
ESCUELA TÉCNICA SUPERIOR

DE INGENIEROS INFORMÁTICOS

UNIVERSIDAD POLITÉCNICA DE

MADRID

TESIS FIN DE MÁSTER
MÁSTER UNIVERSITARIO EN INTELIGENCIA

ARTIFICIAL

A Novel Multi-dimensional

Regression Model based on

Gaussian Networks.

Autor: Milton Llera Montero

Tutores: Pedro Larrañaga Múgica

Concha Bielza Lozoya

July, 2017

ii

Agradecer en primer lugar a mis tutores Concha Bielza y Pedro Larrañaga por

la oportunidad de trabajar en este proyecto, el apoyo y la gúıa que me han dado

durante su realización.

A mis compañeros del CIG por toda la ayuda que me han prestado durante mi

adaptación al trabajo en el grupo.

Este proyecto no hubiera sido posible sin el apoyo financiero del proyecto Cajal

Blue Brain.

Finalmente quiero agradecer a mis amigos y en especial a mi familia a quienes

dedico este trabajo, sin cuyo apoyo hubiese sido imposible realizar esta labor.

i

Abstract

Modeling and prediction in continuous domains are one of the most

important and studied problems in Mathematics and Computer Science.

Models that can not only solve regression tasks, but also expose the

interdependencies inside the domain are of high value for researchers in

many fields. One of the most popular methods for learning the relations

between variables in a continuous domain are Gaussian Networks. In

this thesis we present a new model that can learn a Gaussian Network.

This model can later be used for regression or analysis of the relations

in the domain, with a particular interest in its application in the field of

Neuroscience.

Resumen

Modelar y predecir en dominios continuos es uno de los problemas más es-

tudiados en el campo de las Matemáticas y la Ciencia de la Computación.

Modelos que no solamente puedan resolver problemas de regresión, si no

también exponer las relaciones entre las variables de un dominio son de

gran valor para los investigadores de muchos campos cient́ıficos. Uno de

los modelos más populares usados para resolver estos problemas son las

Redes Gaussianas. En esta tesis se presenta un nuevo modelo basado en

Redes Gaussianas que puede ser ajustado a partir de datos para luego

ser utilizado en tareas de regresión y análisis, con un especial interés en

su aplicación al campo de la Neurociencia.

iv

Content

List of figures VII

List of tables IX

1. Introduction 1

1.1. Relation between morphology and electrophysiology in neurons 3

1.2. Objectives . 4

2. Modeling continuous domains 7

2.1. Multi-Output Regression . 8

2.2. Learning Bayesian Networks . 10

2.2.1. Search space . 11

2.2.2. Scoring functions . 12

2.2.3. Search algorithms . 13

2.2.3.1. Greedy hill-climbing and independence tests 13

2.2.3.2. Heuristic optimization algorithms 13

2.2.3.3. MCMC . 14

2.3. Conclusion . 17

3. Background 21

3.1. Gaussian Networks and Multivariate Normal distributions 21

3.1.1. Bayesian Probability Theory and the MVN 23

3.1.2. Multidimensional Bayesian Network Classifiers and Class-Bridge

Decomposition . 26

3.1.3. BGe score . 27

3.2. Markov chain Monte-Carlo (MCMC) 29

3.2.1. Markov chains . 29

3.2.2. Metropolis-Hastings algorithm 32

v

CONTENT

3.2.3. Using MCMC for structure learning of BNs 33

3.2.3.1. The REV move for arc reversal 35

4. Multi-dimensional Gaussian Network Regressor 39

4.1. Using MCMC in CBD-GN . 39

4.1.1. Deleting arcs . 40

4.1.2. The Adjacency Resample move 41

4.1.2.1. Acceptance probability 43

4.1.2.2. Computational Complexity 46

4.2. Prediction . 46

4.3. Implementation details . 47

5. Evaluation of our method 49

5.1. Experimental setting . 49

5.2. Results . 50

5.2.1. Convergence Reliabilty . 50

5.2.2. Comparison to REV . 52

6. Applying to Electro-Morpho problem 57

6.1. Data . 57

6.2. Preprocessing . 62

6.3. Applying the model . 63

6.3.1. Final remarks . 66

7. Conclusion 69

7.1. Future research and improvements . 69

Bibliography 71

vi

List of figures

2.1. 11

3.1. The steps of the REV move from left to right and top to bottom. In

the first figure the original graph. In step two the arc between E → D

is selected for reversal. Both nodes are then orphaned, leaving them

only connected to their children in step 3 (bottom-left figure). The

arc D → E is added, notice that since parent sets where removed

it does not violate the DAG property. Finally in this intermediate

graph, parent sets are sampled for both nodes according to the res-

triction that must be enforced, namely the graph must be a DAG so

all descendants are omitted and D is forced to be in the new parent

set of node E. 36

4.1. The AR move. In the the first figure the original network. In the

second, node C is detached from th rest of the graph. Lastly, we

reattach it to a new parent set and new children. 42

5.1. The scatter plot of the arc presence for the same network (network

seed=333) using datasets of different sizes. a) size=50, b) size=100, c)

size=200. Each point is the posterior probability of one arc obtained

with two differently seeded runs. If the points approach the diagonal

it means that both runs agree on the probability values. 51

5.2. The running mean of the parameter values (arc presence in graph

for a network with 5 targets and 10 features) for two independently

seeded runs (top and bottom) for each dataset size. These plots are

easier to read than the presence values at each iteration. The plotted

values correspond to the samples taken every 100 iterations. a, d)

size=50; b, e) size=100; c, f) size=200. 52

vii

LIST OF FIGURES

5.3. The plots of the test on data generated by networks with the same

parent set restriction as the one used in the algorithm (in this case

5). a) Scatter plot of the arc presence for two differently seeded runs

(seeds 101 and 102). b, c) the progression of posterior probabilities

for the two runs (101 and 102 respectively). 53

5.4. The density plots for the scores of the samples structures for different

dataset sizes. a) size=50; b) size=100; c) size=200. 53

5.5. The score progression for 4 different random networks without parent

set restrictions. In blue the values using the REV move, in red adding

the AR move. Plots are from samples taken every 100 samples and

include only the first 10000 iterations, after which the scores settle

to a stable range of values. Darker shade corresponds to the 67%

confidence interval and lighter to the 95% confidence interval of the

scores across ten restarts. 54

5.6. The score progression for 4 different random networks without parent

set restrictions. In blue the values using the REV move, in red adding

the AR move. Plots are from samples taken every 100 samples and

after dropping the first 10000 iterations. At this point we estimated

that burn in phase had ended since scores where remained stable and

close to that of the original network. Darker shade corresponds to the

67% confidence interval and lighter to the 95% confidence interval of

the scores across ten restarts. 55

5.7. The comparison of the density plots for the scores for the sampled

structures using the REV (blue) and AR (red) moves for different

data sizes. a) size=50; b) size=100; c) size=200. 56

6.1. The original variable shape and the result of applying the specified

transformation for 3 variables. First row: (a) Input resistance; (b)

Overall width. Second row: (c) Total length; (d) Soma surface. Third

row: (e) Total Volume; (f) Total surface. All values have been stan-

dardized . 63

6.2. (a) The evolution of the posterior for each arc as the chain moves

forward. (b) The scores of the networks dropping the first 10000 ite-

rations shifted so the maximum is at zero. (c) The acceptance ratio

of the chain. 65

viii

List of tables

6.1. Morphological variables . 58

6.2. Electrophysiological variables . 60

6.3. Applied trasformations for each variable 64

6.4. The high probability arcs . 66

ix

LIST OF TABLES

x

1

Introduction

Discovering patterns and making predictions from data have become one of the

main problems in the area of Machine Learning (ML) and Computer Science in the

last decade and a half. Scientists have been working on developing models that can

uncover the hidden knowledge buried in the heaps of data that have been created

by the explosion in the use of computational devices in many aspects of human life.

Some of the more evident applications of these techniques have been found in social

networks, email services, search engines and online retail. This has been spurred by

the huge revenues that can be achieved if the information can is to bridge the gap

between consumers and the products/information they want.

