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Resumen

Clustering es el principal problema del paradigma de aprendizaje no supervisado
dentro del machine learning. Este problema consiste en agrupar individuos de una
población en base a sus características a partir de una muestra de dicha población.
El objetivo principal es obtener información de la población únicamente a partir de
los datos lo cual lo convierte en un problema muy complejo. Esto se debe a que, a
diferencia de otros problemas como la clasificación o la regresión, dentro del cluster-
ing, y en general en aprendizaje no supervisado, no se tiene información sobre los
posibles resultados.

El hecho de no tener ningún tipo de conocimiento respecto a los posibles resultados
que se pueden obtener al resolver el problema no solo hace que este sea complejo,
sino que también aparezca la necesidad de explicaciones pues pueden aparecer pre-
guntas acerca de los resultados para su comprensión y validación. Un ejemplo de
ello es el etiquetado de los clusters. Este problema está muy relacionado con la ca-
racterización de los clusters que no es más que identificar información que diferencia
e identifica cada grupo obtenido. Así una de las aproximaciones mas comunes para
el etiquetado de los clusters pasa por encontrar una caracterización de los grupos y
dotar de un nombre representativo a partir de esta. De esta forma el problema del
clustering, al igual que muchos otros, interseca con el campo de las explicaciones en
inteligencia artificial (IA), el cual ha adquirido una gran importancia en los últimos
años aunque hay que destacar que aún no se ha desarrollado una teoría consolidada.

En este contexto, el uso de modelos interpretables es importante. Esto se debe a que
estos modelos pueden aportar a resolver el problema de forma óptima y así obtener
información relevante. Pero, ¿qué es un modelo interpretable?, ¿por qué en este caso
pueden ser útiles? ¿qué modelo interpretable se debería utilizar?. A estas preguntas
da respuesta el campo de las explicaciones en IA.

El objetivo de este trabajo es mostrar la versatilidad y utilidad que presenta el modelo
de red Bayesiana dentro del contexto de las explicaciones en IA, y particularmente
en el problema de clustering. Para ello se va a estudiar el estado del arte en el campo
de las explicaciones haciendo hincapié en la falta de consolidación de la teoría de-
sarrollada en este. Posteriorimente, se ubicará a las redes Bayesianas dentro de este
campo a través del estado del arte de las herramientas que ofrece este modelo dentro
del contexto de las explicaciones en IA.
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Una vez establecido el marco teórico del trabajo se presentará el estado del arte
en la resolución del problema del clustering con redes Bayesianas. Finalmente, se
establecerá una nueva metodología que aprovecha la interpretabilidad de las redes
Bayesianas para poder caracterizar los clusters que se pueden obtener y con ello re-
solver el problema del etiquetado de los clusters.

Esta metodología tiene base en la aproximación habitual para la caracterización de
clusters que consiste en encontrar individuos representativos de estos. Estos in-
dividuos permiten identificar de forma sencilla las características que diferencian
unos clusters de otros. De esta forma ofrecen una visión compacta de los clusters
que facilita su etiquetado. Además, aprovechando la interpretabilidad de las redes
Bayesianas esta nueva metodología introduce una nueva medida de importancia para
las variables. Esta medida es introducida con el objetivo de permitir discernir qué
variables son importantes dado cada representante de cada cluster, de forma que se
facilita la comparación y comprensión de estos.
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Abstract

Clustering is the main problem of the unsupervised learning paradigm within ma-
chine learning. This problem consists of grouping individuals from a population
based on their characteristics. This grouping is usually obtained from a sample of
individuals of the population. The main objective is to obtain information about the
population only from the data, which makes it a very complex problem. This is be-
cause unlike other problems such as classification or regression, within clustering
and in general in unsupervised learning there is no information about the possible
outcomes.

Not having any knowledge about the possible results that can be obtained by solv-
ing the problem, not only makes the problem complex, but also creates the need for
explanations, as questions about the results may arise for the understanding and
validation of the results. An example of this is the naming of clusters. This problem
is closely related to the characterization of clusters, which is nothing more than iden-
tifying information that differentiates and identifies each group obtained. Thus, one
of the most common approaches for labeling the clusters is to find a characterization
of the groups and provide a representative name based on it. In this way the problem
of clustering, like many others, intersects with the field of explanations in artificial
intelligence (AI). This field has acquired great importance in recent years, although it
should be noted that a consolidated theory does not exist yet.

In this context, the use of interpretable models is important. This is because these
models can contribute to solve the problem in an optimal way and thus obtain rel-
evant information. But, what is an interpretable model?, why can they be useful in
this case?, which interpretable model should we use? These questions are answered
by the field of explanations in AI.

The aim of this work is to show the versatility and usefulness of the Bayesian net-
work model within the context of explanations in AI, and particularly in the problem
of clustering. For this purpose, the state of the art in the field of explanations in AI
will be studied, emphasizing the lack of a formal ground theory in this field. Subse-
quently, Bayesian networks will be placed within this field through the state of the
art of the tools offered by this model for generating explanations in the context of AI.

Once the theoretical framework of the work has been established, the state of the art
in the resolution of the clustering problem with Bayesian networks will be presented.
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Finally, we present a new methodology that takes advantage of the interpretability
of Bayesian networks in order to characterize the clusters that can be obtained and
thus solve the problem of cluster naming.

This methodology is based on the usual approach for the characterization of clusters,
which consists of finding representative individuals of these clusters. These individ-
uals allow to identify in a simple way the characteristics that differentiate a cluster
from the others. Therefore, the representatives offer a compact view of the clusters
that facilitates their labeling. Furthermore, taking advantage of the interpretability
of Bayesian networks, this new methodology introduces a new measure of feature
importance. The objective of introducing this measure is to allow discerning which
variables are important given each representative of each cluster in a way that facili-
tates the comparison and understanding of the clusters.
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Chapter 1

Introduction to XAI

1.1 Why? That’s the question

Why, a simple word which represents one of the biggest double-edged sword in hu-
man history. This straightforward question has been the basis to every development
in society, regardless of its nature. This is due to the fact that it encapsulates the
interaction of humans with their environment since our actions are based on our
understanding and knowledge and that is acquired with the answer to "why". The
other edge of the sword comes when we have to give an answer to the question, i.e.,
an explanation. Let’s take the following example:

Imagine that your car engine stops working, so in order to solve this problem you
need to know why it has stopped working. Thus you pop the hood and find that
the engine coolant tank is empty; you know that without that component the engine
overheats and stops. Given this situation, the answer to the question "why did the
engine stop working?" would be because the engine coolant tank was empty. If there
was just a single answer, with a simple refill of the tank we would solve the problem
and there would not be another course of action.

With respect to the previous example now imagine that you also see the oil level below
the minimum needed. Now think about the following scenarios:

• You know that oil is required to lubricate and refrigerate the engine and without
it the engine might seize (its metal components expand and block each other
impeding the movement). Now your answer can be "the engine has stopped
because it had no oil", or "the engine has stopped because there was no en-
gine coolant" or "the engine has stopped because it had neither oil nor engine
coolant".

• You do not know the functionality of oil so you ignore it and only fill up the
engine coolant tank. In this case your only answer is "because there was no
engine coolant". Moreover, if you were given the answer "the engine has stopped
because it had neither oil nor engine coolant" you would not accept it because,
for you, the absence of oil does not matter. In the best case scenario you would
ask why the absence of oil is part of the answer.
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1.1. Why? That’s the question

So, what is the answer to the question "why did the engine stop working?"? Is it
"because there was no engine coolant"? That is a truth so it is a plausible answer,
although one might argue that it is incomplete in the sense that the engine shutdown
was caused by the low level of oil too. But if we talk about completeness we have
to say complete regarding what. In this case it is completeness with respect to the
information we have, which is the absence of oil and engine coolant. Consequently,
the answer would be "the engine has stopped because it had neither oil nor engine
coolant ".

We have to make this distinction because if we talk about completeness with respect
to the knowledge of the user who needs the explanation in the second scenario, then
the answer would be "because the there was no engine coolant". Furthermore, if we
talk about completeness with respect to the whole issue, i.e., all plausible problems
that make the engine stop and their causes, then we would need to discard every one
of them but absence of oil and engine coolant so the answer would be "the engine has
stopped because it had neither oil nor engine coolant ".

Now if we think about the complexity of establishing a complete explanation, the
question that arises is: is it worth it? If you were in a life-and-death situation that
would probably be the case. If you were in your garage on a Sunday afternoon prob-
ably the answer "because there was no engine coolant" would be good for you. And in
the case that filling up the tank was not sufficient then you would try to find another
one (the oil level is too low, for example).

Up to this point some questions can arise from the discussion just held. For example,
one might ask if there are unique explanations. Also, this question brings to us the
question: are there desired properties for an explanation? Furthermore, what is an
explanation? Do different kinds of explanations exist?

So again, what is the answer to the question "why did the engine stop working?"?
After the little discussion proposed, it has been shown that in order to answer that
question one has to study the blurred concept of explanation. This is not new, as
stated in Mittelstadt et al. (2019), this subject has been already studied in fields such
as law, cognitive science, philosophy and social sciences.

But the purpose of this work is not to deepen the concept of "explanation" from the
perspective of the fields mentioned. This discussion has been held to understand the
big picture of explanations in artificial intelligence (AI), which we are going to take a
peek at. AI and, in particular, machine learning (ML) has expanded and conquered
its own space in a lot of environments related to humans, and so in the present sce-
nario, the absolute need to answer the question Why? has arisen.

Discussions and examples of the need of explanations in AI can be found in Molnar
(2020) and Rudin (2019). We propose here an image tumor detector as a little exam-
ple of the vast variety that exists. Thus, when our model detects a tumor in an image,
an explanation of why it has been detected can be used to gain insight into the study
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Introduction to XAI

of tumors or just for the expert to trust the conclusion.

The purpose of this work is to take a peek at the big picture of explainable AI (XAI)
(see Figure 1.1) in order to show the versatility and utility of Bayesian networks.
Hence, the focus will be on the whole picture regardless of the critiques there are of
some lines of work (Rudin (2019)). The reason for doing this is that this work will
adopt in its approach a descriptive perspective. In other words, we are not trying to
discern whether there is a best line of work; we are trying to describe what are the
limitations and properties of the different lines of work that exist and the role that
Bayesian networks play. Particularly, once we have analysed them, we will focus on
the subject of clustering with Bayesian networks.

1.2 State of the art on XAI

As it can be seen in works mentioned in the previous subsection (Rudin (2019), Mol-
nar (2020)) ML requires explanations for different purposes such as debbuging, trust-
ing predictions, detecting possible bias, etc,... Does this mean that we always need
them? As Doshi-Velez and Kim (2017) state, the need of explanations comes from in-
completeness in problem formalization impeding optimization and evaluation. Thus,
when there are no significant consequences to decisions or the problem is well stud-
ied there is no demand of explanations. But, as one can imagine that is not the usual
scenario.

So it is said in this work to distinguish between incompleteness and uncertainty.
Uncertainty can be measured in terms of variance and is present in the majority of
problems and domains. Incompleteness can be seen as unknown knowledge mani-
fested in terms of unquantified bias in our models. The perfect example here can be
seen practically in every work on ML in the iterative process of creating its models.

This process comprises, among other things, the understanding of data and predic-
tors in order to determine which are relevant to the problem at hand. Not knowing
which variables are important is a form of incompleteness that can lead to bias inde-
pendently of either the model used or the domain defined for the problem. Since we
are learning models from data there is always uncertainty in the predictions of the
models as not all the casuistic is represented in the data. In this sense, explanations
are a key to differenciate between the uncertainty that comes from learning from data
and incompleteness in domain definition.

As an example of this, Rudin (2019) claims that the use of explanations derived from
interpretable models helped in improving performance and revealing false assump-
tions about the data generation process in a project predicting New York grid failures.
This is a thought to bear in mind since we will see that Bayesian networks are an
interpretable model that also allows us to model uncertainty in terms of probability.

Once stated the need of explanations in ML, which is something every author who
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1.2. State of the art on XAI

has written about this topic agrees on, we are going to overview explanations in AI by
talking about the what and the how. Through the discussion and at the end of this
we will present some works on the relationship between these two subjects. Keep in
mind that the goal here is a purely descriptive overview of the topic, so we will not
discuss how appropriate the ideas showed are but rather what they express.

Figure 1.1: XAI overview.

1.2.1 What are explanations?

We start with the what. As shown in the previous section it is a difficult task to
grasp the concept of explanation and that also translates into the field of AI. Most
of the works done on this subject focus on the properties an explanation should or
does fulfill directly, assuming the definition of explanation as an answer to a ques-
tion why. Some of these works mention Miller (2019) to make this statement; others
directly do not even make the effort to give this basis. This is not a surprise, since
the concept of explanation lends itself to being defined with regard to the context it is
being used in, always taking into account the underlying idea of being the answer to
a question why. This is also no big news as the discussions held about explanations
in a more "philosophical" way have taken this approach (Doshi-Velez and Kim (2017)).

We are going to distinguish between properties that characterize the explanations
(see Figure 1.2) and properties that are established in order to measure their quality.
When talking about the first ones, we reference Lacave and Díez (2002) and Burkart

4



Introduction to XAI

and Huber (2021). In both works they establish a form to differentiate types of expla-
nations based on content (what to explain), form (how the explanation is presented),
and target (to whom the explanation is given). This is done according to the idea
that these are basic properties when trying to conceive an explanation in a specific
context. So these two works focus on settling and describing these basic properties
in the context of AI. We highlight that these works are developed with the objective
of classifying/creating methods for generating explanations (Lacave and Díez (2002))
according to these elemental characteristics.

Based on content, Burkart and Huber (2021) discern that there exist five types of ex-
planation: prototype (local), criticism (local), local, counterfactual (local) and global.
On the other hand, Lacave and Díez (2002) dive deeper into this subject and estab-
lish different issues when talking about content: focus, purpose, causality and level
of the explanation.

The focus of the explanation refers to which level: model, process of reasoning or evi-
dence, is the explanation about. The purpose of an explanation can be description or
comprehension. With respect to the level, the authors describe this section based on
Bayesian networks talking about micro-level and macro-level. This is the analogue in
Burkart and Huber’s work when talking about global or local explanations. Finally,
when talking about causality, the authors remark that there exists a tied relationship
between explanation and cause. In certain domains causality is studied and needed;
on the other hand not all models can deal with causality, hence the importance of
establishing whether an explanation content is related to this concept.

When discussing about the form, Burkart and Huber (2021) establish that there ex-
ist three forms: textual description, graphical description and multimedia. The latter
form consists of combining the first two. Lacave and Díez (2002) also make this dis-
tinction and add the user-system interaction criteria. Based on these criteria we talk
about the way an explanation is presented in terms of how the user asks the sys-
tem and how the latter responds. For example the user can ask by giving a natural
language question or just some selected variables. Moreover, questions can be made
during certain processes, as for example learning, whereas in some cases they can
only be made until the final model is obtained.

Finally, in the work of Burkart and Huber (2021) they explain that, based on the
knowledge the user may have, there exist different types of users who can be the
target of the explanation. They state that there are different levels of user knowledge
in both the domain of the task at hand and the model used, hence the explanations
exposed and their complexity (we should highlight that they do not give a formal
definition of complexity) must be in concordance with this, otherwise they are not
useful. Based on this they define four different groups of users:

• Non expert. User with no knowledge of both domains (task and model). Thus,
the explanation must be simple and easily comprehensible. We highlight that,
as happens with the concept of complexity, no formal definition of a comprehen-
sible explanation is given.
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1.2. State of the art on XAI

• Domain expert. User with knowledge of the domain of the task at hand. They
clarify that this user needs more complex explanations in order to understand
more deeply the system and task at hand. This will also help to gain trust in the
model.

• System developer. A technical expert but with none or little task domain
knowledge. Here the general purpose is to understand the system to guarantee
its functionality.

• AI developer. Similar to system developer, although its general goal is to train
the model. Its need for explanations comes with the goal of debbuging the sys-
tem to improve it from a technical point of view (e.g., its performance).

On the other hand, Lacave and Díez (2002) expose similar ideas but with a totally
different organization. They state that the effectiveness of an explanation partially
comes from the ability to address user’s specific needs and that essentially depends
on their knowledge. They dictate that users’s knowledge in the domain of the task at
hand and the reasoning method must be taken into account independently as also
exposed in Burkart and Huber (2021).

As stated above, these works are done in order to define these fundamental proper-
ties or dimensions of explanations in the context of AI with the goal of taking them
into account when modeling a task where explanations are needed. But this charac-
terization is not enough as it presents a great void when talking about the quality of
an explanation. Even though these properties must be present when modeling a task
which needs some kind of explanation, no one can assert whether an explanation is
good or not based on them.

Furthermore, the only property which could be used to discern the quality of an ex-
planation is the target, since part of the effectiveness of an explanation depends on
the adaptation to the user. So a good explanation would be defined as the one which
adapts to the target it is intended to. However, even with this consideration one could
argue that there is still a lack of formalism (most works do not present a definition
of complexity in order to address the intended target) and there are also aspects that
are not contemplated such as uncertainty or generality. Hence the works that we are
going to be discuss next, but first we are going to talk about what we define as the
human factor.

What we contemplate as human factor is nothing else than humans being the center
of the world of explanations in the sense that explanations are made by humans for
humans. We will highlight that in the field of AI, models are the ones which give
explanations but is the human who defines these models and hence the explanations
they can elaborate. As a consequence, or more correctly as a tautology, the humans
(the receivers of the explanation) are the final evaluator of the quality of an expla-
nation. This makes the evaluation of the quality of explanations entirely subjective.
Thus, the complexity when dealing with the concept of explanation, as the depen-
dency on humans being the evaluators creates the dependency on the context.

At this point the proper question is: Can we define what is a good explanation in-
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Introduction to XAI

Figure 1.2: Characterization properties of explanations in the context of AI.

dependently of the context, i.e., in an objective way? If not, can it be defined in a
specific context? Under the light of the ideas exposed the answer to the first question
would be no, as just the different knowledge of humans would be enough to show the
subjectiveness of the matter.

With respect to the second one, other questions arise such as what are the elements
of the specific context that one has to take into account to define what is a good ex-
planation? Are there key elements to differentiate in an objective way different types
of contexts? Given these elements, would it be possible to objectively establish the
properties a good explanation should have? And should the elements used to dif-
ferentiate contexts be defined with respect to the properties or ideas of what a good
explanation should be?

Up to this point it is enough to see where the complexity surrounding the concept
of explanation comes from. As said before this concept has been studied in different
fields and there is not yet a general and objective manner to answer the question
"What is a good explanation?". We do not even understand how the human brain
works which plays a key role on understanding how we communicate and give ex-
planations to each other. But one probably has a better question: Why bothering
establishing an objective approach to something that is apparently subjective?

A first thing is that having a formal and objective way of evaluating something sets
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1.2. State of the art on XAI

up a systematic line of work for everybody with no room for error but the formalism
being wrong. Secondly, as far as the human body of knowledge reaches, the evalu-
ation of the quality remains subjective as we cannot answer in an objective manner,
but also there isn’t anything that states that this objective evaluation can not be ac-
complished. So trying to find an objective approach to these matters not only has
the benefits of formalisms, but also can help to explore and broaden the big body of
human knowledge, like for example understanding the human brain.

We are not going to dive deeper into this matter as the purpose of the discussion
held is to show where the lack of formalism and uniformity and the variety of ideas
in the works that are going to be presented come from. The ideas presented were
taken from Doshi-Velez and Kim (2017). This work reflects the root of the problems
in objectiveness when evaluating the quality of an explanation, i.e., the human factor,
in the context of AI and more specifically ML. The authors establish, in a data-driven
context, that there are three types of evaluation:

• Application-grounded. Involves evaluating the quality of explanations via do-
main experts in a particular real task.

• Human-grounded. Involves evaluating the quality of the explanations in simpler
tasks without the need of domain experts. This is appropriate to evaluate gen-
eral notions of explanations. The difficulty here is to create forms of evaluation
without a specific end-goal. Examples are shown in Doshi-Velez and Kim (2017)
such as giving a binary forced choice (pick between two explanations given).

