bridge 
between the theoretical framework discussed in the previous chapters and its 
practical implications. 

 

5.1 Case Studies Overview 
 

The primary objective of these case studies is to facilitate the application of the 
explored concepts, tools, and approaches to real-world scenarios of ML. This 

process aims to foster a more comprehensive understanding of the various 
aspects of trustworthy ML and the mitigation of bias. The case studies endeavor 
to demonstrate how abstract principles of trustworthiness, fairness, and 
explainability are implemented in tangible situations, thus allowing the 
effectiveness and potential limitations of these principles to be evaluated. 

Diverse areas, including HR recruitment process, automated credit scoring, and 
predictive policing and recidivism profiling, are addressed in these case studies, 
with each one bringing unique challenges and insights. For each case, the steps 
of data collection and preprocessing, model selection and training, evaluation 
and validation metrics, and quantifying bias and fairness are examined, 
although each of the case studies focuses on certain aspects: 

1) HR Recruitment Processes: Multimodal input data and detection of 
protected attributes via unstructured data 

2) Automated Credit Scoring: Black-box models and interpretability (XAI) 
3) Recidivism Profiling: Review of ProPublica’s investigation on recidivism 

scores in US courts via different fairness metrics 

Through these detailed analyses, a deeper understanding of the complexities of 
implementing trustworthy ML algorithms and the multidimensional nature of 

bias, as well as how it can be effectively mitigated, can be achieved. These case 
studies are expected to provide compelling evidence of the theories and tools 
discussed and offer insights into areas where further research and development 
are needed.28 

 

5.2 HR Recruitment Process 

The examination of the Human Resources (HR) recruitment process represents 
a highly significant case study in the context of fairness and bias in ML. 
Recruitment serves as a critical gateway to opportunities, making fairness a 
fundamental consideration in the process. The potential for biases, often 
unconsciously introduced, can have severe implications for equality of 

 
 

28 The coding examples can be retrieved at https://github.com/sw-upm/trustworthy-
ai  

https://github.com/sw-upm/trustworthy-ai
https://github.com/sw-upm/trustworthy-ai
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opportunity, particularly when these biases are associated with protected 
attributes such as race and gender. 

A wealth of research underscores these concerns. For instance, studies have 
identified how personal characteristics can unconsciously influence decision-

making processes. Researchers have demonstrated that identical resumes 
bearing names associated with different racial groups can receive different rates 
of interview invitations, reflecting an implicit bias in the recruitment process 
(Abrams, D. et al., 2012). Moreover, the misuse of information is also prevalent. 
Prospective employees' credit histories are often reviewed by employers, 
potentially disadvantaging minority groups, despite the lack of a proven 
correlation between credit history and job performance (Board of Governors of 
the Federal Reserve System, 2020). 

Bias can also be encoded indirectly, even when algorithms are restricted from 
considering protected characteristics explicitly. For example, hiring algorithms 
can favor words more frequently used in applications from men, such as 
"executed" or "captured", indicating a gender bias (Datta, A., et al., 2015). 

Further, a study on Amazon illustrates the risk of AI systems learning and 
perpetuating existing biases. In this case, the company's AI recruiting tool was 
found to be biased against women, as the system had learned from a historical 
data set primarily composed of male candidates' resumes (Dastin, J., 2018). 

Given these examples, the case study of the HR recruitment process provides 
crucial insights into how AI can both help reduce bias but also risk perpetuating 
and scaling bias if not carefully managed. Therefore, the scrutiny of this process 
is essential in understanding how ML models can be designed and utilized to 
ensure fairness in decision-making. 

 

5.2.1 Restrictions on HR Data and Algorithms 
 

In investigating the complications of employing specific datasets for the analysis 
of AI in HR recruitment, several salient factors need to be elucidated. These 
comprise of the confidential character of the data, the corporate culture of non-
disclosure, and the proprietorial nature of algorithms utilized by third-party 
recruitment tool providers. 

Primarily, the sensitive nature of candidate data acts as a significant deterrent 
for examination. Candidate data inherently includes private and confidential 
information such as personal identifiers, education history, and career 
information. Given the requirements of regulations like General Data Protection 
Regulation (GDPR), it becomes challenging to utilize such data, even for 
research purposes. GDPR, along with similar data protection policies, stipulates 
strict regulations on the disclosure, processing, and transfer of personal data, 
especially without explicit consent from the individuals concerned. 

Furthermore, a culture of non-disclosure is prevalent within companies. 
Typically, companies are wary about the release of datasets, even in anonymized 
forms, due to a myriad of reasons, ranging from concerns about data misuse, 
competitive advantages, to potential legal implications. This guarded approach 

constrains the ability of researchers to perform comprehensive and detailed 
analyses. 

Moreover, third-party recruitment tool providers maintain a tight hold on their 
proprietary algorithms, making the analysis further complicated. Tools like 
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LinkedIn Talent Solutions, Jobvite, and Workable29 are some of the dominant 
providers in the market and are noted for their non-disclosure of underlying 
algorithms. Without transparency into the operating mechanisms of these tools, 
comprehensive analysis and verification of their biases or fairness are 

practically impossible. 

Aside from these factors, other barriers in evaluating specific datasets may 
include the lack of representativeness in the collected data, the dynamic nature 
of the data due to continually evolving job markets, and the difficulty in 
comparing outcomes due to the variance in recruitment criteria across different 
companies and positions (e.g., Foster, I. (ed.) et al., 2016). Furthermore, the 
unavailability of detailed metadata about the dataset collection process might 
lead to inherent biases, thereby restricting the reliability of the dataset for 
empirical analyses. 

Finally, the black box problem associated with AI systems can also pose a 
substantial challenge. Many AI models, such as deep learning algorithms, can 
be opaque and complex, making it difficult to understand the decision-making 

process and hence, complicating the analysis. 

In sum, these complexities and constraints inherent in the HR recruitment 
process and the associated data highlight the intricacies involved in conducting 
a fair and objective analysis.  

Therefore, the case study focuses on a synthetic dataset which incorporates bias 
in the HR recruitment process as described in the following sections.  

 

5.2.2 Automatic Recruitment Bias in Multimodal Datasets 
 

The following case study describes the findings of the academic paper “Bias in 
Multimodal AI: Testbed for Fair Automatic Recruitment” by Peña, A. et al. (2020), 
presents the result, and proposes a series of future directions for investigation.  

The researchers propose an automated recruitment testbed, FairCVtest, to 
study how the HR recruitment algorithms are affected by sensitive elements and 
biases within data. FairCVtest uses a set of multimodal synthetic profiles that 
have been consciously scored with gender and racial biases. This helps illustrate 
how the AI behind recruitment tools can extract sensitive information from 
unstructured data, potentially leading to unfair decision-making. The difficulty 
in detecting and preventing biases in multimodal models, which utilize multiple 
heterogeneous sources of information, including structured and unstructured 
data, is highlighted. Hence, the aim is to study how multimodal ML is influenced 
by biases in training datasets, evaluate the ability of neural networks to learn 
biased target functions from multimodal sources of information, and develop a 
discrimination-aware learning method that eliminates sensitive information 
from the learning process. 

A model was built based on this multimodal input data, and a scoring system 
was established to rank candidates according to their merits. However, bias can 
sneak in at different stages of the learning process, including the data collection, 
preprocessing, and even in defining the target function and learning strategy. 

 
 

29  https://business.linkedin.com/es-es/talent-solutions, https://www.jobvite.com/, 
https://www.workable.com/  

https://business.linkedin.com/es-es/talent-solutions
https://www.jobvite.com/
https://www.workable.com/
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Dataset 

To test these biases, a research dataset named FairCVdb was created, 
containing 24,000 synthetic resume profiles, 80% being used for the training 
and 20% for the validation sets. These profiles consist of 12 features from 5 

information blocks, as well as 2 demographic attributes (gender and ethnicity), 
and a face photograph. The five blocks are education attainment, availability, 
previous experience, presence of a recommendation letter, and proficiency in 8 
different languages. Figure 5-1 shows schematically which variables are used 
as Information blocks in a resume and personal attributes that can be derived 
from each one. The number of crosses represent the level of sensitive 
information (+++ = high, ++ = medium, + = low).30 

 

 

Figure 5-1: Multimodal Information in Resume 

Problem Formulation 

Each profile was assigned a score based on a linear combination of these 
competencies. Importantly, the scores were calculated without taking gender or 

ethnicity into account, creating an unbiased set of scores. However, two 
additional sets of scores were generated that incorporated gender and ethnicity 
biases, simulating real-world scenarios where the recruitment process might be 
influenced by such biases.  

Hence, the problem formulation is simply based on minimizing a loss function 
where the target function is a resume score function.  

Loss function: min
𝑤

∑ ℒ(𝑂( 𝑥𝑗 ∣∣ 𝑤 ), 𝑇𝑗)𝑥𝑗∈𝒮  

Where:  

𝑤 is the model parameter vector. 

𝑥 is an individual input sample obtained from the resume. 

 
 

30 The full dataset and code can be viewed in Github: 
 https://github.com/BiDAlab/FairCVtest  

https://github.com/BiDAlab/FairCVtest
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𝑇 is the target value representing the score within the interval [0, 1] ranking the 
candidates according to their merits. 

𝒮 is the set of training samples. 

𝑂(𝑥|𝑤) represents the output of the model with parameters 𝑤 given the input 𝑥 

ℒ  is the loss function used to calculate the discrepancy between the model 

output and the target value. 

 

And the target score function: 𝑇𝑗 = β𝑗 + ∑ α𝑖𝑥𝑖
𝑗𝑛

𝑖=1  

Where:  

𝑛 =  12 is the number of features (competencies). 

𝛼𝑖 are the weighting factors for each competency 𝑥𝑖
𝑗
 

𝜖𝑗  is some Gaussian noise to include a small degree of variability (i.e., to cater 

for slightly different scores for two profiles with the same competencies). 

These scores 𝑇𝑗  serve as ground truth in the experiments, but they are 
generated without considering gender or ethnicity information to ensure they 
are unbiased and equally distributed among different demographic groups. 

