
Universidad Politécnica
de Madrid

Escuela Técnica Superior de
Ingenieros Informáticos

Máster Universitario en Inteligencia Artificial

Master’s Final Project

Anomaly-based Network Intrusion
Detection System Using Semi-supervised

Models

Author: Paula Cordero Encinar
Supervisors: Concha Bielza Lozoya and Pedro Larrañaga Múgica

Madrid, July 2022

This Master’s Final Project has been deposited in the ETSI Informáticos of the
Universidad Politécnica de Madrid for its defense.

Master’s Final Project
Máster Universitario en Inteligencia Artificial

Title: Anomaly-based Network Intrusion Detection System Using Semi-supervised
Models

July 2022

Author: Paula Cordero Encinar
Supervisors: Concha Bielza Lozoya and Pedro Larrañaga Múgica

Departmento de Inteligenci Artificial
ETSI Informáticos
Universidad Politécnica de Madrid

Acknowledgements

To my supervisors Concha Bielza and Pedro Larrañaga for their wise advise, confident
and motivation that have guided me along the path of research.

To Dani Herreras and Borja Lanseros of Titanium Industrial Security S.L. for providing
me the resources and assistance for this project, as well to introduce me in the
amazing world of cybersecurity. Also to Carlos and Jorge for being my fellows along
the way and for all the interesting discussions with them.

To my family and friends for their constant support.

This project has been developed in collaboration with Titanium Industrial Security
S.L., under the project entitled “Network SLIcing SEcurity for next generation com-
munications (SLISE)”, running 2021-2024, and funded by Centro para el Desarrollo
Tecnológico Industrial (CDTI) within the Call “Misiones Ciencia e Innovación 2021”.

i

Resumen

El crecimiento masivo de la cantidad de datos transmitidos entre múltiples disposi-
tivos, utilizando diversos protocolos de comunicación ha planteado serios problemas
de seguridad. Esto ha provocado un aumento en la importancia de desarrollar sis-
temas avanzados de detección de intrusos. En particular, en los entornos industriales
donde la llamada Industria 4.0 ha aumentado la conectividad entre dispositivos, la
seguridad de la red es de suma importancia, pero también especialmente desafiante
debido a la gran cantidad de máquinas conectadas que es necesario proteger.

En este trabajo de fin de máster, presentamos un sistema de detección de intrusiones
en red basado en anomalías utilizando técnicas semisupervisadas. Hemos aplicado
dos modelos diferentes dentro del sistema y hemos comparado sus resultados y expli-
caciones. La idea general de nuestro sistema es modelar el comportamiento normal
para posteriormente detectar los eventos maliciosos que difieren de dicho compor-
tamiento. También hemos prestado especial atención a la interpretabilidad, ya que
queremos que nuestro sistema de detección de intrusos no sólo sea eficiente, sino
también útil para los analistas de ciberseguridad que tengan que examinar los even-
tos anómalos.

iii

Abstract

The massive growth of data that are transmitted through a variety of devices and
communication protocols have raised serious security concerns. This has increased
the importance of developing advanced intrusion detection systems. In particular, in
industrial environments where the so-called Industry 4.0 has increased the connec-
tivity among devices, network security is of utmost importance, but also particularly
challenging due to the large number of connected machines that must be protected.

In this master’s thesis, we present an anomaly-based network intrusion detection
system using semi-supervised techniques. We have applied two different models
within the system and compared their performance and explanations. The general
idea of our system is to model normal behaviour to subsequently detect malicious
events that differ from normal behaviour. We have also paid special attention to in-
terpretability, as we want our intrusion detection system not only to be efficient, but
also helpful for cybersecurity analysts who may have to examine suspicious events.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Objectives . 3
1.4 Document structure . 3

2 Theoretical background 5
2.1 Cybersecurity: intrusion detection systems 5
2.2 Anomaly detection . 6
2.3 Semiparametric Bayesian networks . 10

2.3.1 Representation of SPBNs . 12
2.3.2 Structure learning . 12

2.3.2.1 Greedy hill-climbing . 13
2.3.2.2 PC algorithm . 14

2.3.3 Hybrid semiparametric Bayesian networks 15
2.4 Variational autoencoder . 16

2.4.1 Autoencoder . 16
2.4.2 Variational autoencoder . 17

2.5 Explainability . 18

3 Development 21
3.1 Data description . 21
3.2 Proposed solution . 22
3.3 Methodology . 22

3.3.1 Data pre-processing . 24
3.3.2 Semiparametric Bayesian network model 26
3.3.3 Variational autoencoder model . 27
3.3.4 Anomaly detection results correlation 28
3.3.5 Anomaly explanation . 30
3.3.6 Time series analysis . 33

3.4 Implementation . 34

4 Results 35
4.1 Titanium ’s datasets . 35

5 Conclusions and future research 47
5.1 Conclusions . 47
5.2 Future work . 48

vii

CONTENTS

Bibliography 50

Appendix 59

A Example of raw event 61

viii

Chapter 1

Introduction

1.1 Motivation

Nowadays, industrial control systems are experiencing a new revolution with the
interconnection of the operational equipment thanks to the Internet, and the intro-
duction of cutting-edge technologies such as cloud computing or big data within the
organization. These and other technologies are paving the way to the Industry 4.0.

However, the advent of these technologies, and the innovative services that are en-
abled by them, have also brought novel threats. Malicious attacks have become more
sophisticated and the foremost challenge is to identify unknown and obfuscated mal-
ware, as the malware authors use different evasion techniques for information con-
cealing to prevent detection. We could highlight a set of stealthy and sophisticated
hacking processes called advanced persistent threat (APT) [Chen et al., 2018]. The
APT intrusion kill chain security model has become popular to describe the stages
of attacks. The APT intrusion kill chain relies on the premise that an attack has an
operational life cycle for gathering information and exploiting the victim system. The
steps in the chain relate to recent anomalous events covering a set of common actions
in a targeted attack.

Therefore, it is crucial to take these novel threats into consideration and further
study how to apply the necessary requirements in the design of effective and reliable
intrusion detection mechanisms for the industry of the future. The aim is that it does
not become a profitable target for attackers.

Even though, in recent years, increased attention has been paid to network security,
which is evidenced by the growing body of literature available on this topic, there are
still a lot of open research lines.

Among the tools used for network security are firewalls, antivirus software, and intru-
sion detection systems (IDSs), all of which seek to ensure the security of the network
and all its associated assets within a cyberspace. Specifically, the network-based IDS
is the attack detection mechanism that provides the desired security by constantly
monitoring the network traffic for malicious and suspicious behaviour.

The idea of IDS was first proposed by Jim Anderson in 1980 [Anderson, 1980]. Since
then, many IDS products were developed and matured to satisfy the needs of network
security. However, as already mentioned, the immense evolution in the technologies

1

1.2. Problem statement

over the last decade has resulted in a large expansion in the network size, and the
number of applications handled by the network nodes. As a result, a huge amount
of important data is being generated and shared across different network nodes. The
security of these data and network nodes has become a challenging task due to the
generation of a large number of new attacks. Therefore, almost every node within a
network is vulnerable to security threats.

For instance, if the data of a node is very important for an industrial organization, any
compromise to the node’s information may cause a huge impact on that organization
in terms of its market reputation and financial losses. Furthermore, in an industrial
environment some network nodes are cyber-physical machines, so threats can also
lead to serious physical consequences and major accidents, such as the malicious
computer worm Stuxnet that ruined almost one-fifth of Iran’s nuclear centrifuges in
2013. Existing IDSs have shown inefficiency in detecting various attacks including
zero-day attacks, that is unknown attack on a vulnerability, and reducing the false
alarm rates. This eventually results in a demand for an efficient, accurate, and cost-
effective network IDS to provide high security to the network.

To fulfill the requirements of an effective IDS, researchers have explored the possibil-
ity of using machine learning (ML) and its branch of deep learning (DL) techniques.
Both ML and DL come under the big umbrella of artificial intelligence and aim at
learning useful information from the data. These techniques have gained enormous
popularity in the field of network security over the last decade due to graphic pro-
cessing units (GPUs). Both ML and DL are powerful tools in learning useful features
from the network traffic and identifying abnormal activity.

1.2 Problem statement

Titanium Industrial Security S.L. monitors network traffic at client companies and
aims to detect cyberattacks in a timely manner so that they can be dealt without
causing further damage. It is important to remark, that their focus is on industrial
companies, where these problems have not been as addressed as much as in IT
environments and, as mentioned above, could lead to serious physical damage. They
plan to deploy local IDSs throughout the client network, which will communicate with
each other. The reason for using various local systems instead of a single centralized
one is the alleviation of computational load and the possibility for these local devices
to be faster and more efficient.

They proposed us to design and develop those local IDSs. Besides, they wanted the
system to be able to provide further explanations of detection decisions, in case they
are needed by a cybersecurity analyst.

From a general point of view, explainability is currently becoming an important issue
for the widespread adoption of artificial intelligence systems [Leslie, 2019]. Some
of these systems have been forbidden for certain applications due to their lack of
transparency. That is why Titanium wants to emphasize the aspect of explainability.

2

Introduction

1.3 Objectives

The general objective of this work is to develop an IDS to identify malicious events in
network traffic communication in an industrial environment.

We will expand on our approach to achieve this goal in the body of this work, in short
we have decided to apply semi-supervised anomaly detection methods. That is, we
train the model with data on the normal behaviour of the network, and then, search
for anomalous instances that deviate from that behaviour.

Futhermore, we have decided to work within the field of ML. The particular models
we have used are Bayesian networks, specifically the semiparametric version, as well
as, variational autoencoders, which are in the subfield of DL.

As we have already pointed out, explanations are a key aspect of the desired system
for interpreting and analysing the results obtained. That is why, we have also devoted
a great deal of effort to this task, trying to find the best way to do it. Our aim is not
only to provide individual explanations for each anomalous event, but also to group
similar suspicious events which belong to the same cyberattack. This is done for the
shake of simplicity and unification of alarm alerts.

The particular objectives of this work can be listed as follows:

• To review the techniques that have been employed for anomaly-based intrusion
detection, particularly in the field of cybersecurity.

• To determine which models are most useful for the given problem based on dif-
ferent factors, such as computational efficiency, performance and interpretabil-
ity of the results.

• To propose a comprehensive network IDS, that can accurately identify malicious
events in the network environment and provide an explanation for them. In
addition, the system must be able to adapt to multiple network environments,
as each client company has a particular network traffic.

• To reduce the number of false alarms in the system.

• To evaluate the capabilities of the proposed method in different datasets.

• To discuss possible deficiencies and suggest further improvements.

1.4 Document structure

In order to meet the objectives proposed in the previous section, this master’s thesis
is structured into five chapters:

• In this chapter, we have presented the context of the problem and its motivation.
We have stated the exact problem we are addressing and outlined the main
objectives of this thesis.

• Chapter 2 is devoted to the theoretical framework of our system and a review
of the available literature in the field. We start with the discussion of basic
concepts of IDSs and their types, centering our attention on anomaly-based
detection which is the focus of our work. We then introduce the specifics of our
two approaches to solve the problem: semiparametric Bayesian networks, and

3

1.4. Document structure

their structure learning algorithms, and variational autoencoders. Finally, we
provide an overview of explainability in the field of artificial intelligence, as we
are not only concerned with developing an efficient and accurate system, but
also with helping the cybersecurity analyst with valuable explanations of our
system’s decisions.

• Chapter 3 presents our proposed solution and shows how it operates. We pro-
vide a detailed explanation for each of the components of the system and justify
certain design decisions.

• Chapter 4 shows our results when using our IDS on the attack dataset provided
by Titanium Industrial Security S.L. along with the corresponding discussions
and explanations of the type of attack. Besides, we also present the Bayesian
network structures obtained when applying our algorithm to Titanium ’s data.

• Finally, chapter 5 concludes our work with some final remarks and discusses
relevant aspects of the system. In addition, we present proposals for future work
that could enhance or improve our network anomaly-based IDS.

4

Chapter 2

Theoretical background

2.1 Cybersecurity: intrusion detection systems

An IDS is a system that monitors network traffic for suspicious activity and issues
alerts when such activity is discovered. It is a software application that scans a net-
work or a system for the harmful activity or policy breaching. Any malicious venture
or violation is normally reported either to an administrator or collected centrally.

Although IDSs monitor networks for potentially malicious activity, they are also dis-
posed to false alarms. Hence, organizations need to fine-tune their IDS products
when they first install them. It means properly setting up the IDSs to recognize how
normal traffic on the network looks like as compared to malicious activity. Meng and
Kwok (2012) present an adaptative false alarm filter using ML for intrusion detection.
The proposed architecture has the ability to adapt itself by selecting the best single-
performance ML algorithm according to the specific contexts. In the evaluation, their
adaptive false alarm filter keeps up a stable reduction rate of false alarms and filter
out more than 80% of them.

IDSs can be classified by where detection takes place: network or host, that deter-
mines the type of data, or by the detection method that is employed: signature or
anomaly-based.

In terms of the location where the activity is analysed, there are two common types:

• Network intrusion detection system (NIDS). They are set up at a planned
point within the network to examine traffic from all devices on the network.

• Host-based intrusion detection system (HIDS). They run on independent hosts
or devices of the network. A HIDS monitors the incoming and outgoing packets
from the device.

Regarding the detection approach, we distinguish:

• Signature-based detection. A signature-based IDS identifies the attacks on
the basis of the specific patterns which are already known. This method has the
advantage of being fast and accurate.

• Anomaly-based detection. We devote next section to explain this approach,
which is also used in other sectors besides cybersecurity. In contrast to signature-

5

2.2. Anomaly detection

based methods, it can achieve detection of unknown attacks. However, they are
prone to detecting false positives.

2.2 Anomaly detection

Anomaly detection is a task which consists of finding events in the data that differ
from the normal behaviour of the system under study. Despite that in the earliest
days, detecting anomalies was motivated by data cleansing, soon more attention has
been drawn toward outliers themselves as they often represent interesting and crit-
ical situations, such as, cyberattacks in a network or mechanical faults caused by
defective industrial equipment, among others. Hence, plenty of research efforts have
been devoted to developing high-performance anomaly detection techniques, which
have been applied to a variety of real-life scenarios, including IDSs [García-Teodoro
et al., 2009; Iliyasu and Deng, 2022; Viegas et al., 2017; Yeung and Chow, 2002],
which is the topic of this work; fraud detection [Paula et al., 2016; Thiprungsri and
Vasarhelyi, 2011; Vanhoeyveld et al., 2020]; medical anomaly diagnosis [Fernando
et al., 2021; Sedik et al., 2019; Wong et al., 2003]; fault detection in industrial envi-
ronment [García, 2019; Martí et al., 2015; Ogbechie et al., 2017; Vercruyssen et al.,
2018]; and anomaly detection in urban traffic flow [Djenouri et al., 2019].

There are many different surveys on this topic, which provide a complete overview
of the subject [Boukerche et al., 2020; Chandola et al., 2009; Smiti, 2020], and in
particular in the domain of IDSs [Liu and Lang, 2019; Khraisat et al., 2019; Yang
et al., 2022]. Moreover, in the last years there has been a rise in the number of works
using DL techniques for anomaly detection [Aldweesh et al., 2020; Pang et al., 2021],
as well as works concerning anomaly detection in data streams [Boukerche et al.,
2020] or distributed approaches in the face of big data challenge to deal with the
curse of dimensionality [Jain and Kaur, 2021].

According to Chandola et al. (2009), anomalies can be classified into three types:

• Point anomalies. If an individual data instance can be considered as anoma-
lous with respect to the rest of the data, then the instance is termed a point
anomaly. This is the simplest type of anomaly and is the focus of the majority
of research on anomaly detection.

• Contextual anomalies. If a data instance is anomalous in a specific context,
but not otherwise, then it is called a contextual anomaly (it can also be found in
the literature as conditional anomaly).

• Collective anomalies. If a collection of related data instances is anomalous with
respect to the entire dataset, it is termed a collective anomaly. The individual
data instances in a collective anomaly may not be anomalies by themselves, but
their occurrence together as a collection is anomalous.