• Functionally-grounded. The idea here is to use a proxy to evaluate explanation
quality. A proxy is a formal definition of interpretability and the challenge is
which one is to be used.

As for the last type presented we have not talked about interpretability yet, but the
underlying idea is the key: use a particular formalism to evaluate quality. Bearing
all of this in mind we present the work Molnar (2020). Here the formalism comes in
the form of properties. In his work Molnar differentiates two groups of properties an
explanation should fulfill: one comes from the humanities and social sciences and
the other one is related to the ML field.

We start with the properties coming from the humanity and social sciences. Here the
author bases his entire work on Miller (2019), which is a survey of publications on ex-
planations. These properties are based on how humans explain things to each other
so they measure the quality of what can be defined as "everyday"-type explanations.
The following are presented:

• Explanations are contrastive. As stated by Lipton (1990), humans usually do
not ask why a certain prediction was made, but why this prediction was made
instead of another prediction. So a contrastive explanation is one which entails
differenciating between the case of study and another reference case(s).

• Explanations are selected. This property takes basis on the Rashomon effect,
which is the fact that an event can be explained by various and different causes
(Anderson (2016)). As so, humans prefer/expect explanations to encapsulate
some (usually a few) of the causes of the event and not all of them.
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Introduction to XAI

• Explanations are social. This property is related to the social context of the
explainer and the receiver, similar to the target property stated in the works
of Lacave and Díez (2002) and Burkart and Huber (2021). A good explanation
must take into account the social context to determine its content and nature.

• Explanations focus on the abnormal. Here the idea is that humans focus on
abnormal causes to explain things to each other. An abnormal cause is one
which is rare, i.e., has low probability of happening, hence the fact of humans
focusing on them.

• Explanations are truthful. The concept encapsulated by this property is that a
given explanation has to be reliable in the sense that it must be trustworthy with
respect to the real world. It does not make sense giving an explanation based
on facts that do not make sense or happen in the real world. Neither is correct
that what is expressed in the explanation does not see eye to eye the reality.

• Explanations are consistent with prior beliefs of the explainee. Here we have
got what is called as confirmation bias: humans tend to devalue an explanation
if it does not agree with their prior beliefs. As so, a good explanation must take
into account the prior beliefs of the explainee.

• Good explanations are general and probable. The idea here is that a good ex-
planation is one that applies to various and different events. This property cre-
ates a conflict with abnormal explanations as by definition they are not general
and do not apply to different events. According to Molnar (2020), the abnormal
property beats this one and in case the property of abnormality is not present is
when this one can be good for measuring the quality of explanations.

The next group of properties are defined in an ML context, specifically in surpervised
ML. Thus, it is not odd that some of the ideas share their basis with some of the
properties presented before as they are defined in a general way. The properties are:

• Accuracy. This property states the idea of an explanation being good when
unseen data can be predicted from it, i.e., once having an explanation one can
predict the value of new points which are not present in the initial data used.

• Fidelity. In this case this property is defined within the context of post-hoc
explanations (as this has not been discussed yet, later it will be reminded to
ensure the understanding of it). The idea is similar to accuracy, but in this case
a good explanation is one that allows to approximate the prediction of black-box
models.

• Consistency. Here the idea is to measure the quality of an explanation based on
how similar is compared to others obtained by different models used to solve the
task at hand. Notice that the premise here is working on the same basis (data
and variables). This property fails to measure the quality of the explanation if
different models with different basis get similar predictions (Rashomon effect).

• Stability. The underlying concept of this property is robustness, i.e., slight
changes on the input do not produce substantially changes on the output. In
the context of ML this translates to similar explanations for similar instances.
So, if we vary an instance producing a small change and this produces a very
different explanation then there is a lack of stability.
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• Comprehensibility. In this case this property makes reference to how well
the explanation is understood. Again the basis of this property (as the social
property) is to address properly the target of the explanation. We have a good
explanation when the explainee understands it.

• Certainty. A good explanation is one that includes or makes a statement about
the model’s certainty of the prediction.

• Degree of importance. An explanation is good when it reflects the importance
of the parts that constitute it. An example would be including the role of the
variables involved in a prediction.

• Novelty. In this case a good explanation is one that expresses whether the data
instance being explained comes from a part of the distribution that has been
explored or not. This can be seen as a particular instance of the property of
certainty. The underlying idea is that within regions of the distribution that
have not been explored the model can be inaccurate, thus the explanation given
is useless.

• Representativeness. This property makes reference to the extent of data in-
stances that can be explained with the explanation. So, the quality of the expla-
nation is measured in terms of its capacity to explain different data instances,
i.e., the more that can be explained the better the explanation is.

We want to highlight three issues about the presented properties. Firstly, noticing
that though the last properties are defined in the context of supervised learning, some
of them share ideas with the ones presented from the works of humanity sciences,
even with the previous work reviewed of characterization properties of explanations
(Lacave and Díez (2002), Burkart and Huber (2021)). Furthermore, some of them can
be seen as the particularization in the context of supervised ML of the properties that
are defined in humanity sciences. For example, comprehensibility as a particular-
ization of explanations being social or accuracy as a particularization of explanations
being truthful. This is not odd as it can be seen as the perfect example of the lack
of formalism. Bear in mind that the efforts are being made in order to evaluate in a
formal and objective way something that is entirely subjective depending on humans
and context. As so it is not strange to find similar underlying ideas even the same in
different properties defined in different contexts and also find properties that make
no sense in other contexts such as fidelity.

In this context of lack of formalism and intersection of concepts, the ideas expressed
in Doshi-Velez and Kim (2017) are very useful. They state that the three levels of
evaluation (human experts, human non-experts and proxies) have to inform each
other and be in concordance. Hence, one should establish which proxies are im-
portant in which real-world task (functionally-grounded to application-grounded) or
what factors (latent dimensions of interpretability) one has to take into account when
characterizing a proxy (human-grounded to functionally-grounded).

Doshi-Velez and Kim (2017) defines interpretability as the "ability to explain or to
present in understandable terms to a human". Then, the latent dimensions of in-
terpretability (see Figure 1.3) are factors that are relevant to characterize this ability
and, as a consequence, explanations. These latent dimensions represent the under-

10



Introduction to XAI

Figure 1.3: Latent dimensions of interpretability.

lying ideas of what should be taken into account to get a good explanation. Thus, we
avoid definitions of particular properties for particular contexts. The authors estab-
lish some of them in a non-exhaustive list:

• Task-related latent dimensions of interpretability. Ideally, these factors
should be isolated in human-grounded experiments to establish which meth-
ods work best when they are considered:

– Global vs. local. This dimension is based on the idea that when seeking
an explanation it should be considered whether the task at hand imposes
a need of a global or more general explanation vs a local or more specific
explanation related to the problem.

– Area of incompleteness. This factor encapsulates the idea that within the
task comes the incompleteness (Doshi-Velez and Kim (2017)) that generates
the need of explanations. There are different causes for unquantified bias
(incompleteness) that can provoke the necessity of an explanation.

– Time constraints. This factor characterizes interpretability in terms of avail-
able time of the end-user to understand the explanation. It is related to the
concept of complexity.

– Nature of user expertise. This factor refers to the knowledge and communi-
cation skills that the end-user has.

• Method-related latent dimensions of interpretability. They define cognitive
chunks to be the basic units of explanation.

– Form of cognitive chunks. This factor states the idea that the form of the
basic units of an explanation characterizes interpretability. We can find
from raw features to symbolic representations as rules.

– Number of cognitive chunks. This factor is again related to complexity, so
the number of basic units of an explanation characterize interpretability.
Authors highlight the relationship with the form of the cognitive chunk as
some forms may contain more information than others, so this should be
taken into account to define the number of units.

– Level of compositionality. This factor expresses the importance of knowing
if the cognitive chunks are structured and how in order to characterize
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interpretability.

– Uncertainty. This factor characterizes interpretability with respect to the
method in terms of including uncertainty measures and stochasticity. It
should be taken into account how well people understand these terms.

– Interactions between cognitive chunks. This factor indicates that in inter-
pretability it is important to know how the cognitive chunks are combined.

For the authors of Doshi-Velez and Kim (2017), the ideal world would be to establish
and discover through human evaluation what factors are relevant to characterize in-
terpretability within models and tasks. By doing this one would have a formal basis
to evaluate the quality of explanations and construct and select proxies depending
on the context and explainee. Notice the resemblance of some of the factors exposed
to the properties discussed from the work Molnar (2020). This is not unusual due to
the nature of these factors and shows that there is a certain degree of agreement in
how to objectively evaluate quality of explanations.

Following with the issues of the properties presented from Molnar (2020), we notice
that there was a contradiction between explanations focusing on the abnormal and
explanations being general. Again, this shows the lack of formalism that exists within
explanations as the properties formalize ideas about the quality of explanations but
clash with each other. And again, the usage will depend on the context and explainee,
but this is not the only thing it depends on. The other dependence is highly related
to the third issue we are exposing next.

Notice that properties to evaluate the quality of explanations have been exposed,
formalizing different ideas one could relate to that topic, but the thing is that nothing
is said about how to measure these properties. This subject, which we call metrics of
XAI, is one of the fields with more need of effort and investigation. It directly relates to
how the explanations are obtained, which is the next topic we are going to discuss. As
one could expect, the way an explanation is obtained influences how the properties
and quality can be measured.

1.2.2 How do we obtain explanations?

There are two key concepts related to how explanations are obtained: interpretabil-
ity and explainability. In the work of Barredo Arrieta et al. (2020) interpretability is
defined as presented before (Doshi-Velez and Kim (2017)): "the ability to explain or
to present in understandable terms to a human". Furthermore, they talk about ex-
plainability and the notion coming from Guidotti et al. (2018) stating "explainability
is associated with the notion of explanation as an interface between humans and a
decision maker which is, at the same time, both an accurate proxy of the decision
maker and comprehensible to humans". After this, a discussion is made about the
lack of formalism that surrounds these two concepts to try to end up defining ex-
plainability. Barredo Arrieta et al. (2020) defines, in the ML context, explainability
as: "Given a certain audience, explainability refers to the details and reasons a model
gives to make its functioning clear or easy to understand".
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The concepts of interpretability and explainability, respectively, are generally related
to the two forms of obtaining explanations: model interpretability and post-hoc ex-
plainability (Barredo Arrieta et al. (2020)) (see Figure 1.4). Model interpretability
refers to the case where the model itself can be understood by humans, whereas
post-hoc explainability relates to techniques that try to explain models that are not
understandable by themselves. As so, explainability, which is a more general con-
cept, is usually related to post-hoc explainability leaving model interpretability to be
related to interpretability.

Furthermore, in the work of Barredo Arrieta et al. (2020), a division within model
interpretability is presented. It is based on the domain in which the model is inter-
pretable, distinguishing three levels:

• Algorithmic transparency. The underlying idea is that the process followed by a
model to give an output has to be understandable. This is directly related to the
predictions, but also to the training algorithm (Lipton (2018)).

• Decomposability. This level refers to models where each part of the model (input,
parameters and calculation) can be explained. It encapsulates the previous level
adding the constraint that every part of the model must be understandable.

• Simulatability. The underlying idea of this level is that the model can be sim-
ulated by a human, i.e., the model can be contemplated at once including ev-
erything: inputs, parameters and calculations. Lipton (2018) discerns two sub-
types based on what renders the model not to be in this level: model size and
computational time. This level encapsulates the previous ones.

Also a grouping of the different post-hoc techniques is presented. They state that
post-hoc techniques are divided firstly by the intention of the author, then by the
method used and lately by the type of data. However, their grouping does not exactly
follows this division but rather presents a grouping with the goal of making it easy
for researchers to look up for suitable techniques:

• Text explanations. The idea of these techniques is to learn how to generate text
explanations of the model. This includes every type of symbolic representation
of the functioning of the model.

• Visual explanations. The focus of these techniques is representing in a visual
form what is trying to be explained from the model. It is a suitable group since
it can be combined with other techniques.

• Explanations by example. These techniques are characterized for giving similar
cases (data-examples) to the target given in order to understand how the model
works.

• Local explanations. The underlying idea is to divide the solution space in sub-
spaces and explain those ones, giving explanations that only hold for parts of
the model’s whole functioning.

• Explanations by simplification. In this case the idea is to generate new models
that approximate the original model and are less complex, and explanations are
extracted from those models. This is also known as surrogate models.
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• Feature relevance. The idea here is to assign scores to the variables in order
to determine their influence on the output, allowing the understanding of the
model.

There is also another important classification of post-hoc techniques: model-agnostic
and model-specific. The first one refers to those techniques that can be applied to
any model. The second class comprises those that are defined for a specific model. In
the work of Molnar (2020) one can find a review and explanation of the most known
model-agnostic post-hoc techniques, and specific ones in the field of artificial neural
networks.

The division of methods to obtain explanations and the established relation with the
concepts of explainability and interpretability is rather a general and organizational
theory than a formal one. This is not odd since this is directly related to explanations
and the lack of formalism of explanations directly affects the concepts related to it.
Next we present criticisms made of both ways of obtaining explanations derived from
this lack of formalism.

On the one hand, critiques have been made about interpretability in Lipton (2018).
The author states that the concept of interpretability is not formally defined; thus
claims on model interpretability are wrong. In this work, the organizational view
explained here is presented as model interpretability being model properties that
comprise interpretations whereas post-hoc explainability are techniques that enable
explanations in the form of "What else can the model tell me?".

From this point the argument made is that the claims made about linear models be-
ing more interpretable than neural networks are not based on a theoretical reason.
This is due to the fact that for a similar performance, linear models usually need
heavily engineered variables. This implies a trade-off between decomposability and
algorithmic transparency when choosing between linear models or neural networks.
As we obtain more complex engineered variables from the original ones to gain algo-
rithmic transparency by using a linear model we lose decomposability since we are
not usually able to understand these new features. On the other hand, neural net-
works do work with the raw features which can be directly understood. So, how is a
linear model more interpretable if we lose decomposability?

Moreover, neural networks learn rich representations on raw features that can be
represented and visualized so the interpretations made on this model with post-hoc
techniques can prove useful too. So, despite the fact that in our heads we can con-
ceive linear models being more interpretable, the truth is that there is no formality on
the concept of interpretability that allows us to claim it. We highlight that the author
concludes that claims on interpretability should be made based on a specific defini-
tion of interpretability. Also, claims on post-hoc techniques should fix an objective
and demonstrate that the interpretations given allow to achieve it. These ideas will
be important for the conclusions of this chapter.

On the other hand, we can find the work of Rudin (2019). Here the author states that
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Figure 1.4: Obtaining explanations in the ML context.

explanations must come from interpretable models rather than from techniques that
try to give an interpretation to black-box models (those which cannot be understood
such as neural networks). The underlying idea of this critique is that interpretable
models give explanations faithful to what they compute and do, whereas post-hoc ex-
planations do not have this basis.

From this point, post-hoc explanations can be misleading and unreliable since they
possibly do not present faithful explanations to what the black-box model is doing
and learning. Other reasons centered around the black-box models are given and
also a discussion on why it is that these explanations are used, but this is out of the
scope of this work. Once all of this is presented, Rudin claims that interpretability is
domain-specific and encourages to:

• Firstly, use interpretable models based on the needs of interpretability related
to the problem.

• Secondly, expand the tool-box on interpretable models while also focusing on
resolving some challenges that are already known such as constructing opti-
mal logical models or constructing optimal sparse scoring systems. In Rudin
et al. (2022) more of these existing challenges are presented and described more
precisely.
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Finally, based on the theory of knowledge representation and reasoning, we would
like to propose an interpretation of the concepts of interpretability and explainabil-
ity, which may be useful to understand the critique made by Rudin. In AI there
are established three types of models: connectionist, symbolic and hybrid. Symbolic
models use explicit symbols (mental models) to represent knowledge and syntactic
rules to manipulate them, assuming that mental activity consist in the manipulation
of those explicit symbols. In connectionist models we assume that knowledge is em-
bedded into the connections and no symbols are used. This type of models exploits
the stimulus-based learning and intelligent storage in form of connections or inter-
actions among elements.

Furthermore, we present the concept of knowledge: a way to model in a structured
manner experience obtained from a domain or that can emerge from the interpreta-
tion of information. Consequently, it allows interpretation of the information coming
from the human senses, its representation, its storage and its organization.

Based on all of this, the theory of knowledge representation and reasoning studies
the use of symbolic models (knowledge) and their manipulation (reasoning) to create
knowledge systems that imitate humans in this matter. Up to this point it is neither
new, nor odd the fact that this theory is related to XAI. We have got examples such
as the use of rule-based expert systems or logic in argumentative XAI (Čyras et al.
(2021)).

In the ML subfield of AI, the goal is to make computers learn and solve problems us-
ing data (information). Data is usually presented in the form of numerical variables
although we have text, images and videos too. Here mathematical models are created
in order to solve problems, hence they respond to the task they are thought, like
for example classification. These models are conceived so that their inner workings
(variables relationship, calculus, parameters, space of solutions, etc...) respond and
allow them to resolve those tasks. Thus, what we are doing is embedding knowledge
into the form of mathematical models. When given data about a problem that is
needed to be solved, once the model is established we use learning algorithms that
allow the model to learn the information contained in the data and combine it with
the knowledge that it represents in order to solve the task.

Bearing all of this in mind the point of view here is that interpretable models are
those which knowledge has been embedded into the mathematical model so that hu-
mans can manipulate it and reason about it. On the contrary, black-box models are
those designed to learn from data and storage the knowledge in form of connections.
So knowledge is not embedded into the design of the model, but rather the model is
established to store the knowledge one can get from the data in form of connections.
This makes it impossible to manipulate and reason about what is learned. Therefore,
it is the post-hoc explainability that tries to interpret and express which knowledge
embedded in the connections of the model. Figure 1.5 contains an example of each
type of model.

From this perspective it is natural the critique made by Rudin since interpretable
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Figure 1.5: Symbolic vs connectionist model example.

models have been designed and embedded with knowledge allowing interpretation
and manipulation, whereas post-hoc explainability are techniques that try to inter-
pret and explain knowledge embedded into connections.

So, what renders better explanations? It is true that interpretable models present a
direct interpretation and explanation, and that with the idea of knowledge embed-
ding more flexibility is presented to address interpretability for a specific context and
explainee. Nevertheless, disregarding post-hoc explanations can be an error since
those techniques relate input-output to interpret the knowledge embedded into the
connections and this is a form of inductivism, one of the ways humans reason.

The point here is that there is not a formal ground theory that allows us to answer
that question. Furthermore, it is not even clear what is a good explanation and, even
if this is established, there is still the gap on how to obtain those good explanations
in AI, which brings us the last subject: XAI metrics. Leaving the lack of formalism
aside, it is clear that in order to evaluate the quality there is a need for measures.
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1.2.3 XAI metrics

In the review of Burkart and Huber (2021) we can find a general summary on metrics
for assessing explainability. The authors discuss the main lines of work taken in this
field and implicitly expose the baseline problem of not having a ground objective the-
ory. It is explained that the properties presented by Miller (2019), that we have also
presented in this work, such as explanations being contrastive, social or selected, are
usually difficult to measure.

Doshi-Velez and Kim (2017) introduces the idea of proxy to present the works done
within interpretable models. A proxy is a formal, particular assumption on what
is a good explanation. Particularly, in the context of interpretable models, it is a
formal, particular definition of intepretability. Consequently, a model considered in-
terpretable in some way is considered a proxy. As stated before, their idea is to study
what proxies render good explanations in what context through human evaluation.
Then, the interpretations that can be made from the model learned from the data
create good explanations. One usual approach here is to consider as a proxy the
combination of interpretable models with sparsity and complexity measures. We em-
bed the sparsity and complexity measures defined over the parameters of a particular
interpretable model within the optimization problem of the learning algorithm in or-
der to establish a proxy (see Rudin (2019) challenges #1 and #2).