The unbiased scores, referred to as 𝑇𝑈, are used as a baseline. However, two 
additional target functions are introduced to simulate biased scenarios: gender 

bias 𝑇𝐺  and ethnicity bias 𝑇𝐸. 

Biased scores are generated by applying a penalty factor δ to certain individuals 
in specific demographic groups. This introduces a simulated cognitive bias, 
where individuals from certain groups may receive lower scores compared to 
others with the same competencies. 

By comparing the performance of models trained on unbiased scores 𝑇𝑈 with 
those trained on biased scores 𝑇𝐺  or 𝑇𝐸 , the impact of cognitive biases 

introduced by humans, protocols, or automatic systems can be analyzed. 

Experiments and First Results 

The experiments consist of four scenarios, differing in the use of gender 
attribute and target function (unbiased or biased). 

The four scenarios are: 

Scenario 1: Training with unbiased scores, including the gender attribute. 

Scenario 2: Training with gender-biased scores, including the gender attribute. 

Scenario 3: Training with gender-biased scores, without the gender attribute. 

Scenario 4: Training with gender-biased scores, including feature embedding 
from the face photograph. 

In all scenarios, the models were constructed as feedforward neural networks. 
In Scenario 4, a pretrained ResNet-50 model was used to obtain feature 
embeddings from face photographs as shown below in figure 5-2: 
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Figure 5-2: Multimodal Architecture - ResNet-50 & Fully-connected Layer 

In the experiment, the recruitment tool was trained using 80% of the synthetic 
profiles and a 20% validation set. Performance evaluation based on validation 
loss and KLD showed that adding gender and ethnicity information could 
enhance model accuracy but might also introduce significant bias into the 

recruitment process. 

The study further revealed that even if the gender attribute was not explicitly 
provided, the model could still detect gender from facial features. This suggests 
that AI recruitment tools might inadvertently learn to discriminate based on 
latent features if trained on biased datasets. 

 

Figure 5-3: Validation Loss per Scenario 

a correlation between the bias in scores and the network inputs. Scenario 4 falls 
in between the others, with the network discovering gender features in the face 
embeddings, despite not being trained for gender recognition. It is noted that 
the validation loss is lower when biased scores and sensitive features are 
available (Scenario 2) compared to when the network is blind to sensitive 
features (Scenarios 3 and 4). 

Figure 5-3 presents the validation loss 
during the training process for 
different scenarios, serving as an 
indicator of each network's 
performance on scoring applicant 
resumes. In Scenarios 1 and 2, where 
the network has access to all 
influential features, the models 
perform more precisely. The presence 
of Gaussian noise prevents the loss 
from converging to zero. Scenario 3 
performs poorly due to the absence of 
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Figure 5-4: Kullback-Leibler Divergence with Gender Bias in Distribution 

Figure 5-4 illustrates the score distributions predicted in each scenario by 
gender, revealing the presence of bias in certain scenarios. The KLD is used to 
measure the bias’s impact on the classifier output. In Scenarios 1 and 3, there's 
no gender difference in the scores, evidenced by a KL divergence close to zero. 
Scenario 1 achieves this due to the use of unbiased scores during training, 
rendering gender information in the input irrelevant, while Scenario 3 achieves 
it by ensuring no gender information in the training data, with balanced classes. 
Despite a drop in performance, the absence of this information results in a fairer 
model. Scenario 2 displays the most pronounced difference between male-
female classes due to the explicit provision of gender information. In Scenario 
4, the network is capable of detecting gender information from face embeddings 

and correlating them with the injected bias. This reveals the presence of gender 
bias, even when gender was not explicitly available during training, indicating 
the gender is inferred from latent features in the face image. In this case, the KL 
divergence is lower than in Scenario 2 but significantly higher than in the 
unbiased scenarios. 

Experiment Enhancement with Unbiased Model FairCVTest and Results 

The model is enhanced with an additional regularization to cater for unbiased 
learning as proposed by Morales, A. et al. (2019), which they call agnostic 
representation through SensitiveNets.  

The optimization formula is enhanced as follows:  

min
𝑤

∑ (ℒ(𝑂( 𝑥𝑗 ∣∣ 𝑤 ), 𝑇𝑗) + Δ𝑗)
𝑥𝑗∈𝒮

 

This method, originally developed for privacy enhancement in face biometrics, 
incorporates an adversarial regularizer to eliminate sensitive information from 

the learned representations.  In this context, the term Δ𝑗 is generated using a 
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sensitiveness detector and quantifies the amount of sensitive information 
present in the learned model represented by the parameter vector 𝑤. The face 
representation used in Scenario 4 is trained using this method, which is referred 
to as the "Agnostic scenario" in subsequent experiments. 

The simulated recruitment experiment, assuming a tool to perform initial 
screening, used all 24,000 resumes as input. In each scenario, the top 100 
scores were selected. Table 5-1 shows the gender distribution for these 
selections. Scenarios 1 and 3, where the classifier exhibits no gender bias, had 
almost no discrepancy in the percentage of candidates chosen from different 
gender groups. However, in Scenarios 2 and 4, the gender bias was significant, 
more pronounced in Scenario 2 with a 74% difference. The difference was 54% 
in Scenario 4. The application of a sensitive features removal technique 
dramatically reduced this discrepancy from 54% to 0%, effectively rectifying the 
gender bias. This finding underlines the potential dangers of these recruitment 
tools in terms of fairness and highlights potential solutions. 

Scenario Bias Input Features Gender Delta 

  Merits Dem Face Male Female  
1 no  yes no 51% 49% 2% 

2 yes yes yes no 87% 13% 74% 

3 yes yes no no 50% 50% 0% 

4 yes yes no yes 77% 23% 54% 

Agnostic yes yes no yes 50% 50% 0% 
Table 5-1: Distribution of the Top 100 Candidates 

 

Conclusions and Discussions 

The case study introduces FairCVtest, an open-source framework developed to 
understand how biases in data affect AI recruitment tools. It uses deep learning 
to analyze the ability of AI to expose and use sensitive data. The framework uses 
24,000 synthetic job applicant profiles. Biases in gender and ethnicity were 
incorporated into the scoring of these profiles, resulting in discrimination in the 
generated candidate scores. This discrimination was apparent both when these 
attributes were given explicitly and when only a face image was provided. The 
findings show that biases can arise from unstructured data combined with 

historical biases, particularly with datasets gathered from historical sources 
that lack diversity representation. The study also explores ways to mitigate 
these biases, specifically using a method called SensitiveNets (Morales, A. et al., 
2019), which removes sensitive information during the learning process, 
improving fairness.  

This HR recruitment model approach based on a synthetic toy set already 
provides some interesting insights by demonstrating that unintended bias can 
emerge from unstructured data such as face images or resume texts if the model 
is trained with historically biased data.  

The paper presents a thorough study on the biases inherent in AI-based 
automated recruitment systems and proposes an experimental framework, 
FairCVtest, to explore this critical issue. However, there could be some potential 

limitations and avenues for future work: 

Limitation in Synthetic Data: While FairCVdb is a valuable tool, it uses 
synthetic profiles instead of real-world data. The dynamics of real-world biases 
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could be much more complex and multifaceted than the biases artificially 
introduced in the synthetic data. Future studies should involve real-world 
recruitment data to more accurately understand how biases manifest in AI 
recruitment systems. As mentioned before, this seems to be an extremely 

challenging task for the time being.  

Bias Scope: This study mainly focuses on gender and ethnicity biases. While 
these are important, there are other types of biases that could be present in 
recruitment processes, such as age, disability, socio-economic status, or 
educational background biases. Although the toy set can be easily adapted to 
gender and ethnicity, the focus is always on a single sensitive attribute and 
never on a combination of various, e.g., how would an elderly black woman be 
treated in such a recruitment process? 

Fairness Metric: The paper utilizes SensitiveNets to train fair models, but it 
does not discuss in depth how fairness is quantified or what metrics are used 
to evaluate the fairness of these models except KLD. Future work could delve 
into the development of robust fairness metrics for AI recruitment systems. 

Preventive Measures: Although the paper experiments with SensitiveNets to 
reduce biases in AI, it could explore additional methods or preventative 
measures to reduce or eliminate these biases. There is a wide range of de-biasing 
techniques that could be employed, including pre-processing, in-processing, 
and post-processing methods. 

User-Specific Bias: The paper notes the recent shift from group-based bias 
analysis to user-specific bias analysis, and it suggests that FairCVtest will be 
updated to incorporate such user-specific biases. Exploring user-specific biases 
could be a promising direction for future work, as this approach accounts for 
the individuality and uniqueness of each candidate. 

Legal and Ethical Implications: While the study is technical, it could also delve 
into the legal and ethical implications of using AI in recruitment. This would 
provide a more holistic understanding of the problem and could lead to the 
formulation of guidelines or best practices for AI recruitment. 

Explainability and Transparency: AI models, especially deep learning models, 
are often seen as black boxes, where the decision-making processes are not 
transparent. Future work could explore methods to increase the transparency 
and explainability of AI recruitment systems, allowing users to understand why 

certain decisions are made, although as mentioned in the introductory part of 
this section, this also proves very challenging due to the proprietary nature of 
the algorithms applied by automated HR recruitment tool providers.  

 

 

5.3 Automated Credit Scoring 
 

The evaluation of automated credit scoring serves as another critical case study 
in the context of fairness and bias in ML. Credit scoring significantly impacts 
an individual's access to various financial products and services, and as such, 
biases within this system can have profound implications on economic 

opportunity and financial inclusion. 

Historically, conventional credit scoring methods have relied on a set of factors 
such as credit history, current debt levels, and income, among others. While 
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these factors can be effective indicators of creditworthiness, they may also 
introduce biases, either directly or indirectly, against certain demographic 
groups. For instance, lower-income individuals or recent immigrants may lack 
substantial credit history, thus negatively affecting their credit scores despite 

their potential creditworthiness. 

ML algorithms, while promising for their ability to analyze complex relationships 
and large datasets, can perpetuate or even exacerbate these biases if not 
properly managed. For example, a study by the National Bureau of Economic 
Research found that algorithms used for FinTech lending discriminate against 
Latinx and African American borrowers (Bartlett et al., 2019). This 
discrimination is not because these algorithms use race explicitly but because 
they pick up proxies for race in the data. 