The labels associated with a data instance denote whether that instance is normal or
anomalous. It should be noted that obtaining labelled data that is accurate as well
as representative of all types of behaviours, is often prohibitively expensive. Labeling
is often done manually by a human expert and hence, substantial effort is required
to obtain the labelled training dataset. Typically, getting a labelled set of anomalous
data instances that covers all possible type of anomalous behavior is more difficult
than getting labels for normal behavior. Moreover, the anomalous behaviour is often

6

Theoretical background

dynamic in nature, for example, new types of anomalies might arise, for which there
is no labelled training data.

Based on the extent to which the labels are available, anomaly detection techniques
can operate in one of the following three modes:

• Supervised anomaly detection. Techniques trained in supervised mode as-
sume the availability of a training dataset that has labelled instances for normal
as well as anomaly classes. A typical approach in such cases is to build a pre-
dictive model for normal versus anomaly classes. Any unseen data instance is
compared against the model to determine which class it belongs to. There are
two major issues that arise in supervised anomaly detection. First, the anoma-
lous instances are far fewer compared to the normal instances in the training
data. Issues that arise due to imbalanced class distributions have been ad-
dressed in literature [Chawla, 2009; Kamalov, 2020; Provost, 2000]. Second,
obtaining accurate and representative labels, especially for the anomaly class
is usually challenging. A number of techniques have been proposed that inject
artificial anomalies into a normal dataset to obtain a labelled training dataset
[Fan et al., 2004; Lomio et al., 2020].

• Semi-supervised anomaly detection. Methods that operate in a semi-supervi-
sed mode [Villa-Pérez et al., 2021] typically assume that the training data has
labelled instances only for the normal class. This is properly called one-class
classification. Since they do not require labels for the anomaly class, they are
more widely applicable than supervised techniques.

• Unsupervised anomaly detection. Techniques that operate in unsupervised
way do not require training data, and thus, are the most widely applicable [Fal-
cão et al., 2019; Zoppi et al., 2021]. The techniques in this category make the
implicit assumption that normal instances are far more frequent than anoma-
lies in the test data. If this assumption is not true, then such techniques suffer
from high false alarm rate. Many semi-supervised techniques can be adapted to
operate in an unsupervised mode by using a sample of the unlabelled dataset
as training data. Such adaptation assumes that the test data contains very few
anomalies and the model learned during training is robust to these few anoma-
lies.

An important aspect for any anomaly detection technique is the manner in which
the anomalies are reported. Generally, the outputs produced by anomaly detection
techniques could be a label, indicating whether the instance is normal or anomalous,
or a score, that quantifies the degree to which an instance is considered an anomaly.
Thus, the output of such techniques is a ranked list of anomalies. An analyst may
choose to either analyze the top few anomalies or use a cutoff threshold to select
the anomalies. Ghafouri et al. (2016) study the problem of finding optimal detection
thresholds for anomaly-based detectors implemented in dynamical systems in the
face of strategic attacks, using a game-theoretic setup.

Finally, we provide a categorization of anomaly detection models and review for each
type the existing literature for network intrusion detection applications, which is the
focus of this work.

7

2.2. Anomaly detection

• Classification-based anomaly detection

A classifier is learnt from labelled data to discriminate between normal and
anomalous data. These models usually require supervised data. Although, la-
beling is time-consuming and tedious for large datasets, there are many publicly
available datasets which are already labelled. In the field of cybersecurity we
can highlight KDD 99 [Tavallaee et al., 2009], UNSW-NB15 [Moustafa and Slay,
2015], NSL-KDD [Dhanabal and Shantharajah, 2015], LANL dataset [Turcotte
et al., 2018] and CSE-CIC-IDS-2018 [Leevy and Khoshgoftaar, 2020].

Among the different supervised anomaly detection techniques for network intru-
sion detection, we have support vector machines (SVMs) that have high general-
ization capability and perform well with high-dimensional data used in intrusion
detection [Jan et al., 2019; Sakr et al., 2019]; decision trees that are also a com-
mon model thanks to their intuitive classification strategy, interpretability and
simplicity to implement, however they have the disadvantage of weak robustness
[Abbes et al., 2010; Malik and Khan, 2018]; and Bayesian network classifiers,
such as the basic naïve Bayes (NB), where, despite the violation of its conditional
independence assumption, relative high accuracy is achieved [Koc et al., 2012;
Mehmood et al., 2018] and the average one-dependence estimator (AODE) which
solves the attribute independency problem in NB [Jabbar et al., 2017].

Besides, we have also ensemble methods which improve the generalizability and
accuracy of the final model by combining multiple classifiers, and are less likely
to be overfitted. Some examples are shown in Ennaji et al. (2021), Gao et al.
(2019), Jabbar et al. (2017) and Teng et al. (2018).

In addition, we have nearest neighbour-based anomaly detection methods which
can be seen as a subgroup of classification-based models. The underlying as-
sumption of these techniques is that normal data instances are closer to their
neighbours, thus forming a dense neighbourhood, whereas outliers are far from
their neighbours, thus sparsely populated. Distance or similarity between two
data instances can be computed in different ways.

Ertoz et al. (2004) present MINDS anomaly detection module, that assigns the
degree of being an outlier to each data point, which is called the local outlier fac-
tor [Breunig et al., 2000]. Their approach can detect outsider and insider attacks
and situations where a virus or worm has entered the network environment.

Nearest neighbour-based methods have the advantage of a more refined granu-
larity on the outlier analysis over clustering-based approaches (see below). This
enables nearest neighbour-based methods to differentiate between strong out-
liers and weak outliers that are more likely to be considered as noise [Aggarwal,
2017]. Nevertheless, due to their high computational complexity, not many re-
cent works use this approach.

• Clustering-based anomaly detection

Algorithms based on clustering usually take a two-step procedure: first, group-
ing the data with clustering algorithms and then, analyzing the degree of devi-
ation based on the clustering results. Compared with nearest neighbour-based
approaches, a major advantage of clustering-based outlier detection is its effi-
ciency.

8

Theoretical background

Different clustering methods have been applied in the field of NIDS. Tian and
Jianwen (2009) propose an approach based on a modified version of k-means
clustering, which leads to an improvement in accuracy with respecto to the
classical algorithm. Aiming at the problem that traditional network intrusion
detection algorithms have of low detection efficiency and high false alarm rate,
Xiaofeng and Xiaohong (2017) present an algorithm based on improved k-means
and multi-level SVM. Li et al. (2018) apply density peaks clustering for network
instrusion detection, which does not need many parameters and whose itera-
tive process is based on point density. Ariyaluran Habeeb et al. (2019) develop
streaming sliding window local outlier factor coreset clustering algorithms to
perform real-time detection. Their method proves higher accuracy, and lesser
memory consumption and execution time compared to existing methods.

• Statistical anomaly detection

The underlying principle of these models is that normal data instances occur
in high probability regions of a stochastic model, while anomalies occur in the
low probability regions of the stochastic model. Statistical techniques fit a sta-
tistical model, usually for normal behaviour, to the given data and then apply
a statistical inference test to determine if an unseen instance belongs to this
model or not. Instances that have a low probability of being generated from
the learned model, based on the applied statistical test, are declared as anoma-
lies. Both parametric as well as nonparametric techniques have been applied
to fit a statistical model. While parametric techniques assume the knowledge
of the underlying distribution and estimate the parameters from the given data,
nonparametric techniques do not generally assume knowledge of the underlying
distribution. Semiparametric techniques have also been developed taking the
best of both worlds.

In terms of parametric models, assuming that the data is Gaussian distributed
is a simple choice, however it is not always true. The methodologies most com-
monly used are probabilistic graphical models, such as Kalman or particle filters
[Ayyarao and Kiran, 2021], hidden Markov models [Jing et al., 2021] or Bayesian
networks (BNs); finite mixture models; and regression-based models [Evangelou
and Adams, 2020]. In BNs, anomalies are detected because a low probability
is assigned to them by the network. Depending on the type of data a particu-
lar type of BN is selected, such as static BNs [Sun et al., 2018], dynamic BNs
(DBNs) [An et al., 2006] or continuous time BNs (CTBNs) [Xu and Shelton, 2010],
among others. On the other hand, finite mixture models can be defined as a con-
vex combination of two or more probability distributions functions (PDFs), the
joint properties of which can approximate any arbitrary distribution. They are a
powerful and flexible probabilistic modelling tool for univariate and multivariate
data in the cybersecurity scenario [Greggio, 2013; Moustafa et al., 2017].

Regarding non-parametric methods, the most common models are histograms
and kernel density estimations (KDEs) [Parzen, 1962; Rosenblatt, 1956]. De-
spite their simplicity, histogram-based models have been popular in the intru-
sion detection community, since the behaviour of the data is goberned by certain
profiles (user or software) that can be efficiently captured [Eskin, 2000; Gold-
stein and Dengel, 2012; Kind et al., 2009]. The KDE method bases its estima-
tions on some kernel distributions, such as Gaussian, for all the sample space

9

2.3. Semiparametric Bayesian networks

data and then integrates the local contributions of all the distributions. For
example, Shen and Agrawal (2006) suggest a NIDS based on a non-parametric
method which simulates the PDFs of some random variables. To classify mali-
cious and normal instances, a set of KDEs is established and the distribution
parameters estimated. This method is extended by Caudle et al. (2015) to build
a non-stationary high-dimensional PDF estimator using parallel programming
to identify computer intrusions. Recently, Hu et al. (2020) proposed a new ker-
nel function to estimate samples’ local densities and a weighted neighborhood
density estimation to increase the robustness to changes in the neighborhood
size, outperforming Gaussian kernel and the Epanechnikov kernel functions on
KDD 99 dataset.

• Information theoretic anomaly detection

These techniques assume that anomalies in data induce changes in the infor-
mation content of the dataset, which is composed of a variety of information
theory measures such as entropy, relative entropy [Noble and Cook, 2003] or
Kolmogorov complexity [Kulkarni and Bush, 2006].

• Deep learning anomaly detection

DL comprises a class of techniques based on deep artificial neural networks.
Recently, DL methods are widely used due to their capacity to produce highly
nonlinear models which capture complex relationships in data.

Different architectures can be employed in anomaly-based detection approaches
based on DL, including generative, discriminative, and hybrid methods. The
generative architecture computes joint probability distributions from observed
data with their classes, which involves the following models: autoencoder (AE)
[Hannan et al., 2021; Shone et al., 2018], generative adversarial network (GAN)
[Iliyasu and Deng, 2022], restrictive Boltzmann machine (RBM) [Fiore et al.,
2013], deep belief network (DBN) [Peng et al., 2019; Wang et al., 2021], and
recurrent neural network (RNN) and their variants like long short-term mem-
ory (LSTM) [Imrana et al., 2021] and gated recurrent unit (GRU) [Agarap, 2018;
Singh et al., 2021]. On the other hand, the discriminative architecture esti-
mates posterior distributions of classes conditioned on the observed data, that
comprises classical deep neural networks (DNNs) [Tang et al., 2016] and convo-
lutional neural networks (CNNs) [Wei et al., 2017; Xiao et al., 2019]. Ensemble
methods that combine different architectures have also been proposed [Ludwig,
2017, 2019].

2.3 Semiparametric Bayesian networks

Bayesian networks [Koller and Friedman, 2009; Pearl, 1988] are probabilistic graph-
ical models that represent a set of random variables and their conditional dependen-
cies. They take advantage of the conditional independences present in the probabil-
ity distributions to model them in a factorized form. Bayesian networks consist of a
qualitative component, represented by a directed acyclic graph (DAG) structure and
a quantitative component, represented by tables of conditional probabilities, as illus-
trated in Figure 2.1. They are a valuable tool for computer technology and artificial
intelligence that allow to model uncertainty by dealing with probability distributions.

10

Theoretical background

Figure 2.1: Example of Bayesian network [Pearl, 1988].

First of all, we introduce some notation and terminology regarding Bayesian net-
works, that will be helpful for this section. We denote with capital letters, e.g. X,
a random variable, while using the boldface version to represent random variables
vectors. A dataset is represented by D = {x1, . . . ,xN}, that contains N different in-
stances. In terms of the graphical representation, G = (V,A) defines a DAG with a
set of nodes V and a set of arcs A ⊆ V × V . The set of nodes V can index a vector of
random variables X. The set of parents of a node i is denoted Pa(i), so the respective
parent random variables are XPa(i).

The semiparametric version of Bayesian networks handles continuous variables and
combines parametric and non-parametric conditional probability distributions (CPDs),
thus being more flexible and robust. The aim of semiparametric Bayesian networks
(SPBNs) is to incorporate the benefits of both components: on the one hand, the
bounded complexity of parametric models and, on the other hand, the flexibility
of non-parametric ones. Hence, they provide a further generalization of Gaussian
Bayesian networks (GBNs) [Geiger and Heckerman, 1994; Shachter and Kenley,
1989], where variables are continuous and all of the CPDs are linear Gaussians,
and KDE Bayesian networks (KDEBNs) [Hofmann and Tresp, 1995], that estimate
the true density of the continuous variables using kernels. Furthermore, the hybrid
version of SPBNs allows to combine continuous and discrete variables thus offering
a great number of advantages over other models.

Not much work has been done in this field. Boukabour and Masmoudi (2021) de-
fine a continuous SPBN where all of the CPDs are semiparametric regressions. The
structure learning algorithm they introduce is based on statistical hypothesis tests
of conditional independence that has the drawback of requiring the knowledge of
the correct ancestral ordering for the nodes. Atienza (2021) and Atienza et al. (2022c)
present a generalization of SPBNs and introduces a hybrid version (HSPBN) in Atienza

11

2.3. Semiparametric Bayesian networks

et al., 2022a. To the best of our knowledge, only they have explored the hybrid model
of SPBNs.

We now explain in detail the representation and structure learning algorithms for
SPBNs. Subsequently, we introduce HSPBNs that will be a fundamental model for
this work, as we have to deal with continuous and categorical data.

2.3.1 Representation of SPBNs

SPBNs are composed of parametric and non-parametric CPDs. Whereas a parametric
CPD can be used to represent linear relationships between random variables using
a linear Gaussian distribution as in GBNs, non-parametric CPDs are considered to
represent non-linear relationships given the flexibility of non-parametric models. The
latter are defined as the ratio of two joint KDE models. Hereafter we will refer to this
type of CPDs as conditional KDE distributions, which is defined for a random variable
Xi, given XPa(i) as:

f̂CKDE(xi|xPa(i)) =
f̂KDE(xi,xPa(i))

f̂KDE(xPa(i))
=

∑N
j=1KH

([
xi

xPa(i)

]
−

[
xji

xj
Pa(i)

])

∑N
j=1KH−i

(
xPa(i) − xj

Pa(i)

) , (2.1)

where f̂KDE(xi,xPa(i)) and f̂KDE(xPa(i)) are KDE models (further details can be found in
Parzen (1962) and Rosenblatt (1956)), xi and xj

Pa(i) are the values of the j-th training
instance for the variables Xi and XPa(i), respectively, and H and H−i are the bandwidth
matrices for the KDE models f̂KDE(xi,xPa(i)) and f̂KDE(xPa(i)), respectively.

It is important to remark that unlike GBNs, linear Gaussian CPDs in SPBNs do not
make assumptions about the normality of parent’s random variables. Therefore, the
unconditional distribution of random variables following the linear Gaussian con-
ditional distribution Xi and (Xi,XPa(i)) may not be necessarily multivariate normal
distributions.

The graph of the SPBN model (Figure 2.2) contains the type of each node, which
determines the type of corresponding CPD. There are no restrictions on the arcs,
so the parent sets of each variable can be of different types: only linear Gaussian
parents, only conditional KDE or a mixture of both.

2.3.2 Structure learning

The structure of a Bayesian network can be learnt automatically from data. There
are three main approaches to learn the structure of a Bayesian network: score and
search, constraint-based and hybrid procedures. The constraint-based methods are
based on performing conditional independence tests and reconstructing a Bayesian
network structure by representing the same tested conditional independences as ac-
curately as possible. The score and search approaches rely on defining a scoring
function that measure how well the Bayesian network structure fits to the training
data. Atienza et al. (2022c) adapt the greedy hill-climbing (HC) algorithm, a score and
search procedure, and also the PC algorithm, a constraint-based method for SPBN
structure learning.