Complexity is tied to model comprehensibility (Guidotti et al. (2018)), a property we
have presented here, and usually is approximated by measures related to model size.
The concept of sparsity is related to density (antonym) and in this context makes ref-
erence to the model "not being dense" in order to generate explanations. For example
in rule-based methods sparsity is measured (not the only way) in terms of the total
number of rules in a decision set (Lakkaraju et al. (2016)).

More measures for the proxies of rule-based models and decision trees are given in
Burkart and Huber (2021). Also, in this paper, works on measures for quality of
explanations in recommendation systems are presented, all based on the idea that
quality comes with the agreement of user’s neighborhood on the recommendations.
Finally, since there has been an explosion of works in the field of XAI that is not
covered by Burkart and Huber (2021) we think that it is appropriate to mention some
of them.

Hoffman et al. (2018) present some specific methods used to measure quality of ex-
planations that respond to different subjects such as the goodness of the explanation,
whether users are satisfied by explanations or how well users understand the AI sys-
tems. Hsiao et al. (2021) establish, through the help of the psychology field (human
evaluation), subjective and objective measures within similar dimensions as in Hoff-
man et al. (2018), such as the user understanding or the goodness of the explanation.

Rosenfeld (2021) shifts the paradigm of evaluation metrics to one that considers the
explanation itself and the appropriateness given the XAI goal and gives some mea-
sures according to this. This is due to the fact that users studies suffer from con-
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firmation bias and methods explaining black-boxes do not follow agent’s logical pro-
cesses. Coroama and Groza (2022) present a review on evaluation metrics, giving a
classification and a mapping between tools for explanation generation and those the-
oretically defined metrics. Biessmann and Refiano (2021) make a critique on formal
automated metrics for evaluating post-hoc explainability within the field of computer
vision. The key of this work is the comparison of those metrics with evaluations made
with humans in the loop. Silva et al. (2023) present an attempt to evaluate objectively
and subjectively different methods and metrics by means of humans.

Singh et al. (2022) work only in the subfield of post-hoc counterfactual explanations
trying to analyze which methods apply and which allow comparison between meth-
ods. Akula and Zhu (2022) present a critique on saliency maps based on a human
study of evaluation of this technique. Saliency maps is a post-hoc technique used in
computer vision which gives back which parts of an image are the ones with more
importance to the correspondent output. Li et al. (2022) present a taxonomy on eval-
uation metrics only for graph neural networks explainability methods.

Muñoz et al. (2023) present novel quantitative metrics which try to measure the in-
terpretability factors based on global and local feature importance attributions, the
variability of feature impact on the model output, and the complexity of feature in-
teractions within model decisions. Belaid et al. (2022) try to create a benchmark for
evaluating the quality of algorithms to generate explanations recovering some func-
tional non-redundant tests from the literature. Palacio et al. (2021) try to establish a
theoretical framework that provides concrete definitions for the terms "explanation"
and "interpretation", and all steps necessary to produce explanations and interpreta-
tions, that is to say a unified framework to evaluate quality of explanations. Finally,
Barkouki et al. (2023) and Barnard et al. (2022) are particular use-cases in XAI which
entail particular metrics on evaluating the explanations within the use-case.

So far the work of Burkart and Huber (2021) and the little review presented here
perfectly represent the variety and disparity of works in the subfield of XAI metrics.
Furthermore, they faithfully show the non-existence of a common framework as we
find works that aim to achieve that, works that only focus on particular techniques
and critiques on different methods. We highlight the works done with humans in the
loop that try to identify and evaluate methods as this follows the line of work pro-
posed by Doshi-Velez and Kim (2017).

1.3 Conclusions

Now we have taken a peek at the big picture of XAI trying to understand both the
quality and properties of explanations, in particular in the context of AI and ML, how
those explanations are obtained, and the relationship between these two subjects.
We have seen that the subject of explanations and their quality is something subjec-
tive. This is due to the fact that we do not entirely understand how the human brain
works mixed with the fact that quality or adequacy of explanations depends on the
context and end user. As a consequence, there is a lack of formalism and no ground
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general theory in the matter of explanations and their evaluation. Hence, the variety
of works and ideas presented which sometimes are connected and sometimes are in
contradiction.

Nonetheless, the connections between works shed light on having a formal and ob-
jective theory since they share same underlying ideas. In this landscape, the ideas of
Doshi-Velez and Kim (2017) and Lipton (2018) bring a way to deal with the situation.

Ideally, the quality of explanations should be evaluated by humans. Since this is
overly complicated, works should present how explanations are obtained, which fac-
tors of interpretability are being taken into account, properties of the explanation
and how they are evaluated, task or problem and target audience, in short the proxy
used to evaluate the quality of explanations. As works present their characteristics
and human evaluation is done, we can discover factors of interpretability and proxies
that work better and at the end, if possible, establish a ground formal theory.

Although human evaluation is not as easy as it sounds, for example, we have the
confirmation bias (expected results for the individuals based on their own knowledge
of the field) which can be a real problem within the unsupervised paradigm. Until
now we have talked about XAI and explanations in ML, but particularly all the works
presented are based on the supervised paradigm, being the explanations of predic-
tions the main goal. In the case of unsupervised learning approach we are even more
conditioned since there is no prior knowledge of the objective/results of the learning
in contrast to supervised learning, where for example in classification, labels of the
objects are given.

Under this paradigm the needs of explanations is even greater for this reason, which
also makes the generation and quality evaluation of explanations more complex.
Nonetheless, there is not much literature on explanations that regards this learn-
ing paradigm, though it is true that several of the ideas introduced in this section
may apply in this case.
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Chapter 2

Bayesian networks and
explanations

2.1 Bayesian networks

In this section we present the Bayesian network model (Pearl (1988), Koller and Fried-
man (2009)) along with its inherent own tools and methods that allow us to generate
explanations. The methods and ideas exposed will be based on the works of Lacave
and Díez (2002) and Derks and De Waal (2020). Notice that we are not going to im-
merse ourselves into the subject of evaluating the quality of explanations since there
is no canonical way to approach it, see Section 1.2.3.

A BN (see Definition 2.1.2) is a type of probabilistic graphical model which represents
in a compact way a probability function P (X1, ..., Xp) taking advantage of the con-
ditional independencies of the variables (see Definition 2.1.1) (Koller and Friedman
(2009)). Thus, this model lives in the intersection of the fields of statistics, ML and
AI. Moreover, its usage is quite useful in problems that present uncertainty, which
are most life problems.

Definition 2.1.1 Given a set of random variables Z and two random variables A,B
then A is conditional independent of B given Z ⇐⇒

P (X,Y | Z) = P (X | Z)P (Y | Z)

Definition 2.1.2 Given a set of random variables X = {X1, ..., Xp} following a distribu-
tion P (X1, ..., Xp), a BN is a tuple B = (G, θ) where G = (V, A) is a directed acyclic graph
(DAG), with V = {X1, ..., Xp} and A ⊂ V × V a set of arcs. θ = {P (Xi | Pa(Xi)) | i =
1, ..., p} is a set of conditional probability distributions (CPDs) of each random variable
Xi conditioned to its parents Pa(Xi) in G.

Each node of the graph represents each random variable of the system. The arcs
denote probabilistic dependencies between children and parents. The graph encodes
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a set of conditional independencies between triplets of variables denoted Il(G). This
results in a factorization of P (X1, ..., Xp):

P (X1, ..., Xp) =

p∏
i=1

P (Xi | X1, ..., Xi−1) =

p∏
i=1

P (Xi | Pa(Xi))

There exist three ways in order to model a CPD: parametric, non-parametric and
hybrid (see Figure 2.1). In the parametric case, P (Xi | Pa(Xi)) distributions are as-
sumed to follow a parametric distribution such as a normal or a discrete probability
distribution. On the contrary, in the non-parametric case no particular distribution
is assumed. Finally, in the hybrid case both parametric and non-parametric ap-
proaches are mixed.

In the parametric approach, when all random variables are categorical we talk about
discrete BNs. In this case the CPD is represented in a table (CPT) where we have
a categorical distribution learnt for the conditioned variable for each possible com-
bination of the values of the parents. When variables are continuous in the para-
metric modelling they are usually assumed to be Gaussian and we talk about Gaus-
sian BNs. In this case P (X1, ..., Xp) is a multivariant Gaussian and dependencies
are modelled with linear Gaussian CPDs. For each node of the network we have
P (Xi | Pa(Xi)) ∼ N (β0 +

∑
j βjPa(Xi)j ;σ). The parameters are obtained from the nor-

mal multivariate distribution properties. Given {X, Y } a set of features following a
joint normal distribution:

P (X, Y ) = N
((

µX

µY

)
;

(
ΣXX ΣY,X

ΣX,Y ΣY Y

))

we have that P (Y | X) ∼ N (β0 + βtX;σ), with (Koller and Friedman (2009)):

β0 = µY − ΣY,XΣ−1
XXµX

β = Σ−1
XXΣY,X

σ2 = ΣY Y − ΣY,XΣ−1
XXΣX,Y

One of the main advantages of assuming normally distributed data is that all con-
ditioned distributions of features with respect to others are normal distributions.
This also happens with the exponential family, where normal distribution belongs to.
Tweedie Bayesian networks (TDB) (Masmoudi and Masmoudi (2019)) are BNs where
CPDs are restricted to Gaussian, inverse-Gaussian, Gamma and Poisson distribu-
tions which belong to the exponential distribution family.

If mixed random variables (discrete and continuous) are present, we find conditional
linear Gaussian BNs (CLGBNs), where discrete nodes cannot have continuous par-
ents. Discrete variables are modelled as in the discrete BNs. Continuous variables
are modelled with linear Gaussian CPDs, the main difference is that we learn as
many linear Gaussian CPDs from the continuous parents as possible values take the
discrete parents of the interest variable.
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Moreover, we can find posterior models with mixed variables based on mixture of
truncated exponentials (MTE) (Moral et al. (2001)), mixture of polynomials (MoP)
(Shenoy and West (2011)) and mixture of truncated basis functions (MoTBFs)
(Langseth et al. (2012)). It is also worth mentioning the augmented CLGBN, where
discrete features can have continuous parents by the use of a softmax CPD.

One of the advantages of modeling in a parametric way is the existence of maximum
likelihood estimators (unbiased and of minimum variance) of the parameters. An-
other advantage is the possibility of carrying out exact and approximate inference.
The disadvantage of the parametric approach is that it is too restricted and when
CPDs do not follow the assumed distribution large errors occur and the model loses
efficiency. We highlight that all of this refers to continuous variables. Discrete vari-
ables are always modelled in a parametric way assuming a categorical probability
distribution.

To avoid the problems of parametric modelling the non-parametric case shows up.
Here no particular distributions for CPDs are assumed; instead the modelling is
done by means of Gaussian processes, infinite mixtures and kernel density esti-
mator (KDE). The idea of the non-parametric approach is to use particular instances
of data {x1, ...,xN} to approximate the original distribution instead of the parameters,
where any distribution function may be fitted. We highlight the works of Atienza et al.
(2022b) and Atienza et al. (2022c). These works consolidate the usage of KDE to build
this type of BNs.

As the last paragraph implies, data is present in this model. In the case of the para-
metric approach, data is used to estimate the parameters, hence the ability to learn
from particular data. In the non-parametric case, data is directly used to estimate
the CPD, again learning from data. Furthermore, structure (graph representing con-
ditional independencies) can also be learnt from data. There exist three types of
algorithms for doing this: the ones based on testing conditional independencies, the
ones based on search with maximization of a score such as the likelihood of the data
and the ones that use both approaches (hybrid). More about the structure learning
will be introduced in Chapter 4. We highlight that in both cases optimal solutions are
hard to find and this should be taken into account when interpreting the model.

From the perspective of the theory of knowledge and reasoning, BNs can be seen as
a model which represents knowledge in terms of probabilistic conditional indepen-
dencies, allowing reasoning under uncertainty. This can be seen in the graph which
represents the dependencies between variables and is translated into the mathemat-
ical model through the CPDs. Due to this fact, BNs are considered an interpretable
model. Based on the knowledge embedded into the model, we can reason about it and
obtain explanations. In the book of Darwiche (2009) we find a comparison between
BNs and the classical knowledge-based approach to reasoning, but with the knowl-
edge base being the BN and the reasoning engine based on the laws of probability.

Lacave and Díez (2002) and Derks and De Waal (2020) study the model of BNs and
their relationship with explanations. To do so they distinguish three different fields
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Figure 2.1: CPDs possible modelling in discrete and continuous BNs.

based on the focus of the explanation: model, evidence and reasoning (see Figure
2.2). Notice that in the figure there is also a node of decision since BN play a key role
in decision systems, however this is out of the scope for this work.

Talking about the knowledge embedded into the design of the model in terms of con-
ditional probabilistic relationships and their mathematical expressions (CPD) is what
they considered the knowledge base. Interpretations can be given about this knowl-
edge base, or in other words, model explanations (see Figure 2.3). This can be used
to gain domain knowledge and assist application experts in the model-construction
phase (Derks and De Waal (2020)).

The conditional dependencies and independencies have a direct interpretation com-
ing from their definition (see Definition 2.1.2). This definition establishes that two
variables are conditional independent given a set of variables Z when they are inde-
pendent given an instantiation of Z. In relation with model explanations, these must
be interpreted just as it is, unless causality is introduced. If causality is introduced in
the model we have that the encoded relationships of the graph G imply cause-effect
relationships. In this case the graph still encodes probabilistic dependencies. The
BNs which work with causality are known as causal BNs.
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Figure 2.2: Image from Derks and De Waal (2020).

Since different solutions can be found in structure learning and optimal ones are
hard to find, the identified conditional independencies may not represent reality.
This does not affect interpretability at all, since error is always present in this and
all other models, which is also a motivation for the need of explanations. The most
important aspect here is to know what knowledge is embedded and how it is obtained
and reasoned with. This also applies to the tools that will be presented. Notice that
this directly relates to the Rashomon effect (see Section 1.2.1).

It is also important how the knowledge embedded into the model and the explanations
extracted from this are presented to the user. In the work of Lacave and Díez (2002)
papers are presented related to the various presentation forms: graphical display of
the network, verbal description of the network and menu-driven navigation.

Menu-driven navigation makes reference to those works that allow navigation through
the BN presenting knowledge about it, e.g., about the CPD of the nodes. Similarly
does Elvira (Lacave et al. (2007)), which uses the CPD to add information to the
conditional dependencies like positive or negative influence (posterior probabilities
monotonically increase or decrease with respect to the conditioning variables). Notice
that in the work of Lacave and Díez (2002), and some others, causal networks are
considered. Since this is out of the scope we restrict this work to non-causal BNs.
Thus, nothing is mentioned here about the particular methods and explanations that
use the causality.

The reasoning that can be made with the knowledge embedded into the model does
not end here, as we can see with the other two levels considered by the works used
in this discussion (evidence and reasoning). On the one hand, evidence explanation
makes reference to trying to explain particular data instances. On the other hand,
reasoning explanation is tied to justifying the results obtained by the model and the
reasoning process involved, the results not obtained by the model and hypothetical
reasoning. All the tools that are used in these two levels fall under the field of in-
ference. We have already seen the ones that can be used in explaining the model.
Next we will review in Section 2.2 all the tools BNs offer that are useful for creating
evidence and reasoning explanations.
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Figure 2.3: Model explanation examples.

2.2 Tools for creating explanations

To present the tools we are following the works of Lacave and Díez (2002) and Derks
and De Waal (2020) differentiating between those related to evidence explanations
and reasoning explanations. We first start reviewing those related to reasoning ex-
planation since it covers the understanding of the basis of the knowledge embedded
into the BN and how to manipulate and use it in order to later generate evidence
explanations and more. Reasoning explanations are also themselves quite useful in
particular contexts, as explaining the reasoning that can be made with the model
directly entails the understanding of the task at hand. This is due to the fact that we
are explaining the processes of the model to obtain outputs.

26



Bayesian networks and explanations

With respect to the taks’s latent dimensions of interpretability (see Section 1.2.1 and
Figure 1.3) the tools presented in this type of explanation create global explanations.
Regarding the area of incompleteness (needs of explanations) of the task, since we
are explaining different tools, each one with its own definition introduces what expla-
nations it can give. With respect to time constraints, the user’s understanding may
vary depending on the method used, as for example a directly expressed relationship
in natural language does not take the same amount of time as a graphic display of
probabilities. The time that takes to produce the explanations may also vary from one
method to another.Finally, user expertise has its minimum in probability knowledge
since the reasoning made in BNs is all based on this discipline; time for understand-
ing explanations is influenced by the skills of the user in this matter.

We now start reviewing Derks and De Waal (2020). In this case the authors only
focus on explaining the type of reasoning that can be made based on the structure
of the network and the probabilistic (in)dependencies between variables. Hence, here
we do not find any method/tool that can be used to generate explanations about the
reasoning. As expressed in this work, using the conditional (in)dependencies of the
BN, which directly translate into the graph that represents the model, three types of
reasoning can be made (see Figure 2.4):

• Predictive reasoning. This type of reasoning in BNs comprises going from parents
to children, i.e., following the direction of the links of the DAG. The structure
of the BN in terms of dependencies allows studying the influence of a known
feature on its children, i.e., A→ B permits a direct reasoning of the influence of
A on B and this is what is called predictive reasoning.

• Diagnostic reasoning. This type of reasoning in BNs is made when given a par-
ticular feature (child), we reason and extract information about a feature that
directly influences it (parent). In this case, the structure is used contrary to
predictive reasoning: given A → B now we are extracting information about A
knowing B, which passes through the calculation of P (A | B). This is usually
used when we want to extract knowledge from the BN on what went wrong.

• Intercausal reasoning. In this case we are reasoning and extracting knowledge
and information of the influence of knowing a variable A on a variable B when
both have influence on a third variable C. This type of reasoning appears in
what we call a v − structure (A→ C ← B).

There is another type of reasoning in BNs that is not covered in this work which is
bidirectional reasoning. This type of reasoning is performed when two or more types
of the ones presented are combined. So this is an explanation on the reasoning that
allows the model, which is the basis for every other method. Although as said before,
no method is presented which can be used to generate explanations about the rea-
soning.

If we want to explore methods within the explanation of reasoning, we have to review
Lacave and Díez (2002). Particularly, the authors present a review on works divided
by macro-level or micro-level explanations. The first group makes reference to ex-
plaining the reasoning of the model in a general way. Generally the idea is to explain
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Figure 2.4: Example of three types of reasoning in BNs.

the paths of the BN which determine how the evidence flows and by doing this we
characterize how the model reasons. The second one focuses on how the model rea-
sons about a particular variable.

Micro-level:

• Verbal description of variations in probabilities. Here the idea is to present in
natural language how the probabilities of a particular variable vary when other
variables are observed. By doing this we represent how the model reasons about
this variable, hence, it can be used as an explanation of the reasoning. The au-
thors present the work of Elsaesser and Henrion (1990) as a representation of
the idea of verbal description of variations in probabilities. For example, if p1
changes to p2 and p2

p1
≥ 5 the authors use the expression: "a great deal more

likely".

• Graphical display of probabilities. Again we find the idea of presenting graphi-
cally variations of probabilities of particular variables when others are observed.
As a consequence, the explanation that can be obtained by this method is a plot
such as bars, see Figure 2.5.

• Analysis of the impact of evidence on a variable. The idea here is to measure
how evidence influences a variable, hence the measure captures the probabilis-
tic relationships and gives information about them. As we are measuring how
an evidence impacts a variable, the information obtained can be seen as an ex-
planation of reasoning. Lacave and Díez (2002) present two works. The first
is PATHFINDER (Heckerman (2019)), where the idea is to discriminate between
particular evidences d1,d2 by their influence on a target variable Xi, given other
evidence e. Notice that this is developed for discriminating groups of diseases
(d1,d2). For doing so the evidence weight proposed by Good (1977) is used:

log(
P (xj | d1, e)

P (xi | d2, e)
) xi ∈ Ω(Xi)

where Ω(Xi) is the space where Xi lives. For each possible value xi of Xi this
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Figure 2.5: Example of graphical display of probabilities. Here we can see how the
model reasons about the feature bronc as the probability of having bronchitis (red
bar) increases when being a smoker.

measure is graphically displayed representing the proportionality on how the
two different groups of variables influences Xi. The second work is Suermondt’s
INSITE (Suermondt (1992), Suermondt and Cooper (1993)) where given an ev-
idence e, its influence on a variable Xi is measured through the cross-entropy
H:

H(P (Xi | e);P (Xi)) =
∑
i

P (xi | e)log
(
P (xi | e)
P (xi)

)

Macro-level:

• Quantitative analysis of reasoning chains. Lacave and Díez (2002) here present
different works that appear under the same underlying idea: finding chains in
the graph that relate an evidence to an interest variable and quantitatively as-
sessing their importance. By doing this, it is shown how the reasoning in a BN
is made at a macro-level since it is taking into account how the evidence propa-
gates through all the net and affects the final objective variable.

