
Universidad Politécnica
de Madrid

Escuela Técnica Superior de

Ingenieros Informáticos

Master in Data Science

Master Thesis

Explainable Cascading System for
Network Intrusion Detection in Industry

Author: Nicolás Amigo Sañudo

Supervisors: Concha Bielza Lozoya and Pedro Larrañaga Múgica

Madrid, July 2023

i

This Master Thesis has been deposited in ETSI Informáticos de la
Universidad Politécnica de Madrid.

Master Thesis
Master of Science in Data Science

Title: Explainable Cascading System for Network Intrusion Detection in Industry
July 2023

Author: Nicolás Amigo Sañudo

Supervisor:

Supervisor:

Concha Bielza Lozoya Pedro Larrañaga Múgica

ETSI Informáticos
Departamento de Inteligencia
Artificial
Universidad Politécnica de Madrid

ETSI Informáticos
Departamento de Inteligencia
Artificial
Universidad Politécnica de Madrid

ii

Acknowledgments

This work was partially supported by the Spanish Ministry of Science and

Innovation through the RTC2019-006871-7, PID2019-109247GB-I00 and

TED2021-131310B-I00 projects.

I would like to express my thanks to my supervisors, Concha and Pedro, for
their invaluable guidance and expert insight throughout the entire research
process. Their mentorship has been fundamental in shaping this master thesis.

I extend my thanks to Titanium Industrial Security Madrid for providing me

with a stimulating work area. I would also like to thank Jorge and Carlos, who
took the time to discuss interesting aspects that have contributed to the
development of this work.

Finally, I would like to acknowledge the support received from my family and
my girlfriend Paola.

iii

iv

Resumen

La detección de intrusiones desempeña un papel fundamental en la protección

de la integridad y la seguridad de las redes informáticas. A medida que

evolucionan la complejidad y la sofisticación de los ataques, aumenta la
necesidad de sistemas eficaces. Sin embargo, los procedimientos actuales se
enfrentan a menudo a diferentes problemas a la hora de reconocer con precisión
las actividades maliciosas y, al mismo tiempo, ofrecer explicaciones

transparentes de sus decisiones.

En este trabajo se abordan estas cuestiones proponiendo un sistema explicable
en cascada que combina las ventajas de las redes bayesianas con algunas
técnicas de aprendizaje profundo para mejorar la interpretabilidad y la precisión
del proceso de detección. Además, se incorporan algunos métodos post-hoc de

explicabilidad del aprendizaje profundo para proporcionar una visión amplia del
proceso de toma de decisiones, facilitando así una mejor comprensión de las
intrusiones detectadas.

La metodología propuesta es evaluada mediante un conjunto de datos

actualizado con diversos tipos de ataques. La solución supera a los métodos
individuales tradicionales y proporciona aclaraciones transparentes de las
intrusiones detectadas, mejorando la fiabilidad de los resultados. Asimismo,
este trabajo supone un comienzo para futuros desarrollos en el ámbito de la
detección explicable lo que permitirá una defensa más segura contra las

comunicaciones anómalas.

v

Abstract

Intrusion detection performs a fundamental roll in safeguarding the integrity

and security of computer networks. As the complexity and sophistication of

attacks continue to evolve, the need for effective systems increases. However,
existing approaches often face challenges in accurately recognizing malicious
activity while providing transparent explanations for their decisions.

These issues are addressed in this master thesis by proposing an explainable

cascading system that combines the strengths of bayesian networks and some
deep learning techniques to improve the interpretability and accuracy of the
detection process. Additionally, some post-hoc deep learning explainability
methods are incorporated to provide meaningful insights of the decision-making

process, facilitating a better understanding of the detected intrusions.

The proposed methodology is evaluated using an updated dataset with various
types of attacks. The solution outperforms traditional single methods and yields
transparent explanations of detected intrusions, improving the reliability of the
decisions. This work opens avenues for future development in the domain of

explainable network intrusion detection, facilitating a more trustworthy defense
against anomalous communications.

vi

vii

Contents

1 Introduction ..1

1.1 Motivation .. 1

1.2 Problem Statement ... 2

1.3 Objectives... 3

1.4 Document Structure ... 4

2 Theoretical Background ...5

2.1 Intrusion Detection Systems ... 5

2.1.1 Network Intrusion Detection Systems ... 6

2.2 Signature-based Detection .. 6

2.3 Anomaly-based Detection ... 7

2.3.1 Techniques .. 9

2.4 Bayesian Networks .. 10

2.4.1 Semiparametric Bayesian Networks ... 11

2.4.1.1 Parameter Learning .. 13

2.4.1.2 Structure Learning ... 13

2.4.2 Anomaly Detection with Bayesian Networks 14

2.5 Autoencoders .. 15

2.5.1 Anomaly Detection with Autoencoders 17

2.6 Recurrent Neural Networks .. 17

2.6.1 Long Short-Term Memory .. 18

2.6.1.1 Layer and Network Structure ... 18

2.6.1.2 LSTM Cell .. 19

2.6.1.3 LSTM Operations ... 20

2.6.1.4 Bi-directional LSTM ... 21

2.6.1.5 LSTM Autoencoder ... 21

2.6.2 Gated Recurrent Unit .. 22

2.7 Explainable Artificial Intelligence ... 23

3 Contribution Methodology ... 26

3.1 Network Traffic Data .. 26

3.1.1 UNSW-NB15 Dataset ... 28

3.2 Proposed framework .. 29

3.2.1 Approach A ... 31

3.2.1.1 Point Anomaly Detection .. 32

3.2.1.2 Collective and Contextual Anomaly Detection 34

3.2.1.3 Post-hoc Explainability ... 36

3.2.2 Approach B ... 38

3.2.2.1 Signature Detection .. 39

viii

3.2.3 System Operation .. 40

3.2.4 Implementation ... 41

4 Results .. 42

4.1 Evaluation Metrics .. 42

4.2 Point Anomaly Detection .. 43

4.3 Collective and Contextual Anomaly Detection................................... 47

4.4 Signature Detection ... 48

4.5 Post-hoc Explainability ... 49

4.6 Approach A vs Approach B .. 53

5 Conclusions and Future Research .. 55

5.1 Conclusions .. 55

5.2 Future Research .. 56

Bibliography .. 60

Appendix ... 64

A UNSW-NB15 Dataset Features ... 64

B SPBN Graphs of the First Component. .. 67

C Median log-likelihood for SPBN models. .. 70

1

1 Introduction

Chapter 1

Introduction

1.1 Motivation

In recent years, the industrial landscape has undergone major transformations
with the advent of new technologies. From the rise of the Internet of Things (IoT)
to the widespread integration of automation and cloud computing, these
advances have brought numerous benefits and opportunities to businesses.
However, along with these advances, the risks, and challenges of maintaining

robust cybersecurity have increased.

After the COVID-19 pandemic, the digitization process accelerated significantly.
According to a report by Accenture Research (Accenture, 2021), the overall rate
of adoption of the main new technologies increased from 75% to almost 95%.
Industrial systems are now highly intelligent and interconnected with unlimited

potential to improve efficiency, productivity, and competitiveness in different
sectors. It is possible to monitor equipment through IoT sensors that provide
real-time information. Another vital enabler for industrial operations is cloud
computing. Industrial companies can securely store, and process large amounts
of data generated by IoT devices and other sources in geographically dispersed

locations. In addition, advances in wireless communication technologies such
as 5G are set to revolutionize industrial networks, providing ultra-low latency
and high bandwidth connectivity. As a result, industrial systems can optimize
their operations, accelerate innovation cycles, and gain a competitive advantage
in the rapidly evolving marketplace. These advances have therefore changed

traditional industrial systems and have set the pace for smart factories around
the world.

With the arrival of Industry 4.0, the attack surface for potential cyber threats
has expanded significantly. The integration of digital technologies introduces
new vulnerabilities and risks that malicious actors can exploit. These breaches

can have severe consequences. Thus, the importance of cybersecurity has

become paramount. Ensuring the integrity, confidentiality, and availability of
industrial systems is very important to protect sensitive data and maintain
business continuity.

Security breaches have significant repercussions that go beyond the immediate

consequences for the organizations affected. For example, they erode public
trust in companies. This can hinder the growth of digital economies and impede
technological advances. They can also disrupt critical services and

2

infrastructures. This affects not only the organizations, but also the people who
rely on these services. Another of the most important consequences is economic.
According to a McAfee report titled “The Hidden Costs of Cybercrime” (Tom Gann,
2020), these attacks cost the global economy more than $1 trillion. The study

states that 92% of companies felt effects beyond monetary losses. Moreover,

these security issues often carry legal and regulatory consequences. Affected
organizations can face significant legal action, lawsuits, and financial penalties,
further impacting their operations and reputation.

As for the sophistication of cyberattacks, this has been on the rise, posing

significant challenges. An annual report from Microsoft (Microsoft, 2022) states
that the sophistication of actors has increased rapidly in recent years, using
techniques that make them harder to detect and threaten even the most astute
targets. Cybercriminals employ different types of tactics to exploit vulnerabilities
and gain unauthorized access. These techniques are often highly targeted and

customized, making it difficult for traditional security measures to detect.

To address these specific cybersecurity challenges, industrial companies adopt
certain strategies. Some of these are antivirus software to detect and remove
malware, firewalls to control network traffic or intrusion detection and
prevention systems to monitor suspicious activity. With the evolution of threats,

it is increasingly important to look for new methods to approach these new
challenges.

The advent of artificial intelligence (AI) technologies in cybersecurity presents a
significant opportunity to improve attack identification capabilities. These
advanced technologies can analyze large amounts of data, detect patterns, and

identify anomalies that may indicate cyber-threats. By leveraging these
technologies, organizations can strengthen their cybersecurity posture to stay
one step ahead of attackers.

Stanford University’s “Artificial Intelligence Index 2023 Report” (Stanford
University, 2023) states that private investment in AI applied to cybersecurity

is currently one of largest and the one that grew the most from 2021 to 2022.
However, despite its great benefits, adoption has stagnated at around 60% in
recent years. Thus, this represents a great opportunity for cybersecurity
companies to differentiate themselves from their competitors.

1.2 Problem Statement

Titanium Industrial Security 1 is a leading company at national and
international level in advising and supporting companies in the field of
cybersecurity in the connected industry. It offers industrial cybersecurity
services that allow to improve and adapt to the most demanding security

requirements, to face the growing threats and to comply with the imposed
regulations.

This company proposes to implement a local intrusion detection system capable
of effectively identifying anomalies in network traffic communications between
industrial devices. The system aims to monitor the network in real time and flag

any deviations from normal behavior. To enhance understanding, it also intends

1 https://www.titaniumindustrialsecurity.com/

3

to provide detailed explanations of its detection decisions. This additional
functionality enables security analysts and other operators to understand the
reasoning behind alerts and make informed decisions. By combining accurate
detection with explanatory functions, the overall security posture and

responsiveness of the industrial network is improved.

Network anomaly detection poses several challenges to effectively identify and
mitigate potential threats. Current networks provide increasingly high
transmission rates associated with the advent of 5G communications
(Fernandez Maimo et al., 2018). This means that more data is transmitted and

processed in a shorter amount of time, which can make it more difficult for
anomaly detection systems to keep up in real-time.

The nature of the input data is another key aspect of any anomaly detection
technique (Chandola, 2009). Most of the existing anomaly detection techniques
deal with point data, in which no relationship is assumed among the data

instances. However, there exist situations where such relationships among data
instances become relevant for anomaly detection.

Anomaly detection methods frequently result in a high rate of false alarms
(Aldini et al., 2005). This is because deviations from the expected behavior model
can occur for many reasons. This may lead to a large volume of alerts to process

making the system unusable by flooding it with some irrelevant notifications.

It should also be noted that anomaly detection is mostly carried out using deep
learning techniques at present. This does not allow interpretation of the reasons
why a certain decision has been arrived at. Therefore, it is very important to

present the results in a way that is understandable to humans.

1.3 Objectives

The objective of this project is to develop an intrusion detection system for the
detection of attacks on industry network traffic using machine learning methods.
The system aims to analyze the communication patterns and detect any

suspicious activity or deviation from normal behavior. It should also provide
explanations enabling administrators and analysts to understand the nature of
the threats.

Given the characteristics of the system, it is claimed that semi-supervised
learning techniques can be used, and they are combined with other supervised

methods for classification tasks. Bayesian networks and advanced recurrent
neural networks will form the basis of a cascade system where both algorithms
are trained by the normal behavior of the network. The first learn the probability
distribution of the variables and estimates the likelihood that a connection is
within the usual range. On the other hand, the latter captures sequential

dependencies and temporal patterns to certify the previously indicated
anomalies.

Directly interpretable models such as Bayesian networks are used and post-hoc
explainability methods are added to those that function as a black box. Feature

relevance techniques and transparent design methods work together with the
recurrent neural networks to accomplish this goal. Consequently, the whole
system provides explanations to enhance the understanding of detected
anomalies.

4

Another key objective is to address performance requirements within the
developed system. The use of lightweight models such as Bayesian networks as
the first component of the system helps to filter the traffic received by the neural
network. This involves ensuring efficient resource utilization to minimize

processing overhead and response time.

1.4 Document Structure

The master thesis is structured in five chapters, each addressing specific
aspects of the research.

• Chapter 1, already presented, is an introduction that provides a concise
overview of the research topic, highlighting the problem statement and
objectives of the study.

• Chapter 2, “Theoretical Background”, provides a comprehensive review
of existing literature and research related to network intrusion detection.
It explores the techniques, and algorithms commonly employed in
network intrusion detection systems and explains in detail the main
models employed in the system. In addition, it examines explainable
artificial intelligence and the challenges associated with the machine

learning methods discussed above.

• Chapter 3, “Contribution Methodology”, provides the details of the

architecture and components of the proposed cascading system for
network intrusion detection. It gives a brief description of the data used

and the preprocessing techniques, ensuring reliability and its quality.
Further, the built-in explainability methods incorporated are presented,
along with their rationale.

• Chapter 4, “Results”, presents the results of experiments performed with
the proposed framework. It offers a complete analysis and interpretation

of the performance metrics. The chapter also evaluates the effectiveness
of the explanatory techniques employed.

• Chapter 5, “Conclusions and Future Work”, summarizes the main
research findings and their implications for the industry. It reflects on

the contributions of the master thesis while acknowledging its limitations.
In addition, the chapter offers recommendations for further improvement
and outlines possible areas for future research.

5

2 Theoretical Background

Chapter 2

Theoretical Background

2.1 Intrusion Detection Systems

The increasing reliance on digital systems in the industry has led to an increase
in malicious activities. Intrusion detections are crucial in protecting these

organizations by identifying and responding to unauthorized access attempts
and malicious activities.

An intrusion detection system (IDS) is a software or hardware that automates
the process of monitoring the events occurring in a computer system or network,

analyzing them for signs of security problems (Bace & Mell, 2001). On a more

informal basis, an IDS is defined as the “burglar alarm” of the computer security
field (Axelsson, 2000) whose goal is to defend a system by a combination of an
alarm that sounds whenever the site’s security has been compromised. An
entity then responds to the alarm and takes appropriate action. These “burglars”

are normally attackers accessing from the Internet, authorized users attempting
to obtain privileges for which they are not authorized, and other users misusing
the privileges granted to them.

The main set of rules that limits access to information can be compromised
when an intrusion occurs. Therefore, IDSs play a very important role in

maintaining security. There are some reasons to use these mechanisms beyond
attack detection. They can serve as a deterrent by increasing the perceived risk
of discovery and punishment for potential attackers. In addition, they document
the existing threat landscape providing valuable information to improve
diagnosis and recovery.

IDSs can be categorized according to different monitoring and analysis
approaches. Understanding the characteristics helps select and customize the
solutions that best suit their specific security requirements.

In terms of detection methodology, there are two main approaches. When

incoming events are compared against known attack signatures, the technique

is known as signature-based. This type of detection is effective in identifying
recognized attacks, but can have problems with new or modified threats that do
not match existing signatures. On the other hand, anomaly-based detection
focuses on identifying deviations from normal patterns. Anything that does not

correspond to a previously learned behavior is considered intrusive. This is
advantageous for detecting unforeseen attacks, but can also result in a high
false alarm rate due to legitimate variations in behavior (Debar et al., 2000).

6

Additionally, a hybrid approach is formed by combining the above two to
improve accuracy and coverage.

Another common way to classify IDSs is to group them by information source.