In another instance, an investigation by the Federal Trade Commission found 
that an AI system used for credit decisions was discriminating against certain 
customers, even though the model was not explicitly using any protected 
characteristics (Federal Trade Commission, 2021). This highlights the subtlety 

with which biases can be encoded within these systems and the importance of 
ensuring fairness in their design and implementation. 

Given these examples, the scrutiny of automated credit scoring is crucial to 
understanding how AI systems can be developed and used to uphold fairness 
and eliminate bias in this important area of financial decision-making. 

However, the first step is to get a clear understanding of how certain black-box 
models should be interpreted. The idea of this short case study is to leverage 
and illustrate two of the presented XAI techniques, namely SHAP and LIME, via 
a well-known benchmark dataset. 

 

5.3.1 German Credit Dataset 
 

The German Credit dataset is a renowned collection of data, widely used in risk 
analysis and ML research, obtained from the Statlog project at the University of 
California, Irvine's Machine Learning Repository 31 . This dataset comprises 
information from 1,000 loan applicants who were customers of a German bank 
from the 1990s. The primary purpose of this dataset is to aid in the assessment 
of credit risk, that is, to determine whether a loan applicant should be 
categorized as 'Good' or 'Bad' credit risk based on a collection of attributes. 

Each instance in this dataset is described by a set of 20 diverse features, both 
categorical and numerical. The categorical features provide information about 
the applicant's credit history, employment status, personal status and sex, 
property ownership, and other socio-economic indicators. On the other hand, 
the numerical features include credit duration, credit amount, installment rate, 
residence duration, age, and other related variables. From a fairness perspective 
age and gender (sex) are usually chosen as protected attributes.  

The target variable, 'classification', differentiates between 'Good' and 'Bad' credit 
risk. These classes are balanced to prevent any bias towards a specific category, 
with approximately 70% of the instances labeled as 'Good' and 30% labeled as 

'Bad'. 

 
 

31 http://archive.ics.uci.edu/dataset/144/statlog+german+credit+data  

http://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
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The German Credit dataset's nature and multi-aspect representation of an 
individual's financial status make it a regular resource for developing and 
evaluating credit risk assessment models. The dataset's size and diversity, 
including both categorical and numerical features, provides opportunities for 

various preprocessing, feature engineering, and modeling techniques, making it 
a commonly used benchmark in the field of ML and risk prediction. Annex 2 
lists each of the features with a short description.  

 

5.3.2 XAI Analysis 
 

In this short case study, a ML analysis is performed on the German Credit Data 
dataset to predict customer credit risk. 

Initially, the dataset is imported from the UCI Machine Learning Repository, and 
the target class labels are replaced for binary classification purposes. The 
dataset consists of both numerical and categorical features. For preprocessing, 

numerical features are standardized, which rescales them to have a mean of 0 
and a standard deviation of 1, making the values more suitable for the applied 
ML algorithms. The categorical features are converted into numerical form 
through label encoding, followed by one-hot encoding to ensure they are 
properly interpreted by the ML algorithms. 

The data is then split into a training set and a test set, with a test size of 20% 
of the total data. The Synthetic Minority Over-sampling Technique (SMOTE) is 
applied to the training set to address the issue of class imbalance, generating 
synthetic samples of the minority class to balance the class distribution. 

Subsequently, five different black-box ML models are trained on the balanced 
training data: XGBoost, LGBM, AdaBoost, CatBoost, and HistGradientBoost. 
Each model's performance is evaluated based on four different metrics: 
accuracy, F1 score, recall, and precision. These metrics provide insight into the 
model's ability to correctly classify instances, balance precision and recall (F1), 
correctly identify positive instances (recall), and the proportion of true positive 
predictions among all positive predictions (precision). 

After training and evaluation, the performance of the models is compared and 
ranked based on the four metrics. Table 5-2 shows the result, 
HistGradientBoost being the one with the best performance, also illustrated in 
figure 5-5: 

Model Accuracy F1 Recall  Precision 

HistGradientBoost 0.82 0.88 0.91 0.84 

CatBoost   0.82 0.87 0.91 0.82 

AdaBoost  0.80 0.86 0.87 0.84 

XGBoost   0.79 0.86 0.91 0.81 

LGBM    0.78 0.85 0.91 0.80 
Table 5-2: Performance on Boosting Models 
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Figure 5-5: Boosting Model Performance Comparison 

 

To provide a deeper understanding of model, the SHapley Additive exPlanations 
(SHAP) and Local Interpretable Model-agnostic Explanations (LIME) techniques 
are used for explainability. The best performing model, HistGradientBoost, is 
chosen for this analysis. 

SHAP provides a summary plot displaying the most important features and 
their negative (blue) and positive (red) impacts on the model's output as 
illustrated in figure 5-6: 

 

Figure 5-6: SHAP Summary Plot on Credit Data 

The SHAP summary plot provides a holistic view of the feature importance and 
their effects on the prediction model. Here's an interpretation of the first three 
features as presented in the summary plot: 
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• existingchecking_3: This feature seems to have the highest impact on 
the model's output. It demonstrates a clear bifurcation in its SHAP values, 

with a separate cluster of negative (blue) and positive (red) SHAP values. 
The blue points on the left show that lower values of existingchecking_3 
decrease the model's output, while the red points on the right show that 
higher values of this feature increase the model's output. Hence, 
existingchecking_3 has a significant and varying impact on the model's 
predictions. 

• creditamount: The SHAP values for creditamount are mostly blue and 
overlap between positive and negative effects, indicating this feature has 
a generally negative effect on the model's output. However, the presence 
of both red and blue points throughout its range implies that 
creditamount can increase or decrease the model's output depending on 
its value. The relationship between creditamount and the output is likely 
complex, potentially non-monotonic, and warrants further investigation. 

• age: The feature age shows a similar pattern as creditamount, with both 
red and blue points scattered across its range. This suggests age has a 
mixed impact on the model's predictions, and its effect is not simply 
positive or negative but varies based on its value. The slightly more blue 
values indicate that higher age values might more frequently decrease 
the model's output, though there is considerable variance.  

A SHAP dependence plot is also produced to further explore the relationship 
between age and the prediction as shown in figure 5-7: 

 

Figure 5-7: SHAP Dependence Plot for Age on Credit Data 

The SHAP dependence plot provides a detailed view of the relationship between 
a specific feature and its corresponding SHAP values. This allows us to visualize 
and understand the complex interplay between this feature and the model's 
predictions. 

The feature age is depicted along the x-axis, while the SHAP values are 

represented along the y-axis. Each point represents a specific instance in 
the data. 
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The predominantly blue points imply that lower age values frequently 
lower the model's output (since blue is often associated with a negative 
SHAP value), while the few red points suggest that certain higher age 
values increase the output (since red typically corresponds to positive 

SHAP values). This suggests that the relationship between age and the 
model's output is complex and potentially non-linear, with both higher 
and lower age values being associated with both higher and lower model 
outputs. 

The SHAP values on the y-axis range from -2 to 1.5. A SHAP value 
essentially quantifies the contribution of a feature to the prediction of 
each instance relative to the prediction's baseline value. A negative SHAP 
value implies that the presence of a feature pushes the model's prediction 
lower than the baseline, while a positive SHAP value suggests that the 
feature increases the prediction. The magnitude of these values signifies 
the strength of the effect. In this case, age values that yield SHAP values 
around -2 have a strong negative impact on the model's prediction, while 
those around 1.5 have a strong positive impact.  

The standardization of age makes the feature have a mean of 0 and a 
standard deviation of 1. This range implies that the age values in this 
dataset are mainly within 3 standard deviations from the mean. 

On the right side of the dependence plot, the feature credithistory_4 
(=delay in paying off in the past) is displayed with values ranging from -
0.5 to 1.5. The color of each dot in the plot corresponds to the value of 
credithistory_4 for that particular instance, suggesting that 
credithistory_4 may interact with age in affecting the model's predictions. 
The values are encoded representations of the categorical feature "delay 
in paying off in the past". The fact that these values are represented by 
colors in the main plot signifies an interaction effect. Specifically, the 
SHAP values (model's output) might not just depend on age alone, but 
also on the interaction between age and credithistory_4. For instance, a 
particular age might have a positive impact on the model's output for one 
value of credithistory_4 but a negative impact for a different value. 

Additionally, an instance from the test set is explained with LIME, giving insight 
into how each feature contributes to the final prediction for that specific 
instance. 

 

Figure 5-8: LIME Explanation for a Specific Instance 

The LIME output for instance 190 provides the following interpretation (the 
exact meaning of the one-hot encoded variables can be checked in annex 2): 
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• existingchecking_3: The feature existingchecking_3 (=checking account 
with highest amount) continues to have a positive impact on the 
prediction with a weight of 1.22. An increase in the value of this feature 
would make the model more likely to predict the positive class for this 

instance. 

• purpose_1: With a weight of -0.34, this feature has a negative influence 
on the prediction. An increase in the value of purpose_1 (=new car) for 
this instance would push the model's prediction towards the negative 
class. 

• credithistory_4: This feature negatively affects the prediction with a 
weight of -0.64. This means when credithistory_4 (=delay in paying off in 
the past) is high, it leads the model to predict the negative class. 

• purpose_7 and credithistory_0: Both features have a negative impact 
on the prediction with weights of -0.22 and -0.21 respectively, pushing 
the prediction towards the negative class when their values are high. 

• age: This feature has a weight of 0.65, suggesting that a higher age 
pushes the prediction towards the positive class for this instance. 

• existingchecking_0 and creditamount: These features negatively 
impact the prediction with weights of -0.60 and -0.63 respectively. This 
implies that an increase in these features would lead the model's 
prediction towards the negative class for this instance. 

 

In conclusion, this exercise served as a brief illustration of the interpretability 
techniques applied to black-box models using the German Credit dataset. By 
leveraging SHAP and LIME, it was to gain insights into the feature importance 
and understand the model's decision-making process on specific instances. 
However, it is important to note that this exercise was conducted solely for 
illustrative purposes, and no generalizable conclusions or inferences should be 
drawn from this specific example. Interpretability methods should be used as 
tools to aid understanding and provide transparency in complex models, but 
further investigation and evaluation are necessary to draw robust conclusions 
in real-world scenarios. 

