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Resumen

Esta tesis explora la optimización de hiperparámetros en modelos de Aprendizaje
Profundo, centrándose en Redes Neuronales Convolucionales (CNNs en su acrónimo
en inglés) y Redes Generativas Adversariales Convolucionales Profundas (DCGANs).

El estudio investiga el uso de Algoritmos de Estimación de Distribución (EDAs), es-
pecíficamente el Algoritmo de Estimación de Redes Bayesianas (EBNA), para opti-
mizar tanto la arquitectura de la red como el proceso de entrenamiento en CNNs
(EDA-CNN) y en DCGANs (EDA-DCGAN). El objetivo es mejorar el rendimiento en
tareas de visión por computador, especialmente en clasificación de imágenes y gene-
ración de imágenes.

Dado que el enfoque EDA-CNN implica un alto coste computacional, se implementa
un modelo sustituto para aproximar la función de ajuste, reduciendo así el coste com-
putacional del proceso de optimización. Además, se combinan los métodos de evalu-
ación basados en el entrenamiento de CNNs y en el modelo sustituto con el objetivo
de reducir el coste computacional y alcanzar resultados más precisos. Este enfoque,
EDA-CNN-Surrogate, aplica el método de evaluación basado en el entrenamiento de
CNNs en soluciones prometedoras, evitando el entrenamiento en soluciones cuyas
aproximaciones basadas en el modelo sustituto son peores que un umbral determi-
nado. Este umbral se considera fijo o dinámico, reduciendose a medida que avanzan
las generaciones, siendo más selectivo en la determinación de soluciones prometedo-
ras. Además, se presenta un EDA multiobjetivo que optimiza tanto la precisión como
el coste computacional requerido para el entrenamiento.

Se comparan diferentes enfoques analizando la convergencia y el coste computacional
durante el proceso de entrenamiento utilizando el conjunto de datos CIFAR-10. El
enfoque EDA-CNN-Sustituto con umbral dinámico devuelve el mejor óptimo local
encontrado, alcanzando una precisión del 94,60% en el conjunto de validación y
reduciendo en un 38,82% el coste computacional en comparación con el enfoque
EDA-CNN.

También se analiza el tamaño óptimo de la población, concluyendo que cuanto mayor
es el tamaño de la población, mejor y más rápida es la convergencia. Sin embargo,
para la tarea de clasificación de CIFAR-10, un tamaño de población de 30 individuos
es suficiente para lograr resultados prometedores.

En cuanto al algoritmo de optimización EDA-DCGAN, se analiza la convergencia y
los resultados del algoritmo EBNA para la optimización de hiperparámetros en ar-
quitecturas simples de DCGAN para la generación de imágenes del dataset MNIST,
conluyendo que el algoritmo es prometedor en la generación de imágenes de alta
calidad en arquitecturas más complejas.
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Abstract

This Master’s Thesis explores the optimization of hyper-parameters in Deep Learning
models, with a focus on Convolutional Neural Networks (CNNs) and Deep Convolu-
tional Generative Adversarial Networks (DCGANs).

The study investigates the use of Estimation of Distribution Algorithms (EDAs), con-
cretely Estimation of Bayesian Networks Algorithm (EBNA), to optimize both the net-
work architecture and training process in CNNs (EDA-DCGAN) and DCGANs (EDA-
DCGAN), aiming to enhance performance in computer vision tasks, specially in image
classification and image generation tasks.

Since EDA-CNN approach requires high computational cost, a surrogate model is
implemented in order to approximate the fitness function, thereby reducing the com-
putational cost of the optimization process. CNN and surrogate based evaluation
methods are combined in order to both reduce computational cost and reach more
precise results. This approach, EDA-CNN-Surrogate, applies CNN training evalua-
tion method in promising solutions, avoiding the training in solutions whose surro-
gate based approximations are poorer than a determined threshold. This threshold
is also considered dynamic, reducing it as generations go by, being thus more se-
lective in determining the promising solutions. Moreover, a multi-objective EDA is
also presented optimizing both the accuracy and the computational cost the training
require.

Different approaches are compared analysing the convergence and the computational
cost during the training process using CIFAR-10 dataset. EDA-CNN-Surrogate ap-
proach with dynamic threshold achieves the best found local optima, reaching an
accuracy of 94.60% in the validation set and reducing in 38.82% the computational
cost in comparison with EDA-CNN approach.

Optimum population size is also analysed, concluding the higher the population size
the better and faster is the convergence. Nevertheless, for CIFAR-10 classification
task a population size of 30 individuals is enough to achieve promising results.

Regarding the EDA-DCGAN optimization algorithm, the project examines the conver-
gence and results of the EBNA algorithm for optimizing hyper-parameters in basic
DCGAN architectures aimed to generate images from the MNIST dataset. The algo-
rithm results promising in producing high-quality images in more complex architec-
tures.
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Chapter 1

Introduction

Deep learning (DL) is a subset of machine learning that uses multi-layered neural
networks known as Deep Neural Networks (DNN) to simulate the complex decision-
making power of the human brain. These models are capable of handling large
amount of complex data and are particularly effective at recognizing patterns and
making predictions. This approach has led to breakthroughs in fields such as com-
puter vision (Khan et al., 2018), natural language processing (Deng and Liu, 2018),
and speech recognition (Abdel-Hamid et al., 2014).

1.1 Deep Learning Hyper-parameter Optimization

DNN hyper-parameter optimization (HPO) is crucial since its performance and ef-
fectiveness for specific tasks depends highly on an appropriate setting of hyper-
parameters, which control both learning process and network architecture.

When it comes to the learning process, the optimal hyper-parameters can speed up
the convergence of the training process, reducing time and computational resources
required to train the model. A well-chosen learning rate, for instance, ensures an
efficient learning without oscillating or diverging.

Hyper-parameter optimization also involves making architectural decisions such as
the number of layers, the number of neurons per layer, and the type of activation
functions, leading to more efficient and effective models. Additionally, it involves bal-
ancing trade-offs between different aspects of the model, such as complexity versus
performance, speed versus accuracy, and bias versus variance. Common hyper-
parameters in DL include the learning rate, which controls the step size during the
weight update process; batch size, which determines the number of training exam-
ples used in one iteration to update the model weights; the number of layers and
neurons, which mean the depth and width of the neural network; dropout rate, which
is the fraction of neurons to drop during training to prevent over-fitting; regulariza-
tion parameters, which penalize large weights to prevent over-fitting; and activation
functions, such as ReLU, sigmoid, and tanh, which introduce non-linearity into the
model.
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1.2. Deep Learning in Computer Vision

1.2 Deep Learning in Computer Vision

The computer vision field focuses on developing algorithms and techniques to ex-
tract meaningful insights from images and videos enabling machines to interpret
and understand visual information. Computer vision has numerous applications
across various industries, including healthcare (Esteva et al., 2021; Gao et al., 2018;
Khang et al., 2024), manufacturing (Zhou et al., 2022), automotive (Janai et al.,
2020), surveillance (Thai et al., 2022) and construction (Xu et al., 2021).

Computer vision algorithms (Szeliski, 2022) process visual data to perform tasks such
as image classification, object detection, facial recognition and image segmentation.
By analyzing visual inputs, computer vision systems can make decisions, recognize
patterns, and extract valuable information for further processing or decision-making.
DL techniques (Hassaballah and Awad, 2020; Chai et al., 2021), particularly Convo-
lutional Neural Networks (CNNs) (Indolia et al., 2018), have significantly improved the
accuracy and efficiency of computer vision tasks.

Furthermore, computer vision systems become more effective, versatile, and capable
of handling complex and real world tasks by taking advantage of data augmenta-
tion and transformation capabilities of generative AI. Deep Convolutional Generative
Adversarial Networks (DCGAN) and Variational Autoencoders, for instance, generate
synthetic data leading to more robust and accurate models where real-world labeled
data is scarce, expensive, or difficult to obtain. In addition, DCGANs, for instance,
not only are able to generate images, but they can also enhance image resolution,
producing high-resolution images from low-resolution inputs, and fill missing parts
of images.

Hyper-parameter optimization in models like CNNs and DCGANs is also relevant for
identifying the optimal network topology and learning process.

1.3 Evolutionary Computation for Hyper-parameter Opti-
mization

Hyper-parameters on various DL architectures have complex relationships. While
certain hyper-parameters may significantly improve performance in simpler networks,
their effects may differ in more complex architectures. Additionally, findings from
one dataset may not directly apply to another dataset with different characteristics
such as image properties, class distributions, or sample sizes. Selecting the right set
of hyper-parameters lacks a definitive formula and often relies on a combination of
prior experience and trial-and-error.

However, given the computationally intensive nature of DL algorithms, which can
take days to train on conventional hardware, relying solely on trial-and-error for
hyper-parameter tuning is inefficient and not exhaustive. Therefore, Evolutionary
Computation (EC) is an alternative to efficiently explore the hyper-parameter space
and discover configurations that lead to improved model performance across diverse
datasets and architectures. The implementation of EC algorithms to optimize DL
algorithms is called Evolutionary Deep Learning (Zhan et al., 2022).

EC algorithms mainly include Evolutionary Algorithms (EA) (Yu and Gen, 2010) and
Swarm Intelligence (SI) (Kennedy, 2006) algorithms. Among EA, Genetic Algorithm
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Introduction

(GA) (Holland, 1992), Evolutionary Strategy (ES) (Beyer and Schwefel, 2002), Genetic
Programming (GP) (Koza, 1990), Evolutionary Programming (EP) (Yao et al., 1999),
Differential Evolution (DE) (Storn and Price, 1997), and Estimation of Distribution
Algorithms (EDA) (Larrañaga and Lozano, 2001) are included. Whereas SI algorithms
include Ant Colony Optimization (ACO) (Dorigo and Gambardella, 1997) and Particle
Swarm Optimization (PSO) (Kennedy and Eberhart, 1995).

1.4 Objectives

This project focuses on the implementation of EDAs in Deep Neural Networks, which
consist on learning and sampling from the probability distribution of the best individ-
uals of the population at each iteration of the algorithm. The main objectives resides
on looking for the best configuration of discrete hyper-parameters for (i) CNNs in clas-
sification problem tasks based on state of the art SHEDA algorithm (Li et al., 2021)
using CIFAR-10 dataset and (i) for DCGANs in image generation tasks that maximize
the quality of generated images from the generator network using MNIST dataset,
since there is no previous work of DCGAN hyper-parameter optimization with EDAs.

In order to analyze deeply the different objectives involved in CNN hyper-parameter
optimization, SHEDA algorithm and the contributions of the project are explained in
detail.

Li et al. (2021) presented SHEDA algorithm, which consists on the first EDA imple-
mentation in hyper-parameter optimization problems in CNNs. The algorithm deals
with the following challenges: (i) mixed of continuous and discrete hyper-parameters,
(ii) the large-scale search space and (iii) expensive computational cost for individual
evaluation.

1.4.1 Dependencies among hyper-parameters

Dealing with mixed type hyper-parameters, SHEDA algorithm uses fitness weighted
methods to learn probabilistic models for continuous and discrete variables sepa-
rately and then combines them to get the hybrid model for sampling new individu-
als. For continuous variables, weights are combined with Gaussian distribution to
learn the probabilistic model and then to sample according to the Gaussian distribu-
tion. For discrete hyper-parameters, probabilistic models are also calculated based
on weighted values, however, new individuals are sampled by the roulette selection
method based on calculated probabilities. Although algorithm deals with mixed type
hyper-parameters, it is assumed that there are no dependencies among the hyper-
parameters.

