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Abstract

Bayesian networks are a widely used mathematical framework with different fields of applica-
tion. One of them is the computational biology problem of learning gene regulatory networks
from genomic data. Many models have been proposed for this problem, but there is no perfect
one. Among them, Bayesian networks show some pros that make their usage an interesting
topic to study.

This project presents a new Python package for learning and manipulating massive Bayesian
networks. This software is based on the existing framework BayeSuites. It is focused on learn-
ing gene regulatory networks from data modeled as Bayesian networks. Additionally, we
present a plugin for siibra-explorer, the EBRAINS 3D Atlas Viewer. EBRAINS is the digital
brain research infrastructure created by the Human Brain Project. This plugin uses the capa-
bility of siibra-python for extracting gene expression data from the Allen Brain Atlas and the
aforementioned Python package to learn those networks interactively.

Keywords. Bayesian networks, gene regulatory networks, siibra, EBRAINS
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Resumen

Las redes bayesianas representan un modelo matemático con múltiples campos de aplicación.
Uno de ellos es el problema presentado en el mundo de la biología computacional de aprender
redes de regulación genética a partir de datos. Diferentes modelos han sido propuestos para
este problema, pero no hay ninguno que sea el mejor en todos los aspectos. Entre ellos, el uso
de redes bayesianas presenta algunas ventajas que hacen de este un tema de estudio en el que
puede ser interesante profundizar.

A lo largo de este trabajo, presentamos un nuevo paquete de Python que permite apren-
der, visualizar y manipular redes bayesianas grandes. Este software está basado en el marco
BayeSuites. Se centra en el aprendizaje de redes de regulación genética modeladas como redes
bayesianas a partir de datos. Además, presentamos una extensión para siibra-explorer, la
herramienta de visualización 3D del atlas del cerebro de EBRAINS. EBRAINS es la infraestruc-
tura digital para la investigación sobre el cerebro creada por el Human Brain Project. Esta
extensión hace uso de la posibilidad de extraer datos de expresión genética del Allen Brain At-
las mediante siibra-python, así como del previamente mencionado paquete de Python para
aprender interactivamente esas redes.

Palabras clave. redes bayesianas, redes de regulación genética, siibra, EBRAINS
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Chapter 1

Introduction

First of all, we shortly introduce the reasons for carrying out this project as well as its main
goals.

1.1 Motivation

The project explained in this document is integrated into the Human Brain Project1. The
Human Brain Project is a 10-year scientific research project funded by the European Com-
mission. It aims to develop a useful infrastructure that helps neuroscience, computing, and
brain-related medicine researchers with their work. The Human Brain Project has developed
a neuroscience research digital infrastructure called EBRAINS. Its goal is to make it accessible
for all the brain research community in the EU and accelerate human brain understanding.
As part of the SGA3 phase WP4 running from 2019 to 2023, and within the EBRAINS Brain
Atlas Services (SC2) group, the development of some brain atlas analysis tools was proposed.
One of them was a toolbox that analyzes gene expression data and learns gene regulatory net-
works based on the already existing framework BayeSuites [1]. BayeSuites is another project
that makes part of the Human Brain Project. It is a framework for learning and interpreting
Bayesian networks applied to neuroscience included in the web application NeuroSuites. The
inclusion of BayeSuites functionality to the EBRAINS Atlas Viewer for learning such networks
with gene expression data that can be retrieved within the EBRAINS framework and siibra

toolsuite would help neuroscience researchers to represent gene regulatory networks easily
and in the same web application they can use for other purposes. That is the main reason for
carrying out this project.

1.2 Objectives

This project is divided into two different, but related objectives. The first one is to take
BayeSuites functionality and develop a proper Python package for learning, visualizing, and
handling Bayesian networks with a particular focus on neuroscience and gene regulatory net-
works. The development of this package includes taking decisions about the features from
BayeSuites to include, contributing with some extensions, giving it the standard form of Python
packages, writing full documentation, and publishing it as any other public library. Once this
process is finished, the second goal is to add the aforementioned tool to the EBRAINS Atlas

1https://www.humanbrainproject.eu/en/
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1.3. Contributions

Viewer. This web application presents the capability of easily allowing the implementation of
plugins, so the tool will follow this path to be included in the viewer. The developed package
is the base of the tool, i.e., it provides the functionality for learning gene regulatory networks
modeled as Bayesian networks.

1.3 Contributions

This chapter summarizes the contributions made throughout this project to both the Human
Brain Project and the Computational Intelligence Group.

• Modularizing BayeSuites: BayeSuites functionality has been moved to a Python package.
This process includes the following tasks:

1. Package structure: adapting the code to a package project and the PEP 8 style guide,
writing docstrings that follow the PEP 257 convention, adding all necessary files
(setup.py, LICENSE, requirements.txt, unitary tests, example notebooks, README,
etc.), and uploading the package to PyPI.

2. Generating web documentation from docstrings and uploading it to Read the docs.

3. Input/output extension: adding formats such as GEXF and JSON for reading and
writing networks.

4. Inference extension: adding inference for discrete Bayesian networks.

5. Minor changes: restructuring code, adding more layouts, and using the logging

API.

• The plugin implementation may be divided into two different tasks:

1. User interface: designing and implementing a new user interface for handling
Bayesian networks in siibra-explorer.

2. Plugin build: coding, and deploying all technical requirements to get the final plu-
gin application running on the atlas viewer.

1.4 Document structure

This document has four main chapters. The first two chapters detail the state of the art both
theoretically and in software terms, while the following two chapters show the software de-
velopment done during this project.

Chapter 2 introduces the theoretical background needed for understanding the rest of the doc-
ument. It mainly presents all the notions about Bayesian networks and gene regulatory net-
works that we use later.

Chapter 3 describes all the capabilities and technical information about the existing software
we use, i.e., NeuroSuites and siibra.

Chapter 4 explains the process followed to obtain the desired Python package, its features and
some explanations about how to use it.

Chapter 5 presents the plugin developed for the EBRAINS Atlas Viewer including explana-
tions about how it has been built, images of its graphical user interface, and an example run
on it.
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Introduction

Chapter 6 concludes this document discussing the outcome of our work, its pros and cons, and
future steps that could be taken to improve our software.
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Chapter 2

Theoretical background

This chapter briefly introduces the definition of Bayesian network, the process of learning their
structure and parameters, how inference in Bayesian networks works, and some other useful
properties about them (Section 2.1). Then, we present the notion of gene regulatory networks,
the problem of learning them, and the most typical methods used for modeling gene regulatory
networks focusing on the use of Bayesian networks (Section 2.2).

2.1 Bayesian networks

Bayesian networks [2], [3] try to represent knowledge under uncertainty in a visual way. They
represent probabilistic relationships over a vector of random variables X = (X1, X2, . . . , Xn)
using a directed acyclic graph (DAG) G. This representation tries to build the joint probability
distribution (JPD)

P(X1, X2, X3, . . . , Xn) = P(X1)P(X2|X1)P(X3|X1, X2) · · · P(Xn|X1, X2, . . . , Xn−1) (2.1)

Bayesian networks representation is based on conditional independence. Two variables Xi and
Xj are conditionally independent given another one Xk if P(Xi|Xj, Xk) = P(Xi|Xk). The graph
G represents conditional independence relations in a way that each variable is conditionally
independent of its non-descendants given its parents in the graph. That is called the Markov
condition and applying it to Equation (2.1) we can decompose the JPD as

P(X ) =
n

∏
i=1

P(Xi|Pa(Xi))

where Pa(Xi) represent the parents of the node Xi in the graph.

2.1.1 Properties

There exist two particularly useful properties related to Bayesian networks: d-separation and
the Markov blanket of a node.

Let X ,Y and Z be disjoint sets of nodes in a DAG. X and Y are d-separated by Z if for every
undirected path between X and Y there is an intermediate variable T �∈ X ∪ Y such that

• When there is a structure T−1 → T ← T+1 in the path, no node among T and its descen-
dants belong to Z or

5



2.1. Bayesian networks

• There is no such structure and T belongs to Z .

The d-separation property is actually interesting because it implies conditional independence.
If X and Y are d-separated by Z , each pair of nodes X ∈ X , Y ∈ Y are conditionally indepen-
dent given Z .

Given a node Xi in a Bayesian network, we call Markov blanket of Xi to the set of nodes MB(Xi)
such that Xi is conditionally independent of all other nodes in the network given MB(Xi), i.e.,

P(Xi|X \ {Xi}) = P(Xi|MB(Xi))

When conditional independence also implies d-separation, the Markov blanket of a node is
formed by its parents, children and the parents of its children.