In Suermondt’s INSITE we find an example of this method as they look for paths
from a given evidence e to a target variable Xi, which are computationally re-
lated. Moreover, they analyse the importance of the chains in obtaining the
inference result. This importance is obtained by removing arcs of the chains
and studying the cross-entropy of the posterior distributions of the target vari-
able given the evidence with and without the selected arc.

• Probability of evidence. The idea presented here is to use sensitivity analysis to
present how changes in evidence affect the output. Generally any form of sensi-
tivity analysis sheds light on the reasoning of the model. For example the study
of how the probability function of the target variable, given an evidence, varies
by using measures of distances between probability functions.

• Qualitative explanations. Although the works presented under these ideas are
thought for causal BNs, the underlying idea can be passed on to non-causal
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BNs with the reminder that influences should not be taken as cause-effect re-
lationships. So the key here is to transform the BN into a qualitative BN which
represents influences of adjacent nodes with postive, negative or unknown signs
(Wellman (1990a), Wellman (1990b)).

After this, effects of evidences on interest variables can be studied through sign
propagation (Druzdzel and Henrion (1993)). See Figure 2.6 for an example. This
is similar to the quantitative study of chains of reasoning but transforming the
information into qualitative concepts. Again, as we are representing how the
evidence flows and affects the results of the target variables in some manner
what we are representing is how the BN reasons, hence explanations can be
obtained.

Figure 2.6: Example of sign propagation in a BN from Druzdzel and Henrion (1993).

• Scenario-based explanations. Methods under this flag try to establish scenarios
to show how the model reasons. A scenario is an assignment of values to vari-
ables that are relevant to a certain conclusion, ordered in such a way that they
form a coherent story. So given an evidence e if a target variable is set, then the
idea is to show how variables are relevant to the target by building scenarios.

Figure 2.7: Example of a scenario in a BN. Given the evidence Burglary = yes and
the target Police call this scenario shows us a plausible story that expresses how the
model reasons about the target.

This is similar to studying the chains of the net, but by presenting ordered in-
stances that show how the model is reasoning in a "sequential" way. In this
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case the explanation is usually conformed by the most probable scenarios ob-
tained by partial abduction (we will define this concept later). Thus, the cognitive
chunks are instances.

We continue now reviewing those explanations related to evidence explanations. No-
tice that there will be similarities with reasoning explanation as this is the basis for
evidence explanation. The tools presented in this category make use of the knowl-
edge embedded into BNs and the probabilistic reasoning that can be made to obtain
knowledge about a given evidence, hence explanations can be built.

As we are dealing with particular instances, one of the task’s latent dimensions of
interpretability is local, i.e., we are reasoning about particular or specific points, not
general patterns. In terms of time constraints, these methods can be used to pro-
duce explanations that usually are quick to understand. In the matter of time for the
production this relates to the method established for inference and the complexity of
the network. As for user expertise it should be noted that probability knowledge is a
must since reasoning is made on this basis. Again, in terms of area of incomplete-
ness of the task, each tool, with its own definition, introduces on what it can give
an explanation. Finally, cognitive chunks in possible explanations are variables and
instances since we are working with them.

Derks and De Waal (2020) distinguish two methods:

Maximum a posteriori (MAP). Given the evidence e, the joint posterior distribution
of a set of target variables T that are unobserved is used to determine the target
variable’s instance which is the most probable. This is also called partial abduction. A
special case is when the set is constituted by all the unobserved variables, it is called
most probable explanation (MPE). We can also find the k-most likely configurations
where the first one is the maximum a posteriori (MAP):

t∗ = MAP (T | e) = argmaxt∈TP (t | e)

The cognitive chunks then are instances of variables and the interpretation of this
method is "t∗ is the most probable instance given e". With this we can answer what-if
questions (hypothetical reasoning), we can make predictions, or we can directly ex-
plain an evidence based on the most probable configuration that happens when it is
given, if this makes sense in the context. See Figure 2.8 for an example.

Most relevant explanation (MRE) (Yuan et al. (2011)). The basis of this method is
the fact that in MPE and MAP the set of target variables is user-specified and can
contain irrelevant variables with respect to the evidence. This leads to over-specified
or under-specified explanations if we use them for such purpose. Yuan et al. (2011)
show different pruning methods in order to deal with this problem. They are divided
into pre-pruning and post-pruning.

Pre-pruning methods identify which variables are relevant with respect to the ev-
idence by using the conditional independencies encoded in the BN. Post-pruning
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Figure 2.8: Example of MAP for feature Alarm given evidence "Burglary = true" in the
Earthquake network from Scutari (2010).

methods first calculate MAP/MPE and then prune irrelevant variables. For doing so
different approaches exist such as again using conditional independencies, greedily
creating explanation trees with the most relevant variables or using measures for the
explanatory power of the explanation, such as likelihood, in order to determine which
target variables are relevant.

All of this does not mean that MAP/MPE cannot be used to produce explanations,
but rather that MAP/MPE does not provide information on the relevancy of variables,
so the explanations provided do not include this. Therefore what we are doing here
can be seen as the introduction of a constraint of relevance, which adds another
interpretation and hence other explanations. This falls in the direction of creating
concise/selected explanations, but does not mean that one is better than the other,
as again this is context-user dependent. The key is knowing the difference and the
meaning of each method.

Nonetheless, the methods for pruning presented are criticized by Yuan et al. (2011).
For them an explanation should be precise (high explanatory power) and concise (only
contain the relevant variables). To account for this they translate the definition of ex-
planation into an instantiation of any subset of the unobserved variables and provide
a method that works under this assumption. By doing so, they provide the basis
for developing an explanation method with its own the freedom to choose the target
variables to include.

After this, the idea is to define a relevancy measure based on probability knowledge.
This measure allows obtaining instantiations of the unobserved variable with regard
to the evidence that, when used as an explanation accounts for precision and con-
ciseness. Under this framework, the usage of maximum posterior probability as in
MAP/MPE is not suitable since it does not account for conciseness. After a discus-
sion of different possible relevance measures, the conclusion is the use of the Bayes
factor (Jeffreys (1998)) in a general form, which they define as follows:

Definition 2.2.1 The generalized Bayes factor (GBF) of an instance x for a given evi-
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dence e is defined as:

GBF (x; e) =
P (e | x)
P (e | x̄)

=
P (x | e)(1− P (x))

P (x)(1− P (x | e))

where x̄ denotes the set of all alternative hypotheses of x (all the potential alternative
values of X which are not x).

Moreover GBF can be rewritten as:

GBF (x; e) =

P (x|e)
P (x̄|e)
P (x)
P (x̄)

=

P (x|e)
P (x)

P (x̄|e)
P (x̄)

Hence, it has a direct interpretation as the ratio of the posterior odds ratio given e and
the prior odds ratio. It can also be interpreted as the ratio between the belief update
ratios of x and the alternative hypothesis x̄. Taking the baseline of 1, a higher value
of GBF means that the ratio that encapsulates the influence of e on the hypothesis x
is bigger than the one on the alternative hypothesis x̄.

The GBF fulfills a variety of properties presented by the authors that make it suitable
with respect to the objective of finding a relevant instance given an evidence that is
both precise and concise. The first one relates to the consistency of the interpretation
of the values of GBF with the decision-theoretic interpretation of extreme probability
values. An example would be the GBF value of ∞ when P (x) < 1 and P (x | e) = 1.
This takes up on the idea that the evidence eliminates all uncertainty of the explana-
tion/hypothesis x. Hence, it is clear the value of the explanation with respect to the
evidence and it is represented with the infinity value of the GBF.

We also find the monotonicity with regard to the difference between posterior and
prior probability P (x | e) − P (x). GBF increases as this difference increases, which
indicates that GBF captures the influence of e on x. Moreover, in extreme values of
P (x) (near 1 or 0), GBF is even bigger with respect to the same fixed difference of prior
and posterior. This is quite interesting since it means that GBF captures the belief
that the difference of prior and posterior in extreme values of P (x) is more significant
because of the theoretic interpretation of those values. Monotonocity appears also
with respect to the belief update ratio r(x; e) = P (x|e)

P (x) . This is captured in the next
theorem (Yuan et al. (2011)).

Theorem 2.2.1 For an explanation x with a fixed belief update ratio r(x; e) greater
than 1, GBF (x; e) is monotonically increasing as the prior probability P (x) increases.

If r(x; e) is greater than 1, this means that x is more likely given e, and given a big
P (x) means that x is likely to happen. Then if e happens, and x is even more likely
this indicates that x has a high explanatory power given e (in the sense that it is
likely to see that x happens after e happens). This should be captured by relevance
measures which try to find and instantiation explanation given an evidence, and this
happens with GBF . But the key properties are those which allow GBF to measure
the relative importance of multiple variables and select the relevant ones, which is
perfect to achieve the property of conciseness. First the CBF is defined (Yuan et al.
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(2011)):

Definition 2.2.2 The conditional Bayes factor (CBF) of explanation y for given evi-
dence e conditioned on explanation x is defined as:

CBF (y; e | x) = P (e | y,x)
P (e | ȳ,x)

With this definition not only do we have a factor decomposition of the GBF , which is
great for incremental evidence, but we have the next theorem (Yuan et al. (2011)).

Theorem 2.2.2 Let the conditional Bayes factor (CBF ) of explanation y given expla-
nation x be less than or equal to the inverse of the belief update ratio of the alternative
explanations x̄, i.e., CBF (y; e | x) ≤ 1

r(x̄;e) , then we have:

GBF (x,y; e) ≤ GBF (x; e)

As explained in Yuan et al. (2011), this provides a soft measure of the relevance of y
with respect to e given x. On the contrary, the conditional independence of Y and E
given X (Y ⊥ E | X) provides a hard measure with answer yes or no to the relevance
of variable/s Y, thus the relevancy of y. This theorem implies that GBF encodes a
decision boundary, which is the inverse of the belief update ratio of the alternative
explanations x̄ given e. This ratio sets up the point of decision of the importance of
the rest of variables, given x, for them to be included or not in the explanation. The
idea is that if CBF (y; e | x) ≤ 1

r(x̄;e) then GBF (x,y; e) ≤ GBF (x; e), therefore y should
not be included in the explanation. Finally, Yuan et al. (2011) establishes the next
corollaries:

Corollaries

• Let x be an explanation with r(x; e) > 1, and Y ⊥ (X,E), then for any state y of
Y, we have GBF (x,y; e) < GBF (x; e).

• Let x be an explanation with r(x; e) > 1, and Y ⊥ E | X, then for any state y of
Y, we have GBF (x,y; e) < GBF (x; e).

• Let x be an explanation with r(x; e) > 1, and y be a state of a variable/s Y such
that P (y | x, e) < P (y | x), then we have GBF (x,y; e) < GBF (x; e).

The power of GBF as a soft measure for relevance on instantiation y with respect to
e given x and the properties of consistency with respect the theoretical interpretation
of probabilities make it a perfect measure for finding instantiations that are related
to a given evidence in probabilistic terms (precision) and comprise the most relevant
instances of variables (conciseness). Consequently, the MRE is defined as follows:

Definition 2.2.3 Let T be a set of target variables, and e be the evidence of the remain-
ing variables in a Bayesian network B. MRE is the problem of finding an instantiation/-
explanation x for e that has the maximum generalized Bayes factor score GBF (x; e),
i.e.,

MRE(T; e) = argmaxx∈X,∅⊂X⊆TGBF (x; e)
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Figure 2.9: Example of MRE given evidence "Burglary = true" in the Earthquake
network from Scutari (2010). Code can be found in github2.

Finally, the cognitive chunks are instances of variables again, and in this case the
interpretation of the method is: x is an instantiation of a subset of the target variables
that maximizes the GBF . As a consequence of the properties of GBF we are captur-
ing the minimal instantiation of variables that are relevant to the evidence. Again, its
use with respect to explanations is creating explanations of an evidence by giving the
most relevant and minimal instantiation of the target variables that relate to e. We
can also answer what-if questions (hypothetical reasoning). See Figure 2.9 for an ex-
ample where, contrary to the example of Figure 2.8, the method explains the evidence,
Burglary = yes, by giving back the instantiated target (Alarm = yes,Earthquake = yes).

In Lacave and Díez (2002) similar material is introduced. In this case the authors only
focus on MPE/MAP, i.e., total/partial abduction, and they present works on how to
obtain MPE/MAP. In two of them, we can identify the preamble and basis for MRE.
But these are not the only methods related to explaining evidence; we broaden these
works by presenting the next works and methods.

Most relevance evidence (Meekes et al. (2015)). This method’s purpose is to find
relevant sets where computational efforts should focus. Nonetheless, the information
and knowledge that it provides can be used as an explanation. Given a set of target
variables T and an evidence set of evidence variables E, Meekes et al. (2015) define
the given-evidence sensitivity set for T given E, the potential-evidence sensitivity set
for T given E, the evidence sensitivity set for T given E and the irrelevant evidence
set for T given E.

For all definitions the concept of d-separation is used. Moreover, relationships be-
tween the sets are defined and how Bayes-Ball algorithm (Shachter (2013)) may be
used to calculate them. We focus on the irrelevant evidence set for T given E, which
is defined as the subset of E for which each variable X is d-separated (conditional
independent) of T given any instance of E \ {X}, i.e.,

IrrEv(T,E) = {X ∈ E : X ⊥ T | E \ {X}}

Notice that here the idea is reversed to the one in MRE. Hence, given an evidence set
E and a set of target variables T, the idea is to use the conditional independencies to

2https://github.com/Victor-Alejandre/Bayesian-Network-based-clustering.git
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find which evidence influences the target, thus it is important/relevant. In this case
cognitive chunks of the explanation, if the method is used, are variables. Then, the
knowledge given by the method is the subset of variables of E whose instances are
going to affect the probabilities of the target, hence these are the explanations that
can be obtained. See Figure 2.10 for an example.

Figure 2.10: Example of most relevance evidence in the Earthquake network from
Scutari (2010).

MAP-independence (Kwisthout (2021)). This method again revolves around the con-
cept of relevance in the context of MAP. The purpose is to try on clarifying the value
of MAP by giving relevant variables that affect this value. In this case, it is argued
that the model context relevance of variables to the MAP obtained through condi-
tional dependencies is too strict. Consequently, the proposal here in order to find
what information is important in a given MAP explanation/value is to find a set I+

of relevant variables and I− of irrelevant variables in the calculation of MAP. Both
sets shape the set of unobserved variables I = I+ ∪ I− without counting the set of
target variables T and the evidence e, i.e., I = X \ {T ∪ E}. Instead of using condi-
tional dependencies, to define the set of irrelevant variables the idea is to determine
which variables are irrelevant based on whether the output of MAP changes if the
variables were to be observed. In order to find I+ the author poses and formalizes
the following sub-problem: knowing MAP = t∗ given an evidence e and R ⊆ I, is t∗

MAP-independent from R? The formalization is:

Given a BN B = (G, θ), where V(G) is partitioned into a set of evidence nodes E, with
a joint value assignment e ∈ E, a non-empty explanation set T, with a joint value
assignment t∗ ∈ T (MAP), a non-empty set of nodes R for which we want to decide
MAP-independence relative to T, and a set of intermediate nodes I with R ⊆ I. In
order to establish the sought MAP-independence, the following question must be an-
swered: Is ∀r ∈ Ω(R), argmaxt∈Ω(T)P (t, r | e) = t∗?

The author concludes that this problem is generally intractable, though if MAP calcu-
lation is tractable the problem may be tractable for a given set R not too big (Valero-
Leal et al. (2023)). Hence, this method, given a set R of interest, solves the problem
presented and determines whether R has influence on t∗ given e, if it were to be ob-
served. Therefore the cognitive chunks of the explanation, if this method is used to
generate one, are variables. Notice that here the explanation given combines with the
explanations from MAP to enrich the understanding of the latter. It can also be used
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to answer what-if questions related to MAP.

Influence-driven (Albini et al. (2021)). This work focuses only on BN classifiers
(single-labeled and multi-labeled). Particularly, the naive Bayes (single-labeled) and
Bayesian network-based chain classifier (BCC) (Sucar et al. (2014)) with the leaves
nodes being the observation features. Similar to Druzdzel and Henrion (1993) and
Timmer et al. (2017) the idea is to find relevant variables for the classification of an
instance given by means of the influences between variables. Consequently, the con-
gnitive chunks of the explanation are variables and sets of influences.

A set of influences I is a set with pairs of variables, I = {(X,Y ) ∈ X = O ∪C}, where
different types of influences can be defined. The set O is the set of observable fea-
tures, whereas the set C is the set of classification features. Both sets are disjoint
and define the variables of the problem.

The influence types ti are defined through a function π : I × A → {true, false}, where
A is the set of all input assignments which contains all possible maps a. Each map a
assigns a domain value for each variable that is not the target classification (X ∈ O).
Notice that the maps a are just instantiations of the observed variables but expressed
as functions from the set of features to the feature space. For example, if we have a
variable Alarm with possible values {yes, no} then a(Alarm) = yes is a possible map.

As one can observe from their definition, the influences types are defined with regard
to the inputs/evidence (maps a) we want to classify. Notice that given an influence
type for the variables, the influence may exist only for some particular inputs (not all
of them as it depends on a). Now an explanation kit is a set which, given the possible
influences I, contains pairs of the influence types ti and the function that charac-
terizes them πi, EK = {⟨t1, π1⟩, ..., ⟨tn, πn⟩}. Albini et al. (2021) define the method to
obtain the relevant variables and influences which can be used for the explanation as:

Definition 2.2.4 Given a set of influences I and an explanation kit
EK = {⟨t1, π1⟩, ..., ⟨tn, πn⟩} for I, an influence-driven explanation (IDX) drawn from EK
for explanandum C ∈ C with input assignment map a ∈ A, is a tuple ⟨Xr, It1 , ..., Itn⟩
with:

• Xr ⊆ X such that C ∈ Xr (we call Xr the set of relevant variables).

• It1 , ..., Itn ⊆ I∩ (Xr×Xr) such that for any i ∈ {1, ..., n},∀(X,Y ) ∈ Iti , πi((X,Y ), a) =
true.

• ∀X ∈ Xr there is a sequence X1, ..., Xk, k ≥ 1, such that X1 = X,Xk = C, and
∀1 ≤ i < k, (Xi, Xi+1) ∈ It1 ∪ ... ∪ Itn .

As we can see, the method obtains the relevant variables for a specific classification
variable given an instantiation (through mapping a). These variables are those for
which a chain of influences reaching the explanation variable can be established, in-
dependently of the types of influences. This is represented with the elements of the
tuple (It1 , ..., Itn). So this can be used to establish an explanation of the relationship
of evidence and its classification. The explanation represents the important variables
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obtained based on the influences that they have. Thus, the influences defined and
the influence types that can be defined are the key issue.

Figure 2.11: Example of influence driven explanation taken from Albini et al. (2021).
The Bayesian network is the Play outside Bayesian classifier.

The authors here present three types of explanations based on the influence types
defined: monotonically dialectical IDXs (see Figure 2.11), stochastically dialectical
IDXs and attribution method-based dialectical IDXs. The three types of explanations
have the same in common, only two types of influences types are defined which relate
to the idea of attack and support (positive vs negative effects). The first two types are
highly related to what is known as argumentative XAI (Čyras et al. (2021)), which
is a discipline that studies particular frameworks that allow argumentation for ex-
planations in some areas of AI. Here it is very important the property of dialectical
monotonicity which is related to how humans think (monotonic or non-monotonic).
The first two types fulfill this property. Also, the authors give relationships between
these two types of explanations. Finally, the third type is introduced to show how
this method also adapts to attribution methods (post-hoc).