 

5.4 Predictive Policing and Recidivism Profiling - COMPAS  

ML's role in predictive policing and recidivism profiling, particularly the 
Correctional Offender Management Profiling for Alternative Sanctions 
(COMPAS), serves as a pertinent case study in the analysis of fairness and bias 
within AD-MS. These systems carry substantial influence over life-altering 
decisions in the context of justice administration, underscoring the necessity 
for transparency, fairness, and accountability. 

COMPAS is a predictive algorithm applied within the criminal justice system to 
estimate the likelihood of a defendant's recidivism. Its deployment, however, has 
been controversial due to issues related to potential racial bias. Specifically, the 
tool was analyzed based on its application in Broward County, Florida, and it 
was found that Black defendants were more likely to be falsely labeled as high-
risk reoffenders compared to their White counterparts (Angwin, J., et al., 2016). 

However, this depiction of COMPAS is complex and multifaceted. Some 
researchers argue that COMPAS can help reduce bias. For instance, Kleinberg, 
J. et al. (2018) suggest that such predictive algorithms, when correctly applied, 
can improve decision-making processes and reduce human bias. On the other 
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hand, oversampling issues may arise due to overpolicing in certain 
neighborhoods, potentially biasing the algorithm towards these regions. 

The controversy surrounding COMPAS underscores an essential tension in 
designing fair ML systems—the trade-off between different fairness metrics. For 

instance, balancing predictive parity (equal predictive accuracy across groups) 
and false positive rate balance (equal false positive rates across groups) is a 
challenging yet crucial aspect of ensuring algorithmic fairness. 

In summary, this examination of COMPAS illuminates the nuanced challenges 
in constructing and applying fair and trustworthy AI systems within the context 
of criminal justice. The lessons derived from this case study are integral to 
guiding future efforts in designing fair AI systems for high-stakes decision-
making. 

Other prominent predictive policing cases comprise the following ones and are 
only meant to illustrate the growing concern about the need to apply a bias and 
fairness framework as depicted in the previous sections.  

The   (CPD) in 2016 faced controversy over its use of a predictive policing 
algorithm known as the Strategic Subject List (SSL). The algorithm was designed 
to identify individuals who were predicted to be involved in violent crime. Critics 
contended that the algorithm disproportionately targeted communities of color, 
exacerbating existing racial biases and contributing to over-policing in these 
communities. This case has been thoroughly discussed in the paper titled, " The 
Rise of Big Data Policing: Surveillance, Race, and the Future of Law 
Enforcement" (Ferguson, A.G., 2017). 

In 2018, the Los Angeles Police Department (LAPD) encountered criticism for its 
use of predictive policing algorithms such as PredPol and Operation LASER. 
Critiques highlighted that the algorithm disproportionately targeted 
communities of color, reinforcing existing racial biases, and led to over-policing. 
The analysis and criticism of these methods can be found in the paper, " Dirty 
Data, Bad Predictions: How Civil Rights Violations Impact Police Data” 
(Richardson, R. et al., 2019). 

The Predictive Policing (PredPol) algorithm, widely used across various police 
departments in the U.S., has attracted criticism for its potential to reinforce 
racial biases and contribute to over-policing in communities of color. PredPol 
uses historical crime data to predict where crimes are likely to occur, but critics 

argue that this approach can reinforce existing patterns of bias and 
discrimination. The discussion surrounding the implications of PredPol can be 
found in the academic paper, "Predictive Policing and the Politics of Patterns" 
(Kaufmann, M. et al., 2018). 

However, the focus in the rest of this section lies on the COMPAS algorithm 
developed by Northpointe32 first in the late 1990s and then applied across the 
US in courts applying pretrial release risk, general recidivism, and violent 
recidivism scales. The following analysis comes with a series of caveats which 
need to be mentioned as they limit the scope and depth of the analysis: 

1) Proprietary software: A pervasive critique of proprietary software, such 
as COMPAS, revolves around the issue of transparency and due process. 

 
 

32 Courtview Justice Solutions Inc., Constellation Justice Systems Inc., and Northpointe 
Inc. were merged as Equivant in January 2017.  



5 Case Studies 

117 

 

Since the underpinning algorithms and computational procedures that 
these systems employ are often safeguarded as trade secrets, they are 
typically inaccessible for public scrutiny or examination. 

2) Dataset: The issue of dataset availability is a key factor that complicates 

the analysis of the efficacy and fairness of proprietary algorithms like 
COMPAS. With the Broward County, Florida dataset being the only one 
publicly available for scrutiny, there are inherent limitations in the 
analysis that can be performed on COMPAS's effectiveness and potential 
biases. 

Notwithstanding these limitations, an analysis can be performed based on the 
reduced dataset and the respective models’ predictions. The starting point is the 
ProPublica 33  investigation from 2016 (Angwin, J. et. al., 2016) 34 , which 
provoked civil disturbance and controversy.  

Furthermore, some of the fairness tools presented in section 3.5 Tool-based Bias 
Mitigation are applied to the dataset, statistical fairness measures analyzed, 
and conclusions drawn from these standard tools.  

Finally, additional analysis is carried out based on own Python notebooks, 
making use of different libraries as described below.  

 

5.4.1 The COMPAS Dataset and Initial Exploratory Data Analysis 
 

ProPublica's investigation into the COMPAS algorithm focused on its application 
in Broward County, Florida, a large jurisdiction that extensively employs the 
COMPAS tool in pretrial decision-making. The choice of Broward County was 
also influenced by Florida's robust open-records laws. 

Following a public records request, ProPublica secured COMPAS scores for two 
consecutive years (2013 and 2014) from the Broward County Sheriff’s Office. 
This dataset encompassed 18,610 individuals who were scored during that 
period. To align the study with the county's primary usage of the COMPAS tool, 
only scores associated with pretrial decisions were retained, resulting in a 
refined sample of 11,757 individuals. Each of these defendants received three 
COMPAS scores: 'Risk of Recidivism', 'Risk of Violence', and 'Risk of Failure to 
Appear'. These scores, on a scale from 1 to 10, were categorized by COMPAS as 

'Low' (1-4), 'Medium' (5-7), or 'High' (8-10). 

To construct a comprehensive criminal history for each individual, public 
criminal records from the Broward County Clerk’s Office were gathered until 
April 1, 2016. The mean time defendants were not incarcerated was calculated 
as approximately 623 days, with a standard deviation of approximately 329 days. 
These records were matched with the COMPAS scores using individuals' first 
and last names and date of birth. This process led to the downloading of 
approximately 80,000 criminal records. 

 
 

33 ProPublica describe themselves as “an independent, nonprofit newsroom that 
produces investigative journalism with moral force.” 
https://www.propublica.org/about/  
34  https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-
sentencing  

https://www.propublica.org/about/
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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Race classification followed the Broward County Sheriff’s Office's system, which 
categorizes defendants as Black, White, Hispanic, Asian, and Native American. 
In 343 cases, the race was marked as 'Other'. Additionally, incarceration records 
were compiled from jail records provided by the Broward County Sheriff’s Office 

(January 2013 to April 2016) and from public records on the Florida 
Department of Corrections website. 

Finally, the dataset used in most of the analyses (including the one from 
ProPublica) and academic papers, is the one for a two-year period (2013-2014) 
recidivism score with 52 features, one binary target variable (recidivist or not) 
and 7,214 instances, although most of the published analyses use between 14 
and 29 features, including that of ProPublica. 

The dataset table in annex 2 provides a brief overview of all 53 variables used 
in the 2-year recidivism dataset. 

The raw dataset basic statistics already show that quite a few entries are 
missing as shown in figure 5-9: 

 

Figure 5-9: COMPAS Dataset Statistics 

A closer look in figure 5-10 reveals that most of the missing values refer to 
recidivism (r_*) and violent recidivism events (vr_*), which in turn can be easily 
explained as only those individuals who recidivate can generate the 
corresponding datapoints. Violent recidivism is the only column without any 
values and can be skipped as the following one is_violent_recid already conveys 
the same information.  

 

Figure 5-10: Missing Values in the COMPAS Dataset 

 

A series of protected attributes are directly included in the dataset, above all 
race and gender, hence, fairness through awareness plays an important role in 
this analysis. The distribution of the main protected variables of sex and race 
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are very skewed as can be observed in the following contingency (or crosstab) 
table 5-3 analysis: 

 

Table 5-3: Contingency Table of Main Protected Variables 

Afro-Americans account for 51.44% and Caucasian for 34.07% (total of 85.51%) 
and men for 80.96% compared to 19.04% women of the entire dataset. The 
skewed ground truth for race, sex and age groups is important to keep in mind 
for the analysis in the following sections as illustrated in figure 5-11: 

Race: 

 

Age: 

 

 

Gender: 

 

However, the binary target variable of recidivism is a lot more balanced with 
55% representing no recidivism compared to 45% of recidivism: 

 

Figure 5-11: Protected Attributes and Target Distributions 

It is worth noting that Northpointe claimed to have included 137 variables in its 
COMPAS model35 in 2015, however, the exact process and weighting of these 
137 features are proprietary and have not been publicly disclosed in detail, 
which is part of the ongoing debate about the transparency and accountability 

 
 

35  Originally published by Northpointe, but now only available at : 
https://assets.documentcloud.org/documents/2840784/Practitioner-s-Guide-to-
COMPAS-Core.pdf 
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of such tools. These features include criminal history, rehabilitation behavior, 
and responses to a detailed questionnaire. The specific set of features used, and 
their role in the overall predictive algorithm, is not publicly available due to the 
proprietary nature of the software. 

Figure 5-12 depicts the even decile distribution for blacks and the diminishing 
distribution for whites, as observed in the initial analysis of COMPAS decile 
scores. The analysis considered a cohort of 6,172 defendants who had either 
not been arrested for a new offense or had recidivated within a two-year period. 
The histograms indicate that scores for white defendants exhibited a skew 
towards lower-risk categories, whereas black defendants displayed a more 
uniform distribution across scores.  