Recently however, new areas of inquiry where these methods can be applied

have emerged in various scientific fields like Physics and Medicine where it is hoped

that the accumulated data can be exploited to enhance our comprehension and

predicting capability of a wide range of phenomena. For example ML has been

used to identify stars in high resolution photographs taken by satellites and to

detect particle collisions in experiments conducted at the Large Hadron Collider

at the CERN. More prominent uses have been found in Medicine and Biology to

predict diseases and analyze genetic material. These efforts have mostly been in the

application of classical ML methods to these problems with the help of experts to

curate the data.

In recent years a new field has grab the attention of the ML community: Neu-

roscience. The study of how the brain works and all its implications relative to

consciousness, intelligence, learning etc. has gained a significant boost in the last

decade with several huge initiatives like the Human Brain Project in Europe, the

creation of the Allen Institute for Brain Science, Janelia Farm and more recently

1

1. INTRODUCTION

the BRAIN Initiative, all of these in the USA, which dedicate a huge amount of

resources to this endeavor. Neuroscientists have realized that ML could be used to

analyze the various data acquired through experiments and recordings, which could

spark a breakthrough in a very complex domain, where a multitude of biological,

chemical and electrical phenomena occur at the same time.

The challenges in Neuroscience are somewhat different than in Computer Vision

or social network analysis where the amount of data (relative to the dimensionality

of the problem) is enormous and the main focus of improvements lie in learning

speed and accuracy. Here data is scarce by those standards (often several hundreds

or thousands at most) and predictive capacity alone is insufficient as scientists also

want to gain insight into the underlying processes (for example what genetic markers

are mostly associated with a certain disease). However, these are often diverging

goals for it is difficult to balance predictive performance and intuitive models that

expose the relations between variables of the given problem. For example, popular

models used to boost predictive performance like ensemble methods combine several

base models to improve on their individual performance, but consequently are less

interpretable. Another extreme example would be Deep Learning, whose techniques

have brought a revolution to many fields like Computer Vision and Natural Language

Processing but we still lack a proper understanding of why they work.

These algorithms thus become less useful in a problem where prediction is not the

only goal. This, in turn, provides the ML and Artificial Intelligence community with a

new challenge where the conditions are different from most mainstream applications

nowadays and new approaches are needed.

In this work we focus on the problem of modeling the relation between morp-

hology and electro-physiology of neurons, which is a fundamental problem as the

electric signals determine all our actions and it is not very well understood how these

vary across brain areas (and neuron structure) and what implications these have for

higher brain functions. Using this problem as a practical use case as motivation we

propose the Multidimensional Bayesian Gaussian regressor, a novel model that is

trained from data using a new algorithm which can be used to discover relations

between variables and make predictions of their values.

2

1.1 Relation between morphology and electrophysiology in neurons

1.1. Relation between morphology and electrophy-

siology in neurons

More explicitly, the question we wish to explore in this thesis is the following:

How does the morphological structure of a neuron relate to the electrical signals

it produces? This question can be broken down into two subproblems: 1) What

relationship exists between the variables that describe the morphology (or passive

properties) and electrical (active) properties of neurons? and 2) How effectively can

we use these relationships to predict one from the other?

Neuroscientists have long studied how cell morphology modulates the electrical

response of neurons to input stimuli since Hodgkin and Huxley proposed the HH

model for action potential generation in the giant squid axon. Even though the

relation exist and several phenomena can be precisely explained with mathematical

formulations (see Cable Theory in Rall et al. (1995)), quantitative analyses are

harder to determine due to the many interacting factors. This has thus become a

focus of studies in the field of Neuroscience, as they try to map them to functional

properties across regions of the brain.

Studies addressing these issues became prominent in the early 1990s, for example

with Larkman and Mason (1990) who study the correlation between these sets of

features in pyramidal neuron slices of the rat visual cortex. Correlations where also

studied for neurons of the neocortex in Mainen and Sejnowski (1996). Computatio-

nal models have also been developed, with emphasis on Cable Theory of W. Rall

(Rall et al. (1995)), which give a perspective on the relation between properties of

dendrites (branching patterns, length, thickness) and how electrical signals propa-

gate through them. Yuste and Tank (1996) present a review of the work done on

pyramidal cells and also conclude that dendrites have complicated information pro-

cessing properties that are derived from their complex structures. Dendritic arbor

size has a strong influence on the shape of action potential (Eyal et al. (2014)) which

is important for example in determining spike onset rapidness which in turn defi-

nes the ability of a neuron to encode changes in the input (Fourcaud-Trocmé et al.

(2003)). The architecture of these arbors and of the axons also varies across layers

(Mohan et al. (2015)) which means that these might have different active properties

(and thus produce distinguishable electrical signals).

The definition of a computational model that can relate these properties of neu-

rons in a precise way would constitute an important step in improving our unders-

3

1. INTRODUCTION

tanding of their functional purpose across different regions of the brain and how this

relates to their physical characteristics, which in turn would probably allow precise

classification of neurons not only by shape (at times a somewhat ambiguous task as

found in DeFelipe et al. (2013) and López-Cruz et al. (2014)).

1.2. Objectives

In this master’s thesis we propose using more robust methods from the fields of

ML and Bayesian probability theory to estimate qualitative and quantitative rela-

tions between continuous variables with the interest of applying them specifically.

The aim is to generate sensible hypotheses that can later be tested experimentally.

These models should also improve on the predictive capability on these sets of fea-

tures. We focus specifically on Bayesian networks as a mathematical modeling tool

(we explain our reasons for this selection in the next chapter).

The objectives for this work can be enumerated as follows:

1. To make a review of techniques often employed to model domains from data

where there are several variables of interest which are continuous in nature.

2. To determine which of these tools are most useful for the given problem based

on parameters like their reliability, computational efficiency and interpretabi-

lity.

3. To propose an algorithm that can discover the relevant relations between va-

riables from data and predict new instances accurately .

4. To design experiments that evaluate the capabilities of the proposed method.

5. To discuss possible deficiencies and suggest further improvements.

In other to accomplish these objectives, this thesis is structured in the following

way:

A state of the art on the models used for prediction in continuous domains

and the methods used to fit them are presented in Chapter 2.

Chapter 3 develops the background knowledge of the relevant methods that

will be used.

4

1.2 Objectives

The proposed model is defined in Chapter 4 also describing implementation

and design decisions.

Experiments conducted to test the proposed algorithm along with the corres-

ponding discussion are in Chapter 5.

Finally, Chapter 7 contains the conclusions and proposals for future work.

5

1. INTRODUCTION

6

2

Modeling continuous domains

Tackling the problem of discovering the relationship between the variables that

describe active and passive properties of neurons can be encompassed in the broader

task of modeling domains where variables are continuous. These kinds of problems

have long being studied in the ML community although this has often been res-

tricted to single output regression of variables. Given our desire to also emphasize

interpretation, we decided that Bayesian Networks are a good fit for this task. To

make this claim more robust, in this chapter we will review the existent techniques

used to model continuous domains and then proceed to the relevant algorithms used

to train Bayesian networks.

From what has been said so far we can establish that whatever model we use, it

needs to posses several properties:

1. It must handle uncertainty.

2. We need it to work with continuous variables.

3. It must predict more than one target variable, which may be interrelated.

4. It has to work with a low number of samples relative to problem dimensionality.

5. We would like it to ba as interpretable as possible.

The first point is clear since biological processes and measurements are inherently

noisy and this must be taken into account. It necessarily follows that a probabilistic

model is required. Next we review the exiting algorithms that address properties 1

to 3.

7

2. MODELING CONTINUOUS DOMAINS

2.1. Multi-Output Regression

The task of predicting several variables (Multi-Output, MO) simultaneously is

called Multi-Output Classification (MOC) when the target variables are discrete and

Multi-Output Regression (MOR) when they are continuous, though similar methods

can be applied to both.