The implementation of EDAs in CNNs in this project optimizes hyper-parameters
encoded in discrete way, nevertheless, multivariate model is implemented capable
of capturing multivariate interactions among hyper-parameters unlike SHEDA algo-
rithm. In particular, Estimation of Bayesian Network Algorithm (EBNA) is imple-
mented, which learns Bayesian Networks to sample the promising solutions. It uses
the Bayesian Information Criterion (BIC) (Schwarz, 1978) to evaluate Bayesian Net-
work structures in the greedy network construction algorithm.
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1.4. Objectives

1.4.2 Surrogate based evaluation

In order to reduce the computational costs required to evaluate each individual,
surrogate-assisted multi-level evaluation method (SME) is implemented in SHEDA.
Taking into consideration the evaluation of each individual consists on a CNN train-
ing, the evolutionary algorithm until its convergence is computationally very expen-
sive. Therefore, it employs a surrogate model instead avoiding CNN training. SHEDA
adopts Gaussian process model with default settings, which receives individuals as
input and outputs the predicted fitness of the individual.

In particular, SME combines both evaluation methods, training based evaluation
(CNN) and surrogate based evaluation. Firstly, surrogate based evaluation is used
to evaluate the individuals, and then, the promising ones are evaluated with the
training based evaluation. Individuals are considered promising when the surrogate
based fitness evaluation is better than the average fitness of the individuals in the
arch, being the arch the set of solutions that have been trained with training based
evaluation.

This project also combines two evaluation methods, CNN training based evaluation
and surrogate based evaluation method. However, what differs from SHEDA algo-
rithm is (i) the surrogate model and (ii) the criteria of selecting the evaluation method
to use.

Random Forest Regressor is the implemented surrogate model whose hyper param-
eters are optimized using grid search optimization method. With respect to evalu-
ation method criteria, fixed and dynamic criteria are compared. In fixed criterion,
the promising individuals are the individuals whose surrogate based fitness is better
than a percentage of the previous generation fitnesses, a threshold. The considered
promising ones are therefore evaluated with CNN training phase. Dynamic criterion,
otherwise, is more selective as generations go by, reducing the percentage of the
promising individuals and consequently the amount of CNN trainings, resulting on a
reduction in computational cost.

1.4.3 CNN structure optimization

In addition, Li et al. (2021) present some limitations and future work related to
SHEDA algorithm. SHEDA showed to be efficient tool for optimizing the hyper-
parameters, which adopts ResNet model with depth 20 as the basic networks for
hyper-parameter optimization. Although ResNet is a poweful CNN in DL that can
lead to a promising solutions with limited time and resources, it may not be suitable
for different real world problems. Since choosing a suitable basic CNN for different
tasks is a difficult problem, the evolution of network depth and topology is considered
for SHEDA as future research.

Taking the proposed future research into account, this project not only optimizes
the hyper-parameters of a basic CNN, but it also searches for the most promising
depth and topology, allowing to construct the CNN structure that performs best on
different problems. So, this work optimizes the structure of the network and the
hyper-parameters of the considered layers in the structure at once.
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1.4.4 Multi-objective optimization

The implementation of a multi-objective EDA for hyper-parameter optimization is
another contribution to previous work. It consist on minimizing the classification task
error and the computational cost the network require, looking for the best performing
network with the topology that requires the lowest computational cost. In order to
carry it out, non-dominating sorting and crowding distance (Deb et al., 2002) are
introduced into EDAs to rank individuals providing both intensity and diversity on
the solutions over the search space.

This approach allows to select in each generation the solutions with lower classifica-
tion error penalized by the domination counts, penalizing more the more dominated
solutions and without penalizing the non dominated solutions. Moreover, it also
allows the decision-maker to determine among the non-dominated solutions his pref-
erences, whether to choose the hyper-parameter configuration that leads to lowest
classification error with high computational cost, or to choose a solution that seeks a
trade-off between both objectives, the classification error and the computational cost.

1.4.5 Summary

Firstly, the project extends the SHEDA algorithm by integrating a multivariate model
that captures interactions between hyper-parameters, implementing EBNA algorithm
for this purpose.

Secondly, it compares the convergence and the computational cost of different ap-
proaches that differ on the evaluation methods of individuals. Random Forest Re-
gressor is employed as the surrogate model in some approaches to approximate and
evaluate the fitness of the individuals. The combined approach, CNN training based
and surrogate based evaluation approach, also explores both fixed and dynamic crite-
ria for selecting the promising results, enhancing the efficiency and selectivity of the
optimization process. Different population sizes are also compared analyzing both
efficiency and required computational costs.

Thirdly, the project not only optimizes hyper-parameters but also searches for the
most suitable network depth and topology, addressing the challenge of selecting an
appropriate CNN structure for different tasks.

Additionally, the project introduces a multi-objective EDA approach to balance clas-
sification error and computational cost, providing flexibility in choosing optimal con-
figurations.

Lastly, it is the first implementation of EDAs in the hyper-parameter optimization of
DCGANs, aiming to maximize the quality of generated images.

1.5 Structure

State of The Art chapter, Chapter 2, reviews existing literature and methodologies
relevant to the research topic, beginning with an overview of various optimization
techniques, including Grid Search, Random Search, Bayesian Optimization, and Evo-
lutionary Computation. It then delves into hyper-parameter optimization in computer
vision, discussing CNNs and generative models, and concludes with an exploration
of EDAs.
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1.5. Structure

Chapter 3 details the methods used in the research, starting with an in-depth look
at CNNs, explaining their components and the training process. It then describes
the encoding scheme to be able to implement EDA to CNNs and continues with a
discussion on EDA-CNN, outlining various training approaches, surrogate models,
and multi-objective EDA-CNN. Finally EDA-DCGAN is introduced, providing insights
into the corresponding networks and hyper-parameter optimization.

Chapter 4 presents the findings of the research, beginning with the results of EDA-
CNN approaches as well as comparisons of the explained approaches, and the results
related to EDA-DCGAN.

Finally, Chapter 5 summarizes the conclusions drawn from the research and the
proposed future lines. The work concludes with a bibliography, providing references
for the sources cited throughout the research.
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Chapter 2

State of The Art

Since performance of DL algorithms depends on many factors such as the architec-
ture and hyper-parameters, DL algorithm optimization has become a research topic
in the field. Different techniques are analysed in literature aimed to optimize hyper-
parameters.

2.1 Optimization techniques

2.1.1 Grid Search

Grid search is a technique that involves evaluating all possible combinations within
a predefined set of hyper-parameters to identify the combination that optimizes the
objective function, such as maximizing accuracy on a validation set. However, as
the number of hyper-parameters increases, the number of network configurations
that need to be trained grows exponentially. This makes the computational cost
of grid search potentially prohibitive for high-dimensional hyper-parameter spaces.
Priyadarshini and Cotton (2021), for instance, implemented grid-search to locate op-
timal hyper-parameters for a Long-Short-Term-Memory (LSTM)-CNN networks in or-
der to classify more accurately polarity of sentiments. However, different optimization
technique implementation is a mentioned future line.

2.1.2 Random Search

In order to avoid the computational costs grid-search involves, random search ran-
domly samples hyper-parameter combinations from predefined sets. In high dimen-
sional spaces, it results more efficient than grid search since not every combination
is evaluated. Bergstra and Bengio (2012) demonstrated that random search over the
same domain is able to find models that are as good or better within a small fraction
of the computation time than grid-search since it searches in a larger configuration
space. When it comes to its applications, Huber et al. (2021) implemented random
search for CNN hyper-parameter optimization for noise reduction tasks in computed
tomography and Torres et al. (2019) optimizes Feed-Forward Neural Network (FFNN)
hyper-parameters for power consumption forecasting.
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2.1. Optimization techniques

2.1.3 Bayesian Optimization

Bayesian Optimization, sequential model-based optimization, differs from previous
techniques in that it improves the speed of searching using previous results, while the
other two methods are independent of previous evaluations. Thus, the performance
of past hyper-parameters affects the future decision. Bayesian Optimization builds
a probability model of the objective function and uses the model to select following
hyper-parameters to evaluate (Wu et al., 2019).

Probability model consists on a surrogate model that approximates the true objec-
tive function given a configuration of hyper-parameters. The selection of the hyper-
parameters is made by maximizing the expected improvement, which consist on the
difference between the minimum observed true objective function score and true ob-
jective function scores, being true objective function score the prediction of the surro-
gate model given a configuration of hyper-parameters. Surrogate model is constantly
updating across iterations adding latest history samples.

Bergstra et al. (2011) and Wu et al. (2019) presented multiple algorithms that are
common for training surrogate models, such as Gaussian Process Model (GP) (Williams
and Rasmussen, 2006) also known as Kriging model and Tree-structured Parzen Es-
timators (TPE) (Bergstra et al., 2011). Many surrogate-based optimization algorithms
that are successful in real-world applications utilize GP as their surrogate model,
such as PESMO (Hernández-Lobato et al., 2016) and K-RVEA evolutionary algorithms
(Chugh et al., 2017).

GP algorithm is a non-parametric and interpretable Bayesian model that predicts
expected values and uncertainties of objectives, which are essential for balancing
exploration and exploitation during optimization. However, standard GP has limita-
tions: it is not well-suited for non-continuous search spaces and suffers from high
computational complexity relative to data size. These issues are problematic since
real-world problems often involve complex search spaces. There are different ap-
proaches in order to address these challenges: (i) incorporating advanced techniques
into GP to enhance its performance, or (ii) using a surrogate model other than GP.

For the first approach, Liu et al. (2020) reviewed recent advances for improving the
scalability and capability of GP models. For the second approach, non-GP-based
optimization algorithms have been proposed, such as mentioned TPE algorithm. TPE
is known for the standard solver of Hyperopt (Bergstra et al., 2015) and Optuna
(Akiba et al., 2019), open source software for HPO that are widely used in machine
learning. This surrogate model can naturally handle complex search spaces and scale
to a greater amount of both variables and observations.

When it comes to applications, Victoria and Maragatham (2021) proposed Bayesian
hyper-parameter optimization algorithm to enhance the performance of the CNN
model in 10 classes classification task and Shin et al. (2020) developed a DNN model,
optimizing its hyper-parameters using the Bayesian Optimization method to predict
engine-out NOx emissions by using the worldwide harmonized light vehicles test pro-
cedure of diesel engines.
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2.1.4 Evolutionary Computation

EC uses principles of natural selection to evolve a population of candidate solutions
over generations. Population-based optimization algorithms (POAs) start by creating
and updating a population with each generation, evaluating each individual until the
global optimum is identified. The main differences between various POAs lie in their
methods for generating and selecting populations. POAs can be easily parallelized,
as a population of N individuals can be evaluated on up to N threads or machines in
parallel. GAs, PSO and EDAs are some common POAs for HPO problems.

These evolutionary algorithms have been implemented for hyper-parameter optimiza-
tion in different DL tasks: regression problems (Luo et al., 2020), classification prob-
lems (De Falco et al., 2019), time series forecasting (Nakisa et al., 2018; Erden, 2023),
image classification (Aszemi and Dominic, 2019) and generative models (Lin et al.,
2022) for instance.

Next section presents a more exhaustive analysis of the hyper-parameter optimization
methods, such as evolutionary algorithms like GAs and EDAs, in computer vision
tasks, including CNNs and generative models.

2.2 Hyper-parameter Optimization in Computer Vision

2.2.1 Convolutional Neural Networks

According to HPO in CNNs for image classification tasks, there are CNNs whose archi-
tectures are hand-crafted with extensive domain expertise: DenseNet (Huang et al.,
2017), which includes dense blocks, ResNet (He et al., 2016), which includes resid-
ual blocks, VGG (Simonyan and Zisserman, 2014) and All-CNN (Springenberg et al.,
2014).

However, when optimizing a CNN architecture for a specific task, it is impossible to
know in advance the optimal architecture of the network, such as the optimal number
of layers to create. Moreover, manually designing CNNs requires extensive expertise
in both CNN architectures and the problem domain. These are often unavailable
in practice. Therefore, there is a huge need for algorithms that can effectively and
efficiently design CNN architectures without requiring such expertise.

