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Resumen 

La detección de intrusiones desempeña un papel fundamental en la protección 

de la integridad y la seguridad de las redes informáticas. A medida que 

evolucionan la complejidad y la sofisticación de los ataques, aumenta la 
necesidad de sistemas eficaces. Sin embargo, los procedimientos actuales se 
enfrentan a menudo a diferentes problemas a la hora de reconocer con precisión 
las actividades maliciosas y, al mismo tiempo, ofrecer explicaciones 

transparentes de sus decisiones.  

En este trabajo se abordan estas cuestiones proponiendo un sistema explicable 
en cascada que combina las ventajas de las redes bayesianas con algunas 
técnicas de aprendizaje profundo para mejorar la interpretabilidad y la precisión 
del proceso de detección. Además, se incorporan algunos métodos post-hoc de 

explicabilidad del aprendizaje profundo para proporcionar una visión amplia del 
proceso de toma de decisiones, facilitando así una mejor comprensión de las 
intrusiones detectadas. 

La metodología propuesta es evaluada mediante un conjunto de datos 

actualizado con diversos tipos de ataques. La solución supera a los métodos 
individuales tradicionales y proporciona aclaraciones transparentes de las 
intrusiones detectadas, mejorando la fiabilidad de los resultados. Asimismo, 
este trabajo supone un comienzo para futuros desarrollos en el ámbito de la 
detección explicable lo que permitirá una defensa más segura contra las 

comunicaciones anómalas. 
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Abstract 

Intrusion detection performs a fundamental roll in safeguarding the integrity 

and security of computer networks. As the complexity and sophistication of 

attacks continue to evolve, the need for effective systems increases. However, 
existing approaches often face challenges in accurately recognizing malicious 
activity while providing transparent explanations for their decisions.  

These issues are addressed in this master thesis by proposing an explainable 

cascading system that combines the strengths of bayesian networks and some 
deep learning techniques to improve the interpretability and accuracy of the 
detection process. Additionally, some post-hoc deep learning explainability 
methods are incorporated to provide meaningful insights of the decision-making 

process, facilitating a better understanding of the detected intrusions.  

The proposed methodology is evaluated using an updated dataset with various 
types of attacks. The solution outperforms traditional single methods and yields 
transparent explanations of detected intrusions, improving the reliability of the 
decisions. This work opens avenues for future development in the domain of 

explainable network intrusion detection, facilitating a more trustworthy defense 
against anomalous communications. 

 

 

  



 

vi 

  



 

vii 

Contents 
 

1 Introduction ......................................................................................1 

1.1 Motivation ........................................................................................ 1 

1.2 Problem Statement ........................................................................... 2 

1.3 Objectives......................................................................................... 3 

1.4 Document Structure ......................................................................... 4 

2 Theoretical Background .....................................................................5 

2.1 Intrusion Detection Systems ............................................................. 5 

2.1.1 Network Intrusion Detection Systems ......................................... 6 

2.2 Signature-based Detection ................................................................ 6 

2.3 Anomaly-based Detection ................................................................. 7 

2.3.1 Techniques ................................................................................ 9 

2.4 Bayesian Networks .......................................................................... 10 

2.4.1 Semiparametric Bayesian Networks ........................................... 11 

2.4.1.1 Parameter Learning ................................................................ 13 

2.4.1.2 Structure Learning ................................................................. 13 

2.4.2 Anomaly Detection with Bayesian Networks ............................... 14 

2.5 Autoencoders .................................................................................. 15 

2.5.1 Anomaly Detection with Autoencoders ....................................... 17 

2.6 Recurrent Neural Networks .............................................................. 17 

2.6.1 Long Short-Term Memory .......................................................... 18 

2.6.1.1 Layer and Network Structure ................................................. 18 

2.6.1.2 LSTM Cell .............................................................................. 19 

2.6.1.3 LSTM Operations ................................................................... 20 

2.6.1.4 Bi-directional LSTM ............................................................... 21 

2.6.1.5 LSTM Autoencoder ................................................................. 21 

2.6.2 Gated Recurrent Unit ................................................................ 22 

2.7 Explainable Artificial Intelligence ..................................................... 23 

3 Contribution Methodology ............................................................... 26 

3.1 Network Traffic Data ........................................................................ 26 

3.1.1 UNSW-NB15 Dataset ................................................................. 28 

3.2 Proposed framework ........................................................................ 29 

3.2.1 Approach A ............................................................................... 31 

3.2.1.1 Point Anomaly Detection ........................................................ 32 

3.2.1.2 Collective and Contextual Anomaly Detection ......................... 34 

3.2.1.3 Post-hoc Explainability ........................................................... 36 

3.2.2 Approach B ............................................................................... 38 

3.2.2.1 Signature Detection ................................................................ 39 



 

viii 

3.2.3 System Operation ...................................................................... 40 

3.2.4 Implementation ......................................................................... 41 

4 Results ............................................................................................ 42 

4.1 Evaluation Metrics .......................................................................... 42 

4.2 Point Anomaly Detection .................................................................. 43 

4.3 Collective and Contextual Anomaly Detection................................... 47 

4.4 Signature Detection ......................................................................... 48 

4.5 Post-hoc Explainability ..................................................................... 49 

4.6 Approach A vs Approach B .............................................................. 53 

5 Conclusions and Future Research .................................................... 55 

5.1 Conclusions .................................................................................... 55 

5.2 Future Research .............................................................................. 56 

Bibliography .......................................................................................... 60 

Appendix ............................................................................................... 64 

A UNSW-NB15 Dataset Features ............................................................. 64 

B SPBN Graphs of the First Component. ................................................ 67 

C Median log-likelihood for SPBN models. .............................................. 70 



 
 

1 

 

1 Introduction 

 

 

Chapter 1 
 

Introduction 
 
 

1.1 Motivation 
 

In recent years, the industrial landscape has undergone major transformations 
with the advent of new technologies. From the rise of the Internet of Things (IoT) 
to the widespread integration of automation and cloud computing, these 
advances have brought numerous benefits and opportunities to businesses. 
However, along with these advances, the risks, and challenges of maintaining 

robust cybersecurity have increased.  

After the COVID-19 pandemic, the digitization process accelerated significantly. 
According to a report by Accenture Research (Accenture, 2021), the overall rate 
of adoption of the main new technologies increased from 75% to almost 95%. 
Industrial systems are now highly intelligent and interconnected with unlimited 

potential to improve efficiency, productivity, and competitiveness in different 
sectors. It is possible to monitor equipment through IoT sensors that provide 
real-time information. Another vital enabler for industrial operations is cloud 
computing. Industrial companies can securely store, and process large amounts 
of data generated by IoT devices and other sources in geographically dispersed 

locations. In addition, advances in wireless communication technologies such 
as 5G are set to revolutionize industrial networks, providing ultra-low latency 
and high bandwidth connectivity. As a result, industrial systems can optimize 
their operations, accelerate innovation cycles, and gain a competitive advantage 
in the rapidly evolving marketplace. These advances have therefore changed 

traditional industrial systems and have set the pace for smart factories around 
the world.  

With the arrival of Industry 4.0, the attack surface for potential cyber threats 
has expanded significantly. The integration of digital technologies introduces 
new vulnerabilities and risks that malicious actors can exploit. These breaches 

can have severe consequences. Thus, the importance of cybersecurity has 

become paramount. Ensuring the integrity, confidentiality, and availability of 
industrial systems is very important to protect sensitive data and maintain 
business continuity. 

Security breaches have significant repercussions that go beyond the immediate 

consequences for the organizations affected. For example, they erode public 
trust in companies. This can hinder the growth of digital economies and impede 
technological advances. They can also disrupt critical services and 
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infrastructures. This affects not only the organizations, but also the people who 
rely on these services. Another of the most important consequences is economic. 
According to a McAfee report titled “The Hidden Costs of Cybercrime” (Tom Gann, 
2020), these attacks cost the global economy more than $1 trillion. The study 

states that 92% of companies felt effects beyond monetary losses. Moreover, 

these security issues often carry legal and regulatory consequences. Affected 
organizations can face significant legal action, lawsuits, and financial penalties, 
further impacting their operations and reputation. 

As for the sophistication of cyberattacks, this has been on the rise, posing 

significant challenges. An annual report from Microsoft (Microsoft, 2022) states 
that the sophistication of actors has increased rapidly in recent years, using 
techniques that make them harder to detect and threaten even the most astute 
targets. Cybercriminals employ different types of tactics to exploit vulnerabilities 
and gain unauthorized access. These techniques are often highly targeted and 

customized, making it difficult for traditional security measures to detect. 

To address these specific cybersecurity challenges, industrial companies adopt 
certain strategies. Some of these are antivirus software to detect and remove 
malware, firewalls to control network traffic or intrusion detection and 
prevention systems to monitor suspicious activity. With the evolution of threats, 

it is increasingly important to look for new methods to approach these new 
challenges. 

The advent of artificial intelligence (AI) technologies in cybersecurity presents a 
significant opportunity to improve attack identification capabilities. These 
advanced technologies can analyze large amounts of data, detect patterns, and 

identify anomalies that may indicate cyber-threats. By leveraging these 
technologies, organizations can strengthen their cybersecurity posture to stay 
one step ahead of attackers.  

Stanford University’s “Artificial Intelligence Index 2023 Report” (Stanford 
University, 2023) states that private investment in AI applied to cybersecurity 

is currently one of largest and the one that grew the most from 2021 to 2022. 
However, despite its great benefits, adoption has stagnated at around 60% in 
recent years. Thus, this represents a great opportunity for cybersecurity 
companies to differentiate themselves from their competitors.   

 

1.2 Problem Statement 
 

Titanium Industrial Security 1   is a leading company at national and 
international level in advising and supporting companies in the field of 
cybersecurity in the connected industry. It offers industrial cybersecurity 
services that allow to improve and adapt to the most demanding security 

requirements, to face the growing threats and to comply with the imposed 
regulations.  

This company proposes to implement a local intrusion detection system capable 
of effectively identifying anomalies in network traffic communications between 
industrial devices. The system aims to monitor the network in real time and flag 

any deviations from normal behavior. To enhance understanding, it also intends 

 

 

1 https://www.titaniumindustrialsecurity.com/ 
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to provide detailed explanations of its detection decisions. This additional 
functionality enables security analysts and other operators to understand the 
reasoning behind alerts and make informed decisions. By combining accurate 
detection with explanatory functions, the overall security posture and 

responsiveness of the industrial network is improved. 

Network anomaly detection poses several challenges to effectively identify and 
mitigate potential threats. Current networks provide increasingly high 
transmission rates associated with the advent of 5G communications 
(Fernandez Maimo et al., 2018). This means that more data is transmitted and 

processed in a shorter amount of time, which can make it more difficult for 
anomaly detection systems to keep up in real-time.  

The nature of the input data is another key aspect of any anomaly detection 
technique (Chandola, 2009). Most of the existing anomaly detection techniques 
deal with point data, in which no relationship is assumed among the data 

instances. However, there exist situations where such relationships among data 
instances become relevant for anomaly detection.  

Anomaly detection methods frequently result in a high rate of false alarms 
(Aldini et al., 2005). This is because deviations from the expected behavior model 
can occur for many reasons. This may lead to a large volume of alerts to process 

making the system unusable by flooding it with some irrelevant notifications. 

It should also be noted that anomaly detection is mostly carried out using deep 
learning techniques at present. This does not allow interpretation of the reasons 
why a certain decision has been arrived at. Therefore, it is very important to 

present the results in a way that is understandable to humans. 

  

1.3 Objectives 
 

The objective of this project is to develop an intrusion detection system for the 
detection of attacks on industry network traffic using machine learning methods. 
The system aims to analyze the communication patterns and detect any 

suspicious activity or deviation from normal behavior. It should also provide 
explanations enabling administrators and analysts to understand the nature of 
the threats. 

Given the characteristics of the system, it is claimed that semi-supervised 
learning techniques can be used, and they are combined with other supervised 

methods for classification tasks. Bayesian networks and advanced recurrent 
neural networks will form the basis of a cascade system where both algorithms 
are trained by the normal behavior of the network. The first learn the probability 
distribution of the variables and estimates the likelihood that a connection is 
within the usual range. On the other hand, the latter captures sequential 

dependencies and temporal patterns to certify the previously indicated 
anomalies.  

Directly interpretable models such as Bayesian networks are used and post-hoc 
explainability methods are added to those that function as a black box. Feature 

relevance techniques and transparent design methods work together with the 
recurrent neural networks to accomplish this goal. Consequently, the whole 
system provides explanations to enhance the understanding of detected 
anomalies. 
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Another key objective is to address performance requirements within the 
developed system. The use of lightweight models such as Bayesian networks as 
the first component of the system helps to filter the traffic received by the neural 
network. This involves ensuring efficient resource utilization to minimize 

processing overhead and response time. 

 

1.4 Document Structure 
 
The master thesis is structured in five chapters, each addressing specific 
aspects of the research. 

• Chapter 1, already presented, is an introduction that provides a concise 
overview of the research topic, highlighting the problem statement and 
objectives of the study.  

• Chapter 2, “Theoretical Background”, provides a comprehensive review 
of existing literature and research related to network intrusion detection. 
It explores the techniques, and algorithms commonly employed in 
network intrusion detection systems and explains in detail the main 
models employed in the system. In addition, it examines explainable 
artificial intelligence and the challenges associated with the machine 

learning methods discussed above. 

• Chapter 3, “Contribution Methodology”, provides the details of the 

architecture and components of the proposed cascading system for 
network intrusion detection. It gives a brief description of the data used 

and the preprocessing techniques, ensuring reliability and its quality. 
Further, the built-in explainability methods incorporated are presented, 
along with their rationale.  

• Chapter 4, “Results”, presents the results of experiments performed with 
the proposed framework. It offers a complete analysis and interpretation 

of the performance metrics. The chapter also evaluates the effectiveness 
of the explanatory techniques employed. 

• Chapter 5, “Conclusions and Future Work”, summarizes the main 
research findings and their implications for the industry. It reflects on 

the contributions of the master thesis while acknowledging its limitations. 
In addition, the chapter offers recommendations for further improvement 
and outlines possible areas for future research. 
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2 Theoretical Background 

 

 

Chapter 2 
 

Theoretical Background 
 

 

2.1 Intrusion Detection Systems 
 

The increasing reliance on digital systems in the industry has led to an increase 
in malicious activities. Intrusion detections are crucial in protecting these 

organizations by identifying and responding to unauthorized access attempts 
and malicious activities. 

An intrusion detection system (IDS) is a software or hardware that automates 
the process of monitoring the events occurring in a computer system or network, 

analyzing them for signs of security problems (Bace & Mell, 2001). On a more 

informal basis, an IDS is defined as the “burglar alarm” of the computer security 
field (Axelsson, 2000) whose goal is to defend a system by a combination of an 
alarm that sounds whenever the site’s security has been compromised. An 
entity then responds to the alarm and takes appropriate action. These “burglars” 

are normally attackers accessing from the Internet, authorized users attempting 
to obtain privileges for which they are not authorized, and other users misusing 
the privileges granted to them.  

The main set of rules that limits access to information can be compromised 
when an intrusion occurs. Therefore, IDSs play a very important role in 

maintaining security. There are some reasons to use these mechanisms beyond 
attack detection. They can serve as a deterrent by increasing the perceived risk 
of discovery and punishment for potential attackers. In addition, they document 
the existing threat landscape providing valuable information to improve 
diagnosis and recovery.  

IDSs can be categorized according to different monitoring and analysis 
approaches. Understanding the characteristics helps select and customize the 
solutions that best suit their specific security requirements.  

In terms of detection methodology, there are two main approaches. When 

incoming events are compared against known attack signatures, the technique 

is known as signature-based. This type of detection is effective in identifying 
recognized attacks, but can have problems with new or modified threats that do 
not match existing signatures. On the other hand, anomaly-based detection 
focuses on identifying deviations from normal patterns. Anything that does not 

correspond to a previously learned behavior is considered intrusive. This is 
advantageous for detecting unforeseen attacks, but can also result in a high 
false alarm rate due to legitimate variations in behavior (Debar et al., 2000). 
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Additionally, a hybrid approach is formed by combining the above two to 
improve accuracy and coverage. 