Network-based systems monitor network traffic in real time to identify

suspicious patterns. They do this in specific network segments using sensors
and analyzing the activities of applications and protocols (Debar et al., 2000).
In contrast, host-based systems focus on the security of individual systems and

their local resources. This point of advantage allows to determine exactly which
processes are involved in a particular attack on the operating system. A special
subset of this category are the application-based systems that are designed to

detect attacks targeting application-layer vulnerabilities and exploits (Bace &
Mell, 2001).

2.1.1 Network Intrusion Detection Systems

Traditional network intrusion detection systems (NIDS) inspect the contents of
every packet to find known attacks or unusual behavior. This is what is known

as payload-based systems. This approach is effective in detecting specific
attacks, as it looks for exact matches or variations of known attacks.

The problem with packet inspection is to perform it at the speed of several
gigabits per second (Gbps) (Sperotto et al., 2010). Therefore, for high-speed lines

it is important to investigate alternatives to packet inspection. One of the most
widely used options today is flow-based intrusion detection. It analyzes the flow

of network traffic, which represents a sequence of related packets exchanged
between network hosts during a given time interval.

These systems examine network traffic metadata such as source and
destination IP addresses, ports, timestamps, packet sizes and communication
patterns. This type of detection provides a broader perspective of network
activity and can detect anomalies even if the payload content is encrypted or
not directly visible.

However, flow-based detection may have limitations in detecting attacks
distributed across multiple flows or attacks that rely heavily on payload content
for detection. Therefore, it can be considered a complement to packet inspection
and not a substitute.

2.2 Signature-based Detection

Signature-based systems (Khraisat et al., 2019) rely on pattern matching
techniques to find a known attack. They are also called knowledge-based
detection or misuse detection. The main idea is to build a database of intrusion
signatures and to compare the current set of activities against the existing

signatures and raise an alarm if a match is found. However, these techniques
are unable to identify attacks that span several packets. As modern malware is
more sophisticated it may be necessary to extract signature information over
multiple packets.

The effectiveness of signature-based detection lies in its ability to quickly detect,

and block known attack patterns, providing a proactive defense mechanism.
This is sometimes a costly trade-off if the event stream does not contain all the

7

data being sought, or if multiple encodings must be taken into account. For
example, if an attack uses advanced techniques to evade its known patterns or
if signatures are designed to detect specific types of attacks, the system may
have difficulty identifying the threat accurately.

This detection approach offers excellent detection accuracy for previously
known intrusions. It should be able to generate very few false alarms. False
positives (Aldini et al., 2005) come primarily from mischaracterization of the
vulnerability. This often occurs when the IDS attempts to detect the execution
of an application without differentiating between normal usage and actual

malicious intent. In addition, it is often difficult to differentiate interactions
between an attacker and a vulnerable information system from interactions
between normal users and the same system.

On the other hand, false negatives occur on new attacks, when there is no
signature associated to the vulnerability. Collecting vulnerability information of

sufficient quality to write adequate signatures is a time-consuming task, and
validation of this information is often limited, due to the large number of attack
combinations possible.

The rapid pace at which new attack techniques and vulnerabilities emerge is
another challenge associated with this approach. This involves frequent updates

to the signature database. It requires a robust and efficient system to quickly
incorporate the latest signatures, ensuring detection of the latest threats.
Delays in updating the signature database can leave networks vulnerable to
newly discovered attacks.

Furthermore, these systems have difficulty detecting zero-day attacks which

exploit unanticipated security breaches that are not known to the party
responsible for fixing the failure. They can go undetected until new signatures
are deployed because these attacks lack pre-existing signatures. Therefore, the
goal is to mitigate zero-day attacks before they cause significant damage to the
network.

2.3 Anomaly-based Detection

Although effective against known threats, signature-based approaches often fail
to detect new sophisticated intrusions that deviate from established patterns.

This limitation requires the adoption of alternative detection methods, which
has resulted in the emergence of anomaly-based detection as a vital component
of modern IDSs.

Anomalies are patterns in data that do not conform to a well-defined notion of

normal behavior (Chandola, 2009). In the context of IDSs, they can indicate
security breaches or malicious activities. It is important to differentiate them
from other related concepts, such as novelties and outliers. The first ones are
elements that have not been observed before in the system under analysis. After

their detection, they are usually incorporated into the normal model unlike

anomalies. The outliers are observations that differs significantly from most
instances. Although all anomalies can be considered outliers, not all outliers
are necessarily anomalies. Outliers can exist within normal behavior and do not
always indicate cyberattacks.

An important aspect is the nature of the desired anomaly. Anomalies can take

various forms and occur in different domains. According to Chandola (2009),

8

they can be classified into three categories. If an individual data instance is
considered isolated and distinct with respect to the rest of data, then the
instance is termed as a point anomaly. Although single observations within the

cluster may not be anomalous, the collective behavior may deviate significantly
from the expected pattern. This is what is known as a collective anomaly.

Another type of anomalies is when some instances are considered anomalous
in a very specific context. These are then called contextual anomalies.

Another way to categorize anomalies is to distinguish between global and local
anomalies (Goldstein & Uchida, 2016). A global anomaly refers to an observation
that is significantly different from the overall normal behavior of the dataset. A

local anomaly, on the other hand, may not be an extreme value in the general
dataset, but anomalous within a particular cluster of data points.

Obtaining accurately labeled data covering all types of behaviors can be a costly
task as manual labeling by human experts is often necessary. In particular,

acquiring a labeled set of anomalous data instances that covers the full
spectrum of possible anomalies is more difficult than labeling normal behaviors.
Anomaly detection techniques can operate in three different ways, depending
on the availability of labels.

Supervised anomaly detection methods are based on labeled data, where

anomalies are explicitly tagged. These methods learn from the instances to build
a model that can accurately classify new data as normal or anomalous. They
usually provide high accuracy, but require a significant amount of labeled data
for training, which is not always available. In addition, some problems may arise

due to the smaller number of attacks compared to normal observations.

Semi-supervised anomaly detection methods operate under the assumption that
the training data contains only labeled instances of the normal class. This
feature makes them more applicable compared to supervised techniques, as

obtaining labeled anomalies can be particularly difficult. They can learn the
underlying patterns of normal instances to identify deviations indicative of
anomalies.

Unsupervised anomaly detection methods work in the absence of labeled data,

relying solely on the characteristics of the data itself to identify anomalies. These
methods aim to discover patterns or structures that are significantly different
from the majority of data points, considering them as potential anomalies. This
is an advantage when labeled data are costly to obtain.

False alarms are a significant concern in anomaly detection systems as they can

lead to unnecessary disruptions and resource wastage. This phenomenon arises
from the fact that deviations from the model are often observed for any incident
occurring on the monitored information system.

On the other hand, false negatives in anomaly detection have two main causes
in accordance with Aldini et al. (2005): corruption of the behavioral model and

absence of measurement. Behavioral model corruption occurs when the model

learns an intrusive behavior and incorporates it into its coverage. The IDS
becomes unable to detect occurrences of the attack that have been accepted as
normal. In addition, attacks sometimes do not affect the measures used by the
normal behavior model. For example, in a scenario where a NIDS is designed to

monitor network traffic patterns, but does not account for anomalies in network
bandwidth usage. In this case, an attack that consumes a lot of network
bandwidth might not be detected by the system.

9

2.3.1 Techniques

A wide range of techniques have been developed to address the challenges posed
by anomalies in different domains. The categories into which they are organized

are based on the nature of the algorithms used and there may be overlap
between methods. According to Bhuyan et al. (2014), the most commonly used

techniques used in anomaly detection are statistical, classification-based, soft
computing and hybrid learners.

Statistical techniques exploit mathematical models to identify deviations from

expected behavior. They are particularly effective when data follow well-defined
statistical properties that can be captured mathematically. Bayesian networks
are considered part of this group. They represent probabilistic relationships
among variables and are used to make inferences about the likelihood of

anomalous events.

Classification-based methods rely on the establishment of a model that allows
categorizing network traffic patterns into various classes. These techniques
require labeled data to train the behavioral model. One of the most widespread

methods are one-class classifiers that can detect instances that do not belong
to the learned class. For example, in a one-class support vector machine (OC-
SVM) classifier the learning objective during training is to determine a function
that is positive when applied to points on the boundary circumscribed around

the training points and negative outside it.

Soft computing techniques are mainly associated with neural networks. They are

well suited for anomaly detection because they can provide flexible and adaptive
capabilities. They acquire knowledge of the environment through a learning

process, which systematically modifies the interconnection strengths to achieve
a desired goal. These networks usually perform well using massive neural
connections.

Hybrid approaches are increasingly used to overcome the limitations of anomaly

detection. This integration makes it possible to detect both known attacks
through signature comparison and anomalies using anomaly detection
algorithms. As a result, the overall performance of the detection system is
improved.

Creating an accurate model when working with unbalanced data presents a

significant challenge in anomaly detection. Traditional methods tend to classify
all data in the majority class, which is not ideal. To address this problem, several
methods have been proposed, which can be classified into data-level strategies
and cost-sensitive strategies (Goldstein & Uchida, 2016).

Data-level strategies, also known as resampling strategies, aim to balance the

class distribution of the training data. This can be achieved by undersampling
the majority class or oversampling the minority class. However, random
resampling has its limitations. Undersampling can discard valuable data, while

oversampling can introduce a risk of overfitting if exact copies of existing
instances are generated. To overcome these challenges, a synthetic minority

over-sampling technique (SMOTE) was introduced (Chawla et al., 2002). It
works by selecting a minority class instance and finding its k nearest neighbors
in the feature space. It then creates new synthetic instances by interpolating
between the selected instance and its neighbors.

Alternatively, cost-sensitive strategies focus on the minority class by

incorporating misclassification costs. When assigning costs to correct and

10

incorrect predictions, an instance is predicted to have the label that results in
the lowest expected cost.

2.4 Bayesian Networks

In the search for effective reasoning about uncertain situations, the use of
probability calculus has been a prominent approach. Probability theory has
found wide application in a variety of fields. One such approach is Bayesian
networks. These allow rational decisions to be made even in the presence of
limited or ambiguous data. Their transparent representation of the probabilistic

relationships between variables facilitates the understanding and explanation
of the reasoning behind the decisions of AI systems. Thus, the advent of
Bayesian network technology provides a promising solution to pave the way for
broader and more sophisticated applications of probabilistic reasoning.

However, despite the advantages they bring, there is not much literature applied

to intrusion detection in industry. An interesting paper by Kruegel et al. (2003)
proposes an event classification scheme based on a Bayesian network. This
improves the aggregation of different model outputs and allows one to
seamlessly incorporate additional information.

Bayesian networks (Koller & Friedman, 2009)(Pearl, 1988) are probabilistic

graphical models that represent the joint probability distribution (JDP) over a
set of random variables. In other words, they capture the probabilistic

relationships and dependencies between variables in a compact manner.

A Bayesian network can be formally defined as a tuple (G, P), where:

• G is a directed acyclic graph (DAG) representing the conditional
(in)dependencies among a set of random variables {X₁, ..., Xₙ}.

• P is a set of conditional probability distributions (CPDs) associated with
each variable and its parents in the graph G.

G consists of nodes representing the random variables and directed edges
representing the probabilistic dependencies between variables. For each

variable Xᵢ, there is a corresponding node in G, and the arcs represent the
influence between variables as illustrated in Figure 2.1.

P specifies the conditional probabilities for each variable given its parents in the
graph G. Each node Xᵢ in G has an associated CPD that defines the conditional

probability distribution 𝑝(𝑋𝑖|𝐏𝐚(𝑋𝑖)), where 𝐏𝐚(𝑋𝑖) denotes the parents of Xᵢ in G.

Formally, the JDP defined by the Bayesian network is given by the product of
the individual CPDs:

𝑝(𝑋1, … , 𝑋𝑛) = ∏ 𝑝(𝑋𝑖|𝐏𝐚(𝑋𝑖))
𝑛

𝑖 = 1
(2.1)

11

Figure 2.1: Example of Bayesian network (Bielza & Larrañaga, 2021).

Using different properties (Bielza & Larrañaga, 2021), we can derive conditional

independencies encoded by a BN. These play a critical role in understanding the
behavior of a distribution. They are essential not only for gaining insights into
the relationships between variables, but also for efficient query answering and
inference.

In a BN, each variable is conditionally independent of its non-descendants,

given its parents. The descendants of a node 𝑋𝑖 are all the nodes reachable from

𝑋𝑖 by repeatedly following the arcs. Then it is said that G satisfies the local

Markov property. This property implies that a variable is only dependent on its
immediate parents in the graph, and it is independent of all other variables in
the network once its parents are known.

Additionally, the global Markov property states that a variable is conditionally
independent of all other variables in the network, given its Markov blanket. The

Markov blanket of a variable consists of its parents, children, and the other
parents of its children.

2.4.1 Semiparametric Bayesian Networks

In a parametric BN for continuous domains, the CPDs are specified
parametrically, assuming a specific (usually Gaussian) form and a fixed number

of parameters. This approach works well when the underlying distribution
conforms to the assumed form. However, in real-world scenarios, the true
underlying distribution may not strictly adhere to a specific form, leading to
potential inaccuracies or limited flexibility in modeling.

Semiparametric Bayesian networks (SPBN) address this limitation by

incorporating nonparametric components into the modeling process. SPBNs

(Atienza et al., 2022b) are a variant of BNs that combines parametric and
nonparametric modeling approaches. These networks provide a framework
allowing for a balance between the flexibility of nonparametric models and the
bounded complexity and efficiency of parametric models.

12

Figure 2.2. Graph structure of an SPBN (Atienza et al., 2022b).

It is important to note that semiparametric BNs may require more data to

estimate the nonparametric components accurately, as they rely on the
empirical distribution. Furthermore, the computational complexity of inference
in SPBNs can be higher compared to standard BNs due to the increased
flexibility and complexity of the models.

SPBNs are composed of parametric and nonparametric CPDs. For the

parametric CPDs, linear Gaussian (LG) CPDs are used, as they are easy to train
and usually provide good performance when there is a linear relationship

between the variables. Let 𝑋𝑖 be a random variable following an LG conditional

distribution, then, the conditional distribution of 𝑋𝑖 given 𝐗Pa(𝑖) can be

formulated as:

𝑓 (𝑥𝑖|𝐱Pa(𝑖)) = 𝒩 (𝛽𝑖0 + ∑ 𝛽𝑖𝑘
𝑘 ∈ Pa(𝑖)

⋅ x𝑘 , 𝜎𝑖
2) (2.2)

where 𝒩 is the normal probability density function with variance 𝜎𝑖
2; 𝛽𝑖𝑘  is the

regression coefficient for variable 𝑋𝑘, 𝑘 ϵ Pa(i), in the linear regression of variable

𝑋𝑘, and 𝛽𝑖0 is its intercept.

The nonparametric CPDs are represented as the ratio of two joint kernel density
estimation (KDE) models. This type of CPDs is denoted as conditional kernel

density estimation (CKDE) distributions. Then, let 𝑋𝑖 be a random variable
following a CKDE conditional distribution, then, the conditional distribution of

𝑋𝑖 given 𝑿Pa(𝑖) is defined as:

𝑓𝐶𝐾𝐷𝐸(𝑥𝑖|𝐱Pa(𝑖)) =
𝑓𝐾𝐷𝐸(𝑥𝑖 , 𝐱Pa(𝑖))

𝑓𝐾𝐷𝐸(𝐱Pa(𝑖))
=

∑ 𝐾𝐇 ([
𝑥𝑖

𝐱Pa(𝑖)

]   −   [
𝑥𝑖

𝑗

𝐱Pa(𝑖)
𝑗])𝑁

𝑗=1

∑ 𝐾𝐇−𝑖 (𝐱Pa(𝑖)  −  𝐱
Pa(𝑖)
𝑗

)𝑁
𝑗=1

(2.3)

13

where 𝑥(𝑖)
𝑗

 and 𝐱Pa(𝑖)
𝑗

 are the values of the j-th training instance among 𝑁

instances for the variables 𝑋𝑖 and 𝐗Pa(𝑖), respectively. 𝐇 is a symmetric positive

definite 𝑛 × 𝑛 matrix called bandwidth. A bandwidth matrix can be used to
define the smoothness of density estimation. Higher values in a bandwidth

produce smoother densities, while smaller values generate wiggly density

estimations. 𝐾(𝑥) is an 𝑛 -variate kernel function that integrates to 1, and

𝐾𝐇(𝐱) = |𝐇|-1/2𝐾(𝐇-1/2𝐱) . A Gaussian kernel, 𝐾(𝐱) =
1

(2𝜋)𝑛/2 exp (−
1

2
𝐱T𝐱) , is

typically used since it is a well-known distribution with remarkable theoretical
properties. Specifically, when a Gaussian kernel is used, the KDE model is
equivalent to a Gaussian mixture model with an equiprobable component for

each training instance.