Xie and Yuille (2017) proposed a genetic-CNN that aims to automatically learn deep
network structures. Since the number of possible network structures grows exponen-
tially with the number of network layers, they used a genetic algorithm to efficiently
explore the large search space.

Liu et al. (2017) presented an effective evolutionary method (Hierarchical evolution)
that identifies high-performance neural architectures based on a novel hierarchical
representation scheme, in which smaller operations are used as building blocks to
form larger ones.

Moreover, reinforcement learning is also implemented to look for an economical and
efficient architecture search although they require more extensive computational re-
sources. In Efficient Architecture Search (EAS) (Cai et al., 2018) algorithm, the re-
inforcement learning agent learns to take actions for network transformation to ex-
plore the architecture space efficiently, using knowledge stores in previously trained
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networks. Zhong et al. (2018) also used Q-Learning paradigm with epsilon-greedy ex-
ploration strategy to choose component layers, known as Block-QNN-S. Zoph and Le
(2016) also proposed Neural Architecture Search (NAS) with reinforcement learning.

Some previous algorithms presented limitations such as the fixed-length encoding
without knowing the best network depth and the restriction of not using crossover
operators in variable-length encoding schemes. Therefore, Sun et al. (2019) proposed
a CNN structure evolution method based on residual blocks and GA (CNN-GA), where
each block can have different configurations and the total number of blocks is also
evolved based on a variable-length encoding scheme. Moreover, CNN-GA algorithm
automatically discovers the best CNN architectures, and does not require any manual
and human intervention.

Taking advantage of mentioned residual blocks, Song et al. (2020) presented an im-
proved EA to optimize the block types in the network and the hyper-parameters of
each block.

Some presented algorithms, such as CNN-GA and NAS are completely automatic al-
gorithms. Additionally, Cartesian Genetic Programming (CGP-CNN) algorithm (Sug-
anuma et al., 2017) and Large Scale Evolution algorithm (Real et al., 2017) are also
completely automatic evolutionary algorithms aimed to optimize hyper-parameters.

When it comes to PSO swarm intelligence algorithm implementation in HPO prob-
lems for CNN algorithms, Wang et al. (2019b) presented cPSO-CNN algorithm which
brings three mechanisms: (i) vectorizing the acceleration coefficients to adapt for
variant ranges of CNN hyper-parameters, (ii) enhancing exploration capability with
compound normal confidence distribution, and (iii) linear-estimation based scheme
for fast fitness evaluation.

Singh et al. (2021) implemented multi-level PSO for CNN architecture and hyper-
parameter optimization, training the initial swarm at first level optimizing architec-
ture and multiple swarms at level two optimizing hyper-parameters used in each
layer.

Wang et al. (2018) proposed variable-length PSO, IPPSO-CNN, for optimizing CNN ar-
chitecture in which three improvements are made based on traditional PSO: (i) new
design of encoding scheme in order to efficiently encode CNN architecture inspired by
how the network IP address works, (ii) deal with the constraint of the fixed length en-
coding of traditional PSO in order to learn variable-length architectures of CNNs and
(iii) use of partial dataset to accelerate fitness evaluation and therefore evolutionary
process.

Multi-objective evolution are also analysed in literature. Vidnerová and Neruda (2020)
proposed a novel approach to neural architecture search for deep neural networks.
The proposed algorithms are based on multi-objective genetic algorithms: NSGA-II
(Deb et al., 2002) and NSGA-III (Deb and Jain, 2013). The objectives consist on
optimizing simultaneously both network architecture and network size performance
in order to generate efficient networks of reasonable size. NSGA-II-CNN and NSGA-
III-CNN are two implemented algorithms for CNN optimization.

When it comes to Estimation of Distribution Algorithms, Li et al. (2021) proposed
SHEDA algorithm, which consists on EDA implementation to find suitable hyper-
parameter configuration. They identified three limitations in HPO problem in CNN: (i)
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mixed of continous and discrete hyper-parameters, (ii) the large-scale search space
and (iii) expensive computational cost for individual evaluation. In order to tackle
these limitations, SHEDA algorithm contributions are (i) hybrid-model EDA which
uses a mixed-variable encoding scheme, (ii) orthogonal initialization to help initialize
solutions to cover all possible choices of each variable and (iii) surrogate-assisted
multi-level evaluation method to reduce the expensive computational cost. SHEDA
outperforms other state of the art algorithms.

2.2.2 Generative models

Since the optimization of network architecture and hyper-parameters can signifi-
cantly improve the generation performance, Wang et al. (2019a) firstly implemented
evolutionary computing methods in DCGANs, known as evolutionary GAN (E-GAN).
In E-GAN, generators are regarded as an evolutionary population and discriminator
acts as an environment. However, network architecture is static and fixed.

Taking into account convolutions cannot model perplexing geometric shapes and that
they are difficult to learn long-range-dependencies, self-attention mechanism is intro-
duced into each generator and discriminator in Attentive E-GAN (AEGAN) algorithm
(Wu et al., 2021). By using normalized self-attention mechanism, the generator can
draw images based on the importance of the features.

Gong et al. (2019) and Wang and Huan (2019) attempted to implement NAS into
GANs. In AutoGAN (Gong et al., 2019) a Recurrent Neural Network controller is used
to conduct the search for the generator architectures. AGAN (Wang and Huan, 2019),
however, used reinforcement learning to automatically design the generator in GANs.

Lin et al. (2022) firstly attempted to introduce evolutionary algorithms into GANs to
optimize the architecture and its associated hyper-parameters at once, Evolutionary
Architecture Search GAN (EAS-GAN).

An evolutionary algorithm assisted GAN framework, EvoGAN, was also proposed (Liu
et al., 2022) to generate various compound expressions. They transfered the synthe-
sis of compound expression to an optimisation problem and use genetic algorithms
to search for the optimum.

With regard to Variational Autoencoders (VAE), Chen et al. (2020) proposed EvoVAE
algorithm in which VAE is generalized to a more general and asymmetric VAE with
four blocks. Moreover, a mechanism for encoding genes with a variable-length genetic
algorithm is proposed in the algorithm with an adapted efficient genetic operator to
find the optimal network depth.

In order to determine the performance metric of generative models, Inception Score
(IS) (Salimans et al., 2016) and Fréchet Inception Distance (FID) (Heusel et al., 2017)
are metrics to quantitatively evaluate the quality of images synthesis. IS calculates
the Kullback-Leibler divergence between the conditional class distribution and the
marginal class distribution. Higher IS means better image synthesis quality.

On the other hand, FID calculates the Wasserstein-2 distance between the generated
samples and the real images in the feature space of the Inception-v3 network. Lower
FID values indicate a smaller distance between the distributions of generated and
real data.
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2.3 Estimation of Distribution Algorithms

Taking into consideration the different hyper-parameter optimization techniques anal-
ysed in computer vision tasks, and the project objective of implementing an EDA to
this purpose, a definition and an analysis of the state of the art of EDAs is developed
in this section.

EDAs are evolutionary algorithms that explore the solution space in order to achieve
promising solutions. In a generation, a population of solutions is taken into account,
considering EDAs, therefore, population based algorithms. Individuals in population
evolve over generations to converge towards local or global optimum.

In order to evaluate individuals at each generation, fitness function is designed, which
determines the quality of individuals in population. This quantitative evaluation al-
low to rank solutions so as to select the most promising solutions minimizing or
maximizing fitness value.

When it comes to general algorithm procedure, Algorithm 1, first initial population
is randomly sampled. From this initial population, algorithm learns a model that
attempts to capture the probability distribution of the promising solutions. Once
the model is constructed, new solutions are generated by sampling the distribution
encoded by the learned model. What differ EDAs from other evolutionary algorithms
are the mentioned learning and sampling steps. The sampled solutions are evaluated
using fitness function and ranked to select the promising solutions with a selection
criterion. These promising individuals form the next generation population. The
process is repeated until termination criterion is met. An example of EDA procedure
of first generation is illustrated in Figure 2.1.

Algorithm 1 EDA Pseudocode
g ← 0
Generate initial population P (0)
while not done do

Select promising solutions S(g) from P (g)
Build probabilistic model M(g) from S(g)
Sample M(g) to generate new candidate solutions O(g)
Incorporate O(g) into P (g)
g ← g + 1

end while

Depending on the types of variables to optimize and the dependencies among vari-
ables, different models are analysed in literature.

2.3.1 Discrete variables

For discrete type variables without dependencies, Univariate Marginal Distribution
Algorithm (UMDA) (Mühlenbein and Paass, 1996), Population Based Incremental
learning (PBIL) (Baluja, 1994) and compact Genetic Algorithm (cGA) (Harik et al.,
1999) models are some common EDAs.

UMDA uses a probability vector p = (p1, p2, . . . , pn) as the probabilistic model, where
pi denotes the probability of a 1 in position i of solution. PBIL and cGA also uses
probability vectors, however, unlike UMDA, PBIL and cGA are incremental models,
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Figure 2.1: Estimation of Distribution Algorithm procedure.

what means they use a probabilistic model to represent the distribution of potential
solutions without storing large populations of solutions. The probabilistic model is
updated incrementally over time.

The Mutual Information Maximizing Input Clustering (MIMIC) (De Bonet et al., 1996)
is a bivariate EDA, capable to capture pair-wise interactions between variables. MIMIC
calculates the mutual information between all pairs of variables. Variables with high-
est mutual information with the last added variable are added to a chain until all
variables are included. So, final model consists of a tree of a single chain of depen-
dencies, where each parent has one child. The probability distribution at generation
l, factorizes as

pπl
(x) = pl(xi1 | xi2)pl(xi2 | xi3) · · · pl(xin−1 | xin)pl(xin)

where p(Xij | Xij+1) denotes the conditional probability of Xij given Xij+1.

In order to model multivariate interactions between the variables, there are several
EDAs that are based on probabilistic models: Extended Compact Genetic Algorithm
(ECGA) (Harik et al., 2006), Bayesian Optimization Algorithm (BOA) (Pelikan et al.,
1999), Estimation of Bayesian Network Algorithm (EBNA) (Etxeberria and Larrañaga,
1999), Learning Factorized Distribution Algorithm (LFDA) (Mühlenbein et al., 1999)
and Markovianity based Optimization Algorithm (MOA) (Shakya and Santana, 2008).

The Extended Compact Genetic Algorithm (ECGA) groups variables into clusters,
treating each as a single variable. Starting with all variables independent, it iter-
atively merges clusters to improve the model’s Minimum Description Length (MDL)
until no further improvement is possible. A probability table for each cluster is then
computed to generate new solutions. This process repeats every generation, poten-
tially forming different clusters each time.

BOA, EBNA and LFDA use Bayesian Networks to model candidate solutions. A
Bayesian network (Pearl, 1988) is a probabilistic graphical model (G,P ) over vari-
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ables X, where G is a qualitative component in the form of a directed acyclic graph
(DAG) composed of vertices and edges G = (V,E), and P is a quantitative compo-
nent representing a set of conditional probabilities (CPTs). The conditional probabil-
ities factorize the joint probability distribution (JPD) using the chain rule, and the
Bayesian network can be viewed as an encoding of the local Markov condition, mean-
ing that each variable Xi is conditionally independent of its non-descendants given
its parents Pa(Xi).

P (X1, . . . , Xn) =
n∏

i=1

P (Xi | Pa(Xi))

Mentioned algorithms start with a network without edges and a greedy algorithm
is then employed to enhance the network by iteratively adding the edge that pro-
vides the greatest improvement according to a metric. BOA employs the Bayesian-
Dirichlet (BD) metric, whereas EBNA and LFDA use Bayesian Information Criterion
(BIC) (Schwarz, 1978).