See Figure 2.11 for an example with monotonically dialectical IDXs, where the defin-
tion for the influence types is given in the upper part of the figure. Moreover, in the
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lower center and left part of the figure we can see the Bayesian classifier with the
respective features and MAP classifications for the different combinations of the ob-
servable variables. On the lower right part of the figure it is shown in a graphical
display of the network the different influences obtained for the input set of influences
I and map a given below. Finally it is shown in the lower right corner the explanation
obtained for those inputs.

Counterfactual (Koopman and Renooij (2021)). Counterfactual explanations answer
the idea of contrastive (property) explanations (Why this outcome instead of another
one?) (see Section 1.2.1). As expressed in Koopman and Renooij (2021) counter-
factual explanations try to give a change in inputs which generates a change in the
output. Hence, they answer the question by giving another instance that will generate
another output. They explain that this idea has been translated into the field of ML
in the form of different definitions. This is why we only present this work, which fo-
cuses on the definition within the field of BNs. However their ideas can be generalized.

The authors define the explanation given by their method as persuasive contrastive
explanations. Their idea is to give answers to Why t (MAP) instead of t′? given an
evidence e. Their method obtains a counterfactual explanation based on the work of
Wachter et al. (2017), i.e., an input assignment that generates t′ instead of t. As they
consider that this is not enough to answer the question Why t instead of t′?, they also
provide an explanation based on giving the sufficient evidence that generates the out-
put t (similar to most relevance evidence). Hence, their explanations also follow the
idea of the property that explanations are selected. So their method obtains, given an
evidence e and a target variable T , two instantiations: one that relates to the target
as being the minimal evidence needed to obtain the MAP t and the other that relates
to the target as a minimal instantiation that provokes a change in MAP to a value
chosen t′. This is the definition presented in the work:

Definition 2.2.5 Consider explanation context ⟨e, t, t′⟩ where e is the evidence, t is the
MAP of the target T given the evidence, and t′ is another possible value of the target
which we would like to obtain. A persuasive contrastive explanation is any pair of
instances (s, c) where s ∈ Ω(S), c ∈ Ω(C), S,C ⊆ E, and

• s ⊆ e is a sufficient explanation for t, i.e., MAP (T | (s, ê)) = t for all ê ∈ Ω(Ê), with
Ê = E \ S, and there is no s′ ⊂ s for which this property holds.

• c ⊆ e is a counterfactual explanation for t′ i.e., MAP (T |(ē, c)) = t′ for ē ⊆ e,
ē ∈ Ω(Ē), with Ē = E \C, and there is no c′ ⊂ c for which this property holds.

The authors also introduce a methodology to obtain these instantiations instead of
using the brute-force approach. To sum up, the method proposed obtains instantia-
tions; consequently the cognitive chunks of explanations obtained from these defini-
tions are those. Moreover, the explanations obtained from this method can be seen
as a combination of two explanations as the method proposes the combination of
two evidences that follow different ideas but relate to each other. This is an example
of a combination of methods/ideas that enrich explanations as they combine their
knowledge and information. See Figure 2.12 for a particular example of the method-
ology applied to the Child network displayed on the left part of the figure. On the
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right part of the figure we find the evidence and target features that are instantiated
for obtaining a particular explanation context. From this explanation context four
persuasive contrastive explanations are obtained and shown in the form of a tuple
that shows first the sufficient explanation s and second the contrastive explanation c.

Figure 2.12: Example of persuasive contrastive explanations for the Child network
(Scutari (2010)) taken from Koopman and Renooij (2021).

So we have presented a general view of the potential use of BNs to obtain explanations
due to the knowledge embedded into the model. More ideas can be presented that
make use of it, such as the use of estimators, simulation, graphical displays or even
combinations of the methods presented as long as they represent useful information
that can be considered an explanation. To close this section we would like to note
that apart from all of this, the use of model-agnostic post-hoc methods can also be
introduced in this model. Also in this matter, BNs present a great advantage to those
methods which use the idea of perturbing variables to obtain explanations.

Perturbing variables consist of changing inputs and studying the change of outputs
given by the model in order to elucidate how it works. Ideally, perturbation should
be done using the probability distribution followed by the inputs (P (x)), since this
captures the likelihood of how the variables take values in real life problems. BNs
model and learn this function, thus the great advantage mentioned. Moreover, this
instigates also, in some cases, the use of BNs as surrogate models as we present in
the next section.
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2.3 Solving the perturbation-based method’s problem

Perturbation-based methods are those which use sampling of the feature space in
order to obtain the results, like LIME (Ribeiro et al. (2016)) or anchors (Ribeiro et al.
(2018)). Some model-agnostic methods like Shapley-values (Molnar (2020)) or partial
dependence plots (Friedman (2001)) (there are more) make use of expectations of f̂(x)
in order to give explanations about the inner working of the model. Notice that f̂(x) is
the function learned by a specific model to solve a particular problem given a dataset
D. Since computation of these expectations is hardly ever feasible or possible, the
idea is to use estimators to approximate these values from samples (perturbation-
based).

Most models used here do not work with the probability distribution function, and
the usual procedure is sampling from the dataset, which is not wrong as long as
the sampling is correctly made. However, the characteristics and definition of the
BNs make this model ideal for its use as a surrogate model in these cases, not to
give explanations but to sample and work with the probability distribution function.
Nevertheless, it is worth mentioning that this would add computational effort and for
some cases it would probably be infeasible, such as working with posterior probabil-
ities in non-parametric BNs. In the following we exemplify this with Shapley-values
and propose a variant that can be achieved through the use of BNs.

Shapley-values is a local model-agnostic method which comes from game theory
(Shapley (1953)). In the original work the idea is to define a function φ that gives
a share value of the game v (superadditive set-function) to each participant of the
game. Shapley states three axioms that unequivocally define the game share func-
tion value φ. These axioms also wrap some of the natural properties expected from
a function that gives the share of each player to the game: linearity/additivity, per-
mutability and efficiency. The first one clears that for the sum of two games the share
or value for each player should be the sum of the share for each game. The second
one states that for any permutation of the players the share should be the same.
Finally, the last one captures the idea that the sum of the values for all the players
should be the total value of the game. The function φ obtained is defined as follows:

φi[v] =
∑
S⊆P

(s− 1)!(p− s)!

p!
[v(S)− v(S− (i))]

where φi[v] is the game share value for player i ∈ P = {1, ..., p} and game v. S are
subsets of players from player set P. Since all of this is defined in the context of
game theory, efforts have been made in order to translate these ideas into the field of
AI, particularly ML.

The idea in the ML context is to explain the contribution of each feature to the value
f̂(xe) given an instance xe. Therefore, the "players" here are the features. The key
problem is to establish the analogue of the game value function v, since it is defined
as a superadditive set-function in the context of game theory. Once defined v, the
game share value function φ remains the same as defined before. For example no-
tice that if we use the model function f̂(x) as v, then φ only fulfills the property of
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efficiency defined in the game theory framework if f̂(x) is linear. In the work of Sun-
dararajan and Najmi (2020) we can find different definitions of the value function v
in the context of ML (there are more such as intregated gradientes):

• Conditional expectations Shapley (CES). The value function is defined in
terms of the instance xe, model function f̂ and probability distribution P fol-
lowed by input variables:

v(S) = Ex∼P [f̂(x) | xS = (xe)S]

where xS = (xe)S implies that the values of x for the subset of features S ⊆ X are
substituted by the values of (xe).

• Baseline Shapley (BShap). Here the idea is to set a baseline point to measure
contribution with respect to it. Hence, the value function is defined in terms of
the instance xe, the model function f̂ and a baseline point x′:

v(S) = f̂((xe)S; (x
′)X\S)

• Random baseline Shapley (RBShap). This idea is similar to BShap but with
the use of marginal distributions. Thus the value function is defined in terms of
the instance xe, model function f̂ , probability distribution P followed by input
variables:

v(S) = Ex′∼P [f̂((xe)S; (x
′)X\S)]

We state that defining the analogue of v in the ML context is the key problem since, as
one would expect, the natural properties, which an attribution method should have,
should appear in this context just like the axioms established in the work of Shap-
ley. Since the game share value function is the same as in the game theory context,
it is v the key to obtain a game share value function that fulfills the desired properties.

In this matter, Lundberg and Lee (2017) establish three properties/axioms similar
to the ones defined in Shapley (1953) to characterize additive feature attributions
methods (which include Shapley-values in the context of ML models). However, these
properties are defined with respect to the equivalent of the game value function v
in order to characterize unequivocally the game share value function φ in the ML
context. Since we are working to measure the share of variables to a model function
these properties of the game share value function should be established with regard
to f̂ instead of v. In Sundararajan and Najmi (2020) these axioms with respect to the
model function are defined. Some of them correspond to axioms studied in the game
context theory:

• Dummy. This axiom declares that when a feature is dummy it has zero attribu-
tion. Given a particular function f , a feature Xi is dummy if for any two values
xi, x

′
i and every value x−i of the other features then f(xi;x−i) = f(x′i;x−i). Thus,

this property captures the idea of having zero attribution when having no effect
on the function.

• Efficiency. This property is similar to the axiom of efficiency introduced in
Shapley (1953), but in this case also relates to the introduction of a baseline.
A value function is efficient if for every xe and baseline x′ the attributions add
up to the difference f(xe) − f(x′). This is natural since when establishing a
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baseline the value function should give the effect of the variable with respect to
that baseline. Also, the fact that the sum of attribution values should take this
value entails that we blame the features for the difference f(xe)− f(x′).

• Linearity. This axiom states that the attributions of the linear combination of
two given functions f1, f2 is the linear combination of the attributions of each
function. This property encapsulates the idea that attributions are linear with
respect to the function (efficiency), hence it is natural to ask that for sums of
functions, attribution is the sum of the respective attributions for each function.

• Symmetry. This property states that for every function f that is symmetric in
two variables Xi and Xj, i.e., for an instance xe and baseline x′ given with xi = xj
and x′i = x′j, then the attributions for features Xi and Xj should be the same.

• Affine scale invariance (ASI). This property expresses that a game share value
function φ is ASI if the attributions are invariant under simultaneous affine
transformations of the function f and features. This is that for any given c, d,
if f1(x1, ..., xp) = f2(x1, ..., (xi − d)/c, ..., xp) then for all the features the attribu-
tions should be the same given (x1, ..., xp), f1 and the baseline point x′, or given
(x1, ..., cxi + d, ..., xp), f2 and the baseline point (x′1, ..., cx

′
i + d, ..., x′p)

• Demand monotonicity. This property states that the game share value func-
tion φ should only increase when a feature Xi increases under the assumption
that the function f is non-decreasing. A game share value function fulfills this
property if this happens for any function f and any feature Xi given that satisfies
the conditions.

• Proportionality. This axiom states that if the given function f can be rewritten
as a function of the linear combination of the features

∑
Xi, and the baseline x′

is zero, then the attributions values are proportional to the values of the given
instance xe.

Not only do we find these definitions in Sundararajan and Najmi (2020), but also
a discussion about the different value functions v that they present and the fulfill-
ment of these properties by the game share value function φ that these v define. It is
shown that the CES φ does not fulfill the properties of symmetry, linearity, dummy-
ness and demand monotonicity. It is also shown that BShap φ is the unique function
which satisfies linearity, dummy, affine scale invariance (ASI), demand monotonic-
ity (DM), and symmetry (plus minor technical conditions) for all attribution problems.

The problem of using BShap is that the results depend on the baseline point x′ se-
lection which is upon the user and problem context and may not be trivial. Also the
share of the features is not the share of the feature to the function value f(xe) but
rather the share to the difference f(xe)− f(x′) (baseline point dependent). Notice that
we seek the first one, not the second.

Furthermore, the game share value function φ defined by RBShap fulfills the proper-
ties of efficiency, symmetry, dummyness and linearity (Molnar (2020)). Also the use
of the expectations with marginals renders the baseline as the expected value of f
with respect to the inputs, which seems natural and is not baseline point dependent.
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The problem with this methodology is that since we are using marginal expectations
we may introduce unrealistic data instances in the calculations when features are not
independent. This can cause misleading conclusions (Hooker et al. (2021)). Thus, we
propose a variant of this method which takes the use of BNs to efficiently avoid this
problem.

The idea is to use f̂(xe)P (xe) instead of f̂ for a given instance xe whose feature attri-
bution is wanted. Hence, what we are doing is weighting the function value by the
likelihood of the instance. This directly implies that, when calculating the value func-
tion, the marginal expectations take into account the likeliness of the instances and
weight the function value with it, thus we avoid the problem of introducing unlikely
data instances.

The downside of this idea is that we do not longer have the efficiency property with
respect to the function of study. This directly translates into the interpretability of
the attribution values: these ones represent the effect of each feature on the function
value weighted by the likelihood of the instance and not only the function value, as
one would like. Nonetheless, it is still interesting to know how the features contribute
to the value function weighted by the likelihood of the instance and makes it perfect
sense with also the benefit of avoiding the problem of unlikely data contributions. We
implement these ideas in Algorithm 1.

Algorithm 1: Weighted Shapley-values

input : D, f̂ ,xe

Learn an adequate BN B from dataset D;
for i = 1 to p do

Sample from B;
Learn Shapley-values from the sample using
v(S) = Ex′∼P [f̂((xe)S; (x

′)X\S)P ((xe)S; (x
′)X\S)];

end
Result: Shapley-values computed

Finally, after this discussion one can see that Shapley-values present some problems
and disadvantages which make them unreliable. Critiques about them, apart from
the problems exposed here, are made in Kumar et al. (2020). Nonetheless, the pur-
pose here was to show the advantage of introducing BNs. The ideas of using BNs
for sampling and obtaining marginals and conditional probability functions can be
extended to the other post-hoc methods mentioned here. As a matter of fact, they can
be extended to any perturbation-based method.
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Chapter 3

The clustering problem

3.1 Clustering

In this section we present the clustering problem, that falls into the unsupervised
learning paradigm, and we review works on interpretability within the problem. The
unsupervised learning paradigm wraps every ML problem involving unlabelled data.
Therefore, in this context we do not have a target/objective given a particular input,
but rather we simply have the inputs and the objective is to extract patterns from
them. Hence, problems, methodologies and models under this paradigm have the
ultimate goal of learning and extracting information from the data itself.

In unsupervised learning, clustering is the main problem. This problem consists of
dividing a population into a set of groups (clusters) {c1, ..., cK} with respect to a set
of features X = {X1, ..., Xp} that characterizes the population. In order to solve the
problem we start from a sample of the population xi = (xi1, ..., xip), ∀i = 1, ..., N , from
which we infer how to group the individuals according to the features. Notice that the
sets of groups where the population is divided into can be disjoint or not. In the last
case, we are talking about overlapping clustering and its basis is that an individual
does not have to belong just to one cluster. In this work we will consider both cases.

The clustering problem is not only important in fields such as computer sciences (web
mining, spatial database analysis, textual document collection, image segmentation),
life and medical sciences (genetics, biology, microbiology, paleontology, psychiatry,
clinic, pathology), earth sciences (geography. geology, remote sensing), social sci-
ences (sociology, psychology, archeology, education) or economics (marketing, busi-
ness) (Xu and Wunsch (2005)) but is also related to other problems in the ML field
like regression, prediction, data mining or pattern recognition (Saxena et al. (2017)).
In Ghosal et al. (2020) we can find different fields where clustering has been success-
fully used to harness information, and the algorithms applied to do so.

As noted in Xu and Wunsch (2005), there is no agreed definition on what a cluster is,
but rather a baseline idea that a cluster should comprise internal homogeneity and
external separation. The idea is that similar individuals should be grouped together
while being different to other grouped individuals. Consequently, how to measure
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similarity and dissimilarity between patterns should be established in a meaningful
way, this being one of the keys of the complexity of clustering as there exist different
ways to do so. These ways to solve the clustering problem entail different models and
possible solutions and there is no general way to know what is the best approach
to the problem at hand. Also, as this is unsupervised learning there is no universal
way of measuring the quality of solutions. This usually leads to choosing the way to
measure similarity subjectively. We also have that choosing the number of clusters
is not a trivial problem.

All of this makes clustering analysis a non-sequential process (see Figure 3.1), i.e.,
repetition and trials are needed to correctly solve the problem, which usually needs
expert knowledge to confirm the results (Xu and Wunsch (2005)). This gets even more
complicated if we introduce explanations and model interpretability. Nonetheless,
based on the works by Xu and Wunsch (2005), Ghosal et al. (2020), Saxena et al.
(2017) and Madhulatha (2012), we present the different clustering techniques that
have been developed and end up with a discussion and revision of interpretability
within the problem of clustering.

Figure 3.1: Clustering process (image from Xu and Wunsch (2005)).

There are different ways in the literature for categorizing clustering techniques be-
ing the division into hierarchical and partitioning the most used one. To this di-
vision we can add six categories: model-based methods, density-based methods,
grid-based methods, probabilistic clustering, graph-based methods and optimization-
based methods. Here we present the idea and different algorithms of each type of
technique starting with hierarchical clustering.

Given a sample of individuals of a population xi = (xi1, ..., xip),∀i = 1, ..., N the idea of
hierarchical clustering (Nielsen (2016)) is to group these individuals iteratively form-
ing groups (agglomerative approach) or dividing groups (divisive approach). In the
first case we start from all the individuals conceiving each one as a group and start
making bigger groups by joining them until we have just a group containing all of
them. On the other hand, the divisive approach is the reversed.

Both processes render information on how the instances group together through the
iterative process, which is finally used to select the clusters. This is usually repre-
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sented in a dendrogram (see Figure 3.2). The way of joining or dividing clusters is by
using inter-cluster distances, which measure how similar/dissimilar are clusters in
order to group/divide them. These distances are defined over previous distances de-
fined in the space of features like the Euclidean distance, although there are various
possible distances (Saxena et al. (2017)). This means that first we need to measure
distances between individuals and then we generalize it to distances between clus-
ters. Given a distance d(x, y) defined in the feature space, there exist three typical
distances between clusters:

• Single-linkage clustering. Given A,B two sets (clusters), their similarity is
measured as :

min{d(x, y) | x ∈ A, y ∈ B}

• Complete-linkage clustering. Given A,B two sets (clusters), their similarity is
measured as:

max{d(x, y) | x ∈ A, y ∈ B}

• Average-linkage clustering. Given A,B two sets (clusters), their similarity is
measured as:

1

| A || B |
∑
x∈A

∑
y∈B

d(x, y)

Figure 3.2: Example of dendrogram from Saxena et al. (2017).

So, in the case of agglomerative clustering, for each step we join the clusters of min-
imal distance between them and in the case of divisive clustering, we separate the
clusters with the maximum distance.

There exist three main points of critique to this method. First we find that it is highly
expensive in computational terms, especially the divisive approach. The second defi-
ciency is that it lacks robustness, thus being sensitive to outliers. The last deficiency
is that when a point is related to a cluster, it stays assigned to the cluster for the
rest of the process with no room for reviewing its assignment. However, for the last
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deficiency, variants of the algorithm has been proposed such as BIRCH (Zhang et al.
(1996)). Finally we highlight that it tends to form spherical clusters, which has to be
taken into account when deciding which method to use.

In partitional clustering we do not find clusters iteratively. Instead, clusters are ob-
tained simultaneously by optimizing an established criterion related to the distance
(similarity) between the individuals of the sample xi = (xi1, ..., xip), ∀i = 1, ..., N . The
idea here is to assign points to clusters through the use of minimum distance, i.e.,
highest similarity. The distance to each cluster is calculated by means of the dis-
tance of the point to a cluster representative or centroid. The most known algorithms
in this type of technique are k-means (MacQueen et al. (1967)) and fuzzy c-means
(Bezdek (1973)), though the last one can be considered out of this group due to the
introduction of fuzzy logic, but its basis is the same.