Another common way to classify IDSs is to group them by information source. 

Network-based systems monitor network traffic in real time to identify 

suspicious patterns. They do this in specific network segments using sensors 
and analyzing the activities of applications and protocols (Debar et al., 2000). 
In contrast, host-based systems focus on the security of individual systems and 

their local resources. This point of advantage allows to determine exactly which 
processes are involved in a particular attack on the operating system. A special 
subset of this category are the application-based systems that are designed to 

detect attacks targeting application-layer vulnerabilities and exploits (Bace & 
Mell, 2001). 

 

2.1.1 Network Intrusion Detection Systems 
 

Traditional network intrusion detection systems (NIDS) inspect the contents of 
every packet to find known attacks or unusual behavior. This is what is known 

as payload-based systems. This approach is effective in detecting specific 
attacks, as it looks for exact matches or variations of known attacks. 

The problem with packet inspection is to perform it at the speed of several 
gigabits per second (Gbps) (Sperotto et al., 2010). Therefore, for high-speed lines 

it is important to investigate alternatives to packet inspection. One of the most 
widely used options today is flow-based intrusion detection. It analyzes the flow 

of network traffic, which represents a sequence of related packets exchanged 
between network hosts during a given time interval. 

These systems examine network traffic metadata such as source and 
destination IP addresses, ports, timestamps, packet sizes and communication 
patterns. This type of detection provides a broader perspective of network 
activity and can detect anomalies even if the payload content is encrypted or 
not directly visible. 

However, flow-based detection may have limitations in detecting attacks 
distributed across multiple flows or attacks that rely heavily on payload content 
for detection. Therefore, it can be considered a complement to packet inspection 
and not a substitute. 

 

2.2 Signature-based Detection 
 

Signature-based systems (Khraisat et al., 2019) rely on pattern matching 
techniques to find a known attack. They are also called knowledge-based 
detection or misuse detection. The main idea is to build a database of intrusion 
signatures and to compare the current set of activities against the existing 

signatures and raise an alarm if a match is found. However, these techniques 
are unable to identify attacks that span several packets. As modern malware is 
more sophisticated it may be necessary to extract signature information over 
multiple packets. 

The effectiveness of signature-based detection lies in its ability to quickly detect, 

and block known attack patterns, providing a proactive defense mechanism. 
This is sometimes a costly trade-off if the event stream does not contain all the 
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data being sought, or if multiple encodings must be taken into account. For 
example, if an attack uses advanced techniques to evade its known patterns or 
if signatures are designed to detect specific types of attacks, the system may 
have difficulty identifying the threat accurately. 

This detection approach offers excellent detection accuracy for previously 
known intrusions. It should be able to generate very few false alarms. False 
positives (Aldini et al., 2005) come primarily from mischaracterization of the 
vulnerability. This often occurs when the IDS attempts to detect the execution 
of an application without differentiating between normal usage and actual 

malicious intent. In addition, it is often difficult to differentiate interactions 
between an attacker and a vulnerable information system from interactions 
between normal users and the same system. 

On the other hand, false negatives occur on new attacks, when there is no 
signature associated to the vulnerability. Collecting vulnerability information of 

sufficient quality to write adequate signatures is a time-consuming task, and 
validation of this information is often limited, due to the large number of attack 
combinations possible. 

The rapid pace at which new attack techniques and vulnerabilities emerge is 
another challenge associated with this approach. This involves frequent updates 

to the signature database. It requires a robust and efficient system to quickly 
incorporate the latest signatures, ensuring detection of the latest threats. 
Delays in updating the signature database can leave networks vulnerable to 
newly discovered attacks. 

Furthermore, these systems have difficulty detecting zero-day attacks which 

exploit unanticipated security breaches that are not known to the party 
responsible for fixing the failure. They can go undetected until new signatures 
are deployed because these attacks lack pre-existing signatures. Therefore, the 
goal is to mitigate zero-day attacks before they cause significant damage to the 
network. 

 

2.3 Anomaly-based Detection 
 

Although effective against known threats, signature-based approaches often fail 
to detect new sophisticated intrusions that deviate from established patterns. 

This limitation requires the adoption of alternative detection methods, which 
has resulted in the emergence of anomaly-based detection as a vital component 
of modern IDSs. 

Anomalies are patterns in data that do not conform to a well-defined notion of 

normal behavior (Chandola, 2009). In the context of IDSs, they can indicate 
security breaches or malicious activities. It is important to differentiate them 
from other related concepts, such as novelties and outliers. The first ones are 
elements that have not been observed before in the system under analysis. After 

their detection, they are usually incorporated into the normal model unlike 

anomalies. The outliers are observations that differs significantly from most 
instances. Although all anomalies can be considered outliers, not all outliers 
are necessarily anomalies. Outliers can exist within normal behavior and do not 
always indicate cyberattacks. 

An important aspect is the nature of the desired anomaly. Anomalies can take 

various forms and occur in different domains. According to Chandola (2009), 
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they can be classified into three categories. If an individual data instance is 
considered isolated and distinct with respect to the rest of data, then the 
instance is termed as a point anomaly. Although single observations within the 

cluster may not be anomalous, the collective behavior may deviate significantly 
from the expected pattern. This is what is known as a collective anomaly. 

Another type of anomalies is when some instances are considered anomalous 
in a very specific context. These are then called contextual anomalies.  

Another way to categorize anomalies is to distinguish between global and local 
anomalies (Goldstein & Uchida, 2016). A global anomaly refers to an observation 
that is significantly different from the overall normal behavior of the dataset. A 

local anomaly, on the other hand, may not be an extreme value in the general 
dataset, but anomalous within a particular cluster of data points. 

Obtaining accurately labeled data covering all types of behaviors can be a costly 
task as manual labeling by human experts is often necessary. In particular, 

acquiring a labeled set of anomalous data instances that covers the full 
spectrum of possible anomalies is more difficult than labeling normal behaviors. 
Anomaly detection techniques can operate in three different ways, depending 
on the availability of labels.  

Supervised anomaly detection methods are based on labeled data, where 

anomalies are explicitly tagged. These methods learn from the instances to build 
a model that can accurately classify new data as normal or anomalous. They 
usually provide high accuracy, but require a significant amount of labeled data 
for training, which is not always available. In addition, some problems may arise 

due to the smaller number of attacks compared to normal observations. 

Semi-supervised anomaly detection methods operate under the assumption that 
the training data contains only labeled instances of the normal class. This 
feature makes them more applicable compared to supervised techniques, as 

obtaining labeled anomalies can be particularly difficult. They can learn the 
underlying patterns of normal instances to identify deviations indicative of 
anomalies.  

Unsupervised anomaly detection methods work in the absence of labeled data, 

relying solely on the characteristics of the data itself to identify anomalies. These 
methods aim to discover patterns or structures that are significantly different 
from the majority of data points, considering them as potential anomalies. This 
is an advantage when labeled data are costly to obtain. 

False alarms are a significant concern in anomaly detection systems as they can 

lead to unnecessary disruptions and resource wastage. This phenomenon arises 
from the fact that deviations from the model are often observed for any incident 
occurring on the monitored information system.  

On the other hand, false negatives in anomaly detection have two main causes 
in accordance with Aldini et al. (2005): corruption of the behavioral model and 

absence of measurement. Behavioral model corruption occurs when the model 

learns an intrusive behavior and incorporates it into its coverage. The IDS 
becomes unable to detect occurrences of the attack that have been accepted as 
normal. In addition, attacks sometimes do not affect the measures used by the 
normal behavior model. For example, in a scenario where a NIDS is designed to 

monitor network traffic patterns, but does not account for anomalies in network 
bandwidth usage. In this case, an attack that consumes a lot of network 
bandwidth might not be detected by the system. 
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2.3.1 Techniques 
 

A wide range of techniques have been developed to address the challenges posed 
by anomalies in different domains. The categories into which they are organized 

are based on the nature of the algorithms used and there may be overlap 
between methods. According to Bhuyan et al. (2014), the most commonly used 

techniques used in anomaly detection are statistical, classification-based, soft 
computing and hybrid learners.  

Statistical techniques exploit mathematical models to identify deviations from 

expected behavior. They are particularly effective when data follow well-defined 
statistical properties that can be captured mathematically. Bayesian networks 
are considered part of this group. They represent probabilistic relationships 
among variables and are used to make inferences about the likelihood of 

anomalous events. 

Classification-based methods rely on the establishment of a model that allows 
categorizing network traffic patterns into various classes. These techniques 
require labeled data to train the behavioral model. One of the most widespread 

methods are one-class classifiers that can detect instances that do not belong 
to the learned class. For example, in a one-class support vector machine (OC-
SVM) classifier the learning objective during training is to determine a function 
that is positive when applied to points on the boundary circumscribed around 

the training points and negative outside it. 

Soft computing techniques are mainly associated with neural networks. They are 

well suited for anomaly detection because they can provide flexible and adaptive 
capabilities. They acquire knowledge of the environment through a learning 

process, which systematically modifies the interconnection strengths to achieve 
a desired goal. These networks usually perform well using massive neural 
connections. 

Hybrid approaches are increasingly used to overcome the limitations of anomaly 

detection. This integration makes it possible to detect both known attacks 
through signature comparison and anomalies using anomaly detection 
algorithms. As a result, the overall performance of the detection system is 
improved. 

Creating an accurate model when working with unbalanced data presents a 

significant challenge in anomaly detection. Traditional methods tend to classify 
all data in the majority class, which is not ideal. To address this problem, several 
methods have been proposed, which can be classified into data-level strategies 
and cost-sensitive strategies (Goldstein & Uchida, 2016). 

Data-level strategies, also known as resampling strategies, aim to balance the 

class distribution of the training data. This can be achieved by undersampling 
the majority class or oversampling the minority class. However, random 
resampling has its limitations. Undersampling can discard valuable data, while 

oversampling can introduce a risk of overfitting if exact copies of existing 
instances are generated. To overcome these challenges, a synthetic minority 

over-sampling technique (SMOTE) was introduced (Chawla et al., 2002). It 
works by selecting a minority class instance and finding its k nearest neighbors 
in the feature space. It then creates new synthetic instances by interpolating 
between the selected instance and its neighbors. 

Alternatively, cost-sensitive strategies focus on the minority class by 

incorporating misclassification costs. When assigning costs to correct and 
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incorrect predictions, an instance is predicted to have the label that results in 
the lowest expected cost. 

 

2.4 Bayesian Networks 
 

In the search for effective reasoning about uncertain situations, the use of 
probability calculus has been a prominent approach. Probability theory has 
found wide application in a variety of fields. One such approach is Bayesian 
networks. These allow rational decisions to be made even in the presence of 
limited or ambiguous data. Their transparent representation of the probabilistic 

relationships between variables facilitates the understanding and explanation 
of the reasoning behind the decisions of AI systems. Thus, the advent of 
Bayesian network technology provides a promising solution to pave the way for 
broader and more sophisticated applications of probabilistic reasoning. 

However, despite the advantages they bring, there is not much literature applied 

to intrusion detection in industry. An interesting paper by Kruegel et al. (2003) 
proposes an event classification scheme based on a Bayesian network. This 
improves the aggregation of different model outputs and allows one to 
seamlessly incorporate additional information. 

Bayesian networks (Koller & Friedman, 2009)(Pearl, 1988) are probabilistic 

graphical models that represent the joint probability distribution (JDP) over a 
set of random variables. In other words, they capture the probabilistic 

relationships and dependencies between variables in a compact manner.  

A Bayesian network can be formally defined as a tuple (G, P), where: 

• G is a directed acyclic graph (DAG) representing the conditional 
(in)dependencies among a set of random variables {X₁, ..., Xₙ}. 

• P is a set of conditional probability distributions (CPDs) associated with 
each variable and its parents in the graph G. 

G consists of nodes representing the random variables and directed edges 
representing the probabilistic dependencies between variables. For each 

variable Xᵢ, there is a corresponding node in G, and the arcs represent the 
influence between variables as illustrated in Figure 2.1. 

P specifies the conditional probabilities for each variable given its parents in the 
graph G. Each node Xᵢ in G has an associated CPD that defines the conditional 

probability distribution 𝑝(𝑋𝑖|𝐏𝐚(𝑋𝑖)), where 𝐏𝐚(𝑋𝑖) denotes the parents of Xᵢ in G. 

Formally, the JDP defined by the Bayesian network is given by the product of 
the individual CPDs: 

𝑝(𝑋1, … , 𝑋𝑛) = ∏ 𝑝(𝑋𝑖|𝐏𝐚(𝑋𝑖))
𝑛

𝑖 = 1
(2.1) 
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Figure 2.1: Example of Bayesian network (Bielza & Larrañaga, 2021). 

Using different properties (Bielza & Larrañaga, 2021), we can derive conditional 

independencies encoded by a BN. These play a critical role in understanding the 
behavior of a distribution. They are essential not only for gaining insights into 
the relationships between variables, but also for efficient query answering and 
inference.  

In a BN, each variable is conditionally independent of its non-descendants, 

given its parents. The descendants of a node 𝑋𝑖 are all the nodes reachable from 

𝑋𝑖 by repeatedly following the arcs. Then it is said that G satisfies the local 

Markov property. This property implies that a variable is only dependent on its 
immediate parents in the graph, and it is independent of all other variables in 
the network once its parents are known. 

Additionally, the global Markov property states that a variable is conditionally 
independent of all other variables in the network, given its Markov blanket. The 

Markov blanket of a variable consists of its parents, children, and the other 
parents of its children. 

 

2.4.1 Semiparametric Bayesian Networks 
 

In a parametric BN for continuous domains, the CPDs are specified 
parametrically, assuming a specific (usually Gaussian) form and a fixed number 

of parameters. This approach works well when the underlying distribution 
conforms to the assumed form. However, in real-world scenarios, the true 
underlying distribution may not strictly adhere to a specific form, leading to 
potential inaccuracies or limited flexibility in modeling. 

Semiparametric Bayesian networks (SPBN) address this limitation by 

incorporating nonparametric components into the modeling process. SPBNs 

(Atienza et al., 2022b) are a variant of BNs that combines parametric and 
nonparametric modeling approaches. These networks provide a framework 
allowing for a balance between the flexibility of nonparametric models and the 
bounded complexity and efficiency of parametric models. 
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Figure 2.2. Graph structure of an SPBN (Atienza et al., 2022b). 

It is important to note that semiparametric BNs may require more data to 

estimate the nonparametric components accurately, as they rely on the 
empirical distribution. Furthermore, the computational complexity of inference 
in SPBNs can be higher compared to standard BNs due to the increased 
flexibility and complexity of the models. 

SPBNs are composed of parametric and nonparametric CPDs. For the 

parametric CPDs, linear Gaussian (LG) CPDs are used, as they are easy to train 
and usually provide good performance when there is a linear relationship 

between the variables. Let 𝑋𝑖 be a random variable following an LG conditional 

distribution, then, the conditional distribution of 𝑋𝑖  given 𝐗Pa(𝑖)  can be 

formulated as: 

𝑓 (𝑥𝑖|𝐱Pa(𝑖)) = 𝒩 (𝛽𝑖0 + ∑ 𝛽𝑖𝑘
𝑘 ∈ Pa(𝑖)

⋅ x𝑘 , 𝜎𝑖
2) (2.2) 

where 𝒩 is the normal probability density function with variance 𝜎𝑖
2; 𝛽𝑖𝑘  is the 

regression coefficient for variable 𝑋𝑘, 𝑘 ϵ Pa(i), in the linear regression of variable 

𝑋𝑘, and 𝛽𝑖0 is its intercept. 