 

Figure 5-12: Even Decile Distribution for Blacks, Diminishing for Whites 

 

 

5.4.2 Standard Fairness Tools  
 

The COMPAS dataset with a two-year recidivism score is used in numerous 

academic papers and a series of standard fairness tools. One can easily claim 
that this dataset has evolved as one of the main benchmark datasets in the AI 
bias and fairness academic community. 

Aequitas from Carnegie Mellon University provides a concise and brief 
introduction to the topics.  

 

Figure 5-13: Aequitas Online Fairness Process 

2. Select protected attributes that need to be audited for bias as in figure 5-14: 
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Figure 5-14: Reference Protected Attribute 

3. Select Fairness Metrics to Compute: 

  Equal Parity 
  Proportional Parity 
  False Positive Rate Parity 
  False Discovery Rate Parity 
  False Negative Rate Parity 
  False Omission Rate Parity 
 
4. Enter your Disparity Intolerance (in %): 

 

 

 

 

 

 

Figure 5-15 shows that all fairness metrics fail comparing the privileged group 
of white (Caucasian) males between 25-45 compared to the other groups. 
Further details and explanations can be retrieved in the Aequitas tool, e.g., as 
ProPublica (cf. section 5.4.4) claims that the false positive rate is different 
between Whites and Blacks (African-American), this can be easily retrieved with 
the following results showing for which groups the audit failed: For race (with 
reference group as Caucasian) 

   Other with 0.63X Disparity 
   African-American with 1.91X Disparity 
   Asian with 0.37X Disparity 

   Native American with 1.60X Disparity 
 
According to the Aequitas audit, Blacks are 1.91 more likely to give a false 
positive, meaning that a black offender is 1.91 times more likely to be falsely 
predicted as a reoffender than a white offender, supporting ProPublica’s view. 
Further metrics are available, however, it is only a reduced set as can be 
observed in figure 5-10.  

 

AI Fairness 360 from IBM offers a more holistic view on statistical fairness 
metrics and mitigation measures. The process goes beyond a simple metrics 
output and includes a series of additional tools as depicted below: 

  

Figure 5-15: Aequitas Audit Results Summary on COMPAS 
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Predict a criminal defendant’s likelihood of reoffending. 

Protected Attributes: 

- Sex, privileged: Female, unprivileged: Male 

- Race, privileged: Caucasian, unprivileged: Not Caucasian 

Protected Attribute: Race 

Privileged Group: Caucasian, Unprivileged Group: Not Caucasian 

Accuracy with no mitigation applied is 66% 

With default thresholds, bias against unprivileged group detected in 4 out of 5 
metrics 

Figures 5-16 and 5-17 show how different fairness metrics are applied across 
different groups compared to the privileged (Caucasian) group, and the strength 
of the corresponding bias: 

 

Figure 5-16: AIF360 Fairness Measures – 1 

 

 

Figure 5-17: AIF360 Fairness Measures – 2 

The first two following available mitigation measures focus on the data (pre-
processing), whereas the third on the classifier (in-processing) and the last one 
on the predictions (post-processing):  

Reweighing: Weights the examples in each (group, label) combination 
differently to ensure fairness before classification. 

Optimized Pre-processing: Learns a probabilistic transformation that can 
modify the features and the labels in the training data. 
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Adversarial Debiasing: Learns a classifier that maximizes prediction accuracy 
and simultaneously reduces an adversary's ability to determine the protected 
attribute from the predictions. This approach leads to a fair classifier as the 
predictions cannot carry any group discrimination information that the 

adversary can exploit. 

Reject Object Based Classification: Changes predictions from a classifier to 
make them fairer. Provides favorable outcomes to unprivileged groups and 
unfavorable outcomes to privileged groups in a confidence band around the 
decision boundary with the highest uncertainty. 

For this specific COMPAS dataset the in-processing adversarial debiasing does 
not yield any clear improvement on bias, however, the pre- and post-processing 
eliminate the original bias, e.g., with reweighing, bias against unprivileged 
group was reduced to acceptable levels for 4 of 4 previously biased metrics (0 of 
5 metrics still indicate bias for unprivileged group) as can be observed in figures 
5-18 and 5-19: 

 

Figure 5-18: Bias Reduction via Reweighing – 1 

 

 

Figure 5-19: Bias Reduction via Reweighing – 2 

5.4.3 ProPublica Analysis 
 

ProPublica published the aforementioned article (Angwin, J. et al., 2016) and 
supporting material on their website36. Additionally, the corresponding R code 

 
 

36  The article can be reviewed at this link: 
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing/
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can be accessed on Github37, which in turn has been partially reproduced in 
Python for this master’s project to check the validity of the statements made. 
Own comments and interpretations have been added where it seemed suitable.  

Firstly, data cleaning involved removing rows from the dataset under the 

following circumstances reducing the set to 6172 instances: 

- When the date of the crime for which a defendant received a COMPAS 
score is not within a month of their arrest, the accuracy of the offense 
data is questioned and the row is consequently removed. 

- The 'is_recid' marker is set to -1 when there is no corresponding COMPAS 
case found, indicating the potential absence of recidivism data. 

- Cases pertaining to minor traffic violations, denoted by a 
'c_charge_degree' of 'O', are discarded as they don't usually lead to 
imprisonment. 

- The dataset has been narrowed down to data from Broward County, 
excluding cases that do not represent individuals who either relapsed 
within a two-year period or spent at least two years away from a 

correctional facility. 

Some first dataset statistics and exploratory data analysis resemble the ones 
already depicted in the previous section and are omitted here.  

Racial Bias in COMPAS via Logistic Regression: 

Section 5.4.3 explores the potential racial bias in COMPAS scores. Once 
erroneous rows are eliminated from the dataset, the initial inquiry centers 
around possible significant disparities in COMPAS scores among different racial 
groups. To assess this, certain variables are transformed into factors (such as 
score, gender, age, race, prior count, crime type, and two-year recidivism), and 
a logistic regression (LR) is executed comparing low scores to high scores as 
shown in table 5-4: 

 

 

sentencing/, meanwhile the methodology has been published here: 
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-
algorithm/  
37 Github repository: https://github.com/propublica/compas-analysis/  

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing/
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm/
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm/
https://github.com/propublica/compas-analysis/
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Table 5-4: Logistic Regression Coefficients 

 

The findings indicate that, when adjusting for variables like crime severity, prior 
arrests, and future criminal activity, Black defendants are 45% more likely to 
receive a higher COMPAS score than their white counterparts. Gender bias is 
also evident as women are found to be 19.4% more likely to receive a higher 
score than men. A notable revelation is the pronounced age bias, with 
individuals under 25 being 2.5 times more likely to receive a higher score 
compared to middle-aged defendants. 

The COMPAS system also provides a score designed to assess an individual's 
risk of violent recidivism. The accuracy of this score is akin to that of the 
Recidivism score. A similar methodology, logistic regression, can be utilized to 
investigate possible racial bias within these scores. The results indicate a 
pronounced discrepancy, with the violent score overestimating the recidivism 
rate for Black defendants by 77.3% in comparison to White defendants. 
Furthermore, an age-related bias is identified, with defendants under the age of 
25 being 7.4 times more likely to receive a higher score than middle-aged 
defendants. 

 

Predictive Accuracy of COMPAS: 

The predictive accuracy of the COMPAS scoring system, in terms of determining 
whether an offender is classified as Low, Medium, or High risk, was evaluated 
using a Cox Proportional Hazards model. This model, also utilized by 
Northpointe, the company behind COMPAS, in their validation study38, is a 
statistical technique for exploring the relationship between the survival of a 
subject and several explanatory variables. It operates on the assumption that 

 
 

38 Northpointe Validation Study: 
https://journals.sagepub.com/doi/abs/10.1177/0093854808326545 
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the effects of the predictors are multiplicative with respect to the hazard rate 
and are constant over time. 

Findings suggest that individuals categorized as High risk are 3.5 times more 
likely to recidivate. However, the concordance of the COMPAS system, or its 

predictive power, stands at 63.6%, which is notably lower than the 68% 
accuracy reported in the Northpointe study. The accuracy increases slightly to 
66% when using the COMPAS decile scores. 

The presence of racial disparities in the functioning of the algorithm was 
examined by introducing a race interaction term in the Cox model. The outcome 
revealed a similar disparity to that observed in the logistic regression analysis. 
Specifically, High risk White defendants were found to be 3.61 times more likely 
to recidivate than their Low-risk counterparts, while High-risk Black defendants 
were 2.99 times more likely to recidivate than their Low-risk peers. This 
indicates that the model may not behave consistently across different racial 
groups as illustrated in figure 5-20: 

 

Figure 5-20: Survival Analysis Based on Cox Proportional Hazard Model 

 

Directions of the Racial Bias: 

The preceding analysis revealed overprediction of future recidivism for African-

American defendants by the COMPAS algorithm, yet the directional bias 
remains unexplored. A more nuanced understanding of overprediction and 
underprediction can be achieved by comparing COMPAS scores across racial 
demographics. 

In aggregate, the false positive rate — or the rate at which defendants are 
incorrectly predicted to recidivate — is 32.35%. However, this rate exhibits 
racial disparity, reaching 44.85% for African-American defendants, compared 
to a lower 23.45% for White defendants. Consequently, African-American 
defendants are 91% more likely than White defendants to receive higher 
COMPAS scores without committing more crimes over a two-year period. 

The COMPAS scoring system also exhibits a higher misclassification rate for 
White reoffenders as low-risk, doing so 70.4% more frequently than for African-

American reoffenders as shown in table 5-5. This underscores a dual-directional 
bias in the COMPAS scoring system. 
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Table 5-5: False Positive and False Negative Rates for Blacks and Whites 

In this line, similar results are confirmed for violent risk scores between Black 
(African-American) and White (Caucasian) defendants.  

In summary, the critique suggests that despite its widespread use, the COMPAS 
system has inherent biases and inaccuracies that raise serious questions about 

its fairness and reliability, emphasizing the following points: 

- Racial Bias: The COMPAS algorithm overestimates the likelihood of 
recidivism for African-American defendants compared to White 
defendants, indicating a racial bias, especially via False Positives and 
False Negatives rates. The COMPAS algorithm exhibits a high false 
positive rate, especially among African-American defendants, as well as 
a high false negative rate, particularly among White reoffenders. 