MOA algorithm encode multivariate interactions with Markov Networks. Markov Net-
work connections, unlike Bayesian Network connections, are undirected. In MOA,
Gibbs sampling is used to generate new solutions from learnt model.

This project focuses on mainly EBNA model since it allows modelling multivariate in-
teractions between CNN discrete hyper-parameters. Therefore, Algorithm 2 explains
in detail EBNA model procedure.

Algorithm 2 starts with an initial model M0 composed of an initial structure S0 and
parameters θ0. By sampling N individuals from the initial model M0, generates a
dataset D0. Then, following steps are repeated until a stopping criterion is met:

1. Selection: Select Se individuals from the dataset Dl−1 to form DSe
l−1.

2. Structure learning: Find the structure S′
l that maximizes the Bayesian Informa-

tion Criterion (BIC) score based on the selected data DSe
l−1.

3. Parameter calculation: Calculate the parameters θl using the formula θijk =
N l

ijk+1

N l
ij+ri

, where DSe
l−1 is used as the dataset. θijk represents the conditional prob-

ability of variable Xi being in its k-th value, given that the set of its parent
variables is in its j-th value. N l

ijk refers to the number of cases where a vari-
able Xi takes its k-th value and its parent variables are in its j-th configuration
and N l

ij the number of cases where the parents of the variable Xi take the j-th
configuration. ri represents all possible values of Xi.

4. Model update: Update the model to Ml with the new structure S′
l and parameters

θl.

5. Sampling: Generate a new dataset Dl by sampling N individuals from the up-
dated model Ml using the Probabilistic Logic Sampling (PLS) method.

2.3.2 Continuous variables

For continuous type variables, continuous UMDA (UMDAC ) (Mühlenbein and Paass,
1996) and continuous PBIL (PBILC ) (Baluja, 1994) are univariate EDAs that use inde-
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Algorithm 2 EBNABIC

1: M0 ← (S0, θ0)
2: D0 ← Sample N individuals from M0

3: for l = 1, 2, . . . until a stop criterion is met do
4: DSe

l−1 ← Select Se individuals from Dl−1

5: S′
l ← Find the structure which maximizes BIC(Sl, D

Se
l−1)

6: θl ← Calculate {θijk =
N l

ijk+1

N l
ij+ri

} using DSe
l−1 as the data set

7: Ml ← (S′
l, θ

l)
8: Dl ← Sample N individuals from Ml using PLS
9: end for

pendent Gaussian distributions. MIMICC is a continuous bivariate EDA which learns
a chain structured probabilistic model by adapting the concept of conditional entropy
for Gaussian distributions.

Estimation of Gaussian Networks Algorithm (EGNA) (Larrañaga et al., 2000), Contin-
uous Iterated Density Estimation Algorithm (IDEA) (Bosman and Thierens, 2000),
Estimation of Multivariate Normal Distribution Algorithm (EMNA) (Larrañaga and
Lozano, 2001) and Distribution Estimation Using the Markov network algorithm
(DEUM) (Shakya et al., 2009) are some multivariate EDAs for continuous variables.

EGNA works by creating a Gaussian Bayesian Network to model the interactions be-
tween continuous variables in the population of current generation. The network
structure is learned greedily using a continuous version of the Bayesian Dirichlet
(BDe) metric (Heckerman et al., 1995), with a penalty term to prefer simpler models.
As EGNA, IDEA also models a Gaussian Bayesian Network. In EMNA a multivariate
Gaussian distribution is estimated based on the best solution of the previous iter-
ation. DEUM algorithm, on the other hand, uses Markov Networks to model and
sample the distribution.

Soloviev et al. (2023) proposed a semiparametric EDA (SPEDA) that overcomes the
limitations of traditional EGNAs by relaxing the Gaussianity assumption. The algo-
rithm uses semiparametric Bayesian networks where kernel-estimated nodes coexist
with Gaussian nodes, allowing the algorithm to choose the most suitable type for
each variable. Additionally, it leverages information from multiple past iterations to
build the network, improving robustness and reducing solution variance.

2.3.3 Applications in Computer Vision

Although EDAs have been applied in various deep learning techniques, minimal re-
search exists on their use in hyper-parameter optimization for computer vision tasks.
In contrast, GA and PSO algorithms have been more extensively analyzed.

SHEDA algorithm (Li et al., 2021), as mentioned, is the first implementation of EDA in
hyper-parameter optimization problem in CNNs. This project focuses its motivation in
improving the limitations SHEDA presents and in developing presented future lines.

Moreover, there is no work in which EDAs are implemented to hyper-parameter opti-
mization for any generative model, such as DCGANs.
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Chapter 3

Methodology

Methodology chapter begins by detailing the performance of CNNs, including the
structure and the training hyper-parameters necessary for optimization. This is fol-
lowed by an encoding scheme designed for the execution of the EDA. The main char-
acteristics of the EDA-CNN algorithm are then presented, highlighting various train-
ing approaches and the role of a surrogate model in addressing certain training sce-
narios. Additionally, the implementation of a multi-objective EDA-CNN is explained.
Finally, the EDA-DCGAN section is introduced, which analyzes the application of EDA
for optimizing the hyper-parameters of DCGANs. The code is available in Github1.

3.1 Convolutional Neural Networks

A CNN is a type of deep learning model specifically designed for processing data with
a grid-like topology, such as images. CNNs are designed to automatically and adap-
tively learn spatial hierarchies of features, ranging from low-level to high-level pat-
terns. This mathematical framework typically consists of three main types of layers:
convolutional, pooling, and fully connected layers. The convolutional and pooling
layers are responsible for feature extraction, while the fully connected layer maps
these extracted features to the final output, such as classification results. Figure
3.1 illustrates CNN structure. Moreover, residual blocks can be also added to CNNs,
which consist of architectural components that help address the vanishing gradient
problem, enabling the training of very DNN by incorporating skip connections.

3.1.1 Convolutional layers

A convolution layer is a core component of the CNN architecture, responsible for fea-
ture extraction through a combination of linear and nonlinear operations, specifically
the convolution operation and activation function.

• Convolution operation

This operation involves a small array of numbers, called a kernel, applied across the
input tensor. At each location of the tensor, an element-wise product between the
kernel and the input tensor is calculated and summed to produce an output value
in the feature map. Multiple kernels are applied to generate various feature maps,

1https://github.com/JanireAmestiS/EDA_HPO.git
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Figure 3.1: Convolutional Neural Network structure

each representing different characteristics of the input. Key hyper-parameters for
convolution are the size and number of kernels; common sizes are 3×3, 5×5, or 7×7,
while the number of kernels determines the depth of the feature maps.

Kernels are shared across all image positions, making the extracted features trans-
lation invariant, allowing the model to learn spatial hierarchies of features, and en-
hancing model efficiency by reducing the number of parameters compared to fully
connected networks.

The convolution operation reduces the height and width of the output feature map
compared to the input tensor, as the center of each kernel cannot overlap the outer-
most element of the input tensor. To address this, padding, typically zero padding,
adds rows and columns of zeros around the input tensor to ensure the convolution
does not shrink the output feature map compared to the input tensor, maintaining
the same dimensions. Zero padding also avoids feature maps getting smaller after
convolution operation, allowing, therefore, adding more layers.

The stride in the convolution operation refers to the number of pixels the filter ma-
trix moves across the input matrix. A stride of 1 means the filter moves one pixel
at a time, while a stride of 2 means it jumps two pixels, and so on. The value of
the stride impacts the model in several ways. Larger stride values result in smaller
output dimensions, effectively performing dimensionality reduction. They also speed
up computation since the filter is applied fewer times. However, larger strides can
cause the model to lose detailed information because the filter skips over some pix-
els, potentially reducing accuracy. So, choosing the appropriate stride value involves
balancing information preservation with computational efficiency and dimensionality
reduction.

During training, the CNN model learns the optimal kernels for a given task, while
the kernel size, number of kernels, padding, and stride are predetermined hyper-
parameters.

• Activation functions

The activation function introduces non-linearities to CNN, which are desirable for
multi-layer networks to detect nonlinear features
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The sigmoid function transforms the values in the range 0 to 1 and it is continuously
differentiable. Also, the sigmoid function is not symmetric about zero, which means
that the signs of all output values of neurons will be the same.

Hyperbolic Tangent function (Tanh) is similar to the sigmoid function but it is sym-
metric to around the origin. It is continuous and differentiable and the values lies
in the range -1 to 1. It has gradients which are not restricted to vary in a certain
direction and also, it is zero centered.

Rectified Linear Unit (ReLU) widely used non-linear activation function in neural net-
work. The function is linear for values greater than zero, but it is a nonlinear function
as negative values are always output as zero, deactivating neurons in this case. The
inactivity of neurons during training and consistently outputting zero, leads to loss
the learning capability. This problem is known as dying ReLU problem.

In order to deal with dying ReLU problem, Learky ReLU instead of defining the nega-
tive values as zero, it defines a small linear component of negative values and Expo-
nential Linear Unit (ELU) introduces a parameter slope for the negative values, using
a curve for defining the negative values.

3.1.2 Pooling layers

Pooling layers perform downsampling operations along the spatial dimensions (width
and height) of the input, reducing the dimensionality of the feature maps. This pro-
cess helps in reducing both the computational complexity and the amount of train-
able parameters.

The most popular form of pooling operation is Max pooling, which extracts patches
from the input feature maps, outputs the maximum value in each patch, and discards
all the other values. A max pooling with a filter of size 2 × 2 is commonly used in
practice. It downsamples the high and width dimension of feature maps by a factor of
2. Depth dimension of feature maps, however, remains unchanged. Average pooling
works same but it performs average value in each patch.

Global Average pooling, performs an extreme form of downsampling by converting a
feature map into a 1 × 1 array. This is achieved by averaging all the elements in each
feature map, while retaining the depth of the feature maps. Global Maximum pooling
operation, calculates the maximum instead. Global pooling is typically applied only
once, just before the fully connected layers.

3.1.3 Fully connected layers

The fully connected layer serves as the final stage in the CNN process, integrating all
the extracted features to make a prediction.

The output feature maps from the final convolution or pooling layer are typically
flattened into a one-dimensional vector. This vector is then fed into one or more fully
connected layers, also known as dense layers, where each input is connected to every
output through a learnable weight.

Each fully connected layer is followed by a non-linear activation function, such as
ReLU, which introduces non-linearity into the model, aiding in learning complex pat-
terns. This combination of dense connections and non-linear activation functions
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allows the network to effectively translate high-level features into accurate predic-
tions, enabling successful tasks like image classification. The last fully connected
layer usually has the same number of output nodes as there are classes in the task.

This enables the network to accurately classify or predict outcomes based on the
complex patterns and relationships present in the input data.

The number of dense layers, the amount of neurons in each dense layer and activa-
tion functions are predetermined hyper-parameters, weights, however, are trainable
parameters.

3.1.4 Residual blocks

A residual block consist on an architecture designed to improve neural network train-
ing and performance.

It consists mainly of the following components: (i) two convolutional layers, each with
a kernel size of 3x3 and padding of 1, (ii) batch normalization after each convolu-
tional layer normalizing the input to the following layer stabilizing and accelerating
training, (iii) non-linear activation functions such as ReLU applied after first batch
normalization and again after skip connection and (iv) skip connection which adds
the input of the block to the output of the last batch normalization layer.

This connection facilitates gradient flow, reducing the vanishing gradient problem
and performance degradation problem, enabling the training of deeper networks.

In summary, the input to a residual block is added to the output of its layers before
the final activation function is applied. This allows the network to learn both the
identity function and any necessary transformation, improving generalization and
the ability to learn complex patterns. Learning the identity function refers to the
ability to learn to output the same input as received. This is interesting since it
ensures that if learning transformations in some layers do not improve the model,
those layers can at least return the same output, without causing any harm.