The nonparametric CPDs are represented as the ratio of two joint kernel density 
estimation (KDE) models. This type of CPDs is denoted as conditional kernel 

density estimation (CKDE) distributions. Then, let 𝑋𝑖  be a random variable 
following a CKDE conditional distribution, then, the conditional distribution of 

𝑋𝑖 given 𝑿Pa(𝑖) is defined as: 

𝑓𝐶𝐾𝐷𝐸(𝑥𝑖|𝐱Pa(𝑖)) =
𝑓𝐾𝐷𝐸(𝑥𝑖 , 𝐱Pa(𝑖))

𝑓𝐾𝐷𝐸(𝐱Pa(𝑖))
=

∑ 𝐾𝐇 ([
𝑥𝑖

𝐱Pa(𝑖)

]   −   [
𝑥𝑖

𝑗

𝐱Pa(𝑖)
𝑗 ])𝑁

𝑗=1

∑ 𝐾𝐇−𝑖 (𝐱Pa(𝑖)  −  𝐱
Pa(𝑖)
𝑗

)𝑁
𝑗=1

(2.3)
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where 𝑥(𝑖)
𝑗

 and 𝐱Pa(𝑖)
𝑗

 are the values of the j-th training instance among 𝑁 

instances for the variables 𝑋𝑖 and 𝐗Pa(𝑖), respectively. 𝐇 is a symmetric positive 

definite 𝑛 ×  𝑛 matrix called bandwidth. A bandwidth matrix can be used to 
define the smoothness of density estimation. Higher values in a bandwidth 

produce smoother densities, while smaller values generate wiggly density 

estimations. 𝐾(𝑥)  is an 𝑛 -variate kernel function that integrates to 1, and 

𝐾𝐇(𝐱)  =  |𝐇|-1/2𝐾(𝐇-1/2𝐱) . A Gaussian kernel, 𝐾(𝐱) =
1

(2𝜋)𝑛/2 exp (−
1

2
𝐱T𝐱) , is 

typically used since it is a well-known distribution with remarkable theoretical 
properties. Specifically, when a Gaussian kernel is used, the KDE model is 
equivalent to a Gaussian mixture model with an equiprobable component for 

each training instance. 

In the SPBN model, the graph contains the type of each node, which determines 
the type of the corresponding CPD. There are no restrictions on the arcs, so the 
parent sets of each variable can be of different types: only LG parents, only 
CKDE parents or a mix of both options. LG and CKDE nodes are represented 

by white shaded and gray shaded nodes, respectively, in Figure 2.2. 

 

2.4.1.1 Parameter Learning 
 

The maximum likelihood estimation (MLE) is used to estimate the parameters 

of the CPDs based on the observed data, under the assumption that the network 
structure is known. The MLE involves finding the parameter values that 

maximize the likelihood of the observations. 

Let 𝒟 =  {𝐱1, . . . , 𝐱𝑁} , with 𝐱𝑗  =  (𝑥1
𝑗
, … , 𝑥𝑛

𝑗
), be a set of N independent and 

identically distributed training instances, and 𝜽  denote a particular set of 
parameters. Then, the likelihood function is defined as the density assigned to 

the training data 𝒟 by the Bayesian network: 

ℒ( 𝒟 ∣∣ 𝜽, 𝒢 ) = ∏ 𝑓( 𝐱𝑗 ∣∣ 𝜽, 𝒢 )
𝑁

𝑗=1
= ∏ ∏ 𝑓 ( 𝑥𝑖

𝑗
∣∣ 𝜽𝑖 , 𝐱Pa(𝑖)

𝑗
)

𝑛

𝑖=1

𝑁

𝑗=1
(2.4) 

where 𝜽𝑖 is the set of parameters for a CPD of node i. This set, for a random 

variable 𝑋𝑖, is defined depending on the distribution it follows (Atienza et al., 
2022b).  

  

2.4.1.2 Structure Learning 
 

The structure learning process is used to automatically infer the graphical 
structure of the network from data. It determines the accuracy and 

interpretability of the model. Several algorithms have been developed to 
automate this task. One of these is the greedy hill-climbing (HC) that provides 

a simple and efficient approach to learn the structure. 

HC is a search algorithm whose goal is to find an optimal network structure by 
iteratively performing local improvements based on a scoring metric through a 

set of operators. It explores the search space of possible Bayesian network 
structures locally. At each step, the operator that produces the highest score 
improvement is applied to generate a new candidate structure. The algorithm 
runs until no further improvement is possible or until a stopping criterion is 
met. 
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In general, three operators are utilized in HC: arc addition, arc removal, and arc 
reversal. In SPBNs, the structure consists of arcs in a graph and the types of 
nodes, namely, LG or CKDE conditional distributions. Then, a new operator is 
added into the HC algorithm to learn SPBNs: node type change. 

The definition of a score function is an important part of the score and search 
algorithms. Commonly used scoring metrics include the log-likelihood function 
and Bayesian information criterion (BIC). However, for an SPBN, any score 
including the log-likelihood of the training data, such as the maximum log-
likelihood score or BIC, is inappropriate because the training data constitute 

part of the KDE model. Instead, Atienza et al. (2022b) propose to use the k-fold 
cross-validated log-likelihood: 

𝒮𝐶𝑉
𝑘 (𝒟, 𝒢)  =   ∑ ℒ (𝒢, 𝜽ℐ𝑡𝑟𝑎𝑖𝑛

𝑚 :  𝒟ℐ𝑡𝑒𝑠𝑡
𝑚 )

𝑘

𝑚=1
(2.5) 

where ℒ (𝒢, 𝜽ℐ𝑡𝑟𝑎𝑖𝑛
𝑚 :  𝒟ℐ𝑡𝑒𝑠𝑡

𝑚 ) is the log-likelihood of the m-th test fold data element 

in a model composed of graph 𝒢 and parameters θℐ𝑡𝑟𝑎𝑖𝑛
𝑚 . The log-likelihood, can 

be also expressed as a sum of terms: 

ℒ(𝒢, 𝜽 ∶  𝒟) = ∑ ∑
𝑛

𝑖=1
log 𝑓 ( 𝑥𝑖

𝑗
∣∣ 𝜽𝑖 , 𝐱Pa(𝑖)

𝑗
)

𝑁

𝑗=1
(2.6) 

The 𝜽ℐ𝑡𝑟𝑎𝑖𝑛
𝑚  parameters are estimated based on the data 𝒟𝐼𝑡𝑒𝑠𝑡

𝑚  using the 

parameter learning procedure described in Section 2.4.1.1.  

It is common in k-fold cross-validation that ℐ =  {ℐ𝑡𝑒𝑠𝑡
𝑖 }

𝑖 = 1

𝑘
corresponds to k 

disjoint sets of instance indices, and ℐ𝑡𝑟𝑎𝑖𝑛
𝑖  = ∪𝑗≠𝑖 ℐ𝑡𝑒𝑠𝑡

𝑗
, for all i = 1, …, k. The 

contribution of each node depends on its type. 

Further, the score used in the learning stage of Bayesian networks possesses 
the decomposability property, which allows it to be expressed as the sum of 

local score terms associated with each node and its parents, given a specific 
selection of indices representing disjoint folds of data. To take advantage of this 
decomposability property during learning, it is necessary to fix a particular set 

of indices, denoted as ℐ. However, this can potentially lead to over-fitting of that 
set. To mitigate this problem, Atienza et al. (2022b) divide the available data into 

two disjoint sets: the training set 𝒟𝑡𝑟𝑎𝑖𝑛 and the validation set 𝒟𝑣𝑎𝑙. The learning 

process is guided by 𝒟𝑡𝑟𝑎𝑖𝑛, whereas 𝒟𝑣𝑎𝑙 fixes the overfitting by measuring the 

goodness of the new structure at each iteration as: 

𝒮validation (𝒟train, 𝒟val, 𝒢) = ℒ(𝒢, 𝜽𝐷train: 𝒟val) (2.7) 

where 𝜽𝐷train are the parameters estimated using the full training set 𝒟train. 

 

2.4.2 Anomaly Detection with Bayesian Networks 
 

BNs can be used to model the normal behavior in a network communication 
domain by capturing the relationships between the variables. The graphical 

structure of the network and the associated probabilities provide an intuitive 
representation of the relationships between the features. This allows security 
analysts to understand the reasoning behind detection decisions. 

Anomaly detection typically consists of two main phases: training and inference. 
During the training phase, the BN is constructed using a known normal network 
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traffic dataset. The network parameters are estimated from this observed 
normal data. Once the BN is trained, it can be used for inference during the 
anomaly detection phase. When a new communication case is found in the 
network, the BN is used to calculate the likelihood of observing that case given 

the learned network structure and parameters. If this value falls below a given 

threshold, it indicates that the observed case deviates significantly from the 
normal learned behavior, suggesting an anomaly. 

An advantage of using BNs for anomaly detection is their ability to handle 
uncertainty and incomplete information. IDSs often face uncertainty due to 

noise in the data. BNs can handle uncertainty and provide a principled way of 
reasoning about it. They can quantify uncertainty using probabilities, allowing 
for more nuanced analysis of events and better decision making in the presence 
of uncertainty. 

In addition, BNs can incorporate prior knowledge and expert opinion into the 

model. In this way, analysts can contribute their knowledge and encode it in the 
form of CPDs or arcs.  

 

2.5 Autoencoders 
 

Deep learning (DL) has emerged as a powerful transformative technology in the 

industry revolutionizing different domains. It has achieved unprecedent levels 
of performance thanks to the improvement of computing capabilities which has 

reduced training time on much more complex models. In the IDS context, they 
are able to capture complex relationships and detect anomalies that traditional 
rule-based or statistical methods may miss. One of the most well-known DL 

techniques within anomaly detection are autoencoders. 

 

Figure 2.3. Deep autoencoder (Wang et al., 2020). 

An autoencoder (Kramer, 1992) is a feedforward neural network trained to 
produce an approximation of the identity mapping between inputs and outputs 
using backpropagation or similar learning procedures. This is with the least 
possible amount of distortion. It is an unsupervised and semi-supervised 

learning framework composed of two modules (Zhou & Paffenroth, 2017), an 
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encoder, and a decoder as illustrated in Figure 2.3. It maps the input to an 
output through these two phases 

𝑋 ̅ = 𝐷(𝐸(𝑋)) (2.8) 

where 𝑋 is the input data and �̅� is the recovered version of it. 𝐸 is an encoding 

map from the input data to the hidden layer as in Equation (2.9) and 𝐷 is a 

decoding map from the hidden layer to the output layer as in Equation (2.10),  

ℎ = 𝜎(𝑤𝑥ℎ𝑥 + 𝑏𝑥ℎ) (2.9) 

𝑧 = 𝜎(𝑤ℎ𝑥ℎ + 𝑏ℎ𝑥) (2.10) 

where 𝑤 and 𝑏 are the weight and bias of the neural network, respectively, and 

𝜎 is the nonlinear transformation function. 

An autoencoder can be viewed as a solution to the following optimization 

problem as shown in Algorithm 1, where the idea is to train 𝐸 and 𝐷 to minimize 

the difference between 𝑋 and �̅�: 

min
𝐷,𝐸

||𝑋 − 𝐷(𝐸(𝑋))|| (2.11) 

An autoencoder with more than one hidden layer is called a deep autoencoder 

and each additional hidden layer requires an additional pair of encoders 𝐸(·) 
and decoders 𝐷(·). By allowing many layers of encoders and decoders, a deep 
autoencoder can effectively represent complicated distributions over the input 

𝑋.  

 

Algorithm 1 Autoencoder training algorithm 

INPUT: Dataset 𝒟 =  {𝑥1, … , 𝑥𝑁} 

OUTPUT: encoder 𝐸, decoder 𝐷 

   𝜽 ← Initialize parameters 

   repeat 

      𝑒𝑟𝑟𝑜𝑟 =  ∑ ‖𝑥𝑖 − 𝐷(𝐸(𝑥𝑖))‖𝑁
𝑖=1  

      𝜃 ← Update parameters using gradients of 𝑒𝑟𝑟𝑜𝑟 

   until convergence of parameters 𝜽 

 

Autoencoders have proven to be versatile and powerful models with applications 
in various fields. Different types of autoencoders can be modified or combined 
to form new models for various applications. Since their introduction, they have 
been used as a dimensionality reduction technique. They compress the data by 

obtaining the most important features. On the other hand, variations of 
autoencoders can act as a generative model. They learn to generate data that 
resemble training examples, offering creative and exploratory possibilities. They 
are also useful in recommender systems. Autoencoders can capture user 

preferences to facilitate personalized experiences. In addition, autoencoders 

have attracted attention in anomaly detection due to their ability to identify 
deviations from learned patterns. 
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2.5.1 Anomaly Detection with Autoencoders 
 

Autoencoders are becoming increasingly popular in addressing anomaly 
detection due to their proven effectiveness. The autoencoder process begins with 

training on normal data, which helps the algorithm to capture the underlying 
structure and the features associated with it. Once trained, the autoencoder 

tries to reconstruct the new observations using the knowledge stored during 
training and calculating the differences between the inputs and outputs or the 
reconstruction error, which serves as the anomaly score. Instances with a 
higher reconstruction error are considered potential anomalies. 

Petsche et al. (1996) propose one of the first papers in DL focused on anomaly 

detection for rare events. They develop a model that called autoassociator 
(autoencoder) for imminent engine failures. In the network intrusion field, 
Zavrak & İskefiyeli (2020) focus on the detection of anomalous network traffic 
from flow-based data using two types of autoencoders. Finding a threshold that 

serves as a boundary between normal and anomalous behavior is crucial. Aygun 
& Yavuz (2017) propose two autoencoder models whose threshold value is 
determined using a stochastic approach instead of those available in most of 
the literature. 

It should be noted that autoencoders may have difficulty detecting local 

anomalous behavior. This limitation can be addressed by incorporating 
additional techniques, such as recurrent neural networks, which improve 
identification capabilities by providing more comprehensive analysis of 
contextual dependencies over time. 

 

2.6 Recurrent Neural Networks 
 

Continuous advances in recurrent neural network (RNN) technologies have 
transformed the way sequential data is analyzed and modeled today. Resulting 
from these advances, these frameworks hold an important place in modern 
machine learning methodologies. Unlike traditional networks, these ones 

present loops, allowing information to persist. They can efficiently retain data 
from past inputs to follow temporal patterns with greater accuracy. RNNs are 
especially suitable for time series prediction and linguistic analysis where 
sequence understanding is paramount. 

However, most RNNs became obsolete because of their inability to learn long-

term memories. This was due to the vanishing gradient problem (Hochreiter, 
1998), in which gradients decrease exponentially with time. This limitation 
hindered the ability of RNNs to capture and retain information from previous 
time steps, resulting in a loss of contextual understanding in long sequences. 
As a result, RNNs had difficulty effectively modeling complex temporal 

dependencies in the data.  

With the introduction of advanced variants, which incorporated gating 
mechanisms to select information, significant progress was made. These 
innovations revolutionized the field, enabling them to capture long-term 
dependencies, leading to their widespread adoption. 
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2.6.1 Long Short-Term Memory 
 

Long short-term memory (LSTM) networks (Hochreiter & Schmidhuber, 1997) 
is a type of RNN architecture that addresses the vanishing gradient problem and 

enables the modeling of long-term dependencies in sequential data. An LSTM 
layer consists of a set of recurrently connected nodes, known as memory cells. 

Each cell can maintain its state over time, and non-linear gating units which 
regulate the information flow into and out of the cell. For easier comprehension, 
an LSTM is deconstructed into its elements from a high-level representation to 
a low-level one, following the fundamentals in Ranjan (2020).  

 

2.6.1.1 Layer and Network Structure 
 

A single input that receives the network is a time window, defined as 𝒙(𝑇−𝜏):𝑇, of 

𝜏  observations and p features. As it is illustrated in Figure 2.4, this is 

represented as a two-dimensional array with features and time-steps along the 
rows and columns, respectively.  

 

Figure 2.4. High-level representation of an LSTM network (Ranjan, 2020). 

A batch of these windows is, thus, a three-dimensional array as shown in Figure 
2.5. Each layer cell, represented with a blue box, takes all the time-step inputs 
and they are processed sequentially. The cells transmit their states within 
themselves to perform their internal operations and the connected arcs between 
the layers show the transmission of time-indexed information. The sequences 

are processed in the same order by the second LSTM layer and so on.  