In the SPBN model, the graph contains the type of each node, which determines
the type of the corresponding CPD. There are no restrictions on the arcs, so the
parent sets of each variable can be of different types: only LG parents, only
CKDE parents or a mix of both options. LG and CKDE nodes are represented

by white shaded and gray shaded nodes, respectively, in Figure 2.2.

2.4.1.1 Parameter Learning

The maximum likelihood estimation (MLE) is used to estimate the parameters

of the CPDs based on the observed data, under the assumption that the network
structure is known. The MLE involves finding the parameter values that

maximize the likelihood of the observations.

Let 𝒟 = {𝐱1, . . . , 𝐱𝑁} , with 𝐱𝑗 = (𝑥1
𝑗
, … , 𝑥𝑛

𝑗
), be a set of N independent and

identically distributed training instances, and 𝜽 denote a particular set of
parameters. Then, the likelihood function is defined as the density assigned to

the training data 𝒟 by the Bayesian network:

ℒ(𝒟 ∣∣ 𝜽, 𝒢) = ∏ 𝑓(𝐱𝑗 ∣∣ 𝜽, 𝒢)
𝑁

𝑗=1
= ∏ ∏ 𝑓 (𝑥𝑖

𝑗
∣∣ 𝜽𝑖 , 𝐱Pa(𝑖)

𝑗
)

𝑛

𝑖=1

𝑁

𝑗=1
(2.4)

where 𝜽𝑖 is the set of parameters for a CPD of node i. This set, for a random

variable 𝑋𝑖, is defined depending on the distribution it follows (Atienza et al.,
2022b).

2.4.1.2 Structure Learning

The structure learning process is used to automatically infer the graphical
structure of the network from data. It determines the accuracy and

interpretability of the model. Several algorithms have been developed to
automate this task. One of these is the greedy hill-climbing (HC) that provides

a simple and efficient approach to learn the structure.

HC is a search algorithm whose goal is to find an optimal network structure by
iteratively performing local improvements based on a scoring metric through a

set of operators. It explores the search space of possible Bayesian network
structures locally. At each step, the operator that produces the highest score
improvement is applied to generate a new candidate structure. The algorithm
runs until no further improvement is possible or until a stopping criterion is
met.

14

In general, three operators are utilized in HC: arc addition, arc removal, and arc
reversal. In SPBNs, the structure consists of arcs in a graph and the types of
nodes, namely, LG or CKDE conditional distributions. Then, a new operator is
added into the HC algorithm to learn SPBNs: node type change.

The definition of a score function is an important part of the score and search
algorithms. Commonly used scoring metrics include the log-likelihood function
and Bayesian information criterion (BIC). However, for an SPBN, any score
including the log-likelihood of the training data, such as the maximum log-
likelihood score or BIC, is inappropriate because the training data constitute

part of the KDE model. Instead, Atienza et al. (2022b) propose to use the k-fold
cross-validated log-likelihood:

𝒮𝐶𝑉
𝑘 (𝒟, 𝒢)  =   ∑ ℒ (𝒢, 𝜽ℐ𝑡𝑟𝑎𝑖𝑛

𝑚 :  𝒟ℐ𝑡𝑒𝑠𝑡
𝑚)

𝑘

𝑚=1
(2.5)

where ℒ (𝒢, 𝜽ℐ𝑡𝑟𝑎𝑖𝑛
𝑚 :  𝒟ℐ𝑡𝑒𝑠𝑡

𝑚) is the log-likelihood of the m-th test fold data element

in a model composed of graph 𝒢 and parameters θℐ𝑡𝑟𝑎𝑖𝑛
𝑚 . The log-likelihood, can

be also expressed as a sum of terms:

ℒ(𝒢, 𝜽 ∶ 𝒟) = ∑ ∑
𝑛

𝑖=1
log 𝑓 (𝑥𝑖

𝑗
∣∣ 𝜽𝑖 , 𝐱Pa(𝑖)

𝑗
)

𝑁

𝑗=1
(2.6)

The 𝜽ℐ𝑡𝑟𝑎𝑖𝑛
𝑚 parameters are estimated based on the data 𝒟𝐼𝑡𝑒𝑠𝑡

𝑚 using the

parameter learning procedure described in Section 2.4.1.1.

It is common in k-fold cross-validation that ℐ = {ℐ𝑡𝑒𝑠𝑡
𝑖 }

𝑖 = 1

𝑘
corresponds to k

disjoint sets of instance indices, and ℐ𝑡𝑟𝑎𝑖𝑛
𝑖 = ∪𝑗≠𝑖 ℐ𝑡𝑒𝑠𝑡

𝑗
, for all i = 1, …, k. The

contribution of each node depends on its type.

Further, the score used in the learning stage of Bayesian networks possesses
the decomposability property, which allows it to be expressed as the sum of

local score terms associated with each node and its parents, given a specific
selection of indices representing disjoint folds of data. To take advantage of this
decomposability property during learning, it is necessary to fix a particular set

of indices, denoted as ℐ. However, this can potentially lead to over-fitting of that
set. To mitigate this problem, Atienza et al. (2022b) divide the available data into

two disjoint sets: the training set 𝒟𝑡𝑟𝑎𝑖𝑛 and the validation set 𝒟𝑣𝑎𝑙. The learning

process is guided by 𝒟𝑡𝑟𝑎𝑖𝑛, whereas 𝒟𝑣𝑎𝑙 fixes the overfitting by measuring the

goodness of the new structure at each iteration as:

𝒮validation (𝒟train, 𝒟val, 𝒢) = ℒ(𝒢, 𝜽𝐷train: 𝒟val) (2.7)

where 𝜽𝐷train are the parameters estimated using the full training set 𝒟train.

2.4.2 Anomaly Detection with Bayesian Networks

BNs can be used to model the normal behavior in a network communication
domain by capturing the relationships between the variables. The graphical

structure of the network and the associated probabilities provide an intuitive
representation of the relationships between the features. This allows security
analysts to understand the reasoning behind detection decisions.

Anomaly detection typically consists of two main phases: training and inference.
During the training phase, the BN is constructed using a known normal network

15

traffic dataset. The network parameters are estimated from this observed
normal data. Once the BN is trained, it can be used for inference during the
anomaly detection phase. When a new communication case is found in the
network, the BN is used to calculate the likelihood of observing that case given

the learned network structure and parameters. If this value falls below a given

threshold, it indicates that the observed case deviates significantly from the
normal learned behavior, suggesting an anomaly.

An advantage of using BNs for anomaly detection is their ability to handle
uncertainty and incomplete information. IDSs often face uncertainty due to

noise in the data. BNs can handle uncertainty and provide a principled way of
reasoning about it. They can quantify uncertainty using probabilities, allowing
for more nuanced analysis of events and better decision making in the presence
of uncertainty.

In addition, BNs can incorporate prior knowledge and expert opinion into the

model. In this way, analysts can contribute their knowledge and encode it in the
form of CPDs or arcs.

2.5 Autoencoders

Deep learning (DL) has emerged as a powerful transformative technology in the

industry revolutionizing different domains. It has achieved unprecedent levels
of performance thanks to the improvement of computing capabilities which has

reduced training time on much more complex models. In the IDS context, they
are able to capture complex relationships and detect anomalies that traditional
rule-based or statistical methods may miss. One of the most well-known DL

techniques within anomaly detection are autoencoders.

Figure 2.3. Deep autoencoder (Wang et al., 2020).

An autoencoder (Kramer, 1992) is a feedforward neural network trained to
produce an approximation of the identity mapping between inputs and outputs
using backpropagation or similar learning procedures. This is with the least
possible amount of distortion. It is an unsupervised and semi-supervised

learning framework composed of two modules (Zhou & Paffenroth, 2017), an

16

encoder, and a decoder as illustrated in Figure 2.3. It maps the input to an
output through these two phases

𝑋 ̅ = 𝐷(𝐸(𝑋)) (2.8)

where 𝑋 is the input data and �̅� is the recovered version of it. 𝐸 is an encoding

map from the input data to the hidden layer as in Equation (2.9) and 𝐷 is a

decoding map from the hidden layer to the output layer as in Equation (2.10),

ℎ = 𝜎(𝑤𝑥ℎ𝑥 + 𝑏𝑥ℎ) (2.9)

𝑧 = 𝜎(𝑤ℎ𝑥ℎ + 𝑏ℎ𝑥) (2.10)

where 𝑤 and 𝑏 are the weight and bias of the neural network, respectively, and

𝜎 is the nonlinear transformation function.

An autoencoder can be viewed as a solution to the following optimization

problem as shown in Algorithm 1, where the idea is to train 𝐸 and 𝐷 to minimize

the difference between 𝑋 and �̅�:

min
𝐷,𝐸

||𝑋 − 𝐷(𝐸(𝑋))|| (2.11)

An autoencoder with more than one hidden layer is called a deep autoencoder

and each additional hidden layer requires an additional pair of encoders 𝐸(·)
and decoders 𝐷(·). By allowing many layers of encoders and decoders, a deep
autoencoder can effectively represent complicated distributions over the input

𝑋.

Algorithm 1 Autoencoder training algorithm

INPUT: Dataset 𝒟 = {𝑥1, … , 𝑥𝑁}

OUTPUT: encoder 𝐸, decoder 𝐷

 𝜽 ← Initialize parameters

 repeat

 𝑒𝑟𝑟𝑜𝑟 = ∑ ‖𝑥𝑖 − 𝐷(𝐸(𝑥𝑖))‖𝑁
𝑖=1

 𝜃 ← Update parameters using gradients of 𝑒𝑟𝑟𝑜𝑟

 until convergence of parameters 𝜽

Autoencoders have proven to be versatile and powerful models with applications
in various fields. Different types of autoencoders can be modified or combined
to form new models for various applications. Since their introduction, they have
been used as a dimensionality reduction technique. They compress the data by

obtaining the most important features. On the other hand, variations of
autoencoders can act as a generative model. They learn to generate data that
resemble training examples, offering creative and exploratory possibilities. They
are also useful in recommender systems. Autoencoders can capture user

preferences to facilitate personalized experiences. In addition, autoencoders

have attracted attention in anomaly detection due to their ability to identify
deviations from learned patterns.

17

2.5.1 Anomaly Detection with Autoencoders

Autoencoders are becoming increasingly popular in addressing anomaly
detection due to their proven effectiveness. The autoencoder process begins with

training on normal data, which helps the algorithm to capture the underlying
structure and the features associated with it. Once trained, the autoencoder

tries to reconstruct the new observations using the knowledge stored during
training and calculating the differences between the inputs and outputs or the
reconstruction error, which serves as the anomaly score. Instances with a
higher reconstruction error are considered potential anomalies.

Petsche et al. (1996) propose one of the first papers in DL focused on anomaly

detection for rare events. They develop a model that called autoassociator
(autoencoder) for imminent engine failures. In the network intrusion field,
Zavrak & İskefiyeli (2020) focus on the detection of anomalous network traffic
from flow-based data using two types of autoencoders. Finding a threshold that

serves as a boundary between normal and anomalous behavior is crucial. Aygun
& Yavuz (2017) propose two autoencoder models whose threshold value is
determined using a stochastic approach instead of those available in most of
the literature.

It should be noted that autoencoders may have difficulty detecting local

anomalous behavior. This limitation can be addressed by incorporating
additional techniques, such as recurrent neural networks, which improve
identification capabilities by providing more comprehensive analysis of
contextual dependencies over time.

2.6 Recurrent Neural Networks

Continuous advances in recurrent neural network (RNN) technologies have
transformed the way sequential data is analyzed and modeled today. Resulting
from these advances, these frameworks hold an important place in modern
machine learning methodologies. Unlike traditional networks, these ones

present loops, allowing information to persist. They can efficiently retain data
from past inputs to follow temporal patterns with greater accuracy. RNNs are
especially suitable for time series prediction and linguistic analysis where
sequence understanding is paramount.

However, most RNNs became obsolete because of their inability to learn long-

term memories. This was due to the vanishing gradient problem (Hochreiter,
1998), in which gradients decrease exponentially with time. This limitation
hindered the ability of RNNs to capture and retain information from previous
time steps, resulting in a loss of contextual understanding in long sequences.
As a result, RNNs had difficulty effectively modeling complex temporal

dependencies in the data.

With the introduction of advanced variants, which incorporated gating
mechanisms to select information, significant progress was made. These
innovations revolutionized the field, enabling them to capture long-term
dependencies, leading to their widespread adoption.

18

2.6.1 Long Short-Term Memory

Long short-term memory (LSTM) networks (Hochreiter & Schmidhuber, 1997)
is a type of RNN architecture that addresses the vanishing gradient problem and

enables the modeling of long-term dependencies in sequential data. An LSTM
layer consists of a set of recurrently connected nodes, known as memory cells.

Each cell can maintain its state over time, and non-linear gating units which
regulate the information flow into and out of the cell. For easier comprehension,
an LSTM is deconstructed into its elements from a high-level representation to
a low-level one, following the fundamentals in Ranjan (2020).

2.6.1.1 Layer and Network Structure

A single input that receives the network is a time window, defined as 𝒙(𝑇−𝜏):𝑇, of

𝜏 observations and p features. As it is illustrated in Figure 2.4, this is

represented as a two-dimensional array with features and time-steps along the
rows and columns, respectively.

Figure 2.4. High-level representation of an LSTM network (Ranjan, 2020).

A batch of these windows is, thus, a three-dimensional array as shown in Figure
2.5. Each layer cell, represented with a blue box, takes all the time-step inputs
and they are processed sequentially. The cells transmit their states within
themselves to perform their internal operations and the connected arcs between
the layers show the transmission of time-indexed information. The sequences

are processed in the same order by the second LSTM layer and so on.

A LSTM can be either stateful or stateless, depending on the transmission mode.
If the model is stateful, the cell state of the previous batch processing is retained
and can be accessed by the next batch. In contrast, if the model is stateless, it
processes each time-window independently. That is, there is no interaction or

learning between two time-windows. The latter is the default when the sequence

dataset is stationary.

In addition, the cells in an LSTM layer may return sequences or not. If they do,
the cell outputs a sequence of the same length as the input. This approach is
used when it is necessary to preserve the temporal structure. Otherwise, a cell

emits only the last time-step output 𝒉𝑡 that is an amalgam of the information
present in all the cell states and the outputs of the previous cells.

19

Figure 2.5. LSTM network input and hidden layers (Ranjan, 2020).

2.6.1.2 LSTM Cell

As previously discussed, the nodes of a layer are called LSTM cells. They are
formed by one time-step iteration for each observation of the time window. These

iterations, represented in green boxes in Figure 2.5 and Figure 2.6, consist in

turn of two activation functions and three main gates: input gate 𝑖𝑡, forget gate

𝑓𝑡 and output gate 𝑜𝑡. In Figure 2.5, the cell to which each iteration belongs is
indicated by a super-index. For example, the super-index (12) refers to the
second node of the first layer.

The parameters involved are, 𝒘∙
(𝒉)

, 𝒘∙
(𝑥)

, 𝑏∙, where · is 𝑐, 𝑖, 𝑓, and 𝑜. A cell takes

the prior output of all the other sibling cells in the layer. Given that the layer
size is m, the prior output from the layer cells will be an m-vector 𝒉𝑡−1 and,

therefore, the 𝒘∙
(𝒉)

 has the same length m.

Within the cells, each time-step iteration takes in one time-step 𝒙𝑡 and performs

some operations to compute the output 𝒉𝑡. Like the other RNNs, the hidden

output 𝒉𝑡 is transmitted to the next iteration and returned as a cell output.

In addition, LSTMs provide a distinctive property called state 𝒄𝑡. It preserves

information from the present to the past. Because of this, it is easier to detect
patterns and links by having current and distant memories. In the diagram in

Figure 2.6, the cell state is the horizontal line across the top of the diagram.
This was not possible with former RNNs due to the gradient problem that quickly

vanishes the intermediate outputs 𝒉𝑡. Instead, the cell state stabilizes gradient
by maintaining the memory.