More formally, in MO we have the following problem statement: given a training

set D of N instances where each instance xi = (x1, . . . , xl, y1, . . . , ym) is divided into

two sets of variables X and Y. The former are called feature variables, and the latter

are the targets. The task is to find a function h such that:

h : ΩX1×, · · · ,ΩXl
→ ΩY1×, · · · ,ΩYl

(2.1)

where Ωx denotes the domain of variable X and h has the best possible performance

according to some metric. As expected, if the variables tj are continuous then it’s

a MOR problem and if they are discrete it’s a MOC. Since we are focusing on

continuous variables we will elaborate models that deal mainly with these problems.

Multi-Output (and specifically MOR) problems have not been studied too much

in the literature, since it has attracted attention mostly recently. The review pre-

sented here is based on Borchani et al. (2015), where a more extensive treatment of

each algorithm can be found.

Although the related problem of Multi-task learning was studied by Caruana

(1998) in the context of Neural Nets (NN) using back-propagation, these are usually

black-box models and so are not suited for the current task. Often the way MO

problems are solved is by learning one problem for each target variable. This is the

simplest way to do this but it ignores the possible relations between the targets,

which can contain valuable information that can boost model performance.

A more elaborated algorithm is based on the use of Stacking-Generalization

(Spyromitros-Xioufis et al. (2012)). The process is a straight-forward adaptation of

this classic meta-classifier where in the fist step each target is learned separately and

these predictions are used with the original features to adjust the meta-classifier at

in the second level. The goal is that the model will capture the relation between the

targets through their predicted values. However this does not work as well as one

would expect for regression problems.

In the same article another approach is based on chaining single target models

(Multi-Label chain Classifiers and Regressor chains). The idea is to select a random

8

2.1 Multi-Output Regression

permutation of the targets and for each one of them construct a feature vector

consisting of the feature variables Xi and the real values of the previous targets in

the chain. As expected this approach depends a lot on the permutation so the authors

also propose the creation of an ensemble by selecting several chains randomly.

Support Vector Regression has been extended to the MO case in several works

(Vazquez and Walter (2003), Sánchez-Fernández et al. (2004)). The fist one uses a

method called Cokriging to exploit the correlations between target variables. The

main drawback is the need to select a proper covariance model but if this is done

well the results are better that in the single output case. The second one introduces

a generalization of SVR to the MO case, which involves the definition of a loss

function that takes into account the multi-dimensional case.

Another approach is to extend trees, something that has been done in De’Ath

(2002) which presents an extension to the CART algorithm (his work is done in the

context of relations between species and environments) by changing the impurity

measure to take into account the multivariate response, greedily splitting at each

node in order to minimize the sum of the squared error. The value at the leafs is

defined as the mean value of the instances at the leaf.

Appice and Džeroski (2007) presented a multi-target stepwise model tree induc-

tion where at each step the algorithm either splits the nodes or adds a regression

variable associated with one of the target variables. This means that instead of sto-

ring the mean of the instances at the leaf node we get a regression model for each

of the variables. Kocev et al. (2007) on the other hand explores the use of bagging

and random forests of regression trees for the multi-output case.

The main drawback of these algorithms are the following. Single target models

that simply solve for each variable separately do not take into account relations

between the targets, something that is surely present in our domain of interest and

that we also want to model. The other models, though admittedly more complex,

are in general no better than the single target ones, or require fine tunning of several

hyper-parameters at the same time and finding a good combination can be a difficult

task. There is also the problem of how to interpret the fitted model. These do not

expose explicit relations between the variables since their main purpose is prediction

of targets.

An approach that could solve these issues has already been applied to the MOC

case. Multi-dimensional Bayesian Network Classifiers (MBCs), which where intro-

duced in Van Der Gaag and De Waal (2006) and extended in Bielza et al. (2011),

9

2. MODELING CONTINUOUS DOMAINS

tackle the MOC problem using Bayesian Networks q(BNs). This family of models

would provide the desired interpretabillity since this is one of the main reasons for

using graphical models and can also be used for prediction and other procedures

such as sensitivity analysis. Learning BNs however is a hard problem, which we

describe below.

2.2. Learning Bayesian Networks

Using BNs would give us a model which satisfies properties 1-3 and 5. As a

remainder, BNs (Pearl (2014), Koller and Friedman (2009), Lauritzen (1996)) are

graphical models where variables are the nodes of the graph and the edges encode

the relations between them. BNs are the special case when the graph is a Directed

Acyclic Graph (DAG) which use directed edges (arcs) and prohibit loops in the

structure. The direction of the arc denote the way in which Bayes rule is applied

to calculate conditional probabilities and make inferences. In BNs variables follow

the Local Markov property, meaning that each variable is conditionally independent

of the rest given its non-descendants. This means that BNs represent the distri-

bution in a compact way which makes parameter estimation and inference easier.

Mathematically it can be written as:

p(X = x) =
∏
i

p(Xi = xi|pa(Xi)) (2.2)

where X is a vector of d variables and pa(Xi) are the parents of variable Xi in the

graph. An example of two graphs, one who is a BN and one who is not can be seen

in Figure 2.1.

BN learning (Cooper and Herskovits (1991)) can be divided into two problems,

structure learning, and parameter learning, where the first is considered somewhat

harder than the second. This is a consequence of the number of possible networks

that can explain a set of observed data which is superexponential in the number

of variables (Robinson (1978)). Actually it can be shown that the general problem

of learning the structure of a BN is NP-hard (Chickering (1996)). Learning BNs

usually requires three elements to be defined: a search space of possible structures, a

scoring function that determines the fitness of each structure and an algorithm that

traverses the search space. For a review of parameter learning we refer to Heckerman

(1998), Koller and Friedman (2009) and Murphy (2012). In this section we present

10

2.2 Learning Bayesian Networks

Figura 2.1

a review of BN structure learning so we can determine which one is best suited for

our problem.

2.2.1. Search space

Search spaces are usually limited to one of three options: general network struc-

tures, equivalent classes of network structures and orderings over network variables.

The first one is the most intuitive one but exploring it can be a wast of computatio-

nal resources since networks that are çlose”have similar or even identical scores if

they are in the same equivalence class Madigan et al. (1995) (networks in the sa-

me equivalence class should score the same since they encode the same conditional

independences). The solution is to move in this space instead (Chickering (2002)).

Even in this case though there are many possible structures and so it can still be

hard to converge to a good model. Exploring over partial orderings of variables was

proposed by Friedman and Koller (2003) in conjunction with Markov chain Monte

Carlo (MCMC) where orderings are used to restrict their attention to certain di-

rected graphs at a time. Although their approach is more efficient than the other

two variants, it is considerably harder to encode prior knowledge into the distribu-

tion (Ellis and Wong (2006)), which is convenient when using MCMC as a search

algorithm (see Section 2.2.3.3).

11

2. MODELING CONTINUOUS DOMAINS

2.2.2. Scoring functions

The second element we need to define is a scoring function. These are usually

separated into two groups: information-theoretic and Bayesian scoring functions

(Carvalho (2009) is a good review on the subject). The first group is composed of

the metrics which are extensions to the basic log-likelihood function that try to limit

overfitting: MDL/BIC (Minumum Description Length, Bayesian Information Crite-

rion, Grünwald (2000)), Akaike Information Criterion (Akaike (2011)), normalized

minimum likelihood codes (Roos et al. (2008)) and mutual information tests (Cam-

pos (2006)). These are general purpose scoring metrics that are not exclusive to the

BN setting and so don’t take into account some useful properties and assumptions

that are often made when learning BNs structures.

The second group contains a more probabilistic approach to the problem of sco-

ring networks and is the result of extensive research into the topic in the early 1990s

when Spiegelhalter and Lauritzen (Spiegelhalter and Lauritzen (1990)) defined the

problem of learning BN from data and introduced the Global Parameter Indepen-

dence assumption that allow the likelihood function to be conveniently decomposed.