- Predictive Accuracy: The accuracy of the COMPAS system's predictive 
power, as measured by concordance, is lower than reported by 
Northpointe in their validation study. 

As a matter of fact, the criticism goes beyond racial bias and also suggests a 
gender and age bias. The applied models and techniques, however, are identical 
to the ones illustrated here, hence, no additional insights are gained in this 
respect. 

The issue of contextual understanding arises when considering that 
algorithms, such as the one underlying COMPAS, are devoid of any real-world 
understanding. They operate purely on mathematical principles, identifying 
patterns within training data. Consequently, these algorithms may attribute 
significance to patterns where none exist in a real-world context, leading to 
spurious associations or overfitting. In the case of COMPAS, the algorithm might, 
for example, attribute a higher risk of recidivism to certain demographics based 
on spurious patterns in the training data, leading to potential racial bias and 
unfair outcomes. Furthermore, the concept of omitted variable bias comes into 
play. If a variable that influences the outcome is not included in the model, the 
model may incorrectly assign its predictive power to a correlated variable. 
Suppose that a significant factor correlated with race was omitted from the 
COMPAS algorithm; this could lead to the algorithm attributing higher 
predictive power to race, resulting in racial bias, as was noted in the ProPublica 
analysis. The issue of algorithmic fragility becomes evident when considering 
the performance of the COMPAS algorithm. While it might perform well under 
certain conditions, it can also perform poorly or exhibit bias when the data it is 

trained on is unbalanced, incomplete, or contains biased patterns. As such, the 
ProPublica analysis demonstrated that the COMPAS algorithm may overpredict 
recidivism for African-American defendants, underlining the potential fragility 
of this predictive model.  
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6 Results and Conclusions 
 

The project undertakes an exploration of the complex landscape of AI systems, 
their shortcomings, biases, and the path towards their trustworthy 
implementation. In this regard, the project comprises the four building blocks 
of: 

1) A theoretical framework to define, measure and explain the biases and 
shortcomings of AI systems, 

2) The approaches to mitigating these biases and improve the 
trustworthiness in the AI systems,  

3) Enhancing the previous technical analysis with an ethical, legal, and 
social perspective, 

4) And finally, combining all three building blocks into three case studies 
with their respective coding implementation. 

All initial research questions were tackled and answered as shortly summarized 
in this chapter.  

Research Question 1: How can methods and techniques be applied to develop 
AD-MS that enhance transparency and interpretability, thereby improving 
their explainability? 

Transparency in AI systems refers to their ability to provide clear, 
understandable explanations of their decision-making process. However, 
due to the black-box nature of some advanced AI models such as 
ensemble models, DNN, CNN or RNN, achieving complete transparency 
can be challenging. As explained in section 2.2.4, a myriad of techniques 
in interpreting both the model processing (globally via PDP and feature 
interaction or locally via LIME, SHAP or anchors) and the model 
representation (transfer learning, network dissection, PCA, and t-SNE) 
have been explained and under which circumstances they can be applied 
to achieve transparency.  

Research Question 2: In what ways do data-driven approaches 
unintentionally encode human biases and introduce new ones, and what are 
the implications of these biases for fairness in AD-MS? 

Fairness, another critical aspect, necessitates that AI systems do not 
discriminate against any particular group or individual. This principle 
often faces hurdles due to biases ingrained within the data on which the 
AI is trained.  AI, although extremely potent in many domains, is not 
devoid of limitations as analyzed in section 2.1. One key challenge is that 
of bias, a systemic inequality that could arise from multiple sources. 
These sources often revolve around the data used to train AI systems, the 
subjective decisions made during model development, or a lack of 
representation of certain groups in the data. Bias, when present in AI 
systems, can lead to harmful consequences, including discrimination 
against specific demographics, reinforcement of societal prejudices, or 
even misinformed decision-making. 

The analysis of the most prevalent and substantial biases within AI 
systems illustrated a wide variety. These ranged from gender and racial 
biases in facial recognition systems to socio-economic biases in credit 
scoring models. The potential harms of such biases include unjust 
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societal repercussions, unfair allocation of resources, and exacerbation 
of existing societal inequalities. Further investigation revealed that these 
biases are often unintentionally encoded within AI systems through data-
driven approaches. Data-driven AI systems are only as unbiased as the 

data they are trained on. If the data carries an inherent bias, the AI 
system is likely to replicate and amplify that bias in its outcomes. 

Research Question 3: How can fairness in AD-MS be effectively measured, 
particularly considering the complex relationships between input features, 
protected attributes, and target variables? 

The analysis on fairness metrics in section 2.2.3 in AD-MS revealed both 
their indispensability and limitations. Fairness metrics provide 
quantitative ways to measure and mitigate bias in AI systems. However, 
an exclusive reliance on them is too narrow and restrictive. The inherent 
complexity of fairness cannot be entirely captured by a single metric or a 
set of metrics. This is perfectly illustrated by COMPAS case study in 
section 5.4 where ProPublica’s evaluation primarily used the 'false 

positive parity' as a measure of fairness, concluding that the COMPAS 
system was biased against black defendants, whereas Northpointe's 
argument was based on the predictive parity which is achieved when, for 
every group, the proportion of positive predictions that are true (known 
as positive predictive value) is the same. More often than not, there is a 
necessity for subjective human judgment to assess and ensure fairness 
as circumstances vary greatly from one case to another. 

Research Question 4: What are the key trade-offs between performance and 
fairness in machine learning models, and how can these trade-offs be navigated 
in practice to balance optimal outcomes with fairness considerations? 

A deep-dive into the trade-offs between different fairness metrics in 
section 2.2.3 brought to light a significant challenge – it is impossible to 
simultaneously achieve all fairness metrics. For instance, ensuring equal 
false positive rates across different groups (demographic parity) may not 
necessarily lead to similar positive predictive values for these groups 
(predictive parity). 

Moreover, the evaluation of key trade-offs discovered between 
performance and fairness in ML models revealed a key conundrum as 

explained in section 2.2.5. In many cases, maximizing the performance 
of an AI system might require accepting a certain degree of unfairness, 
and vice versa. This trade-off scenario necessitates careful and 
considered decisions based on the context of the application, societal 
norms, and legal requirements. 

Research Question 5: What methods can be investigated and applied to 
minimize the potential for AI systems to introduce and perpetuate 
discriminatory practices, reproduce, reinforce, and exacerbate existing biases, 
and create feedback loops from deployed systems? 

The investigation into methods for reducing potential discrimination and 
bias in AI systems identified effective strategies across pre-, in-, and post-
processing stages as described in sections 3.1, 3.2., and 3.3. Pre-

processing techniques like 'reweighing' and 'Disparate Impact Remover' 
helped minimize initial data bias by ensuring balanced representation 
and increasing group fairness respectively. During in-processing, the 
'Reject Option-Based Classification' technique adjusted the fairness of 
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predictions by changing the distribution of favorable outcomes, thereby 
reducing bias during model training. Post-processing techniques also 
played a crucial role in bias mitigation after predictions had been made. 
The case study on the COMPAS dataset in section 5.4 showed the effects 

of a series of these techniques. Moreover, standard fairness tools 
presented in section 3.6 played a pivotal role. Tools such as IBM's AI-
Fairness 360, Google's What-if Tool, Carnegie Mellon's Aequitas, and 
Themis AI were evaluated for their capabilities in identifying and 
mitigating bias. These tools offered unique yet complementary 
capabilities ranging from data preprocessing to model analysis, allowing 
for effective bias mitigation. IBM's AI-Fairness 360, for instance, proved 
valuable for checking and enhancing model fairness, while Google's 
What-if Tool was helpful in visually analyzing model behavior. These tools, 
along with others examined, demonstrated their effectiveness as a 
preliminary point of analysis, offering quantifiable bias measures in AI 
systems. In conclusion, the integrated application of these techniques 
and tools could minimize the potential for AI systems to introduce and 

perpetuate discriminatory practices. 

Research Question 6: How can effective methods for incorporating causality 
into fairness-aware AD-MS be applied to mitigate bias and discrimination in 
decision-making processes? 

Applying causality into fairness-aware AD-MS is instrumental to 
mitigating bias and discrimination. A causal understanding helps in 
identifying not just the 'what' but also the 'why' behind potential bias in 
decision-making processes. As demonstrated in the loan approval 
example in section 3.5, understanding causal structures can expose the 
real drivers behind apparent discrimination. For instance, if loan 
approvals are less frequent for a particular demographic group, it is not 
enough to adjust decisions to balance approvals artificially. It is vital to 
understand why this disparity exists in the first place. A causal 
examination can reveal indirect paths of bias, like socio-economic factors, 
that ultimately affect the loan approval rates. Through techniques such 
as Causal Discovery and Causal Inference, the sources of bias that might 
be hidden in correlation-based analyses can be detected, quantified, and 
addressed. Specific fairness techniques like Counterfactual Fairness can 

then be applied to reduce these biases effectively. Incorporating causality 
into fairness-aware AD-MS facilitates the detection, understanding, and 
mitigation of bias and discrimination in decision-making processes by 
identifying the root causes and enabling targeted interventions. 

Research Question 7: How can multimodal input features be handled in 
fairness-aware models, and what strategies can be employed to mitigate non-
apparent bias? 

In the HR Recruitment case study in section 5.2, the FairCVtest was 
leveraged, a framework used to understand biases within AI recruitment 
tools. The testbed used multimodal synthetic profiles, consciously scored 
with gender and racial biases, simulating how AI recruitment tools may 
inadvertently extract sensitive information from unstructured data, 

leading to unfair decision-making. Findings demonstrated that bias can 
infiltrate various stages of the learning process, including data collection, 
preprocessing, and in defining the target function. Through the use of a 
method called SensitiveNets, it was possible to remove sensitive 
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information during the learning process, demonstrating an effective 
strategy for mitigating non-apparent bias. This approach illustrates the 
ability to improve fairness, even in the complex landscape of multimodal 
inputs where biases are often difficult to identify and address. However, 

understanding the cause of biases in AI systems, including their roots in 
data collection, preprocessing, and target function definition, remains a 
critical task. It is essential to continue exploring and implementing 
methods, such as SensitiveNets, to effectively handle multimodal input 
features and mitigate non-apparent bias in fairness-aware models. 
Simultaneously, the importance of robust fairness metrics and 
transparency in AI recruitment systems cannot be underestimated, as 
they are key components to ensure the successful mitigation of bias in 
the decision-making process. 