Overall, the cell processes one observation at a time in a timed sequence window
{𝒙𝑇−𝜏, 𝒙𝑇−𝜏+1, . . . , 𝒙𝑇}. 𝒙𝑡 flows into the cell as input, it is processed along the

paths in the presence of the previous output 𝒉𝑡−1 and cell state 𝒄𝑡−1, and yields

the updated output 𝒉𝑡 and cell state 𝒄𝑡.

20

Figure 2.6. Time-step iterations in an LSTM cell (Olah, 2015).

2.6.1.3 LSTM Operations

The operation of an LSTM is divided into four sequential parts (Ranjan, 2020)

in which the different components of the cell are applied. First, due to the new

information that enters with 𝒙𝑡 , some of the previous memory may become
irrelevant. In that case, that memory may be forgotten.

This forgetting decision is made in Equation (2.12):

It yields an indicator between 0 and 1 because of the sigmoid activated function.
If the indicator is close to zero, the previous memory is forgotten. In this case,

the information in 𝒙𝑡 will replace the past memory. On the contrary, it means
that the memory is still relevant and should be carried forward. This does not

necessarily indicate that the information in 𝒙𝑡 will not enter the memory.

𝑓𝑡 = 𝜎 (𝒘𝑓
(𝒉)

𝒉𝑡−1 + 𝒘𝑓
(𝒙)

𝒙𝑡 + 𝑏𝑓) (2.12)

The next step is to decide what new information at the time-step input 𝒙𝑡 should

be learned by the cell state. Equation (2.13) finds the relevant information in 𝒙𝑡:

𝑐�̃� = 𝑡𝑎𝑛ℎ (𝒘𝑐̃
(ℎ)

𝒉𝑡−1 + 𝒘𝑐̃
(𝑥)

𝒙𝑡 + 𝑏𝑐̃) (2.13)

where a 𝑡𝑎𝑛ℎ activation function is applied. This activation has negative and
positive values in between -1 and 1.

It is possible that 𝒙𝑡 has information, but it is redundant in the presence of the

information already present with the cell of the previous 𝒙. Therefore, Equation

(2.14) is calculated with a sigmoid 𝜎 to have a value between 0 and 1:

𝑖𝑡 = 𝜎 (𝒘𝑖
(ℎ)

𝒉𝑡−1 + 𝒘𝑖
(𝑥)

𝒙𝑡 + 𝑏𝑖) (2.14)

A value closer to 0 would mean the information is irrelevant.

Equation (2.13) and Equation (2.14) find the information in 𝒙𝑡 , its relevance,

and the memory requirement, respectively. These are combined to update the

cell memory in Equation (2.15), adding the first component that determines
whether to carry on the memory from the past:

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑐�̃� (2.15)

21

The output gate in Equation (2.16) acts as a scale with value between 0 and 1:

𝑜𝑡 = 𝜎 (𝒘𝑜
(ℎ)

𝒉𝑡−1 + 𝒘𝑜
(ℎ)

𝒙𝑡 + 𝑏𝑜) (2.16)

In the last step, the output cell 𝒉𝑡 is determined in Equation (2.17):

ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ(𝑐𝑡) (2.17)

This output is based on a filtered version of the cell state 𝑐𝑡.

2.6.1.4 Bi-directional LSTM

In recent years, several improvements have been introduced in LSTMs to
increase their performance. Schuster & Paliwal (1997) made a significant

contribution by proposing a bi-directional RRN. As opposed to traditional
approaches that process data in a forward direction, these models incorporate
information from both past and future contexts by processing the input
sequence in both directions simultaneously.

A bi-directional RNN (Salehinejad et al., 2017) considers the entire input

sequence available both in the past and future for estimation of the output
vector. For this purpose, one RNN processes the sequence from the beginning
to the end in a forward temporal direction. Another RNN processes the sequence
backwards, from the end to the beginning in a negative time direction. The
outputs of the forward states are not connected to inputs of backward states

and vice versa. Thus, there are no interactions between the two types of state

neurons.

2.6.1.5 LSTM Autoencoder

An autoencoder processes flat data, but sometimes it is necessary to handle
sequences. Therefore, an autoencoder can use LSTM units to deal with
sequential information. Recurrent units in the encoder and decoder allow the
autoencoder to capture the time dependencies that are present. Srivastava et al.
(2016 is one of the early applications of this method.

An LSTM autoencoder is an unsupervised learning framework for sequential
data that uses an encoder-decoder LSTM architecture. Each element of the
sequence is processed one at a time, and the LSTM units retain memory of the
previous elements. The encoder, consisting of LSTM cells, processes the input

sequence, and compresses it into a lower-dimensional latent space
representation. The LSTM cells in the encoder capture the temporal
dependencies in the input sequence. Then, the latent space representation is
passed through the decoder, which also consists of LSTM cells. The goal of the
decoder is to reconstruct the original input sequence from the latent space

representation.

Like the non-temporal autoencoder, the one that incorporates LSTM cells can
identify anomalies. In this case, by analyzing sequences that deviate from the
learned patterns.

Within the field of intrusion detection, Fernandez Maimo et al. (2018) develop a

novel architecture composed by a low-level and high-level module to identify
cyberthreats in 5G mobile networks. The first one uses Stacked Autoencoders
(SAE) for anomaly symptom detection, followed by the second component for

22

network anomaly detection. The latter is a LSTM that receives several streams
of symptoms.

According to Clausen et al. (2021), recent evaluations show that the current
anomaly-based network intrusion detection methods fail to reliably detect

remote access attacks. This paper presents a model based on a bi-directional
LSTM that is specifically designed to detect such attacks as contextual network
anomalies.

It is also interesting combining neural network approaches with other types of
machine learning methods for anomaly detection. Said Elsayed et al. (2020)

propose a hyper approach based on LSTM Autoencoder and OC-SVM to detect
anomaly-based attacks in an unbalanced dataset, by training the models using
only examples of normal classes.

2.6.2 Gated Recurrent Unit

Due to its powerful capacity, LSTM has become the center of attention in DL

and has been applied to multiple sequential tasks. The learning capacity of the
LSTM cell is superior to that of the standard RNN cell. However, the additional
parameters increase computational overhead. Therefore, the gated recurrent
unit (GRU) was introduced by Cho et al. (2014).

To reduce the number of parameters, the GRU cell integrates the forget gate and

input gate of the LSTM cell as an update gate. The GRU cell has only two gates:

an update gate and a reset gate.

The update gate in a GRU determines how much of the previous hidden state
should be retained and combined with the new input, as shown in Equation

(2.18).

𝑧𝑡 = 𝜎 (𝒘𝑧
(ℎ)

𝒉𝑡−1 + 𝒘𝑧
(𝑥)

𝒙𝑡 + 𝑏𝑧) (2.18)

It considers both the current input and the previous hidden state, and outputs
a value between 0 and 1 for each element in the hidden state. A value close to

1 indicates that the corresponding element in the hidden state should be
updated, while a value close to 0 suggests that it should be mostly ignored.

On the other hand, the reset gate in Equation (2.19) determines how much of
the previous hidden state should be forgotten or reset.

𝑟𝑡 = 𝜎 (𝒘𝑟
(ℎ)

𝒉𝑡−1 + 𝒘𝑟
(𝑥)

𝒙𝑡 + 𝑏𝑟) (2.19)

Like the update gate, it takes the current input and the previous hidden state
as inputs and produces a value between 0 and 1 for each element in the hidden
state. A value close to 1 suggests that the corresponding element should be

preserved, while a value close to 0 indicates that it should be reset.

The cell output 𝒉𝑡 is a linear interpolation, as shown in Equation (2.21) between

the previous one 𝒉𝑡−1 and the candidate �̃�𝑡. The latter is computed similarly to

the one of the LSTM in Equation (2.20) but using the reset gate.

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ (𝒘
ℎ̃

(ℎ)
(𝑟𝑡𝒉𝑡−1) + 𝒘

ℎ̃

(𝑥)
𝒙𝑡 + 𝑏ℎ̃) (2.20)

ℎ𝑡 = (1 − 𝒛𝑡)𝒉𝑡−1 + 𝒛𝑡�̃�𝑡 (2.21)

23

Because of having two gates, one gating signal and its associated parameters
are avoided. Consequently, GRUs have a simpler architecture which makes
them easier to understand and implement. A reduced complexity leads to faster
training and inference times, as well as lower memory requirements. However,

since one gate is missing, the single GRU cell is usually less powerful than the

original LSTM, although this may vary depending on the specific task.

Xu et al. (2018) compare different types of neural networks and RNNs using
several datasets. The paper shows that GRU is more suitable as a memory unit
for IDSs than LSTM. Moreover, its bi-directional version reaches the best

performance compared with other methods.

2.7 Explainable Artificial Intelligence

In recent years, the widespread adoption of AI systems has raised concerns
about their lack of transparency, leading to the emergence of eXplainable

artificial intelligence (XAI). This focuses on developing techniques that provide
understandable explanations for AI decisions, bridging the gap between the
complex inner workings of algorithms and the need for human understanding
and trust.

When talking about XAI, different terms are used that seem to be

interchangeable at first. However, they refer to different concepts that help
describe the characteristics of these systems. Barredo Arrieta et al. (2020)

establish a terminology clarification of the two most used names in this field:
explainability and interpretability. A model is considered to be interpretable if
its design is itself understandable for a human. On the other hand,

explainability is associated with the notion of explanation as an interface
between human beings and a decision maker. It is linked to post-hoc
explainability, as it encompasses the techniques used to convert an
uninterpretable model into an explainable one.

Model accuracy is usually the main factor in evaluating and choosing a model.
However, an improvement in understanding of a system can lead to correcting
its deficiencies. There are three reasons to adopt XAI techniques in AI systems,
according to Barredo Arrieta et al. (2020). First, interpretability helps to ensure
fairness in decision making, i.e., to detect and correct biases in the training

dataset. Second, it facilitates the provision of robustness by highlighting
possible adverse perturbations that could change the prediction. And third, it
can act as an insurance that only significant variables infer the outcome.

In addition to the advantages of its use in decision making, the current
legislation establishes a regulatory framework for its implementation. The

European Union's General Data Protection Regulation (GDPR) emphasizes the
right to explanation for automated decisions, further underscoring the
importance of XAI. This recognizes the potential risks associated with opaque

systems and asserts the need for individuals to understand the significance of
automated decisions affecting their lives.

Furthermore, the first European law on AI will be approved by the end of 2023.
This legislation will be a stricter version of the initial proposal outlined by the
European Commission in 2021 and will cover generative AI systems and the use
of AI for biometric surveillance systems. Consequently, XAI becomes not only a
technical consideration, but also a legal and ethical imperative.

24

The development of explainability within AI implies the possibility of its use in
industry where decisions have a great impact and are critical. Its application
has gained great popularity in several sectors facing the challenges associated
with opacity. In healthcare, it is being used to improve clinical decision support

systems, enabling doctors to understand the reasoning behind AI-generated

diagnoses or treatment recommendations. In finance, XAI techniques are used
to provide interpretable explanations of activities such as credit scoring,
minimizing bias. In addition, XAI finds uses in autonomous vehicles, where
interpretable explanations of AI-driven decisions are crucial for safety and

public acceptance.

Gunning (2017) proposes creating a suite of machine learning techniques that
produces more explainable models, while maintaining a high level of learning
performance, as well as enables human users to understand, appropriately
trust, and effectively manage the emerging generation of artificially intelligent

partners. This trade-off between accuracy and interpretability, illustrated in
Figure 2.7, is a fundamental consideration in the development of the models.
Very complex models often achieve remarkable accuracy on a variety of tasks.
However, their intrinsic operations are often opaque and challenging to interpret.
On the other hand, simpler models are more interpretable. This allows humans

to understand the decision-making process, but they may lose some level of
accuracy.

Figure 2.7. Trade-off between model interpretability and accuracy (Barredo Arrieta et
al., 2020)

Efforts are underway to develop techniques that strike a balance between
accuracy and interpretability. These include post-hoc explanations and the use

of hybrid models that combine the advantages of black-box models and

transparent techniques. Post-hoc interpretability (Dosilovic et al., 2018) extracts
information from already learned models and it does not precisely depend on
how it works. The advantage of this approach is that it does not impact

performance.

There are few contributions to explain recurrent models such as LSTM and GRU.
The studies can be divided into two groups: explainability by understanding
what a RNN model has learned and explainability by modifying RNN
architectures to provide insights about the decisions they make. Some of the

25

most common techniques in the first group are those called gradient-based
methods. They can be used for feature relevance explanations as they analyze
the contribution of each individual input and layer in the network tracing the
gradients to the final output. On the other hand, a RNN considered as a black

box can be explained by associating it a more interpretable model. Transparent

methods, such as decision trees, can approximate the outputs of the network
by learning a set of rules based on the input features. These rules provide a
clear representation of how different variables and their specific values influence
the final decision.

26

3 Contribution Methodology

Chapter 3

Contribution Methodology

3.1 Network Traffic Data

Network traffic refers to the flow of data packets over a computer network. In a
network, devices communicate with each other by exchanging these data
packets, which contain information such as the source and destination
addresses, payload data, and other information.

The TCP/IP model (Forouzan, 2002), also known as the internet protocol suite,

is a conceptual framework that defines how data is transmitted and received

over a network. It is named after two of its key protocols: the transmission
control protocol (TCP) and the internet Protocol (IP). As illustrated in Figure 3.1,
the TCP/IP model is composed of four layers, each responsible for specific
functions in the communication process:

1. The application layer represents the interface between the network and
the application software. It includes protocols such as hypertext transfer
protocol (HTTP), file transfer protocol (FTP), simple mail transfer protocol
(SMTP), and domain name system (DNS). These protocols enable tasks
like web browsing, file sharing, email transmission, and domain name

resolution.

2. The transport layer handles the reliable delivery of data between devices.
The most prominent protocol in this layer is TCP, which provides
connection-oriented and error-checked transmission. User datagram
protocol (UDP) is another transport layer protocol that offers

connectionless and unreliable transmission, suitable for applications
where real-time data delivery is crucial.

3. The internet layer is responsible for addressing and routing packets
across different networks. It uses IP to assign unique addresses to devices
and facilitate packet routing. IP addresses, both IPv4 and the newer IPv6,

are used to identify source and destination devices and enable
communication across the Internet.

4. The network access layer deals with the physical transmission of data
over the network medium. It includes protocols such as Ethernet, Wi-Fi,
and point-to-point protocol (PPP). The link layer encapsulates the data

into frames and handles the addressing of devices within a local network.

27

Various protocols work together across these layers to ensure proper
communication and data transfer between devices. For example, when a user
accesses a website, the HTTP protocol in the application layer is used to request
web pages, which are then transported via TCP in the transport layer. The IP

protocol in the Internet layer ensures the packets are correctly routed to the

destination, and the link layer protocols handle the actual transmission over
the physical medium.

Due to the limitations of publicly available network traffic datasets, the
evaluation of IDSs has routinely faced some challenges. Until the mid-2000s,

many of the existing datasets did not adequately represent modern network
environments. In addition, they did not cover current attack scenarios
(Moustafa & Slay, 2016).

Figure 3.1. TCP/IP model and associated protocols.

Datasets play an important role in the testing and validation of any intrusion
detection method. Therefore, this discrepancy makes it difficult to accurately
assess the performance of these systems. A few datasets are publicly available
for testing and evaluation of intrusion detection. The most widely used
evaluation datasets in the last decades have been the KDD Cup 1999 and its

modified version, the NSL-KDD dataset (Gogoi et al., 2012).

Both the KDD Cup 1999 and the NSL-KDD are evaluation datasets. The records
in the dataset may be very different from the actual network traffic data. In
addition, the nature of attacks and normal cases may change dynamically. One
of the most important weaknesses of the KDD dataset is the large number of

redundant records, which causes the learning algorithms to be biased towards
frequent records and thus prevents them from learning from infrequent records,
which may be more detrimental to the health of the network. Furthermore, the

existence of these repeated records in the test set causes the evaluation results
to be positively biased towards methods that have better detection rates on

frequent records.

28

3.1.1 UNSW-NB15 Dataset

UNSW-NB15 Dataset (Moustafa & Slay, 2015) was created to address these
limitations. It is produced by establishing the synthetic environment at the

UNSW cybersecurity lab. The tool employed provides the capability to generate
a modern representative of the real normal communications and the synthetical

abnormal network. In contrast with the previous datasets, this one has a higher
number of labeled attacks and updated traffic information.

The dataset contains 2,218,761 (87.35%) benign flows and 321,283 (12.65%)
attack ones captured over 31 hours of simulation on three networks with 45
different computer addresses.