12

Theoretical background

Figure 2.2: Structure of an example of SPBN [Atienza et al., 2022c]. White nodes are
of the linear Gaussian type, and gray shaded nodes are of the conditional KDE type.

2.3.2.1 Greedy hill-climbing

The HC algorithm moves through the space of possible structures applying operators
that make local changes on a candidate structure to find a local optimal structure. At
each iteration of the algorithm, the operator that produces the largest improvement
in score is applied to generate a new candidate structure. The classical operators
used in HC are arc addition, arc removal and arc reversal. However, in SPBNs, the
structure is composed of arcs in a graph but also of the types of nodes. Then, a new
operator called node type change is added into the HC algorithm for the learning of
the semiparametric model.

Besides, another key element for score and search algorithms is the definition of a
score function. For GBNs the typical ones are BIC [Schwarz, 1978], based, in part, on
the likelihood function, and including a penalty term to avoid overfitting; and BGe,
introduced by Geiger and Heckerman (2002) for learning GBNs, which is based on
the posterior probability of the data given the structure and implies that the prior
distribution over the parameters, θ, must be normal-Wishart. Their formulas are:

SBIC(D,G) = L(G, θ̂MLE : D)− logN

2
Dim(G),

SBGe(D|G) =
∫
Θ
P (D|G, θ)P (θ|G) dθ,

where L(G, θ̂MLE : D) is the log-likelihood of the data when the parameters are es-
timated using maximum likelihood estimation with D, Dim(G) counts the number
of free parameters in the structure G, P (D|G, θ) represents the likelihood of the data
given the BN (structure and parameters) and P (θ|G) is the prior distribution over the
parameters.

Nevertheless, for an SPBN, any score including the log-likelihood of the training data

13

2.3. Semiparametric Bayesian networks

(like BIC) is inappropiate because the training data constitute part of the KDE model,
as can be observed in Equation (2.1). Thus, the data used to fit the CPDs must be
different from the data to evaluate the goodness of the model. Applying a k-fold cross
validation to the data helps to attain this objective while assuring that all the data
are used. So the HC algorithm will use a k-fold cross-validated likelihood score given
by the following expression:

Sk
CV (D,G) =

k∑
m=1

L(G, θI−m
: D↓Im), (2.2)

where L is the log-likelihood function, Im denotes the instance indices for the m-th
fold, D↓Im the data in that fold, I−m comprises the indices not in the m-th fold and
θI−m

are the parameters estimated with the data D↓I−m that define the CPDs.

This score is valid for SPBNs because the log-likelihood is calculated over data that
were not seen at the time of estimating the parameters. It can be understood as an
estimator of the expected log-likelihood.

Furthermore, the score has the property of decomposability, that is, it can be ex-
pressed as the sum of local score terms related to each node and its parents given a
selection of indices of disjoint folds of data. Hence, to take advantage of decompos-
ability during the learning stage, we need to fix a specific set of indices I. However,
this can lead to overfitting that particular set of indices. To avoid this, the data is split
into two disjoint sets, Dtrain and Dvalidation. The learning process is guided by Dtrain

and a fixed set of indices over that dataset, whereas the subset Dvalidation controls the
overfitting to that specific set of indices. Thus, the selection of new operators in HC
is done using the score Sk

CV (Dtrain,G), while overfitting is controlled measuring the
goodness of the new structure at each iteration over Dvalidation.

As previously mentioned, HC runs until reaching a local optimum where there is
no operator which improves the current structure. However, the implementation of
HC by Atienza et al. (2022c) relaxes this restriction, by allowing the structure not to
improve the score for a maximum of λ iterations. The parameter λ is named patience.
If the patience is a positive integer for trying to escape the local optimum, exploration
beyond the local neighbourhood is allowed by implementing tabu search [Glover and
Laguna, 1997], which forbids applying operators that reverse recently applied ones.

2.3.2.2 PC algorithm

The PC algorithm [Spirtes et al., 2001] learns the structure of the Bayesian network
performing conditional independence tests to construct the graph that best captures
the conditional independence relationships.

The PC algorithm has two main steps. In the first step, it learns from data a skeleton
graph, which contains only undirected edges. In the second step, it orients the v-
structures Xi → Xk ← Xj, whenever Xk does not belong to the set of variables that
d-separates [Geiger et al., 1990] Xi and Xj. The result of the PC algorithm is a
partially DAG that represents the skeleton of an equivalence class. This graph is
converted into a DAG of that equivalence class using the procedure proposed by e.g.,
Dor and Tarsi (1992).

One of the essential aspects in a constraint-based algorithm is the type of conditional
independence test. A common option is the use of the PLC test, which assumes that

14

Theoretical background

all the variables follow a multivariate Gaussian distribution. Taking into account
that SPBNs do not make any assumption on the distribution of any variable, non-
parametric conditional independence tests need to be used. Atienza et al. (2022c)
suggest using the randomized conditional correlation test [Strobl et al., 2018], which
is faster than other options as its distribution under the null hypothesis can be ap-
proximated with less computational resources.

Besides, to learn a SPBN, we need to determine the best type of CPD for each variable
given the DAG learned by PC. An attractive approach would be to perform a statistical
normality test, however due to computational burden, a more suitable option is to
select the node types with the execution of the HC algorithm restricting the operators
set to the node type change operator, hence, keeping the arc structure provided by
the PC algorithm.

2.3.3 Hybrid semiparametric Bayesian networks

HSPBNs extend the support of SPBNs to model categorical data as well. Hence,
continuous variables can also have discrete variables as parents, while allowing their
CPDs to be designed using either parametric or non-parametric estimation models.
An example of the structure of a HSPBN is shown in Figure 2.3.

Figure 2.3: Example representing the structure of an HSPBN [Atienza et al., 2022c].
Discrete variable nodes are represented with rectangles and continuous variable
nodes with ellipses. Parametric CPD nodes are represented with white nodes and
nonparametric CPDs nodes are represented with gray shaded nodes.

Thus, HSPBNs can model hybrid probability distributions which combine discrete
and continuous random variables. Discrete variables are conditionally distributed
as a categorical distribution, depicted by a conditional probability table (CPT). Like-
wise conditional linear GBNs, discrete variables cannot have continuous variables as
parents in the graph. On the other hand, the CPD of continuous variables can be
either parametric or non-parametric. Parametric ones assume that, for each possi-
ble configuration of the discrete parents, the continuous variables are conditionally
distributed as a normal distribution and have a linear relationship with continuous
parents. Then a parametric CPD in this type of networks is a conditional linear
Gaussian CPD, which is composed of a linear Gaussian CPD for each discrete config-
uration of evidence. Non-parametric CPDs are based on the conditional KDE CPDs

15

2.4. Variational autoencoder

previously described, that do not make any assumptions about the marginal or con-
ditional distribution of the variable. Nevertheless, conditional KDE only supports
continuous evidence. The hybrid conditional KDE, similarly to conditional linear
Gaussian CPDs, supports also discrete evidence by defining a conditional KDE for
each discrete evidence configuration.

The structure learning of HSPBNs is based on the learning process presented in
Section 2.3.2. In this case, the novel node type change operator previously introduced
can transform conditional linear Gaussian CPDs into hybrid conditional KDE CPDs
and vice versa.

The cross-validated score defined in Equation (2.2) can be applied directly for the
hybrid version. The learning method that we will use for this type of network is
the HC algorithm, but due to the restrictions of HSPBNs regarding the parents of
discrete variables, the operators “add arc” or “arc reverse” that produce arcs from a
continuous variables to a discrete one are forbidden.

2.4 Variational autoencoder

Given the large amount of data being constantly collected by the network routers, DL
models have attracted a lot of attention in the cybersecurity field due to their ability
to handle big datasets as well as to train realtime in a streaming manner, while
retaining high performance. Additionally, DL models like the variational autoencoder
(VAE) are shown to be robust to noisy data and adversarial attacks [Barrett et al.,
2022; Camuto et al., 2021], and thus especially suitable for modeling network flows
which are very noisy in nature. Although DL models are often criticized for their
lack of explainability, recent advances have brought forward better understanding of
these models. Some state-of-the-art techniques for explainability will be introduced
in the following section.

In the following, we first describe the autoencoder (AE) model since the VAE has the
same deep architecture as the AE. After, we present the specifics of VAE, a proba-
bilistic generalization of the AE, that has been shown to be more flexible and robust
[Jinwon and Sungzoon, 2015].

2.4.1 Autoencoder

An autoencoder has three main layers which correspond to the input layer to take
in the features, the latent representation layer of the features, and the output layer
which is the reconstruction of the features. The AE consists of two parts called
encoder and decoder respectively, as illustrated in Figure 2.4. The encoder maps
the input into its latent representation while the decoder attempts to reconstruct the
features back from the latent representation. The encoder may be deep in the sense
that information from the input is passed through several mappings and hidden
layers, similarly to the deep architecture in a supervised DL model, and likewise for
the decoder. It is important to note that as shown in Figure 2.4 the sizes of the
encoder and decoder layers are generally chosen to be symmetrical.

The links between the layers show that the n values of the i-th layer hi (that coincide
with its number of nodes) can be computed as:

hi = g(Wihi−1 + bi), (2.3)

16

Theoretical background

Figure 2.4: Autoencoder architecture [Lopez Pinaya et al., 2020].

where hi−1 is a vector of m values for the previous layer, Wi is a matrix of weights that
represents the relationship with the previous layer, whose size is n × m, and bi is a
vector of bias terms, whose length is the same as that of the vector hi. Both Wi and bi

are parameters to be learned during the training stage. Finally, g() is the activation
function which is a non-linear transformation of its input, thus allowing complex
relationships to be learned. The most common form for the activation function is
the sigmoid function, g(x) = (1 + e−x)−1, and the rectified linear unit (RELU), g(x) =
max(0, x). The learning of the parameters is generally achieved by minimizing the
reconstruction errors (like, mean square errors) via backpropagation with random
initialization, and can be optimized in different ways (optimization details can be
found in Bengio (2012)).

Basically, AE can be understood as a deterministic model that maps a set of input
features into their reconstruction. This is the aspect that differentiates AE from
generative model variants of deep neural networks, such as the VAE and the GAN
[Goodfellow et al., 2014].

2.4.2 Variational autoencoder

Unlike AE which deterministically encodes the inputs into their latent representation
and subsequently produce a reconstruction, the VAE [Kingma and Welling, 2014] is
a generative model that treats the latent representation layer as random variables
conditional on the inputs. Although the encoder and decoder in the VAE follow the
same computational model as the AE, given by Equation (2.3), the encoding process is
instead used to compute the parameters for the conditional distributions of the latent
representation. Afterwards, the parameters can then be used to generate or sample
the latent representation for decoding. The conditional distributions of continuous
variable nodes are generally assumed to be Gaussian, but not necessarily.

The probabilistic nature of the VAE also means that we cannot simply employ the

17

2.5. Explainability

usual learning algorithm on standard objective function (such as mean square error)
to train the model. Instead, a class of approximate statistical inference methods
are used, which is called the variational Bayes (giving rise to the name VAE). In a
simple way, an alternative objective function known as the variational lower bound
is optimized, and stochastic sampling is used for approximation. For further details
regarding inference methods we refer the reader to Kingma and Welling (2014). For
the intermediate layers of the encoder and decoder, the RELU activation function
is used, whereas the linear activation g(x) = x is employed for the output, which
provides the reconstructed vector.

2.5 Explainability

Artificial intelligence and in particular, the explainability thereof, has gained phenom-
enal attention over the last few years, due to the lack of ability of many data-driven
artificial intelligence systems to provide information about the rationale behind their
decisions to their users, which can be a major drawback, specially in critical domains
such as those related to cybersecurity. The manifestation of explainable systems in
high-risk areas has influenced the development of explainable artificial intelligence
(XAI) in the sense of prescriptions or taxonomies of explanation. These include fair-
ness, accountability, transparency and ethicality [Leslie, 2019]. The foundation of
such a system should include these prescriptions such that a level of usable intel-
ligence is reached to not only understand model behaviour but also understand the
context of an application task [Barredo Arrieta et al., 2020].

It is important to remark the difference between interpretability, which is the capacity
of a model to be understandable to humans, and explainability. These two concepts
are closely tied and many authors even do not differentiate between them [Carvalho
et al., 2019]. On the contrary, Rudin (2019) draws a clear line between interpretable
and explainable ML: interpretable ML focuses on designing models that are inher-
ently interpretable; whereas explainable ML tries to provide post hoc explanations for
existing black box models, aiming to provide further information about the model by
uncovering the importance of its parameters. Lipton (2018) stresses the difference
in questions the two families of techniques try to address: interpretability raises the
question “How does the model work?”; whereas explanation methods try to answer
“What else can the model tell me?”.

Among inherent interpretable ML models, we focus in this work on Bayesian networks
[Mihaljević et al., 2021]. As already mentioned, Bayesian networks are probabilistic
graphical models that can be used as a tool to manage uncertainty. Furthermore,
Bayesian networks are capable of combining expert knowledge and statistical data,
therefore allowing for complex scenarios to be modelled. These graphical models al-
low the user to reason about uncertainty in the problem domain by updating his/her
beliefs, whether this reasoning occurs from cause to effect, or from effect to cause
[Derks and de Waal, 2020]. Reasoning in Bayesian networks is often referred to as
what-if questions. The flexibility of a Bayesian network allows for these questions to
be predictive, diagnostic and inter-causal. Some what-if questions might be intuitive
to formulate, but this is not always the case especially on a diagnostic and inter-
causal level. This might result in sub-optimal use of explainability in Bayesian net-
works, especially on an end-user level. Apart from well-established reasoning meth-
ods, the probabilistic framework of a Bayesian network also allows for explainability

18

Theoretical background

in evidence. These include most probable explanation and most relevant explanation.

On the other hand, post-hoc methodologies can be further classified according to
different factors:

• Method. There are two types of methods to provide explanations: local ones give
explanations via individual instances or groups of nearby instances, and global
ones describe the behaviour of models as a whole.

• Model. Approaches to provide explanations can be classified as model-agnostic,
which apply to any model (based only on inputs and outputs), and model-
specific, which are restricted to a specific model.

Recently, there has been a surge of research on enhancing the explainability in the
field of cybersecurity, with a particular focus on explainability of DL models that have
proven to be successful [Holder and Wang, 2021; Mahdavifar and Ghorbani, 2020;
Szczepański et al., 2020; Vigano and Magazzeni, 2018].

19

Chapter 3

Development

3.1 Data description

The synthetic data used in this project was simulated ad hoc by Titanium Industrial
Security S.L. using virtual machines. Data consist of raw traffic information moving
accross a computer network. We were provided with two different datasets:

• normal dataset, that comprises normal behaviour of the network.

• attack dataset, that captures two cyberattacks: a port scanning attack followed
by a lateral movement attack on two different devices.

Port scanning is a method attackers use to scope out their target environment by
sending packets to specific ports on a host and using the responses to find vulnera-
bilities and understand which services, and service versions, are running on a host.
Thus, port scanning tries to classify ports into one of three categories: open, closed
or filtered.

Lateral movement [Kang et al., 2020] refers to the techniques that a cyberattacker
uses, after gaining initial access, to move deeper into a network in search of sensitive
data and other high-value assets. After entering the network, the attacker maintains
ongoing access by moving through the compromised environment and obtaining in-
creased privileges using various tools. Lateral movement is a sophisticated tactic that
distinguishes today’s advanced persistent threats from simplistic cyberattacks of the
past. The first stage of lateral movement is reconnaissance, during which the at-
tacker observes, explores and maps the network, its users, and devices. In our case,
this phase is accomplished through a port scanning attack.

The data provided are in the form of raw text extracted directly from the pcap format.
Each instance of the datasets contains the information of a sent packet. An example
of a raw event is included in Appendix A. The total duration in seconds of the simu-
lations and the number of recorded packets for both datasets are included in Table
3.1.