2.1.2 Gaussian Bayesian networks

Regarding the continuous case, it is not possible to determine a general distribution. However,
there is a useful situation where the JPD is also easy to handle: multivariate Gaussian distri-
butions [4], [5]. Gaussian distributions are a good enough approximation for some real world
cases, but we have to take into account they assume linear relationships between variables.
For a random vector X ∈ Rn, a multivariate Gaussian distribution is given by the function

f (X |μ, Σ) =
1

(2π)π/2|Σ|1/2 exp
[
−1

2
(X − μ)TΣ−1(X − μ)

]

where μ is the mean vector and Σ is the covariance matrix. This distribution can be written
in the same way as we did in Equation (2.1), but using a density function instead of a mass
function

f (X ) = f (X1, X2, . . . , Xn) = f (X1) f (X2|X1) · · · f (Xn|X1, X2, . . . , Xn−1)

Equation (2.2) details the form of each conditional probability distribution:

f (Xi|X1, . . . , Xi−1) = N (β0 +
i−1

∑
k=1

βikXk; vi) (2.2)

where vi represents the conditional variance of Xi given X1, . . . Xi−1 and βik represents the
coefficient of Xk in the regression of Xi on X1, . . . , Xi−1.

A Gaussian Bayesian network is usually represented in one of two possible ways:

• By the unconditional mean vector μ and the covariance matrix Σ of the joint probability
distribution, or

• By μ, the conditional variances {vi : i ∈ {1, . . . , n}} and the coefficients {βij : i, j ∈
{1, . . . , n}}.

Both ways are equivalent, but the second one may be a better option in computational terms if
the number of parents per variable is small because fewer elements are needed to fully repre-
sent it.

2.1.3 Learning the network

Given a data set D of independent instances of a vector of random variables X , we are inter-
ested in finding the Bayesian network that best fits this data. For that purpose, this task is
divided into two different subtasks: learning the graph structure of the network and learning
the parameters that determine the conditional probability distributions.

6



Theoretical background

2.1.3.1 Structure learning

The structure of a Bayesian network can be learned from data using different approaches. We
can divide these approaches into two different groups: constraint-based methods and score and
search methods.

Constraint-based methods consider triplets of variables from data and test conditional inde-
pendence relations among the nodes in the triplet. Some examples of this type of algorithms
are PC [6], grow-shrink [7], or different variants of the incremental association Markov blanket
algorithm [8].

On the other hand, score and search methods measure each network structure in a particular
space of structures using a score function and keep the network that maximizes this score. As
searching for the structure that maximizes the score is anNP-hard problem [9], [10], heuristic
algorithms are used to find such a structure. Hill climbing or greedy equivalence search (GES) [11]
are common search algorithms and BDeu and K2, popular scores.

2.1.3.2 Parameter learning

Learning the parameters of the network is the last step of the learning process. There are two
main approaches: maximum likelihood estimation and Bayesian estimation.

Maximum likelihood estimation looks for the value θ̂ that maximizes the likelihood function
in Equation (2.3)

L(θ|D,G) = P(D|G, θ) =
N

∏
h=1

P(xh|G, θ) (2.3)

where θ is formed by θijk = P(Xi = k|Pa(Xi) = pa
j
i), i ∈ {1, . . . , n}. pa

j
i is the j-th instance of

the possible values the parents of node Xi can take, and xh, the h-th instance of D.

Maximizing L of Equation (2.3) [12] results in

θ̂ijk =
Nijk

Ni j

where Nijk represents the number of cases in D where Xi = k and Pa(Xi) = pa
j
i , and Nij, the

number of cases where Pa(Xi) = pa
j
i .

In the Gaussian case, maximum likelihood estimation estimates the mean vector as the sample
mean vector of the data. Conditional variances and coefficients βik are estimated perform-
ing the regression of Xi on its parents and keeping the sample conditional variance and the
coefficients obtained.

Bayesian estimation represents a different approach for parametric learning. This method adds
some prior knowledge about θ using a probability distribution f (θ|G). The posterior distribu-
tion given the data set D, f (θ|D,G), is computed using P(D|G, θ) and the prior. Then, we can
set θ̂ as the posterior mean or MAP estimate, i.e.,

θ̂ =
∫

θ f (θ|D,G) dθ or θ̂ = arg max
θ

f (θ|D,G)

The Dirichlet distribution is the common prior distribution used for discrete Bayesian net-
works.

7



2.2. Gene regulatory networks

2.1.4 Inference

If we know evidence about some variables in the network, E = e, the most common query we
will be interested in has the form P(Xi|E = e). This probability can be computed as

P(Xi|E = e) =
P(Xi, e)

P(e)
(2.4)

It is possible to calculate each instantiation of the numerator, P(xi, e), by summing out all
entries that correspond to the set of unobserved variables U = {X \ (E ∪ {Xi}) in the joint
distribution, i.e., P(xi, e) = ∑u P(xi, e, u). After that, it is easy to get the conditional probability
of Equation (2.4) by dividing each instantiation by P(e).

This method, referred to as brute-force, provides a way of answering any possible query of the
form P(Xi|E = e), but it leads to the exponential blow-up of the joint distribution. To avoid
this computational drawback, other methods are effective in most cases. We can’t guarantee it
for all situations because the problem of exact inference is NP-hard [13]. The most common
methods of exact inference are variable elimination [14] and message passing [2], [15], [16]. We
will not explain these algorithms, but the main idea they handle is that computing and saving
some expressions which only depend on some variables allow us not to compute them as many
times as in the brute-force case.

2.1.4.1 Inference in Gaussian Bayesian networks

In the Gaussian case, exact inference becomes easier. Given some evidence E = e, we can get
the distribution f (Xi|E = e) for each unknown variable Xi. It will be a Gaussian distribution
determined by its mean μ′Xi

and variance σ′2Xi
and they both can be obtained from the previous

distribution according to Equation (2.5) where μXi and σ2
Xi

are the unconditional mean and
variance, e is the evidence and μE is the unconditional mean of the variables for which there is
evidence.

μ′Xi
= μXi + AXiEe−AXiEμE

σ′2Xi
= σ2

Xi
−AXiEΣEXi

(2.5)

Equation (2.6) represents the matrices used in Equation (2.5) and the reordering of the elements
in the covariance matrix given the observed (E) and unobserved (U) variables:

AXiE = ΣXiEΣ−1
EE , Σ =

(
ΣUU ΣUE

ΣEU ΣEE

)
(2.6)

2.2 Gene regulatory networks

Gene regulatory networks (GRNs) are basic for understanding many different processes of life.
Representing them is a central problem in molecular biology, cellular biology and biomedical
sciences. Recent advances in technology, such as DNA microarrays and in-situ hybridiza-
tion allow us to measure the expression levels of genes. After these advances, the problem of
learning GRNs from data became computationally feasible and researchers started looking for
models to learn them.

8



Theoretical background

Given a set of n genes, a GRN is represented by a directed graph G = (V, E) with |V| = n.
A directed edge from gene i to gene j represents a relationship between genes i and j. This
relationship depends on the model, but it usually represents that i activates or inhibits the
expression of gene j.

Different computational methods for learning GRNs from data have been studied [17] such
as logical models, Boolean networks, differential equations, or linear models. Some of them
behave better than others, but no model is a perfect fit in terms of faithfulness, amount of data
needed, speed, or ability to perform inference. Among all these models, Bayesian networks
have not shown particularly good performance in past studies such as the DREAM5 Challenge
[18], but it is an easy-to-interpret model and network learning algorithms can still be improved.
For these reasons, it remains as an interesting model for approximating GRNs.

2.2.1 GRNs modeled as Bayesian networks

Expression data is continuous data, so we present two different approaches to deal with it.
The first one is considering the underlying distribution of each gene as a Gaussian distribu-
tion. As we said before, this assumption implies linear relationships between all the variables
(genes) in the network. However, the normality assumption is common when dealing with ex-
pression data. The other option is to discretize the data into different categories. This process
implies some information loss, but could be better than making a mistake when choosing the
underlying distribution of the data.

2.2.1.1 Discrete case

Discretization techniques for gene expression data have been deeply studied and discussed
[19]. Multiple approaches are available. However, we will follow the same simple discretiza-
tion technique as in [20]. Other options may perform better, but we took this decision for
simplicity.

For discretizing gene expression data, we take into account three categories: downregulated or
inhibition levels, represented as -1; upregulated or activation levels, by +1; and no-change levels,
by 0. For each gene, we call control the average expression level xi of the gene across the
instances of the data set. Given a data set D = {x1, . . . , xN} of gene expression data, with
xk = (xk

1, . . . , xk
n), for each i ∈ {1, . . . , n}, we have

xi =
1
N

N

∑
k=1

xk
i

Additionally, for the expression level of gene Xi in instance j, xj
i , we consider the base 2 loga-

rithm of the ratio between it and the control as shown in Equation (2.7).

r(xj
i) = log2

(
xj

i
xi

)
(2.7)

If this value is over a threshold δ > 0, we assign xj
i to the activation category. If it is lower than

−δ, to inhibition. Otherwise, it is assigned to no-change. In our case, the chosen value for δ is
0.2. After the discretization process we get a data set D′ = {x′1, . . . , x′N} such that for every xj

i
we have
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x′ji =

⎧⎪⎨
⎪⎩
+1 if r(xj

i) > δ

−1 if r(xj
i) < −δ

0 otherwise

=

⎧⎪⎨
⎪⎩
+1 if xj

i > 2δxi

−1 if xj
i < 2−δxi

0 otherwise

(2.8)
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Chapter 3

Previous software

This project is mainly based on and related to two neuroscience web applications: NeuroSuites
and the siibra tool suite, which includes the EBRAINS Interactive Atlas Viewer, also known
as siibra-explorer. This chapter details their essential characteristics, emphasizing those
related to our objectives.