This led to the creation of a series of scoring functions the first of which was the

famous K2 score (Cooper and Herskovits (1992)) along with the homonymous algo-

rithm. Buntine (1991) defined the BDeu (Bayesian Dirichlet under score equivalence

with prior uniform joint distribution) score which has the equivalent sample size (the

number of observed samples prior to seeing any data) as its only hyper-parameter.

Heckerman et al. (1994), derive another similar function, this time assuming Score

Equivalence, which means that networks that encode the same independence assum-

ptions should score equally and name it (conveniently) the BDe score. This function

enables a concise specification of the prior distribution where hyper-parameters are

set as a function of the equivalent sample size.

Both functions were generalized in Chickering et al. (1995) as the BD (Bayesian

Dirichlet) score, where they also introduced another key assumption called Parame-

ter Modularity which allows to reuse scores for similar networks by only recomputing

certain factors (eg. removing an edge only changes the score of the node at the head

of that arc). Although this was an important advance, BD score is hard to use

because of the number of hyper-parameters that have to be specified.

Even though these scoring functions where developed for the discrete case (and

we are concerned with the continuous case), the theoretical results they presented

were extended to the continuous case, specifically to Gaussian networks (GNs) where

12

2.2 Learning Bayesian Networks

they were used to define the BGe (Geiger and Heckerman (1994), Kuipers et al.

(2014)) score (Bayesian metric for GNs under score equivalence). This is a completely

Bayesian score function for GNs that allows the specification of prior probabilities

and is computationally efficient.

2.2.3. Search algorithms

The last element needed to perform structure learning is a search algorithm.

These are often divided into 3 groups depending on the strategy they employ: greedy

hill-climbing algorithms, heuristic optimization and MCMC over some structure

space.

2.2.3.1. Greedy hill-climbing and independence tests

Greedy hill-climbing algorithms are the simplest ones as they just move greedily

through the search space, always aiming at maximizing the score of the network.

This was the procedure used in Cooper and Herskovits (1992) with the K2 score

(together they are referred as the K2 algorithm). It requires an order to be given

to the variables so that variable Xi can only have parents in the set {Xj|j < i}.
This greedy nature means that the algorithm cannot guarantee it will find a global

maximum. To reduce the chance of finding a bad solution, multiple restarts can

be used or using a more complex approach, genetic algorithms can be applied to

optimize over the orders used (Larrañaga et al. (1996b)).

Margaritis (2003) proposes the grow-shrink algorithm. The idea here is to dis-

cover the Markov blanket of each node with statistical independence test and then

integrating them to form a network, removing any cycles that remain as a byproduct.

A combination of these ideas is the one found in Tsamardinos et al. (2006),

which proposes de max-min hill-climbing algorithm. This method combines search

and score along with constrain-based and local search. First they use a method to

construct a skeleton that only contains undirected edges. To give orientations to the

edges they then perform greedy search ensuring the resulting graph maintains the

DAG property.

2.2.3.2. Heuristic optimization algorithms

A second class of methods uses heuristic optimization and genetic algorithms to

find an good network structure. The first work that proposed using genetic algo-

13

2. MODELING CONTINUOUS DOMAINS

rithms was Larrañaga et al. (1996b). They defined the fitness function as the data

marginal log-likelihood given the BN which was represented using an adjacency ma-

trix. Operators where defined so the DAG property was never violated, avoiding the

need for corrections after each step of the optimization. Larrañaga et al. (1996a)

applies genetic algorithms to the task of finding an optimal node order and then

applies the K2 algorithm to this ordering. They tested with operators that had been

used for the Traveling Salesman Problem with good results.

Tabu search was adapted to this setting in Bouckaert (2001) who described how

to use it for structure learning using a tabu list of excluded states so that the state

space is better explored. Delaplace et al. (2006) were they used the BDeu score as a

fitness function with adjacency matrix representation and they move in equivalen-

ce classes to avoid equivalent DAGs. In a second method they dynamically adapt

the mutation rate according to the fitness of the population. Simulated Annealing,

another popular heuristic algorithm which has connections with MCMC, was used

by Heckerman and Geiger (1995) and Wang et al. (2004).

While this class of algorithms is popular, they are also quite general and require

being tunned to the particular problem. Also, except for some cases it is difficult to

prove any useful theoretical results since they are ad-hoc procedures.

2.2.3.3. MCMC

The third method consists of using MCMC with a proposal distribution over

graph structures or node orders to find an optimal solution. MCMC is a general

purpose method for sampling from a given distribution (see Section 3.2). Algorithms

using this approach are grouped into two classes: those that operate on the space

of structures and those that do so in the space of node orderings. This distinction

has important computational implications which we will discuss as we explore the

different methods.

Working over the structure space was the initial idea in Madigan et al. (1995)

where they also defined the basic movements that serve to traverse the space, namely

arc addition, removal and inversion while maintaining the DAG restriction. This

simple approach proved to not be adequate for high dimensional domains since the

number of possible arcs is too great. Also simulations showed that the distribution

over possible DAGs is very jagged (Friedman and Koller (2003)), with ridges of

equivalent DAGs with equal probability surrounded by ”valleys.of low probability

structures. This means that using these simple movements can make it hard to

14

2.2 Learning Bayesian Networks

escape from high probability regions. Also not all graphs despite having different

arcs encode different independences. This means that moving naively might not be

productive since you could stay in the same equivalence class of graphs (sets of

graphs that encode the same independences).

To solve this last problem Madigan et al. (1995) restricted their focus to what

they called essential graphs. These are used to encode all the graphs that belong to

the same equivalence class by substituting arcs that can be reversed without chan-

ging the independence relations in the graph for edges, and defining moves for both

directed and undirected relations. Moving in this space they eliminated spurious

moves that don’t really generate new conditional independences, accelerating con-

vergence of the underlying Markov chain. A similar idea is to move in the space of

junction trees (Giudici and Green (1999), Giudici et al. (2000)). This space has its

own complexities since the number of parameters (and thus dimensions) varies, so

it was necessary to adapt the reversible-jump MCMC algorithm (Green and Hastie

(2009)) to this specific instance.

Another approach is to sample in the space of total orders. This was propo-

sed by Friedman and Koller (2003) as a way to speed up the convergence of the

Markov chain. To achieve this they decomposed the problem into two simpler ones:

sampling node orders, and determining the best structure for that order (they used

the K2 algorithm for this purpose). The authors argued that this space is sma-

ller and more regular thus allowing for faster convergence. On the other hand, the

computations associated with calculating the posterior over node orders are highly

demanding. Koivisto and Sood (2004) and Parviainen and Koivisto (2009) used dy-

namic programming to lower the upper bound on time and space requirements for

these computations, which was further improved by Koivisto (2012), but it still re-

mained exponential, and it thus becomes useless in domains with more than a few

dozen variables.

A problem that was already pointed out in the original article was that DAGs

which are compatible with more orders will have higher posterior probability since

they could be repeated across all these orderings. They argued that this is not that

problematic since sparser DAGs are more desirable anyway and tend to have higher

probabilities. A second problem is that only modular priors can be used, which

restricts the types of priors that can be used being a notable example the uniform

prior over equivalence classes.

15

2. MODELING CONTINUOUS DOMAINS

Ellis and Wong (2006) tried to solve the bias incurred when sampling node orders

by introducing a correction step which scales down the probability of graphs that

appear in more orders. They demonstrated that this step accomplishes its intent

but the computational cost associated is high which reduces its usefulness. Eaton

and Murphy (2007) attempted to improve the computational aspects by combining

both approaches (sampling in structure space and node orders) and used the mar-

ginalization algorithm of Koivisto (2012) along with the traditional moves in the

structure space. They showed experimentally that this approach leads to superior

convergence and diminished bias and is thus a good compromise.

Niinimaki et al. (2012) on the other hand worked with a particular type of partial

orders called bucket orders. The idea is that the order of nodes in the same bucket

cannot be established so the focus is on arcs between nodes in different buckets.

While working in the space of node orders improves convergence, it is not ideal

for hight dimensional domains where researchers have a low amount of samples

like Biology and Genetics. In these cases the superior computational efficiency and

ability to easily specify prior distributions motivated further research in order to

improve convergence. This was exemplified in the work of Grzegorczyk and Husmeier

(2008), who introduced the more sophisticated New edge reversal (REV) move.