Some tools and algorithms process raw network packets and generate attributes
of network flows. As a result, there are 47 features, described in Appendix A.
These variables include a variety of packet-based features and flow-based
features. The former help in the examination of the payload along with the
packet headers. In contrast, for flow-based features only connected packets of

network traffic are considered to keep computational analysis low rather than
looking at all packets. The features from 1-35 represent the integrated gathered
information from data packets and the rest are additional attributes from the
matched ones.

The features are categorized into five groups (Moustafa & Slay, 2016):

1. Flow features: includes the identifying attributes between hosts (e.g.,
client-to-serve or server-to-client).

2. Basic features: involves attributes representing protocols connections.

3. Content features: encapsulates the attributes of TCP/IP; they also
contain some HTTP service attributes.

4. Time features: contains the time attributes (e.g., inter-packet arrival time,
packet start/end time and TCP round-trip time).

5. Additional generated features: this category can be further divided into
two groups: general purpose features, where each feature has its own
purpose, and connection features that are built from the flow of 100

record connections based on the sequential order of the last time feature.

Regarding data labelling, two attributes are provided: label whose value is 0 for
normal behavior and 1 otherwise, and attack_cat that represents the nine attack

categories and the normal connections described below.

1. Normal: natural transaction data.

2. Fuzzers: an attack in which the attacker attempts to discover security
holes in a program, operating system, or network by feeding it massive
random data input to cause it to crash.

3. Analysis: a type of variety intrusions that penetrate the web applications

via ports (e.g., port scans), emails (e.g., spam), and web scripts (e.g.,
HTML files).

4. Backdoors: a technique of bypassing a stealthy normal authentication,
securing unauthorized remote access to a device, and locating the

entrance to plain text as it is struggling to continue unobserved.

29

5. DoS: an intrusion which disrupts the computer resources via memory, to
be extremely busy to prevent the authorized requests from accessing a
device.

6. Exploits: a sequence of instructions that takes advantage of a glitch, bug,

or vulnerability to be caused by an unintentional or unsuspected
behavior on a host or network.

7. Generic: a technique that establishes against every block-cipher using a
hash function to collision without respect to the configuration of the
block-cipher.

8. Reconnaissance: can be defined as a probe; an attack that gathers
information about a computer network to evade its security controls.

9. Shellcode: an attack in which the attacker penetrates a slight piece of
code starting from a shell to control the compromised machine.

10. Worms: attack whereby the attacker replicates itself to spread to other

computers. Often, it uses a computer network to spread, relying on
security flaws in the target computer to gain access to it.

3.2 Proposed framework

As described in Section 1.2, the main problems of anomaly detection at present

are the high transmission rate associated with the new networks, the nature of

the anomalies, the large number of false alarms and the poor interpretability
and explainability of the methods used. These problems do not allow IDSs to
function properly. It is therefore necessary to find suitable methods to solve
each of these drawbacks.

After an analysis of the current state of the art of IDS and the different
algorithms used, a series of specific solutions for the problems explained above
are proposed. These solutions are materialized in the form of a global
architecture and as specific components of it.

For the problem of high transmission rate, the aim is to work with variables

specific to communications flows. In this way, it is not necessary to analyze the
content of each of the packets, which means a higher processing overhead.
Given the dataset proposed in Section 3.1.1 for the training and evaluation of
the system, we finally work with both types of attributes, i.e., from flows and
packets. Consequently, we have a better perspective of the network activity and

can detect attacks that depend heavily on the content of the packets. In fact,
many modern network security solutions employ a combination of these two
approaches to improve their discovery capabilities (Andreas et al., 2021).

Another factor that determines the performance of IDSs is the type of attack to
be detected. Depending on the characteristics of these, it is necessary to use

one technique or another whose design is adjusted to the behavior of the attack.
Therefore, considering the attacks present in the dataset, a relationship is
established in Figure 3.2 with the types of anomalies described in Section 2.3.
For example, in the case of collective anomalies, these represent a deviation
from normal behavior when analyzed as a whole, being normal separately. This

is the case for DoS attacks, where numerous requests for connection to a web
server imply a collective anomaly, but a single one is legitimate. On the other

30

hand, Probe (Reconnaissance) attacks are contextual in that they are based on
a specific intention to obtain information about network security.

Figure 3.2. Mapping of some attacks with anomalies.

In order to obtain better performance in detecting non-point attacks, the aim is
to use methods that have a memory of previous states, i.e., that can remember
previous instances when looking for patterns. This helps to manage anomalies
that are prolonged over time. A suitable solution is the RNN, and its more
modern variants explained in Section 2.6, which are currently in demand in

natural language processing. They allow processing sequential data, in this case
network traffic.

On the other hand, another problem affecting the performance of anomaly
detection IDSs is having false positives since they consider deviations from
normal behavior as an attack. Moreover, this problem is aggravated by the lack

of explanations accompanying the alerts. This prevents security analysts from
certifying the veracity of alerts through their causes. Hence, the priority is the
interpretability of decisions and if this is not possible, post-hoc explainability.
Probabilistic graphical models such as BNs are an efficient approach to work

with uncertainty, bringing interpretability to the processes without losing
precision, as illustrated in Figure 2.7. On the other hand, as RNNs are
characterized by being black boxes, explanatory methods are necessary to meet
this objective. In addition to post-hoc techniques, association by means of

transparent models helps in this task.

To combine the models described and justified above, a metaclassifier is chosen
that fits specifically to the characteristics of the network traffic. Attacks
occurring in real-world communications account for less than 1%. Most of the
time no anomalies occur at all. This is also reflected in the datasets that show

a significant imbalance, i.e., there is much more normal traffic than attacks. As
indicated above, only 12% instances from the UNSW-NB15 dataset are attacks.

Likewise, this imbalance is also present in the set of attacks where some are
more frequent than others. For example, generic attacks account for 67% of the
9 categories in the dataset as illustrated in Table 3.1. Consequently, it is

necessary to set up a system to separate most of the normal traffic from
suspicious observations and then analyze them in depth.

31

Type of attack Percentage

Generic 67.07%

Exploits 13.87%

Fuzzers 7.55%

DoS 5.09%

Reconnaissance 4.35%

Analysis 0.83%

Backdoor 0.72%

Shellcode 0.47%

Worms 0.05%

Table 3.1. Percentage of type in the testing set of UNSW-NB15 dataset.

Cascading (Alpaydin, 2020) is a type of ensemble learning in which there is a
base sequence of computer classifiers in terms of complexity. After the first

classifier, the following classifiers capture those instances of uncertainty, e.g.,
the log-likelihood given by a BN is lower than a given threshold. However, since
there is a large imbalance in the field of intrusion detection and false alarms are
common in anomaly detection, it is decided to change the approach. Those
instances that are suspected of being attacks are passed to the next more

complex classifier for analysis. In addition, it is important that this initial
filtering is efficient. Therefore, it is intended to use a first algorithm that is
simple and with a low computational cost.

3.2.1 Approach A

Approach A, shown in Figure 3.3, follows the criteria explained above about the

framework. First, it is composed of a component dedicated to point anomaly
detection, which is exactly a Bayesian network. This model learns the normal
behavior of the network traffic and calculates the log-likelihood for the instances
that receives through the learned structure. This value represents the
probability of observing a network flow given the BN parameters. If this value is

lower than a previously defined threshold, the window in which the instance is
in a certain position is sent to the second component. Otherwise, it is defined
as normal behavior.

The second component aims to validate the instances classified by the first
component by adding a different approach for the detection of collective and

contextual anomalies. Since the first component presents a more flexible
threshold, i.e., anomaly detection to discard most normal traffic, the second

block performs a more accurate detection to determine if the instance is indeed
anomalous. For this, it is proposed to use an advanced RNN autoencoder, e.g.,
LSTM, bi-directional and, GRU that is trained in an unsupervised manner

through normal datasets. Therefore, the autoencoder is operated by advanced
RNN cells and can receive flow windows of size n to consider previous
observations. The autoencoder after encoding and decoding the window,
produces a new sequence that is compared with the initial one received. This

results in a reconstruction error for each of the elements of the buffer.

32

Depending on the criteria followed, the error of a particular window element is
chosen and compared with a threshold. This limit is previously computed on
the basis of the training. If the error is higher than the threshold, then the
observation is considered an attack and a notification is generated. If not, it will

be indicated as normal. This component, lacking interpretability, incorporates

methods of explainability. On the one hand, it uses the layer-wise relevance
propagation technique to identify feature importance. On the other hand, a
decision tree is used as a transparent design method to show the factors that
may have influenced the decision of the component. This tree is trained from

the different categories of attacks in order to perform multiclassification tasks.

Figure 3.3. Approach A architecture.

3.2.1.1 Point Anomaly Detection

The first component of Approach A is a module of several BNs that receives
network traffic and generates a log-likelihood value for each instance. As
explained, this value is the probability of observing an instance given the BN
parameters that are obtained during the training process using only normal

network traffic data.

The initial idea to start the development of the system was to build a single BN
that represents, consequently, all the normal traffic of the network. This first
approach assumes that all communications are practically identical or very
similar. However, there are differences in the normal traffic based on the type

of connection made. Therefore, a single structure does not allow to generalize
all the normal states and it is convenient to group the traffic according to certain
variables. The protocols associated with the transport layer, TCP and UDP, differ

fundamentally in their connection orientation and degree of reliability. This
results in differences in network traffic that can be observed in several aspects.

For example, the packet size in TCP is usually longer due to additional
information to control the connection. Or, for example, in UDP the nature of the
traffic tends to be more burst in comparison as it is used in real-time apps where
timeliness is more important. Also, there are some differences between flows of
the same transport layer protocol due to the application layer. This refers to the

task for which the communication is intended. For example, HTTP, that is used
for web browsing, involves small data payloads and short-request response

33

cycles. On the other hand, FTP, that is used for file transfers, results in long
connections with a high volume of traffic.

Therefore, in order to represent normal traffic more accurately, one BN is used
for each type of transport protocol (TCP and UDP) and application (HTTP, FTP,

FTP-Data, SMTP and DNS). This means that for each new flow received, its
protocols are analyzed through their corresponding variables to send it to the
corresponding BN of the module.

The selection of variables for the BNs is a very important process in determining
whether a connection is anomalous or not. There are many options such as

correlation analysis to eliminate highly related variables that provide redundant
information.

However, this depends again on the protocols, so it is proposed to choose those
variables that have a greater difference between their anomalous and normal
distribution. For example, for a certain transport and application protocol flow,

the marginal distributions of their variables are generated. On one side, for the
traffic labeled as normal and on the other, the anomalous. A comparison is
made between the two and those with the greatest difference are selected. In the
variables of Figure 3.4, attributes A, B and D would be chosen since C is similar
and would not contribute added value to the objective.

Figure 3.4. Example of the distribution of four variables in normal data and in
attacks.

Once the most relevant variables for each BN are known, we proceed to their
training using a Python package called PyBNesian (Atienza et al., 2022a). It is
important to know the characteristics of the data when selecting the type of BN.
The data is not homogeneous since they can be continuous or discrete and
Gaussianity cannot be guaranteed. Consequently, an SPBN is the most suitable

probabilistic model.

To create the SPBN structure, it is necessary to use a learning algorithm. HC is
chosen among other options as the PC algorithm because the former tends to
be more computationally efficient in performing local search operations. In
addition, it can handle both discrete and continuous variables and the PC is

less flexible. Furthermore, the structure score is another very important
parameter in the case of score-and-search algorithms such as HC. Since the
aim is to evaluate the goodness of a BN with respect to the data, the log-
likelihood score is the most appropriate criterion. It seeks to maximize this
goodness without considering other factors such as the complexity of the

network.

During the learning process, a series of learning operators are also employed to
perform small, local changes to the BN structure. Some make changes to the
arcs and others apply changes to the nodes related to their type. Finally, it is
necessary to learn the CPDs to make inferences based on the normal behavior

of the network.

34

The distinction between anomalies and normal data is performed by a threshold
given the log-likelihood of the flow. Each of the BNs of the module has a
threshold determined by the transport and application protocols. From the
same sample of normal traffic used for training, the log-likelihoods of the flows

are obtained for the corresponding BNs. The threshold for each set of protocol

is the smallest value obtained. This value approximates how far a normal
connection can be from the trained model. Any value below this threshold is
considered anomalous and is sent to the next component.

3.2.1.2 Collective and Contextual Anomaly Detection

The second component of the system is an autoencoder with recurring units
such as LSTM or GRU. It allows to detect both point and collective or contextual
anomalies. Hence, it is used to discard false positives of the first anomaly

detection and to certify that they are indeed anomalous communications.

Unlike the previous component, only a single autoencoder is used for all traffic
without grouping network traffic by protocols. Therefore, the present module
makes use of a single set of variables. The attributes used are all those that are
numerical since they are considered to provide value on the operation of the

network. No other variable selection techniques are used prior to model training
since this type of model provides significant improvements in dimensionality
reduction as it is designed for that purpose.

A very important step in the data preprocessing at the time of training and

testing is standardization. This involves transforming the input features of the

dataset to have zero mean and unit variance. This makes all the variables have
a similar scale avoiding that those with a larger scale dominate the training
producing a bias. Also, this process mainly improves the convergence of the
optimization algorithm by preventing it from being slow and unstable.

On the other hand, when preparing sequential data for modeling RNN

architectures, temporalization of the data is necessary. A usual dimensionless
input, also referred as planar data, does not directly provide time windows so it
does not allow to extract temporal patterns. Therefore, it is decided to apply a
sliding window approach whereby one starts at the beginning of the data and
slides the window progressively along the data one at a time. This approach

creates overlapping sequences of equal size.

The window size is also a fundamental factor when organizing the data. It
determines the amount of past information the model has access to for
predictions. The frequency and duration of patterns in the data must be

considered when choosing the right size. There are attacks that may be short
with abrupt changes while others persist over longer periods of time. Another
very important factor is the computational cost since larger windows result in a
larger number of parameters and consequently longer training and detection

time. During the system evaluation process different window sizes are tested for

comparison.

The architecture of the RNN autoencoder also influences the anomaly detection
performance. It consists of an encoder and a decoder of equal size that produce
a mirror effect structure where the size of the input layer and output layer is
the same. The model is built using the free and open-source deep neural

networks library TensorFlow (Martín Abadi et al., 2015). For the selection of the
number of hidden layers and neurons a grid search of powers of 2 is used. It is

35

observed that there are hardly any differences between complex autoencoders
with several hidden layers and many units and other simpler models. However,
there is a considerable increase in computation time in relation to the
complexity of the network. Therefore, the architecture shown in Figure 3.5 is

chosen. The input layer and output layer size are 37. This is the number of

features used. Both the encoder and the decoder have two hidden layers of 128
and 64 units, respectively. The size of the latent representation layer also
influences the performance. A larger latent size allows capturing more complex
patterns but can lead to overfitting. In addition, it tends to require more

computational resources, so a reduced latent size of 5 is chosen. It is important
to note that all these values are multiplied by the window size as the model
receives a sequence of flows. Additionally, a dropout of 0.2 is used as a
regularization technique to avoid overfitting during training and to improve the
generalization of the model.

Figure 3.5. Advanced RNN autoencoder architecture.

During training, the advanced RNN autoencoder aims to minimize the
reconstruction loss using the mean squared error (MSE) as the loss function.
The Adam optimizer (Kingma & Ba, 2014) is employed to update the model
parameters. The training process involves iteratively feeding the input data to
the network, computing the reconstruction error, and backpropagating the

gradients to update the weights of the model. The number of times the entire
dataset is passed through the autoencoder during training is usually around 50
epochs. Moreover, a batch size of 64 is chosen, which strikes a balance between
computational efficiency and model convergence.

The determination of a flow as an anomaly is done by using a threshold that

marks the limit between the reconstruction errors of normal connections and
attacks. There are several ways to obtain an optimal threshold. On the one hand,
as in the first component of the system, the reconstruction errors for the normal
flows used during training can be calculated. In this case, the threshold would
be the maximum of those obtained or that corresponding to a very high

percentile. However, it is decided to use a stochastic procedure (Aygun & Yavuz,
2017) that searches for the threshold with the best performance in the detection

36

of anomalies. This function checks the false positive rate (FPR) and false
negative rate (FNR) for a set of thresholds and chooses the one that produces
the lowest FPR given a maximum FNR. This maximum is normally set to 0.05.
The evaluation of the LSTM autoencoder through the range of thresholds is

performed using a validation set with both kinds of flows i.e., normal, and

anomalous. Algorithm 2 shows a pseudocode of this procedure.