In conclusion, chapter 6 provided a summary of the current state of AI systems, 
the inherent biases within them, and the paths one can take to mitigate these 
biases and improve fairness and trustworthiness. Through an exploration of 
these aspects across theoretical, technical, ethical, legal, and social dimensions, 
along with in-depth case studies, light has been shed on several pertinent 
aspects related to AI systems' shortcomings and biases. Despite these extensive 
investigations, the vast expanse of AI fairness research and its multidisciplinary 
character inherently leaves a myriad of open research questions. It is crucial to 
acknowledge that the current understanding, although expansive, is still 
developing. As AI systems continue to evolve, so will their associated biases, 
ethical implications, and societal impact. Therefore, this project does not 
represent a comprehensive exploration but rather a step in the ongoing journey 
towards more responsible, trustworthy AI systems. In the forthcoming chapter 
7. Future Directions, some of the unexplored areas and open questions are 
explained, signaling possible paths for future research in the quest for more 
ethical and trustworthy AI. 
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7 Future Directions 
 

In light of the topics and issues discussed thus far, several open research 
questions emerge as potential focal points for future exploration in the field of 
AI fairness, trustworthiness, and ethics. These research questions include, but 
are not limited to: 

1) Fairness in Multi-class Classification: The adaption of fairness metrics 
and approaches to more complex settings, such as multi-class 
classification problems and environments modeled as Markov decision 
processes (MDPs), presents a rich vein for future research exploration 
(e.g., Corbett-Davies, S. et al., 2018). Fairness in this context can be 
particularly challenging because the interactions between different 
classes can lead to intricate bias patterns. 
 

2) Interpretability vs. Performance: How can we create sophisticated AI 

systems that do not compromise on interpretability or transparency for 
the sake of improved performance? What novel methods or approaches 
could be developed to maintain a balance between complexity, 
performance, and interpretability? 
 

3) Robust Fairness Metrics: What would a more comprehensive set of 
fairness metrics that captures the intricate nuances of fairness in a 
diverse set of contexts look like? Can there be universal standards for 
fairness or do they always need to be context-specific? 
 

4) Bias in Reinforcement Learning: How can we understand and mitigate 
biases in reinforcement learning, particularly when they emerge from the 
interaction between the agent and the environment, resulting in biased 
policies or biased reward functions? 
 

5) Bias in Non-Traditional Data: As AI begins to use more non-traditional 
types of data such as images, videos, and voice, how can we detect and 
mitigate biases present in these forms of data? How do we ensure fairness 
in multimodal learning systems beyond the simple techniques 

presented? 
 

6) Causality in AI: Can we further incorporate causal reasoning into AI 
models to better understand and counteract the roots of bias and 
discrimination? How can the principles of causality be practically applied 
to various use cases in different industries? 
 

7) Ethical and Societal Impact Assessment: How can we best measure 
and evaluate the ethical and societal impacts of AI systems, and how can 
this be integrated into the development process of these systems? 
 

8) Regulatory Frameworks and AI: What should effective regulation of AI 
systems look like, ensuring they are used responsibly and fairly, without 

hindering innovation? 
 

9) AI in the Global Context: How can we ensure fairness and inclusivity in 
AI systems globally, considering the diversity and variations in societal, 
cultural, and ethical norms around the world? 



7 Future Directions 

133 

 

 
10) Bias Mitigation over Time: As AI systems continue to learn and evolve 

over time, how can we ensure that bias mitigation techniques are still 
effective? What new techniques might be necessary to account for this 

ongoing learning process? 
 

11)  Trustworthy AI in Critical Fields: How can we ensure trustworthiness 
and fairness in AI systems that operate in critical sectors like healthcare, 
law enforcement, or autonomous driving where errors can have dire 
consequences? 

These research questions point to some of the many avenues of exploration that 
lie ahead. They represent not just theoretical curiosities, but pressing real-world 
concerns that demand the attention of researchers, practitioners, policymakers, 
and society at large. Indeed, as we forge ahead on our journey to build more 
ethical, fair, and trustworthy AI systems, these questions - and many others 
that may arise - must be at the forefront of our explorations. 

One research question seems to be of paramount importance as it impacts 
especially vulnerable minorities of our societies which is the intersectionality 
of different protected attributes (e.g., black, elderly women). Only recently focus 
has shifted from a rather narrow perspective on a single protected attribute 
where possibly no bias exists to a more inclusive one (e.g., Dixon-Fyle, S. et al., 
2023). The following discussion shows the importance of the necessary research 
in this area and illustrates how this project could be enhanced in the future. 

12) Intersectionality: Intersectionality, a term first coined by Kimberlé 
Crenshaw in the late 1980s (Crenshaw, K., 1989), is a concept that 
examines how various forms of oppression, such as racism and sexism, 
can intersect and compound to create unique experiences of 
disadvantage for individuals. In the context of AI fairness, 
intersectionality considers how biases in AI systems may differentially 
impact individuals based on the intersection of their various identities, 
such as race, gender, and socio-economic status. 
In AD-MS, intersectional biases are prevalent and impactful. They arise 
when the biases present in the training data, resulting from systemic 
societal issues, are replicated and even amplified in the outcomes 

generated by AI systems. A classic example is seen in facial recognition 
systems (Buolamwini, J. et al., 2018), which have been found to have 
higher error rates for individuals who are female or have darker skin 
tones. These biases are further exacerbated for individuals who belong to 
both these groups – i.e., dark-skinned women. 
Fairness metrics, the quantitative measures used to assess bias in AI 
systems, have historically struggled to adequately account for 
intersectional bias. Most fairness metrics focus on individual protected 
attributes, such as race or gender, and do not consider the compound 
impact of these attributes. This is a significant limitation because bias 
does not exist in isolation – the intersection of various protected 
attributes often results in unique forms of discrimination that are not 
captured by traditional fairness metrics. 

The AI fairness tools currently in use, such as IBM's AI-Fairness 360 and 
Google's What-if Tool, have made significant strides in identifying and 
mitigating bias in AI systems. However, these tools still face challenges 
when it comes to addressing intersectional biases. While these tools 
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provide mechanisms for addressing bias on individual protected 
attributes, they often do not adequately account for the compounded 
effect of multiple intersecting attributes. 
Real-world case studies provide stark evidence of the impact of 

intersectional bias. For instance, AI systems used in recruitment 
processes have been found to disadvantage women of color 
disproportionately (Kazim, E. et al., 2021). These systems tend to favor 
resumes that resemble those of people already successful in the field, 
who are often white and male. As such, the impact of the AI's decision-
making process is most detrimental to those at the intersection of 
multiple marginalized groups. 
When handling intersectional biases, there can be significant trade-offs 
between performance and fairness. An AI model optimized for 
performance may inadvertently amplify intersectional biases present in 
the training data, resulting in unfair outcomes. On the other hand, 
models optimized for fairness might sometimes suffer reduced predictive 
performance. Thus, striking a balance between performance and fairness 

when addressing intersectional biases is a complex and delicate task. 
The presence of intersectional bias in AI systems raises several ethical 
and legal considerations. From an ethical standpoint, it is paramount to 
ensure that AI systems do not perpetuate societal inequities but instead 
contribute towards their reduction. Legally, intersectional bias can lead 
to discriminatory outcomes, which may violate anti-discrimination laws 
in many jurisdictions. 
Therefore, addressing intersectional bias is a critical challenge in AI 
fairness. As the field advances, it is essential to develop more 
sophisticated fairness metrics, tools, and methodologies that can account 
for the unique experiences and disadvantages arising from the 
intersection of various protected attributes. Future research in this area 
is not only crucial for advancing the technical field but is also a moral 
imperative to ensure AI systems are fair and just for all users. 

In conclusion, it is crucial to underscore the indispensable value of fostering 
further interdisciplinary research between computer science, law, social 
sciences, and other relevant fields. The complex and multifaceted nature of 
fairness in AI necessitates the expertise and perspectives from diverse academic 
disciplines. Technological solutions alone may not be sufficient to tackle the 
deeply embedded biases in AI systems, as these biases often stem from systemic 
social issues. Collaboration between computer scientists, legal scholars, and 
social scientists could facilitate a more comprehensive understanding of AI 
fairness issues and contribute to the development of more holistic and effective 
solutions. 

Moreover, this collaboration should extend beyond academia. AI developers, 
legislators, and social scientists must also engage in active dialogue to ensure 
the development of fairer AI systems. AI developers can provide insights into the 
technological possibilities and limitations, legislators can clarify the legal 
boundaries and requirements, and social scientists can elucidate the societal 
impacts and norms. This collaboration would foster a reciprocal understanding 
and create a synergy that could significantly accelerate the progress towards 

fairer AI systems. 

Furthermore, considering the findings regarding ethical, legal, and social 
implications, it is evident that there is a pressing need for more comprehensive 
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and widely applicable AI ethics education. The development of AI systems is not 
merely a technical endeavor; it is also a deeply ethical one. AI developers should 
be equipped with a robust understanding of ethical considerations, legal 
constraints, and social implications. Moreover, this education should not be 

limited to those directly involved in AI development. Given the pervasive impact 
of AI on society, it is crucial for all stakeholders, from policymakers to the 
general public, to have a basic understanding of AI ethics. This will facilitate 
informed decision-making and encourage a culture of responsibility and critical 
engagement with AI technology. 