A LSTM can be either stateful or stateless, depending on the transmission mode. 
If the model is stateful, the cell state of the previous batch processing is retained 
and can be accessed by the next batch. In contrast, if the model is stateless, it 
processes each time-window independently. That is, there is no interaction or 

learning between two time-windows. The latter is the default when the sequence 

dataset is stationary. 

In addition, the cells in an LSTM layer may return sequences or not. If they do, 
the cell outputs a sequence of the same length as the input. This approach is 
used when it is necessary to preserve the temporal structure. Otherwise, a cell 

emits only the last time-step output 𝒉𝑡 that is an amalgam of the information 
present in all the cell states and the outputs of the previous cells. 
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Figure 2.5. LSTM network input and hidden layers (Ranjan, 2020). 

 

2.6.1.2 LSTM Cell  
 

As previously discussed, the nodes of a layer are called LSTM cells. They are 
formed by one time-step iteration for each observation of the time window. These 

iterations, represented in green boxes in Figure 2.5 and Figure 2.6, consist in 

turn of two activation functions and three main gates: input gate 𝑖𝑡, forget gate 

𝑓𝑡 and output gate 𝑜𝑡. In Figure 2.5, the cell to which each iteration belongs is 
indicated by a super-index. For example, the super-index (12) refers to the 
second node of the first layer. 

The parameters involved are, 𝒘∙
(𝒉)

, 𝒘∙
(𝑥)

, 𝑏∙, where · is 𝑐, 𝑖, 𝑓, and 𝑜. A cell takes 

the prior output of all the other sibling cells in the layer. Given that the layer 
size is m, the prior output from the layer cells will be an m-vector 𝒉𝑡−1 and, 

therefore, the 𝒘∙
(𝒉)

 has the same length m. 

Within the cells, each time-step iteration takes in one time-step 𝒙𝑡 and performs 

some operations to compute the output 𝒉𝑡. Like the other RNNs, the hidden 

output 𝒉𝑡 is transmitted to the next iteration and returned as a cell output. 

In addition, LSTMs provide a distinctive property called state 𝒄𝑡. It preserves 

information from the present to the past. Because of this, it is easier to detect 
patterns and links by having current and distant memories. In the diagram in 

Figure 2.6, the cell state is the horizontal line across the top of the diagram. 
This was not possible with former RNNs due to the gradient problem that quickly 

vanishes the intermediate outputs 𝒉𝑡. Instead, the cell state stabilizes gradient 
by maintaining the memory. 

Overall, the cell processes one observation at a time in a timed sequence window 
{𝒙𝑇−𝜏, 𝒙𝑇−𝜏+1, . . . , 𝒙𝑇}. 𝒙𝑡  flows into the cell as input, it is processed along the 

paths in the presence of the previous output 𝒉𝑡−1 and cell state 𝒄𝑡−1, and yields 

the updated output 𝒉𝑡 and cell state 𝒄𝑡.  
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Figure 2.6. Time-step iterations in an LSTM cell (Olah, 2015). 

 

2.6.1.3 LSTM Operations 
 

The operation of an LSTM is divided into four sequential parts (Ranjan, 2020) 

in which the different components of the cell are applied. First, due to the new 

information that enters with 𝒙𝑡 , some of the previous memory may become 
irrelevant. In that case, that memory may be forgotten.  

This forgetting decision is made in Equation (2.12): 

It yields an indicator between 0 and 1 because of the sigmoid activated function. 
If the indicator is close to zero, the previous memory is forgotten. In this case, 

the information in 𝒙𝑡 will replace the past memory. On the contrary, it means 
that the memory is still relevant and should be carried forward. This does not 

necessarily indicate that the information in 𝒙𝑡 will not enter the memory. 

𝑓𝑡 = 𝜎 (𝒘𝑓
(𝒉)

𝒉𝑡−1 + 𝒘𝑓
(𝒙)

𝒙𝑡 + 𝑏𝑓) (2.12) 

The next step is to decide what new information at the time-step input 𝒙𝑡 should 

be learned by the cell state. Equation (2.13) finds the relevant information in 𝒙𝑡: 

𝑐�̃� = 𝑡𝑎𝑛ℎ (𝒘𝑐̃
(ℎ)

𝒉𝑡−1 + 𝒘𝑐̃
(𝑥)

𝒙𝑡 + 𝑏𝑐̃) (2.13) 

where a 𝑡𝑎𝑛ℎ activation function is applied. This activation has negative and 
positive values in between -1 and 1.  

It is possible that 𝒙𝑡 has information, but it is redundant in the presence of the 

information already present with the cell of the previous 𝒙. Therefore, Equation 

(2.14) is calculated with a sigmoid 𝜎 to have a value between 0 and 1: 

𝑖𝑡 = 𝜎 (𝒘𝑖
(ℎ)

𝒉𝑡−1 + 𝒘𝑖
(𝑥)

𝒙𝑡 + 𝑏𝑖) (2.14) 

A value closer to 0 would mean the information is irrelevant. 

Equation (2.13) and Equation (2.14) find the information in 𝒙𝑡 , its relevance, 

and the memory requirement, respectively. These are combined to update the 

cell memory in Equation (2.15), adding the first component that determines 
whether to carry on the memory from the past: 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑐�̃� (2.15) 
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The output gate in Equation (2.16) acts as a scale with value between 0 and 1: 

𝑜𝑡 = 𝜎 (𝒘𝑜
(ℎ)

𝒉𝑡−1 + 𝒘𝑜
(ℎ)

𝒙𝑡 + 𝑏𝑜) (2.16) 

In the last step, the output cell 𝒉𝑡 is determined in Equation (2.17): 

ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ(𝑐𝑡) (2.17) 

This output is based on a filtered version of the cell state 𝑐𝑡. 

 

2.6.1.4 Bi-directional LSTM 
 

In recent years, several improvements have been introduced in LSTMs to 
increase their performance. Schuster & Paliwal (1997) made a significant 

contribution by proposing a bi-directional RRN. As opposed to traditional 
approaches that process data in a forward direction, these models incorporate 
information from both past and future contexts by processing the input 
sequence in both directions simultaneously.  

A bi-directional RNN (Salehinejad et al., 2017) considers the entire input 

sequence available both in the past and future for estimation of the output 
vector. For this purpose, one RNN processes the sequence from the beginning 
to the end in a forward temporal direction. Another RNN processes the sequence 
backwards, from the end to the beginning in a negative time direction. The 
outputs of the forward states are not connected to inputs of backward states 

and vice versa.  Thus, there are no interactions between the two types of state 

neurons. 

 

2.6.1.5 LSTM Autoencoder 
 

An autoencoder processes flat data, but sometimes it is necessary to handle 
sequences. Therefore, an autoencoder can use LSTM units to deal with 
sequential information. Recurrent units in the encoder and decoder allow the 
autoencoder to capture the time dependencies that are present. Srivastava et al. 
(2016 is one of the early applications of this method. 

An LSTM autoencoder is an unsupervised learning framework for sequential 
data that uses an encoder-decoder LSTM architecture. Each element of the 
sequence is processed one at a time, and the LSTM units retain memory of the 
previous elements. The encoder, consisting of LSTM cells, processes the input 

sequence, and compresses it into a lower-dimensional latent space 
representation. The LSTM cells in the encoder capture the temporal 
dependencies in the input sequence. Then, the latent space representation is 
passed through the decoder, which also consists of LSTM cells. The goal of the 
decoder is to reconstruct the original input sequence from the latent space 

representation. 

Like the non-temporal autoencoder, the one that incorporates LSTM cells can 
identify anomalies. In this case, by analyzing sequences that deviate from the 
learned patterns. 

Within the field of intrusion detection, Fernandez Maimo et al. (2018) develop a 

novel architecture composed by a low-level and high-level module to identify 
cyberthreats in 5G mobile networks. The first one uses Stacked Autoencoders 
(SAE) for anomaly symptom detection, followed by the second component for 
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network anomaly detection. The latter is a LSTM that receives several streams 
of symptoms.  

According to Clausen et al. (2021), recent evaluations show that the current 
anomaly-based network intrusion detection methods fail to reliably detect 

remote access attacks. This paper presents a model based on a bi-directional 
LSTM that is specifically designed to detect such attacks as contextual network 
anomalies. 

It is also interesting combining neural network approaches with other types of 
machine learning methods for anomaly detection. Said Elsayed et al. (2020) 

propose a hyper approach based on LSTM Autoencoder and OC-SVM to detect 
anomaly-based attacks in an unbalanced dataset, by training the models using 
only examples of normal classes.  

 

2.6.2 Gated Recurrent Unit  
 

Due to its powerful capacity, LSTM has become the center of attention in DL 

and has been applied to multiple sequential tasks. The learning capacity of the 
LSTM cell is superior to that of the standard RNN cell. However, the additional 
parameters increase computational overhead. Therefore, the gated recurrent 
unit (GRU) was introduced by Cho et al. (2014). 

To reduce the number of parameters, the GRU cell integrates the forget gate and 

input gate of the LSTM cell as an update gate. The GRU cell has only two gates: 

an update gate and a reset gate.  

The update gate in a GRU determines how much of the previous hidden state 
should be retained and combined with the new input, as shown in Equation 

(2.18). 

𝑧𝑡 = 𝜎 (𝒘𝑧
(ℎ)

𝒉𝑡−1 + 𝒘𝑧
(𝑥)

𝒙𝑡 + 𝑏𝑧) (2.18)  

It considers both the current input and the previous hidden state, and outputs 
a value between 0 and 1 for each element in the hidden state. A value close to 

1 indicates that the corresponding element in the hidden state should be 
updated, while a value close to 0 suggests that it should be mostly ignored. 

On the other hand, the reset gate in Equation (2.19) determines how much of 
the previous hidden state should be forgotten or reset.  

𝑟𝑡 = 𝜎 (𝒘𝑟
(ℎ)

𝒉𝑡−1 + 𝒘𝑟
(𝑥)

𝒙𝑡 + 𝑏𝑟) (2.19) 

Like the update gate, it takes the current input and the previous hidden state 
as inputs and produces a value between 0 and 1 for each element in the hidden 
state. A value close to 1 suggests that the corresponding element should be 

preserved, while a value close to 0 indicates that it should be reset. 

The cell output 𝒉𝑡 is a linear interpolation, as shown in Equation (2.21) between 

the previous one 𝒉𝑡−1 and the candidate �̃�𝑡. The latter is computed similarly to 

the one of the LSTM in Equation (2.20) but using the reset gate. 

ℎ̃𝑡  = 𝑡𝑎𝑛ℎ (𝒘
ℎ̃

(ℎ)
(𝑟𝑡𝒉𝑡−1) + 𝒘

ℎ̃

(𝑥)
𝒙𝑡 + 𝑏ℎ̃) (2.20) 

ℎ𝑡 = (1 −  𝒛𝑡)𝒉𝑡−1  + 𝒛𝑡�̃�𝑡 (2.21) 
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Because of having two gates, one gating signal and its associated parameters 
are avoided. Consequently, GRUs have a simpler architecture which makes 
them easier to understand and implement. A reduced complexity leads to faster 
training and inference times, as well as lower memory requirements. However, 

since one gate is missing, the single GRU cell is usually less powerful than the 

original LSTM, although this may vary depending on the specific task. 

Xu et al. (2018) compare different types of neural networks and RNNs using 
several datasets. The paper shows that GRU is more suitable as a memory unit 
for IDSs than LSTM. Moreover, its bi-directional version reaches the best 

performance compared with other methods. 

 

2.7 Explainable Artificial Intelligence 
 

In recent years, the widespread adoption of AI systems has raised concerns 
about their lack of transparency, leading to the emergence of eXplainable 

artificial intelligence (XAI). This focuses on developing techniques that provide 
understandable explanations for AI decisions, bridging the gap between the 
complex inner workings of algorithms and the need for human understanding 
and trust.  

When talking about XAI, different terms are used that seem to be 

interchangeable at first. However, they refer to different concepts that help 
describe the characteristics of these systems.  Barredo Arrieta et al. (2020) 

establish a terminology clarification of the two most used names in this field: 
explainability and interpretability. A model is considered to be interpretable if 
its design is itself understandable for a human. On the other hand, 

explainability is associated with the notion of explanation as an interface 
between human beings and a decision maker. It is linked to post-hoc 
explainability, as it encompasses the techniques used to convert an 
uninterpretable model into an explainable one. 

Model accuracy is usually the main factor in evaluating and choosing a model. 
However, an improvement in understanding of a system can lead to correcting 
its deficiencies. There are three reasons to adopt XAI techniques in AI systems, 
according to Barredo Arrieta et al. (2020). First, interpretability helps to ensure 
fairness in decision making, i.e., to detect and correct biases in the training 

dataset. Second, it facilitates the provision of robustness by highlighting 
possible adverse perturbations that could change the prediction. And third, it 
can act as an insurance that only significant variables infer the outcome. 

In addition to the advantages of its use in decision making, the current 
legislation establishes a regulatory framework for its implementation. The 

European Union's General Data Protection Regulation (GDPR) emphasizes the 
right to explanation for automated decisions, further underscoring the 
importance of XAI. This recognizes the potential risks associated with opaque 

systems and asserts the need for individuals to understand the significance of 
automated decisions affecting their lives.  

Furthermore, the first European law on AI will be approved by the end of 2023. 
This legislation will be a stricter version of the initial proposal outlined by the 
European Commission in 2021 and will cover generative AI systems and the use 
of AI for biometric surveillance systems. Consequently, XAI becomes not only a 
technical consideration, but also a legal and ethical imperative. 
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The development of explainability within AI implies the possibility of its use in 
industry where decisions have a great impact and are critical. Its application 
has gained great popularity in several sectors facing the challenges associated 
with opacity. In healthcare, it is being used to improve clinical decision support 

systems, enabling doctors to understand the reasoning behind AI-generated 

diagnoses or treatment recommendations. In finance, XAI techniques are used 
to provide interpretable explanations of activities such as credit scoring, 
minimizing bias. In addition, XAI finds uses in autonomous vehicles, where 
interpretable explanations of AI-driven decisions are crucial for safety and 

public acceptance. 

Gunning (2017) proposes creating a suite of machine learning techniques that 
produces more explainable models, while maintaining a high level of learning 
performance, as well as enables human users to understand, appropriately 
trust, and effectively manage the emerging generation of artificially intelligent 

partners. This trade-off between accuracy and interpretability, illustrated in 
Figure 2.7, is a fundamental consideration in the development of the models. 
Very complex models often achieve remarkable accuracy on a variety of tasks. 
However, their intrinsic operations are often opaque and challenging to interpret. 
On the other hand, simpler models are more interpretable. This allows humans 

to understand the decision-making process, but they may lose some level of 
accuracy. 

 

Figure 2.7. Trade-off between model interpretability and accuracy (Barredo Arrieta et 
al., 2020) 

Efforts are underway to develop techniques that strike a balance between 
accuracy and interpretability. These include post-hoc explanations and the use 

of hybrid models that combine the advantages of black-box models and 

transparent techniques. Post-hoc interpretability (Dosilovic et al., 2018) extracts 
information from already learned models and it does not precisely depend on 
how it works. The advantage of this approach is that it does not impact 

performance.  

There are few contributions to explain recurrent models such as LSTM and GRU. 
The studies can be divided into two groups: explainability by understanding 
what a RNN model has learned and explainability by modifying RNN 
architectures to provide insights about the decisions they make. Some of the 
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most common techniques in the first group are those called gradient-based 
methods. They can be used for feature relevance explanations as they analyze 
the contribution of each individual input and layer in the network tracing the 
gradients to the final output. On the other hand, a RNN considered as a black 

box can be explained by associating it a more interpretable model. Transparent 

methods, such as decision trees, can approximate the outputs of the network 
by learning a set of rules based on the input features. These rules provide a 
clear representation of how different variables and their specific values influence 
the final decision. 
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3 Contribution Methodology 

 

 
Chapter 3 
 

Contribution Methodology 
 

 

3.1 Network Traffic Data 
 

Network traffic refers to the flow of data packets over a computer network. In a 
network, devices communicate with each other by exchanging these data 
packets, which contain information such as the source and destination 
addresses, payload data, and other information. 