Their observation was that arc reversal could be made more useful by resampling

the parent sets of the arc’s end nodes. This accomplished two things: moves where

more drastic and thus increased the probability of escaping a local maximum and

secondly all arcs can be reversed since both nodes are orphaned (avoidance of cycles

is moved to the parent set selection step, see 3.2.3.1).

More recently, Su and Borsuk (2016) exploited a similar idea and proposed a new

move that complements this REV and the classical ones (addition and removal).

They proposed a more drastic move called Markov Blanket resamping which selects

a node and resamples it’s parents and that of his children (though it does not change

the children so it’s not exactly a resampling of the Markov Blanket) according to its

score as given by some predefined metric. The hope is that the chain will ”jump”to

another high scoring region and skip the low probability ”valleys̈ın between more

easily.

In both of the previous works the authors used the BGe score, since it allows to

efficiently compute the ratio of the score of two networks when preforming a move,

though any metric that obays the Parameter Modularity property can be used (see

section 3.2.3).

16

2.3 Conclusion

Masegosa and Moral (2013) tried to restrict possible structures by focusing on

samples with a common skeleton of high probability edges. This is a useful way to

limit the size of the sampling space if there is a subset of arcs with a much higher

probability than the rest but it requires setting a threshold to determine what edges

belong to said skeleton which can be hard or useless if no clear value exists, i.e if

most edges have similar probabilities or if these are not independent.

Recently, Kuipers and Moffa (2017) proposed to sample in the space of partitions.

They define this space so as to not over represent DAGs but so that it groups several

network configurations (just as in order MCMC) thus making the space more regular.

Nodes in the same partition are not connected to each other and only arcs from

lower numbered to higher numbered partitions are allowed, similar to partial order

MCMC. Their main achievement is not incurring in the bias of structure MCMC

but their proposal is computationally costly and for medium sized networks does

not perform better than traditional moves (though the authors postulate that more

efficient moves could be designed that are allow faster convergence).

2.3. Conclusion

There is also the problem of selecting a distribution for each of the variables in

the domain. If they are discrete then this is a simple task. Discrete distributions

can be represented efficiently with Conditional Probability Tables which are tabu-

lar mappings from values to probabilities. Any distribution can be represented in

this way, which means that conditioning and marginalization can be performed no

matter the underlying nature of the distribution. However such a convenient repre-

sentation does not exist in the continuous case since by definition the space cannot

be enumerated. Choosing a parametric family for each variable is also not easy be-

cause conditioning and marginalization are not always closed operations, even if we

choose the same family for every variable, which is a very strong assumption. The

other approach would be discretization, but this introduces another problem which

is choosing into how many discrete values we partition the domain. Too many and

the computational costs grow out of control; too few leads to a significant loss of

information.

We have thus chosen a compromise which is to use Gaussian Networks (GN). This

seems like a reasonable first approximation, since they are continuous and equivalent

to Multivariate Normal distributions (MVNs) which provides several methodological

17

2. MODELING CONTINUOUS DOMAINS

advantages (for example the MVN are closed under conditioning and marginaliza-

tion) that will be discussed in chapter 3. Also we can take advantage of the BGe

metric that we discussed earlier.

Selecting a type of search algorithm is more complex. Greedy hill-climbing seems

like a poor choice for our problem. As we have already explained in cases like this

ones, where the amount of observed data is small relative to the dimensionality of the

domain, models computed in this fashion which correspond to local maxima tend to

not be very good. Posterior distributions tend to be multi-modal and the evidence

is not identifiable. The choice is then between heuristic optimization algorithms and

MCMC. Both of these enable a less naive exploration of the search space. The latter

though has several practical and theoretical advantages.

Remember that we still need to satisfy Property 4. This is essential since with

a low number of samples, barring some prior knowledge that exclude most possible

models, the posterior is relatively flat (meaning no model is considerably better than

the others). this changes as we see more data and it becomes peaked around the

MLE. A way to overcome this is to average the predictions of several models in order

to compensate for our lack of data.

One approach could be to use some optimization algorithm that uses some pre-

viously defined starting condition like an initial graph or order and perform random

restarts and then use the combination of each of the trained models to make pre-

dictions. Still this presents the question of how many models, and how do we know

that they are sufficiently distinct. Another way is to use the samples produced by

the random chain of the MCMC sampling, which if done correctly approximate the

true posterior, to obtain the models that will constitute the ensemble. Also since we

are using a Gaussian distribution for each variable, we can use the fact that we know

the posterior predictive distribution in a Bayesian setting so that we don’t need to

find the precise values of the parameters for each one of them. Instead we can use

the fact that GNs and Multivariate Normals are equivalent (Koller and Friedman

(2009)) use the data to obtain a posterior over network parameters and use the pre-

dictive distribution (which in this case is a Multivariate T distribution) to perform

regression.

Combining models in this way allows to compensate for the lack of data. Furt-

hermore, unlike other models when combined BNs can still be interpreted since we

can still quantify the importance of an edge (relationship) by simple techniques like

18

2.3 Conclusion

approximating the posterior probability of each of them by simply counting in how

many models they appear.

The final concern would be the choice of search space. As we said, sampling over

the space of orders is problematic for this setting, so we opt for working with the

space of structures. However we wish to speed up the convergence of the Markov

chain. First of all we will use the REV move as found in Grzegorczyk and Husmeier

(2008) instead of traditional edge reversal. And secondly, we propose to perform

the sampling over the space of CB-decomposable graphs as a means of speeding up

convergence by performing more drastic changes to the graph structure. To achieve

this first we also need to adapt MBCs to the regression setting.

19

2. MODELING CONTINUOUS DOMAINS

20

3

Background

Before we can define our model, we first need to give some background knowledge

on the theory involved. Namely we will expand the relevant concepts concerning

Gaussian Networks, the Multivariate Gaussian distribution and MCMC sampling.

3.1. Gaussian Networks and Multivariate Normal

distributions

Gaussian Networks are one of the basic BN models along with the general discrete

BNs. This is due to the fact that assuming that the distribution of the variables

are linear Gaussians is a simple way of assuring that operations like conditioning

and marginalizing are closed (they produce another Gaussian as a result) which is

not generally the case for other distributions. The ubiquity of the distribution in

many fields of research also make particularly interesting due to its wide range of

applications.

Definition: Gaussian Network (GN) A Gaussian Network (also Gaussian Ba-

yesian Network Koller and Friedman (2009) or Gaussian Belief Network Geiger and

Heckerman (1994), abbreviated as GN) is a BN where all the variables Xi are con-

tinuous and their conditional probability distribution (CPD) are linear Gaussians

such that for each of them we have:

p(Xi|pa(xi)) = N (μi +
∑

Xj∈pa(xi)

bij(xj − μj), σ
2
i) (3.1)

where μi is the unconditional mean of variable Xi, σi is its conditional variance, bij

is the influence of each of its parents Xj and μj are their corresponding means.

21

3. BACKGROUND

Informally, this means that in GNs each conditional variable is normally distri-

buted with a mean that is influenced by the values of its parents. The degree of

the influence is determined by the parameter bij which graphically represents the

existence of an arc from variable Xj to Xi whenever bij �= 0. The values of the

parameter vectors μ, σ for a set of data D with n rows representing the samples of

d dimensions can be obtained with the equations:

μi =
1

n

n∑
l=1

Dl (3.2)

σ2
i = CovD[Xi, Xi]−

∑
Xj ,Xk∈pa(Xi)

bjbkCovD[Xj, Xk] (3.3)

In the case of the coefficients b, these can be obtained by solving a system of

|pa(Xi)| + 1 linear equations that are the product of taking the derivative of the

likelihood respective to each of the coefficients for each of the variables .

An interesting result is the fact that GNs are equivalent to the class of Multivaria-

te Normal distributions (MVN). Shachter and Kenley (1989) formulated a recursive

equation that transforms from one representation to the other. This means that the

same results from probability theory that are valid for MVNs also apply to GNs.