3.1 NeuroSuites and BayeSuites

NeuroSuites1 is a platform that integrates multiple statistical and machine learning tools fo-
cused on neuroscience applications. It was developed by the Computational Intelligence
Group of the Universidad Politécnica de Madrid starting in 2015 and funded by the Human
Brain Project. One of the purposes of NeuroSuites is to provide easy-to-use tools that do not
require coding. Among them, BayeSuites [1] collects all the functionality for learning, visu-
alizing, and interpreting Bayesian networks. An example of the visualization of a Bayesian
network with NeuroSuites is shown in Figure 3.1.

Figure 3.1. Example of Gaussian Bayesian network graph structure in NeuroSuites.

1https://neurosuites.com/
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3.1.1 Implementation

BayeSuites is developed in Python and makes use of some powerful Python packages, such
as NetworkX [21] for handling graphs, pgmpy [22] for parametric learning in the discrete case,
igraph for computing graph layouts, or NumPy [23], scikit-learn [24], and scipy [25] for mul-
tiple scientific computations. It also uses bnlearn [26] and sparsebn [27], two Bayesian net-
work libraries written in R, for most of the structure learning algorithms provided. Bindings
to R code were done via rpy2 [28].

The frontend of NeuroSuites is built using JavaScript. Particularly, for representing Bayesian
networks, it uses Sigma.js, which is a Javascript library for graph visualization that makes
use of graphology, another Javascript library for graph representation. Sigma.js renders graphs
using WebGL, so it is a good option for large graphs visualization.

On the other hand, NeuroSuites backend is built following the Django framework with Celery,
an open source asynchronous task queue written in Python, as its tasks queue and RabbitMQ
as the message broker.

The full implementation of NeuroSuites is available in its GitLab repository2.

3.1.2 Bayesian network learning

BayeSuites includes multiple structure learning algorithms. Table 3.1 summarizes all these al-
gorithms, their types, and the kind of data they currently support. The reader can see that not
only constraint-based and score and search methods are included, but also some Bayesian net-
work classifiers (that require a class variable) and some statistical-based methods that are not
Bayesian network specific, like the GENIE3 algorithm [29]. It is an algorithm that showed great
performance in the DREAM5 challenge. Most of the algorithms are executed via bnlearn, but
some others depend on scikit-learn, sparsebn, or pgmpy.

The implementation of the FGES-Merge algorithm [30] is one of the main features of BayeSuites.
It is a score and search algorithm thought for learning large Bayesian networks. For that reason,
it uses the Message Passing Interface (MPI) standard via mpi4py[31] for achieving efficient
parallel computing.

Regarding the parametric learning process, BayeSuites includes maximum likelihood estima-
tion and Bayesian estimation for the discrete case. pgmpy is the package used for this task. In
the Gaussian case, maximum likelihood estimation is the only available method. BayeSuites
provides its own implementation of this method because it best suited its needs.

3.1.3 Other features

BayeSuites also provides an input/output module, that let users read or write a Bayesian net-
work in Bayesian Interchange Format (BIF). This is a format proposed by pmgpy and BayeSuites
uses that implementation. Nevertheless, it is only available in the discrete case. There is also
the option of exporting the graph structure of the network in CSV or Apache parquet format.

Additionally, BayeSuites includes different layout algorithms for the network structure graph.
Most of them are executed with igraph [33]: circular, grid, Fruchterman-Reingold and
Sugiyama layouts. Dot layout is included via NetworkX, ForceAtlas2 via fa2 [34]. Finally,
BayeSuites provides the implementation of their own layout, called image layout, that detects
the outline of an image and displays the nodes over it.

2https://gitlab.com/mmichiels/neurosuite/
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Learning type Algorithm Data type

Constraint-based

PC [6] Gaussian and discrete
Grow shrink [7] Gaussian and discrete
iamb [8] Gaussian and discrete
Fast.iamb [32] Gaussian and discrete
Inter.iamb [8] Gaussian and discrete

Score and search

Hill climbing Gaussian and discrete
Hill climbing with tabu search Gaussian and discrete
Chow-Liu tree Gaussian and discrete
Hiton parents and children Gaussian and discrete
sparsebn [27] Gaussian and discrete
FGES-Merge [30] Gaussian

Hybrid
MMHC Gaussian and discrete
MMPC [32] Gaussian and discrete

Statistical-based

Pearson correlation Gaussian
Mutual information Gaussian
Linear regression Gaussian
Graphical lasso Gaussian
GENIE3 [29] Gaussian

Bayesian classifiers
Naive Bayes Discrete
Tree augmented naive Bayes Discrete
Multidimensional BN classifier Gaussian

Table 3.1. Structure learning algorithms available in BayeSuites.

BayeSuites only supports inference for the Gaussian case. To adapt well to the parameter learn-
ing output, BayeSuites own implementation is also used in this case. NumPy is the package used
for developing it. It allows the user to condition on some evidence and retrieve new distribu-
tions of the form f (Xi|E = e).

Finally, some performance measures are provided too. Users can compare the learned network
with another network introduced by them and get the confusion matrix, F1 score or accuracy
measure, among others.

3.2 siibra and the EBRAINS Interactive Atlas Viewer

The software interface for interacting with brain atlases, shortened as siibra, is a neuroscience
toolsuite developed by the Big Data Analytics Group of the Institute of Neuroscience and
Medicine (INM-1), Forschungszentrum Jülich GmbH, in Jülich, Germany, as part of the Hu-
man Brain Project. It uses the EBRAINS brain atlas for providing different services. One of
them is the EBRAINS Interactive Atlas Viewer or siibra-explorer, which is an interactive 3D
Atlas Viewer. Apart from this, siibra also includes a Python client named siibra-python,
which is the base of the viewer, and a tool for statistical analysis of differential gene expression
named siibra-jugex.

13



3.2. siibra and the EBRAINS Interactive Atlas Viewer

3.2.1 siibra-explorer

siibra-explorer3 is a web application for visualizing volumetric brain volumes at high res-
olutions. It stores its contents in the EBRAINS Knowledge Graph4. Additionally, it includes
support for the openMINDS5 metadata standards. Figure 3.2 shows the initial view of the hu-
man brain atlas in the explorer. All available atlases are depicted in Figure 3.3. Some of them
are EBRAINS atlases, like in the human atlas case. Other atlases are borrowed, like the mouse
brain atlas, which is openly shared by the Allen Brain Institute [35].

Figure 3.2. View of the human brain atlas in siibra-explorer.

The explorer also includes an easy way of adding plugins. Available plugins are listed in the
plugins banner of Figure 3.4. These plugins need to comply to some specifications and have
some restrictions, like a maximum height and width. There are currently two available plugins
in the viewer, being siibra-jugex the one we are most interested in. Figure 3.5 shows its view
in the explorer.

The main structure of a plugin for the latest version of siibra-explorer includes a “mani-
fest.json” file with the following three fields:

• “name”: the plugin name.

• “iframeUrl”: it includes a reference to the HTML where the iframe is located.

• “siibra-explorer”: the siibra-explorer version the plugin expects. It should be greater
than 2.7.0 in that case.

3.2.2 siibra-python

siibra-python6 is the Python client that manages all the interaction with brain atlas frame-
works provided in the viewer. It tries to facilitate that interaction to researchers and provides
some basic analysis tools.

3https://interactive-viewer.apps.hbp.eu/
4https://kg.ebrains.eu/
5https://github.com/HumanBrainProject/openMINDS
6https://siibra-python.readthedocs.io/en/latest/
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Figure 3.3. Available atlases in siibra’s front page.

Figure 3.4. Plugins banner.

Figure 3.5. siibra-jugex plugin view.

One of the most important siibra-python features for us is its capability of querying gene
expression data from the Allen brain atlas [35], [36]. This data is linked to regions and any
query about a gene has to be performed specifying one region. There are six different donors
and, for each donor, there are multiple instances that correspond to different locations in the
same region. For each location, there are usually four different probes.

3.2.3 siibra-jugex

siibra-jugex [37] (as siibra Jülich-Brain Gene Expression) is a toolbox for statistical analysis
of differential gene expression in the adult human brain. It is written in Python and uses
siibra-python to retrieve gene expression data from the Allen brain atlas in the same way
that we are interested in querying these data.

As we mentioned before, siibra-jugex includes a plugin implementation for the interactive
viewer. The last version of this plugin uses the following software:

• Svelte, which is a modern open-source frontend compiler.

• Celery and Redis are used in the backend. Celery is its task queue and Redis, the message-
broker for it.

• Docker is used to build the full application. In particular, it uses the docker-compose tool
to build a multi-container Docker application with a server and a worker.