Algorithm 2 Advanced RNN Autoencoder threshold algorithm

INPUT: Training set 𝑡𝑠 , validation set 𝑣𝑠 , validation set labels 𝑙𝑏 , LSTM
autoencoder 𝑎𝑒, minimum threshold 𝑡ℎ𝑎, maximum threshold 𝑡ℎ𝑏, maximum
FNR 𝑚

OUTPUT: Threshold 𝑏𝑒𝑠𝑡_𝑡ℎ

 train 𝑎𝑒 with 𝑡𝑠

 𝑒𝑟𝑟𝑜𝑟𝑠 ← validate 𝑎𝑒 with 𝑣𝑠

 for 𝑡ℎ ← 𝑡ℎ𝑎 to 𝑡ℎ𝑏 do

 𝑓𝑝𝑟 ← calculate_fpr by using 𝑒𝑟𝑟𝑜𝑟𝑠 , 𝑙𝑏, and 𝑡ℎ

 𝑓𝑛𝑟 ← calculate_fnr by using 𝑒𝑟𝑟𝑜𝑟𝑠 , 𝑙𝑏, and 𝑡ℎ

 if 𝑓𝑛𝑟 is less than 𝑚 and 𝑓𝑝𝑟 is less than 𝑏𝑒𝑠𝑡_𝑓𝑝𝑟 then

 𝑏𝑒𝑠𝑡_𝑓𝑝𝑟 ← 𝑓𝑝𝑟

 𝑏𝑒𝑠𝑡_𝑓𝑛𝑟 ← 𝑓𝑛𝑟

 𝑏𝑒𝑠𝑡_𝑡ℎ ← 𝑡ℎ

 end

 end

3.2.1.3 Post-hoc Explainability

In order to add explainability to the decisions made by the recurrent units that
make up the autoencoder, a gradient-based method was chosen. One of the

most commonly used is called gradient attribution (Ancona et al., 2017). This
method consists of calculating the gradients of the model output with respect
to the input features. In the case of RNNs, these gradients can be calculated
with respect to the input sequence at each time step.

The gradients of the model output are computed once it is trained with respect

to the input features. Then, they must be normalized to ensure that relevance
scores are comparable between different features or time steps. Then, these
values can be interpreted as feature relevance scores. Higher positive scores
indicate features that contribute positively to the model outcome, while lower or
negative scores indicate features that have less impact or even suppress the

outcome.

In addition to the feature relevance methods, explanability can be added to the
RNN autoencoder by associating a more interpretable model. Among the
different possible options, the decision tree is chosen because it is usually one
of the best performing and provides transparency in decision making. It adds

explainability to the system by classifying instances that the autoencoder
considers anomaly by showing the rules that condition the decision. It is also
characterized by its scalability since its time complexity is generally logarithmic

37

in the number of training samples. Therefore, it is suitable for contexts with a
large number of instances.

The two components of the system only indicate whether a given network flow
is anomalous or not. Then, it is convenient to include a model for

multiclassification that indicates the specific type of attack when the
communication is anomalous. A decision tree naturally handles this type of
tasks by straightforward branching, so it is very adequate for this case.

For the model training it is necessary to use a sample with normal and
anomalous behavior of the network. A set comprising all the attacks in the

dataset is obtained. However, this set is unbalanced since it does not have the
same number of classes within the attacks. Therefore, as a first preprocessing
step it is necessary to use an oversampling technique to address the class
imbalance. Specifically, SMOTE, explained in Section 2.3.1, is applied since it
preserves the information and diversity of the classes. Subsequently, it is

proceeded to the selection of variables because, unlike the previous
preprocessing, this procedure generates improvements in this case. Accuracy is
improved by eliminating redundant variables and, most importantly, it
promotes a better generalization to unseen data by simplifying the structure
and reducing complexity. It also enhances the interpretability of the model to

gain insights into underlying relationships between features and the target
variable. The selection is performed by recursive feature elimination (RFE) also
using a decision tree as a base estimator. A grid search of 5 to 10 variables is
employed to find the optimal number of variables while maintaining a low
dimensionality that favors interpretability.

The construction of the model is performed using the DecisionTreeClassifier
from the scikit-learn library (Pedregosa et al., 2011) that is capable of
performing multi-class classification.

It is important to note that the decision tree is also trained with normal network

behavior in addition to the different types of attacks. Although the second
component of the system sends only instances considered as attacks, the
present classifier can also define the received instances as normal. This may
result in a discrepancy between the outputs of the autoencoder and those from
the decision tree as a transparent, multi-classifier method. Therefore, there are

two approaches to handle this problem. On the one hand, preserving the
decision of the RNN autoencoder and, on the other hand, setting as final label
the decision of the classification tree when it indicates that it is a normal
communication. The latter is indicated in Algorithm 3. The labels included in

𝑙𝑏_𝑜𝑙𝑑 and 𝑙𝑏_𝑛𝑒𝑤 are either 0 if the instance is normal or 1 if it is anomalous.

38

Algorithm 3 Balancing algorithm between RNN autoencoder and decision tree

INPUT: Predicted labels 𝑙𝑏_𝑜𝑙𝑑, anomalous predicted flows 𝒟 = {𝑥1, … , 𝑥𝑁}

OUTPUT: New labels 𝑙𝑏_𝑛𝑒𝑤

 𝑙𝑏_𝑛𝑒𝑤 ← 𝑙𝑏_𝑜𝑙𝑑

 for 𝑖 to 𝑁 do

 if 𝑙𝑏_𝑜𝑙𝑑𝒊 is equal to 1 then

 𝑎𝑡𝑡𝑎𝑐𝑘_𝑐𝑎𝑡𝑖 ← predict_label by using 𝑥𝑖

 if 𝑎𝑡𝑡𝑎𝑐𝑘_𝑐𝑎𝑡𝑖 is equal to 'Normal' then

 𝑙𝑏_𝑛𝑒𝑤𝒊 ← 0

 else then

 𝑎𝑡𝑡𝑎𝑐𝑘_𝑐𝑎𝑡𝑖 ← 'Normal'

 end

Additionally, the decision tree may receive unknown types of attacks due to the
anomaly-based approach of the system. In this case, it will label them by the

closest matching class. Therefore, it is important to mention that this
classification is only for guidance and explanatory purposes for the analysts.

3.2.2 Approach B

The main advantage of our system is its ability to detect unknown anomalies.
This is very important nowadays due to the high speed at which technology and,

consequently, cybercrime are advancing. However, its accuracy is not always
high enough due to false alarms. Sensitive sectors such as this require high
performance. Therefore, Approach B, which maintains the global architecture,
but adds a modification in the second block, is proposed.

In Approach B illustrated in Figure 3.6, the second element is trained in a

supervised way. The autoencoder is omitted in order to use only an advanced
RNN. It is trained to classify instances into normal or attacks. The RNN
generates a probability distribution based on these two classes. To handle the
problem of false positives that may be produced by the anomaly detection
models, all those instances to which the RNN does not assign a very low

probability of being malicious are considered attacks, maintaining the decision
of the SPBN. Otherwise, the instance is labeled as normal. As in Approach A,
explainability methods are employed to help understand the neural network
decisions.

39

Figure 3.6. Approach B architecture.

3.2.2.1 Signature Detection

As in the second component of the anomaly-based version where a RNN
autoencoder is used (Approach A), a data preprocessing is performed, and it
coincides with this approach in the following aspects. On the one hand, the

feature selection is conducted by discarding all those variables that are

categorical. Also, data standardization is used to improve model performance.
Since a RNN is employed again, the temporalization of the data is applied
through sliding windows with overlapping, experimenting with different sizes
during the testing.

The network architecture is the main difference since it is not based on anomaly

detection and the structure is not encoder and decoder. As illustrated in Figure
2.4, the size of the hidden layers is reduced until ending in an output layer that
performs the prediction. The function used for this depends on the type of
problem. In Figure 3.3, binary classification is used to distinguish between a
normal flow or an attack. In this case, the sigmoid function is used that

squashes the output into a range between 0 and 1, providing a probability
distribution interpretation for binary class.

In order to handle the distinction of attack types directly, the second component
of this approach could also be an advanced RNN trained as a multi-class
classification. This involves the use of a SoftMax activation function for the

output layer. It receives an input vector and transforms it into a probability
distribution over multiple classes.

For the latter model it is also required to apply the OneHotEncoding method

during data preprocessing. By this, the classes are transformed into a numerical

format for use in the RNN.

After an initial analysis, the sizes of the hidden layers are again 128 and 64
when using RNN units. A dense layer of size 16 is also included before the
output one. The rest of the hyperparameters are the same as those used with
the RNN autoencoder. TensorFlow is employed as in Approach A.

40

Moreover, a bi-directional approach, explained in Section 2.6.1.4, is evaluated
to further improve the performance of this component.

3.2.3 System Operation

As explained above, the second component works by sequences of elements.

Therefore, it is necessary to work through windows from the beginning of the
analysis process. For this purpose, a buffer (window) of size s is created, which
receives observations of the network traffic until it is full. At this point, based
on an established criterion, an element is chosen from this buffer. In the case

of Figure 3.7, the last element of the window of size 3 is always obtained. The
first element chosen corresponds to that of index (2) and is sent to the SPBN.
As shown, the BN indicates that it is a normal connection, and it does not
continue in the classifier cascade. At this point, the oldest window element is
deleted. This case corresponds to index (0). Then, a new element is added, index

(3), and sent to the SPBN. In this case the model considers it to be an anomaly.
Therefore, the complete window is sent to the advanced RNN Autoencoder which
analyzes it taking into account each previous element in the window.

Figure 3.7. Example of the system operation.

This second model can use several criteria to define the degree of anomaly of
the element being analyzed. Some of them are the reconstruction error of the
element itself, the average of the errors of the elements of the same window or
a weighted sum of each of them. In the example, the error of the last element is
applied, effectively notifying that it corresponds to an attack. In the next

iteration, the instance of index (1) is eliminated, and a new instance of index (4)
is added, which is analyzed following the same process.

It is important to note that depending on the position of the element in the
window being analyzed, the previous or subsequent flows may remain

unstudied. In the example given, the last element of the buffer is always scanned
without examining the first two of index (0) and (1). In general, if this criterion
is followed, the first n-1 elements are not analyzed. This is insignificant for a
system that has to process hundreds of thousands of flows per day, where
almost always 100% of them are not anomalous.

41

3.2.4 Implementation

The implementation of the proposed cascading system involves utilizing specific
code environments, programming languages, and libraries to develop and

evaluate the contribution.

Two development environments, Jupyter Notebook and Google Colab, are used
during different stages of the implementation. Jupyter Notebook is used for BN
training, data preprocessing and full system integration. On the other hand,

Google Colab is employed for all DL related tasks.

Python serves as the foundation for implementing the system. To handle the
data through exploration and preprocessing, the Pandas library is used.
Additionally, Matplotlib is utilized to create visualizations for result analysis and
presentation purposes. Regarding the graphs of the BNs, a package called
NetworkX is used for the creation and study of the structure. Numerical

operations and array processing are performed using NumPy.

PyBNesian, TensorFlow and scikit-learn are the libraries for the creation of the

models as it is mentioned in the corresponding sections.

42

4 Results

Chapter 4

Results

The evaluation of the results obtained by the proposed methodology is

performed using the dataset explained in Section 3.1.1. It is a relatively modern
dataset that includes a wide variety of attacks and correctly simulates the
normal operation of the network. Therefore, the test results correspond closely
to those that would be obtained in a real case. Additionally, the fact that attacks
rarely occur in communications results in a large imbalance in the dataset

simulating a hypothetical real situation. This makes the training and evaluation
more challenging.

4.1 Evaluation Metrics

In binary classification problems, the result of a classification can be correct or

incorrect, and all possible results can be divided into the following four
conditions:

• True positive (TP): actual attacks are classified as attacks.

• True negative (TN): actual normal records are classified as normal.

• False positive (FP): actual normal records are classified as attacks. This
condition is also known as false alarm.

• False negative (FN): actual attacks are classified as normal records.

Accuracy is a widely used metric in classification tasks that measures the
proportion of correctly classified instances over the total number of instances.
However, when the data is unbalanced, accuracy is not considered an adequate
metric to evaluate. In this case, it can be misleading since the system can

classify all instances as normal and would achieve high accuracy due to the
prevalence of these types of observations. Therefore, other metrics that are not
influenced by this problem should be used to evaluate the model.

Some of these are precision and recall defined in Equation (4.1) and (4.2),
respectively. Precision measures the proportion of correctly identified malicious

instances out of the total instances classified as malicious. On the other hand,
recall measures the proportion of correctly identified malicious instances out of
the total actual malicious instances. Achieving a balance between these two
metrics is essential to create an effective system that can successfully detect
malicious activity while maintaining a low false alarm rate. This trade-off is

43

indicated by the F1-score, Equation (4.3), which is the harmonic mean of
precision and recall.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4.1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4.2)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(4.3)

These metrics are assigned to each of the classes. Because of the imbalance
between them, it is important to choose an appropriate averaging that results
in a fair metric for the model. On the one hand, in a weighted metric, each class
is assigned a weight proportional to its representation in the dataset. On the

other hand, a macro average treats all labels equally and provides a balanced
evaluation between all of them. Consequently, to avoid assigning a higher
contribution to the class with more examples in the dataset, macro averaging is
chosen.

In the context of network intrusion detection, the management of false positives
is very important since most of the traffic is normal. This problem is usually
accentuated when using anomaly-based methods. Therefore, reducing false
positives avoids false alarms that affect the correct operation of the system. For
this purpose, the False Positive Rate (FPR) and False Negative Rate (FNR)

metrics are also used. FPR, Equation (4.4), represents the proportion of normal
traffic that the system incorrectly classifies as intrusions. Conversely, FNR,
Equation (4.5), is the proportion of intrusions that the system incorrectly
classifies as normal.

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(4.4)

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
(4.5)

Additionally, a commonly used table in evaluating models is the confusion

matrix. It provides a summary of the predictions by comparing them with the
actual class labels. It is especially useful in multi-class classification problems,
as it provides information on the strengths and weaknesses of the model when
categorizing instances of various classes. This information can be useful in
identifying specific areas for improvement.

4.2 Point Anomaly Detection

As explained in Section 3.2.1.1, point anomaly detection is performed by BNs

that capture communications and generate log-likelihoods based on the normal
operation of the network. During the initial experimentation, only a single model

is built for all connections. This results in lower performance since it cannot
generalize the behavior for different values of the network parameters.

44

Also, looking for a greater generalization, it is necessary to use a large part of
the variables in the dataset trying to improve performance. In this case, as a
result, the resulting graph is characterized by a high number of arcs linking the

different nodes as illustrated in the full data SPBN graph of Appendix B. This
graph is quite large and close to being complete, so it is not easy to interpret
and decreases the comprehensibility of the decisions. It has 30 variables out of
a total of 47. Those that are not included are eliminated because they are not

relevant according to correlation analysis, in addition to eliminating the 8

variables that are categorical.

This particular SPBN model with this number of variables is the one that
achieves the best performance using all the data without grouping by protocols.
This is an FPR of 0.54 while maintaining an FNR less than 0.05. If the number
of features is reduced to improve interpretability, the performance worsens

considerably further.

It was therefore decided to group the data according to the different transport
and application protocols. All resulting graphs are shown in Appendix B. For
example, Figure 4.2 shows the structure of the SPBN trained using normal flows
data whose transport protocol is UDP and its application protocol is unknown.

The feature selection is done by the procedure described previously and note
that the resulting structure is much simpler and easier to understand. Only
four nodes (sbytes, dttl, dbytes, ct_srv_dst) are part of the connected network,
besides one node (sttl) that is independent and not shown.

According to this structure, the bytes sent from the source to the destination
(sbytes) depend on two factors in the normal operation of UDP communications.
First, the time to live (TTL) from the data destination to the initial source and,

second, the bytes sent from the destination to the source. Additionally, the

destination address and the application protocol of the flows are determined by
these two variables in the UDP context.

45

Figure 4.2. SPBN structure of UDP and None data.

When the SPBN receives a flow, it determines the probability with which it
conforms to the parameters and structure learned through normal traffic. To do
this, a log-likelihood is generated which is normally close to 0 for normal
communications and moves away from this value for anomalies. Since a
threshold is used to detect attacks, it is important that there is a significant

difference between the average log-likelihood for the two possible classes. This

helps differentiate more clearly between the two cases avoiding false predictions.