3.1.5 CNN training

In CNN training procedure, there are other hyper-parameter to optimize such as the
batch size, the learning rate and the optimizer to use for weight updating.

• Batch size

The batch size is a hyper-parameter that determines the number of samples to work
through before updating the internal model parameters. This constitutes a single
iteration.

The choice of batch size can have a significant impact on the learning process. A
smaller batch size can lead to faster convergence and can help the model escape
from local minima. It also reduce memory requirements. However, it may lead to
noisy gradient estimates, which can lead to instability in the learning process. A
larger batch size can reduce the variance of the gradient estimates and improve the
stability of the training. However, it also increases the memory requirements and may
lead to slower convergence. Therefore, batch size involves trade-off between stability
and speed.
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• Learning rate

Learning rate determines the size of the steps taken during the optimization process
and determines how quickly or slowly a model converges to the optimal solution. A
large learning rate can lead to rapid convergence but may result in unstable and
oscillating training. A small learning rate, however, can ensure stable and smooth
training but may result in slower convergence. Therefore, it is important to choose a
learning rate that balance both training speed and stability.

Learning rate decay methods have been implemented, which consist on start training
the network with a large learning rate and then slowly reduce it until local minima is
obtained, with the aim to avoid oscillation and to obtain faster convergence. Larger
learning rates at first training epochs accelerate training and help the network es-
cape local minima. As epochs goes by, decaying the learning rate helps the network
converge to a local minimum and avoid oscillation.

Step decay schedule, for instance, drops the learning rate by a factor every few epochs
and exponential decay schedule decays the learning rate using an exponential func-
tion.

• Optimization algorithms

Gradient descent is an optimization algorithm used to minimize the loss function by
iteratively adjusting the model parameters. The algorithm calculates the gradient
of the loss function with respect to each parameter, indicating the direction of the
steepest increase in loss. By updating the parameters in the opposite direction of
the gradient, the algorithm seeks to reduce the loss and find the optimal values that
minimize prediction error. There are three variants of gradient descent, which differ
in how much data we use to compute the gradient of the objective function: batch
gradient descent, stochastic gradient descent (SGD) and mini-batch gradient descent.

Batch gradient descent calculates the gradient of the loss function using the entire
training dataset. This ensures stable and accurate parameter updates but can be
computationally expensive and slow, especially for large datasets.

SGD updates the model parameters using one training example at a time. This intro-
duces noise in the updates, which can help escape local minima but results in less
stable convergence.

Mini-batch gradient descent divides the training dataset into small batches and uses
these to compute the gradient and update the model parameters. This approach
balances the efficiency of SGD with the stability of batch gradient descent, reducing
computational burden and speeding up training while maintaining more stable and
accurate updates.

Momentum is an optimization technique that accelerates gradient descent by adding
a fraction of the previous update to the current update. This helps to smooth out the
path of the parameter updates, reducing oscillations and speeding up convergence,
especially in directions with consistent gradients.

Nesterov Accelerated Gradient improves momentum by looking ahead at the future
position of the parameters. This leads to more informed and potentially faster up-
dates and also helps to correct the overshooting problem associated with momentum.

Adaptive Gradient (Adagrad) adapts the learning rate for each parameter individually
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based on the historical gradient information. It adapts the learning rate to the pa-
rameters, performing larger updates for infrequent parameters and smaller updates
for frequent parameters. For this reason, it is well-suited for dealing with sparse
data.

AdaDelta is an extension of Adagrad that tries to deal with decaying learning rate
problem that Adagrad may present. It restricts the window of gradient accumulation
to a fixed size, allowing the learning rate to adapt over time without decaying to
near-zero. This makes it more robust for long training sessions.

Root Mean Square Propagation (RMSProp) is another adaptive learning rate method.
It is an extension of gradient descent and AdaGrad algorithms. The algorithm works
by exponentially decaying the learning rate every time the squared gradient is less
than a certain threshold. It helps to avoid the problem of the learning rate being
too small or too large. If the gradients are small, the learning rate will be increased
to speed up convergence, and if the gradients are large, the learning rate will be
decreased to avoid overshooting the minimum of the loss function.

Adaptive Moment Estimation (Adam) combines the advantages of both RMSProp and
Momentum. Adam keeps track of an exponentially decaying average of past gradi-
ents. This helps to smooth out the updates and navigate noisy gradients. Adam
also computes an exponentially decaying average of past squared gradients. This is
used to scale the learning rate for each parameter, allowing for larger updates for
infrequent features and smaller updates for frequent ones. It incorporates a bias
correction step to counteract that the means calculated in the initial iterations are
biased towards zero. AdamW is a variant of the Adam optimizer that separates weight
decay from the gradient update.

3.2 EDA encoding scheme

Individuals in an EDA have a fixed length, however, an objective of the project consists
of looking for the best promising network topology for classification tasks, so a fixed
length solution may not be suitable for this purpose. Therefore, a criteria has been
develop in order to encode a not fixed network structure into a fixed length solution.

Firstly, the hyper-parameters to optimize are the following: amount of convolutional
layers, amount of filters of each layer, convolutional layers kernel size, convolutional
layer strides, whether or not to include a residual block, whether or not to include
a pooling layer, amount of fully connected layers, amount of neurons in each fully
connected layer, batch size, learning rate and optimizer. Therefore, an individual is
an array composed with 11 real number values.

Each hyper-parameter contains multiple options and the encoding of the individuals
will be encoded based on these options.

Batch size and learning rate, for instance, are discretized, being batch size options
powers of 2, such as 16, 32, 64, 128, 256; and learning rate options 0.01, 0.001,
0.0001 or 0.00001. Optimizer options, on other hand, are Adam, SGD, AdamW and
RMSProp.

Encoding of convolutional layer characteristics such as amount of convolutional lay-
ers, amount of filters of each layer, convolutional layers kernel size, convolutional
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layer strides, residual blocks and pooling layers is limited to a maximum number of
layers, 10 layers in the project, establishing a maximum length of 10 values.

For these variables an option does not consist of a real value number, but of a list
of maximum 10 values. For instance, an option in amount of filter hyper-parameter
would be [32, 32, 64, 64, 128, 128, 64, 64, 32, 32]. This vector determines a unique
solution, a combination of kernels of different convolutional layers. In this case,
therefore, the amount of convolutional layers would be 10. However if a combination
contains 0s, for example [32, 32, 64, 64, 128, 128, 0, 0, 0, 0], the amount of layers
would be 6 and will contain 32, 32, 64, 64, 128 and 128 kernels each.

Residual blocks and pooling layers options are also arrays of maximum length of 10,
in this case binary value array, and each option indicate where to add the residual
block or pooling layer. For example option [0,0,0,0,0,0,0,0,0,0] for residual block
hyper-parameter means there is no residual blocks in the topology of the individual
network. [0,0,1,0,0,1,0,0,0,0] option, however, means there are 2 residual blocks
in network topology. First residual block will start in third convolutional layer and
second one in sixth convolutional layer. In order to know how many kernels add
to these residual blocks, third and sixth position of the amount of kernel hyper-
parameter will determine the kernels of these residual blocks. In this case, two more
convolutional layers will be added since a single residual block is formed by two
convolutional layer structure.

Pooling layer hyper-parameter options work same, a pooling layer is added after the
convolutional layer position in which a 1 appears. [0,0,0,1,0,0,0,1,0,0] option indi-
cates 2 pooling layers after fourth and eighth convolutional layers. Since pooling
layers perform downsampling along spatial dimensions, width and height, there is a
limited amount of pooling layers to include, so the addition of pooling layers is re-
stricted to a determined number. Depending on the size of the original images, this
amount changes.

The hyper-parameter that indicates the depth of the network is the amount of kernels
in each convolution layer. So, if variable indicates a depth of 8 layers, the length of
the other hyper-parameters will be shorted to a length of 8. For instance, if amount of
kernel option is [32, 32, 64, 64, 128, 128, 0, 0, 0, 0], pooling layer hyper-parameter
[0,0,0,1,0,0,0,1,0,0] option will be taken into consideration only up to its sixth posi-
tion.

Fully-connected network encoding works with same criterion. Number of neurons
of each layer hyper-parameter will determine the amount of fully connected layers
and its amount of neurons. [64] option determines a fully connected layer with 64
neurons followed by a final fixed layer with the same amount of neurons as classes
of the classification task.

In previous paragraphs the options and the encoding of each hyper-parameter have
been explained. The encoding of an individual of EDA is based on these options.
Values of the individual array consist of the index of the selected option within a
set of options for each hyper-parameter. Since options are predetermined, an indi-
vidual will include 9 values since there are 9 hyper-parameters excluding amount
of convolutional layers and fully-connected layers and each value will be in range
from 0 to number of options or combinations in the set of each hyper-parameter.
Then, the hyper-parameters for the number of convolutional layers and the number
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of fully connected layers are added to the solution, which are determined from the
already defined hyper-parameters: number of neurons of fully-connected layers and
the number of filters of each convolutional layer. So, individual, finally will contain 11
values, being 11 the amount of hyper-parameters to optimize. Figure 3.2 illustrates
an example of the encoding of an individual.

Figure 3.2: Individual encoding scheme.

3.3 EDA-CNN

Taking into consideration CNN hyper-parameters to optimize are discrete hyper-
parameters, the implemented EDA is the multivariate EBNA model, allowing also
dependencies between CNN hyper-parameters.

In order to analyse the performance of the algorithm, a 10 category classification
problem is used, CIFAR-10 (Krizhevsky et al., 2009) dataset. Dataset contains 50000
training images and 10000 test images, where each image height and width are 32 ×
32 pixels and each pixel contains three channels.

When it comes to EDA main characteristics in the proposed implementation, a gen-
eration is composed by 50 individuals that allow to learn the Bayesian Network. The
structure learning phase is carried out implementing a score+search algorithm that
looks for the Bayesian Network that maximizes the BIC score, Hill Climb search al-
gorithm. The algorithm starts with an initial direct acyclic graph (DAG) and then
iteratively makes small changes to the DAG in order to improve BIC of the solution.
It proceeds with small changes until it reaches a local maximum, meaning that no
further improvement can be made.

Although a population size of 50 is set for experiments, an analysis will also be con-
ducted in order to understand the effect of population size and the generations re-
quired to converge to a local minimum.

Related to CNN, topology and training characteristics are defined by the selected
hyper-parameters. However, all individuals have some common characteristics: (i)
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loss function, (ii) number of training epochs and (iii) learning rate scheduler.

CNN training aims to minimize the cross-entropy loss, which measures the difference
between the discovered probability distribution of a classification model and the pre-
dicted values. It allows to find the optimal solution by adjusting the weights of CNN
model during training. A measure closer to 0 is a sign of a good model, whereas a
measure closer to 1 is a sign of a poor-performing model. Taking it into consideration,
EDA focuses on minimizing the cross-entropy loss.

Learning rate scheduler is implemented, OneCycle learning rate concretely, which
anneals the learning rate from an initial value to some maximum learning rate and
then from that maximum to some minimum learning rate much lower than the initial
one. The OneCycle learning rate policy changes the learning rate after every batch,
this is every step. Thus, learning rate hyper-parameter will determine the maximum
learning rate the scheduler can reach.

Number of epochs needed to determine the quality of a CNN architecture in CIFAR-10
problem is set to 25 epochs providing a trade-off between quality and computational
cost. Experiments showed training less epochs do not allow to distinguish between
the solutions that get stuck in local minimum and the solutions that keep improving
in following epochs. On other hand, although training more epochs result on a more
precise performance metric, computational costs also increase. Therefore, it has been
analysed 25 epochs is enough to identify the solutions that keep on improving and
performing better. Since evolutionary algorithm aims to identify the best solutions in
a population, it is enough to identify which ones keep on improving and performing
well.