First let us define a MVN with mean vector μ of d elements and precision matrix

Σ = Λ−1 of size d× d as:

p(x|μ,Σ) = |Λ| 12
(2π)

d
2

exp[−1

2
(x− μ)Σ−1(x− μ)] (3.4)

Given both definitions for the distribution one can convert from the GN repre-

sentation to MVN in the following way, where Λ[i] represents the upper left square

submatrix of size i× i:

Λ =

⎧⎪⎪⎨⎪⎪⎩
Λ[1] = 1

σ2
1

Λ[i] =

[
Λ[i− 1] +

bib
T
i

σ2
i

− bTi
σ2
i

− bi
σ2
i

1
σ2
i

]
(3.5)

This ability to change between both representations allows us to work with the

most convenient for any given task. For example, analyzing the relation between

variables in a given domain is easier and more intuitive in the graphical represen-

tation. On the other hand scoring a given network, which is necessary for structure

learning is much more convenient in matrix form (see Section 3.1.3).

22

3.1 Gaussian Networks and Multivariate Normal distributions

Other important operations on MVN are computing the conditional and marginal

distributions. Given a MVN with mean vector μ and covariance matrix Σ, it can be

showed (DeGroot (2005),page 51) that the conditional distribution of variables in

Xi given that variables Xj = xj is a MVN such that :

f(Xi|xj) = N (xi|μi|j,Σi|j) (3.6)

μi|j = μi +ΣijΣ
−1
jj (xj − μj) (3.7)

Λi|j = Λi −ΣjiΛiiΣij (3.8)

where Σ = Λ−1 and the subscripts denote the sub-matrices of the given rows and

columns. Marginalization is very easy if we use Σ instead of Λ:

f(Xi) = N (xi|μi,Σii) (3.9)

3.1.1. Bayesian Probability Theory and the MVN

Before describing the BGe score we will first develop the basic notions of Bayesian

probability theory. In this framework, uncertainty related to a hypothesis (like the

true parameters of the distribution that produced some data) is encoded using a

probability distribution. Initially we may have some assumption about their value

and this is our prior distribution. As we observe data we change our beliefs and

obtain a posterior (which in turn may become a prior when more data is seen).

As the amount of data grows our uncertainty diminishes and the posterior centers

around the true value.

In contrast, classical or frequentist statistics revolves around sampling distribu-

tions instead of posteriors, which is the distribution that an estimator (a function

that computes some statistics from the data) when applied to different data sets

that are assumed to have been generated from the same model which is assumed

to be fixed an unique. This is the exact opposite view of the Bayesian approach

Murphy (2012), which has important consequences for prediction tasks and mode-

ling uncertainty in complex domains.

A distinctive element of Bayesian Statistics is the needed to define a prior distri-

butions. This is the cause of the main controversies between Bayesians and Frequen-

tists. Nonetheless they are very useful since they allow to encode prior knowledge

23

3. BACKGROUND

about a given domain before we have seen any data or when it is scarce and deter-

mining a good MLE is thus difficult. Specifying a prior distribution over parame-

ters can help find a better estimate if our prior assumptions are sufficiently correct

(though this is a difficult task in most practical domains). Formally, we can define

the posterior over parameters θ given the data D, p(θ|D), with a prior distribution

as p(θ):

p(θ|D) ∝ p(D|θ)p(θ) (3.10)

This means that the posterior distribution is proportional to a multiplication of

the likelihood p(θ|D) and prior distribution p(θ). It is useful for parameter estimation

if this product has a closed form solution. Priors whose multiplication by some

probability distribution remain in the same family are called conjugate priors. In

the case of data that follows a MVN distribution, the conjugate prior of the mean

μ and precision matrix Λ is the Normal-Wishart (NW) distribution:

p(μ,Λ) = N (μ|m0, k0 ∗Λ)W(Λ|S0, ν0) (3.11)

wherem0 is the prior mean, S0 is the prior scatter matrix, k0 is the equivalent sample

size which controls the strength of the prior mean and ν0 controls the strength of

the prior scatter matrix. The Wishart distribution is defined as:

W(Λ|S, ν) = 1

Z
|Λ|(ν−d−1)/2 exp[−1

2
tr(ΛS−1)] (3.12)

where d is the dimension of ν, Λ is a matrix of size d × d, tr(.) is the trace of the

matrix and Z is the partition function (or normalizing constant) which is defined in

terms of the multivariate gamma function as:

Z = 2vd/2Γd(ν/2)|S|ν/2 (3.13)

Γd(x) = πd(d−1)/4

d∏
i=1

Γ(
x+ (1− i)

2
) (3.14)

This prior can be used with the MVN to obtain a posterior over the parameters

efficiently when presented with new observations since it can be proven that mul-

tiplying both distributions reduces to updating the parameters of the NW. Since the

NW prior in conjugate to the MVN distribution, the posterior is also a NW with

updated parameters kn, νn, mn, Λn. The formulas used to obtain these updated

values are (DeGroot (2005); Press (2012); Murphy (2012)):

24

3.1 Gaussian Networks and Multivariate Normal distributions

kn = k0 + n (3.15)

νn = ν0 + n (3.16)

mn =
k0m0 + nx

kn
(3.17)

Sn = S0 + Sx +
k0n

kn
(x−m0)(x−m0)

T (3.18)

where k0 and ν0 is our confidence in the prior mean and covariance respectively,

S0 is the prior scatter matrix, x is the sample mean and Sx is the sample scatter

matrix (the covariance multiplied by n − 1). The scatter matrix is used instead of

the covariance since it’s easier to update.

Using these formulas it is straightforward to do online updates to the posterior as

new information is found. Another useful property of the MVN is that its posterior

predictive distribution over variables X found by integrating over the possible values

of the posterior reduces to a Multivariate Student’s T(MVT) with mean μ, scale

matrix T and ν degrees of freedom:

τ(x|μ,T, ν) =
Γ(ν+d

2
)

Γ(ν
2
)

|T|−1/2

νd/2πd/2

[
1 +

1

ν
(x− μ)TT−1(x− μ)

]− v+d
2

(3.19)

From this equation we can obtain the conditionals as (Ding (2016)):

p(x1|x2) ∼ τd1(x1|μ1|2,
ν + dist(x1, μ1,T11)

ν + d1
T11|2, ν + d2) (3.20)

μ1|2 = μ+T12T
−1
22 (x2 − μ2) (3.21)

dist(x, μ,T) = (x− μ)T−1(x− μ) (3.22)

In the case of GN, we define a structure that makes relations between variables

explicit so even though the sample mean is the same (it’s the unconditional mean

in each case), the sample covariance does not translate directly to that of the GN

in MVN form. In this case we need to determine the conditional variances of each

variable given its parents in the structure. This is easy by using the traditional

formula for the conditional variance 3.2. Using these covariances we simply use the

recursion 3.5 to obtain a MVN representation of the network. When predicting we

condition on the relevant variables using equation 3.6.

25

3. BACKGROUND

3.1.2. Multidimensional Bayesian Network Classifiers and

Class-Bridge Decomposition

Multidimensional Bayesian Network Classifiers (MBCs) are a special class of BN

introduced by Van Der Gaag and De Waal (2006) and expanded in Bielza et al.

(2011), where variables are separated into two subsets one of feature and one of

targets. Variables in both subsets can be mutually related between each other and

across subsets but the direction of the relation can never go from features to targets.

Also target variables can be further separated into mutually independent subsets

given the values of the features.

Definition: Multi-Dimensional Network Bayesian Regressor (MBNR) AMBNR

is a BN denoted by B=(G, θ) where each variable is continuous, G = (V,A) is a

DAG such that V = VY ∪ VX (VY ∩ VX = ∅) where Y (t = |Y |) are the nodes

associated with the target variables and VX (f = |VY |) are the ones associated with

features. The set of arcs A can also be partitioned into 3 subsets:

AY ⊆ VY × VY is composed of the arcs between target variables and is called

the target subgraph: GY = (VY , AY).