Attending to its design, the plugin uses Material icons, a set of material design icons provided
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by Google, and Svelte Material UI, a provider of Svelte components based on Material Design
Components for Web.
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Chapter 4

NeurogenPy

Once the theoretical background and related software to use was already clear, it was time to
start working on the first objective of the project: the modularization of all the Bayesian net-
work functionality explained in Section 3.1 in an independent Python package. This package
is called NeurogenPy and from now on we will refer to it using this name. This chapter sum-
marizes all the work done for achieving this first objective, the software artifacts obtained as
the result of this process and a detailed user guide of the package.

4.1 Adapting and extending BayeSuites

During the development of NeurogenPy, we kept most of the implementation decisions made
in the development of BayeSuites. However, in some cases, we had to modify BayeSuites in
order to follow package production standards, make it easier to use, or get better performance.
Furthermore, some new functionality has been added focusing on the needs of the later plu-
gin deployment. Nevertheless, there are still some improvements and extensions that can be
added in the near future as we will discuss in Chapter 6. We would also like to remark that the
code has been written with this extension idea always in mind.

The first steps were about getting to know the inner characteristics of BayeSuites implementa-
tion and how to adapt them to fit Python package development standards. The subpackages
structure was partially changed and the code was modified to make it more readable, gain
simplicity or stick to the Python Enhancement Proposal 8 (PEP 8)1, which establishes a style
guide for Python code. In other cases, the code was extended to add new functionality as
we explain in the following sections. Once each module was properly written, we started the
documentation process. It followed the Python Enhancement Proposal 257 (PEP 257)2, which
sets docstring conventions. Docstrings are string literals that document modules, functions,
classes, or method definitions. Then, automatic documentation of the project in formats such
as HTML or PDF can be easily obtained from them. Different docstring styles are available,
but we chose the NumPy documentation format (numpydoc) because it is the most widely used.

4.1.1 BayesianNetwork class

The core of the package is represented by the BayesianNetwork class. We tried to simplify it
as much as it was possible, but it keeps similar attributes as before. One of the main goals

1https://peps.python.org/pep-0008/
2https://peps.python.org/pep-0257/
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was to develop an easy to use framework, so we decided to allow the user to perform all the
functionality provided by NeurogenPy using just one class and a small set of methods. For
that reason, we created the methods fit, save, load and compare that allow the user not to di-
rectly handle the structure learning, parametric learning, input/output or score subpackages.
The distributions subpackage is masked by some BayesianNetwork class methods as it was in
BayeSuites. The only difference may be in the name or implementation of these methods, as
they were changed along with the structure of the class.

The class now also includes a generalization of the data type in some cases, because discrete
inference was included and the joint probability distribution attribute can be now Gaussian or
discrete.

4.1.2 Structure learning

We showed in Table 3.1 all the structure learning algorithms supported by BayeSuites and the
type of data they can be used on. NeurogenPy keeps all these algorithms and, as most of them
were executed via third-party packages, we did not modify much. Nevertheless, it was not
the case for the FGES-Merge algorithm. We split the code into three different files: one for
the FGES [38] algorithm (with BIC scores rather than pairwise MI as explained in [30]), an-
other one for the FGES-Merge algorithm, and the last one for the core implementation both
algorithms use. Message Passing Interface via mpi4py was replaced by the multiprocessing

package. The algorithm now uses a pool and the number of processes to use can be set by the
user with the n_jobs attribute. The reason for the change is because it also provides parallel
computation and we believe it represents a better option for parallelism in a package. Never-
theless, it can be easily modified as mpi4py provides a similar pool class. On the other hand,
we kept numba usage for speeding up some functions. Temporary graphs in FGES-Merge are
now saved with the tempfile package using TemporaryDirectory and NamedTemporaryFile

classes. Some other minor changes were also included, such as the use of tqdm for logging
information in potentially long-time tasks.

4.1.3 Joint probability distributions

BayeSuites provided an inference subpackage for Gaussian Bayesian networks. We kept this
functionality but introduced a generalization to include the discrete case. A new abstract class
JPD represents a joint probability distribution and provides some abstract methods needed by
any joint distribution. They are mainly from_parameters, for building the joint distribution
given the conditional distributions; condition, for conditioning on some evidence; marginal,
for retrieving marginal distributions; and get_cpd), for getting conditional distributions. The
previous Gaussian case is now included in the class GaussianJPD with some changes: the
distribution in the case of a large graph is now stored in a temporary file to ease the memory
usage thanks to the tempfile Python package.

Finally, a new DiscreteJPD class has been created. It provides the four aforementioned func-
tions via pgmpy. BayeSuites parametric learning subpackage used pgmpy in the discrete case
and the conditional probability tables were represented using pgmpy class TabularCPD. Then,
we decided to stick to this package and use the discrete case inference functionality they pro-
vide. In this joint distribution class, we do not build the full JPD, but keep all the TabularCPD

objects and use variable elimination or message passing algorithms, depending on the user’s
desire, to get it in the condition function.
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4.1.4 Input/output formats

BayeSuites provided three file formats for the input/output subpackage: CSV, Apache Parquet,
and BIF for the discrete case. In NeurogenPy, we kept these formats but added two more
that were useful for us, especially for visualization. Additionally, we related the visualization
oriented format of these two to the already existing layouts module.

The first format is the Graph Exchange XML Format (GEXF), designed to represent complex
network structures and supported by some of the most popular graph tools, such as NetworkX,
Gephi, Sigma.js, or graphology. Taking into account that we represent the graph structure with
a NetworkX graph and they provide GEXF read and write functions, it was easy to properly
tweak and export or import it using them. GEXF format addition represents a simple way to
visualize the network using other tools or load structures created out of the package. In this
case, all export functions allow the user to set the desired layout for setting the nodes positions.

The second format is the JavaScript Object Notation (JSON), which is a text format for data in-
terchange. As NetworkX has JSON read/write functionality, it was easy to convert the network
parameters into JSON format and join them with the graph in a unique JSON object. This way,
we provide an option for Bayesian network objects serialization that can be used in the plugin
implementation.

All direct visualization tools included in BayeSuites Python code were removed because we
believe they are not useful in our case. As we detail in Section 4.3, it is easy to visualize the
structure in small networks using NetworkX draw function. In large networks, exporting the
structure as a GEXF file and visualizing it using a specific tool for large graphs visualization
like Gephi is the approach we recommend.

4.1.5 Minor changes

Apart from the already explained modifications, some other small and technical changes in the
code were needed to get everything working. For example, the util subpackage was organized
and all the data structures transformations needed were put together in the same module. In
the layout subpackage, all layout classes that used igraph were joined in a IgraphLayout class
and all layouts provided by this package are now available. The full list of 2D layout provided
by igraph is formed by automatic, bipartite, circular, Davidson-Harel, DrL, Fruchterman-
Reingold, grid, graphopt, Kamada-Kawai, large graph, multidimensional scaling, random,
Reingold-Tilford tree, circular Reingold-Tilford, star and Sugiyama layouts. Finally, we added
the use of logging to handle tracking events.

4.2 Results

The final Python package code is available in its GitHub repository3. It includes all the code,
documentation, configuration, examples, and necessary files that are usually included in
Python packages. The full documentation4 of the project is hosted on Read the docs. This docu-
mentation has been produced using sphinx, an automatic tool for generating documentation
from docstrings, with the sphinx_rtd_theme and numpydoc validation. The package has been
licensed using a GNU General Public License Version 3 license (GPLv3) that complies with the

3https://github.com/javiegal/neurogenpy
4https://neurogenpy.readthedocs.io/en/latest/
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licenses of all the used packages. Finally, NeurogenPy is also included in PyPI5 and it can be
installed running pip install neurogenpy.

4.2.1 Summary

Table 4.2 summarizes all our contributions during NeurogenPy development process.

Contribution Description

BayeSuites adaptation Code cleaning and modifications of BayeSuites functional-
ity to get a usable package.

Input/output extension JSON and GEXF formats added. String read/write added.

FGES adaptation Modularization and code cleaning of FGES algorithm im-
plementation.

Discrete inference Modularization of joint distributions and discrete inference
added using pgmpy.

Layout subpackage Code restructured and more igraph layouts added.

logging use Tracking events added with information, warnings and er-
rors.

Docstrings and web documentation Docstrings added to all methods according to PEP 257
guide and documentation uploaded to Read the docs.

Notebooks examples Jupyter notebooks (available in the documentation too) de-
veloped as examples of package use.

Package structure README, license, setup, requirements, tests, __init__.py,
and some other typical Python package needed files added.

Table 4.2. Contributions to NeurogenPy development.

4.3 User guide

This user guide shows easy examples to illustrate how to use the package. They include code
and console output. We believe it is easy to follow for anybody with basic Python knowledge.

4.3.1 Bayesian network creation

The use of the package is focused on the BayesianNetwork class. The two main ways of creat-
ing new networks are using the constructor, in case the user already has a graph structure or
parameters, and learning it from data using fit function.

4.3.1.1 Using the constructor

If the user already has a graph structure and the network parameters in the right formats,
it is posible to use the constructor for creating the network object. The graph structure is
represented using a DiGraph object from the NetworkX package.