Following sections study (i) different training approaches with different evaluation
methods for individuals in a population of the EDA, (ii) the training of a necessary
surrogate model to carry some training approaches out and (iii) the multi-objective
approach aiming to look for best hyper-parameters taking into consideration its com-
putational training costs.

3.3.1 Training approaches

An individual in each generation is evaluated with a fitness function. The fitness
value of each individual, in this case, corresponds to the cross-entropy loss function
achieved in the CNN training with the hyper-parameters the solution impose. Being
f the fitness function which corresponds to CNN training, EDA-CNN procedure is
explained in Algorithm 3.

As each generation contains 50 individuals, each generation requires 50 CNN train-
ings. However, each training requires high computational costs and resources. In
order to deal with this limitation, a surrogate model is considered simplifying evalu-
ations of complex CNN models. Surrogate model maps input data to outputs when
its relationship is computationally expensive to evaluate, avoiding CNN trainings for
each individual of the generation.

Therefore, a surrogate model must be trained to be able to approximate fitness value
given the hyper-parameters of the solution. Section 3.3.2 explains in detail the sur-
rogate training procedure.

CNN-Surrogate approach consists of replacing f CNN training function with surrogate
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Algorithm 3 EDA-CNN

1: M0 ← (S0, θ0)
2: D0 ← Sample N individuals from M0

3: for l = 1, 2, . . . until a stop criterion is met do
4: DSe

l−1 ← Select Se individuals from Dl−1 depending on Fl−1

5: S′
l ← Find the structure which maximizes BIC(Sl, D

Se
l−1)

6: θl ← Calculate {θijk =
N l

ijk+1

N l
ij+ri

} using DSe
l−1 as the data set

7: Ml ← (S′
l, θ

l)
8: Dl ← Sample N individuals from Ml using PLS
9: Fl ← f(Dl) CNN training

10: end for

model prediction step. This step does not require computational resources, since it
does not work with images and no CNN training is necessary. A surrogate model g
must be build with initial solutions O.

However, surrogate based evaluations are approximations of the real fitness value
and depends on the quality of the surrogate model. In order to have a more pre-
cise results, EDA-CNN-Surrogate approach is proposed that combines both previous
evaluation methods, CNN training evaluations and surrogate predictions. This ap-
proach provides a trade-off between the precision of training a CNN and the required
computational cost.

Algorithm changes the evaluation method in comparison to previous ones. The eval-
uation method involve predicting each individual fitness value using surrogate based
evaluation and comparing each prediction with a percentage, a threshold, which is
calculated at each generation. As it is a minimizing problem, if surrogate based eval-
uation is below the threshold, it will be considered a promising solution, replacing its
evaluation with a CNN training, to achieve a more precise evaluation of the promising
solutions. This allow to prevent from evaluating with a CNN no promising solutions,
reducing therefore computational costs. At first generation, surrogate based evalu-
ation is applied since there are no other previous individuals evaluated to compare
with.

The threshold indicates the 30th quantile of the fitness values on previous generation,
being this value the point at which 30% percent of the data fall below that value. If
the surrogate based evaluation is below this value, it is classified as a promising
solution, since it is below the 30% percent of previous generation fitness values.

Algorithm 4 displays the pseudo-code of EDA-CNN-Surrogate approach.

Moreover, based on EDA-CNN-Surrogate approach, another criterion have been com-
pared, which stands on reducing the threshold as generations go by, being more
critical on classifying a solution as promising. Initial threshold is quantile 30 and it
is reduced to quantile 5. As generations goes by, solutions convergence towards local
minima, so more solutions may result promising. That is why a more critical thresh-
old is applied in higher generations, reducing more required computational resources
and costs.
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Algorithm 4 EDA-CNN-Surrogate

1: O ← Run initial solutions
2: Build surrogate model g(O)
3: M0 ← (S0, θ0)
4: D0 ← Sample N individuals from M0

5: for l = 1, 2, . . . until a stop criterion is met do
6: DSe

l−1 ← Select Se individuals from Dl−1 depending on Fl−1

7: S′
l ← Find the structure which maximizes BIC(Sl, D

Se
l−1)

8: θl ← Calculate {θijk =
N l

ijk+1

N l
ij+ri

} using DSe
l−1 as the data set

9: Ml ← (S′
l, θ

l)
10: Dl ← Sample N individuals from Ml using PLS
11: Fl ← g(Dl) surrogate based evaluations
12: if l > 0 then
13: q30← quantile30(Fl−1) Get previous generation fitness quantile 30
14: for individual Di in Dl do
15: if Fl < q30 then
16: Fi ← f(Di) CNN training
17: end if
18: end for
19: end if
20: end for

3.3.2 Surrogate model

An initial population is essential so as to build the surrogate model. Given the so-
lutions and its fitness values, surrogate model can be trained to understand the
relationships between the predictive variables which include the hyper-parameters
encoded in the solution and the target variable, this is the fitness value achieved
after the CNN training of each solution.

Surrogate model precision highly depends on this initial population, so a diverse ini-
tial population is interesting in order to cover the objective search space, providing
more predictive capabilities to the surrogate model. If initial population does not
cover all search space, model predictions may be poor approximations of the fitness
value. If the solution space is not too big, it is more likely to cover the entire search
space and build a precise and efficient surrogate model. However, in problems in
which the solution space is huge, initial population would not cover the entire search
space due to the computational costs required for these initial evaluations. There-
fore, surrogate model efficiency would decrease, reducing the fitness approximation
capabilities. Mentioned EDA-CNN-Surrogate approach tackle the mentioned situa-
tion, using surrogate model to detect the promising solutions and then training CNN
to replace the surrogate approximation with the training results of the CNN.

Different models have been trained to output fitness value given the hyper-parameters
of the solution: Gaussian Process Regressor, Decision Tree Regressor and Random
Forest Regressor. Implementing grid search to optimize hyper-parameter of these
models trying to reduce the mean squared error between predicted and real fit-
ness values, Random Forest Regressor shows more robust and efficient performance,
achieving, in addition, the minimum mean squared error between real and predicted
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values.

A Random Forest Regressor is an ensemble learning method that merges numerous
decision trees to produce a single outcome. It operates by constructing multiple
decision trees during training and outputting the average prediction of the individual
trees. In Random Forest, bootstrapping is a fundamental technique used to create
multiple subsets of the original dataset. Each bootstrap sample is used to train
an individual decision tree within the Random Forest. The use of bootstrapping in
Random Forest introduces diversity among the decision trees because each tree is
trained on a different subset of data, providing effectiveness of the ensemble method.
When predictions are made, it aggregates the predictions from all the individual trees,
typically by averaging them in regression tasks, to produce a final, more accurate and
stable prediction.

Surrogate Random Forest model contains 50 decision trees with 15 leaves depth,
achieving a root mean squared error of 0.2159. The more important features accord-
ing to regressor model are the learning rate, the amount of convolutional layers, the
optimizer and the addition of residual blocks.

This Random Forest surrogate model is implemented in EDA-Surrogate, EDA-CNN-
Surrogate and EDA-CNN-Surrogate with threshold decay approaches.

3.3.3 Multi-objective EDA-CNN

Multi-objective EDA-CNN approach aims to optimize hyper-parameters so as to get a
solution that minimizes its cross entropy loss in CIFAR-10 classification task while
taking into consideration required computational costs, trying to minimize it. In this
situation, there is no a single solution that is best with respect to all objectives.
Instead, a set of trade-off solutions exists, where improving one objective would lead
to a deterioration in the other objective.

Therefore, the result of this approach consist of a set of solutions known as non-
dominated solutions. A solution is considered non-dominated if there is no other
solution that is better in at least one objective without being worse in another. This
set of all non-dominated solutions is known as the Pareto front and represents the
best trade-off between the objectives.

Multi-objective EDA-CNN combines non-dominating sorting and crowding distance
approaches to select the individuals of next generation. Non-dominating sorting is
used to sort the solutions in population according to the Pareto dominance principle.
Non-dominated sorting first selects all the non-dominated solutions from population
and assigns them to first Pareto front; then, it selects all the non-dominated solu-
tions from the remaining solutions and assigns them to second Pareto front and it
repeats the above process until all individuals have been assigned to a front. Crowd-
ing distance, on the other hand, measures the density of a solution in the objective
space calculating the average distance of its two neighboring solutions. During the
selection process, solutions with lower Pareto front assignation and larger crowding
distances are preferred in order to maintain good and dispersed solutions, promoting
both intensity and diversity.

Taking both techniques into consideration, multi-objective EDA-CNN approach uses
EBNA algorithm trying to minimize the CNN training loss function, penalizing solu-
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tions by the corresponding Pareto front assigned. The more dominated solutions, this
is, the solutions in last Pareto front, are more penalized, whereas, non-dominated so-
lution fitness values do not have any negative effect. For this purpose, the value of
the Pareto front to which a solution is assigned is added to the fitness value of the
individual. Added values are normalised within a range established between the min-
imum and maximum fitness value so that penalizations do not affect more than the
fitness value of solutions.

This approach allow the decision maker to analyse all non-dominated solutions and
establish its preferences between the fitness or computational cost objectives. Taking
fitness value as a preference, the non-dominated solution that minimizes the individ-
ual fitness value would be considered, whereas prioritizing computational cost, the
non-dominated solution that minimizes the computation costs would be considered.
A promising solution also would be a non-dominated solution that provides a trade-
off between both objectives.

3.4 EDA-DCGAN

3.4.1 Deep Convolutional Generative Adversarial Networks

Deep Convolutional Generative Adversarial Networks (DCGANs) are an advanced type
of GAN that incorporate CNNs to improve the quality and stability of generated im-
ages. GANs consist of two neural networks, a generator and a discriminator, which
compete against each other in a zero-sum game. The generator creates fake images
from random noise, while the discriminator attempts to distinguish between real and
fake images. In a DCGAN, both the generator and discriminator are built using deep
convolutional layers, which allows the model to effectively capture spatial hierarchies.

The generator network employs transposed convolutions to upsample the input noise
into a full-sized image, while the discriminator uses standard convolutions to classify
the images as real or fake. Latent space refers to a lower-dimensional vector space
from which the generator network creates new data samples.

This architecture enhances the generator’s ability to produce high-resolution and
realistic images, and the discriminator’s capacity to effectively distinguish between
real and generated images.

3.4.2 Hyper-parameter Optimization

Hyper-parameter optimization has been applied to the DCGAN architecture for gen-
erating MNIST images with EDAs, aiming to produce highly accurate and visually
convincing images of handwritten digits from the MNIST dataset, demonstrating the
effectiveness of hyper-parameter optimization in enhancing the generative capabili-
ties of the model. Dataset contains 60000 training images and 10000 test images,
where each image height and width are 28 × 28 pixels and a unique channel.

Taking into consideration generated images must have a determined size, 28x28 with
one channel in MNIST images, there are combinations of hyper-parameters that con-
struct a DCGAN that does not generate desired size images. In order to deal with this
limitation, an architecture has been established for both networks, not allowing to
change the topology and the depth of both networks. Moreover, generator and dis-
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criminator networks are designed to have similar or mirrored architectures, resulting
on a symmetric DCGAN.

The architecture of the discriminator includes two convolutional layers, incorporat-
ing the batch normalization technique to normalize the inputs to each layer. This
normalization helps to stabilize and accelerate the training process. Additionally, the
architecture employs the LeakyReLU non-linear activation function after each layer.
Fully-connected layer of the discriminator also contains 2 layers.

Generator network starts with a vector of random noise which is passed through a
fully connected layer, followed by a reshape operation to form an initial feature map.
This helps in transitioning from the noise vector to a more structured representa-
tion. Then, two transposed convolutional layers are applied, performing upsampling,
gradually increasing the spatial dimensions of the feature maps while reducing the
number of channels. Batch normalization and LeakyReLU activation functions are
applied after each transposed layer.