The main limitation of the data is the lack of labels for the attack dataset, although for
the model development they are not necessary, as we use semi-supervised methods.
They are of great help in validating the performance of the model. Therefore, we
needed the help of a cybersecurity expert for the validation stage.

21

3.2. Proposed solution

Dataset Duration (seconds) N◦ of events
normal dataset 7347.017 885508
attack dataset 6333.394 326941

Table 3.1: Details of the normal and attack datasets.

The simulated computer network environment is formed by eight different machines,
(whose details are shown in Table 3.2) that not only communicate with each other,
but also with external devices.

IP Operative system Description
10.0.2.4 Windows Server 2008 Office user
10.0.2.5 Windows Server 2008 Office user and victim
10.0.2.6 Windows Server 2008 Office user
10.0.2.7 Windows Server 2008 Office user and victim
10.0.2.10 Kali Linux 2021 Attacker
10.0.2.100 Ubuntu Server 14.04 Mail server
10.0.2.101 Ubuntu Server 14.04 Mail server
10.0.2.200 Kali Linux 2021 Logger

Table 3.2: Description of the devices in the simulated network environment.

3.2 Proposed solution

Due to the nature of the problem and the available data, we have decided to develop
an anomaly-based NIDS using semi-supervised techniques. The models employed
are trained using data representing normal network behaviour (normal dataset), and
then, used on the attack dataset to detect anomalous events belonging to a cyberat-
tack.

We decided to develop two different semi-supervised models: an SPBN (or HSPBN)
and a VAE, and compare their performance and explainability.

3.3 Methodology

Next, we describe the process followed to develop our system:

1. First, we decided to pre-process the raw network data using two alternative
techniques that capture different information of the network behaviour, thus,
obtaining two complementary pictures of the data provided.

2. The second step was to build and train an SPBN (or HSPBN) and a VAE for each
of the two pre-processed normal datasets.

3. Having the normality models developed, we feed them with the attack data in
order to detect malicious activity. The output of each model is a ranked list
using the corresponding anomaly score in each case.

4. In order to fine-tune the results and discard false positives, we correlate for each

22

Development

type of model the outputs using the two alternative pre-processed datasets for
attack data.

5. Afterwards, for each of the suspicious data points we try to explain the type of
cyberattack to which they belong. To do so, we identify the features that were
relevant for the model to give a high anomaly score. Using the information of
these explanations and applying clustering techniques, we group the anomalous
points depending on their nature. In this way, points that are part of the same
cyberattack are gathered.

6. Finally, we perform time series analysis of the most relevant features for each of
the formed clusters, to refine the exact moment of the attack.

Figure 3.1 provides an overview of our network anomaly detection system. The com-
ponents in the system are described in greater detail below.

Figure 3.1: Developed network anomaly detection system.

23

3.3. Methodology

3.3.1 Data pre-processing

As we have mentioned, we decided to pre-process the raw traffic data using two
alternative methods. Thus, for each of the original datasets two different inputs for
the semi-supervised models were obtained. The two different pre-processing shall be
referred to as connections and time_window.

The first step in this phase is data parsing, to convert the data provided in the form
of raw text data into a tabular format, obtaining the same structured information for
each of the events in the datasets. Once this was done, we were able to analyse each
of the packet’s variables to understand their nature and range of possible values.

We then performed alternative processes for each desired output:

• Connections.

For this data pre-processing we need to remember the concept of connection in
the context of the open systems interconnection (OSI) model [Day and Zimmer-
mann, 1983]. The transport layer in the OSI model provides the functional and
procedural means of transferring variable-length data sequences from a source
host to a destination host from one application to another across a network,
while maintaining the quality-of-service functions. Transport protocols may be
connection-oriented or connectionless. In our original dataset, the two trans-
port protocols used are TCP, which is connection-oriented, and UDP, which is
connectionless. A TCP connection between client and server consists of three
stages: connection establishment, data transfer and connection termination.

In this pre-processing, we group together the events that belong to the same
connection. This is straightforward in the case of TCP packets using TCP flags,
that identify the different phases of a connection. In the case of events using
UDP transport protocol, we define an UDP connection as all the events in the
dataset with the same tuple (source IP address, destination IP address, source
port, destination port).

Hence, the resulting data points instances represent connections in the network.
The variables describing each data point are displayed in Table 3.3.

Although some variables like sbytes, spkts, sttl and swin can only take integer
values, we consider them as continuous variables (as shown in Table 3.3) due
to their large range, which would make it unfeasible to model them as discrete
variables. Finally, continuous variables are standardized.

Variables not marked in Table 3.3 as present in training are used to identify
each data point and are not part of the model input. We will refer to them as the
connection ID.

• Time_window.

In this case, we group the packet records into 2-minute non-overlapping sliding
windows based on the source IP addresses to form aggregated features. This
means that each of the resulting data point instance corresponds to the network
statistics of a single source IP address within a 2-minute period. Note that
such extraction allows us to identify the offending IP address and also the time
window an anomaly belongs to, which are important for further analysis and

24

Development

Variable name Type Description
Present in
training

Stime Datetime Connection start datetime
Ltime Datetime Connection end datetime
ip_src Categorical Source IP address
ip_dst Categorical Destination IP address
dur Continuous Connection total duration �

sbytes Continuous Source to destination transaction bytes �
spkts Continuous Source to destination packet count �
sttl Continuous Source to destination time to live value �

swin Continuous Source TCP window advertisement value �
synack Continuous Time between SYN and SYN_ACK packets �
ackdat Continuous Time between SYN_ACK and ACK packets �
sload Continuous Source bits per second �

smeansz Continuous Mean of the flow packet size transmitted by the source �

dollar_payload Binary
1 if the the payload of a packet in the connection contains

�the string ‘/ C$’, “/ IPC$” or “/ ADMIN$”; 0 otherwise

script_payload Binary
1 if the payload of a packet in the connection contains

�the string “powershell.exe” or “This program
cannot be run in DOS mode”; 0 otherwise

buffer_overflow Binary
1 if the most common byte in the payload �

is not the space; 0 otherwise

Table 3.3: Output variables of the connections pre-processing.

decision making. The period of 2 minutes is chosen to balance between the
practicality and quality of the aggregated statistics, where the statistics will be
insignificant if the period is too short; while using a long time window means
we cannot perform real time analysis. The cybersecurity expert also advised
us on the selection of the time window value. Overall, we extracted aggregated
features, which include:

– Mean (frame_len_mean) and standard deviation (frame_len_std) of bytes per
event.

– Entropy of protocol type (proto_entropy).

– Entropy of destination IP addresses (ip.dst_entropy).

– Entropy of source (srcport_entropy) and destination ports (dstport_entropy).

– Entropy of TCP flags (tcp.flag_entropy).

The entropy for a discrete random variable X is defined as in information theory
by the following formula:

H(X) =
n∑

i=1

P(xi) logP(xi).

It is important to remark that the processed variables in this analysis are all
continuous.

To ensure that meaningful statistics are captured, a data point that contains
too few events, in our case less than 9, is removed from the processed dataset.
This reduces noise in the training data, while not running the risk of losing
meaningful information, as source IP adresses with very low activity are not

25

3.3. Methodology

suspected of cyberattacks. Finally, the statistics are normalized into Z-scores
as input features for the models.

Likewise in the previous pre-processing, we need an identifier for each data
point, that will allow us to determine the IP of the attacker as well as the time
when the cyberattack was perpetrated. Here, the ID of an instance is composed
by the source IP address and the start time of the 2-minute window to which
the data point belongs.

3.3.2 Semiparametric Bayesian network model

Bayesian networks are a powerful tool for modelling the normal behaviour of the
model. To select the appropriate type of Bayesian network, it is important to analyse
the processed data. In the case of the connections pre-processing, we have both
continuous and discrete variables, therefore a hybrid model is neccesary. In contrast,
for the time_window pre-processing, we only have continuous variables. In both
cases, we cannot claim that the continuous variables follow a Gaussian distribution,
thus a SPBN and its hybrid version are the most suitable models.

Based on the theory presented in Section 3.3.2, we have developed the SPBN model
for each of the normal data pre-processing. After testing the two structure learn-
ing algorithms previouly described, we decided to use the greedy hill-climbing (HC)
algorithm guided by the cross-validated likelihood score for the final model; as the
anomaly detection results were slightly better, and execution times were a bit shorter
than using the PC algorithm. Then, we applied the parameter learning procedure
proposed by Atienza (2021).

It is important to mention that we tested the HC training algorithms with different
values for the patience parameter, λ. To compare the learnt structures, we calcu-
lated the structural Hamming distance [Tsamardinos et al., 2006], that counts the
number of arc additions, removals and reversals required to transform a DAG into
another. Afterwards, we analysed their goodness to detect malicious data points and
discussed the graph structure with the cybersecurity expert, marking those arcs that
were unexpected for him. We also asked him about missing arcs that he expected to
appear.

Since we can define a white arc list and a black arc list, with the arcs that we do
and do not want to appear in the graph, respectively, we carried out further tests
on the structure, with different combinations of arcs in these two lists based on the
discussion with the expert. We compared the different structures and examined the
performance of the resulting models on detecting anomalies, and chose the best one.

Finally, we would like to highlight that despite using a node type change operator
in the implementation of the HC algorithm, all the nodes representing continuous
variables turned out to have conditional KDE distributions.

Having the normal behaviour SPBN models for both pre-processing built and trained,
we can detect suspicious events in the attack dataset. This is achieved by calculating
the log-likelihood of each data point, as the log-likelihood value is a way to measure
the goodness of fit for the model. The higher the value of the log-likelihood, the better
the model fits a dataset. The log-likelihood value for a given model can range from
negative infinity to positive infinity. The log-likelihood of the model for a particular

26

Development

instance is negative infinity, if the probability of that instance being generated by the
model is zero. Therefore, the value of the log-likelihood can be seen as an anomaly
score: the lower the log-likelihood, the higher the score and more anomalous.

3.3.3 Variational autoencoder model

For the development of the VAE model, we first had to determine its architecture.
We set the size of the latent representation layer to be 25 for the connections pre-
processing and 15 for the time_window pre-processing. In addition, the encoder and
the decoder each has three hidden layers with size 128, 128, and 256, respectively,
as illustrated in Figure 3.2. In the figure, nodes that are coloured in black represent
the observed data (used as both inputs and outputs), while the unshaded nodes are
unobserved latent variables corresponding to the hidden layers. The exact size or
dimension of the layers, which is shared by the models for both pre-processing, is
shown above the nodes. It is important to note that to select the optimal size of the
hidden layers, we performed grid search of sizes power of two for the encoder and
decoder using a symmetrical pattern, whereas for the latent representation layer, we
bounded the size between 0.5 and 2.5 times the size of the input layer, as there is no
well-established rule in the literature for this, but the larger it gets the more likely it
is that overfitting will occur.

Figure 3.2: Variational Autoencoder architecture.

The training algorithm of the VAE was implemented using TensorFlow, which pro-
vides powerful tools of automatic differentiation and comes with built-in optimization
routines.

We now present only a brief outline of the training of the VAE due to its complex-
ity. Before starting the training procedure, the parameters in the VAE are randomly
initialized. This subsequently allows us to perform a forward pass on the encoder

27

3.3. Methodology

by computing the distribution of the latent representation layer. With this, several
samples can be generated from the distribution which are used to compute the varia-
tional lower bound, L, which consists of a Kullback–Leibler (KL) divergence term and
an expectation term, as shown in the following equation:

L = −DKL[q(z|x)||p(z)] + Eq[log p(z|x)], (3.1)

where z is the latent representation of the input features x. The distribution p()
corresponds to the prior and conditional distribution of the VAE model; while q() is
a variational approximation [Blei et al., 2016] of p(), generally chosen to be Gaus-
sian. Luckily, this objective function can be maximized with stochastic optimization
techniques since the gradients are readily available via automatic differentiation. To
do so, we employed Adam as the optimization algorithm, which enables training in
minibatches. Furthermore, by choosing a small minibatch size and discarding the
data after one epoch, we can reduce the training time and the computational burden.
We would like to highlight that the IDs of the data points are not used at all during
training.

Finally, to achieve a good performance, we needed to fine-tune the hyper-parameters
of the VAE model for both pre-processing. Hyper-parameters include learning rate,
size of the minibatch, regularization parameter, momentum and number of epochs.
We performed several tests to determine the best values for them.

Once the parameters are optimized after training, the VAE model is used for anomaly
detection, where a data point identified by its ID is recognized as malicious when the
reconstruction error of its input features is high.

The reconstruction error can be calculated using the mean square difference (or mean
square error, MSE) between the observed features and the expectation of their recon-
struction as given by the output of the VAE. A high reconstruction error is generally
observed when the network behaviour differs greatly from the normal behaviour that
was learnt by the VAE. So, we will consider the reconstruction error as a measure of
the anomaly score.

3.3.4 Anomaly detection results correlation

After calculating the anomaly score (log-likelihood for SPBN and MSE for VAE) for
data points from both pre-processing (connections and time_window) of the attack
dataset, we correlated the two lists of anomalous instances with the objective of fine-
tuning the results and discarding false alarms.

However, in order to shorten the lists before correlating results and try to keep only
suspicious events, we had to set a threshold. So, we decided to just preserve those
instances whose score was above the 75th percentile of the scores for each of the
lists, after testing several values.

Each list of malicious points contains the corresponding data point ID and its anomaly
score. Recall that the ID for the connections pre-processing is composed of the source
and destination IP addresses of the connection along with its start and end time.
Meanwhile, the data point ID in the time_window pre-processing consists of the
source IP address and the start time of the 2-minute window to which the data point
belongs, that we will refer to as time window mark.

28

Development

So for the linkage of both malicious point lists, we link each connection (data point
from the connections pre-processing) with all the data points from the time_window
pre-processing with the same source IP address, if the 2-minute window to which the
data point from the time_window pre-processing belongs intersects the time interval
between the start and end time of the connection. For the shake of simplicity, we
illustrate in Figure 3.3 how the linkage was done.

Figure 3.3: Example of correlation of results.

It is important to highlight, that the time interval of most of the connections lies
within a unique 2-minute time window, thus only one entry is added for those con-
nections in the correlated results list. For less than 10% of the total number of
connections, more than one entry is added.

Once we have done the linkage, we had to calculate the final score for each of the
entries in the correlated results list. To obtain that final value, we tried two alter-
natives: on the one hand, normalising (min-max scaling) the scores of each of the
original tables and averaging, and on the other hand, standardasing (Z-score nor-
malization) and averaging. After trying both possibilities and comparing the results
for anomaly detection, we chose the latter.

In cases where we had several entries in the final list for the same original connection,
we merged all of them into a single one. The value for the time window mark column

29

3.3. Methodology

for the resulting entry is chosen to be the lowest one among the merged instances,
and the final score value is the mean of the merged scores. Besides, we added another
column to the final merged list of correlated results named end time window mark,
whose value is set to be the start time of the 2-minute window to which the end time
of the connection belongs.

Finally, we ranked the instances of the merged correlated results list and joined
contiguous entries who share the same value for the source IP address, time window
mark and end time window mark columns and make a list with the destination IP
addresses of the joined connections. Our main interest is identifying the attacker, as
it may be attacking several devices at the same time. We could go even forward and
delete entries in the final merged list in case there is a previous entry that has the
same values for all the colums identifying each item of the list.

With this final step, we could fear losing the exact time the attack was perpetrated.
Nevertheless, as we will analyse the time series of suspicious IPs later, this is not
a problem. By doing this, the final merged correlated results list does not have too
many entries, thus we do not need to set another threshold to reduce it. This is par-
ticularly important, as we do not want the cybersecurity analyst to be overwhelmed
by tons of alarms.

3.3.5 Anomaly explanation

While most existing anomaly detection works in the literature consider only the eval-
uation on detection accuracy, we go beyond and provide an explanation on why a
data point is flagged as anomalous.