5https://pypi.org/project/neurogenpy/
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[ ]: from networkx import DiGraph

graph = DiGraph()

graph.add_nodes_from([1, 2])

graph.add_edges_from([(1, 2)])

Gaussian case

The network parameters are represented with a dictionary where the keys are the identifiers
of the nodes (they must be the same as in the DiGraph object) and the values are dictionaries
with four keys: uncond_mean, cond_var, parents and parents_coeffs. For each node, these
elements represent the unconditional mean, conditional variance, parents and coefficients in
the regression of the node on its parents.

[ ]: parameters = {1: {'uncond_mean': 0, 'cond_var': 1, 'parents_coeffs': [],

↪→'parents': []},

2: {'uncond_mean': 0, 'cond_var': 1, 'parents_coeffs': [1],

↪→'parents': [1]}}

Discrete case

In the discrete case, we use pgmpy as the core package, and the parameters of the network
are TabularCPD objects from pgmpy.factors.discrete.CPD. They represent conditional prob-
ability tables. Suppose node 1 has three possible categories (0, 1 and 2). See its conditional
probability distribution in Table 4.3. For node 2, suppose it also has three possible categories
and its conditional probability distribution conditioned on node 1 is the one in Table 4.4.

Prob

1(0) 0.3

1(1) 0.3

1(2) 0.4

Table 4.3. CPD table for node 1.

1 1(0) 1(1) 1(2)

2(0) 0.2 0.05 0.1

2(1) 0.2 0.5 0.1

2(2) 0.6 0.45 0.8

Table 4.4. CPD table for node 2.

[ ]: from pgmpy.factors.discrete.CPD import TabularCPD

cpd1 = TabularCPD(1, 3, [[0.3], [0.3], [0.4]])

cpd2 = TabularCPD(2, 3, [[0.2,0.05,0.1], [0.2,0.5,0.1],[0.6,0.45,0.8]],␣

↪→evidence=[1], evidence_card=[3])

parameters = {1: cpd1, 2: cpd2}

Once you have both the graph and parameters, the network can be instantiated in the usual
way. In the discrete case, the user needs to pass data_type='discrete' as an argument, and
in the continuous case, data_type='continuous'.
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[ ]: from neurogenpy import BayesianNetwork

bn = BayesianNetwork(graph=graph, parameters=parameters, data_type='continuous')

print('Nodes:', bn.graph.nodes())

print('Edges:', bn.graph.edges())

4.3.1.2 Learning the full network from data

As said before, it is possible to learn the structure and parameters of a Bayesian network from
data. First of all, you should create a pandas DataFrame from your data with the following
structure:

Instances Feature 1 Feature 2 . . . Feature n

Instance 1 Value11 Value12 . . . Value1n

Instance 2 Value21 Value22 . . . Value2n

. . . . . . . . . . . . . . .
Instance N ValueN1 ValueN2 . . . ValueNn

In our example, we create the DataFrame by reading a CSV file.

[ ]: import pandas as pd

df = pd.read_csv('data.csv')

Once the data is in the correct format, there are two ways for learning the network: using the
arguments of the fit function or using the particular LearnStructure and LearnParameters

subclasses. They are analogous and we particularly recommend the first one as it is simpler.

Using arguments of fit function

Once users have read the file, they can fit the data using the fit method and setting the struc-
ture learning algorithm and estimation method.

[ ]: bn = BayesianNetwork().fit(df, data_type='continuous', estimation='mle',␣

↪→algorithm='pc')

Additional parameters for these learning methods can be provided too.

[ ]: bn = BayesianNetwork().fit(df, data_type='continuous', estimation='mle',␣

↪→algorithm='fges_merge', penalty=0.01)

Using LearnStructure or LearnParameters subclasses

Another option is to use the desired subclass of LearnStructure or LearnParameters.
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[ ]: from neurogenpy import PC, GaussianMLE

pc = PC(df, data_type='continuous')

mle = GaussianMLE(df)

bn = BayesianNetwork().fit(algorithm=pc, estimation=mle)

4.3.1.3 Combinations

Users can handle combinations of the above methods to build a network. If they are only
interested in the graph structure, it is possible to just learn the structure and not the parameters
by not providing any value for the attribute estimation.

[ ]: bn = BayesianNetwork().fit(df, data_type='continuous', algorithm='pc')

On the other hand, if the user already has a graph structure and want to learn the param-
eters, it is also possible to provide it in the constructor or load it before calling fit with
skip_structure set to True.

[ ]: bn = BayesianNetwork(graph=graph)

bn.fit(df, data_type='continuous', estimation='mle', skip_structure=True)

bn2 = BayesianNetwork().load('adjacency_matrix.csv')

bn2.fit(df, data_type='continuous', estimation='mle', skip_structure=True)

4.3.2 Visualization

The graph structure of the network is represented using a DiGraph from NetworkX. This pack-
age provides functionality for visualizing basic graphs. To plot the graph structure, the user
will also need to use matplotlib [39].

[4]: import matplotlib.pyplot as plt

import networkx as nx

from neurogenpy import BayesianNetwork

digraph = nx.DiGraph()

digraph.add_edge(2, 1)

digraph.add_edge(1, 3)

digraph.add_edge(2, 4)

bn = BayesianNetwork(graph=digraph)

nx.draw(bn.graph, with_labels=True, font_weight='bold')

plt.show()
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This way of visualizing the network is only recommended for small networks. As graph visu-
alization is a difficult task, we recommend exporting the structure in GEXF format and use a
dedicated tool to show it, such as Gephi or Sigma.js. Exporting the graph structure is carefully
explained in the next section.

4.3.3 Load and save networks

Bayesian networks can be stored and loaded from the BayesianNetwork class or using the
classes of the io subpackage (BIF, AdjacencyMatrix, GEXF, or JSON).

4.3.3.1 Using BayesianNetwork class

The network can be read or written using load and save methods, respectively. Some formats
save or load the full Bayesian network and some others can only handle the structure.

Full network

There are two formats that manage the full network: JSON and pgmpy BIF. The last one is only
available in the discrete case.

[1]: from neurogenpy import BayesianNetwork

from networkx import DiGraph

graph = DiGraph()

graph.add_edge('A', 'C')

graph.add_edge('B', 'C')

graph.add_edge('D', 'E')

parameters = {'A': {'uncond_mean': 4, 'cond_var': 3, 'parents_coeffs': [],

↪→'parents': []},

'B': {'uncond_mean': 5, 'cond_var': 1, 'parents_coeffs': [],

↪→'parents': []},

'C': {'uncond_mean': 3, 'cond_var': 2, 'parents_coeffs': [-0.2, 0.

↪→5], 'parents': ['A', 'B']},

'D': {'uncond_mean': 2, 'cond_var': 1, 'parents_coeffs': [],

↪→'parents': []},

'E': {'uncond_mean': 1, 'cond_var': 0.5, 'parents_coeffs': [0.7],

↪→'parents': ['D']}}

(continues on next page)
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(continued from previous page)

bn = BayesianNetwork(graph=graph, parameters=parameters, data_type='continuous')

bn.save('bn.json')

bn2 = BayesianNetwork().load('bn.json')

print('Some checking:')

print(bn2.get_cpds(['C']))

Some checking:

{'C': {'uncond_mean': 3.0, 'cond_var': 2.0, 'parents_coeffs': [-0.

↪→20000000000000004, 0.5], 'parents': ['A', 'B']}}

Network structure

In the case of a GEXF, CSV, or Apache Parquet file, it only loads the graph structure of the
network. In the GEXF case, a layout_name argument in save allows the user to determine how
the positions of the nodes are stored in the file. Loading a GEXF file also keep the positions
written in the file, but the user should be careful because draw function from NetworkX do not
take them into account. In the following example, we save a graph using circular layout and
show the visualization obtained with draw after loading it.

[4]: bn.save('bn.gexf', layout_name='circular')

bn2 = BayesianNetwork().load('bn.gexf')

import matplotlib.pyplot as plt

import networkx as nx

nx.draw(bn.graph, with_labels=True, font_weight='bold')

plt.show()

The display obtained is not the desired one. We would expect something like the graph in
Figure 4.1. It was drawn with Sigma.js reading the stored GEXF file.

An option to make it work with NetworkX could be using a layout object, running the layout
and passing the result to the draw function.
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Figure 4.1. Example of circular layout visualization with Sigma.js.

[15]: from neurogenpy.io import IgraphLayout

layout = IgraphLayout(bn.graph, layout_name='circular')

positions = layout.run()

nx.draw(bn.graph, pos=positions, with_labels=True, font_weight='bold')

plt.show()
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4.3.3.2 Using io subpackage

It is also possible to instantiate a particular io class (JSON, GEXF, AdjacencyMatrix or BIF) and
use write_file or read_file to load or save Bayesian networks.