Model weights of both networks are updated minimizing binary cross entropy with
logits loss, since both perform binary classification tasks. It combines the sigmoid
activation function and the binary cross-entropy loss into a single function, making
it more efficient and numerically stable.

Therefore, the hyper-parameters to optimize include amount of kernels of two con-
volutional and transposed convolutional layers, kernel size, strides, latent dimension
size, discriminator learning rate, generator learning rate, batch size and optimizer,
all encoded using explained encoding scheme.
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Results

This section presents the results of implementing EDAs for hyper-parameter opti-
mization in two tasks: image classification using CNNs on the CIFAR-10 dataset, and
image generation using DCGANs on MNIST digits dataset.

The experiments were conducted using the EDAspy Python library (Soloviev et al.,
2024). In order to run neural networks to evaluate each individual in population,
a high-performance graphics processing unit, NVIDIA A100-PCIE-40GB GPU, has
been used which provides exceptional processing power and efficiency in handling
large-scale computations.

4.1 EDA-CNN approaches

This section provides the results of the different training approaches mentioned
in previous sections: EDA-CNN, EDA-Surrogate, EDA-CNN-Surrogate and multi-
objective EDA-CNN.

All approaches have in common that as generations goes by, the amount of duplicated
solutions increases. Figure 4.1 illustrates the number of duplicated individuals in
each generation, being the population size of 50 individuals. The analysis shows that
in the 4th generation, duplicated solutions already exist, and in the 7th generation,
more than half of the population is duplicated.

Figure 4.1: EDA-CNN: amount of duplicated individuals (copies) in each generation.

Taking this analysis into consideration, termination criteria of the different training
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approaches is established to the 6th generation, limiting the amount of duplicated
individuals to the half of the population.

Therefore, the convergence and the computational costs each approach require is
analysed and visualized up to the 6th generation. Cross-entropy loss in validation
data set is visualized of each individual in a generation to analyze the convergence of
the algorithm. For computational cost analysis, mean execution time of each gener-
ation in seconds is visualized. Moreover, computational costs interquartile range is
also displayed to show the spread of the middle half of the distribution.

4.1.1 EDA-CNN evaluation

This approach require a CNN training for all individuals, so taking into account each
generation include 50 individuals, the algorithm consists of 300 CNN trainings and
the evolutionary procedure.

Figure 4.2 shows the convergence of the algorithm, reaching a population of promis-
ing solutions that minimize the cross-entropy loss in the validation set. Analysing
each generation boxplot, this algorithm seems to have already convergence in 4th
and 5th generations. Although the solutions seems to be better as generations go
by, it has been analysed that from 4th generation on, the amount of duplicated so-
lutions increase, taking as a conclusion that this algorithm requires around 4 or 5
generations to convergence to local minimum.

However, the mean execution time is high, requiring 1000 seconds by mean to train
an individual. In total, each generation requires 50000 seconds to evaluate the 50
individuals, around 14 hours of execution time per generation. Therefore, whole
algorithm execution is around 85 hours.

Figure 4.2: EDA-CNN algorithm performance: convergence and computational cost.

The algorithm outputs the hyper-parameter configuration that reaches the minimum
validation cross-entropy. The behaviour, including the cross-entropy loss and the
accuracy, of the best achieved CNN training is analysed during 50 epochs in training
and validation sets in Figure 4.3. Optimized CNN reaches 99.9% of accuracy and
0.005 cross-entropy loss in CIFAR-10 training set, and 93.6% of accuracy and a
cross-entropy loss of 0.263 in validation set. Therefore, there is low bias and high
variance, since algorithm perform better in training set than in validation set, over-
fitting the training data.
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Figure 4.3: Optimized EDA-CNN algorithm performance: loss and accuracy.

4.1.2 EDA-Surrogate model evaluation

EDA-Surrogate approach, needs more generations to reach a convergence compar-
ing to previous EDA-CNN algorithm, since 2nd and 3th generations do not improve
previous generations. 4th and subsequent generations, however, enhance population
including individuals with lower cross-entropy loss. This performance is illustrated
in Figure 4.4.

Yet algorithm performance improves EDA-CNN mainly in the required execution time.
The scale of the execution time in the Figure 4.4 goes from 0 to 0.2 seconds, what
indicates that the evaluation of an individual does not exceed the 0.2 seconds. Each
generation execution time, therefore, is by mean of 1.45 seconds, needing for whole
algorithm 10.2 seconds.

Nevertheless, this approach requires additional time to train the initial samples used
for surrogate model training. The more initial samples, the more likely it is to train
a surrogate model that approximates better the fitness function. But taking into
consideration each individual by mean needs 15 minutes to be trained, a trade-off
must be found in order to balance the quality and computational cost of the surrogate
model. For instance, training 100 individuals for the surrogate model training, the
total computation cost of the algorithm increase 24 hours approximately,

On the other hand, since all the evaluations in this approach consist of surrogate
evaluations, fitness value of individuals are approximations of the cross-entropy loss
given the hyper-parameter configuration. Therefore, the output result given by the
algorithm, this is, the best achieved hyper-parameter configuration, is evaluated with
the CNN training, whose performance is shown in Figure 4.5. This model also over-
fits the training data, since it reaches a 99.10% of accuracy and 0.028 cross-entropy
loss in the training data set, while a 92.00% of accuracy and 0.337 cross-entropy loss
in the validation set.

4.1.3 EDA-CNN-Surrogate model evaluation

Combining surrogate and CNN evaluation methods, algorithm achieves an improve-
ment in each generation, converging to a local optimum while reducing computational
costs in comparison with EDA-CNN approach.
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Figure 4.4: EDA-Surrogate algorithm performance: convergence and computational
cost.

Figure 4.5: Optimized EDA-Surrogate algorithm performance: loss and accuracy.

Taking the percentile 30 as the threshold to determine the promising solutions for
the CNN evaluation method, the performance of the algorithm, Figure 4.6, illustrates
that solutions in 5th generation have already converged. The best solution reaches
after 50 epochs an accuracy of 0.997 in training data and 0.936 in validation data
and a cross-entropy loss of 0.010 in training data and 0.274 in validation data.

Related to the execution time, as in each generation individuals are evaluated with
both evaluation methods, the mean by generation decrease to 365 seconds approxi-
mately. Analysing the interquartile range of the execution time to know the spread of
the middle half of the distribution (Figure 4.6), the execution time reduces over the
generations, indicating there are less solutions with a fitness lower than the fitness
corresponding to the established threshold, this is, there are less promising solu-
tions. Early generations contain more promising solutions since the algorithm has
not already converged and the fitness threshold is high. However, as solutions im-
prove in each generation, the threshold decrease, making it more difficult to achieve
the promising solutions capable of reducing the threshold.

Each generation, containing 50 individuals, require from 12371 to 36766 seconds,
this is, from 3.5 hours to 10 hours. In total, the whole algorithm lasts 127787 sec-
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onds, 35 hours. Nevertheless, as surrogate model is used for solution evaluation, the
surrogate model training computational cost must also be taken into consideration.
Therefore, 24 hours must be added to the 35 hours, requiring in total 59 hours.

Figure 4.6: EDA-CNN-Surrogate algorithm performance: convergence and computa-
tional cost.

Related to the proposed approach of reducing the threshold as generations goes by in
order to be more selective in determining the promising solutions, the algorithm con-
vergence seems similar while reducing even more the computational cost. Achieved
best individual reaches an accuracy of 0.983 and 0.929 and a cross-entropy loss of
0.052 and 0.250 in training and validation data respectively.

Evaluation time of an individual in EDA-CNN-Surrogate with dynamic decaying thresh-
old goes from 80 to 750 seconds by mean in each generation. First generation, for in-
stance, requires in total 37128 seconds (10 hours) to evaluate all individuals, whereas
4th generation requires 4025 seconds (1.1 hours) since almost all individuals are
evaluated with the surrogate model without being classified as promising solutions.
Total execution time of all generations is approximately of 102571 seconds, this is, of
28 hours. Adding the training execution time of the surrogate model, the total time
reaches 52 hours.

In order to analyse deeply the evaluation methods in each generation taking into
consideration the different approaches of establishing the threshold, this is fixed or
dynamic threshold, Figure 4.7 illustrates the amount of individuals that have been
evaluated with the corresponding evaluation method in the two approaches.

Decaying the threshold reduces the amount of individuals that are evaluated with
CNN training method. In 3rd generation, for instance, a fixed threshold classify 76%
of individuals as promising, running a CNN to evaluate the individual. However, a
dynamic threshold reduces the percentage to a 60%, which in this case consists of 30
individuals. In 4th generation the promising solution percentage also reduces from
24% to 10%.

Taken the optimized configuration of hyper-parameters of EDA-CNN-Surrogate with
dynamic threshold approach, accuracy metric and loss function of the CNN training
is shown in Figure 4.8 during the training epochs, finally achieving the already men-
tioned results, this is, 92.90% of accuracy in the validation set. As already analyzed
optimized models from other approaches, an over-fitting is analysed comparing train
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(a) Fixed threshold (b) Dynamic threshold

Figure 4.7: Individual evaluation methods in (a) fixed threshold and (b) dynamic thresh-
old EDA-CNN-Surrogate approaches.

and validation sets.

Figure 4.8: Optimized EDA-CNN-Surrogate algorithm performance with decaying
threshold approach: loss and accuracy.

Furthermore, as EBNA algorithm evolve population by sampling from a learnt Baye-
sian Network, the EDA-CNN-Surrogate algorithm also returns the learnt Bayesian
Network and the conditional independencies between variables, in this case, between
the CNN hyper-parameters.

On the other hand, a fixed population size has been determined to carry the ex-
periments out, however, the behaviour of the EDA-CNN-Surrogate algorithm has
also been tested with different population sizes in order to determine the minimum
amount of individuals needed to achieve a good behaviour and, therefore to reduce
the computational cost.

Figure 4.9 shows both cross-entropy validation loss and computation cost with 20,
30, 40 and 50 individuals in each generation. It is remarkable the greater the amount
of individuals, the faster algorithm reaches a convergence, achieving moreover, a
population including solutions with lower fitness values taking into consideration the
loss function. 20 and 30 individuals in a generation, however, need more generations
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to converge.

Related to execution time needed in each generation, 50 individuals require more time
to evaluate all the solutions, as it is reflected in first generation. However, the amount
of CNN training evaluations highly depends on the amount of promising classified
solutions, which consists of solutions lower than the calculated fitness threshold.
With 50 individuals, the search space may be more covered, and more interesting
spaces can be reached more easily, being the threshold of 30% of the fitness value
lower due to the quality of individuals. This way, individuals in following generation
need to be lower than this fitness threshold in order to be classified as promising and
since this threshold may be lower due to the good quality of solutions in previous
generation, less individuals may be classified as promising, resulting on less CNN
trainings.

Therefore, although more individuals require more evaluations, a larger population
size does not require a proportional computational cost increase, since surrogate
model evaluation helps to determine those promising solutions and use the CNN eval-
uation method only in promising solutions, avoiding CNN training of poorer hyper-
parameter configurations.

Figure 4.9: Comparison of cross-entropy loss and computational cost with different
population sizes.

Analysing the numerical results in Table 4.1, it is remarkable the EDA-CNN-Surrogate
algorithm with 30 individuals reach a validation accuracy of 94.60%, reaching the
best found local optima. However, in previous figure is analysed that population size
of 30 do not convergence as well as a population size of 50 or 40. A population size
of 40 come up with a similar solution to a population size of 50 when it comes to
the metrics, nevertheless, it requires 10 hours less in this optimization problem task.
Additionally, the surrogate model training time must be added to all the approaches
showed in the table, which is the same in all cases.
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Model
Train Validation Computational

costLoss Accuracy Loss Accuracy

Population 50 0.010 0.997 0.274 0.936 28.5h

Population 40 0.003 0.999 0.305 0.938 17.5h

Population 30 0.001 0.999 0.278 0.946 21.3h

Population 20 0.032 0.990 0.288 0.928 16.5h

Table 4.1: Training and validation metrics and computational cost for EDA-CNN-
Surrogate algorithm with different population sizes.