The proposed solution is to identify the features that are most relevant for the par-
ticular model to mark a data point as an anomaly. That is, in the case of the SPBN
model, the variables from the data point that contribute the most to the negativity of
the log-likelihood value. For the VAE model, the features that add the most to the
variational lower bound (Equation (3.1)). This is significant since it challenges the
belief that the decisions of artificial intelligence models cannot be interpreted.

For achieving our goal, we analysed the partial derivative for each feature of the
data point with respect to the objective function, that for the SPBN model is the
log-likelihood, while for the VAE model is the variational lower bound. These partial
derivatives were obtained straightforward by automatic differentiation for both mod-
els. In doing so, we tried to approach the following question: How does the objective
function vary if a feature in the anomalous data point increases or decreases by a
small amount?

The intuitive reasoning underlying our idea is that, given the trained model and a
suspicious data point, if the objective function changes a lot when a particular feature
of the anomalous instance is varied by a small amount, then this feature at its current
value is considered to be significantly abnormal.

Explanations obtained from the partial derivatives, are not only useful on their own,
but have further applications. For example, even without having the ground truth
labels in the attack dataset, the flagged anomalies can be clustered based on their
gradients into groups that share similar behaviour, making it easier, if necessary, for
cybersecurity analysts to investigate further and eventually label them.

30

Development

This is of particular interest given that some cyberattacks are constituted by several
data points rather than a single one; even though there may be one event that is more
significant in raising the alarm of the attack and has a higher anomaly score among
the points in the same cluster. So, the idea is that if the clustering is effective, attacks
should be limited to a relatively small number of clusters (as we will see below that
in the attack dataset we only have two different types of cyberattacks).

To perform the clustering process, we first obtained from each data point a nor-
malised vector whose components are the values of the partial derivatives of its fea-
tures. Then, we applied different clustering methods and analysed their performance
in order to select the best one.

The clustering techniques that we tested in our results were:

• Partitional clustering: k-means.

Partitional clustering makes natural divisions of the data into a fixed number of
clusters, that has to be determined a priori. k-means algorithm [Forgy, 1965]
is one of the fastest clustering algorithms available. It aims to partition the N
observations into k sets {S1, . . . , Sk}, so as to minimize the within-cluster sum of
squares. Formally, the objective is to find:

argmin
k∑

i=1

∑
x∈Si

||x − μi||2,

where μi is the mean of the i-th cluster or centroid. The algorithm uses an
iterative refinement technique that consists of two steps: first, assign each ob-
servation to the cluster with the nearest mean and then, update the clusters’
centroids. This is repeated until convergence. Nevertheless, it is not guaranteed
to find the optimum partition, thus falling in local minima. Therefore, k-means
algorithm is very sensitive to the initial partition.

To try to solve this, we restart the algorithm with different random seeds, and
also, taking as input the result of applying hierarchical clustering. Besides,
we also tested the k-means++ initialisation algorithm [Arthur and Vassilvitskii,
2007], the exact execution of which is as follows: first, it chooses one center
uniformly at random among the data points. Secondly, for each data point x
not chosen yet, it computes D(x), the distance between x and the nearest center
that has already been chosen. Then, it chooses one new data point at random
as a new center, using a weighted probability distribution where a point x is
chosen with probability proportional to D(x)2. Finally, it repeats the two last
steps until k centers have been selected.

In addition, we also have to take care of determining the value of the k parame-
ter. In the case of Titanium ’s dataset this is an easy task as the attack dataset
is very small and we now beforehand the number of attacks. Nevertheless, in a
general situation this will not be the case and we have to automatise the selec-
tion of the k parameter. To do so, we must take into account the nature of our
data.

As we have already mentioned, consecutive anomalies during a particular time
interval usually belong to the same cyberattack. That is, since our system will
run locally, it would be unlikely that several types of attacks would be performed

31

3.3. Methodology

at the same time in a specific part of the whole network. Therefore, anomalies
that are part of the same cluster will come in a sequence. It is true that a
certain type of attack could be repeated over time, and points will be assigned
to the same cluster, but still that new set of events will form a sequence.

This could remind us of the notion of recurring concept drift, where data in-
stances change between two or more statistical characteristics (which in our
case are representative of attack classes) several times. Neither of the classes
disappears permanently but all of them arrive in turns. A data stream contain-
ing a recurring concept drift might look like as follows, where different colors
indicate different classes:

S = {. . . ,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15 . . . }.

To deal with this situation, we will first sort the final list of anomalous data
points in time and then apply the adaptive stream k-means algorithm, proposed
by Puschmann et al. (2017), which is a partitioning-based data stream clus-
tering algorithm. Although, in general, partitioning-based clustering algorithms
need k as an input parameter, and have difficulties to adapt concept drifts in the
input data, Puschmann et al. (2017) claim to overcome these two main problems.

The algorithm is composed of two main phases, which are the initialization phase
and the continuous clustering phase. In the initialization phase, m data in-
stances are accumulated. Then groups of candidate centroids are determined.
In order to find k and determine candidate centroids, the PDF of each variable
of the data is calculated using KDE. All directional changes in the shape of PDF
curve are accepted as signs of beginning of a new region. Here the region can
be defined as the area between two consecutive directional changes of the PDF
curve. The number of regions is considered as a candidate k and the centers
of these regions are considered as candidate initial centroids. This process is
pursued for each feature of the data separately. Because different features gen-
erally show different distributions, then more than one k values, and different
candidate centroids are found. After finding all candidate k values, clustering is
performed for a set of k values where k ∈ [kmin, kmin + kmax]. Clustering results
of different k values are compared according to silhouette coefficient, and the
best k is selected with its corresponding centroids. Then, during the continu-
ous clustering phase, concept drift detection is performed. If no concept drift
occurs, clustering of the input data proceeds. However if a concept drift exists,
the parameter k and the centroids are recalculated (that is, the algorithm is re-
initialized) before clustering continues with a new k and centroids. For concept
drift detection, standard deviation and mean of the input data are stored during
the execution. The algorithm tracks how these two values change over time and
predicts a concept drift according to the change.

• Probabilistic clustering: Gaussian mixture models.

Probabilistic clustering relies on the hypothesis that data come from a mixture
of k probability distributions, one for each cluster. Observations are probabilis-
tically assigned to clusters, rather than deterministically.

In particular, we tested Gaussian mixture models. To find the mean and vari-
ance of each cluster, the expectation-maximization algorithm [Laird, 1993] is

32

Development

used, which is a form of optimization function. The expectation-maximization
iteration alternates between performing an expectation step, which creates a
function for the expectation of the log-likelihood evaluated using the current
estimate for the parameters, and a maximization step, which computes parame-
ters maximizing the expected log-likelihood of a sample belonging to the cluster
distribution found on the expectation step. These parameter-estimates are then
used to determine the distribution of the latent variables in the next estimation
step.

This option did not give optimal results, the reason being that data do not fit a
mixture of Gaussian distributions. We corroborated this by performing statisti-
cal tests for normality on the two clusters obtained with the partitional method
using Royston’s test.

Finally, we calculated the mean of the partial derivatives of each feature within each
final cluster. This would serve to explain each type of cyberattack. Thus being a dis-
tinguising mark of the attack, this could also be useful for identifying future attacks
of the same nature.

3.3.6 Time series analysis

The last step of our system is to perform time series analysis of the most relevant
features for each of the clusters we obtained in the previous step. We also examined
the time series for the number of bytes, which is the most general feature but provides
valuable information for detection.

The time series analysis is only performed for the most relevant source and desti-
nation IP addresses that constitute the ID of an anomalous connection for the semi-
supervised detection model, being the source IP address the suspected attacker.

We tried three different methods for the time series analysis including:

• Deep neural networks, in particular, LSTM: using them for time series forecast-
ing and comparing the predictions with the observed time series, flagging as
malicious those points whose prediction deviates greatly from the ground truth.
LSTM are particularly good for this purpose, as they are memory-based models.

• Isolation forest [Fei et al., 2008] explicitly identifies anomalies instead of pro-
filing normal data points. Isolation forest, like any tree ensemble method, is
based on decision trees. In other words, isolation forest detects anomalies purely
based on the fact that anomalies are data points that are few and different. The
anomalies isolation is implemented without employing any distance or density
measure. However, its main drawback is that we have to set a parameter with
the percentage of anomalous points in the series, which is unknown beforehand.

• Statistical techniques to detect anomalies: we performed time series decompo-
sition applying the seasonal-trend decomposition using locally weighted scat-
terplot smoothing (STL) method, which uses locally fitted regression models to
decompose a time series into trend, seasonal, and remainder or residual compo-
nents. Besides, we used Pearson’s correlation coefficient between the time series
of source and destination IP addresses for the attack dataset. But also, between
each of them and their corresponding time series for the normal behaviour by
adjusting the possible “lag”. To do this, we found the periodicity of the normal

33

3.4. Implementation

behaviour time series and calculated Pearson’s correlation coefficient between
the normal time series and the shifted attack one with a maximum shift equal to
the period of the former. The selected “lag” corresponded to the first maximum
of the correlation coefficient values obtained.

The option finally chosen for the implementation of our IDS was the latter, that is,
statistical techniques. In the following section, we show exactly how the analysis was
done and now the exact times of the anomalies were obtained for Titanium ’s attack
data.

3.4 Implementation

For the development of our system, we have employed Python language in the Google
Colab environment. To learn the SPBN models, we used PyBNesian library [Atienza
et al., 2022b]; whereas for the training of the VAE we used the TensorFlow framework,
which is highly parallelizable and thus, runs very quickly. Although, we used these
libraries, we had to make some modifications to adapt them to our data, and we also
performed a high number of test to achieve good performance.

We ourselves implemented in Python the pre-processing as well as correlation of re-
sults to obtain the final list of anomalies. As mentioned above, the partial deriva-
tive analysis to obtain individual explanations was implemented using TensorFlow.
The adaptive stream k-means algorithm for the clustering of explanations was imple-
mented in Python with the help of several existing libraries to detect concept drift.
Finally, the statistical analysis of time series was implemented by us, making use of
available functions, for example to calculate Pearson’s correlation coefficient.

34

Chapter 4

Results

In this section, we show the capabilities of our system to detect anomalies and gen-
erate explanations. The proposed system was tested on the data described in Section
3.1. However, as we have already mentioned, these data are not properly labelled,
which makes it difficult to obtain a quantitative value of the system’s performance.

4.1 Titanium’s datasets

The first step was to pre-process both the normal and attack datasets using the two
alternatives described in Section 3.3.1. Then, we trained a semi-supervised model for
each of the two pre-processed normal datasets.

In the case of using SPBNs, we tried different values for the patience parameter,
λ ∈ {5, 10, 15, 20, 25}. Values outside that range gave very poor results in terms of
anomaly detection. It is also important to highlight that for the connections pre-
processing, graph structures varied for different values of the patience parameter,
unlike the case of the time_window pre-processing. Table 4.1 shows the structural
Hamming distance between the graph structures for different values of λ. After,
evaluating the anomaly detection results for each possible structure, we selected to
take λ = 10.

λ 5 10 15 20 25
5 7 6 7 6
10 4 3 6
15 1 5
20 5
25

Table 4.1: Structural Hamming distance between the different HSPBN structures for
the connections pre-processing.

As we mentioned above, we also executed the HC structure learning algorithm keep-
ing some arcs fixed and forbidding others, after discussion with the cybersecurity
expert.

35

4.1. Titanium’s datasets

The final graph structures of the normal behaviour models for the connections and
time_window pre-processing are shown in Figures 4.1 and 4.2, respectively. It is im-
portant to mention that in the HSPBN graph structure for connections pre-processing
(Figure 4.1), only ten variables (instead of twelve), as two of them are independent
from the rest. Furthemore, we would like to point out that, for example, by ban-
ning the arc from swin to sttl which was unintuitive for the cybersecurity expert, the
performance of the system degrades a lot.

Figure 4.1: HSPBN graph structure for connections pre-processing.

Figure 4.2: SPBN graph structure for time_window pre-processing.

Despite that in the attack dataset we also have normal background behaviour, there
is a notable difference between the mean log-likelihood of normal and attack datasets.
Exact values are presented in Table 4.2. Besides, Figures 4.3(a) and 4.3(b) represent
the log-likelihood distribution output yielded by the SPBN models for the connections
and time_window pre-processing, respectively, for both normal and attack datasets.

Pre-processing
Connections Time_window

Normal dataset -0.77 -2.34
Attack dataset -164.47 -7.35

Table 4.2: Mean log-likelihood values for the connections and time_window pre-
processing SPBN models.

The anomaly detection results on the attack dataset after correlating the outputs of

36

Results

(a) Connections pre-processing. (b) Time_window pre-processing.

Figure 4.3: Log-likelihood probability density for normal and attack datasets.

both pre-processing are displayed in Table 4.3. We would like to remind that each
entry of the table is a combination of several individual connections.

Source IP Time window End time Destination IP
address mark window mark addresses

1 10.0.2.10 24/02/2022 15:00 24/02/2022 15:02 10.0.2.5

2 10.0.2.10 24/02/2022 13:40 24/02/2022 13:40
10.0.2.5
10.0.2.7

3 10.0.2.10 24/02/2022 15:02 24/02/2022 15:02 10.0.2.5
4 10.0.2.10 24/02/2022 14:52 24/02/2022 14:52 10.0.2.5
5 10.0.2.5 24/02/2022 13:38 24/02/2022 13:38 10.0.2.10
6 10.0.2.7 24/02/2022 13:38 24/02/2022 13:38 10.0.2.10

7 10.0.2.10 24/02/2022 14:52 24/02/2022 14:52
10.0.2.5
10.0.2.7

8 10.0.2.10 24/02/2022 13:38 24/02/2022 13:38

10.0.2.5
10.0.2.7

10.0.2.100
10.0.2.101
10.0.2.200

9 10.0.2.10 24/02/2022 15:00 24/02/2022 15:00 10.0.2.5

Table 4.3: Final merged list of anomaly detection results for the SPBN model.

Looking closely at the final anomaly detection list, we could confirm that the SPBN
model captures the two cyberattacks: port scanning and lateral movement. This
was done with the help of the cybersecurity expert who verified that the anomalies
detected corresponded to the simulated attacks.

On the one hand, the port scanning attack, that occurs between 13:38 and 13:42 and
it is performed by the IP address 10.0.2.10 to the IP addresses 10.0.2.5, 10.0.2.7,
10.0.2.100, 10.0.2.101 and 10.0.2.200. It corresponds to lines 2 and 8 of Table 4.3.

37

4.1. Titanium’s datasets

The SPBN models also flag as suspicious the answer connections from 10.0.2.5 and
10.0.2.7 to 10.0.2.10 (lines 5 and 6), which could be seen as a false alarm, although
it is not very disturbing, so it could be considered a minor error.

On the other hand, it captures the lateral movement attack which is perpetrated
around 14:52 to 10.0.2.5 and 10.0.2.7 (lines 4 and 7). The SPBN model also signals
an anomalous connection from 10.0.2.10 to 10.0.2.5 following up the main attack,
where the attacker is trying to access further information (lines 1, 3 and 9).

It is important to highlight that false positives are reduced by almost 100% thanks
to the correlation step, as there are significantly more false positives in the sepa-
rate anomaly result lists. Futhermore, this option is more convenient than setting a
threshold for one of the SPBN models, as deciding its value can be quite difficult and
adapting it to a particular network environment is not a straightforward task. We
may even have to design an algorithm so that the value is adapted periodically.

As for the VAE, the exact architecture was specified in Section 3.3.3. The number
of trainable parameters in the case of connections pre-processing is 121K, whereas
for the time_window pre-processing is 119K. Execution times, once the fine-tune the
hyper-parameters was done, were under 30 seconds as both datasets are relatively
small.

In terms of the reconstrucion errors of the normal and attack datasets, the difference
between their mean MSE values is smaller than in the case of the SPBN model. This
can be observed in Table 4.4 and in Figures 4.4(a) and 4.4(b), which illustrate the
reconstruction error or MSE distribution of the connections and time_window pre-
processing, respectively.