[ ]: from neurogenpy import GEXF, AdjacencyMatrix

writer = GEXF(bn)

writer.write_file(layout_name='circular', communities=True, sizes_method=

↪→'neighbors')

reader = AdjacencyMatrix()

bn_structure = reader.read_file('bn_structure.csv')

Additionally, the io subpackage provides two other methods: generate and convert. The first
one allows the user to get an input/output object from the Bayesian network and the second
one to get a Bayesian network (or at least its structure) from an input/output object. In the
GEXF and JSON case the input/output object is a string representation of the structure. In the
AdjacencyMatrix case, it is a numpy array that represents it. We now show one example of
each method.

[3]: from neurogenpy import JSON, GEXF

writer = GEXF(bn)

print('GEXF representation:')

print(writer.generate())

GEXF representation:

<gexf xmlns="http://www.gexf.net/1.2draft" xmlns:xsi="http://www.w3.org/2001/

↪→XMLSchema-instance" xsi:schemaLocation="http://www.gexf.net/1.2draft http://

↪→www.gexf.net/1.2draft/gexf.xsd" version="1.2">

<meta lastmodifieddate="2022-07-12">

<creator>NetworkX 2.8.4</creator>

</meta>

<graph defaultedgetype="directed" mode="static" name="">

<nodes>

<node id="A" label="A" />

<node id="C" label="C" />

<node id="B" label="B" />

<node id="D" label="D" />

<node id="E" label="E" />

</nodes>

<edges>

<edge source="A" target="C" id="0" />

<edge source="B" target="C" id="1" />

<edge source="D" target="E" id="2" />

</edges>

</graph>

</gexf>
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[4]: json_str = r"""{"graph": {"directed": true, "multigraph": false, "graph": {} ,
↪→"nodes": [{"id": "A"}, {"id": "C"}],

"links": [{"source": "A", "target": "C"}]},

"parameters": {

"A": {"uncond_mean": 4, "cond_var": 3, "parents_coeffs": [], "parents": []},

"C": {"uncond_mean": 3, "cond_var": 2, "parents_coeffs": [-0.2], "parents":␣

↪→["A"]}},

"data_type": "continuous"}"""

reader = JSON()

bn2 = reader.convert(json_str)

nx.draw(bn2.graph, with_labels=True, font_weight='bold')

plt.show()

4.3.4 Bayesian network information

Much information can be retrieved once you have created a network with available methods
like markov_blanket, important_nodes, communities, marginal, is_dseparated, get_cpds,
etc. For example, the following queries output as a dictionary the communities (calculated
with the Louvain algorithm [40]), the Markov blanket of node A and checks if A and C are
d-separated by B.

[1]: from neurogenpy import BayesianNetwork

from networkx import DiGraph

graph = DiGraph()

graph.add_edge('A', 'B')

graph.add_edge('B', 'C')

graph.add_edge('D', 'E')

parameters = {'A': {'uncond_mean': 4, 'cond_var': 3, 'parents_coeffs': [],

↪→'parents': []},

'B': {'uncond_mean': 5, 'cond_var': 1, 'parents_coeffs': [0.5],

↪→'parents': ['A']},

'C': {'uncond_mean': 3, 'cond_var': 2, 'parents_coeffs': [-0.2],

↪→'parents': ['B']},
(continues on next page)
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(continued from previous page)

'D': {'uncond_mean': 2, 'cond_var': 1, 'parents_coeffs': [],

↪→'parents': []},

'E': {'uncond_mean': 1, 'cond_var': 0.5, 'parents_coeffs': [0.7],

↪→'parents': ['D']}}

bn = BayesianNetwork(graph=graph, parameters=parameters, data_type='continuous')

print('- Communities Louvain:', bn.communities(method='louvain'))

print('- Markov blanket of node A', bn.markov_blanket('A'))

print('- A and C d-separated by B?', bn.is_dseparated(['A'], ['C'], ['B']))

- Communities Louvain: {'A': 1, 'B': 1, 'C': 1, 'D': 0, 'E': 0}

- Markov blanket of node A ['A', 'B']

- A and C d-separated by B? True

4.3.5 Distributions and inference

The joint distribution is stored using a JPD subclass. Depending on the data type, the used
class will be GaussianJPD or DiscreteJPD. However, there is no need to directly use them.

These classes provide some methods for getting the joint distribution object from parameters
(from_parameters), conditioning the distribution on some evidence (condition), or retrieving
conditional or marginal distributions (get_cpds or marginal). These methods are called from
the corresponding functions provided in the BayesianNetwork class. We will show examples
of condition and marginal in Gaussian and discrete cases.

4.3.5.1 Gaussian joint probability distribution

[1]: from neurogenpy import BayesianNetwork

from networkx import DiGraph

graph = DiGraph()

graph.add_edge('A', 'B')

graph.add_edge('B', 'C')

graph.add_edge('D', 'E')

parameters = {'A': {'uncond_mean': 4, 'cond_var': 3, 'parents_coeffs': [],

↪→'parents': []},

'B': {'uncond_mean': 5, 'cond_var': 1, 'parents_coeffs': [0.5],

↪→'parents': ['A']},

'C': {'uncond_mean': 3, 'cond_var': 2, 'parents_coeffs': [-0.2],

↪→'parents': ['B']},

'D': {'uncond_mean': 2, 'cond_var': 1, 'parents_coeffs': [],

↪→'parents': []},

'E': {'uncond_mean': 1, 'cond_var': 0.5, 'parents_coeffs': [0.7],

↪→'parents': ['D']}}

bn = BayesianNetwork(graph=graph, parameters=parameters, data_type='continuous')

print('Marginal distribution f(B):')

(continues on next page)

29



4.3. User guide
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print(bn.marginal(['B'])['B'])

bn.set_evidence({'A': 1})

print('\nNew distribution f(B|A=1):')

print(bn.condition()['B'])

Marginal distribution f(B):

{'mu': 5.0, 'sigma': 1.75}

New distribution f(B|A=1):

{'mu': 3.5, 'sigma': 1.0}

4.3.5.2 Discrete joint probability distribution

[2]: from pgmpy.factors.discrete.CPD import TabularCPD

graph = DiGraph()

graph.add_edge('A', 'B')

cpd1 = TabularCPD('A', 3, [[0.3], [0.3], [0.4]])

cpd2 = TabularCPD('B', 3, [[0.1,0.4,0.1], [0.1,0.3,0.1],[0.8,0.3,0.8]],␣

↪→evidence=['A'], evidence_card=[3])

parameters = {'A': cpd1, 'B': cpd2}

bn = BayesianNetwork(graph=graph, parameters=parameters, data_type='discrete')

print('Marginal distribution f(B):')

print(bn.marginal(['B'])['B'])

bn.set_evidence({'A': 1})

print('\nNew distribution f(B|A=1):')

print(bn.condition()['B'])

Marginal distribution f(B):

{0: 0.19999999999999998, 1: 0.16666666666666666, 2: 0.6333333333333334}

New distribution f(B|A=1):

{0: 0.4, 1: 0.3, 2: 0.3}

4.3.6 Performance

The user can compare the graph structure of the network with its actual graph structure using
compare function from BayesianNetwork class. Different performance measures are available.
Let’s see an example where the graph structure of the network is 1→2→3→4 and the actual
graph structure to be approximated is 1→2←3→4. Considering the edges directions (using
undirected=False) shows a different result than not doing it (undirected=True), where both
structures would be seen as the same.
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[1]: from numpy import array

from networkx import DiGraph

from neurogenpy import BayesianNetwork

matrix = array([[0,1,0,0], [0,0,0,0], [0,1,0,1], [0,0,0,0]])

graph = DiGraph()

graph.add_edge(1, 2)

graph.add_edge(2, 3)

graph.add_edge(3, 4)

# No JPD is needed for this, just the graph structure.

bn = BayesianNetwork(graph=graph)

res = bn.compare(matrix, nodes_order=[1, 2, 3, 4], metric='all',␣

↪→undirected=False)

print('Directed case:')

print('Accuracy:', res['accuracy'])

print('Confusion matrix:')

print(res['confusion'])

res = bn.compare(matrix, nodes_order=[1, 2, 3, 4], metric='all',␣

↪→undirected=True)

print('\nUndirected case:')

print('Accuracy :', res['accuracy'])

print('Confusion matrix:')

print(res['confusion'])

Directed case:

Accuracy: 0.8333333333333334

Confusion matrix:

[[2 1]

[1 8]]

Undirected case:

Accuracy : 1.0

Confusion matrix:

[[3 0]

[0 3]]

4.3.7 Using siibra-python to learn gene regulatory networks

siibra-python allows users to query gene expression data from the Allen brain atlas. Their
documentation6 provides a full explanation on how it works.

First of all, you should determine the atlas, region and genes of interest. After that, you can use
siibra’s get_features function to retrieve the desired data. The data provided comes from
six different donors. Given a region, multiple samples from different locations are obtained for

6https://siibra-python.readthedocs.io/en/latest/examples/03_data_features/004_gene_expressions.html
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each donor. Each sample provides data from different probes (usually four probes). We take
the average for all the probes as the value for a particular donor and location.