AF ⊆ VX ×VX is composed of the arcs between feature variables and is analo-

gously called feature subgraph: GX = (VX , AX).

AXY ⊆ VY × VX is composed of the arcs from target variables to feature

variables. This is the bridge subgraph denoted: GXY = (V,AXY) (a concept

introduced in Bielza et al. (2011)).

As noted in Van Der Gaag and De Waal (2006) the connectivity of the feature

subgraph is irrelevant to prediction of the target variables.

Another important concept is that of Class-Bridge decomposition (CBd), which

was introduced in Bielza et al. (2011) for the context of multidimensional classi-

fication problems, where the target variables are discrete, though using it for the

Gaussian case is straight forward since it does not depend on the nature of the

variables:

Definition: Degree k Class-Bridge decomposable MBNR (k-CBd) Let B be

a MBNR with target and bridge subgraphs GY and GXY as defined in the previous

definition, then we say that B is CB-Decomposable with degree k (k-CBd) if:

26

3.1 Gaussian Networks and Multivariate Normal distributions

GY ∪ GXY can be decomposed into its connected maximal components as

∪k
i=1 = (Gi

Y ∪Gi
XY).

Ch(V i
Y) ∩ Ch(V j

Y) = ∅ for i, j = 1, . . . , k, i �= j and Ch(.) denotes the set of

all children of the given nodes in GXY .

This characterization gives rise to a useful property by applying it in conjunction

with the independence assumptions of GNs:

Theorem 3.1.1 Given a k-CBd MBNR where I =
∏

c∈Vi
Ωc represents the sample

space associated with Vi then:

f(y1, . . . , yt|x1, . . . , xf) =
k∏

i=1

∏
Y ∈V i

Y

f(y|pa(Y))
∏

X∈Ch(Y)∩VX

f(x|pa(X)) (3.23)

where Y are the target variables in the set V i
Y and X are the features in the set V i

X of

component i. This result is easily applied to Gaussian Networks with the traditional

representation or with the matrix form, using the recursive formula 3.5 to obtain

the other representation.

3.1.3. BGe score

In order to learn GN structures we need to use a scoring function. As we said in

Chapter 2, BGe was first presented in Geiger and Heckerman (1994). The BGe relies

on a set of assumptions about the structure of the network and Bayesian probability

theory in order to score network structures in an efficient and coherent way. Next

we present these assumptions:

Definition: Score Equivalence Given two network structures G1 and G2 which

are isomorphic, i.e., they represent the same assertions of conditional independence,

then the scores given to both structures must be equal.

Definition: Parameter Independence For every GNG, f(θ,G|ξ) = ∏d
i=1 f(θi,bi|ξ)

where θi are the parameters of variable Xi, bi is the vector of weights that indicate

the influence of its parents and ξ is our prior knowledge.

Definition: Parameter Modularity If Xi has the same parents in two Gaussian

Networks G1 and G2 then f(θ1,b1|ξ) = f(θ2,b2|ξ).

27

3. BACKGROUND

These assumptions serve several purposes. The first ensures that graphs that re-

present the same conditional independences are treated the same, avoiding arbitrary

preferences. The second and third assumption means that we can score local struc-

tures separately and that we don’t need to recalculate scores for similar networks

completely, which is useful when exploring the structure space as in MCMC.

Using these properties and assumptions Heckerman et al. (1994) derive an ex-

pression for the score of a given network if the associated distribution is a MVN

with a NW prior:

f(D|G, ξ) =
d∏

i=1

f(DXi,pa(Xi)|G, ξ)

f(Dpa(Xi)|G, ξ)
(3.24)

where DXi,pa(xi) is the dataset restricted to the columns of variable Xi and its pa-

rents.

Using equation 3.19 written as in Box and Tiao (2011) we can obtain an expres-

sion for the likelihood of a sample after seeing the first i− 1 samples as:

f(y|ξ) =
N∏
i=1

f(yi|y0, . . . , yi−1, ξ) =
(k0
kn

) d
2 Γd(

νn
2
)

π
dN
2 Γd(

ν0
2
)

|S0|
ν0
2

|Sn|
νn+1

2

(3.25)

where yi is the i-th sample in the data.

Using this expression to obtain the values of the factors in equation 3.24 we

obtain the expression in 3.26. This equation needs to be corrected for the fact that

we use a subset of the variables when scoring, as opposed to when we compute the

parameters of the NW prior where we use all of them, as noted in the addendum to

the BGe score of Kuipers et al. (2014) wich follows a theorem in Press (2012)). This

means that is we set DY to be the dataset restricted to the columns in set Y , then

we obtain the following expression:

f(DY) =
(k0
kn

)l/2 Γl(
νn−d+l

2
)

πlN/2Γl(
ν0−d+l

2
)

|SY
0 |(ν0−d+l)/2

|SY
n |(νn−d+l)/2

(3.26)

Setting Q = {xi,pa(Xi)} and P = {pa(Xi)} with pa(Xi) the parents of Xi in

G, p = |P | and |Q| = p+1 and SY as the submatrix of S restricted to the rows and

columns of the variables in set Y , we can substitute in 3.24 and taking into account

that each factor in the fraction differs in only one variables the expression inside the

28

3.2 Markov chain Monte-Carlo (MCMC)

multiplication can be further simplified as:

f(DQ|G, ξ)

f(DP |G, ξ)
=

(k0
kn

)1/2 Γl(
νn−d+p+1

2
)

πn/2Γl(
ν0−d+p+1

2
)

|SQ
0 |(ν0−d+p+1)/2

|SP
0 |(ν0−d+p)/2

|SP
n |(νn−d+p)/2

|SQ
n |(νn−d+p+1)/2

(3.27)

Multiplying this final expression by the prior probability p(G|ξ) of each network

structure we obtain the final score for any given network.

3.2. Markov chain Monte-Carlo (MCMC)

We will now describe MCMC algorithms which will be used for learning the

structure of Bayesian Networks in conjunction with the BGe score described before.

First as a quick aside, Monte-Carlo simulation is a general purpose technique used

for approximating integrals with a finite number of samples when exact computation

is infeasible. To do this, the idea is to draw random samples with a random variable,

perform some computation with them and aggregating the results.

A textbook (though simple) example is determining the value of π. This value

is the ratio between the circumference and the diameter of a circle. This value can

ba approximated by dividing the area of the unit square and the inscribed circle.

Drawing samples uniformly inside the former and dividing by number of points also

inside the latter we obtain 4 times the value of π which we use as approximation.

Monte Carlo simulation is tightly related to the theory of Markov chains and sam-

pling and has been used widely used since computer came into prominence in the

1950s.

In the following subsections we will introduce the basic concepts related to Mar-

kov chains and the Metropolis-Hastings algorithm, which is our choice of sampling

algorithm. For this discusion si will be taken to be the sate of the chain at step i, Si

is the distribution over possible states at step i and X the space of possible values.

3.2.1. Markov chains

The idea in MCMC is to approximate a given distribution using a random walk

through a Markov chain that has the desired distribution as its stationary distribu-

tion.

Definition: Markov chain A Markov chain is a stochastic process where the pro-

bability of moving to a given si state only depends on the current state si and not

29

3. BACKGROUND

on the whole history of states that have been visited, i.e., it satisfies the Markov

property:

p(si+1|si, . . . , s0) = p(si+1|si) (3.28)

In discrete domains the distribution over states is denoted by a vector π such

that πi ≥ 0 and
∑

i πi = 1 . The probability of each transition (in the case of discrete

spaces) is called the transition matrix (denoted P). There are several properties of

Markov chains which are useful in order to determine if the chain converges and the

rate at which it achieves this, something that is necessary for the method to be of

any practical use. These are (Robert (2004)):

1. Reducibility: A Markov chain is said to be irreducible if it is possible to get

from any state to any other state in a finite number of steps:

p(Sk = x′|S0 = x) > 0, ∀x, x′ ∈ X (3.29)

Where X is the state space and k is any integer greater than zero.