Pre-processing
Connections Time_window

Normal dataset 2.25 0.98
Attack dataset 3.19 1.56

Table 4.4: Reconstruction errors for both VAE models.

The final results of anomaly detection, after linking the outcomes of the two pre-
processing, can be seen in Table 4.5. Likewise the SPBN model, the VAE model also
captures both the port scanning attack to the five IP addresses: 10.0.2.5, 10.0.2.7,
10.0.2.100, 10.0.2.101 and 10.0.2.200, and the lateral movement to the victim IP
addresses 10.0.2.5 and 10.0.2.7. In this case, the lateral movement attack, which
is the most dangerous as the attacker tries to get access to private information, is
detected with higher priority compared to the port scanning attack.

Furthermore, only one entry of the table, number 2, can be considered a false posi-
tive. Thus, we could claim that false alarms have been almost completely eliminated
from the list of Table 4.5 that is provided to the end-user of our system.

Although both models have successfully detected both attacks with a minimum false
alarm rate, the SPBN model can provide more information regarding interpretability
of the model, in case we want to make further queries. Furthermore, it can better
diferentiate normal behaviour from anomalous one compared to the VAE model, as
we have shown in Table 4.2 and Figure 4.3.

38

Results

(a) Connections pre-processing. (b) Time_window pre-processing.

Figure 4.4: Mean reconstruction error probability density for normal and attack data
after connections pre-processing.

Source IP Time window End time Destination IP
address mark window mark addresses

1 10.0.2.10 24/02/2022 14:52 24/02/2022 14:52
10.0.2.5
10.0.2.7

2 10.0.2.5 24/02/2022 14:52 24/02/2022 14:52 10.0.2.10
3 10.0.2.10 24/02/2022 15:02 24/02/2022 15:02 10.0.2.5
4 10.0.2.10 24/02/2022 13:38 24/02/2022 13:38 10.0.2.7
5 10.0.2.10 24/02/2022 15:00 24/02/2022 15:00 10.0.2.5
6 10.0.2.10 24/02/2022 13:38 24/02/2022 13:38 10.0.2.101
7 10.0.2.10 24/02/2022 13:40 24/02/2022 13:40 10.0.2.5
8 10.0.2.10 24/02/2022 15:00 24/02/2022 15:02 10.0.2.5

9 10.0.2.10 24/02/2022 13:38 24/02/2022 13:38
10.0.2.5

10.0.2.100

10 10.0.2.10 24/02/2022 13:40 24/02/2022 13:40

10.0.2.7
10.0.2.100
10.0.2.101
10.0.2.200

11 10.0.2.10 24/02/2022 13:38 24/02/2022 13:38 10.0.2.200

Table 4.5: Final merged list of anomaly detection results for the VAE model.

We now move on to analysing the explanations automatically generated by our sys-
tem. The system obtains individual explanations for each of the anomalous connec-
tions. Figures 4.5 and 4.7 are examples of the type of explanations provided for two
instances from the connections pre-processing, while 4.6 and 4.8 show the explana-
tions of their associated data points from the time_window pre-processing.

The suspicious connection represented in Figure 4.5 is a port scanning attack event
from 10.0.2.10 to 10.0.2.5 between 13:38:50.43 and 13:38:51.42. We note that the

39

4.1. Titanium’s datasets

swin (source to destination advertisement values) and buffer_overflow features seem
to be the most relevant for the system to flag the connection as anomalous. Never-
theless, the expert disagreed with this, as he considered that the dur variable would
have been more reasonable, as the connections belonging to the port scanning attack
are usually very fast. When analysing the partial derivatives of the event from the
time_window pre-processing to which it its linked, we observe that the partial deriva-
tive for the entropy of destination ports and of destination IP addresses variables have
very large values, as shown in Figure 4.6. This confirmed what the cybersecurity ex-
perts expected from this type of attack.

The connection of Figure 4.7 is made from 10.0.2.10 to 10.0.2.5 between 14:52:01.58
and 14:52:01.64. It corresponds to the lateral movement attack. We can observe that
there is a clear winning feature, dollar_payload, to mark the connection as abnor-
mal. This is because the C$, IPC$ or ADMIN$ exploit (which is represented by the
dollar_payload variable) allows the attacker to stealthily gain control of the victim
machine. It is important to note that there is no one-to-one correspondence between
the presence of this variable and cyberattack, however it gives important clues to the
cybersecurity expert when analysing the explanations provided by our system. For
its associated data point from the time_window pre-processing, depicted in Figure
4.8, the partial derivative of the srcport_entropy variable takes a relatively large value
in comparison with the others. Nevertheless, the cybersecurity expert states that this
latter explanation is not particularly meaningful for this type of attack.

Figure 4.5: Explanations for the connections pre-processing based on partial deriva-
tives for a data point belonging to the port scanning attack with ID: 10.0.2.10 (source),
10.0.2.7 (destination), 13:38:50.43, 13:38:51.42.

After normalising the vectors of the individuals’ explanations based on partial deriva-
tives, we performed clustering. As we mentioned in Section 3.3.5, we applied several
techniques and finally decided to use the adaptive k-means algorithm for our system.

40

Results

Figure 4.6: Explanations for the time_window pre-processing based on partial deriva-
tives for a data point belonging to the port scanning attack with ID: 10.0.2.10, 13:38.

When using the adaptive k-means algorithm, we first have to order the explanation
vectors of anomalous events over time. Then, we tried two alternatives: considering
all these data as one stream or splitting the data into two parts with the same dura-
tion in time, so that the port scanning attack and the lateral movement attack are in
different data streams.

For both alternatives, the resulting number of clusters is two, although there are
some points that are assigned to the wrong cluster. Overall, we could claim that the
generated explanations are characteristic of the type of attack to which the connec-
tion belongs and can distinguish them from others. Furthermore, it is important to
remark that in the case of using two separate data streams, the algorithm is able to
detect concept drift and add another cluster.

We plot in Figure 4.9 how data points belonging to each attack are distributed. The X-
axis represents the partial derivative for the normalized dollar_payload variable, while
the Y-axis represents the partial derivative for the normalized swin variable. The data
points are coloured red and blue for the port scanning and lateral movement attacks,
respectively. Blue points that overlap with red ones are not correctly assigned to
their ground truth cluster by the clustering algorithm. However, these only represent
7.07% of the total number of anomalous points detected by our algorithm.

We also calculated the average explanations for each of the two clusters, which are
shown in Figures 4.10 and 4.11, respectively. The black bars in the figures reflect
the standard error for the partial derivatives, which are useful for assessing the sig-
nificance of the partial derivatives, that is, whether it is due to noise or not. We
observe in both figures that only a small subset of the features have large gradients

41

4.1. Titanium’s datasets

Figure 4.7: Explanations for the connections pre-processing based on partial deriva-
tives for a data point belonging to the lateral movement attack ID: 10.0.2.10 (source),
10.0.2.5 (destination),14:52:01.58, 14:52:01.64.

with low standard errors, which are swin and buffer_overflow for Figure 4.10 and
dollar_payload for Figure 4.11. This is in agreement with what we observed in the
examples of individual explanations.

Finally, we performed time series analysis using the information from the final merged
list of anomaly detection results, studying the time series of the indicated IP ad-
dresses.

As we mentioned earlier, we decided to apply statistical techniques for this analysis.
We discarded LSTM networks because they overfitted the noise in the dataset and the
predictions made by the model were too random, leading to a decrease in reliability
for detecting the exact timing of anomalies and consequently a rise in false positives.

We analysed the time series of the different features that were found to be significant
for each type of attack, which are those with the highest values for the partial deriva-
tives. In particular, we examined the time series of the variables swin, buffer_overflow
and dollar_payload. When analysing these time series, we can only obtain the exact
time of one of the cyberattacks, as neither of them is representative of both attacks.
However, by examining the time series of the number of bytes sent, we can detect
the timing of both attacks. As mentioned in Section 3.3.6, we performed time series
analysis for the most relevant source and destination IP address pairs in the final
anomaly lists, in our case 10.0.2.10 and 10.0.2.5, and 10.0.2.10 and 10.0.2.7.

Below we detail the exact statistical analysis for the source and destination IP ad-
dresses 10.0.2.10 and 10.0.2.5 respectively, which is the most repeated combination
of source and destination addresses in the final anomaly detection results for both

42

Results

Figure 4.8: Explanations for the time_window pre-processing based on partial deriva-
tives for a data point belonging to the lateral movement attack with ID: 10.0.2.10,
14:52.

Figure 4.9: Distribution of anomalous points of the port scanning (red) and lateral
movement (blue) attacks with respect to the variables dollar_payload (X-axis) and
swin (Y-axis).

models.

First, we decompose the selected time series into trend, seasonal and residual, in
order to get rid of the noise present in traffic data. Using the seasonal series for nor-
mal and attack data of source IP address 10.0.2.5, we could correlate the time series
after adjusting the “lag” between them, as illustrated in Figure 4.12. We can observe

43

4.1. Titanium’s datasets

Figure 4.10: Average of the normalized partial derivatives for the port scanning attack
cluster.

Figure 4.11: Average of the normalized partial derivatives for the lateral movement
attack cluster.

that there is a clear periodicity in the normal behaviour data, that also appears in
the attack data but which breaks down at the moments when an attack is perpe-

44

Results

trated. We then studied Pearson correlation between the adjusted series, observing a
clear difference when both complete series are analysed (0.67) versus when we limit
ourselves to the time interval between the two attacks (0.91). Also, points where the
difference between both series is remarkable were marked as suspicious (for clarity
they are not shown in the figure) and stored in a vector.

In addition, we examined the time series of the attacker’s and victim’s IP addresses, as
shown in Figure 4.13, and performed rolling window correlation synchrony between
them, looking for local maxima. We finally correlated the local maxima points with
the suspicious points of the previous step to obtain the exact time of attacks, which
are 13:39 for the port scanning attack and 14:52 for the lateral movement.

It is important to note that although the time series analysis could give us a more ac-
curate value of the time of the attack, the accuracy of the 2-minute window obtained
in the final merged tables for both models is sufficient in an industrial environment,
which is our target.

Figure 4.12: Time series correlation of normal (green) and attack (blue) data for des-
tination IP address 10.0.2.5.

Figure 4.13: Attacker 10.0.2.10 (red) and victim 10.0.2.5 (blue) time series for the
attack dataset.

45

Chapter 5

Conclusions and future research

5.1 Conclusions

In this work, we have presented an anomaly-based network IDS using semi-supervi-
sed models. Specifically, we have compared the performance of two models: a semi-
parametric Bayesian network (and their hybrid version when needed) and a varia-
tional autoencoder. Although we have designed our system for the field of cybersecu-
rity, it can be applied to any other field for anomaly detection due to its adaptability
to the type of input data.

The proposed system has been tested on network traffic data provided by Titanium
Industrial Security S.L. There, we have mainly dealt with two different types of cyber-
attacks: a port scanning attack along with a lateral movement attack on two different
devices of the simulated network. While the first is easier to detect, as a single ma-
chine is scanning all the ports of all available devices on the network; the second is
more challenging due to its stealthy nature, where the attacker uses evasive tech-
niques for trying not to raise any alarm.

Due to the fact that the attack dataset is not properly labelled, the evaluation stage
has been a difficult task and may not have been as accurate and precise as it could
have been.

It is also important to highlight that, unlike others, our system makes no prior as-
sumptions of the underlying distribution of continuous variables. In many papers, a
Gaussian distribution is assumed, but by performing statistical tests we were able to
verify that this is not always the case.

In scenarios where the pre-processed dataset, which is the input to our semi-supervi-
sed model, contains both continuous and discrete variables, the use of a HSPBN
is an excellent choice, because it can perfectly fits the input data, that is, it can
model both categorical and continuous features, without prior assumptions about the
probability distribution of the latter. Nevertheless, the VAE we have employed cannot
model discrete probability distributions, thus we had to treat discrete variables as
continuous, which leads to a slight deterioration of its performance. It would be
interesting to investigate this last point further.

In order to create a system that addresses one of the weaknesses of IDSs, which is
the detection of a high number of false alarms, we decided to correlate the anomaly

47

5.2. Future work

detection results using two alternative pre-processing of the raw traffic data. This
results in a more robust system.

Finally, special attention has been paid to the explainability aspects of our system.
Given that from the outset, our aim was not only to have an efficient tool for anomaly
detection, but also an explainable one, individual and collective explanations are
therefore a key element in our work.

For this purpose, we have tried to identify the features that are most relevant to the
model to mark an event as an anomaly. To achieve this, we have analysed the partial
derivate for each variable of a flagged anomalous event with respect to the objective
function of the used model (SPBN or VAE).

In addition, we grouped anomalies with similar information for their partial deriva-
tives into clusters, in order to gather events belonging to the same type of cyberattack.
The collective information or fingerprint of each type of cyberattack, which is obtained
from the average of the individual partial derivates of the events that are part of the
same cluster, can be seen as a summary of collective explanations. This is very con-
venient and helpful for a cybersecurity analyst, who may have to examine malicious
events afterwards.

The anomaly detection results obtained for the attack dataset were remarkable for
both models, capturing both types of cyberattacks and identifying the attacker’s IP
address. Besides, the cybersecurity expert reviewed the results and explanations of
our system, and admitted that the individual and collective information to explain
the malicious events was very useful and overall corresponded to what he expected
for each particular type of cyberattack.

5.2 Future work

Despite the overall good performance of our system, some refinements or improve-
ments could be made. Hence there are several research lines that can be further
investigated in the future:

• An important aspect that could be studied further is scalability, as we have
been working with very limited datasets, not in terms of number of devices,
as we mentioned that the proposed system will be implemented locally in the
network, but with regards to the number of events or the duration in time.

Although we have taken this into account when developing the system, it would
be interesting to test its performance with larger datasets. When doing so, sev-
eral decisions would have to be made. For example, we would have to decide
how often the system will output a list of anomalous events along with their
corresponding explanations.

Moreover, in this case where we are showing anomalies to the system user with
a certain periodicity, the clustering stage must necessarily be performed using
data stream clustering techniques such as the one we described in section 3.3.5
with the adaptive k-means algorithm. As before, anomalies which form part of
the same type of cyberattack will usually come in a sequence, which serves as
an advantage to decide whether new anomalies belong to an existing cluster or
otherwise a new cluster should be formed.

48

Conclusions and future research

Unlike the case of Titanium ’s dataset, in a general situation it is not possible to
store the whole explanation data, so it is necessary to use a special data struc-
ture to maintain a synthesis of them. Storing an agglomerative sum or storing
only representative samples of the data are two popular alternative structures.
Moreover, users are often interested in the most recent data instances rather
than in the previous ones. This situation creates a requirement of obsoles-
cence for previous data instances. In data stream clustering, it is solved by time
window models, such as damped window, landmark window or sliding window
models.

Finally, it is important to note that the adaptive k-means algorithm has a limita-
tion because of being k-means based, which is that only hyper-spherical clusters
can be detected. It would be interesting to further try other data stream cluster-
ing algorithms, such as I-HASTREAM [Hassani et al., 2016] that claims to have
no limitations in this sense.

• Although our system will run locally, as mentioned above, it is important to
carry out future work on how the different local systems will comunicate with
each other to obtain a centralised response.

• Another essential element is adaptability to new network environments. By
this we do not mean deploying the system in a new client company, because
when this is done you first have to train the normal behaviour model with the
corresponding data, which is straighforward due to the design of our system;
but we do mean once the system is up and running, normal behaviour of the
network may change and we have to cope with this.

It is true that in industrial environments, on which we focus, these changes
in normal behaviour are gradual and not sudden as might be the case in IT
environments. However, it is necessary that the system can self-adapt to this
new normality, otherwise there could be an increase in false positives, which
deteriorates the reliability of the system.

Then, investigating gradual concept drift might be more effective than constantly
retraining the model.

• It would be interesting to analyse and include new variables in the pre-processed
datasets which could provide deeper insights to detect malicious instances. This
should be done together with the help of a cybersecurity expert who could asses
which features would be meaningful and useful in generating explanations.