[1]: import siibra

import statistics

import pandas as pd

from neurogenpy import BayesianNetwork

atlas = siibra.atlases.MULTILEVEL_HUMAN_ATLAS

region = atlas.get_region("V1")

genes = ["CREM", "ATP5G1", "RAB33B"]

samples = {gene_name: [statistics.mean(f.expression_levels) for

f in siibra.get_features(region, 'gene',

gene=gene_name)] for

gene_name in genes}

[siibra:INFO] Version: 0.3a14

[siibra:WARNING] This is a development release. Use at your own risk.

[siibra:INFO] Please file bugs and issues at https://github.com/FZJ-INM1-BDA/

↪→siibra-python.

[siibra:INFO] No parcellation specified, using default 'Julich-Brain␣

↪→Cytoarchitectonic Maps 2.9'.

[siibra:INFO] Retrieving probe ids for gene CREM

For retrieving microarray data, siibra connects to the web API of

the Allen Brain Atlas (© 2015 Allen Institute for Brain Science),

available from https://brain-map.org/api/index.html. Any use of the

microarray data needs to be in accordance with their terms of use,

as specified at https://alleninstitute.org/legal/terms-use/.

[siibra:INFO] Retrieving probe ids for gene ATP5G1

[siibra:INFO] Retrieving probe ids for gene RAB33B

Then, you can learn the network with the BayesianNetwork class after creating a pandas

DataFrame.

[2]: df = pd.DataFrame(samples)

print('First five instances of the obtained DataFrame:')

print(df.head())

bn = BayesianNetwork().fit(df, data_type="continuous", algorithm="cl",␣

↪→estimation="mle")

import networkx as nx

import matplotlib.pyplot as plt

(continues on next page)
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nx.draw(bn.graph, with_labels=True, font_weight='bold')

plt.show()

for gene, cpd in bn.get_cpds(genes).items():

print(gene, cpd)

First five instances of the obtained DataFrame:

CREM ATP5G1 RAB33B

0 5.389167 9.709525 3.81760

1 5.435017 9.666150 3.57550

2 5.475183 9.812725 3.67285

3 5.418250 9.954475 3.72965

4 5.440733 9.008950 4.49230

CREM {'uncond_mean': 5.433495238095238, 'cond_var': 0.04456554986049554,

↪→'parents_coeffs': [], 'parents': []}

ATP5G1 {'uncond_mean': 9.024532142857145, 'cond_var': 0.39210540972760805,

↪→'parents_coeffs': [-0.8244179397109443], 'parents': ['CREM']}

RAB33B {'uncond_mean': 4.281339999999999, 'cond_var': 0.6899283651657337,

↪→'parents_coeffs': [-0.29881861893417766], 'parents': ['CREM']}

4.3.7.1 Discretization of gene expression data

There are multiple ways of discretizing gene expression data. Here, we use a simple one.
We use three levels (inhibition, activation and no-change). See Section 2.2.1.1 for a complete
explanation of this process.

[3]: df = df.apply(lambda col: pd.cut(col,

bins=[-float('inf'), 2 ** (-0.2) * col.mean(),

↪→2 ** 0.2 * col.mean(), float('inf')],

labels=['inh', 'no-c', 'act']))

print(df.head())

CREM ATP5G1 RAB33B

0 no-c no-c no-c

1 no-c no-c inh

2 no-c no-c inh
(continues on next page)
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3 no-c no-c no-c

4 no-c no-c no-c

Once the data is discretized, the network can be learned the usual way:

[4]: bn = BayesianNetwork().fit(df, data_type="discrete", algorithm="cl", estimation=

↪→"bayesian")

nx.draw(bn.graph, with_labels=True, font_weight='bold')

plt.show()

for gene, cpd in bn.get_cpds(genes).items():

print(gene)

print(cpd)

CREM

+------------+-------------+-------------+--------------+

| RAB33B | RAB33B(act) | RAB33B(inh) | RAB33B(no-c) |

+------------+-------------+-------------+--------------+

| CREM(no-c) | 1.0 | 1.0 | 1.0 |

+------------+-------------+-------------+--------------+

ATP5G1

+--------------+-----------------+---------------------+---------------------+

| RAB33B | RAB33B(act) | RAB33B(inh) | RAB33B(no-c) |

+--------------+-----------------+---------------------+---------------------+

| ATP5G1(inh) | 0.0961538461538 | 0.26562500000000006 | 0.08870967741935486 |

+--------------+-----------------+---------------------+---------------------+

| ATP5G1(no-c) | 0.9038461538461 | 0.734375 | 0.9112903225806452 |

+--------------+-----------------+---------------------+---------------------+

RAB33B

+--------------+----------+

| RAB33B(act) | 0.216667 |

+--------------+----------+

| RAB33B(inh) | 0.266667 |

+--------------+----------+

| RAB33B(no-c) | 0.516667 |

+--------------+----------+
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NeurogenPy as a siibra-explorer plugin

The NeurogenPy plugin development started once the package got to a stable version. We
followed the same approach as siibra-jugex. Some Svelte files were written for the plugin
user interface components. They were then compiled into JavaScript. The backend was im-
plemented in Python as different Celery tasks and Redis was the message broker. This is where
the package has been used. When both parts were ready, a Docker container was built using
docker-compose. This container included the manifest file and the iframe siibra-explorer

needs to load it.

5.1 Plugin design

The design of the plugin view was based on both siibra-jugex and BayeSuites. They are
different tools, so we sometimes had to decide which one to follow. In general, we tried not
to differ much from the siibra-jugex implementation so we focused more on it. The style
of the view is also based on siibra-jugex. We used the same dark theme, Material icons, and
Svelte Material components they used. This is because the plugin had to keep the appearance
of all the other components in siibra-explorer. These requirements and all the differences
between our package and the original BayeSuites Python code made reusing the BayeSuites
interface extremely difficult. Even though we developed a new interface, its development was
based on the functions and characteristics of the previous one.

5.1.1 Initial view

The initial view of the plugin is very similar to the latest siibra-jugex view. siibra-explorer
sets a width constraint for any plugin, so this initial view is only focused on introducing the set
of options used to learn the network. Figure 5.1 shows this initial view. Its use is quite intuitive.
First of all, the user has to select the region of interest in the brain. There are two ways to do
it: searching it by its name or selecting the sensor button and clicking on a particular region in
the 3D visualization. After that, the user can select the set of genes used to learn the network.
They can be selected by searching them one by one or by clicking on the upload file button
and introducing a JSON file with the format presented in Listing 5.1. Then, the data type
(continuous or discrete), the structure learning algorithm and the parameter learning method
can be selected using their corresponding boxes. The available algorithms for each case are the
same as those written in Table 3.1 and the discretization process followed the same scheme as
the one discussed in Section 2.2.1.1. Finally, the “Learn GRN” button triggers the expression
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data retrieval and the GRN learning process. Once it is completed, the GRN view is opened.

Figure 5.1. Plugin first view in siibra-explorer.

{

"genes": [

"Gene1",

"Gene2",

"Gene3",

]

}

Listing 5.1. Genes JSON input format example.

5.1.2 GRN view

The GRN view focuses on displaying the learned gene regulatory network and providing use-
ful ways to manipulate it, perform inference and download the results. It is divided into three
different views. The main view is focused on the visualization of the network, the second one
offers general manipulations of the network, and the third shows information about particular
genes and allows performing inference.

5.1.2.1 Graph display

The graph display view presents the graph structure obtained after the learning process. It
has been developed using Sigma.js, the same tool used in NeuroSuites. NeurogenPy allows us to
easily export a network structure in GEXF format as we explained in Section 4.1.4 and Sigma.js
can easily read this format via graphology.

The view includes some simple options to manipulate the graph, such as dragging nodes,
selecting different layouts, or hiding the labels. It also offers some visualization tools, like
zooming in and out, going full screen, or selecting a node, highlighting it, and showing only
its neighbors. Node selection is available in two different ways: clicking on the node or using
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the autocomplete search engine in the upper left corner. Most of these functions are executed
in the frontend by Sigma.js, except for Dot, Sugiyama, Fruchterman Reingold, and Grid layouts
that are executed with NeurogenPy in the backend. ForceAtlas2 and circular layouts are also
included in NeurogenPy, but we kept the Sigma.js implementations because of performance
reasons. Figure 5.2 shows an example of this view.

Figure 5.2. Example of graph display.

5.1.2.2 General network manipulation

The general network manipulation view (Figure 5.3) is focused on some actions that can be
performed over the whole graph. It mixes different features, but they all have in common
their general scope.

Figure 5.3. General network manipulation view.

37



5.1. Plugin design

The first one has to do with checking if two sets of nodes X and Y are d-separated by an-
other set of nodes Z . It is an important property because, as we explained in Section 2.1.1,
d-separation implies conditional independence. The second one allows the execution of the
Louvain method for community detection and colors the graph according to the found com-
munities. Nodes of the same community receive the same color, edges between nodes of the
same community receive the color of that community, and edges between nodes of different
communities remain white, which is the default color. Figure 5.2 showed an example of how
it works. As in the case of the layout, the Louvain algorithm is run on Sigma.js although
NeurogenPy also provides it. The third function of this view lets the user download the re-
sulting network in the desired format. Available formats are JSON, GEXF, PNG, BIF, and CSV.
Finally, a help button is included in this view. It opens the dialog in Figure 5.4 where a simple
user guide is shown.