 Log-likelihood

 Normal Attack

Full -56.71 -88.75

UDP -8.20 -3895150.60

Table 4.1. Median log-likelihood for the full and only UDP SPBN models.

As shown in Table 4.1, grouping the network traffic according to the protocols
allows to better adjust the representation of the normal behavior. The median
loglikelihood for normal flows (-8.20) is much lower in the SPBN of the UDP

protocol than the one using a single model for all (-56.71). Also, the disparity
between normal traffic loglikelihood (-88.75) and attacks one (-3895150.60)
within the specific SPBN is infinitely larger. This allows the threshold to be set
correctly. The remaining median log-likelihoods for each of the BNs according
to the protocols are given in Appendix C.

Figure 4.3 shows an example of the first 1000 log-likelihoods generated by the

SPBN of UDP flows. Since there is a very large difference between these values,
only those streams that are considered anomalous can be observed in the form
of a bar. According to this graph approximately 30% of these communications
are predicted to be attacks and should continue in the cascading system. In

addition, it should be noted that among the flows whose index is approximately
500/600, the majority are considered anomalies and may be collective.

46

Figure 4.3. Log-likelihoods of the first 1000 UDP flows.

This is consequently reflected in the evaluation metrics, illustrated in Table 4.2,

for anomaly detection using only this component. Using FNR and FPR as a

reference, the new approach resulted in a drastic reduction of false alarms. For
example, for the UDP model shown above, false positives were reduced by more
than 80% compared to the full model. However, it fails to reduce false alarms in
DNS protocol flows that are intended to resolve domain names to IP addresses.

Therefore, it is necessary to use a second component that analyzes traffic from
another perspective to improve performance.

Another factor influencing performance is the threshold that marks the
boundary between normal and anomalous flows. This is calculated as explained
in Section 3.2.1.1.

 FPR FNR

Full 0.54 0.05

TCP/None 0.05 0.00

TCP/HTTP 0.04 0.00

TCP/FTP 0.03 0.00

TCP/FTP-Data 0.00 0.00

TCP/SMTP 0.00 0.00

UDP/None 0.09 0.00

UDP/DNS 0.51 0.00

Table 4.2. FPR and FPR of the different SPBN models.

47

4.3 Collective and Contextual Anomaly Detection

There are many factors that determine the performance of deep neural networks.
In the case of the recurrent ones, the window size is one of them since the data

must be temporalized given the design of these. Thus, different sizes are tested,

and the performance and computation time are analyzed before training the
model.

To do this, an LSTM autoencoder is used as the base model. Unlike the first
component, the flows are not grouped by protocols and a single classifier is
therefore used. This is trained by normal behavior and the first 1000 flows of

the testing set are used to evaluate it. The architecture is the one explained
previously. FPR is employed as a metric to decide the best size, while a threshold
is set to limit the FNR to 0.05 at most. An odd window size is used, and it is
progressively increased from 5 to 11.

Window size FPR

5 0.19

7 0.25

9 0.31

11 0.47

Table 4.3. FPR of LSTM autoencoder based on different window sizes.

A hypothesis could be that a longer lookback could capture more predictive
patterns and improve accuracy. However, Table 4.3 shows how the performance

worsens as the window size increases. The number of false alarms is doubled
by also doubling the size of the window. As a result, it is decided to use a smaller
window with a maximum of 5 elements.

It is important to state that the number of parameters in an LSTM layer does
not increase with the lookback. Jozefowicz et al. (2015) state that if the

retrospection period is long, the LSTM cell states merge the information over a
wide window. Because of this, the extracted information is blurred.
Consequently, extending the waiting period does not always work with RNNs.

Another factor influencing performance is the threshold that marks the
boundary between normal and anomalous flows. As indicated in Algorithm 2, a

procedure is used to obtain the optimal threshold given a limiting FNR. This is
affected by the distribution of reconstruction errors generated by the
autoencoder. In an ideal situation there is a clear division between attacks and
regular traffic.

The first 50,000 flows of the testing set are used to check the distribution of the

errors by grouping them according to their label. This experiment is performed
by the LSTM Autoencoder using the architecture explained during the

methodology. It can be seen in Figure 4.4 that most of the normals (purple)
obtain an error between 0.2 and 0.3, while the few attacks (pink) acquire a
higher value. According to the graph, the optimal threshold would be around

0.4 although some erroneous prediction would occur.

48

Figure 4.4. Distribution of Reconstruction Errors by LSTM Autoencoder.

Different RNN models are trained to integrate in the system and the most
suitable threshold for each of them is obtained. An LSTM autoencoder, a bi-
directional LSTM autoencoder and a GRU-based LSTM autoencoder are
evaluated using the window size previously calculated by the procedure. The

first 20,000 flows of the testing set are used. Since this second component
receives mostly anomaly traffic, a threshold that generates at most an FNR of
0.05 is looked for. According to the results shown in Table 4.4, the most optimal
threshold is between 0.45 and 0.50 depending on the model.

In addition, the FPR obtained using the data without filtering by the initial

component is shown. This value is strongly increased by limiting the number of
false negatives. Thus, it becomes evident the need for a cascade system that not
only improves the efficiency, but also the performance.

Model Threshold FPR

LSTM 0.45 0.77

Bi LSTM 0.50 0.85

GRU 0.45 0.85

Table 4.4. Threshold determination for three advanced RNN autoencoders.

4.4 Signature Detection

As observed in the results of the unsupervised version of the advanced RNNs,

they usually suffer from a high percentage of false positives. This problem is
partly solved using SPBNs as an upstream component. However, due to this
less than optimal performance, several supervised models are trained for
Approach B and evaluated to improve attack detection. Likewise, the window
size used is 5 given the experiments performed previously. The same first 20,000

flows of the dataset are used again for the evaluation.

49

The models used are the same, but in their signature detection version, i.e.,
without the autoencoder. Again, we limit the FNR to 0.05 and look for the
configuration that gives the best FPR as a result. As illustrated in Table 4.5,
there is a great improvement and false alarms are greatly reduced. The bi-

directional version of the LSTM is the best performing recurrent network with

0.07 FPR. The simplified GRU version shows similar results also offering higher
efficiency.

Model FPR

LSTM 0.17

Bi LSTM 0.06

GRU 0.07

Table 4.5. Performance for three advanced RNN.

However, the LSTM model still maintains a high FPR despite the drastic
reduction compared to its anomaly-based version. Sutskever et al. (2014) found
that reversing the order of elements in all source sequences significantly

improved the performance of the LSTM. Doing this introduces many short-term
dependencies between source and target. Therefore, the model is tested to
process the input sequence backward. The result is a reduction of the FPR to
0.12. This is 30% less than the version that does not process the input
backwards. Hence, this new version is introduced in Approach B.

4.5 Post-hoc Explainability

When analyzing the relevance of features using gradient-based methods, there
are several visualizations that provide more information to understand the
decisions made by the RNN model. These are based mainly on the importance

of the variables and their behavior throughout the predictions.

Figure 4.5 shows the feature distribution obtained by averaging the time steps
of all correctly classified samples. This distribution represents the impact of the
features on the outcome of the LSTM autoencoder model. In particular, the
scores associated with the features show significant variations. Some features,

such as ct_state_ttl, ct_dst_src_ltm, sttl and dttl, show large sums, indicating a
large influence on the outcome. In contrast, most of the features have smaller
scores, suggesting minimal importance in terms of outcome. It is important to
note that some of the most determinant variables in this model are also present

in the SPBN structures of the first component. For example, ct_srv_dst is the
third most relevant feature employed in the second component and it is used in
4 of the 6 BNs: TCP and HTTP, TCP and FTP-Data, UDP and None, and UDP
and DNS as can be seen in Appendix B.

50

Figure 4.5. Average gradient-based relevance scores for each feature employed in the
second component.

Analogous to what is done when averaging the relevance scores for each feature,
a total of these values is performed to show the added relevance scores for the
time steps. A small sample of 1000 instances is used to facilitate understanding.
As illustrated in Figure 4.6, during the first 200 flows the mean scores of all

variables are reliably constant and around 0.15. However, then there is a drastic

drop until timestep 400.

This coincides with the fact that more than 70% of the anomalies in this sample
are found in the first 200 communications and hardly any occurs after that up
to timestep 400. During the rest of the analysis the weight assignment is more

irregular because there are no long patterns of normal behavior or attacks.

In addition, the degree of relevance that the model assigns on average to each
window element out of the five that receives is explained. For this purpose, a
heat map, shown in Figure 4.7, is created to display the scores across the
sequence data positions.

Looking at the horizontal axis corresponding to each of the positions within the
buffer, the scores are quite similar in general. Darker colors are seen in the
central elements of the window indicating less relevance to the model. However,
the first and the last flow are more important as they are lighter. Additionally,
the variables of indexes 4, 5 and 29 stand out in the fourth element with a much

higher score than the rest. It can be seen that this coincides with what is shown
in Figure 4.5.

51

Figure 4.6. Gradient-based relevance distribution over time steps.

As explained above, the degree of anomaly of the last element based on its error
is used to determine whether a window contains an attack. Then, this decision

is also assigned to this last element for comparison with the actual label. As a
result of this last explanation, this decision is correct since the model assigns a
higher relevance to the fifth component of the window.

Figure 4.7. Gradient-based relevance of features across positions in sequence data.

Apart from explainability with the latter method to understand the influence of
the features on final decisions of the RNN, a different approach is used that

seeks to add information to the outputs of the system. For this purpose, a
decision tree is used which, due to its transparent design, balances the null

interpretability of the black boxes.

As a result of the feature selection method, the following 10 variables are used
to train the model: sbytes, dbytes, sttl, sload, spkts, smeansz, dmeansz,
trans_depth, ct_srv_dst, and ct_dst_sport_ltm. The result is an easy-to-

understand tree structure that adds insight into why the received instances are

52

considered anomalies by the recurrent model. Despite using a reduced number
of attributes, the constructed tree is quite large and therefore not easy to
visualize completely. To facilitate its visibility, the tree is pruned to a maximum
depth of 3.

Figure 4.8 shows some of the decisions used to consider an instance as an
anomaly and in turn a specific type of attack. This is the case of those classified
as Backdoor, Generic, Shellcode and Reconnaissance. For the first one, the
model establishes that it is sufficient to have a time to live from source to
destination of less than 61 seconds. On the other hand, if it has a higher value,

it can be of the rest of the anomalous classes. For example, if there have
previously been more than 3 connections with the same source address and
destination port, and the flow transmits more than 129 bytes to the destination,
then it is classified as an attack of the Reconnaissance type.

Figure 4.8. Decision tree with maximum depth of 3 as Transparent design method.

In addition to the explainability of the RNN's decisions offered by the model
given its transparent design, the performance of the multi-class classification is
analyzed. For this purpose, a normalized confusion matrix is used and the only
instance corresponding to Analysis attack is eliminated. Therefore, there are 8

types of anomalies plus the normal flows.

Figure 4.9. Normalized confusion matrix of decision tree results.

53

As shown in Figure 4.9, it performs a very good classification of the Generic
attacks, being 94% of them correct. These are the most common within the
dataset, since they represent almost 70% of the total attacks. It also performs a
good prediction of almost 90% accuracy of Reconnaissance attacks despite

being contextual anomalies.

It is worth noting that although it receives flows whose prediction is anomalous,
the tree can also classify the instances as normal. Given the results, it can be
observed that it detects false positives coming from the previous component in
a remarkable way by classifying them as normal in 80%. However, if it is decided

to apply Algorithm 3 with the objective of correcting false alarms, there is also
an increase in false negatives as shown in Table 4.6. This is because a good part
of Fuzzers attacks are predicted as normal as illustrated in the matrix. Therefore,
as mentioned above, multi-classification should be used mainly as a value-
added explanatory element.

FPR FNR

0.15 0.01

Table 4.6. Performance of the system after applying Algorithm 3.

4.6 Approach A vs Approach B

The results of the two approaches are illustrated in Table 4.7. For each of them,

the exact RNN used as the model of the second component is also indicated.

First, it can be observed that the performance is significantly improved
compared to that achieved by the individual modules that constitute the
complete structure. Primarily, the number of false alarms is reduced. For

example, for Approach A with a bi-directional LSTM autoencoder, the FPR is
reduced by almost 95% compared to the corresponding results in Table 4.4.

Among the models used in this approach, the one that uses a standard LSTM
achieves the best performance with an F1-score of 0.88. Similarly, the lighter
GRU model generates equally reliable results. One of the aspects to improve is

the precision which is lower than the recall. This is because its value decreases
for the positive class corresponding to the malicious activity.

Overall, the three models give almost identical performance. Since GRU is
simpler and, consequently, more efficient, it is bolded as the best method of
Approach A.

By using Approach B, which is a hybrid version combining anomaly detection
and signature detection, very good performance is achieved. False alarms are
again reduced compared to the first approach. The same models achieve the
best results, but this time without the autoencoder architecture. In this case,

LSTM is slightly superior to its simplified version with an F1-score of 0.95.

In short, the framework succeeds in meeting the performance criteria required
by an IDS. The combination of the two components makes it possible to improve
the capture of attacks. In addition, the supervised version achieves much higher
accuracy.

54

 2nd
Component

Accuracy Precision Recall F1-score FNR FPR

Approach
A

LSTM
Autoencoder

0.96 0.83 0.97 0.88 0.02 0.04

Bi-LSTM
Autoencoder

0.96 0.82 0.95 0.87 0.02 0.05

GRU
Autoencoder

0.96 0.83 0.97 0.88 0.02 0.04

Approach
B

LSTM 0.98 0.92 0.98 0.95 0.01 0.02

Bi-LSTM 0.96 0.91 0.98 0.93 0.01 0.03

GRU 0.98 0.92 0.98 0.94 0.01 0.02

Table 4.2. Evaluation metrics for Approach A and Approach B.

55

5 Conclusions and Future Research

Chapter 5

Conclusions and Future Research

5.1 Conclusions

In this project, the development of a cascading explainable system for network
intrusion detection is introduced, with the objective of improving the
interpretability of the detection process while maintaining a high level of
performance. The framework incorporates two main components: an initial
anomaly-based detection component consisting of a module of several SPBNs

and a secondary component based on a few types of RNNs. In addition, a feature
relevance method and a decision tree are employed to generate decision

explanations for the LSTM module.

Through extensive analysis and evaluation with a up-to-date network traffic
dataset, the proposed system demonstrates remarkable performance in

intrusion detection. The initial module provides an agile and accurate way of
identifying potential anomalies by exploiting probabilistic relationships between
features. BNs are based on the normal state of each transport and application
protocol as it is difficult to generalize. When they receive new flows, they output
log-likelihoods that determine the degree of abnormality using a specific

threshold. As they are lighter models and work as first elements, the efficiency
of the detection is improved by avoiding that all the traffic is analyzed by the
neural network. In this way, the high levels of transmission that currently exist
are correctly managed.

To further improve detection performance, we trained several RNNs

autoencoders as anomaly-based models that are compared to their signature
versions. Both are characterized by analyzing sequential patterns that allow to
better capture those attacks that are not punctual, but occur in groups. This
responds to one of the main issues based on the nature of the input data.
Consequently, there are two different approaches for the same framework. The

first method focuses on learning and reconstructing temporal patterns of

normal network behavior, while the second uses labeled data to directly classify
different type communications.

However, these models, as black boxes, are not interpretable. Therefore, feature
relevance method is integrated that identifies the most influential inputs in the

detection process. This allows to provide meaningful explanations of the
decisions made by the recurrent module. As can be seen in the figures, there
are some features that are very important for the detection of anomalies during
processing by the RNNs, while most of them are not so decisive. Besides, the

56

features at the extremes of the window are the most influential in the
determinations.

Moreover, a decision tree is used to create interpretable rules that allow to know
the reasons why the second component has determined that an instance is

anomalous as well as to establish the specific type of attack. It is worth noting
that the most prevalent attacks are classified with a high degree of accuracy
and false alarm correction is again facilitated.

The evaluation results reveal that the cascading system outperforms the results
obtained by the two components separately. In particular, from the point of view

of the first component, the system significantly reduces false alarms by checking
for instances that SPBN considers to be attacks. On the other hand, from the
point of view of the second component, the fact that it receives already filtered
anomalous traffic prevents it from processing a lot of normal traffic that may
generate false positives. Therefore, one of the challenges that are part of the

problem statement of this type of anomaly-based system is satisfied. This
prevents the system from becoming unusable by flooding it with some irrelevant
notifications.