The TCP/IP model (Forouzan, 2002), also known as the internet protocol suite, 

is a conceptual framework that defines how data is transmitted and received 

over a network. It is named after two of its key protocols: the transmission 
control protocol (TCP) and the internet Protocol (IP). As illustrated in Figure 3.1, 
the TCP/IP model is composed of four layers, each responsible for specific 
functions in the communication process: 

1. The application layer represents the interface between the network and 
the application software. It includes protocols such as hypertext transfer 
protocol (HTTP), file transfer protocol (FTP), simple mail transfer protocol 
(SMTP), and domain name system (DNS). These protocols enable tasks 
like web browsing, file sharing, email transmission, and domain name 

resolution. 

2. The transport layer handles the reliable delivery of data between devices. 
The most prominent protocol in this layer is TCP, which provides 
connection-oriented and error-checked transmission. User datagram 
protocol (UDP) is another transport layer protocol that offers 

connectionless and unreliable transmission, suitable for applications 
where real-time data delivery is crucial. 

3. The internet layer is responsible for addressing and routing packets 
across different networks. It uses IP to assign unique addresses to devices 
and facilitate packet routing. IP addresses, both IPv4 and the newer IPv6, 

are used to identify source and destination devices and enable 
communication across the Internet. 

4. The network access layer deals with the physical transmission of data 
over the network medium. It includes protocols such as Ethernet, Wi-Fi, 
and point-to-point protocol (PPP). The link layer encapsulates the data 

into frames and handles the addressing of devices within a local network. 
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Various protocols work together across these layers to ensure proper 
communication and data transfer between devices. For example, when a user 
accesses a website, the HTTP protocol in the application layer is used to request 
web pages, which are then transported via TCP in the transport layer. The IP 

protocol in the Internet layer ensures the packets are correctly routed to the 

destination, and the link layer protocols handle the actual transmission over 
the physical medium. 

Due to the limitations of publicly available network traffic datasets, the 
evaluation of IDSs has routinely faced some challenges. Until the mid-2000s, 

many of the existing datasets did not adequately represent modern network 
environments. In addition, they did not cover current attack scenarios 
(Moustafa & Slay, 2016). 

 

Figure 3.1. TCP/IP model and associated protocols. 

Datasets play an important role in the testing and validation of any intrusion 
detection method. Therefore, this discrepancy makes it difficult to accurately 
assess the performance of these systems. A few datasets are publicly available 
for testing and evaluation of intrusion detection. The most widely used 
evaluation datasets in the last decades have been the KDD Cup 1999 and its 

modified version, the NSL-KDD dataset (Gogoi et al., 2012). 

Both the KDD Cup 1999 and the NSL-KDD are evaluation datasets. The records 
in the dataset may be very different from the actual network traffic data. In 
addition, the nature of attacks and normal cases may change dynamically. One 
of the most important weaknesses of the KDD dataset is the large number of 

redundant records, which causes the learning algorithms to be biased towards 
frequent records and thus prevents them from learning from infrequent records, 
which may be more detrimental to the health of the network. Furthermore, the 

existence of these repeated records in the test set causes the evaluation results 
to be positively biased towards methods that have better detection rates on 

frequent records. 
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3.1.1 UNSW-NB15 Dataset 
 

UNSW-NB15 Dataset (Moustafa & Slay, 2015) was created to address these 
limitations. It is produced by establishing the synthetic environment at the 

UNSW cybersecurity lab. The tool employed provides the capability to generate 
a modern representative of the real normal communications and the synthetical 

abnormal network. In contrast with the previous datasets, this one has a higher 
number of labeled attacks and updated traffic information. 

The dataset contains 2,218,761 (87.35%) benign flows and 321,283 (12.65%) 
attack ones captured over 31 hours of simulation on three networks with 45 
different computer addresses.  

Some tools and algorithms process raw network packets and generate attributes 
of network flows. As a result, there are 47 features, described in Appendix A. 
These variables include a variety of packet-based features and flow-based 
features. The former help in the examination of the payload along with the 
packet headers. In contrast, for flow-based features only connected packets of 

network traffic are considered to keep computational analysis low rather than 
looking at all packets. The features from 1-35 represent the integrated gathered 
information from data packets and the rest are additional attributes from the 
matched ones. 

The features are categorized into five groups (Moustafa & Slay, 2016): 

1. Flow features: includes the identifying attributes between hosts (e.g., 
client-to-serve or server-to-client).  

2. Basic features: involves attributes representing protocols connections. 

3. Content features: encapsulates the attributes of TCP/IP; they also 
contain some HTTP service attributes.  

4. Time features: contains the time attributes (e.g., inter-packet arrival time, 
packet start/end time and TCP round-trip time).  

5. Additional generated features: this category can be further divided into 
two groups: general purpose features, where each feature has its own 
purpose, and connection features that are built from the flow of 100 

record connections based on the sequential order of the last time feature.  

Regarding data labelling, two attributes are provided: label whose value is 0 for 
normal behavior and 1 otherwise, and attack_cat that represents the nine attack 

categories and the normal connections described below. 

1. Normal: natural transaction data. 

2. Fuzzers: an attack in which the attacker attempts to discover security 
holes in a program, operating system, or network by feeding it massive 
random data input to cause it to crash. 

3. Analysis: a type of variety intrusions that penetrate the web applications 

via ports (e.g., port scans), emails (e.g., spam), and web scripts (e.g., 
HTML files). 

4. Backdoors: a technique of bypassing a stealthy normal authentication, 
securing unauthorized remote access to a device, and locating the 

entrance to plain text as it is struggling to continue unobserved. 
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5. DoS: an intrusion which disrupts the computer resources via memory, to 
be extremely busy to prevent the authorized requests from accessing a 
device. 

6. Exploits: a sequence of instructions that takes advantage of a glitch, bug, 

or vulnerability to be caused by an unintentional or unsuspected 
behavior on a host or network. 

7. Generic: a technique that establishes against every block-cipher using a 
hash function to collision without respect to the configuration of the 
block-cipher. 

8. Reconnaissance: can be defined as a probe; an attack that gathers 
information about a computer network to evade its security controls. 

9. Shellcode: an attack in which the attacker penetrates a slight piece of 
code starting from a shell to control the compromised machine. 

10. Worms: attack whereby the attacker replicates itself to spread to other 

computers. Often, it uses a computer network to spread, relying on 
security flaws in the target computer to gain access to it. 

 

3.2 Proposed framework 
 

As described in Section 1.2, the main problems of anomaly detection at present 

are the high transmission rate associated with the new networks, the nature of 

the anomalies, the large number of false alarms and the poor interpretability 
and explainability of the methods used. These problems do not allow IDSs to 
function properly. It is therefore necessary to find suitable methods to solve 
each of these drawbacks. 

After an analysis of the current state of the art of IDS and the different 
algorithms used, a series of specific solutions for the problems explained above 
are proposed. These solutions are materialized in the form of a global 
architecture and as specific components of it. 

For the problem of high transmission rate, the aim is to work with variables 

specific to communications flows. In this way, it is not necessary to analyze the 
content of each of the packets, which means a higher processing overhead. 
Given the dataset proposed in Section 3.1.1 for the training and evaluation of 
the system, we finally work with both types of attributes, i.e., from flows and 
packets. Consequently, we have a better perspective of the network activity and 

can detect attacks that depend heavily on the content of the packets. In fact, 
many modern network security solutions employ a combination of these two 
approaches to improve their discovery capabilities (Andreas et al., 2021). 

Another factor that determines the performance of IDSs is the type of attack to 
be detected. Depending on the characteristics of these, it is necessary to use 

one technique or another whose design is adjusted to the behavior of the attack. 
Therefore, considering the attacks present in the dataset, a relationship is 
established in Figure 3.2 with the types of anomalies described in Section 2.3. 
For example, in the case of collective anomalies, these represent a deviation 
from normal behavior when analyzed as a whole, being normal separately. This 

is the case for DoS attacks, where numerous requests for connection to a web 
server imply a collective anomaly, but a single one is legitimate. On the other 



 
 

30 

 

hand, Probe (Reconnaissance) attacks are contextual in that they are based on 
a specific intention to obtain information about network security. 

 

Figure 3.2. Mapping of some attacks with anomalies. 

In order to obtain better performance in detecting non-point attacks, the aim is 
to use methods that have a memory of previous states, i.e., that can remember 
previous instances when looking for patterns. This helps to manage anomalies 
that are prolonged over time. A suitable solution is the RNN, and its more 
modern variants explained in Section 2.6, which are currently in demand in 

natural language processing. They allow processing sequential data, in this case 
network traffic.  

On the other hand, another problem affecting the performance of anomaly 
detection IDSs is having false positives since they consider deviations from 
normal behavior as an attack. Moreover, this problem is aggravated by the lack 

of explanations accompanying the alerts. This prevents security analysts from 
certifying the veracity of alerts through their causes. Hence, the priority is the 
interpretability of decisions and if this is not possible, post-hoc explainability. 
Probabilistic graphical models such as BNs are an efficient approach to work 

with uncertainty, bringing interpretability to the processes without losing 
precision, as illustrated in Figure 2.7. On the other hand, as RNNs are 
characterized by being black boxes, explanatory methods are necessary to meet 
this objective. In addition to post-hoc techniques, association by means of 

transparent models helps in this task. 

To combine the models described and justified above, a metaclassifier is chosen 
that fits specifically to the characteristics of the network traffic. Attacks 
occurring in real-world communications account for less than 1%. Most of the 
time no anomalies occur at all. This is also reflected in the datasets that show 

a significant imbalance, i.e., there is much more normal traffic than attacks. As 
indicated above, only 12% instances from the UNSW-NB15 dataset are attacks. 

Likewise, this imbalance is also present in the set of attacks where some are 
more frequent than others. For example, generic attacks account for 67% of the 
9 categories in the dataset as illustrated in Table 3.1. Consequently, it is 

necessary to set up a system to separate most of the normal traffic from 
suspicious observations and then analyze them in depth. 
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Type of attack Percentage 

Generic 67.07% 

Exploits 13.87% 

Fuzzers 7.55% 

DoS 5.09% 

Reconnaissance 4.35% 

Analysis 0.83% 

Backdoor 0.72% 

Shellcode 0.47% 

Worms 0.05% 

Table 3.1. Percentage of type in the testing set of UNSW-NB15 dataset. 

Cascading (Alpaydin, 2020) is a type of ensemble learning in which there is a 
base sequence of computer classifiers in terms of complexity. After the first 

classifier, the following classifiers capture those instances of uncertainty, e.g., 
the log-likelihood given by a BN is lower than a given threshold. However, since 
there is a large imbalance in the field of intrusion detection and false alarms are 
common in anomaly detection, it is decided to change the approach. Those 
instances that are suspected of being attacks are passed to the next more 

complex classifier for analysis. In addition, it is important that this initial 
filtering is efficient. Therefore, it is intended to use a first algorithm that is 
simple and with a low computational cost. 

 

3.2.1 Approach A 
 

Approach A, shown in Figure 3.3, follows the criteria explained above about the 

framework. First, it is composed of a component dedicated to point anomaly 
detection, which is exactly a Bayesian network. This model learns the normal 
behavior of the network traffic and calculates the log-likelihood for the instances 
that receives through the learned structure. This value represents the 
probability of observing a network flow given the BN parameters. If this value is 

lower than a previously defined threshold, the window in which the instance is 
in a certain position is sent to the second component. Otherwise, it is defined 
as normal behavior.  

The second component aims to validate the instances classified by the first 
component by adding a different approach for the detection of collective and 

contextual anomalies. Since the first component presents a more flexible 
threshold, i.e., anomaly detection to discard most normal traffic, the second 

block performs a more accurate detection to determine if the instance is indeed 
anomalous. For this, it is proposed to use an advanced RNN autoencoder, e.g., 
LSTM, bi-directional and, GRU that is trained in an unsupervised manner 

through normal datasets. Therefore, the autoencoder is operated by advanced 
RNN cells and can receive flow windows of size n to consider previous 
observations. The autoencoder after encoding and decoding the window, 
produces a new sequence that is compared with the initial one received. This 

results in a reconstruction error for each of the elements of the buffer. 
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Depending on the criteria followed, the error of a particular window element is 
chosen and compared with a threshold. This limit is previously computed on 
the basis of the training. If the error is higher than the threshold, then the 
observation is considered an attack and a notification is generated. If not, it will 

be indicated as normal. This component, lacking interpretability, incorporates 

methods of explainability. On the one hand, it uses the layer-wise relevance 
propagation technique to identify feature importance. On the other hand, a 
decision tree is used as a transparent design method to show the factors that 
may have influenced the decision of the component.  This tree is trained from 

the different categories of attacks in order to perform multiclassification tasks. 

 

Figure 3.3. Approach A architecture. 

 

3.2.1.1 Point Anomaly Detection 

 

The first component of Approach A is a module of several BNs that receives 
network traffic and generates a log-likelihood value for each instance. As 
explained, this value is the probability of observing an instance given the BN 
parameters that are obtained during the training process using only normal 

network traffic data. 

The initial idea to start the development of the system was to build a single BN 
that represents, consequently, all the normal traffic of the network. This first 
approach assumes that all communications are practically identical or very 
similar. However, there are differences in the normal traffic based on the type 

of connection made. Therefore, a single structure does not allow to generalize 
all the normal states and it is convenient to group the traffic according to certain 
variables. The protocols associated with the transport layer, TCP and UDP, differ 

fundamentally in their connection orientation and degree of reliability. This 
results in differences in network traffic that can be observed in several aspects. 

For example, the packet size in TCP is usually longer due to additional 
information to control the connection. Or, for example, in UDP the nature of the 
traffic tends to be more burst in comparison as it is used in real-time apps where 
timeliness is more important. Also, there are some differences between flows of 
the same transport layer protocol due to the application layer. This refers to the 

task for which the communication is intended. For example, HTTP, that is used 
for web browsing, involves small data payloads and short-request response 
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cycles. On the other hand, FTP, that is used for file transfers, results in long 
connections with a high volume of traffic.  

Therefore, in order to represent normal traffic more accurately, one BN is used 
for each type of transport protocol (TCP and UDP) and application (HTTP, FTP, 

FTP-Data, SMTP and DNS). This means that for each new flow received, its 
protocols are analyzed through their corresponding variables to send it to the 
corresponding BN of the module. 

The selection of variables for the BNs is a very important process in determining 
whether a connection is anomalous or not. There are many options such as 

correlation analysis to eliminate highly related variables that provide redundant 
information.  

However, this depends again on the protocols, so it is proposed to choose those 
variables that have a greater difference between their anomalous and normal 
distribution. For example, for a certain transport and application protocol flow, 

the marginal distributions of their variables are generated. On one side, for the 
traffic labeled as normal and on the other, the anomalous. A comparison is 
made between the two and those with the greatest difference are selected. In the 
variables of Figure 3.4, attributes A, B and D would be chosen since C is similar 
and would not contribute added value to the objective. 

 

Figure 3.4. Example of the distribution of four variables in normal data and in 
attacks. 

Once the most relevant variables for each BN are known, we proceed to their 
training using a Python package called PyBNesian (Atienza et al., 2022a). It is 
important to know the characteristics of the data when selecting the type of BN. 
The data is not homogeneous since they can be continuous or discrete and 
Gaussianity cannot be guaranteed. Consequently, an SPBN is the most suitable 

probabilistic model. 

To create the SPBN structure, it is necessary to use a learning algorithm. HC is 
chosen among other options as the PC algorithm because the former tends to 
be more computationally efficient in performing local search operations. In 
addition, it can handle both discrete and continuous variables and the PC is 

less flexible. Furthermore, the structure score is another very important 
parameter in the case of score-and-search algorithms such as HC. Since the 
aim is to evaluate the goodness of a BN with respect to the data, the log-
likelihood score is the most appropriate criterion. It seeks to maximize this 
goodness without considering other factors such as the complexity of the 

network.  