Figure 5.4. Help dialog.

5.1.2.3 Node information

Once you select a node in one of the possible ways explained in Section 5.1.2.1, the view for
this node appears. It provides some information about the node and some possible actions the
user can do over it. First of all, the marginal distribution of the selected node, P(Xi) or f (Xi),
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is displayed. Figure 5.5 shows the different views depending on the type of the data. Chart.js
is the JavaScript library used to show them. In addition to the distribution chart, the known
evidence about that node can be easily set by selecting its value. The users can repeat this
process for all the nodes they know evidence about. After setting all these values, pressing the
“Infer” button will trigger the inference process. Once it is finished, the distribution chart will
include the updated distribution, P(Xi|E = e) or f (Xi|E = e), too. Examples of the updated
chart are shown in Figure 5.6. They are the same inference examples as in Section 4.3.5.1 and
Section 4.3.5.2. Finally, the user can also retrieve the Markov blanket of the node. After doing
so, the graph display will hide all nodes except those forming the Markov blanket.

Figure 5.5. Node information view in Gaussian (left) and discrete cases (right).

Figure 5.6. Chart views after introducing known evidence.

5.2 GRN example

Just to test the plugin, we decided to learn a bigger network than those shown in previous
examples. The first 200 genes of the full list of genes included in siibra-python were taken.
This set is presented in Listing 5.2. There was no available data for one of these genes, so the
final size was 199. We learned a GRN with the expression data available for the frontal lobe
with the Chow-Liu algorithm. The resulting network with ForceAtlas2 layout and colored by
communities was exported in PNG format. See Figure 5.7.
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{"genes": ["C15orf27", "PGBD5", "A_23_P64051", "ATP5G1", "RAB33B", "A_24_P485271", "CREM
", "DLX2", "OR2B3", "A_24_P713312", "A_32_P5148", "BSCL2", "STGC3", "SCRN1", "PRKAA2
", "RPL27", "TEX101", "NGEF", "RBP5", "RHOU", "FBXW11", "WBSCR17", "A_23_P96262", "
TBC1D24", "ZNF700", "A_24_P161733", "C8orf22", "A_24_P118946", "KANSL1L", "ACOT6", "
A_32_P12494", "RDH12", "MEF2C", "A_24_P942374", "A_24_P136911", "TOLLIP", "
CUST_2664_PI416261804", "SMIM19", "OR11H4", "ANKRD36C", "MED12L", "CYP3A43", "ARL5A"
, "A_32_P219635", "A_24_P706236", "TNFRSF10C", "ZNF484", "AADAT", "NADK2", "
A_24_P221724", "CLEC6A", "ASPG", "IKBKAP", "RALB", "DGCR6", "A_24_P738859", "GOLPH3"
, "A_23_P21804", "SNHG8", "NAA20", "KIAA0922", "A_24_P487877", "A_23_P26367", "KCNC3
", "A_24_P340886", "KIF18A", "SLC12A8", "OPTC", "GLUL", "NDUFB5", "ARMCX6", "DPYSL5"
, "LIMS3 -LOC440895", "A_24_P612020", "A_24_P213073", "MAPRE1", "A_24_P934971", "
A_24_P392622", "LARP4", "GNMT", "MLH1", "CNTFR", "EEF2K", "ATP2A3", "ZNF730", "
TP53I13", "A_24_P384379", "LOC728327", "SUSD6", "A_23_P93109", "C7orf13", "
A_24_P127063", "A_24_P178643", "NINL", "PAMR1", "A_24_P232763", "GGT7", "ACOT12", "
TEAD2", "AP4S1", "HNRNPCL1", "BTBD16", "LNPEP", "CDY1", "A_24_P485105", "SPDYE2B", "
LOC728804", "GEMIN2", "PSG2", "OR7E91P", "SKAP2", "A_24_P654368", "DENND2A", "GPS1",
"A_24_P222054", "ITGB8", "FAM21C", "A_24_P299137", "ERG", "RBM15", "SPATA7", "MXRA8

", "A_24_P592487", "ERICH5", "A_32_P193792", "A_24_P489399", "C6orf62", "SLC6A7", "
HYMAI", "HSPA1B", "ACACA", "ZSCAN1", "MSANTD4", "TGIF2", "CYP3A4", "CALM3", "DSCAML1
", "A_23_P32821", "MGARP", "LINC01420", "A_23_P210451", "IGFBP5", "PPA2", "
A_24_P791814", "PRSS50", "MMP11", "PZP", "A_32_P463538", "A_24_P936419", "
A_32_P48054", "A_24_P791862", "PRKCZ", "COX15", "PNMT", "COPA", "C5orf58", "SEPT4",
"ADGRG6", "A_24_P75856", "NOSIP", "A_24_P911051", "A_32_P51005", "A_24_P945069", "
A_24_P608931", "CUST_2438_PI416261804", "A_24_P938281", "TM7SF3", "FLJ20021", "
C19orf67", "KLHL34", "A_24_P938284", "L3MBTL1", "TRIP13", "PIK3CA", "MOSPD3", "
A_32_P114372", "TXLNG", "A_32_P97968", "A_32_P170564", "A_24_P878561", "ARHGAP28", "
A_32_P140153", "UBXN4", "CCDC64B", "LINC00165", "SNRNP40", "NEIL3", "A_32_P40327", "
LMAN1L", "WTIP", "A_24_P934744", "FCHSD2", "LOC728836", "A_32_P208978", "GAGE10", "
MAPK10", "ADCY10P1", "TRAF3IP3", "LOC100132014", "ARHGAP1"]}

Listing 5.2. Used genes.

Figure 5.7. Learned GRN.
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Chapter 6

Conclusions and future work

6.1 Conclusions

In this Master Thesis, based on BayeSuites, we have developed NeurogenPy, a Python package
for learning and handling Bayesian networks focused on the problem of learning gene regula-
tory networks modeled as Bayesian networks. This package has been developed according to
the current standards and is properly documented to facilitate reuse and extension by others.
We have been able to successfully adapt and extend the functionality offered by BayeSuites. The
software uses some of the current state-of-the-art Bayesian network and graph management
packages. The resulting package has been used to develop a plugin for siibra-explorer, the
EBRAINS Interactive Atlas Viewer, and to learn gene regulatory networks from gene expres-
sion data provided by the Allen Brain Institute through siibra-python. Finally, we were able
to build some easy examples of the use of the package and plugin.

6.2 Future work

Although the development of the library and the plugin has been successful, we believe there
are many different ways they both could be improved and extended. Along this section we
will try to detail the most important ones.

NeurogenPy package provides many different structure learning algorithms. However, some
of them are run in R and embedded in Python via rpy2. That is not necessarily a bad practice,
but it may not show the best performance in computational time terms if the network is large.
Additionally, it extends the dependencies needed to use the package, because R, bnlearn, and
sparsebn have to be installed on their machines. Finding alternative solutions to this situation
could be useful.

One of the most interesting features of the package is the inclusion of an implementation of the
FGES-Merge algorithm. This algorithm uses hypothesis tests that are currently implemented
only in the Gaussian case. However, its adaptation to the discrete case should not be very
difficult and it would expand the package capabilities.

Apart from the previous two improvements, we believe there are many other possible ad-
vances for NeurogenPy. If we take a look to the supported parametric estimation methods,
we see Bayesian estimation is not supported in the Gaussian case. Its implementation would
enhance this software. Moreover, BayeSuites included the skeleton code for probabilistic clus-
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6.2. Future work

tering. We did not include it in NeurogenPy because it was not actually implemented or di-
rectly related to our topic, but it would be nice to develop it. Finally, adding other learning
algorithms or supporting all type of data for those methods only available in the discrete or
continuous case would be interesting too.

On the other hand, if we focus on learning gene regulatory networks, there are different paths
that can be followed to make this package a more powerful tool. Right now, discretization of
gene expression data should be done out of the package. An interesting improvement would
be including some of the most typical discretization techniques for treating gene expression
data [19]. Furthermore, adding other models for learning GRNs rather than Bayesian networks
could be helpful too.

Focusing on the plugin itself, other than including the NeurogenPy improvements on it, some
actions could be done. First of all, the download of the data could be openMINDS conformant.
Additionally, the Apache Parquet case could be added too. On the visualization part, some
other tools would be helpful. Selecting groups of nodes, adding other methods for detecting
communities, or some other typical graph manipulation options, such as modifying the sizes
of the nodes, represent some ideas in that way. However, if that is the case, it should be
thoroughly designed to obtain a user-friendly interface.

Finally, we have to admit that gene expression data extraction with siibra is currently slow.
If the set of genes for which the data has to be downloaded is large, it takes a very long time
and it supposes an issue for the plugin performance. Nevertheless, at the time these lines are
being written, siibra-python development team has been informed of that issue and they are
working on providing a more suitable way of downloading expression data. By the time it is
done, we will modify our plugin.
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