A possible example could be for the time_window pre-processing, the percentage
of particular sequences of TCP flags in the time window. Particular sequences
would have to be chosen with the help of a cybersecurity expert, selecting those
that would be useful in case a security analyst had to manually revise the output
of our model.

As we want a lightweight system, we must carefully choose the variables that we
include so as not to degrade its efficiency and speed. Moreover, we have tried to
ensure that our system does not focus on a particular type of cyberattack, but
rather that it is multidisciplinary in the sense of detecting attacks of different
natures. Hence, new variables should not be very specific of a particular type of
cyberattack.

49

5.2. Future work

• As mentioned above, to best fit categorical data, a VAE model that can handle
discrete probability distributions should be analysed.

It would also be interesting to study other variants of VAE model such as the
conditional VAE (CVAE) model [Sohn et al., 2015]. The CVAE was developed as
an extension of the VAE to allow for additional auxiliary labels that are available.
Hence, with CVAE, we can consider training the anomaly detection system from
multiple data sources that have different behaviours, as the normal behaviour
of a particular device might differ greatly from others.

• To refine the decisions of our system and improve the accuracy of future pre-
dictions, feedback from the cybersecurity analyst could be incorporated. Two
possibilities for this are to either add a penalty to the anomaly score of events
with similar characteristics to the ones the analyst has discarded, or train with
the provided feedback a supervised model in conjunction with semi-supervised
models to predict attacks. As more feedback is gathered, the model is constantly
refined.

• Another research direction would be to adjust the system to be able to perform
real-time anomaly detection together with the generation of explanations. This
would be very useful in reducing the time lag from detection of the cyberattack
until action is taken.

With regards to the clustering stage, up to the recent years, most of data stream
clustering algorithms were online-offline algorithms. A synopsis of the data is
employed in the online phase (synopsis of the data stream is updated when a
new instance is received, thus remaining up-to-date) and the final clusters are
generated in the offline phase. In this type of algorithms, the offline phase is
executed periodically or upon user request. Therefore, final clustering results
are obtained with a latency and they are not up to date most of the times.

However, there are several recent fully online algorithms in the literature, thus
we could achieve real-time clustering of anomaly explanations. Fully online
algorithms maintain the final clustering results up to date. Therefore, users get
the results with no latency. An example of a real-time clustering algorithm we
could use is online k-means [Cohen-Addad et al., 2021].

• In terms of the determination of thresholds before correlating the lists of results
from both pre-processing, we could investigate different alternatives to refine
our choice for each specific industrial environment.

• Finally, it would be interesting to consider a hybrid approach for IDS, that is
combining our anomaly-based system with a signature-based IDS that could
lead to improved detection accuracy. Or even, develop a host-based IDS in
combination with our system, which could also exploit event log information.

50

Bibliography

Abbes, T., Bouhoula, A., & Rusinowitch, M. (2010). Efficient decision tree for protocol
analysis in intrusion detection. International Journal of Security and Networks,
5(4), 220–235. https://doi.org/10.1504/IJSN.2010.037661

Agarap, A. F. M. (2018). A neural network architecture combining gated recurrent
unit (GRU) and support vector machine (SVM) for intrusion detection in net-
work traffic data. Proceedings of the 2018 10th International Conference on
Machine Learning and Computing, 26–30.

Aggarwal, C. C. (2017). Outlier Analysis. Springer.
Aldweesh, A., Derhab, A., & Emam, A. (2020). Deep learning approaches for anomaly-

based intrusion detection systems: A survey, taxonomy, and open issues. Know-
ledge-Based Systems, 189, 105–124.

An, X., Jutla, D., & Cercone, N. (2006). Privacy intrusion detection using dynamic
Bayesian networks. Proceedings of the 8th International Conference on Elec-
tronic Commerce, 208–215. https://doi.org/10.1145/1151454.1151493

Anderson, J. P. (1980). Computer security threat monitoring and surveillance. Tech-
nical Report, James P. Anderson Company.

Ariyaluran Habeeb, R. A., Nasaruddin, F., Gani, A., Amanullah, M. A., Hashem,
I., Ahmed, E., & Imran, M. (2019). Clustering-based real-time anomaly de-
tection—a breakthrough in big data technologies. Transactions on Emerging
Telecommunications Technologies, e3647. https://doi.org/10.1002/ett.3647

Arthur, D., & Vassilvitskii, S. (2007). K-means++: The advantages of careful seed-
ing. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, 1027–1035.

Atienza, D. (2021). Nonparametric Models and Bayesian Networks. Applications to
Anomaly Detection (Doctoral dissertation). ETSI Informáticos, Universidad Politéc-
nica de Madrid.

Atienza, D., Larrañaga, P., & Bielza, C. (2022a). Hybrid semiparametric Bayesian
networks. TEST, 31, 299–327. https://doi.org/10.1007/s11749-022-00812-3

Atienza, D., Larrañaga, P., & Bielza, C. (2022b). PyBNesian: An etensible Python pack-
age for Bayesian networks. Neurocomputing, accepted for publication.

Atienza, D., Larrañaga, P., & Bielza, C. (2022c). Semiparametric Bayesian networks.
Information Sciences, 584, 564–582. https://doi .org/https://doi .org/10.
1016/j.ins.2021.10.074

Ayyarao, T. S., & Kiran, I. R. (2021). A two-stage Kalman filter for cyber-attack detec-
tion in automatic generation control system. Journal of Modern Power Systems
and Clean Energy, (1), 50–59.

Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado,
A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Her-

51

BIBLIOGRAPHY

rera, F. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible AI. Information Fusion, 58,
82–115. https://doi.org/https://doi.org/10.1016/j.inffus.2019.12.012

Barrett, B., Camuto, A., Willetts, M., & Rainforth, T. (2022). Certifiably robust varia-
tional autoencoders. International Conference on Artificial Intelligence and Statis-
tics, 3663–3683.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep ar-
chitectures. Neural Networks: Tricks of the Trade, 437–478.

Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2016). Variational inference: A review
for statisticians. Journal of the American Statistical Association, 112, 859–877.

Boukabour, S., & Masmoudi, A. (2021). Semiparametric Bayesian networks for con-
tinuous data. Communications in Statistics - Theory and Methods, 50(24), 5974–
5996. https://doi.org/10.1080/03610926.2020.1738486

Boukerche, A., Zheng, L., & Alfandi, O. (2020). Outlier detection: Methods, models,
and classification. ACM Computing Surveys, 53(3). https://doi.org/10.1145/
3381028

Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: Identifying density-
based local outliers. Proceedings of the 2000 ACM SIGMOD International Con-
ference on Management of Data, 93–104. https://doi.org/10.1145/342009.
335388

Camuto, A., Willetts, M., Roberts, S., Holmes, C., & Rainforth, T. (2021). Towards a
theoretical understanding of the robustness of variational autoencoders. Inter-
national Conference on Artificial Intelligence and Statistics, 3565–3573.

Carvalho, D. V., Pereira, E. M., & Cardoso, J. S. (2019). Machine learning inter-
pretability: A survey on methods and metrics. Electronics, 8(8). https://doi.
org/10.3390/electronics8080832

Caudle, K., Karlsson, C., & Pyeatt, L. D. (2015). Using density estimation to detect
computer intrusions. Proceedings of the 2015 ACM International Workshop on
International Workshop on Security and Privacy Analytics, 43–48. https://doi.
org/10.1145/2713579.2713584

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM
Computing Surveys, 41(3). https://doi.org/10.1145/1541880.1541882

Chawla, N. V. (2009). Data mining for imbalanced datasets: An overview. Data Mining
and Knowledge Discovery Handbook, 875–886.

Chen, J., Su, C., Yeh, K.-H., & Yung, M. (2018). Special issue on advanced persistent
threat. Future Generation Computer Systems, 79, 243–246.

Cohen-Addad, V., Guedj, B., Kanade, V., & Rom, G. (2021). Online k-means clus-
tering. International Conference on Artificial Intelligence and Statistics, 1126–
1134.

Day, J. D., & Zimmermann, H. (1983). The OSI reference model. Proceedings of the
IEEE, 71(12), 1334–1340.

Derks, I. P., & de Waal, A. (2020). A taxonomy of explainable Bayesian networks.
Artificial Intelligence Research, 220–235.

Dhanabal, L., & Shantharajah, S. P. (2015). A study on NSL-KDD dataset for intru-
sion detection system based on classification algorithms. Computer Science,
4(6), 446–452.

Djenouri, Y., Belhadi, A., Lin, J. C.-W., Djenouri, D., & Cano, A. (2019). A survey on
urban traffic anomalies detection algorithms. IEEE Access, 7, 12192–12205.
https://doi.org/10.1109/ACCESS.2019.2893124

52

BIBLIOGRAPHY

Dor, D., & Tarsi, M. (1992). A simple algorithm to construct a consistent extension of a
partially oriented graph. Technical report R-185, Cognitive Systems Laboratory,
Department of Computer Science, UCLA.

Ennaji, S., Akkad, N. E., & Haddouch, K. (2021). A powerful ensemble learning ap-
proach for improving network intrusion detection system (NIDS). 2021 5th In-
ternational Conference On Intelligent Computing in Data Sciences, 1–6. https:
//doi.org/10.1109/ICDS53782.2021.9626727

Ertoz, L., Eilertson, E., Lazarevic, A., Tan, P.-N., Kumar, V., Srivastava, J., & Dokas,
P. (2004). MINDS-Minnesota intrusion detection system. Next Generation Data
Mining, 199–218.

Eskin, E. (2000). Anomaly detection over noisy data using learned probability distri-
butions. Proceedings of the 17th International Conference on Machine Learning,
255–262.

Evangelou, M., & Adams, N. M. (2020). An anomaly detection framework for cyber-
security data. Computers & Security, 97, 101941. https : / / doi . org / https :
//doi.org/10.1016/j.cose.2020.101941

Falcão, F., Zoppi, T., Silva, C. B. V., Santos, A., Fonseca, B., Ceccarelli, A., & Bon-
davalli, A. (2019). Quantitative comparison of unsupervised anomaly detection
algorithms for intrusion detection. Proceedings of the 34th ACM/SIGAPP Sym-
posium on Applied Computing, 318–327.

Fan, W., Miller, M., Stolfo, S., Lee, W., & Chan, P. (2004). Using artificial anomalies to
detect unknown and known network intrusions. Knowledge and Information
Systems, 6(5), 507–527.

Fei, L., Ting, K. M., & Zhou, Z.-H. (2008). Isolation forest. 2008 8th IEEE International
Conference on Data Mining, 413–422. https://doi.org/10.1109/ICDM.2008.17

Fernando, T., Gammulle, H., Denman, S., Sridharan, S., & Fookes, C. (2021). Deep
learning for medical anomaly detection–a survey. ACM Computing Surveys,
54(7), 1–37.

Fiore, U., Palmieri, F., Castiglione, A., & De Santis, A. (2013). Network anomaly de-
tection with the restricted Boltzmann machine. Neurocomputing, 122, 13–23.
https://doi.org/https://doi.org/10.1016/j.neucom.2012.11.050

Forgy, E. W. (1965). Cluster analysis of multivariate data : Efficiency versus inter-
pretability of classifications. Biometrics, 21, 768–769.

Gao, X., Shan, C., Hu, C., Niu, Z., & Liu, Z. (2019). An adaptive ensemble machine
learning model for intrusion detection. IEEE Access, 7, 82512–82521.

García, N. M. (2019). Multi-agent system for anomaly detection in industry 4.0 using
machine learning techniques. Advances in Distributed Computing and Artificial
Intelligence Journal, 8(4), 33–40.

García-Teodoro, P., Díaz-Verdejo, J., Maciá-Fernández, G., & Vázquez, E. (2009).
Anomaly-based network intrusion detection: Techniques, systems and chal-
lenges. Computers & Security, 28(1), 18–28. https://doi.org/https://doi.org/
10.1016/j.cose.2008.08.003

Geiger, D., & Heckerman, D. (1994). Learning Gaussian networks. Proceedings of the
10th International Conference on Uncertainty in Artificial Intelligence, 235–243.

Geiger, D., & Heckerman, D. (2002). Parameter priors for directed acyclic graphical
models and the characterization of several probability distributions. The An-
nals of Statistics, 30(5), 1412–1440. https://doi.org/10.1214/aos/1035844981

53

BIBLIOGRAPHY

Geiger, D., Verma, T., & Pearl, J. (1990). D-separation: From theorems to algorithms.
Uncertainty in Artificial Intelligence (pp. 139–148). North-Holland. https://doi.
org/https://doi.org/10.1016/B978-0-444-88738-2.50018-X

Ghafouri, A., Abbas, W., Laszka, A., Vorobeychik, Y., & Koutsoukos, X. (2016). Op-
timal thresholds for anomaly-based intrusion detection in dynamical envi-
ronments. International Conference on Decision and Game Theory for Security,
415–434.

Glover, F., & Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers.
Goldstein, M., & Dengel, A. R. (2012). Histogram-based outlier score (HBOS): A fast

unsupervised anomaly detection algorithm. In Proceedings of 35th German
Conference on Artificial Intelligence, 59–63.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Proceedings of
the 27th International Conference on Neural Information Processing Systems -
Volume 2, 2672–2680.

Greggio, N. (2013). Learning anomalies in IDSs by means of multivariate finite mix-
ture models. 2013 IEEE 27th International Conference on Advanced Information
Networking and Applications, 251–258. https://doi.org/10.1109/AINA.2013.
151

Hannan, A., Gruhl, C., & Sick, B. (2021). Anomaly based resilient network intrusion
detection using inferential autoencoders. 2021 IEEE International Conference
on Cyber Security and Resilience, 1–7. https://doi.org/10.1109/CSR51186.
2021.9527980

Hassani, M., Spaus, P., Cuzzocrea, A., & Seidl, T. (2016). I-HASTREAM: Density-
based hierarchical clustering of big data streams and its application to big
graph analytics tools. 2016 16th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing, 656–665. https://doi.org/10.1109/CCGrid.
2016.102

Hofmann, R., & Tresp, V. (1995). Discovering structure in continuous variables using
Bayesian networks. Proceedings of the 8th International Conference on Neural
Information Processing Systems, 500–506.

Holder, E., & Wang, N. (2021). Explainable artificial intelligence (XAI) interactively
working with humans as a junior cyber analyst. Human-Intelligent Systems
Integration, 3(2), 139–153. https://doi.org/10.1007/s42454-020-00021-z

Hu, W., Gao, J., Li, B., Wu, O., Du, J., & Maybank, S. (2020). Anomaly detection us-
ing local kernel density estimation and context-based regression. IEEE Trans-
actions on Knowledge and Data Engineering, 32(2), 218–233. https://doi.org/
10.1109/TKDE.2018.2882404

Iliyasu, A. S., & Deng, H. (2022). N-GAN: a novel anomaly-based network intrusion
detection with generative adversarial networks. International Journal of Infor-
mation Technology, 3, 1–11.

Imrana, Y., Xiang, Y., Ali, L., & Abdul-Rauf, Z. (2021). A bidirectional LSTM deep
learning approach for intrusion detection. Expert Systems with Applications,
185, 115524. https://doi.org/https://doi.org/10.1016/j.eswa.2021.115524

Jabbar, M., Aluvalu, R., & Reddy S, S. S. (2017). RFAODE: A novel ensemble intrusion
detection system. Procedia Computer Science, 115, 226–234. https://doi.org/
https://doi.org/10.1016/j.procs.2017.09.129

54

BIBLIOGRAPHY

Jain, M., & Kaur, G. (2021). Distributed anomaly detection using concept drift de-
tection based hybrid ensemble techniques in streamed network data. Cluster
Computing, 24(3), 2099–2114.

Jan, S. U., Ahmed, S., Shakhov, V., & Koo, I. (2019). Toward a lightweight intru-
sion detection system for the internet of things. IEEE Access, 7, 42450–42471.
https://doi.org/10.1109/ACCESS.2019.2907965

Jing, S., Li, M., Sun, Y., & Zhang, Y. (2021). Research on prediction of attack behavior
based on HMM. 2021 IEEE 4th Advanced Information Management, Communi-
cates, Electronic and Automation Control Conference (IMCEC), 4, 1580–1583.