The idea of k-means is to define K centroids, each one for each cluster and optimize
(minimize) an objective function J =

∑K
j=1

∑
xi∈cj∥xi − yj∥2 where we are calculating a

chosen distance between individual xi and a centroid yj of cluster cj to which the in-
dividual has been assigned. An individual is associated to a cluster cj if the centroid
yj is the nearest to the individual with respect to the similarity distance established
(usually the Euclidean distance is used in J ).

In order to minimize the objective function there is an iterative process defined where
initial centroids are established, then individuals are grouped based on these cen-
troids and once grouped, centroids are recalculated as the mean of the individuals
assigned to the clusters that they represent. This is repeated till centroids no longer
move.

Notice that for each initialization of the clusters we obtain a final partition. Though
this can be used to optimize J , these calculations are usually made for just one or
various initializations and the best result is chosen. Also, there exists a variant called
k-medoids using the median. This is used when the mean cannot be computed or in
the presence of outliers (the median is more robust than the mean). Finally, we men-
tion a variation called kernel k-means which uses kernels to transform the feature
space into another one of higher dimension where there exists a possibility that data
is separated linearly.

Fuzzy c-means proposes a very similar technique but fuzzy logic is introduced in
order to model individual’s degree of belonging to each cluster. In contrast, k-means
is based on classical logic, i.e., each individual belongs to a cluster or not. As a
consequence, here we are dealing with overlapping clustering. In this technique
each individual has a degree ui,j ∈ [0, 1] of belonging to each cluster, which yields
an optimization function:

Jm =

n∑
i=1

K∑
j=1

umij ∥xi − yj∥2 1 < m <∞

m is the fuzzy partition matrix exponent for controlling the degree of fuzzy overlap,
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hence controlling how fuzzy are the clusters represented by centroids yj j = 1, ...,K.
As in k-means, initial centroids are defined. Once this is established, distances from
the point to centroids are calculated and used to compute belonging degrees and with
them new centroids are calculated. This procedure iterates until a maximum number
of iterations or convergence are achieved.

Both algorithms and in general partitional techniques present the advantages of be-
ing suited when clusters are spherical and separated. We also have that they are
scalable and relatively simple, which is good for large datasets. In contrast, they
present disadvantages such as reliance on the user to specify the initial number of
clusters (there is no general way to select this parameter), poor performance when
non-convex clusters are present and sensitivity to the initialization of centroids and
outliers.

We continue with model-based clustering methods whose main characteristic is the
use of ML and mathematical models to obtain the clusters. Though these models are
used, the basic notion of clustering still remains, i.e., the objective is to group based
on similarities and dissimilarities. Here the most known approaches are the use of
neural networks and the use of decision trees. The idea applied in neural networks is
to make neurons compete with each other and when a neuron is active it learns and
reinforces its neighborhood. By doing this, neurons concentrate in different parts of
the space representing the density function and we obtain the clusters. The most
used algorithm is self organizing maps (Kohonen (1990)), which presents the disad-
vantages of needing the number of clusters and misrepresentation of certain areas
(areas with real high density underrepresented and vice versa).

In the case of decision trees, there are different ways to approach the problem. One of
them (more will be reviewed later) for example is based on the idea that if we have in-
dividuals which can be grouped differently, then the data points cannot be uniformly
distributed. Thus, if we introduce some uniformly distributed points and conceive
them as a class, while conceiving the sample of individuals a different class, we
can make a classification problem. Decision trees in classification divide the feature
space in hyper-rectangles where a class of the possible ones predominates. These
hyper-rectangles are obtained by means of the leaf nodes. Therefore, by solving the
classification problem created we obtain the clusters as the leaf nodes of the tree
whose output is the class of the individuals (see Figure 3.3).

Under all of this we are grouping points through their similarity based on the Eu-
clidean metric (in the case of continuous features). We highlight that there are vari-
ants which try to avoid the definition of the uniformly distributed points (Liu et al.
(2000)) since it is not a trivial problem. Finally, we would like to mention that there
are other models such as support vector clustering (Ben-Hur et al. (2001)) which has
its basis on the theory of support vector machines (Boser et al. (1992)).

The main idea in density-based clustering methods is that a cluster is considered a
region of the space where the density of the individuals sample exceeds a predefined
threshold. The density of the individuals sample in a region is the proportion of the
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data points with respect to the area/volume of that region. The main advantage of
these methods is the discovering of arbitrary-shaped clusters. The most remarkable
algorithm here is DBSCAN (Ester et al. (1996)).

Figure 3.3: Example of decision tree-based clustering with introduction of uniformly
distributed points (Liu et al. (2000)).

Next, we introduce grid-based clustering techniques. The main idea of the first one
is to define a grid of cells in the space to work with, instead of the individuals of the
sample. The idea is to compute the density of each cell based on the samples. After
this we eliminate those cells whose density does not go above a certain threshold.
Once all of this is done the remaining cells are used to form clusters based on simi-
larity. The main advantage is the fast processing time, on the contrary disadvantages
are the set of hyperparameters, such as the threshold, and the problems that a large
dataset (in terms of features) can cause.

Next we show the mixture density-based clustering techniques which falls under
what is known as probabilistic clustering, where BN clustering is placed. We would
like to mention that in the literature probabilistic clustering can be seen classified as
model-based. There are also authors that consider this type of methods to be simul-
taneously density-based and model-based (Fraley and Raftery (1998)). Nonetheless,
the ideas of this type of methods make it worth of its own category.

The two main ideas of probabilistic clustering is to assume that individuals have a
prior probability of belonging to each cluster π1, ..., πK and that data follows a different
distribution for each cluster (data is generated by different probability distributions).
The classic approach to modelling the problem at hand is to assume that we have got
a set of random variables X = {X1, ..., Xp} (features of the population) and a random
latent discrete variable H, which takes values {h1, ..., hK} (clusters). Hence, we are
dealing with a joint probability distribution P (X, H). Then, this probability function
is assumed to decompose as P (X, H) = P (H)P (X | H), thus we have a finite mixture
model (FMM) (mixture density-based clustering techniques). With these assumptions
we have that:

P (X) =

K∑
j=1

πjPj(X | hj)
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where Pj(X | hj) for each j represents the different probability distributions from
which individuals come. The problem is solved by obtaining the number of clusters,
i.e., the value of K, which is usually assumed to be known, the parameters esti-
mations if we are assuming Pj(X | hj) to follow a specific distribution and the prior
probabilities of individuals belonging to each cluster π1, ..., πK .

Here, one of the biggest problems of the maximum likelihood estimators for the pa-
rameters of the distributions is that they cannot be computed directly due to the
latent variable. In this case, the EM algorithm (Dempster et al. (1977)) appears,
which will be discussed more deeply later. One of the most known models assumes
Pj(X | hj) to be a multivariate Gaussian, hence we work with a Gaussian mixture
(GM). One of the problems of this model is the formation of spherical and elliptical
clusters. We also mention Autoclass (Cheeseman and Stutz (1996)) which covers dif-
ferent distributions such as Bernoulli or log-normal. Finally, we would like to note
that we have distinguished between mixture density-based and probabilistic cluster-
ing since BNs allow more decompositions of P (X, H) than just the FMM.

Finally, we present graph clustering and techniques based on optimization algo-
rithms. The graph clustering techniques share in common the introduction of graph
theory in order to achieve the desired clusters. The basic idea here is to construct a
graph where nodes are the individuals of the sample. Similarity is embedded into the
edges of the graph with the ultimate goal of finding communites/clusters in the graph
by means of graph theory, decomposing the network using topological properties.

One of the most remarkable algorithms here is spectral clustering (Donath and Hoff-
man (1973)) where the idea is to construct a similarity graph (adjacency matrix is
weighted based on similarity between instances) and use the eigenvectors of the
Laplacian matrix to perform k-means and obtain the clusters. The advantages of
this algorithm are the lack of assumptions on cluster form, the scalability under
sparse adjacency matrix and no local suboptima. This algorithm can be seen as a
"starting algorithm" for k-means, though not everything is perfect since establishing
a good similarity graph is not a trivial problem.

With respect to techniques based on optimization, the main idea here is to take ad-
vantage of optimization algorithms to solve the clustering problem. We would like to
mention that methods can be divided into evolutionary approaches such as genetic
algorithms and search-based approaches such as simulated annealing.

Now that we have reviewed the main clustering techniques, in the next section we dis-
cuss the needs of explanations when solving this problem. To sum up, the concepts
presented in this section recall two main ideas. First, the clustering problem involves
grouping individuals based on features that describe them, and the underlying idea
for doing so is the use of similarity and dissimilarity, which can be established in dif-
ferent ways. Second, the clustering process is rather iterative since there are several
ways of establishing similarity and obtaining clusters with no general way to deter-
mine the suitable one. This is due to the fact that there is no general way to measure
the quality of solutions, and determining the number of clusters is not trivial.
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3.2 Interpretable clustering

Leaving aside the complexity of the whole process of solving a clustering problem, we
just have a ML model that learns from data in a specific way. Thus, it is natural that
why-questions arise in this context, like for example: "why does an individual belong
to the cluster the model establishes?" or "why do two individuals with the same val-
ues for a subset of the features belong to different clusters?". Although it is true that
in the unsupervised learning paradigm we do not have an objective/problem with
prior knowledge like for example in supervised learning classification, this does not
exclude the need of explanations as exemplified.

Moreover, one could argue that no prior knowledge accentuates the need of explana-
tions since we are trying to harness new and relevant information without knowing
what we are seeking. This can be seen in one of the problems associated with clus-
tering, clustering naming, which consists of giving meaningful names to each cluster
obtained. Hence, understanding the model itself can be quite useful for the clustering
problem and this just does not call for explanations but for model interpretability. The
drawback here is that most techniques and models introduced are not interpretable.
Next we present works done in this direction.

Yang et al. (2021) define a categorization of interpretable clustering techniques which
comprises rule-based, rectangle box-based and decision trees-based methods, see
Figure 3.4.

Figure 3.4: Classification of interpretable clustering methods (image from Yang et al.
(2021)).

However, one could argue that this categorization is not complete since for example,
it does not take into account BN-based clustering, that directly inherits the inter-
pretability of BNs as we will see in Chapter 4. Nevertheless, this categorization is
useful to show the little space that interpretable clustering occupies within the clus-
tering framework. Next, we review some works in interpretable clustering.
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Rule-based models come from knowledge representation theory and are based on
generating rules of type if − then, where the clause if contains a condition which in
the case of the ML context is defined in terms of the features of the problem. In the
ML context it is an intepretable model due to the simplicity of the rules which can
be directly explained in understandable terms for humans, thus interpretable. This
is due to the fact that rules are designed to store knowledge in this case being the
condition imposed on the features. We would like to notice that the design of rules
does not only allow to store knowledge but also grants reasoning with a reasoning-
engine based on induction. We would also like to mention that ruled-based models
are highly related to decision trees since the latter can be interpreted in terms of
rules. Also in the context of rectangle box-based clustering, methods are related to
rules for the same reason.

Saisubramanian et al. (2020) present an adaptive partition-based method that cre-
ates a model that optimizes for interpretability by using k-means and rules. The idea
is to predefine a set of features that signify interpretability for the user. The usage of
this set is to measure the interpretability of clusters by the proportion of individuals
that share the same feature value for these variables within the clusters. With this
measure the idea is to set a minimum β value for this measure and find clusters that
score above it. By doing this the clusters are interpretable as they share the same
feature value for the interpretability features. For finding the clusters, a modified
version of k-means is presented. Finally, once the clusters are obtained these values
conform to a special set of rules to interpret the clusters.

Chen (2018) presents generative interpretable clustering model with feature selec-
tion, which is another adaptive partition-based method. The model generates a list of
rules involving different sets of features for each cluster. The goal is to obtain a final
model consisting of a list of rules for each cluster based on the idea that if a sample
corresponds to a cluster, then the rules of the list tend to be satisfied. Each rule for
each cluster contains only a feature. The rules are obtained via one-dimensional GM
models that learn the partitioning of individual features. From this point the author
establishes a method to obtain whether a feature characterizes a given cluster; if it is
so then the feature is used to add a rule to the list of rules of the cluster.

Other works are based on fuzzy rules which are just an adaptation of rules to fuzzy
logic. In Wang et al. (2014), a traditional membership function is used combined with
a new fuzzy adaptive partitioning of the feature space to create the rules, making it
more flexible. However, the method fails to make the individuals membership sum to
one across the clusters and this can affect the interpretability. On the other hand, we
can find models based on a fixed grid partition. Mansoori (2011) works with trigono-
metric membership functions and a totally different way of obtaining the rules. In
this case just as in the methodology presented for decision trees, the idea is to ran-
domly introduce data and make the clustering problem a classification problem. The
SGERD algorithm (Mansoori et al. (2008)) is used to obtain the rules. Finally, Hsieh
et al. (2016) present a work where trapezoidal membership functions in combination
with genetic algorithms are used to obtain the rules.
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We continue with the rectangle box-based methods. The base of this type of models
is the goal to create hyperrectangles in the feature space that represent the clusters.
The next two methods that we are introducing are soft in the sense that they as-
sume probability distributions. This implies that individuals have a "membership" or
belonging degree (do not confuse with fuzzy logic, here we work with densities and
probabilities) to the clusters.

In the work of Pelleg and Moore (2001), the main idea is that each of the clusters
follows a Gaussian distribution for each dimension with its mean value being an in-
terval [L,H] where L,H are the respective lower bound and upper bound that define
the hyperrectangle representing the cluster. Each of the boundaries are found by
fixing one of them and maximizing the likelihood of the given sample in order to find
the other. This is repeated iteratively until convergence.

The other work is Chen (2018) which introduces discriminative rectangle mixture,
where the main idea again is to define a distribution for the hyperrectangle based
on the lower and upper bounds that define it (L,H) and then obtain them based on
the sample of individuals, thus, obtaining the clusters. One of the most remarkable
features of this algorithm is that it works with two sets: in the first one cluster-
preserving features are used to obtain the distributions (the hyperrectangles), and in
the second one, the rule-generating features are used to create the rules based on
the hyperrectangle for the clustering (this method can also be seen as ruled-based).

Finally, we tackle the decision tree-based methods. These methods belong to model-
based clustering, as the base of all of them is to use decision trees models, which are
interpretable. From Section 3.1 we have that there are different approaches using
decision trees and we already have presented one; in the following we discuss the
rest. We start with those methods which directly construct a decision tree, as in the
supervised model, by splitting the nodes without transforming the problem into a
classification one. In the case of clustering, the splitting of the nodes is made using
(dis)similarity measures instead of the class label or mean squared error as in the
supervised case. The clusters are obtained at the leaf nodes.

We first start with those methods within the leaf node partition based on distance
category. In Fraiman et al. (2013) the cutting point is established through the use of
an heterogeneity measure defined by the authors. This measure is calculated before
splitting and then we make the difference with the sum of the left and right hetero-
geneity measure calculated for several splitting nodes and points. The highest value
of these differences determines the cutting point. This process is followed iteratively
until the measure of dissimilarity of the two new clusters obtained after each iteration
reaches a certain threshold.

In Frost et al. (2020) the idea remains the same but in this case they use a mea-
sure to produce the splits called surrogate cost, which uses the result of a previously
applied k-means. Hence the objective is to minimize the surrogate cost through the
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splits until a certain preselected number of clusters is reached. By doing this the
algorithm tries to emulate the results of the k-means but with an interpretable model
(the decision tree). We follow with the approach of Bertsimas et al. (2021). In this
case the idea is to translate the problem into a mixed-integer optimization problem,
where a quality measure of the clusters such as the silhouette metric is optimized
(maximized). Then, an algorithm using a coordinate-descent procedure is used to
obtain the optimal tree from the whole tree space.

With regard to the leaf node partition based on distance methodologies, we would like
to present the work of Ghattas et al. (2017) which reproduces the ideas of Fraiman
et al. (2013) but using an entropy-based measure to work with categorical data (leaf
node partition based on entropy). The last approach we introduce is characterized
by the introduction of fuzzy logic. This method belongs to the other methods for leaf
node partition category. The main idea is to take advantage of fuzzy logic and the
flexibility of fuzzy partition to construct an interpretable model as the decision tree
is. We highlight the work of Jiao et al. (2022) where the algorithm proposed does not
need prior knowledge about the number of clusters.

Finally, to close the section, we would like to mention that there also exist post-hoc
approaches which try to render interpretable those clustering methods that are not.
Moshkovitz et al. (2020) make efforts to implement a post-hoc interpretation of the
clusters provided by the k-means model. The authors use the results provided by
k-means to construct a classification tree. The classification labels are the clusters
obtained by the k-means algorithm. This methodology is known as surrogate model
(Section 1.2.2). On the other hand, we can find works such as Balabaeva and Ko-
valchuk (2020) and Dronov and Evdokimov (2018) which focus on obtaining model-
agnostic methods. The first one uses Bayesian inference to study the differences
between clusters through the comparison of posterior distributions of features. The
second one gives a post-hoc analysis based on the degree of influence of the features
towards the clustering partition obtained.
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Chapter 4

Bayesian network-based clustering

In this chapter we will introduce the clustering problem with BNs. We will describe
the underlying ideas of the model in the context of clustering and how to use it to
solve the problem. As mentioned in the previous chapter, this approach falls under
probabilistic clustering which is a soft method since we have probabilities of belong-
ing to the clusters for each individual ("degrees of belonging"). This is natural since
the BN is a probabilistic model which is designed to factorize the probability distri-
bution function of a certain set of features by using the conditional independencies.

Thus, solving the problem of clustering with BNs consists of finding a factorization
P (H,X) = P (H | Pa(H))

∏p
i=1 P (Xi | Pa(Xi)). Notice that this covers FMM models by

simply adding the assumption that the latent variable H cannot have any parent. The
factorization of the joint probability distribution (the structure G and CPDs) is usally
learnt from data (Section 2.1).

Given a particular structure G of a BN, the learning of the CPDs from data takes three
possible approaches: parametric, non-parametric, semiparametric/hybrid (Section
2.1). All of the methods presented in Section 2.1, independently of the approach,
contemplate complete data, i.e., they do not work with missing values. Since in the
problem of clustering we are introducing a latent variable, we do not have missing
values but a whole variable with no available data. Hence, alternatives must be
sought and this is where the Expectation Maximization (EM) algorithm (Dempster
et al. (1977)) comes in.

The main idea with missing data is to work with the marginal loglikelihood of the
observed dataset D to obtain the MLE of the parameters of the target distribution.
In other words, the MLE are determined from the marginal loglikelihood of the data
logL(D;θ):

logL(D;θ) = logP (D | θ) =
∑
h∈H

logP (D,h | θ) =
∑
h∈H

log
∏
x∈D

P (x, h | θ)

=
∑
h∈H

∑
x∈D

logP (x, h | θ)
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Since this is hardly ever feasible, the EM algorithm allows approximating the maxi-
mum likelihood estimators with incomplete or missing data. In order to achieve this,
the EM algorithm works with the expected loglikelihood with respect to the condi-
tional distribution of H given the observed data points, x ∈ D, under certain given
parameters θt.

The process involves two steps: expectation and maximization. These steps are it-
eratively repeated until convergence or maximum number of iterations are achieved.
In the expectation step the expected loglikelihood with respect to the conditional dis-
tribution of H is computed given x ∈ D under certain given parameters θt. In the
maximization step the next value of the parameters is obtained, θt+1, that maximizes
the expected likelihood computed.

We are given a set of the observed random features, X, and a latent variable, H, which
follow a joint parametric probability distribution, where θ ∈ Θ are the parameters of
the distribution. Then, given a dataset D of the observed data and a particular value
θt ∈ Θ, the expected loglikelihood with respect to the conditional distribution of H
given D under θt is:

Q(θ : θt) = EH|X,θt
[logL(θ;D,H)] =

∑
x∈D

∑
h∈H

P (h | x,θt)logP (x, h | θ)

With this in mind the EM algorithm is found in Algorithm 2.