During the learning process, a series of learning operators are also employed to 
perform small, local changes to the BN structure. Some make changes to the 
arcs and others apply changes to the nodes related to their type. Finally, it is 
necessary to learn the CPDs to make inferences based on the normal behavior 

of the network. 
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The distinction between anomalies and normal data is performed by a threshold 
given the log-likelihood of the flow. Each of the BNs of the module has a 
threshold determined by the transport and application protocols. From the 
same sample of normal traffic used for training, the log-likelihoods of the flows 

are obtained for the corresponding BNs. The threshold for each set of protocol 

is the smallest value obtained. This value approximates how far a normal 
connection can be from the trained model. Any value below this threshold is 
considered anomalous and is sent to the next component. 

 

3.2.1.2 Collective and Contextual Anomaly Detection 
 

The second component of the system is an autoencoder with recurring units 
such as LSTM or GRU. It allows to detect both point and collective or contextual 
anomalies. Hence, it is used to discard false positives of the first anomaly 

detection and to certify that they are indeed anomalous communications.  

Unlike the previous component, only a single autoencoder is used for all traffic 
without grouping network traffic by protocols. Therefore, the present module 
makes use of a single set of variables. The attributes used are all those that are 
numerical since they are considered to provide value on the operation of the 

network. No other variable selection techniques are used prior to model training 
since this type of model provides significant improvements in dimensionality 
reduction as it is designed for that purpose.  

A very important step in the data preprocessing at the time of training and 

testing is standardization. This involves transforming the input features of the 

dataset to have zero mean and unit variance. This makes all the variables have 
a similar scale avoiding that those with a larger scale dominate the training 
producing a bias. Also, this process mainly improves the convergence of the 
optimization algorithm by preventing it from being slow and unstable.  

On the other hand, when preparing sequential data for modeling RNN 

architectures, temporalization of the data is necessary. A usual dimensionless 
input, also referred as planar data, does not directly provide time windows so it 
does not allow to extract temporal patterns. Therefore, it is decided to apply a 
sliding window approach whereby one starts at the beginning of the data and 
slides the window progressively along the data one at a time. This approach 

creates overlapping sequences of equal size.  

The window size is also a fundamental factor when organizing the data. It 
determines the amount of past information the model has access to for 
predictions. The frequency and duration of patterns in the data must be 

considered when choosing the right size. There are attacks that may be short 
with abrupt changes while others persist over longer periods of time. Another 
very important factor is the computational cost since larger windows result in a 
larger number of parameters and consequently longer training and detection 

time. During the system evaluation process different window sizes are tested for 

comparison. 

The architecture of the RNN autoencoder also influences the anomaly detection 
performance. It consists of an encoder and a decoder of equal size that produce 
a mirror effect structure where the size of the input layer and output layer is 
the same. The model is built using the free and open-source deep neural 

networks library TensorFlow (Martín Abadi et al., 2015). For the selection of the 
number of hidden layers and neurons a grid search of powers of 2 is used. It is 
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observed that there are hardly any differences between complex autoencoders 
with several hidden layers and many units and other simpler models. However, 
there is a considerable increase in computation time in relation to the 
complexity of the network. Therefore, the architecture shown in Figure 3.5 is 

chosen. The input layer and output layer size are 37. This is the number of 

features used. Both the encoder and the decoder have two hidden layers of 128 
and 64 units, respectively. The size of the latent representation layer also 
influences the performance. A larger latent size allows capturing more complex 
patterns but can lead to overfitting. In addition, it tends to require more 

computational resources, so a reduced latent size of 5 is chosen. It is important 
to note that all these values are multiplied by the window size as the model 
receives a sequence of flows. Additionally, a dropout of 0.2 is used as a 
regularization technique to avoid overfitting during training and to improve the 
generalization of the model. 

 

Figure 3.5. Advanced RNN autoencoder architecture. 

During training, the advanced RNN autoencoder aims to minimize the 
reconstruction loss using the mean squared error (MSE) as the loss function. 
The Adam optimizer (Kingma & Ba, 2014) is employed to update the model 
parameters. The training process involves iteratively feeding the input data to 
the network, computing the reconstruction error, and backpropagating the 

gradients to update the weights of the model. The number of times the entire 
dataset is passed through the autoencoder during training is usually around 50 
epochs. Moreover, a batch size of 64 is chosen, which strikes a balance between 
computational efficiency and model convergence. 

The determination of a flow as an anomaly is done by using a threshold that 

marks the limit between the reconstruction errors of normal connections and 
attacks. There are several ways to obtain an optimal threshold. On the one hand, 
as in the first component of the system, the reconstruction errors for the normal 
flows used during training can be calculated. In this case, the threshold would 
be the maximum of those obtained or that corresponding to a very high 

percentile. However, it is decided to use a stochastic procedure (Aygun & Yavuz, 
2017) that searches for the threshold with the best performance in the detection 
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of anomalies. This function checks the false positive rate (FPR) and false 
negative rate (FNR) for a set of thresholds and chooses the one that produces 
the lowest FPR given a maximum FNR. This maximum is normally set to 0.05. 
The evaluation of the LSTM autoencoder through the range of thresholds is 

performed using a validation set with both kinds of flows i.e., normal, and 

anomalous. Algorithm 2 shows a pseudocode of this procedure. 

 

Algorithm 2 Advanced RNN Autoencoder threshold algorithm 

INPUT: Training set 𝑡𝑠 , validation set 𝑣𝑠 , validation set labels 𝑙𝑏 , LSTM 
autoencoder 𝑎𝑒, minimum threshold 𝑡ℎ𝑎, maximum threshold 𝑡ℎ𝑏, maximum 
FNR 𝑚 

OUTPUT: Threshold 𝑏𝑒𝑠𝑡_𝑡ℎ 

   train 𝑎𝑒 with 𝑡𝑠 

   𝑒𝑟𝑟𝑜𝑟𝑠 ← validate 𝑎𝑒 with 𝑣𝑠 

   for 𝑡ℎ ←  𝑡ℎ𝑎 to 𝑡ℎ𝑏 do 

      𝑓𝑝𝑟 ← calculate_fpr by using 𝑒𝑟𝑟𝑜𝑟𝑠 , 𝑙𝑏, and 𝑡ℎ  

      𝑓𝑛𝑟 ← calculate_fnr by using 𝑒𝑟𝑟𝑜𝑟𝑠 , 𝑙𝑏, and 𝑡ℎ  

      if 𝑓𝑛𝑟 is less than 𝑚 and 𝑓𝑝𝑟 is less than 𝑏𝑒𝑠𝑡_𝑓𝑝𝑟 then 

         𝑏𝑒𝑠𝑡_𝑓𝑝𝑟 ← 𝑓𝑝𝑟 

         𝑏𝑒𝑠𝑡_𝑓𝑛𝑟 ← 𝑓𝑛𝑟 

         𝑏𝑒𝑠𝑡_𝑡ℎ ← 𝑡ℎ 

       end  

     end  

 

3.2.1.3 Post-hoc Explainability 
 

In order to add explainability to the decisions made by the recurrent units that 
make up the autoencoder, a gradient-based method was chosen. One of the 

most commonly used is called gradient attribution (Ancona et al., 2017). This 
method consists of calculating the gradients of the model output with respect 
to the input features. In the case of RNNs, these gradients can be calculated 
with respect to the input sequence at each time step. 

The gradients of the model output are computed once it is trained with respect 

to the input features. Then, they must be normalized to ensure that relevance 
scores are comparable between different features or time steps. Then, these 
values can be interpreted as feature relevance scores. Higher positive scores 
indicate features that contribute positively to the model outcome, while lower or 
negative scores indicate features that have less impact or even suppress the 

outcome. 

In addition to the feature relevance methods, explanability can be added to the 
RNN autoencoder by associating a more interpretable model. Among the 
different possible options, the decision tree is chosen because it is usually one 
of the best performing and provides transparency in decision making. It adds 

explainability to the system by classifying instances that the autoencoder 
considers anomaly by showing the rules that condition the decision. It is also 
characterized by its scalability since its time complexity is generally logarithmic 
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in the number of training samples. Therefore, it is suitable for contexts with a 
large number of instances. 

The two components of the system only indicate whether a given network flow 
is anomalous or not. Then, it is convenient to include a model for 

multiclassification that indicates the specific type of attack when the 
communication is anomalous. A decision tree naturally handles this type of 
tasks by straightforward branching, so it is very adequate for this case.  

For the model training it is necessary to use a sample with normal and 
anomalous behavior of the network. A set comprising all the attacks in the 

dataset is obtained. However, this set is unbalanced since it does not have the 
same number of classes within the attacks. Therefore, as a first preprocessing 
step it is necessary to use an oversampling technique to address the class 
imbalance. Specifically, SMOTE, explained in Section 2.3.1, is applied since it 
preserves the information and diversity of the classes. Subsequently, it is 

proceeded to the selection of variables because, unlike the previous 
preprocessing, this procedure generates improvements in this case. Accuracy is 
improved by eliminating redundant variables and, most importantly, it 
promotes a better generalization to unseen data by simplifying the structure 
and reducing complexity. It also enhances the interpretability of the model to 

gain insights into underlying relationships between features and the target 
variable. The selection is performed by recursive feature elimination (RFE) also 
using a decision tree as a base estimator. A grid search of 5 to 10 variables is 
employed to find the optimal number of variables while maintaining a low 
dimensionality that favors interpretability. 

The construction of the model is performed using the DecisionTreeClassifier 
from the scikit-learn library (Pedregosa et al., 2011) that is capable of 
performing multi-class classification.  

It is important to note that the decision tree is also trained with normal network 

behavior in addition to the different types of attacks.  Although the second 
component of the system sends only instances considered as attacks, the 
present classifier can also define the received instances as normal. This may 
result in a discrepancy between the outputs of the autoencoder and those from 
the decision tree as a transparent, multi-classifier method. Therefore, there are 

two approaches to handle this problem. On the one hand, preserving the 
decision of the RNN autoencoder and, on the other hand, setting as final label 
the decision of the classification tree when it indicates that it is a normal 
communication. The latter is indicated in Algorithm 3. The labels included in 

𝑙𝑏_𝑜𝑙𝑑 and 𝑙𝑏_𝑛𝑒𝑤 are either 0 if the instance is normal or 1 if it is anomalous. 
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Algorithm 3 Balancing algorithm between RNN autoencoder and decision tree 

INPUT: Predicted labels 𝑙𝑏_𝑜𝑙𝑑, anomalous predicted flows 𝒟 =  {𝑥1, … , 𝑥𝑁} 

OUTPUT: New labels  𝑙𝑏_𝑛𝑒𝑤  

    𝑙𝑏_𝑛𝑒𝑤 ←  𝑙𝑏_𝑜𝑙𝑑 

    for 𝑖 to 𝑁 do 

      if 𝑙𝑏_𝑜𝑙𝑑𝒊 is equal to 1 then 

         𝑎𝑡𝑡𝑎𝑐𝑘_𝑐𝑎𝑡𝑖 ← predict_label by using 𝑥𝑖 

         if 𝑎𝑡𝑡𝑎𝑐𝑘_𝑐𝑎𝑡𝑖 is equal to 'Normal' then 

            𝑙𝑏_𝑛𝑒𝑤𝒊 ←  0 

      else then  

         𝑎𝑡𝑡𝑎𝑐𝑘_𝑐𝑎𝑡𝑖 ← 'Normal' 

      end 

 

Additionally, the decision tree may receive unknown types of attacks due to the 
anomaly-based approach of the system. In this case, it will label them by the 

closest matching class. Therefore, it is important to mention that this 
classification is only for guidance and explanatory purposes for the analysts. 

 

3.2.2 Approach B 
 

The main advantage of our system is its ability to detect unknown anomalies. 
This is very important nowadays due to the high speed at which technology and, 

consequently, cybercrime are advancing. However, its accuracy is not always 
high enough due to false alarms. Sensitive sectors such as this require high 
performance. Therefore, Approach B, which maintains the global architecture, 
but adds a modification in the second block, is proposed. 

In Approach B illustrated in Figure 3.6, the second element is trained in a 

supervised way. The autoencoder is omitted in order to use only an advanced 
RNN. It is trained to classify instances into normal or attacks. The RNN 
generates a probability distribution based on these two classes. To handle the 
problem of false positives that may be produced by the anomaly detection 
models, all those instances to which the RNN does not assign a very low 

probability of being malicious are considered attacks, maintaining the decision 
of the SPBN. Otherwise, the instance is labeled as normal. As in Approach A, 
explainability methods are employed to help understand the neural network 
decisions. 
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Figure 3.6. Approach B architecture. 

 

3.2.2.1 Signature Detection 

 

As in the second component of the anomaly-based version where a RNN 
autoencoder is used (Approach A), a data preprocessing is performed, and it 
coincides with this approach in the following aspects. On the one hand, the 

feature selection is conducted by discarding all those variables that are 

categorical. Also, data standardization is used to improve model performance. 
Since a RNN is employed again, the temporalization of the data is applied 
through sliding windows with overlapping, experimenting with different sizes 
during the testing.  

The network architecture is the main difference since it is not based on anomaly 

detection and the structure is not encoder and decoder. As illustrated in Figure 
2.4, the size of the hidden layers is reduced until ending in an output layer that 
performs the prediction. The function used for this depends on the type of 
problem. In Figure 3.3, binary classification is used to distinguish between a 
normal flow or an attack. In this case, the sigmoid function is used that 

squashes the output into a range between 0 and 1, providing a probability 
distribution interpretation for binary class.  

In order to handle the distinction of attack types directly, the second component 
of this approach could also be an advanced RNN trained as a multi-class 
classification. This involves the use of a SoftMax activation function for the 

output layer. It receives an input vector and transforms it into a probability 
distribution over multiple classes.  

For the latter model it is also required to apply the OneHotEncoding method 

during data preprocessing. By this, the classes are transformed into a numerical 

format for use in the RNN. 

After an initial analysis, the sizes of the hidden layers are again 128 and 64 
when using RNN units. A dense layer of size 16 is also included before the 
output one. The rest of the hyperparameters are the same as those used with 
the RNN autoencoder. TensorFlow is employed as in Approach A. 
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Moreover, a bi-directional approach, explained in Section 2.6.1.4, is evaluated 
to further improve the performance of this component. 

 

3.2.3 System Operation 
 

As explained above, the second component works by sequences of elements. 

Therefore, it is necessary to work through windows from the beginning of the 
analysis process. For this purpose, a buffer (window) of size s is created, which 
receives observations of the network traffic until it is full. At this point, based 
on an established criterion, an element is chosen from this buffer. In the case 

of Figure 3.7, the last element of the window of size 3 is always obtained. The 
first element chosen corresponds to that of index (2) and is sent to the SPBN. 
As shown, the BN indicates that it is a normal connection, and it does not 
continue in the classifier cascade. At this point, the oldest window element is 
deleted. This case corresponds to index (0). Then, a new element is added, index 

(3), and sent to the SPBN. In this case the model considers it to be an anomaly. 
Therefore, the complete window is sent to the advanced RNN Autoencoder which 
analyzes it taking into account each previous element in the window.  

 

Figure 3.7. Example of the system operation. 

This second model can use several criteria to define the degree of anomaly of 
the element being analyzed. Some of them are the reconstruction error of the 
element itself, the average of the errors of the elements of the same window or 
a weighted sum of each of them. In the example, the error of the last element is 
applied, effectively notifying that it corresponds to an attack. In the next 

iteration, the instance of index (1) is eliminated, and a new instance of index (4) 
is added, which is analyzed following the same process. 

It is important to note that depending on the position of the element in the 
window being analyzed, the previous or subsequent flows may remain 

unstudied. In the example given, the last element of the buffer is always scanned 
without examining the first two of index (0) and (1). In general, if this criterion 
is followed, the first n-1 elements are not analyzed. This is insignificant for a 
system that has to process hundreds of thousands of flows per day, where 
almost always 100% of them are not anomalous. 
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3.2.4 Implementation 
 

The implementation of the proposed cascading system involves utilizing specific 
code environments, programming languages, and libraries to develop and 

evaluate the contribution. 