Jinwon, A., & Sungzoon, C. (2015). Variational autoencoder based anomaly detection
using reconstruction probability. Special Lecture on IE, 2, 1–18.

Kamalov, F. (2020). Kernel density estimation based sampling for imbalanced class
distribution. Information Sciences, 512, 1192–1201.

Kang, H., Liu, B., Mišić, J., Mišić, V. B., & Chang, X. (2020). Assessing security and
dependability of a network system susceptible to lateral movement attacks.
2020 International Conference on Computing, Networking and Communications,
513–517.

Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019). Survey of intrusion
detection systems: Techniques, datasets and challenges. Cybersecurity, 2(1),
1–22.

Kind, A., Stoecklin, M. P., & Dimitropoulos, X. A. (2009). Histogram-based traffic
anomaly detection. IEEE Transactions on Network and Service Management, 6,
110–121.

Kingma, D., & Welling, M. (2014). Auto-encoding variational Bayes. Proceedings of the
2nd International Conference on Learning Representations, 1–14.

Koc, L., Mazzuchi, T. A., & Sarkani, S. (2012). A network intrusion detection system
based on a hidden naïve Bayes multiclass classifier. Expert Systems with Ap-
plications, 39(18), 13492–13500. https://doi.org/https://doi.org/10.1016/j.
eswa.2012.07.009

Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models. Principles and Tech-
niques. The MIT Press. https : / / mitpress . mit . edu / books / probabilistic -
graphical-models

Kulkarni, A., & Bush, S. (2006). Detecting distributed denial-of-service attacks using
Kolmogorov complexity metrics. Journal of Network and Systems Management,
14(1), 69–80.

Laird, N. (1993). 14 The EM algorithm. Computational Statistics (pp. 509–520). Else-
vier. https://doi.org/https://doi.org/10.1016/S0169-7161(05)80138-5

Leevy, J. L., & Khoshgoftaar, T. M. (2020). A survey and analysis of intrusion detection
models based on CSE-CIC-IDS2018 Big Data. Journal of Big Data, 7(1), 104.
https://doi.org/10.1186/s40537-020-00382-x

Leslie, D. (2019). Understanding artificial intelligence ethics and safety: A guide for
the responsible design and implementation of AI systems in the public sector.
The Alan Turing Institute.

Li, L., Zhang, H., Peng, H., & Yang, Y. (2018). Nearest neighbors based density peaks
approach to intrusion detection. Chaos, Solitons & Fractals, 110, 33–40. https:
//doi.org/https://doi.org/10.1016/j.chaos.2018.03.010

Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the
concept of interpretability is both important and slippery. Queue, 16(3), 31–57.
https://doi.org/10.1145/3236386.3241340

55

BIBLIOGRAPHY

Liu, H., & Lang, B. (2019). Machine learning and deep learning methods for intrusion
detection systems: A survey. Applied Sciences, 9(20), 4396.

Lomio, F., Baselga, D. M., Moreschini, S., Huttunen, H., & Taibi, D. (2020). RARE: a
labeled dataset for cloud-native memory anomalies. Proceedings of the 4th ACM
SIGSOFT International Workshop on Machine-Learning Techniques for Software-
Quality Evaluation, 19–24.

Lopez Pinaya, W. H., Vieira, S., Garcia-Dias, R., & Mechelli, A. (2020). Chapter 11 -
Autoencoders. Machine learning (pp. 193–208). Academic Press. https://doi.
org/https://doi.org/10.1016/B978-0-12-815739-8.00011-0

Ludwig, S. A. (2017). Intrusion detection of multiple attack classes using a deep neu-
ral net ensemble. 2017 IEEE Symposium Series on Computational Intelligence,
1–7. https://doi.org/10.1109/SSCI.2017.8280825

Ludwig, S. A. (2019). Applying a neural network ensemble to intrusion detection.
Journal of Artificial Intelligence and Soft Computing Research, 9, 177–188.

Mahdavifar, S., & Ghorbani, A. A. (2020). DeNNeS: Deep embedded neural network
expert system for detecting cyber attacks. Neural Computing and Applications,
32(18), 14753–14780. https://doi.org/10.1007/s00521-020-04830-w

Malik, A. J., & Khan, F. A. (2018). A hybrid technique using binary particle swarm
optimization and decision tree pruning for network intrusion detection. Cluster
Computing, 21(1), 667–680. https://doi.org/10.1007/s10586-017-0971-8

Martí, L., Sanchez-Pi, N., Molina, J. M., & Garcia, A. C. B. (2015). Anomaly detec-
tion based on sensor data in petroleum industry applications. Sensors, 15(2),
2774–2797.

Mehmood, A., Mukherjee, M., Ahmed, S. H., Song, H., & Malik, K. M. (2018). NBC-
MAIDS: Naïve Bayesian classification technique in multi-agent system-enrich-
ed IDS for securing IoT against DDoS attacks. The Journal of Supercomputing,
74(10), 5156–5170. https://doi.org/10.1007/s11227-018-2413-7

Meng, Y., & Kwok, L.-f. (2012). Adaptive false alarm filter using machine learning in
intrusion detection. Practical Applications of Intelligent Systems, 573–584.

Mihaljević, B., Bielza, C., & Larrañaga, P. (2021). Bayesian networks for interpretable
machine learning and optimization. Neurocomputing, 456(100), 648–665. https:
//doi.org/10.1016/j.neucom.2021.01.138

Moustafa, N., Creech, G., & Slay, J. (2017). Big data analytics for intrusion detection
system: Statistical decision-making using finite Dirichlet mixture models. Data
Analytics and Decision Support for Cybersecurity: Trends, Methodologies and
Applications (pp. 127–156). Springer International Publishing. https ://doi .
org/10.1007/978-3-319-59439-2_5

Moustafa, N., & Slay, J. (2015). UNSW-NB15: A comprehensive data set for net-
work intrusion detection systems (UNSW-NB15 network data set). 2015 Mil-
itary Communications and Information Systems Conference, 1–6. https://doi.
org/10.1109/MilCIS.2015.7348942

Noble, C. C., & Cook, D. J. (2003). Graph-based anomaly detection. Proceedings of the
9th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 631–636. https://doi.org/10.1145/956750.956831

Ogbechie, A., Díaz-Rozo, J., Larrañaga, P., & Bielza, C. (2017). Dynamic Bayesian
network-based anomaly detection for in-process visual inspection of laser sur-
face heat treatment. Machine Learning for Cyber Physical Systems (pp. 17–24).
CRC Press.

56

BIBLIOGRAPHY

Pang, G., Shen, C., Cao, L., & Hengel, A. V. D. (2021). Deep learning for anomaly
detection: A review. ACM Computing Surveys, 54(2), 1–38. https://doi.org/10.
1145/3439950

Parzen, E. (1962). On estimation of a probability density function and mode. The
Annals of Mathematical Statistics, 33(3), 1065–1076. https : / / doi . org / 10 .
1214/aoms/1177704472

Paula, E. L., Ladeira, M., Carvalho, R. N., & Marzagao, T. (2016). Deep learning
anomaly detection as support fraud investigation in Brazilian exports and
anti-money laundering. 2016 15th IEEE International Conference on Machine
Learning and Applications, 954–960.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann.
https://doi.org/10.1016/c2009-0-27609-4

Peng, W., Li, Y., Zhang, Z., Hu, T., Li, Z., & Liu, D. (2019). An optimization method
for intrusion detection classification model based on deep belief network. IEEE
Access, 7, 87593–87605. https://doi.org/10.1109/ACCESS.2019.2925828

Provost, F. (2000). Machine learning from imbalanced data sets. Proceedings of the
AAAI’2000 Workshop on Imbalanced Datasets, 68(2000), 1–3.

Puschmann, D., Barnaghi, P., & Tafazolli, R. (2017). Adaptive clustering for dynamic
IoT data streams. IEEE Internet of Things Journal, 4(1), 64–74. https://doi.
org/10.1109/JIOT.2016.2618909

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density func-
tion. The Annals of Mathematical Statistics, 27(3), 832–837. https://doi.org/
10.1214/aoms/1177728190

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence,
1(5), 206–215. https://doi.org/10.1038/s42256-019-0048-x

Sakr, M. M., Tawfeeq, M. A., & El-Sisi, A. B. (2019). Network intrusion detection sys-
tem based PSO-SVM for cloud computing. International Journal of Computer
Network and Information Security, 10(3), 22.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics,
6(2), 461–464. https://doi.org/10.1214/aos/1176344136

Sedik, A., Emara, H. M., Hamad, A., Shahin, E. M., A El-Hag, N., Khalil, A., Ibrahim,
F., Elsherbeny, Z. M., Elreefy, M., Zahran, O., et al. (2019). Efficient anomaly
detection from medical signals and images. International Journal of Speech
Technology, 22(3), 739–767.

Shachter, R. D., & Kenley, C. R. (1989). Gaussian influence diagrams. Management
Sciences, 35(5), 527–550.

Shen, X., & Agrawal, S. (2006). Kernel density estimation for an anomaly based in-
trusion detection system. Proceedings of the 2006 International Conference on
Machine Learning; Models, Technologies & Applications, 161–167.

Shone, N., Ngoc, T. N., Phai, V. D., & Shi, Q. (2018). A deep learning approach to net-
work intrusion detection. IEEE Transactions on Emerging Topics in Computa-
tional Intelligence, 2(1), 41–50. https://doi.org/10.1109/TETCI.2017.2772792

Singh, N. B., Singh, M. M., Sarkar, A., & Mandal, J. K. (2021). A novel wide &
deep transfer learning stacked GRU framework for network intrusion detec-
tion. Journal of Information Security and Applications, 61, 102899.

Smiti, A. (2020). A critical overview of outlier detection methods. Computer Science
Review, 38, 100306. https://doi.org/https://doi.org/10.1016/j.cosrev.2020.
100306

57

BIBLIOGRAPHY

Sohn, K., Yan, X., & Lee, H. (2015). Learning structured output representation us-
ing deep conditional generative models. Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 2, 3483–3491.

Spirtes, P. L., Glymour, C., & Scheines, R. (2001). Causation, Prediction, and Search,
2nd Edition. The MIT Press.

Strobl, E. V., Zhang, K., & Visweswaran, S. (2018). Approximate kernel-based condi-
tional independence tests for fast non-parametric causal discovery. Journal of
Causal Inference, 7(1), 10–34.

Sun, X., Dai, J., Liu, P., Singhal, A., & Yen, J. (2018). Using Bayesian networks
for probabilistic identification of zero-day attack paths. IEEE Transactions on
Information Forensics and Security, 13(10), 2506–2521. https://doi.org/10.
1109/TIFS.2018.2821095

Szczepański, M., Choraś, M., Pawlicki, M., & Kozik, R. (2020). Achieving explainabil-
ity of intrusion detection system by hybrid oracle-explainer approach. 2020
International Joint Conference on Neural Networks, 1–8. https://doi.org/10.
1109/IJCNN48605.2020.9207199

Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A. R., & Ghogho, M. (2016). Deep
learning approach for network intrusion detection in software defined network-
ing. 2016 International Conference on Wireless Networks and Mobile Communi-
cations, 258–263. https://doi.org/10.1109/WINCOM.2016.7777224

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. (2009). A detailed analysis of the
KDD CUP 99 data set. IEEE Symposium. Computational Intelligence for Security
and Defense Applications, CISDA, 2, 1–6. https://doi.org/10.1109/CISDA.
2009.5356528

Teng, S., Wu, N., Zhu, H., Teng, L., & Zhang, W. (2018). SVM-DT-based adaptive and
collaborative intrusion detection. IEEE/CAA Journal of Automatica Sinica, 5(1),
108–118. https://doi.org/10.1109/JAS.2017.7510730

Thiprungsri, S., & Vasarhelyi, M. A. (2011). Cluster analysis for anomaly detection
in accounting data: An audit approach. The International Journal of Digital
Accounting Research, 11, 69–84.

Tian, L., & Jianwen, W. (2009). Research on network intrusion detection system
based on improved k-means clustering algorithm. 2009 International Forum
on Computer Science-Technology and Applications, 1, 76–79. https://doi.org/
10.1109/IFCSTA.2009.25

Tsamardinos, I., Brown, L. E., & Aliferis, C. F. (2006). The max-min hill-climbing
Bayesian network structure learning algorithm. Machine Learning, 65, 31–78.

Turcotte, M., Kent, A., & Hash, C. (2018). Data Science for Cyber-Security. Security
Science and Technology (pp. 1–22). World Scientific.

Vanhoeyveld, J., Martens, D., & Peeters, B. (2020). Value-added tax fraud detec-
tion with scalable anomaly detection techniques. Applied Soft Computing, 86,
105895.

Vercruyssen, V., Meert, W., Verbruggen, G., Maes, K., Bäumer, R., & Davis, J. (2018).
Semi-supervised anomaly detection with an application to water analytics.
2018 IEEE International Conference on Data Mining, 527–536. https ://doi .
org/10.1109/ICDM.2018.00068

Viegas, E. K., Santin, A. O., & Oliveira, L. S. (2017). Toward a reliable anomaly-based
intrusion detection in real-world environments. Computer Networks, 127, 200–
216.

58

BIBLIOGRAPHY

Vigano, L., & Magazzeni, D. (2018). Explainable security. IJCAI/ECAI 2018 Workshop
on Explainable Artificial Intelligence (XAI) (pp. 293–300).

Villa-Pérez, M. E., Álvarez-Carmona, M. Á., Loyola-González, O., Medina-Pérez, M. A.,
Velazco-Rossell, J. C., & Choo, K.-K. R. (2021). Semi-supervised anomaly de-
tection algorithms: A comparative summary and future research directions.
Knowledge-Based Systems, 218, 106878. https://doi.org/https://doi.org/10.
1016/j.knosys.2021.106878

Wang, Z., Zeng, Y., Liu, Y., & Li, D. (2021). Deep belief network integrating improved
kernel-based extreme learning machine for network intrusion detection. IEEE
Access, 9, 16062–16091.

Wei, W., Ming, Z., Xuewen, Z., Xiaozhou, Y., & Sheng, Y. (2017). Malware traffic classi-
fication using convolutional neural network for representation learning. 2017
International Conference on Information Networking, 712–717. https://doi.org/
10.1109/ICOIN.2017.7899588

Wong, W.-K., Moore, A., Cooper, G., & Wagner, M. (2003). Bayesian network anomaly
pattern detection for disease outbreaks. Proceedings of the 20th International
Conference on International Conference on Machine Learning, 808–815.

Xiao, Y., Xing, C., Zhang, T., & Zhao, Z. (2019). An intrusion detection model based on
feature reduction and convolutional neural networks. IEEE Access, 7, 42210–
42219. https://doi.org/10.1109/ACCESS.2019.2904620

Xiaofeng, Z., & Xiaohong, H. (2017). Research on intrusion detection based on im-
proved combination of k-means and multi-level SVM. 2017 IEEE 17th Interna-
tional Conference on Communication Technology, 2042–2045. https://doi.org/
10.1109/ICCT.2017.8359987

Xu, J., & Shelton, C. R. (2010). Intrusion detection using continuous time Bayesian
networks. Journal of Artificial Intelligence Research, 39, 745–774.

Yang, Z., Liu, X., Li, T., Wu, D., Wang, J., Zhao, Y., & Han, H. (2022). A systematic lit-
erature review of methods and datasets for anomaly-based network intrusion
detection. Computers & Security, 116, 102675.

Yeung, D.-Y., & Chow, C. (2002). Parzen-window network intrusion detectors. 2002
International Conference on Pattern Recognition, 4, 385–388. https://doi.org/
10.1109/ICPR.2002.1047476

Zoppi, T., Ceccarelli, A., Capecchi, T., & Bondavalli, A. (2021). Unsupervised anomaly
detectors to detect intrusions in the current threat landscape. ACM/IMS Trans-
actions on Data Science, 2(2), 1–26.

59

Appendix A

Example of raw event

61

62