Algorithm 2: EM algorithm
input : (θ0, D)
for t = 0, 1, ... to convergence do

E-step: compute Q(θ : θt) = EH|X,θt
[logL(θ;D,H)] ;

M-step: Find the parameter value θt+1 = argmaxθQ(θ : θt) ;
if Q(θt : θt) ≥ Q(θt+1 : θt) then

Result: θt

end
end

The key is that it is demonstrated that improvements on Q(θ : θt) lead to improve-
ments on the marginal loglikelihood (logL(θ;D)). Also Wu (1983) demonstrates the
convergence of the algorithm to a stationary point (does not imply the maximum) un-
der some regularity conditions. The main drawback of this algorithm is the sensitivity
to the parameter initialization θ0.

It is worth to mention that there exist different variants of the algorithm from which
we highlight the next: Generalized EM (Dempster et al. (1977)) and Monte Carlo-EM
(Levine and Casella (2001)). The first one addresses the problem of an intractable
maximization step as depending on the parametric distribution established this step
can be problematic. The second one addresses the problem of intractable or infeasi-
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ble expectation step and will be used later in Chapter 5 in the methodology proposed.

In the context of BNs, Lauritzen (1995) introduced the EM algorithm for discrete BNs.
For networks working with also continuous variables, thus hybrid, we are not aware
of any explicit development of the EM algorithm. In this case, problems with the ex-
pectation or maximization step can arise such as obtaining the latent variable poste-
rior distribution P (H | x,θt). However, in these cases the usage of the generalized-EM
or Monte Carlo-EM can help overcome those issues.

For learning the structure (DAG) G from the given data there are three main ap-
proaches: detecting conditional independencies, score+search methods and the hy-
brid methods (Section 2.1). Hybrid methods comprise the usage of both methods
based on testing conditional independencies and score+search methods. The ap-
proach of detecting conditional independencies is quite natural since we are working
with a model that tries to factorize the joint probability distribution function based
on these conditional independencies of the features. The main idea is to study the
conditional independencies of the features by means of statistical tests and then find
the structure that represents most/all the relationships found. There are three main
issues to deal with in this method: reliability and complexity of the tests, order of the
variables and equivalent Markov DAGs.

With the increase of the conditional set of variables with respect to which we are
testing, the reliability of the results decreases and the complexity increases. The or-
der of the variables makes reference to the problem of establishing which conditional
(in)dependencies to test. The main approach is to assume an order σ of the variables
where each feature Xi can only depend on the features X1, ..., Xi−1. Notice that finding
the optimal order is a difficult problem. A notion of guidance in this problem is that
a good order should respect causality, i.e., causes come before effects in the order.
Finally, two DAGs are Markov equivalent if they represent the same conditional in-
dependencies. This can be identified by v-structures (see Section 2.2) of DAGs with
the same edges (not arcs). Hence, we cannot find a unique solution if we work with
the space of the DAGs. To solve this problem the key is to work with the partially
directed acyclic graphs (PDAGs) space, where unique solutions can be found. This is
what is done in the PC algorithm (Spirtes et al. (2000)).

The score+search approach takes a different perspective and tries to find the struc-
ture that best fits the data. Thus, the idea is to find the best structure by optimizing
a fit measure that also involves the data at hand f(structure, data). This measure
should be meaningful with respect to the task at hand (learning the factorization of
a probability distribution). In order to do this, a score (fit measure), a space of struc-
tures and a search method for that space are needed. There are two main types of
score measures which are penalized loglikelihood such as BIC and Bayesian scores.
With respect to the search space we have three spaces: the DAGs space, the equiva-
lent classes of DAGs space and the ordering of features space.

The penalized loglikelihood scores are used in combination with the DAGs space
since for their computation we need the structure G. They add, as its name says,
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a penalty term to the loglikelihood of the data in order to avoid overfitting, since
the loglikelihood monotonically increases with the complexity of the model. Given a
dataset D it is defined as follows:

logL(D;θ)− dim(G)pen(N)

where dim(G) makes reference to the dimension of the structure G measured through
the number of parameters to estimate when working under parametric assumptions.
The pen(N) term is a non-negative penalization function, where N is the number of
instances, such as for example 1

2 log(N) which renders the BIC score. It is worth men-
tioning that dim(G) is unmeasurable within a non-parametric framework, hence, an
idea to overcome overfitting is using cross-validation (Atienza et al. (2022b)).

On the other hand, Bayesian metrics introduce a Bayesian framework with the use of
prior distributions. Particularly, the idea is to maximize the posterior distribution of
the structure given the data P (G | D) over the structure space. Since this is infeasible,
by means of Bayes theorem, we have that:

P (G | D) =
P (D | G)P (G)

P (D)
)⇒ P (G | D) ∝ P (D | G)P (G)

where P (D | G) is the likelihood of the data given a structure G and P (G) the prior
distribution of the structures. Under a uniform prior distribution of the structures
P (G), we have that the structure which maximizes P (G | D) is the same as the one
that maximizes P (D | G). Working in the DAGs space, this assumption is taken
along with the assumption that the parameters follow a particular distribution in the
parameter space Θ in order to define the most known Bayesian score K2 (Cooper and
Herskovits (1992)). Here the mathematical expression of P (D | G) is:

P (D | G) =

∫
P (D | G,θ)P (θ | G)dθ

where P (θ | G) is a prior distribution of the parameters given the structure and
P (D | G,θ) is the likelihood of the data given a fixed structure and parameters. Fi-
nally, we would like to mention that in Chickering (2002) there is a score+search
method defined to work in the equivalence class space and the work of Larrañaga
et al. (1996), where the ordering variable space is used in combination with genetic
algorithms.

As in the parameter learning, these methods do not work with missing data, thus
they are not adequate for problems with latent variables. Efforts have been made
to overcome this problem. The most remarkable work is Friedman (1998) with the
introduction of the Bayesian structural expectation maximization (Bayesian-SEM) al-
gorithm. In this work the author translates the EM algorithm to a score+search
learning structure context under parametric assumptions. The score used is the
Bayesian/K2 metric.

In the expectation step we are going to deal with the expected score and in the max-
imization step instead of maximizing the expected score with respect to the parame-
ters, it is done with respect to the structures. Next we introduce some notation and
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assumptions.

We assume that we have a given a dataset D of observed data from random features
X, and a random latent variable H from which we do not have data at all, with a para-
metric joint distribution P (X, H). We also assume the hypotheses given when defining
the K2 metric (Cooper and Herskovits (1992)) and conserve the notation given. We
would like to mention that the algorithm is developed for discrete BNs, though it can
be adapted to continuous features. Under this defined framework, the Bayesian-SEM
is shown in Algorithm 3.

Algorithm 3: Bayesian-SEM algorithm
input : (G0, D)
for t = 0, 1, ... to convergence do

Compute the posterior P (θ | Gt, D) ;
E-step: for each G do

Q(G : Gt) = EH|X[logP (H,D | G) | Gt, D]

=
∑

x∈D
∑

h∈H P (h | Gt,x)logP (h,x | G)

end
M-step: Choose Gt+1 that maximizes Q(G : Gt);
if Q(Gt : Gt) ≥ Q(Gt+1 : Gt) then

Result: Gt

end
end

P (h | x, G) is the posterior probability of the latent variable given the data point x ∈ D
and a structure G. Since we are working with priors, we have P (h | x, G) =

∫
P (h |

x,θ)P (θ | G,D)dθ. We also have that P (h,x | G) =
∫
P (h,x | θ)P (θ | G)dθ.

Notice that contrary to EM, where the maximization step is obtained as a closed func-
tion, here this is infeasible. But this is not a problem since we have a finite structure
space and with an exhaustive evaluation of the expected Bayesian score we can se-
lect the maximum. However, in practice this is computationally intractable and this
is where the search procedure comes in.

Similar to the usual EM, Friedman (1998) proved that improvements in the expected
score leads to improvements in the marginal score, which implies that we really do not
need to choose the maximum but to choose Gt+1 that fulfills Q(Gt+1 : Gt) > Q(Gt : Gt).
This is quite useful to justify the introduction of a search method to ease the com-
putational burden. It is also demonstrated that under regularity conditions, this
algorithm converges to a stationary point.

But all of this is presented in a general setting with P (X, H). For what the author
calls factored models (BNs), the algorithm has to be adapted since usually the eval-
uation of P (h | x, G) can not be done efficiently. The idea is to assume that the
posterior probability of the parameters P (θ | G,D) is sharply peaked, as a conse-
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quence P (h | x, G) ∼ P (h | x, G, θ̂) ( θ̂ can be obtained by performing inference), where
θ̂ is the MAP of the posterior probability of the parameters. This value θ̂ is obtained
by means of the EM algorithm, gradient ascent or variations of these methods. The
algorithm for BNs is shown in Algorithm 4.

Algorithm 4: Factored-Bayesian-SEM algorithm
input : (G0, D)
for t = 0, 1, ... to convergence do

Compute the MAP parameters θ̂ for Gt given D ;
E-step: for each model G found in the search procedure compute: do

Score(G : Gt) = EH|X[logP (H,D | G) | Gt, D]

=
∑

x∈D
∑

h∈H P (h | Gt,x, θ̂)logP (h,x | G)

end
M-step: Choose Gt+1 from the search procedure that maximizes Score(G : Gt);
if Score(Gt : Gt) ≥ Score(Gt+1 : Gt) then

Result: Gt

end
end

Here we need to compute P (h,x | G) =
∫
P (h,x | θ)P (θ | G)dθ, which arises the same

problem as in the computation of P (h | x, G). Different options are presented in
Friedman (1998), where the easiest one is to perform again MAP estimation of the
parameters for the structures G of the search procedure.

We have established Bayesian-SEM as the most remarkable since it sets a precedent
and basis for most of the works done in BN-based clustering. One of the keys for this
is that it presents the advantage of not restricting the structure (at least for discrete
data). Moreover, different works have been presented for particular network struc-
tures (see Figure 4.1), some of them similar to the work of Friedman. In Table 4.1
we present a modified table from Keivani and Peña (2016) that summarizes most of
them. In Table 4.2 we can find the respective notation.

Different choices for Bayesian network-based clustering
Algorithm Parameter

search
Score Structure Structure

search
Peña et al. (1999) BC + EM LML ENB FSS/BSS
Peña et al. (2002) BC + EM LML RBMN FSS/BSS
Peña et al. (2004) EM Marginal BIC - EDAs
Pham and Ruz (2009) EM MI CL multinet MWST
Pham and Ruz (2009) EM CMI SNB MWST
Pham and Ruz (2009) EM CMI TAN MWST
Santafé et al. (2006a) EMA LL NB -
Santafé et al. (2006b) EMA-TAN LL NB -

Table 4.1: BN-based clustering references
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BC + EM Bound and collapse EM
EMA Expectation model averaging
EMA-TAN Expectation model averaging tree

augmented naive Bayes
LML log marginal likelihood
LL Loglikelihood
MI Mutual information
CMI Conditional mutual information
ENB Extended naive Bayes
RBMN Recursive Bayesian multinets
CL multinet Chow-Liu multinet
SNB Selective naive Bayes
TAN Tree augmented naive Bayes
NB Naive Bayes
FSS/BSS Forward structure search/Backward

structure search
EDAs Estimation of distribution algorithms
MWST Maximum weighted spanning tree

Table 4.2: Acronyms

Notice that Santafé et al. (2006a) and Santafé et al. (2006b) do not have structure
search procedure. This is because they do not follow the scheme of SEM. In the
first method it is assumed that the structure space is restricted to the selective naive
bayes structures (SNB). SNB are naive Bayes structures where there is the possibility
of some features being independent of the cluster and rest of variables. Under this
assumption they present a variant of the EM algorithm for the learning of the param-
eters of the network, which refers to expectation model average (EMA) algorithm.

The core idea is to learn the parameters of a naive Bayes (NB) model but taking into
account information about all possible SNB since a NB model is too strict. In or-
der to do this, in the E-step all sufficient statistics are computed for all possible SNB.
After this, we have the model average step (MA-step) instead of the maximization step.

First with the statistics obtained, for each SNB, MAP parameters θ̂ are computed
from P (θ | G,D) following Thiesson (2013). With these MAP parameters we can ap-
proximate P (H,X | G,D):

P (H,X | G,D) =

∫
P (H,X | θ, G)P (θ | G,D)dθ ∼ P (H,X | θ̂, G)

Then, under the constraint assumption of the SNB space, given a dataset D we have
that:

P (H,X | D) =
∑

G∈SNB

P (G | D)

∫
P (H,X | θ, G)P (θ | G,D)dθ

∼ P (G | D)P (H,X | θ̂, G) ∝ P (D | G)P (G)P (H,X | θ̂, G)

On the other hand we have that for a NB model:

P (H,X | D) = P (H)

p∏
i=1

P (Xi | H)
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Santafé et al. (2006a) adapt the work of Cooper and Herskovits (1992) to the miss-
ing value framework in order to have a closed form for P (D | G). Moreover, under
the assumption of structure modularity (Santafé et al. (2006a)) for obtaining a closed
form for P (G), both equations for P (H,X | D) can be equalized. Since all of the
terms are in a closed form we can obtain a closed form, which takes into account all
SNB structures, for the next iteration parameters of the NB model. Notice that we
obtain a proportional closed form for the parameters, for the explicit equations see
Santafé et al. (2006a). In the second work we find the EMA − TAN (TAN stands for
tree augmented naive Bayes which is a type of BN with a particular structure). This
works proposes a variant that works with all possible TAN structures instead of SNBs.

BC + EM (Peña et al. (2000)) is a variant of the EM algorithm for BNs with the same
goal of learning the parameters that maximize the marginal likelihood. The scores
MI and CMI come from the main idea of the work by Pham and Ruz (2009), which
is to assume that P (H,X) is modeled by a mixture of k Bayesian networks with a
particular structure. They contemplate: Chow-Liu multinets, selective naive Bayes,
tree augmented naive Bayes. The parameters and structures are learned maximizing
the CML criterion (Celeux and Govaert (1995)) developed for BNs classifiers. In or-
der to do this with latent variables they use the CEM algorithm (Celeux and Govaert
(1992)), a variant of the EM algorithm. It is the usage of the CML criterion that leads
to the usage of CMI and MI scores and makes the maximum weighted spanning tree
(MWST) (Chow and Liu (1968)) the perfect structure search procedure.

We would like to highlight the particular approach that uses CL multinets and two
important aspects about it. The first one is that a mixture of CL multinets is not a
BN; thus, the ideas proposed are adapted to this case. The second one is that with
this approach we do not have the same structure for each cluster but a particular
tree-structure for each one of them. This is quite useful since it allows learning under
the assumptions that the conditional independence relationships of the features are
context-specific for each cluster.

For the column of structure, ENB denotes extended naive Bayes introduced by Peña
et al. (1999). This structure technically speaking is not a BN since it allows supern-
odes but still makes sense in this context. Supernodes are those nodes where we can
have more than one feature. Furthermore, FSS/BSS stands for forward/backward
structure search, since the idea to find the best structure is to start from the naive
Bayes model (forward) or from the supernode with all features (backward) and com-
bine or separate the nodes in the search structure step of Bayesian-SEM.

RBMN is the acronym for recursive Bayesian multinets, which are an extension of
the Bayesian multinets (BMN), which are a generalization of BNs. The idea of BMN is
to learn specific context (in)dependencies by instantiating a variable of interest and
learning a BNs for the rest of the features. RBMN simply extends this idea to a tree
shaped structure where internal nodes are the target instantiated variables and the
leaf nodes are the BNs, allowing more than one variable to be instantiated. The idea
proposed in Peña et al. (2002) is to use RBMNs and learn them through an iterative
procedure based on the Bayesian-SEM where the final BMNs of the leaves are ENB.
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In order for this to work we need the constriction that the cluster variable cannot be
a target variable (contrary to the presented use of CL multinets). Finally, it is worth
mentioning the work by Peña et al. (2004), where the authors introduce a variant
of the Bayesian-SEM, which uses estimation distribution algorithms (EDAs) for the
search strategy.

Please note, as pointed out in Keivani and Peña (2016) that all of these papers are
developed for discrete BNs. Due to this fact it is possible to combine different meth-
ods of the parameter learning (EM,BC + EM,EMA,EMA − TAN) and the structure
search (HC,FSS,BSS,MWST ) (not all of them can be paired). The only constraint
is to establish a score function with a closed and decomposable form, since we are
working with BNs. For the case of continuous features this condition does not suffice
as we also need to guarantee that the parameter search algorithm can be applied for
the specific context.

Then, we have seen that the clustering problem can be solved using BNs. Therefore,
we can take advantage of the interpretability of BNs for better understanding the
clusters and problem at hand. Furthermore, all tools presented in Section 2.2 can be
applied in this context. In the next chapter we show the potential usefulness of BNs
within the clustering problem by giving a novel cluster characterization methodology
for solving the clustering naming problem.
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Figure 4.1: Different Bayesian network structures for clustering.



Chapter 5

Clustering naming with Bayesian
networks

5.1 Clustering naming with Bayesian networks

As pointed out in Chapter 1, the unsupervised learning approach does not get away
when it comes to explanations, since there are problems where those are needed.
Particularly, the clustering problem as explained in Chapter 3 does not only lend it-
self for explanation needs but also, more specifically, interpretability is desired. Thus,
we think that BNs can play a key role in this context for two reasons. First, it is an
interpretable model in terms of knowledge embedded into the model. Second, since
the clustering problem is more of an iterative and complex process with no ground
basis for a granted solution, we think that the variety of tools of BNs for giving expla-
nations for the model, the reasoning and the evidence (Chapter 2) can be very useful
to ease this process.

As stated in Section 3.2, the clustering naming problem consists of giving meaningful
and representative names to each cluster obtained. In this Chapter we introduce
a method to characterize the clusters for solving the naming problem in order to
show the mentioned potential of BNs within the clustering problem. The underlying
question we are seeking to answer is: why is this cluster different from the others?
By giving a characterization of each one of the clusters we harness close-packed and
relevant information that can be useful to establish what makes each cluster different
from the others. Thus, with the characterization of the clusters we can elucidate the
representative names.

Before diving deeper into the method, we would like to mention that no quality assess-
ment for explanations in terms of measures or properties are given for the method
proposed for two reasons:

• As shown in Chapter 1 there is no ground theory for defining and evaluating ex-
planations, which has led to a widespread literature nested in different specific
contexts.

• Within the unsupervised learning framework, there is even less literature on how

67



5.1. Clustering naming with Bayesian networks

to define and assess the quality of explanations given by the models. One of the
main reasons for this is that, contrary to supervised learning where everything
revolves around the relationship of the features with respect to the target, in
unsupervised learning there is no such target.

Hence, as concluded in Chapter 1, we are going to focus on how the explanation is
obtained, which in this case is a characterization of the cluster, and which factors
of interpretability are being taken into account. Ideally, we would use human eval-
uation but it is out of the reach of this work. We would also like to mention that
no quality assessment of the cluster results, which is a part of the iterative process
of clustering, has been made in the examples since the goal is just to show how the
method works.

A usual approach for clustering characterization due to its simplicity is to find a rep-
resentative individual of each cluster. The usage of a representative individual has
two main advantages. First, we obtain in a compact way the representative values
that the features take within the cluster. Second, with these representatives we can
make comparisons between clusters. Therefore, this information can be useful in
order to answer why is this cluster different from the others?, thus, it is helpful for
giving names to each cluster.

For example a representative for continuous features can be found by averaging or
calculating the median individual assigned for each cluster. Notice that in case of us-
ing k-means or k-medoids this is directly obtained with the results of the algorithm.
Following this approach, our methodology finds a representative of each cluster but,
in our case, the representative is found by MAP-estimation of P (X | hi); hi ∈ H, for
each i = 1, ...,K, where X are the features and H is the cluster variable.

We have a direct interpretation of representatives for this definition. A representative
of a cluster is the most probable value of X given the cluster. Furthermore, each
representative is the most probable value within each of the k different probability
distributions from which data is assumed to be generated. One of the advantages
of using this representative is that in the presence of multimodal probability distri-
butions we are getting a better representative in terms of density value compared to
the mean representative. This is due to the fact that in a multimodal distribution the
mean can take values of low density value. On the contrary, the MAP representative
is always one of the modes which implies a high density value.