Two development environments, Jupyter Notebook and Google Colab, are used 
during different stages of the implementation. Jupyter Notebook is used for BN 
training, data preprocessing and full system integration. On the other hand, 

Google Colab is employed for all DL related tasks. 

Python serves as the foundation for implementing the system. To handle the 
data through exploration and preprocessing, the Pandas library is used. 
Additionally, Matplotlib is utilized to create visualizations for result analysis and 
presentation purposes. Regarding the graphs of the BNs, a package called 
NetworkX is used for the creation and study of the structure. Numerical 

operations and array processing are performed using NumPy.  

PyBNesian, TensorFlow and scikit-learn are the libraries for the creation of the 

models as it is mentioned in the corresponding sections. 
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4 Results 

 

 
Chapter 4 
 

Results 
 

 

The evaluation of the results obtained by the proposed methodology is 

performed using the dataset explained in Section 3.1.1. It is a relatively modern 
dataset that includes a wide variety of attacks and correctly simulates the 
normal operation of the network. Therefore, the test results correspond closely 
to those that would be obtained in a real case. Additionally, the fact that attacks 
rarely occur in communications results in a large imbalance in the dataset 

simulating a hypothetical real situation. This makes the training and evaluation 
more challenging. 

 

4.1 Evaluation Metrics 
 

In binary classification problems, the result of a classification can be correct or 

incorrect, and all possible results can be divided into the following four 
conditions: 

• True positive (TP): actual attacks are classified as attacks. 

• True negative (TN): actual normal records are classified as normal. 

• False positive (FP): actual normal records are classified as attacks. This 
condition is also known as false alarm. 

• False negative (FN): actual attacks are classified as normal records. 

Accuracy is a widely used metric in classification tasks that measures the 
proportion of correctly classified instances over the total number of instances. 
However, when the data is unbalanced, accuracy is not considered an adequate 
metric to evaluate. In this case, it can be misleading since the system can 

classify all instances as normal and would achieve high accuracy due to the 
prevalence of these types of observations. Therefore, other metrics that are not 
influenced by this problem should be used to evaluate the model. 

Some of these are precision and recall defined in Equation (4.1) and (4.2), 
respectively. Precision measures the proportion of correctly identified malicious 

instances out of the total instances classified as malicious. On the other hand, 
recall measures the proportion of correctly identified malicious instances out of 
the total actual malicious instances. Achieving a balance between these two 
metrics is essential to create an effective system that can successfully detect 
malicious activity while maintaining a low false alarm rate. This trade-off is 
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indicated by the F1-score, Equation (4.3), which is the harmonic mean of 
precision and recall. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
(4.1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
(4.2) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
(4.3) 

 

These metrics are assigned to each of the classes. Because of the imbalance 
between them, it is important to choose an appropriate averaging that results 
in a fair metric for the model. On the one hand, in a weighted metric, each class 
is assigned a weight proportional to its representation in the dataset. On the 

other hand, a macro average treats all labels equally and provides a balanced 
evaluation between all of them. Consequently, to avoid assigning a higher 
contribution to the class with more examples in the dataset, macro averaging is 
chosen. 

In the context of network intrusion detection, the management of false positives 
is very important since most of the traffic is normal. This problem is usually 
accentuated when using anomaly-based methods. Therefore, reducing false 
positives avoids false alarms that affect the correct operation of the system. For 
this purpose, the False Positive Rate (FPR) and False Negative Rate (FNR) 

metrics are also used. FPR, Equation (4.4), represents the proportion of normal 
traffic that the system incorrectly classifies as intrusions. Conversely, FNR, 
Equation (4.5), is the proportion of intrusions that the system incorrectly 
classifies as normal. 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 +  𝑇𝑁
(4.4) 

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 +  𝑇𝑃
(4.5) 

Additionally, a commonly used table in evaluating models is the confusion 

matrix. It provides a summary of the predictions by comparing them with the 
actual class labels. It is especially useful in multi-class classification problems, 
as it provides information on the strengths and weaknesses of the model when 
categorizing instances of various classes. This information can be useful in 
identifying specific areas for improvement. 

 

4.2 Point Anomaly Detection 
 

As explained in Section 3.2.1.1, point anomaly detection is performed by BNs 

that capture communications and generate log-likelihoods based on the normal 
operation of the network. During the initial experimentation, only a single model 

is built for all connections. This results in lower performance since it cannot 
generalize the behavior for different values of the network parameters. 
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Also, looking for a greater generalization, it is necessary to use a large part of 
the variables in the dataset trying to improve performance. In this case, as a 
result, the resulting graph is characterized by a high number of arcs linking the 

different nodes as illustrated in the full data SPBN graph of Appendix B. This 
graph is quite large and close to being complete, so it is not easy to interpret 
and decreases the comprehensibility of the decisions. It has 30 variables out of 
a total of 47. Those that are not included are eliminated because they are not 

relevant according to correlation analysis, in addition to eliminating the 8 

variables that are categorical. 

This particular SPBN model with this number of variables is the one that 
achieves the best performance using all the data without grouping by protocols. 
This is an FPR of 0.54 while maintaining an FNR less than 0.05. If the number 
of features is reduced to improve interpretability, the performance worsens 

considerably further. 

It was therefore decided to group the data according to the different transport 
and application protocols. All resulting graphs are shown in Appendix B. For 
example, Figure 4.2 shows the structure of the SPBN trained using normal flows 
data whose transport protocol is UDP and its application protocol is unknown. 

The feature selection is done by the procedure described previously and note 
that the resulting structure is much simpler and easier to understand. Only 
four nodes (sbytes, dttl, dbytes, ct_srv_dst) are part of the connected network, 
besides one node (sttl) that is independent and not shown.  

According to this structure, the bytes sent from the source to the destination 
(sbytes) depend on two factors in the normal operation of UDP communications. 
First, the time to live (TTL) from the data destination to the initial source and, 

second, the bytes sent from the destination to the source. Additionally, the 

destination address and the application protocol of the flows are determined by 
these two variables in the UDP context. 
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Figure 4.2. SPBN structure of UDP and None data. 

When the SPBN receives a flow, it determines the probability with which it 
conforms to the parameters and structure learned through normal traffic. To do 
this, a log-likelihood is generated which is normally close to 0 for normal 
communications and moves away from this value for anomalies. Since a 
threshold is used to detect attacks, it is important that there is a significant 

difference between the average log-likelihood for the two possible classes. This 

helps differentiate more clearly between the two cases avoiding false predictions. 

 

 Log-likelihood 

 Normal Attack 

Full -56.71 -88.75 

UDP -8.20 -3895150.60 

Table 4.1. Median log-likelihood for the full and only UDP SPBN models. 

As shown in Table 4.1, grouping the network traffic according to the protocols 
allows to better adjust the representation of the normal behavior. The median 
loglikelihood for normal flows (-8.20) is much lower in the SPBN of the UDP 

protocol than the one using a single model for all (-56.71). Also, the disparity 
between normal traffic loglikelihood (-88.75) and attacks one (-3895150.60) 
within the specific SPBN is infinitely larger. This allows the threshold to be set 
correctly. The remaining median log-likelihoods for each of the BNs according 
to the protocols are given in Appendix C. 

Figure 4.3 shows an example of the first 1000 log-likelihoods generated by the 

SPBN of UDP flows. Since there is a very large difference between these values, 
only those streams that are considered anomalous can be observed in the form 
of a bar. According to this graph approximately 30% of these communications 
are predicted to be attacks and should continue in the cascading system. In 

addition, it should be noted that among the flows whose index is approximately 
500/600, the majority are considered anomalies and may be collective. 
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Figure 4.3. Log-likelihoods of the first 1000 UDP flows. 

This is consequently reflected in the evaluation metrics, illustrated in Table 4.2, 

for anomaly detection using only this component. Using FNR and FPR as a 

reference, the new approach resulted in a drastic reduction of false alarms. For 
example, for the UDP model shown above, false positives were reduced by more 
than 80% compared to the full model. However, it fails to reduce false alarms in 
DNS protocol flows that are intended to resolve domain names to IP addresses. 

Therefore, it is necessary to use a second component that analyzes traffic from 
another perspective to improve performance. 

Another factor influencing performance is the threshold that marks the 
boundary between normal and anomalous flows. This is calculated as explained 
in Section 3.2.1.1. 

 FPR FNR 

Full 0.54 0.05 

TCP/None 0.05 0.00 

TCP/HTTP 0.04 0.00 

TCP/FTP 0.03 0.00 

TCP/FTP-Data 0.00 0.00 

TCP/SMTP 0.00 0.00 

UDP/None 0.09 0.00 

UDP/DNS 0.51 0.00 

Table 4.2. FPR and FPR of the different SPBN models. 
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4.3 Collective and Contextual Anomaly Detection 
 

There are many factors that determine the performance of deep neural networks. 
In the case of the recurrent ones, the window size is one of them since the data 

must be temporalized given the design of these. Thus, different sizes are tested, 

and the performance and computation time are analyzed before training the 
model. 

To do this, an LSTM autoencoder is used as the base model. Unlike the first 
component, the flows are not grouped by protocols and a single classifier is 
therefore used. This is trained by normal behavior and the first 1000 flows of 

the testing set are used to evaluate it. The architecture is the one explained 
previously. FPR is employed as a metric to decide the best size, while a threshold 
is set to limit the FNR to 0.05 at most. An odd window size is used, and it is 
progressively increased from 5 to 11. 

Window size FPR 

5 0.19 

7 0.25 

9 0.31 

11 0.47 

Table 4.3. FPR of LSTM autoencoder based on different window sizes. 

A hypothesis could be that a longer lookback could capture more predictive 
patterns and improve accuracy. However, Table 4.3 shows how the performance 

worsens as the window size increases. The number of false alarms is doubled 
by also doubling the size of the window. As a result, it is decided to use a smaller 
window with a maximum of 5 elements. 

It is important to state that the number of parameters in an LSTM layer does 
not increase with the lookback. Jozefowicz et al. (2015) state that if the 

retrospection period is long, the LSTM cell states merge the information over a 
wide window. Because of this, the extracted information is blurred. 
Consequently, extending the waiting period does not always work with RNNs. 

Another factor influencing performance is the threshold that marks the 
boundary between normal and anomalous flows. As indicated in Algorithm 2, a 

procedure is used to obtain the optimal threshold given a limiting FNR. This is 
affected by the distribution of reconstruction errors generated by the 
autoencoder. In an ideal situation there is a clear division between attacks and 
regular traffic.  

The first 50,000 flows of the testing set are used to check the distribution of the 

errors by grouping them according to their label. This experiment is performed 
by the LSTM Autoencoder using the architecture explained during the 

methodology. It can be seen in Figure 4.4 that most of the normals (purple) 
obtain an error between 0.2 and 0.3, while the few attacks (pink) acquire a 
higher value. According to the graph, the optimal threshold would be around 

0.4 although some erroneous prediction would occur. 
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Figure 4.4. Distribution of Reconstruction Errors by LSTM Autoencoder. 

Different RNN models are trained to integrate in the system and the most 
suitable threshold for each of them is obtained. An LSTM autoencoder, a bi-
directional LSTM autoencoder and a GRU-based LSTM autoencoder are 
evaluated using the window size previously calculated by the procedure. The 

first 20,000 flows of the testing set are used. Since this second component 
receives mostly anomaly traffic, a threshold that generates at most an FNR of 
0.05 is looked for.  According to the results shown in Table 4.4, the most optimal 
threshold is between 0.45 and 0.50 depending on the model.  

In addition, the FPR obtained using the data without filtering by the initial 

component is shown. This value is strongly increased by limiting the number of 
false negatives. Thus, it becomes evident the need for a cascade system that not 
only improves the efficiency, but also the performance. 

Model Threshold FPR 

LSTM 0.45 0.77 

Bi LSTM 0.50 0.85 

GRU 0.45 0.85 

Table 4.4. Threshold determination for three advanced RNN autoencoders. 

 

4.4 Signature Detection 
 

As observed in the results of the unsupervised version of the advanced RNNs, 

they usually suffer from a high percentage of false positives. This problem is 
partly solved using SPBNs as an upstream component. However, due to this 
less than optimal performance, several supervised models are trained for 
Approach B and evaluated to improve attack detection. Likewise, the window 
size used is 5 given the experiments performed previously. The same first 20,000 

flows of the dataset are used again for the evaluation. 
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The models used are the same, but in their signature detection version, i.e., 
without the autoencoder. Again, we limit the FNR to 0.05 and look for the 
configuration that gives the best FPR as a result. As illustrated in Table 4.5, 
there is a great improvement and false alarms are greatly reduced. The bi-

directional version of the LSTM is the best performing recurrent network with 

0.07 FPR. The simplified GRU version shows similar results also offering higher 
efficiency. 

Model FPR 

LSTM 0.17 

Bi LSTM 0.06 

GRU 0.07 

Table 4.5. Performance for three advanced RNN. 

However, the LSTM model still maintains a high FPR despite the drastic 
reduction compared to its anomaly-based version. Sutskever et al. (2014) found 
that reversing the order of elements in all source sequences significantly 

improved the performance of the LSTM. Doing this introduces many short-term 
dependencies between source and target. Therefore, the model is tested to 
process the input sequence backward. The result is a reduction of the FPR to 
0.12. This is 30% less than the version that does not process the input 
backwards. Hence, this new version is introduced in Approach B. 

 

4.5 Post-hoc Explainability 
 

When analyzing the relevance of features using gradient-based methods, there 
are several visualizations that provide more information to understand the 
decisions made by the RNN model. These are based mainly on the importance 

of the variables and their behavior throughout the predictions. 

Figure 4.5 shows the feature distribution obtained by averaging the time steps 
of all correctly classified samples. This distribution represents the impact of the 
features on the outcome of the LSTM autoencoder model. In particular, the 
scores associated with the features show significant variations. Some features, 

such as ct_state_ttl, ct_dst_src_ltm, sttl and dttl, show large sums, indicating a 
large influence on the outcome. In contrast, most of the features have smaller 
scores, suggesting minimal importance in terms of outcome. It is important to 
note that some of the most determinant variables in this model are also present 

in the SPBN structures of the first component. For example, ct_srv_dst is the 
third most relevant feature employed in the second component and it is used in 
4 of the 6 BNs: TCP and HTTP, TCP and FTP-Data, UDP and None, and UDP 
and DNS as can be seen in Appendix B. 
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Figure 4.5. Average gradient-based relevance scores for each feature employed in the 
second component. 

Analogous to what is done when averaging the relevance scores for each feature, 
a total of these values is performed to show the added relevance scores for the 
time steps. A small sample of 1000 instances is used to facilitate understanding. 
As illustrated in Figure 4.6, during the first 200 flows the mean scores of all 

variables are reliably constant and around 0.15. However, then there is a drastic 

drop until timestep 400. 

This coincides with the fact that more than 70% of the anomalies in this sample 
are found in the first 200 communications and hardly any occurs after that up 
to timestep 400. During the rest of the analysis the weight assignment is more 

irregular because there are no long patterns of normal behavior or attacks. 

In addition, the degree of relevance that the model assigns on average to each 
window element out of the five that receives is explained. For this purpose, a 
heat map, shown in Figure 4.7, is created to display the scores across the 
sequence data positions.  

Looking at the horizontal axis corresponding to each of the positions within the 
buffer, the scores are quite similar in general. Darker colors are seen in the 
central elements of the window indicating less relevance to the model. However, 
the first and the last flow are more important as they are lighter. Additionally, 
the variables of indexes 4, 5 and 29 stand out in the fourth element with a much 

higher score than the rest. It can be seen that this coincides with what is shown 
in Figure 4.5.  
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Figure 4.6. Gradient-based relevance distribution over time steps. 

As explained above, the degree of anomaly of the last element based on its error 
is used to determine whether a window contains an attack. Then, this decision 

is also assigned to this last element for comparison with the actual label. As a 
result of this last explanation, this decision is correct since the model assigns a 
higher relevance to the fifth component of the window. 

 

Figure 4.7. Gradient-based relevance of features across positions in sequence data. 