Overall, this research contributes to the field of network intrusion detection
addressing some of its main challenges. The proposed framework, with the

combination of the strengths of BNs and DL, provides a practical solution. Also,
the inclusion of feature relevance and decision tree-based explanations improve
the transparency of the solution. This work opens avenues for future
development in the domain of explainable network intrusion detection,
facilitating a more reliable defense against malicious activities.

5.2 Future Research

The performance of the cascading system is generally good. The two approaches
cover the main concepts within network intrusion detection. However, certain
corrections can still be made to improve the behavior of the proposal. Therefore,

several lines of future research are proposed ordered from highest to lowest
priority.

1. The current system is validated using a dataset that is considered one of
the best at present due to its wide variety of attacks and traffic fidelity.

However, to perform a more reliable evaluation it is essential to test it on
real network traffic. This can be challenging due to privacy issues and
limited access to such data. Therefore, it is proposed to perform it with
ad hoc network traffic using virtual machines that generate synthetic

data representative of real-world network behavior. This data would
enable to perform a better assessment of the system in a controlled
environment.

2. As the field of DL continues to advance, transformer-based models have
gained significant popularity and have achieved remarkable success in

various domains such as natural language processing. They are very
effective in capturing long-range dependencies and contextual
information. Then, it is proposed to investigate the use of these modes
for network attack detection with the goal of integrating them into the
system. This would allow the proposal to capture more complex patterns,

57

leading to improved detection capabilities in identifying sophisticated
intrusions.

3. Determining anomalies using a threshold is a very important factor in
attack detection. Performance is significantly affected by the choice of

such a boundary, so it is essential to perform this process correctly.
Hence, it is proposed to use one-class models as they focus on learning
the characteristics of the normal behavior of the network and identifying
the cases that deviate from it.

Leveraging the advanced RNN Autoencoder as the main model, the

research will center on classifying instances as normal or anomalous
based on reconstruction errors. These errors would serve as a
representation of the deviation from the learned normal behavior of the
network.

4. The SPBNs are responsible for identifying network flows that exhibit

suspicious behavior. Rather than simply classifying flows as normal or
anomalous, this research also proposes to extend the output of the BN
to include a measure of the degree or severity of the anomaly. This would
be communicated to the following component of the system. By providing
the RNN autoencoder with this enhanced information, it would be able to

better understand the severity of anomalies and adjust its reconstruction
and prediction accordingly.

5. In traditional advanced RNN architectures, a fixed window size is
typically used to encode and reconstruct sequences. However, network

traffic patterns may exhibit variations in their temporal characteristics,

where the duration of anomalous events may differ from normal behavior
and between different types of attacks. To address this challenge, the use
of a variable (non-constant) window size within the cascaded system is
proposed as another future work. This would use an adaptive window
sizing based on statistical measures that would dynamically focus on the

relevant segments of the sequence.

6. As explained in Section 3.2.3 about the operation of the system, the last
element of the window is always analyzed by its own reconstruction error
for the detection of the anomaly. However, there are many other
approaches that can be used. Therefore, it is intended to explore different

alternatives such as the use of metrics that take into account the errors
of the other elements of the window when determining the degree of
anomaly of the last one.

One option would be to assign weights to reconstruction errors based on

their temporal proximity to the last element. This approach recognizes
that recent events may have a greater impact in determining the degree
of anomaly compared to earlier events.

7. One of the methods used to improve the explainability of the second

component is characterized by pointing out the feature relevance during

the decisions of this model. This results in a ranking of the most
important variables. Therefore, as future work we can consider using
these findings to eliminate those that are not important and observe how
this affects the performance of the system. In this way, we can reduce
the dimensionality of the data received by the RNN and improve

computational times and interpretability.

58

8. In addition to the post-hoc explanatory techniques used to improve the
understanding of RNNs, there are other different methods that also
facilitate this task. This is the case of visual explanation techniques that

help in the interpretation of black-box DL models. For instance, Karpathy
et al. (2015) reveal the existence of interpretable cells that track long-

range dependencies. Analyzing the internal states of these cells can help
to understand how information flows and is processed over time. This
helps to show which parts of the input are remembered or forgotten by

the network.

59

60

Bibliography

Accenture. (2021). Make the leap, take the lead: Tech strategies for innovation
and growth.

Aldini, A., Gorrieri, R., & Martinelli, F. (Eds.). (2005). Foundations of Security
Analysis and Design III (Vol. 3655). Springer Berlin Heidelberg.

Alpaydin, E. (2020). Introduction to machine learning. The MIT press.

Ancona, M., Ceolini, E., Öztireli, C., & Gross, M. (2017). Towards better
understanding of gradient-based attribution methods for deep neural
networks. 6th International Conference on Learning Representations.

Andreas, B., Dilruksha, J., & McCandless, E. (2021). Flow-Based and Packet-
Based Intrusion Detection Using BLSTM. SMU Data Science Review, 3(3).

Atienza, D., Bielza, C., & Larrañaga, P. (2022a). PyBNesian: An extensible

python package for Bayesian networks. Neurocomputing, 504, 204–209.

Atienza, D., Bielza, C., & Larrañaga, P. (2022b). Semiparametric Bayesian
networks. Information Sciences, 584, 564–582.

Axelsson, S. (2000). Intrusion detection systems: A survey and taxonomy.

Aygun, R. C., & Yavuz, A. G. (2017). Network anomaly detection with
stochastically improved autoencoder based models. Proceedings of the 4th
IEEE International Conference on Cyber Security and Cloud Computing and
3rd IEEE International Conference of Scalable and Smart Cloud, 193–198.

Bace, R., & Mell, P. (2001). Intrusion Detection Systems. U.S. Department of

Commerce, Technology Administration, National Institute of Standards and
Technology.

Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S.,
Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila,
R., & Herrera, F. (2020). Explainable artificial intelligence (XAI): Concepts,

taxonomies, opportunities and challenges toward responsible AI.
Information Fusion, 58, 82–115.

Bhuyan, M. H., Bhattacharyya, D. K., & Kalita, J. K. (2014). Network anomaly
detection: Methods, systems and tools. IEEE Communications Surveys and
Tutorials, 16(1), 303–336.

Bielza, C., & Larrañaga, P. (2021). Data-Driven Computational Neuroscience.
Machine Learning and Statistical Models. Cambridge University Press.

Chandola, V. (2009). Anomaly Detection : A Survey. ACM Computing Surveys,
41, 1–58.

Chawla, N. V, Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE:
Synthetic minority over-sampling technique. Journal of Artificial Intelligence
Research, 16, 321–357.

Cho, K., van Merrienboer, B., Bahdanau, D., & Bengio, Y. (2014). On the
Properties of Neural Machine Translation: Encoder-Decoder Approaches.
Proceedings of {SSST}-8, Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation, 103–111.

Clausen, H., Grov, G., & Aspinall, D. (2021). CBAM: A contextual model for
network anomaly detection. Computers, 10(6), 79.

61

Debar, H., Dacier, M., & Wespi, A. (2000). Revised taxonomy for intrusion-
detection systems. Annals of Telecommunications, 55(7), 361–378.

Dosilovic, F. K., Brcic, M., & Hlupic, N. (2018). Explainable artificial intelligence:

A survey. Proceedings of the 41st International Convention on Information
and Communication Technology, Electronics and Microelectronics, 210–215.

Fernandez Maimo, L., Perales Gomez, A. L., Garcia Clemente, F. J., Gil Perez,

M., & Martinez Perez, G. (2018). A self-adaptive deep learning-based system
for anomaly detection in 5G networks. IEEE Access, 6, 7700–7712.

Forouzan, B. A. (2002). TCP/IP Protocol Suite. McGraw-Hill Higher Education.

Gogoi, P., Bhuyan, M. H., Bhattacharyya, D. K., & Kalita, J. K. (2012). Packet
and flow based network intrusion dataset. International Conference on
Contemporary Computing, 322–334.

Goldstein, M., & Uchida, S. (2016). A Comparative Evaluation of Unsupervised
Anomaly Detection Algorithms for Multivariate Data. PLOS ONE, 11(4),
e0152173.

Gunning, D. (2017). Explainable artificial intelligence (XAI). Defense Advanced
Research Projects Agency (DARPA), Nd Web, 2(2), 1.

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 6(02), 107–116.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
Computation, 9(8), 1735–1780.

Jozefowicz, R., Zaremba, W., & Sutskever, I. (2015). An empirical exploration of
recurrent network architectures. Proceedings of the 32nd International
Conference on Machine Learning - Volume 37, 2342–2350.

Karpathy, A., Johnson, J., & Fei-Fei, L. (2015). Visualizing and Understanding
Recurrent Networks.

Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019). Survey of
intrusion detection systems: Techniques, datasets and challenges.
Cybersecurity, 2(1), 1–22.

Kingma, D. P., & Ba, J. L. (2014). Adam: A Method for Stochastic Optimization.
Proceedings of the 3rd International Conference on Learning Representations.

Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models: Principles and
Techniques. The MIT Press.

Kramer, M. A. (1992). Autoassociative neural networks. Computers & Chemical
Engineering, 16(4), 313–328.

Kruegel, C., Mutz, D., Robertson, W., & Valeur, F. (2003). Bayesian event

classification for intrusion detection. Proceedings - Annual Computer
Security Applications Conference, 14–23.

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Jia Yangqing, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,
… Xiaoqiang Zheng. (2015). TensorFlow: Large-scale machine learning on
heterogeneous Systems.

Tom Gann. (2020). The Hidden Costs of Cybercrime. McAfee.

62

Microsoft. (2022). Microsoft Digital Defense. Microsoft.

Moustafa, N., & Slay, J. (2015). UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set).

Proceedings of the 2015 Military Communications and Information Systems
Conference, 1–6.

Moustafa, N., & Slay, J. (2016). The evaluation of network anomaly detection
systems: Statistical analysis of the UNSW-NB15 data set and the

comparison with the KDD99 data set. Information Security Journal: A Global
Perspective, 25(1–3), 18–31.

Olah, C. (2015). Understanding LSTM Networks. Colah’s Blog.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan kaufmann.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel V. and Thirion, B., Grisel,
O., Blondel, M., Prettenhofer P. and Weiss, R., Dubourg, V., Vanderplas,
J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E.
(2011). Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, 12, 2825–2830.

Petsche, T., Marcantonio, A., Darken, C., Hanson, S., Kuhn, G., & Santoso, I.
(1996). A Neural Network Autoassociator for Induction Motor Failure
Prediction. Advances in Neural Information Processing Systems, 8.

Ranjan, C. (2020). Understanding Deep Learning: Application in Rare Event
Prediction. Connaissance Publishing Atlanta, GA, USA.

Said Elsayed, M., Le-Khac, N. A., Dev, S., & Jurcut, A. D. (2020). Network

Anomaly Detection using LSTM based Autoencoder. Proceedings of the 16th
ACM Symposium on QoS and Security for Wireless and Mobile Networks, 37–
45.

Salehinejad, H., Sankar, S., Barfett, J., Colak, E., & Valaee, S. (2017). Recent
Advances in Recurrent Neural Networks.

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks.

IEEE Transactions on Signal Processing, 45(11), 2673–2681.

Sperotto, A., Schaffrath, G., Sadre, R., Morariu, C., Pras, A., & Stiller, B. (2010).
An overview of IP flow-based intrusion detection. IEEE Communications
Surveys and Tutorials, 12(3), 343–356.

Srivastava, N., Mansimov, E., & Salakhutdinov, R. (2016). Unsupervised
Learning of Video Representations using LSTMs. Proceedings of the 32nd
International Conference on International Conference on Machine Learning,

37(10), 843–852.

Stanford University. (2023). Artificial Intelligence Index Report 2023.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning

with neural networks. Advances in Neural Information Processing Systems,
27.

Wang, C., Wang, B., Liu, H., & Qu, H. (2020). Anomaly Detection for Industrial
Control System Based on Autoencoder Neural Network. Wireless
Communications and Mobile Computing, 2020, 1–10.

63

Xu, C., Shen, J., Du, X., & Zhang, F. (2018). An intrusion detection system
using a deep neural network with gated recurrent units. IEEE Access, 6,
48697–48707.

Zavrak, S., & İskefiyeli, M. (2020). Anomaly-based intrusion detection from

network flow features using variational autoencoder. IEEE Access, 8,
108346–108358.

Zhou, C., & Paffenroth, R. C. (2017). Anomaly detection with robust deep

autoencoders. Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Part F129685, 665–674.

64

Appendix

A UNSW-NB15 Dataset Features

No. Name Type Description

Flow features

1. srcip Nominal Source IP address.

2. sport Integer Source port number.

3. dstip Nominal Destination IP address.

4. dsport Integer Destination port number.

5. proto Nominal Transaction protocol.

Basic features

6. state Nominal The state and its dependent protocol.

7. dur Float Record total duration (mSec).

8. sbytes Integer Source to destination bytes.

9. dbytes Integer Destination to source bytes.

10. sttl Integer Source to destination time to live.

11. dttl Integer Destination to source time to live.

12. sloss Integer Source packets retransmitted or dropped.

13. dloss Integer Destination packets retransmitted or dropped.

14. service Nominal http, ftp, ssh, dns, ..., else (-).

15. sload Float Source bits per second.

16. dload Float Destination bits per second.

17. spkts Integer Source to destination packet count.

18. dpkts Integer Destination to source packet count.

Content features

19. swin Integer Source TCP window advertisement.

20. dwin Integer Destination TCP window advertisement.

21. stcpb Integer Source TCP sequence number.

22. dtcpb Integer Destination TCP sequence number.

23. smeansz Integer Mean of the flow packet size transmitted by the
source.

24. dmeansz Integer Mean of the flow packet size transmitted by the
destination.

25. trans_depth Integer the depth into the connection of http
request/response transaction.

65

26. res_bdy_len Integer The content size of the data transferred from the
server’s http service.

Time features

27. sjit Float Source jitter (mSec).

28. djit Float Destination jitter (mSec).

29. stime Timestamp Record start time.

30. ltime Timestamp Record last time.

31. sintpkt Float Source inter-packet arrival time (mSec).

32. dintpkt Float Destination inter-packet arrival time (mSec).

33. tcprtt Float The sum of synack and ackdat of the TCP.

34. synack Float The time between the SYN and the SYN_ACK
packets of the TCP (mSec).

35. ackdat Float The time between the SYN_ACK and the ACK
packets of the TCP (mSec).

Additional generated features

36. is_sm_ips_port
s

Binary If source (1) equals to destination IP addresses (3)
and port numbers (2)(4) are equal, this variable

takes value 1; else 0.

37. ct_state_ttl Integer No. for each state (6) according to specific range of

values for source/destination time to live (10) (11).

38. ct_flw_http_mt
hd

Integer No. of flows that has methods such as Get and Post
in http service.

39. is_ftp_login Binary If the ftp session is accessed by user and password,
then 1; else 0.

40. ct_ftp_cmd Integer No. of flows that has a command in ftp session.

41. ct_srv_src Integer No. of connections that contain the same service (14)
and source address (1) in 100 connections according
to the last time (26).

42. ct_srv_dst Integer No. of connections that contain the same service (14)
and destination address (3) in 100 connections
according to the last time (26).

43. ct_dst_ltm Integer No. of connections of the same destination address
(3) in 100 connections according to the last time
(26).

44. ct_src_ltm Integer No. of connections of the same source address (1) in
100 connections according to the last time (26).

45. ct_src_dport_lt
m

Integer No. of connections of the same source address (1)

and the destination port (4) in 100 connections
according to the last time (26).

46. ct_dst_sport_lt
m

Integer No. of connections of the same destination address

(3) and the source port (2) in 100 connections
according to the last time (26).

66

47. ct_dst_src_ltm Integer No. of connections of the same source (1) and the
destination (3) address in 100 connections

according to the last time (26).

67

B SPBN Graphs of the First Component.

TCP and SMTP

TCP and FTP

68

TCP and HTTP

TCP and FTP-DATA

UDP and None

69

UDP and DNS

70

C Median log-likelihood for SPBN models.

 Log-likelihood

 Normal Attack

Full -56.71 -88.75

TCP/None -6.25 -47383399.27

TCP/HTTP 5.90 -673758269.25

TCP/FTP -32764.38 -336867903.53

TCP/FTP-Data 0.85 -398388.87

TCP/SMTP 3.50 -332144669.83

UDP/None -8.20 -3895150.60

UDP/DNS -11447.8 -2920891437.78

71