Furthermore, in this case this idea could be extended to s-representatives for each
cluster to capture the different modes, though interpretability and comparisons could
be compromised. Another great advantage is that we do not have to distinguish be-
tween discrete or continuous data as long as MAP can be computed.

The methodology does not end here since we understand that to fully characterize
the clusters via representatives in order to make comparisons, feature importance is
needed as we could be making comparisons over features that are irrelevant for the
cluster formation. Therefore, the idea is to establish feature importance for each of
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the representatives. One of the main highlights here is that we take advantage of the
interpretability of BNs in order to define feature importance. Given an instance x and
a distance d(·, ·), defined in the probability distribution space, we define the feature
importance for each variable Xj as follows:

fXj (x) = EXj |X−j=x−j
[d(P (H | x), P (H | X1 = x1, ..., Xj , ..., Xp = xp))]

The underlying idea of this new importance feature measure is to capture the effect of
not having the information (value) of the target variable. This is achieved through the
expected distance between the posterior probability of H, given x, and the posterior
probability of H, given x = (x1, .., x

′
j , ..., xp), where x′j takes all possible values of feature

Xj. Here different aspects must be analyzed in order to understand this measure:

• We are capturing the effect of the absence of the target variable by measuring
how much the effect on the posterior probability of H of all the possible values
that the target variable can take, differs with respect to the effect of the instance
of interest (in our case the MAP-representative).

• We are using a distance d(·, ·) in the probability distribution space because we
are measuring the difference of effects on the posterior probability of H. And
we are measuring the effect of the instances on the posterior probability of H
because this is the probability distribution that captures uncertainty of the be-
longing of an instance to the clusters. Consequently, by measuring distances of
posteriors of H we seize the differences on the uncertainty the model has on the
belonging of the instances to the clusters.

• Finally, the expected distance with respect to P (Xj | X1 = x1, ..., Xj−1 = xj−1, Xj+1 =
xj+1, ..., Xp = xp) is taken due to the fact that given the partial instance (X1 =
x1, ..., Xj−1 = xj−1, Xj+1 = xj+1, ..., Xp = xp) the values of Xj do not have the same
probability. Thus, if each combination is weighted by this probability we are
taking into account the plausibility of the instances to measure the difference
in effects, which reflects reality better.

This shows the potential of the BNs since we have implemented an interpretable
feature importance measure that allows better performance in the comparison of
representatives by means of the interpretability of the model. Though, one could
argue that comparison of the distances can be problematic as we do not know what
is a big or small distance between distributions. This problem can be easily overcome
using a bound distance such as the Hellinger distance:

Definition 5.1.1 Given two discrete probability distributions P = (p1, ..., pK) and Q =
(q1, ..., qK); the Hellinger distance is defined as:

d(P,Q) =
1√
2

√√√√ K∑
i=1

(
√
pi −

√
qi) =

√
2∥
√
P −

√
Q∥2

where ∥·∥2 is the Euclidean distance. We have that the Hellinger distance is bounded
which can be proved by the Cauchy-Schwarz inequality:

0 ≤ d(P,Q) ≤ 1
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Figure 5.1: Example with synthetic data for illustration. Code and synthetic data for
the example can be found at github2.

Finally, it is worth noticing that the importance feature measure can be applied to
any other instance in any other context when needed. It can also be used with semi-
supervised clustering and supervised classification with BNs. We present an example
of the contribution of including the importance of the feature, see Figure 5.1. In this
example synthetic data are created from two different 2-dimensional normal distri-
butions (black and red points) which generate two distintic clusters as one can see in
the left part of the figure.

In the example if an algorithm such as k-means was used, depending on the meaning
of feature Y one could be misled when comparing the representatives and under-
stand that the difference between them with respect to Y is relevant. Although, as
we can see the value of Y for each representative does not allow to distinguish the
clusters, hence does not characterize the clusters. Notice that in this case we can
represent the features and clusters, but for higher dimensions (> 3) we would not be
able to notice that feature Y is not important. On the other hand, we can see that
our methodology captures the irrelevance of Y in both clusters.

We would also like to mention that other models such as k-means cannot implement
this type of feature importance. Methods working with fuzzy logic could emulate
this method, though it is not entirely clear how to measure in a meaningful way the
differences between the membership degrees. Hence, only probabilistic clustering
methods could adapt this methodology but only when posterior probabilities of the
features can be computed.

Once introduced and discussed how explanations are obtained and shown the un-
derlying natural ideas that can make them meaningful and useful, we are going to
discuss the factors of interpretability taken into account. First of all the method does
not take into account computational complexity. Thus, we are not considering time
constraints and there can be different contexts where this method is not adequate
for this reason. In terms of nature of user expertise, this method implies probability
knowledge in order to process the results that it gives back. However, the form of the
cognitive chunks are pairs of features values (MAPs) and importance, which makes

2https://github.com/Victor-Alejandre/Bayesian-Network-based-clustering.git
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it really easy to understand even without probability theory knowledge. Nonetheless,
in order to fully understand the result, it is needed.

In addition, it is a global explanation since we are characterizing the clusters pro-
duced by the model but it is important to notice that the feature importance measure
is a local explanation generator. Also, the area of incompleteness we are attacking,
as we have explained at the beginning, is the characterization of the clusters (which,
is not known as we are dealing with unsupervised learning) in order to compare and
understand them (Why is a cluster different from the others?). This can be used to
achieve a solution for the clustering naming problem. Finally, it is important to men-
tion that uncertainty has been dealt with since we are working with a probabilistic
model and effects are also measured in the probability distribution space.

5.1.1 Implementation

We have implemented our methodology for categorical data in Python. The whole code
can be found in github3. In this section we show an example applied to a customer
dataset (Sharma (2021)), but before that, several issues about the implementation
must be discussed.

First, the most important aspect to mention is that the code is implemented using
PyBNesian (Atienza et al. (2022a)). This comes with some advantages and disadvan-
tages, but in general it was the best option among the different libraries that exist to
work with BNs, since each one of them is focused on particular aspects of this model.
The main advantage that this library presents is that every type of BNs with regard to
the CPD is implemented, with the exception of augmented networks (discrete nodes
with continuous parents). This is a great advantage since it allows hybrid networks
(needed if we are clustering continuous features) and also implements KDE approach
for learning CPDs, which allows for the extension of this methodology to any type of
distribution for future research.

On the other hand, as it happens with the rest of the libraries, PyBNesian is designed
to only learn and represent the model for complete data. This has led to a lack of
functionality towards implementing inference and unsupervised learning with it. For
example there is no capability for being able to introduce desired CPDs parameters,
which is needed. This has had a huge impact on the implementation developed here
as we next show. Nonetheless, it still remains the best framework to develop the ideas
of this work.

We first start with structure learning, since this functionality was not implemented
with latent variables. We have restricted the implementation to TAN structures due
to the fact that P (H | X) can be easily computed and this is important for the Monte
Carlo EM (MCEM), which is the variant of the EM implemented. We have used MCEM
since we are not able to manually introduce CPDs in the model, which implies that
CPDs must be learnt directly from data and MCEM is the only variant that allows

3https://github.com/Victor-Alejandre/Bayesian-Network-based-clustering.git

71



5.1. Clustering naming with Bayesian networks

this, under the assumption that we can sample from P (H | X). With respect to the
score the expected log likelihood has been used with the penalization introduced by
BIC.

Next, for the search procedure, a first best random search has been implemented with
the operators: arc introduction, arc removal and arc direction change. The search is
sequential. First, we check for arc introduction, then arc removal and at the end arc
direction change. If the score improves at any stage we keep the BN with the change
and go to the next stage. It is worth mentioning that in this case the number of
clusters is considered to be known; nonetheless, another stage of clustering number
changing could be introduced for automatic detection. Moreover, since prior informa-
tion of parameters (Bayesian estimation) cannot be introduced and the library does
not contemplate it, at each iteration completion of the total dataset is done to avoid
zero probabilities. This must be taken into account since we are introducing bias.

Finally, for MAP computation we have implemented probabilistic logic sampling (Hen-
rion (1988)). Moreover, for importance feature measuring, the inference is made
by means of likelihood weighting (Fung and Chang (1990)). This is due to the fact
that CPDs cannot be manually introduced, hence AIS-BN and EPIS-BN (Cheng and
Druzdzel (2000) and Yuan and Druzdzel (2012)) cannot be implemented. Another op-
tion would be introducing exact inference but it has higher computational cost. Next,
we show the results for the dataset mentioned before.

5.1.2 Customers dataset

The customers dataset (Sharma (2021)) is a hybrid dataset that contains informa-
tion about 2000 individuals of a particular, anonymized fast-moving consumer goods
(FMCG) store. Particularly we find the following features:

• Sex, a two-level factor with levels 0 (male) and 1 (female).

• Marital status, a two-level factor with levels 0 (single) and 1 (non-single: di-
vorced/ married/ widowed).

• Age, a continuous feature with minimum value 18 years old and maximum value
76. Since we are dealing with categorical data this feature has been discretized
into three factors with levels junior, adult and senior citizen.

• Education, a four-level factor with levels 0 (other/unknown), 1 (high school), 2
(university) and 3 (graduate school).

• Income, a continuous feature with minimum value 35832 and maximum value
309364. Since we are dealing with categorical data this feature has been dis-
cretized into a three-factor variable with levels low-income, medium-income and
high-income according to the benchmark established by the Pew Research Cen-
ter in 2020.

• Occupation, a three-level factor with levels 0 (unemployed/unskilled), 1 (skilled
employee/official) and 2 (management/self-employed/high qualified employee/of-
ficer).
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• Settlement size (size of the city customer lives in), a three-level factor with levels
0 (small), 1 (mid-sized) and 2 (big).

We have learnt the structure for a predefined value of K = 2 and applied the method-
ology proposed. The results obtained are presented in Table 5.1. We also find Figure
5.2 where the results are combined with a visual display (radar chart) in order to ease
the comparisons and comprehension.

Representatives
Cluster c1 Cluster c2

Feature Value Importance Feature Value Importance
Marital status 1 0.092 Sex 0 0.2422

Sex 1 0.0404 Marital status 0 0.1148

Age Adult 0.0398 Education 1 0.0386

Education 1 0.0146 Occupation 0 0.0135

Settlement
size

0 0.0121
Settlement
size

0 0.0122

Occupation 1 0.0064 Income
Middle
income

0.0098

Income
Middle
income

0.0059 Age Adult 0.0077

Table 5.1: Example for the methodology proposed for cluster characterization for
customers dataset.

Firstly, we notice that for cluster c1 all features have low importance values. This
implies that if any of the features were to take another value then the posterior prob-
ability of H would be quite similar to P (H|MAP (X | h1)). Therefore, our criteria for
elucidating a name for the cluster has been focusing on features with the highest
relative importance values which are Marital status, Sex and Age. Marital status and
Sex take the value 1 whereas in cluster c2 these features take 0. Thus, there exists
a difference between clusters. In the case of Age, we have that the representative of
both clusters take the value Adult. But, in the case of cluster c2 this feature has a
really low importance which implies that the value Adult characterizes the cluster c1.
From this analysis we have baptized the cluster c1 as Adult non-single females.

Following the criteria used for cluster c1 in cluster c2 we focus on features Sex and
Marital status. As stated before, these features take value 0 different from the values
that they take for cluster c1, thus, they do characterize the cluster. In this case we
have baptized the cluster c2 as Single males.

To sum up, we have that the clients of the FMCG store are divided into two groups
which are Adult non-single females and Single males. Before ending this example we
would like to mention two details. Firstly, notice that the feature Occupation takes
different values for each cluster. If we had not the importance measure one could be
tempted to use this feature to discern and characterize the clusters for the naming.
As we can see in both cases this feature has a really low importance which means
that if this feature takes another value the posterior probability of H is quite similar
to the one obtained with the representative. This has led us to ignore the feature for
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Figure 5.2: Radar chart example for the customers dataset.

solving the naming problem.

Moreover, in Figure 5.3 we have projected the features Sex, Marital status and Oc-
cupation for each possible individual of the customer dataset with the fixed values
Adult, 0,Middle income, 1 for features Age, Settlement size, Income and Education.
Each point has been colored according to the cluster they belong, which has been
selected through map estimation. As we can see, once fixed the values of Marital sta-
tus and Sex for each one of the cluster representatives (single, male and non− single,
female), then the feature Occupation does not affect on the belonging of the individual
to the clusters. Notice that this is captured in a soft way by the importance feature
measure proposed in this work. Furthermore, we can see that feature Occupation
does not affect at all to which cluster belongs an individual given the fixed values
Adult, 0,Middle income, 1.

Secondly, this methodology can be combined with other explanation methods or in-
formation in order to dive deeper into the matter. For example we can modify the
radar chart from Figure 5.2 to include more information, such as the plausibility of
the values taken by the representatives. This is what we find in Figure 5.4 where
P (MAP (X | hj)i | hj) for each j = 1, 2 and i = 1, ..., p is shown with the respective
representatives and importances in the legend.
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Figure 5.3: Individuals cluster belonging through map estimation for the projection
of Sex, Marital status and Occupation given the fixed values Adult, 0,Middle income, 1
for features Age, Settlement size, Income and Education.

Another example is the combination of the information given by the representatives
and the feature importance measure, with a global model explanation method like
the representation of the network. This can be useful as we are at the same time
watching what characterizes the clusters and the global information of the BN about
the dependencies of the variables. Following we show an example for this case in
Figure 5.5.

Finally, notice that quality measure of the clusters is not performed since, as men-
tioned before, this relates to the clustering process and here we are trying to show the
methodology proposed. Nonetheless, it is worth mentioning that this can compromise
the analysis and comparisons, since the model could not be obtaining good clusters
with respect to the notion of quality selected.
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Figure 5.5: Example of combination of BN representation for each cluster and feature
importance measure for the customers dataset. Node’s color intensity indicates the
importance of the feature for each representative of each cluster.
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Chapter 6

Conclusions and future research

We present the conclusions reached along this work and the future research lines
that it opens.

6.1 Conclusions

In Chapter 1 we have seen that explanations in AI is an area still under development,
which has no ground and general theory to define and measure quality of explana-
tions. The main cause here is the difficulty to measure objectively something that
is subjective and context dependent. Nonetheless, we review several works which
present useful ideas and leave a hope for objectiveness. We stand out the work of
Doshi-Velez and Kim (2017), which sets insights into the human dependent evalua-
tion of explanations and provides an "objective" approach.

From this Chapter we have also concluded that the most important aspect when de-
veloping methodologies for obtaining explanations is to state how they are obtained
and which interpretability factors related to how the explanation is obtained are taken
into account. However, in some contexts quality measures and properties for the ex-
planation can be defined and studied, but there is no guarantee that this reflects
reality.

In Chapter 2 BNs are reviewed. Also the usefulness of this model with regard to
the framework of ML and explanations has been shown. From this Chapter we can
conclude that BNs are a versatile, interpretable model that allows for several tools
for generating explanations due to the probabilistic knowledge embedded into it. It
has also the advantage of dealing with uncertainty, which most of the ML models do
not have. However, this is a double-edged sword since receivers of explanations must
have probability knowledge. This usefulness has been exemplified as we have shown
the advantages a BN can introduce when used in some of the most relevant post-hoc
methodologies for obtaining explanations in Section 2.3.

In Chapter 3 we have shown that the clustering problem which belongs to the un-
supervised learning framework is a complex iterative process due to the lack of prior
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information about the problem, which implies no general quality measure of the re-
sults. As a consequence, this rises the need of explanations and since we do not
have prior information about the results to compare with, interpretability is sought
in order to understand what the model does and comprehend the results. One of the
goals of understanding results is clustering naming, which is the problem dealt with
later in Chapter 5.

In Chapter 4 the main conclusion is that BNs can deal with incomplete data in terms
of structure and parameter learning, which implies that the clustering problem can
be modeled with them. As a consequence, BNs can be potentially useful in clustering
since they are an interpretable model with several tools (Chapter 2) for generating
explanations and obtaining results interpretation.

In Chapter 5 a methodology based on the usage of BN for clustering characterization
in order to solve the clustering naming problem is proposed. This methodology en-
tails an interpretable and natural way to characterize clusters in order to compare
and understand them, showing the potential of BNs within the clustering problem.
The most remarkable characteristic of the methodology is the defined feature impor-
tance measure for a given instance. As it is out of reach for this work, the evaluation
of the quality of clusters and explanations have not been dealt with. Hence, asser-
tions on the usefulness of BN cannot be presented. Nevertheless, the ideas expressed
show potential for solving the clustering naming problem.

6.2 Future research

The first future research line is the study of the quality of the explanations given
by the methodology proposed in Chapter 5. Quality should be evaluated in order to
determine if that is a correct way to characterize clusters and is useful for cluster
naming. Ideally, this would be determined with human expert evaluation in particu-
lar contexts and clustering problems. This can also be approached with the current
literature by studying if the properties to determine quality of explanations are suit-
able/make sense to measure the quality of the methodology. Also quality explanation
measures could be used if they are adequate for the context. Moreover, the feature
importance measure for the MAP representative should be evaluated separately since
it is likely to be also appropriate for other problems. This is due to the fact that this
measure is a methodology that finds local explanations that can be used with any
given instance of interest (not only MAP representatives) in any type of problem.

Another interesting line of future research is trying to expand the application of BNs
explanations tools to the clustering problem in order to show the usefulness of the
model in this context. As shown in Chapter 2, there is a large toolbox of methods
that can be used to generate explanations starting from posterior probability plots, to
visualize uncertainty on the target variable, to more sophisticated methods such as
MAP-independence or influence-driven.

A particular line would be studying the usage of MAP-independence and influence-
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driven in multipartition clustering where more than one latent (clusters) variable
exists. For example MAP-independence can be used to determine which latent vari-
ables affect a latent variable of interest, given an evidence e. This gives a set of the
different forms of grouping the population (latent variables) that affect the grouping
made with respect to the latent variable of interest.

Finally, a third line of future research would be studying the feasibility of the method-
ology presented for different structures and types of data, since here we have only
dealt with TAN structures and discrete data. In order to be able to apply the ideas
presented in here, two main issues must be solved:

• First we have to guarantee that the network structure and parameters can be
learnt in the presence of latent variables to model the cluster problem. As seen
in Chapter 4, in order to adapt/apply Bayesian-SEM algorithm to any structure
we need a way to obtain the CPDs parameters (mainly EM and variants) and the
score function for the search to be in a closed and decomposable form to be able
to compute it. For both things we mainly work with expectations with respect to
the latent variable conditioned distribution; thus it is key to be able to compute
P (H | x, G) given an instance x of the dataset D and a structure G. Nevertheless,
if we are not able to compute this posterior probability, importance sampling can
be employed, though this has its drawbacks as for example a low convergence
rate.

• Second, we have to be able to make inference in the BN in order to compute
feature importance and MAPs. Inference is a highly computationally expensive
problem, thus the main problem here is to achieve good results in a reasonable
time. Furthermore, we may also find that for some structures and variable
types, some posteriors cannot be computed.

With all of this in mind we can see for example that generalizing the methodology for
any structure with discrete features is quite easy. For continuous normal features
with the TAN structure, the methodology can be applied and effortlessly implemented,
also with hybrid data with normal continuous features (CLGBN).

In addition, with restrictions to the TAN structure with continuous non-normal fea-
tures with a non-parametric approach for the CPDs (CKDE), the methodology can be
implemented. Here for the structure learning generalized-EM plus Monte Carlo-EM
must be used, which take advantage of the fact that P (H | x, G) can be easily com-
puted due to the TAN structure. For the expectations used in the feature importance
measure, approximation methods must be used such as importance sampling, since
exact inference cannot be performed.

Lastly, the framework with no structure restrictions and continuous variables is the
most difficult case to translate the ideas into, since we are working with augmented
networks (softmax CPDs for discrete features with continuous parents) and it is not
trivial how to make inference.
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