As we move forward into an increasingly AI-driven world, these avenues of 
exploration present not only as academic pursuits but as necessary steps 
towards creating a fairer and more inclusive future. As we continue to shape 
this future, it is paramount that we do so with a commitment to fairness, 
inclusivity, and respect for all individuals. The path towards trustworthy AI 
systems is undeniably challenging and complex, yet it is a journey we must 
undertake, guided by the shared principles of justice and equality.  
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Annex 1: Anti-Discrimination Laws in the EU, USA, and 
China 

 
Anti-discrimination laws in the EU, USA, and China 

Law or 
Directive 

Year in 
Force 

Most Relevant 
Articles Region 

Short 
Description 

Civil Rights 
Act, Title II 
and VII 1964 

Title II - 
Section 202, 
Title VII 

United 
States 

Legislation used 
to prevent 
discrimination in 
public spaces, 
facilities and 
employment, 
potentially 
extended to 
digital spaces to 
prevent bias in 
AI systems. 

Fair Housing 

Act 1968 Title VIII 

United 

States 

Protects people 
from 
discrimination 
when they are 
renting or buying 
a home, getting a 
mortgage, 
seeking housing 
assistance, or 
engaging in other 
housing-related 
activities, 
relevant in the 
context of AI 
systems used in 
housing and real 

estate. 

Education 
Amendments 
Act, Title IX 1972 Title IX 

United 
States 

Prohibits 
discrimination 
on the basis of 
sex in any 
federally funded 
education 
program or 
activity, relevant 
for AI systems 
used in 
educational 
settings. 
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Equal Credit 
Opportunity 
Act 1974 N/A 

United 
States 

Prohibits credit 
discrimination 
on the basis of 
race, color, 

religion, national 
origin, sex, 
marital status, 
age, or because 
someone receives 
public 
assistance, 
relevant for AI 
systems used in 
credit scoring. 

Americans 
with 
Disabilities 
Act 1990 Title I, II, III 

United 
States 

Prohibits 
discrimination 
against people 

with disabilities 
in several areas, 
including 
employment, 
transportation, 
public 
accommodations, 
communications, 
and access to 
state and local 
government 
programs and 
services, could 
be extended to AI 
systems. 

Race Equality 
Directive 
(2000/43/EC) 2000 Article 2, 3 EU 

Prohibits all 
forms of racial or 
ethnic 
discrimination in 

various areas, 
including 
employment, 
education, social 
protection, and 
access to goods 
and services, 
relevant for AI 
systems used in 
these sectors. 
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Employment 
Equality 
Directive 
(2000/78/EC) 2000 Article 2, 3 EU 

Prohibits 
discrimination in 
employment on 
the grounds of 

religion or belief, 
disability, age, or 
sexual 
orientation, 
relevant for AI 
systems used in 
hiring and 
employment. 

Equal 
Treatment 
Directive 
(proposed)39 

Proposed, 
not in 
force as 
of 2023 N/A EU 

A proposed 
directive that 
would extend EU 
anti-
discrimination 

protections 
beyond 
employment to 
include areas 
like social 
protection, 
education, and 
access to goods 
and services. 

Regulations 
on 
Employment 

Services 2007 Article 3 China 

Prohibits 
discrimination in 
employment on 
grounds of 
ethnicity, race, 
gender, religious 
belief, etc., 
relevant for AI 
systems used in 
hiring and 

employment. 

Women’s 
Protection 
Law 2023 N/A China 

Aiming to give 
women stronger 
protection 
against sexual 
harassment and 
gender 
discrimination 

Table 9-1: Anti-Discrimination Laws in the EU, USA, and China 

 

  

 
 

39 https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vktj9botz0zd 
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Annex 2: German Credit Dataset 
 

All variables of the German Credit dataset are encoded as depicted in the “value 

range” column. This dataset is licensed under a Creative Commons Attribution 
4.0 International (CC BY 4.0): 

http://archive.ics.uci.edu/dataset/144/statlog+german+credit+data  

No. Description Type Value Range 

1 

Status of 
existing 
checking 
account qualitative 

A11: ... < 0 DM 
A12: 0 <= ... < 200 DM 
A13: ... >= 200 DM  
/ salary assignments for at least 1 year 
A14: no checking account 

2 
Duration in 
month numerical  

3 Credit history qualitative 

A30: no credits taken/ all credits paid 
back duly 
A31: all credits at this bank paid back 
duly 
A32: existing credits paid back duly till 
now 
A33: delay in paying off in the past 
A34: critical account/ other credits 
existing (not at this bank) 

4 Purpose qualitative 

A40: car (new) 
A41: car (used) 
A42: furniture/equipment 
A43: radio/television 
A44: domestic appliances 
A45: repairs 
A46: education 

A47: (vacation - does not exist?) 
A48: retraining 
A49: business 
A410: others 

5 Credit amount numerical  

6 
Savings 
account/bonds qualitative 

A61: ... < 100 DM 
A62: 100 <= ... < 500 DM 
A63: 500 <= ... < 1000 DM 
A64: .. >= 1000 DM 
A65: unknown/ no savings account 

7 

Present 
employment 
since qualitative 

A71: unemployed 

A72: ... < 1 year 
A73: 1 <= ... < 4 years 
A74: 4 <= ... < 7 years 
A75: .. >= 7 years 

http://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
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8 

Installment rate 
in percentage of 
disposable numerical income 

9 
Personal status 
and sex qualitative 

A91: male: divorced/separated 
A92: female: divorced/separated/married 
A93: male: single 
A94: male: married/widowed 
A95: female: single 

10 
Other debtors / 
guarantors qualitative 

A101: none 
A102: co-applicant 
A103: guarantor 

11 
Present 
residence since numerical  

12 Property qualitative 

A121 : real estate 
A122 : if not A121 : building society 
savings agreement/ life insurance 
A123 : if not A121/A122 : car or other, 
not in attribute  
A124 : unknown / no property 

13 Age in years numerical  

14 

Other 
installment 
plans qualitative 

A141: bank 
A142: stores 
A143: none 

15 Housing qualitative 

A151: rent 
A152: own 
A153: for free 

16 

Number of 
existing credits 
at this bank numerical  

17 Job qualitative 

A171: unemployed/ unskilled - non-
resident 
A172: unskilled - resident 
A173: skilled employee/ official 
A174: management/ self-employed/ 
highly qualified employee/ officer 

18 

Number of 
people being 
liable to provide numerical  

 maintenance for   

19 Telephone qualitative 

A191: none 
A192: yes, registered under the 

customer's name 

20 Foreign worker qualitative 
A201: yes 
A202: no 

Table 9-2: German Credit Datset 
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Annex 3: COMPAS Dataset 
 
The COMPAS dataset as provided by ProPublica does not contain a description 
of the 53 variables. Although it is a widely used benchmark dataset and some 

of the variables seem self-explanatory, none of the researchers provides a clear 
overview of all variables. The following table is meant to close this gap and show 
all 53 variables used in the 2-year recidivism dataset published by ProPublica 
in 2016.  
This dataset is licensed under a Creative Commons Attribution 4.0 International 
(CC BY 4.0): https://github.com/propublica/compas-analysis  

No. Column name Description 

1 id unique ID that identifies each suspect  

2 name name of the suspect 

3 first first name of the suspect 

4 last last name of the suspect 

5 compas_screening_date COMPAS screening date of the suspect 

6 sex sex of the suspect 

7 dob date of birth of the suspect 

8 age 
age of the suspect at the time of the 
survey  

9 age_cat age category of the suspect 

10 race race of the suspect 

11 juv_fel_count 
the number of felony charges as a 
juvenile  

12 decile_score recidivism score from 1 to 10  

13 juv_misd_count 
the number of misdemenor charges as a 
juvenile  

14 juv_other_count 
the number of other charges as a 
juvenile 

15 priors_count 
the number of prior conviction for the 
suspect 

16 days_b_screening_arrest 

the count of days between screening date 

and (original) arrest date. If they are too 
far apart, that may indicate an error. If 
the value is negative, that indicate the 
screening date happened before the 
arrest date. 

17 c_jail_in start timestamp of incarceration 

18 c_jail_out end timestamp of incarceration 

19 c_case_number charge case number of the suspect 

20 c_offense_date charge offense date of the suspect 

21 c_arrest_date charge arrest date of the suspect 

22 c_days_from_compas 
the number of days between committing 
an offense and going to jail 

23 c_charge_degree charge degree of the suspect 

24 c_charge_desc charge description of the suspect 

https://github.com/propublica/compas-analysis
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25 is_recid whether the suspect recidivates 

26 r_case_number recidivism case number of the suspect 

27 r_charge_degree recidivism charge degree of the suspect 

28 r_days_from_arrest 
number of days between the person get 
re-arrested from the re-offense date 

29 r_offense_date recivism offense date of the suspect 

30 r_charge_desc 
recidivism charge description of the 
suspect 

31 r_jail_in 
time and date when the suspect goes in 
the jail for recidivism 

32 r_jail_out 
time and date when the suspect gets 
released from the jail for recidivism 

33 violent_recid 
violent recidivism, all missing values (can 
be omitted) 

34 is_violent_recid 
violent recidivism crime indicator of the 
suspect 

35 vr_case_number violent_case_number of the suspect 

36 vr_charge_degree violent_charge_degree of the suspect 

37 vr_offense_date violent_offense_date of the suspect 

38 vr_charge_desc violent_charge_description of the suspect 

39 type_of_assessment 
constant 'Risk of Recidivism' for all rows, 
can be omitted 

40 decile_score repition of column 12 

41 score_text decile score text: low, medium, high 

42 screening_date COMPAS screening date of the suspect 

43 v_type_of_assessment 
constant 'Risk of Violence' for all rows, 
can be omitted 

44 v_decile_score violent recidivism score from 1 to 10  

45 v_score_text 
violent recidivism score text: low, 
medium, high 

46 v_screening_date 
COMPAS screening date of the suspect 
for violent crimes 

47 in_custody custody start date 

48 out_custody custody end date 

49 priors_count 
the number of prior conviction for the 
suspect 

50 start 
survival analysis: start point of the 
suspect entering the survival analysis 

51 end 
survival analysis: end point of the 
suspect entering the survival analysis 

52 event 

binary indicator that denotes whether 

the event of recidivism has occurred or 
not 

53 two_year_recid target: two year recidivism (binary 0 / 1) 
Table 9-3: COMPAS Dataset as Compiled by ProPublica in 2016 