4.1.4 Multi-objective EDA-CNN

Multi-objective EDA-CNN evaluates each individual with CNN training, since although
a surrogate model that approximates the loss function is already trained, there is no
model that approximates the second objective, the computational cost.

Multi-objective EDA-CNN optimization process is carried out with 50 individuals in
each generation, as in previous approaches to enable the comparison between ap-
proaches. However, in order to visualize the evolution of the solutions and the differ-
ent fronts they form, an execution of 20 individuals is implemented.

Figure 4.10 shows the difference between the 20 individuals of the first generation
and the last generation in the different objectives. Although objectives consist of min-
imizing both individual validation cross-entropy loss and computational cost, Figure
4.10 shows the validation accuracy instead of the loss to visualize and interpret bet-
ter the results. Since the objective is to reach a high validation accuracy metric with
low computational cost, the optimal solution would be situated in top left position.
Figure 4.10 illustrates all the individuals on the generation, being the non-dominated
solutions the ones corresponding to front 0.

Individuals in the initial generation, Figure 4.10a, exhibit a wide range of computa-
tional costs, with many individuals showing low validation accuracy metric. This is
typical in early stages where the algorithm is exploring a broad solution space.

Compared to the first generation, the last generation, Figure 4.10b, shows solutions
with improved validation accuracy, since multiple individuals overcome 92% of ac-
curacy and all individuals are above 60% of accuracy. The computational costs are
generally lower, the range goes from 440 to 580 seconds, while in first generation
reaches 900 seconds. The result, therefore, indicates a more efficient set of solu-
tions.

Behaviour with a population size of 50 is similar. The computational cost ranges from
500 to 7000 in first generation and from 400 to 1200 in last generation. The quality
of the solutions also increase as generations go by.

Taking the non-dominated solutions from the set of solutions of the last generation
with a population size of 50 individuals, there is a possibility to establish the pref-
erences between the objectives and determine the configuration of hyper-parameters
that best fits the preferences.
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(a) First generation (b) Last generation

Figure 4.10: (a) First generation. (b) Last generation. Pareto fronts.

Establishing the preference on the solution that maximizes the validation accuracy,
the best achieved solution with a population size of 50 reaches an accuracy of 0.998
and 0.940 and cross-entropy loss of 0.004 and 0.314 in training and validation sets.
Therefore, multi-objective algorithm also provides hyper-parameter configurations of
high quality. With 20 individuals, however, it reaches an accuracy of 0.998 and 0.938
and loss of 0.005 and 0.339 in training and validation sets respectively.

Related to computational cost of the algorithm with a population size of 50, each gen-
eration needs by mean 36030 seconds, this is 10 hours. In total, algorithm requires
259816 seconds approximately, 72 hours.

With a population size of 20 individuals, however, each generation needs by mean
11000 seconds, this is 3 hours. In total, algorithm requires 76080 seconds approx-
imately, 21 hours. This approach is faster than the other mentioned approaches,
since the population size is 66% lower.

4.1.5 Comparisons

Comparing the computational cost of EDA-CNN, EDA-Surrogate and EDA-CNN-Surro-
gate with fixed and dynamic thresholds all with a population size of 50, Figure 4.11
clearly illustrates how surrogate model reduces the computational cost of the algo-
rithm in each generation. It is also analysed that decaying the threshold as gener-
ations go by, it reduces the computational cost, being more selective in determining
the promising solutions.

Table 4.2 summarizes the previous 4 approaches and the multi-objective CNN-EDA
results. EDA-Surrogate total computational cost is reduced in 71.76% in compari-
son with EDA-CNN. The combined method, EDA-CNN-Surrogate reduces in 30.59%,
however, it provides a more precise results by training CNN with promising solutions.
Moreover, reducing the threshold in generations reaches a reduction of a 38.82%.
In multi-objective approach, as there is no surrogate model that approximates both
objectives, the computation cost is high, about 72 hours.

Related to the achieved results, EDA-CNN-Surrogate with a fixed threshold provides
interesting results, achieving 93.60% of accuracy in the validation set. Moreover,
although it is not reflected in the table, EDA-CNN-Surrogate with a dynamic threshold
and a population size of 30 has reach the best local optimum, reaching 94.60% of
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4.1. EDA-CNN approaches

Figure 4.11: Comparison between differente approaches: computational cost.

accuracy and reducing the computational cost to 45 hours. Multi-objective approach,
in addition, reaches 94.00% of accuracy.

Model
Train Validation Computational

costLoss Accuracy Loss Accuracy

EDA-CNN 0.005 0.999 0.263 0.936 85h

EDA-Surrogate 0.028 0.991 0.337 0.920 24h

EDA-CNN-Surrogate
fixed threshold

0.010 0.997 0.274 0.936 59h

EDA-CNN-Surrogate
dynamic threshold

0.052 0.983 0.250 0.929 52h

Multi-objective EDA-CNN 0.004 0.998 0.314 0.940 72h

Table 4.2: Performance metrics and computational cost of different analysed ap-
proaches with a population size of 50 individuals.

Taking the best achieved result, EDA-CNN-Surrogate with dynamic threshold and
with a population size of 30 individuals, which reaches a 94.96% of accuracy in
validation set in CIFAR-10 classification task, it is compared to other state of the art
algorithm results in Table 4.3.

CNN-GA and SHEDA algorithms results to be better algorithms since they reach a
validation accuracy greater than 96.00%. Nevertheless, EDA-CNN-Surrogate model
improves the manually designed CNNs and other evolutionary computation based
CNNs. Moreover, the best hyper-parameter configuration of EDA-CNN-Surrogate al-
gorithm consists of 10 convolutional layers with two residual blocks and it is able to
improve manual ResNet with a depth of 20 and 100 layers.
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Method Model Accuracy %

Manually designed CNNs
ResNet(depth = 20) (He et al., 2016) 91.25

ReaNet(depth = 110)(He et al., 2016) 93.17

EC based CNNs

Genetic CNN (Xie and Yuille, 2017) 92.90

CNN-GA (Sun et al., 2019) 96.78

SHEDA (Li et al., 2021) 96.36

Proposed EC algorithm EDA-CNN-Surrogate 94.64

Table 4.3: Comparison between best achieved EDA-CNN-Surrogate model and other
state of the art algorithms.

4.2 EDA-DCGAN

Analysing EDA-DCGAN evolution during the training, Figure 4.12 shows the evo-
lution of the FID score in each generation. Minimum, maximum, median and the
interquartile range of FID score of a population is visualized. There is a significant
improvement until 4th generation, where it seems to already have converged, since
the median reduces significantly. However, 7th generation is remarkable since the
interquartile range is around median, meaning the half of the population is around
the median. The reason can be based on the amount of duplicated solutions in the
generation. As shown in Figure 4.13, in 7th generation the amount of duplicated
solutions reach almost the half of the population, thus explaining the behaviour of
the interquartile range in 7th generation.

Figure 4.12: EDA-DCGAN algorithm performance.

The hyper-parameter configuration that lower FID score has achieved in the algo-
rithm execution achieves a 52.99 FID score in 754 seconds of execution time. This
DCGAN generates the images illustrated in Figure 4.14b.

Although generated images may be improved generating more complex DCGANs, the
topology of the algorithm is limited to an amount of convolutional layers due to the
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4.2. EDA-DCGAN

Figure 4.13: EDA-DCGAN duplicated solutions in each generation.

(a) Original images (b) Generated images.

Figure 4.14: (a) Original images. (b) Generated images.

required computational costs and available resources.

Nevertheless, the performance of the EDA-DCGAN algorithm proves the EDAs help
to find the optimum hyper-parameters for the DCGAN network layers.
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Chapter 5

Conclusions and future lines

5.1 Conclusions

In order to implement a CNN hyper-parameter optimization on CIFAR-10 classifica-
tion task, EDAs have resulted on a successful behaviour in looking for a optimum
solution. EBNA estimation of distribution algorithm is implemented which learns a
Bayesian network allowing dependencies between the hyper-parameters to sample
from.

Moreover, the presented encoding scheme allows not only to optimize the hyper-
parameters of a basic CNN, but also to look for the most promising depth and topology
of the network. It allows to create a CNN from 2 to 10 convolutional layers, and it
also allows to add residual blocks that result successful in CNN classification tasks.

With EBNA algorithm and the proposed encoding scheme, different approaches are
compared: EDA-CNN, EDA-Surrogate, EDA-CNN-Surrogate with a fixed and dynamic
threshold and multi-objective EDA-CNN, last one providing the possibility to establish
the preferences between quality and computational cost objectives.

Regarding to the best found hyper-parameter configurations reached by mentioned
approaches with a population size of 50 individuals, the quality metrics ranges from
92.00% to 94.00% of accuracy in the validation set.

EDA-CNN requires high computational cost. CNN-Surrogate model, however, reduces
the computational cost in 71.76%. However, the results and fitness evaluations are
approximations of the quality of the models. EDA-CNN-Surrogate approach, presents
more precise results since promising solutions are evaluated with CNNs and the com-
putational cost reduces in 30% or 38%, depending on the criteria on selecting the
promising solutions.

The best found local optima that reaches the highest accuracy in validation set is
EDA-CNN-Surrogate with dynamic threshold and with a population size of 30, reach-
ing 94.60% of accuracy.

Related to population size, although the approaches were compared with 50 individu-
als in the population, EDA-CNN-Surrogate approach is compared with 20, 30, 40 and
50 individuals. In CIFAR-10 classification task all population sizes reach solutions of
high quality, in fact, the best solution achieved is optimized with EDA-CNN-Surrogate
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with 30 individuals. Multi-objective approach is also analysed with 20 individuals,
reaching a solution of high quality.

However, analysing convergence with different population sizes, the higher the popu-
lation size the better and faster is the convergence. In more complex problems with a
more complex and bigger search space, a higher population size would be needed in
order to cover all the search space, taking also into consideration the computational
cost.

Furthermore, a larger population size does not necessarily imply a higher compu-
tational cost, but depends largely on the quality of the individuals. The threshold
determines which individuals should be evaluated with CNN training, so if there are
many high quality individuals in a population, the threshold would be low, making it
more difficult to come up with solutions that minimize this threshold.

On the other hand, EBNA algorithm is successful in hyper-parameter optimization of
DCGANs for image generation tasks, however, since the proposed architecture is sim-
ple due the available resources and computational cost, the quality of the generated
images may improve with more complex architectures.

In summary, the behaviour of EDAs converges to a local optimum, achieving a hyper-
parameter configuration that maximises precision or accuracy in both image classifi-
cation and image generation tasks.

5.2 Future lines

By applying parallelization to a population of CNNs in each generation, the efficiency
and speed of the evolutionary process would significantly improve, as multiple solu-
tions could be evaluated and optimized concurrently.

Another future line is to test the different approaches on more complex problems,
such as CIFAR-100. Applying the approaches to datasets with higher complexity and
more categories would help to evaluate the robustness and scalability of the tech-
niques. This will help in understanding how well the approach performs under more
demanding conditions and in more diverse scenarios, providing valuable insights for
further improvement.

Another future direction is to test DCGANs with more complex architectures. Ex-
perimenting with advanced and deeper network structures, could lead to improve
the model performance and, therefore, the quality of the generated images. This will
help in understanding the capabilities and limitations of DCGANs when scaled up,
providing valuable information for optimizing and enhancing their design.
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