Apart from explainability with the latter method to understand the influence of 
the features on final decisions of the RNN, a different approach is used that 

seeks to add information to the outputs of the system. For this purpose, a 
decision tree is used which, due to its transparent design, balances the null 

interpretability of the black boxes.  

As a result of the feature selection method, the following 10 variables are used 
to train the model: sbytes, dbytes, sttl, sload, spkts, smeansz, dmeansz, 
trans_depth, ct_srv_dst, and ct_dst_sport_ltm. The result is an easy-to-

understand tree structure that adds insight into why the received instances are 
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considered anomalies by the recurrent model. Despite using a reduced number 
of attributes, the constructed tree is quite large and therefore not easy to 
visualize completely. To facilitate its visibility, the tree is pruned to a maximum 
depth of 3. 

Figure 4.8 shows some of the decisions used to consider an instance as an 
anomaly and in turn a specific type of attack. This is the case of those classified 
as Backdoor, Generic, Shellcode and Reconnaissance. For the first one, the 
model establishes that it is sufficient to have a time to live from source to 
destination of less than 61 seconds. On the other hand, if it has a higher value, 

it can be of the rest of the anomalous classes. For example, if there have 
previously been more than 3 connections with the same source address and 
destination port, and the flow transmits more than 129 bytes to the destination, 
then it is classified as an attack of the Reconnaissance type. 

 

Figure 4.8. Decision tree with maximum depth of 3 as Transparent design method. 

In addition to the explainability of the RNN's decisions offered by the model 
given its transparent design, the performance of the multi-class classification is 
analyzed. For this purpose, a normalized confusion matrix is used and the only 
instance corresponding to Analysis attack is eliminated. Therefore, there are 8 

types of anomalies plus the normal flows.  

 

Figure 4.9. Normalized confusion matrix of decision tree results. 
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As shown in Figure 4.9, it performs a very good classification of the Generic 
attacks, being 94% of them correct. These are the most common within the 
dataset, since they represent almost 70% of the total attacks. It also performs a 
good prediction of almost 90% accuracy of Reconnaissance attacks despite 

being contextual anomalies. 

It is worth noting that although it receives flows whose prediction is anomalous, 
the tree can also classify the instances as normal. Given the results, it can be 
observed that it detects false positives coming from the previous component in 
a remarkable way by classifying them as normal in 80%. However, if it is decided 

to apply Algorithm 3 with the objective of correcting false alarms, there is also 
an increase in false negatives as shown in Table 4.6. This is because a good part 
of Fuzzers attacks are predicted as normal as illustrated in the matrix. Therefore, 
as mentioned above, multi-classification should be used mainly as a value-
added explanatory element. 

FPR FNR 

0.15 0.01 

Table 4.6. Performance of the system after applying Algorithm 3. 

 

4.6 Approach A vs Approach B 
 

The results of the two approaches are illustrated in Table 4.7. For each of them, 

the exact RNN used as the model of the second component is also indicated.  

First, it can be observed that the performance is significantly improved 
compared to that achieved by the individual modules that constitute the 
complete structure. Primarily, the number of false alarms is reduced. For 

example, for Approach A with a bi-directional LSTM autoencoder, the FPR is 
reduced by almost 95% compared to the corresponding results in Table 4.4.  

Among the models used in this approach, the one that uses a standard LSTM 
achieves the best performance with an F1-score of 0.88. Similarly, the lighter 
GRU model generates equally reliable results. One of the aspects to improve is 

the precision which is lower than the recall. This is because its value decreases 
for the positive class corresponding to the malicious activity.  

Overall, the three models give almost identical performance. Since GRU is 
simpler and, consequently, more efficient, it is bolded as the best method of 
Approach A. 

By using Approach B, which is a hybrid version combining anomaly detection 
and signature detection, very good performance is achieved. False alarms are 
again reduced compared to the first approach. The same models achieve the 
best results, but this time without the autoencoder architecture. In this case, 

LSTM is slightly superior to its simplified version with an F1-score of 0.95. 

In short, the framework succeeds in meeting the performance criteria required 
by an IDS. The combination of the two components makes it possible to improve 
the capture of attacks. In addition, the supervised version achieves much higher 
accuracy. 
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 2nd 
Component 

Accuracy Precision Recall F1-score FNR FPR 

Approach 
A 

LSTM 
Autoencoder 

0.96 0.83 0.97 0.88 0.02 0.04 

Bi-LSTM 
Autoencoder 

0.96 0.82 0.95 0.87 0.02 0.05 

GRU 
Autoencoder 

0.96 0.83 0.97 0.88 0.02 0.04 

Approach 
B 

LSTM 0.98 0.92 0.98 0.95 0.01 0.02 

Bi-LSTM 0.96 0.91 0.98 0.93 0.01 0.03 

GRU 0.98 0.92 0.98 0.94 0.01 0.02 

Table 4.2. Evaluation metrics for Approach A and Approach B. 



 
 

55 

 

5 Conclusions and Future Research 

 

 
Chapter 5 
 

Conclusions and Future Research 
 

 

5.1 Conclusions 
 

In this project, the development of a cascading explainable system for network 
intrusion detection is introduced, with the objective of improving the 
interpretability of the detection process while maintaining a high level of 
performance. The framework incorporates two main components: an initial 
anomaly-based detection component consisting of a module of several SPBNs 

and a secondary component based on a few types of RNNs. In addition, a feature 
relevance method and a decision tree are employed to generate decision 

explanations for the LSTM module. 

Through extensive analysis and evaluation with a up-to-date network traffic 
dataset, the proposed system demonstrates remarkable performance in 

intrusion detection. The initial module provides an agile and accurate way of 
identifying potential anomalies by exploiting probabilistic relationships between 
features. BNs are based on the normal state of each transport and application 
protocol as it is difficult to generalize.  When they receive new flows, they output 
log-likelihoods that determine the degree of abnormality using a specific 

threshold. As they are lighter models and work as first elements, the efficiency 
of the detection is improved by avoiding that all the traffic is analyzed by the 
neural network. In this way, the high levels of transmission that currently exist 
are correctly managed. 

To further improve detection performance, we trained several RNNs 

autoencoders as anomaly-based models that are compared to their signature 
versions. Both are characterized by analyzing sequential patterns that allow to 
better capture those attacks that are not punctual, but occur in groups. This 
responds to one of the main issues based on the nature of the input data. 
Consequently, there are two different approaches for the same framework. The 

first method focuses on learning and reconstructing temporal patterns of 

normal network behavior, while the second uses labeled data to directly classify 
different type communications.  

However, these models, as black boxes, are not interpretable. Therefore, feature 
relevance method is integrated that identifies the most influential inputs in the 

detection process. This allows to provide meaningful explanations of the 
decisions made by the recurrent module. As can be seen in the figures, there 
are some features that are very important for the detection of anomalies during 
processing by the RNNs, while most of them are not so decisive. Besides, the 
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features at the extremes of the window are the most influential in the 
determinations. 

Moreover, a decision tree is used to create interpretable rules that allow to know 
the reasons why the second component has determined that an instance is 

anomalous as well as to establish the specific type of attack. It is worth noting 
that the most prevalent attacks are classified with a high degree of accuracy 
and false alarm correction is again facilitated. 

The evaluation results reveal that the cascading system outperforms the results 
obtained by the two components separately. In particular, from the point of view 

of the first component, the system significantly reduces false alarms by checking 
for instances that SPBN considers to be attacks. On the other hand, from the 
point of view of the second component, the fact that it receives already filtered 
anomalous traffic prevents it from processing a lot of normal traffic that may 
generate false positives. Therefore, one of the challenges that are part of the 

problem statement of this type of anomaly-based system is satisfied. This 
prevents the system from becoming unusable by flooding it with some irrelevant 
notifications. 

Overall, this research contributes to the field of network intrusion detection 
addressing some of its main challenges. The proposed framework, with the 

combination of the strengths of BNs and DL, provides a practical solution. Also, 
the inclusion of feature relevance and decision tree-based explanations improve 
the transparency of the solution. This work opens avenues for future 
development in the domain of explainable network intrusion detection, 
facilitating a more reliable defense against malicious activities. 

 

5.2 Future Research 
 

The performance of the cascading system is generally good. The two approaches 
cover the main concepts within network intrusion detection. However, certain 
corrections can still be made to improve the behavior of the proposal. Therefore, 

several lines of future research are proposed ordered from highest to lowest 
priority. 

 

1. The current system is validated using a dataset that is considered one of 
the best at present due to its wide variety of attacks and traffic fidelity. 

However, to perform a more reliable evaluation it is essential to test it on 
real network traffic. This can be challenging due to privacy issues and 
limited access to such data. Therefore, it is proposed to perform it with 
ad hoc network traffic using virtual machines that generate synthetic 

data representative of real-world network behavior. This data would 
enable to perform a better assessment of the system in a controlled 
environment. 

2. As the field of DL continues to advance, transformer-based models have 
gained significant popularity and have achieved remarkable success in 

various domains such as natural language processing. They are very 
effective in capturing long-range dependencies and contextual 
information. Then, it is proposed to investigate the use of these modes 
for network attack detection with the goal of integrating them into the 
system. This would allow the proposal to capture more complex patterns, 
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leading to improved detection capabilities in identifying sophisticated 
intrusions. 

3. Determining anomalies using a threshold is a very important factor in 
attack detection. Performance is significantly affected by the choice of 

such a boundary, so it is essential to perform this process correctly. 
Hence, it is proposed to use one-class models as they focus on learning 
the characteristics of the normal behavior of the network and identifying 
the cases that deviate from it.  

Leveraging the advanced RNN Autoencoder as the main model, the 

research will center on classifying instances as normal or anomalous 
based on reconstruction errors. These errors would serve as a 
representation of the deviation from the learned normal behavior of the 
network. 

4. The SPBNs are responsible for identifying network flows that exhibit 

suspicious behavior. Rather than simply classifying flows as normal or 
anomalous, this research also proposes to extend the output of the BN 
to include a measure of the degree or severity of the anomaly. This would 
be communicated to the following component of the system. By providing 
the RNN autoencoder with this enhanced information, it would be able to 

better understand the severity of anomalies and adjust its reconstruction 
and prediction accordingly. 

5. In traditional advanced RNN architectures, a fixed window size is 
typically used to encode and reconstruct sequences. However, network 

traffic patterns may exhibit variations in their temporal characteristics, 

where the duration of anomalous events may differ from normal behavior 
and between different types of attacks. To address this challenge, the use 
of a variable (non-constant) window size within the cascaded system is 
proposed as another future work. This would use an adaptive window 
sizing based on statistical measures that would dynamically focus on the 

relevant segments of the sequence. 

6. As explained in Section 3.2.3 about the operation of the system, the last 
element of the window is always analyzed by its own reconstruction error 
for the detection of the anomaly. However, there are many other 
approaches that can be used. Therefore, it is intended to explore different 

alternatives such as the use of metrics that take into account the errors 
of the other elements of the window when determining the degree of 
anomaly of the last one.  

One option would be to assign weights to reconstruction errors based on 

their temporal proximity to the last element. This approach recognizes 
that recent events may have a greater impact in determining the degree 
of anomaly compared to earlier events. 

7. One of the methods used to improve the explainability of the second 

component is characterized by pointing out the feature relevance during 

the decisions of this model. This results in a ranking of the most 
important variables. Therefore, as future work we can consider using 
these findings to eliminate those that are not important and observe how 
this affects the performance of the system. In this way, we can reduce 
the dimensionality of the data received by the RNN and improve 

computational times and interpretability. 
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8. In addition to the post-hoc explanatory techniques used to improve the 
understanding of RNNs, there are other different methods that also 
facilitate this task. This is the case of visual explanation techniques that 

help in the interpretation of black-box DL models. For instance, Karpathy 
et al. (2015) reveal the existence of interpretable cells that track long-

range dependencies. Analyzing the internal states of these cells can help 
to understand how information flows and is processed over time. This 
helps to show which parts of the input are remembered or forgotten by 

the network. 
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Appendix  
 

A UNSW-NB15 Dataset Features 
 

No. Name Type Description 

Flow features 

1.  srcip Nominal Source IP address. 

2.  sport Integer Source port number. 

3.  dstip Nominal Destination IP address. 

4.  dsport Integer Destination port number. 

5.  proto Nominal Transaction protocol. 

Basic features 

6.  state Nominal The state and its dependent protocol. 

7.  dur Float Record total duration (mSec). 

8.  sbytes Integer Source to destination bytes. 

9.  dbytes Integer Destination to source bytes. 

10.  sttl Integer Source to destination time to live. 

11.  dttl Integer Destination to source time to live. 

12.  sloss Integer Source packets retransmitted or dropped. 

13.  dloss Integer Destination packets retransmitted or dropped. 

14.  service Nominal http, ftp, ssh, dns, ..., else (-). 

15.  sload Float Source bits per second. 

16.  dload Float Destination bits per second. 

17.  spkts Integer Source to destination packet count. 

18.  dpkts Integer Destination to source packet count. 

Content features 

19.  swin Integer Source TCP window advertisement. 

20.  dwin Integer Destination TCP window advertisement. 

21.  stcpb Integer Source TCP sequence number. 

22.  dtcpb Integer Destination TCP sequence number. 

23.  smeansz Integer Mean of the flow packet size transmitted by the 
source. 

24.  dmeansz Integer Mean of the flow packet size transmitted by the 
destination. 

25.  trans_depth Integer the depth into the connection of http 
request/response transaction. 
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26.  res_bdy_len Integer The content size of the data transferred from the 
server’s http service. 

Time features 

27.  sjit Float Source jitter (mSec). 

28.  djit Float Destination jitter (mSec). 

29.  stime Timestamp Record start time. 

30.  ltime Timestamp Record last time. 

31.  sintpkt Float Source inter-packet arrival time (mSec). 

32.  dintpkt Float Destination inter-packet arrival time (mSec). 

33.  tcprtt Float The sum of synack and ackdat of the TCP. 

34.  synack Float The time between the SYN and the SYN_ACK 
packets of the TCP (mSec). 

35.  ackdat Float The time between the SYN_ACK and the ACK 
packets of the TCP (mSec). 

Additional generated features 

36.  is_sm_ips_port
s 

Binary If source (1) equals to destination IP addresses (3) 
and port numbers (2)(4) are equal, this variable 

takes value 1; else 0. 

37.  ct_state_ttl Integer No. for each state (6) according to specific range of 

values for source/destination time to live (10) (11). 

38.  ct_flw_http_mt
hd 

Integer No. of flows that has methods such as Get and Post 
in http service. 

39.  is_ftp_login Binary If the ftp session is accessed by user and password, 
then 1; else 0. 

40.  ct_ftp_cmd Integer No. of flows that has a command in ftp session. 

41.  ct_srv_src Integer No. of connections that contain the same service (14) 
and source address (1) in 100 connections according 
to the last time (26). 

42.  ct_srv_dst Integer No. of connections that contain the same service (14) 
and destination address (3) in 100 connections 
according to the last time (26). 

43.  ct_dst_ltm Integer No. of connections of the same destination address 
(3) in 100 connections according to the last time 
(26). 

44.  ct_src_ltm Integer No. of connections of the same source address (1) in 
100 connections according to the last time (26). 

45.  ct_src_dport_lt
m 

Integer No. of connections of the same source address (1) 

and the destination port (4) in 100 connections 
according to the last time (26). 

46.  ct_dst_sport_lt
m 

Integer No. of connections of the same destination address 

(3) and the source port (2) in 100 connections 
according to the last time (26). 
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47.  ct_dst_src_ltm Integer No. of connections of the same source (1) and the 
destination (3) address in 100 connections 

according to the last time (26). 
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B SPBN Graphs of the First Component. 
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UDP and DNS 
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C Median log-likelihood for SPBN models. 
 

 Log-likelihood 

 Normal Attack 

Full -56.71 -88.75 

TCP/None -6.25 -47383399.27 

TCP/HTTP 5.90 -673758269.25 

TCP/FTP -32764.38 -336867903.53 

TCP/FTP-Data 0.85 -398388.87 

TCP/SMTP 3.50 -332144669.83 

UDP/None -8.20 -3895150.60 

UDP/DNS -11447.8 -2920891437.78 
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