2. Periodicity: A Markov chain is said to be aperiodic if all sates are aperiodic.

A given state is periodic with period k if any return to said state must occur

in steps that are multiples of k. A state is then aperiodic if k = 1. Notably an

irreducible chain only needs one aperiodic state to be aperiodic.

3. Transience and Recurrence: A state i is transient if starting at state i there

is a nonzero probability of not returning. If on the other hand we return with

probability 1, then the state is said to be recurrent. If the mean hitting time

(the mean number of steps until we return to the state) is finite we say the

state is positive recurrent.

4. Ergodicity: An ergodic Markov chain is one that is irreducible and where every

state is ergodic. A state is ergodic if it is aperiodic and positive recurrent. An

important theorem states that if the chain is irreducible with a finite number

of states and has one aperiodic state then the chain is ergodic (Robert (2004)).

5. Reversibility: A reversible Markov chain is one where there is a probability

distribution π over states such that:

πx ∗ p(Si+1 = x′|Si = x) = πx′ ∗ p(Si = x|Si+1 = x′) (3.30)

for all n and all states xi, xj ∈ X. This is known as the detailed balance

condition.

30

3.2 Markov chain Monte-Carlo (MCMC)

The usefulness of a Markov chain is that under certain conditions it converges

to a stationary distribution:

Definition A distribution π is said to be stationary with respect to some chain

with transition matrix P if it is unchanged by the multiplication of the two:

πP = π (3.31)

With these properties several other results can be formalized. For example if a

Markov chain is aperiodic and irreducible then there is a unique stationary distri-

bution π. Also an upper bound on the convergence speed can be determined though

this tends to be a large value and hence it is only of theoretical value in most cases.

A more useful property is the following:

Theorem 3.2.1 Stationary distribution of a Markov chain: If a Markov chain satis-

fies the detailed balance condition for some distribution π and the transition matrix

P then π is the unique stationary distribution of the Markov chain.

These properties have been described for discrete domain since it is easier to

understand but can be generalized to include non transition matrices where the sta-

tes are not explicitly enumerated. This is the case when we work in continuous or

discrete domains that are too large for explicit explicit enumeration of the transition

probability. In these cases, the transition matrix P is substituted by a transition ker-

nel K(Si+1|Si) such that K(x′|x) ≥ 0 for all states and
∫
K(x′|x)dx′ = 1. The same

definitions and theorems apply to this situation (Robert (2004)). This definition will

be used throughout since the space of possible DAGs, even though it is a discrete

one, is sufficiently large that a parametric kernel is needed. Of course when working

with a kernel, the distribution π must also be substituted with a parametric density

function, which we will denote as p.

A useful property for kernels is that they allow for combinations to form more

complex transition matrices:

Definition Given a set of weights pk such that
∑

k pk = 1, then mixture kernel K+

is a convex combination of kernels such that:

K+(Si+1|Si) =
∑
k

pkKk(Si+1|Si) (3.32)

These kernels have a useful property which we summarize with the following

theorem (Tierney (1994)):

31

3. BACKGROUND

Theorem 3.2.2 Let K+ be a mixture kernel as that of equation 3.32. If all the

component kernels have the same stationary distribution π and one of the component

kernels Kl is ergodic then the mixture kernel K+ is also ergodic and converges to

the stationary distribution π.

3.2.2. Metropolis-Hastings algorithm

In order to actually perform the random walk one must use a concrete algorithm

that in some way takes samples from the desired target distribution and uses them

as an approximation. One of the most widely used is the Metropolis-Hastings (MH)

sampler (Metropolis and Ulam (1949), Hastings (1970), Robert (2004), Murphy

(2012)). This algorithm relies on the definition of a transition kernel that uses a

proposal distribution, which as it name implies proposes a new state si+1 given the

current one si. It turns out that if defined correctly this method ensures convergence

to the target posterior.

The algorithm first defines a proposal q(si+1|si) and uses it to sample a new

state from the previous one. This new state is then accepted with a probability

that depends on the ratio of probabilities between the two states according to the

posterior:

α(si+1|si) = min
{
1,

p(si+1)

p(si)

}
(3.33)

where p(s) is the probability of the state according to the target stationary distri-

bution.

If the proposal is asymmetric (q(si|sj) �= q(sj|si)) then we need to adjust the term

with the Hastings correction coefficient giving the following general expression where

we also substitute p(x) for the unnormalized probability p̃(s) since the normalization

constants cancel out and thus they do not have to be computed and q(si|sj) is the
proposal distribution:

α(si+1|si) = min{1, r(si+1|si)} (3.34)

r(si+1|si) = p(si+1)q(si|si+1)

p(si)q(si+1|si) =
p̃(si+1)q(si|si+1)

p̃(si)q(si+1|si) (3.35)

Proposal distributions must give a nonzero probability of moving to each of the

states that have nonzero probabilities in the target (or stationary) distribution in

order to be admissible. For practical purposes it is necessary that it also covers the

32

3.2 Markov chain Monte-Carlo (MCMC)

density regions in an appropriate way. If it gives too much probability to a given

mode, then the rest of the space will probably go unexplored. Too much density for

low probability regions will yield a very low mixing rate for the chain, with many

rejected samples which means we have to sample for a longer period. Intuitively if

the chain converges then the sampler should visit each state (in the limit) a number

of times that is proportional to its marginal probability (this is why it is a Monte

Carlo method).

The transition kernel defined by the Metropolis-Hastings algorithm can thus

written as (Murphy (2012)):

K(si+1|si) =
{
q(si+1|si)r(si+1, si) if si+1 �= si

q(si|si) +
∑

si+1 �=si
q(si+1|si)(1− r(si+1, si)) otherwise

(3.36)

which follows from the fact that we propose a move with probability q(si+1|si) and
accept it with probability r(si+1, si) in the first case, or in the second case we either

propose to stay in the same state which is always accepted or the move is rejected.

The reason MH works is the following theorem whose proof can be found in Murphy

(2012) page 854:

Theorem 3.2.3 Given a target distribution p∗ and the transition kernel induced by

the MH algorithm using q, if the underlying chain is ergodic and irreducible then p∗

is its unique stationary (limiting) distribution.

These theorems will be useful in the next section when we apply MCMC for

structure learning of Bayesian Networks.

3.2.3. Using MCMC for structure learning of BNs

The idea of using MCMC for structure learning of BNs is to define a target

distribution that gives more probability to better structures and a kernel so that

the target is also the stationary distribution. In this way we explore the space given

preference to networks that we have determined are better than others. Using the

BGe score as a metric to determine how good a given network is and a series of mo-

ves to transition from one state to another it is possible to achieve this. The other

main advantage is that we can approximate the posterior distribution of network

structures. This not only allows to analyze the discovered relations more rigorously

33

3. BACKGROUND

by using a better estimate of the true posterior distribution, but we may use diffe-

rent samples from the chain to create combinations of models in order to improve

prediction tasks.

In the case of structure learning the values states of the chain si and sj mentioned

in 3.33 are graph configurations so in order to make this fact explicit we will denote

the states as G<subscript> following standard graph theory notation. The distribution

p is the marginal probability of each graph given the data, p̃ is the corresponding

unnormalized probability (the conditioning on the data will be dropped for brevity)

and q is the probability of each move. Formally, if Gi is the current state of the

chain:

p(Gi+1|D) =
p(D|Gi+1)p(Gi+1)

p(D)
(3.37)

q(Gi+1|Gi) =
1

|Nbh(Gi)| (3.38)

where Nbh(.) is the neighborhood of graph Gi in the state space and depends on

the allowed moves. The first factor in the numerator of 3.37 is the likelihood term

computed as the score of the network, the second is the prior probability of each

graph (in the case of a uniform distribution it can be omitted). The denominator

can be excluded since it cancels out when computing the ratio.

The moves most commonly used when defining a proposal q are the following:

Adding an arc u → v to the graph. This arc must no violate the DAG property.

Removing an arc u → v. This move can always be made if there are arcs in

the graph.

Reverse the direction of some arc u → v. This can be reduced to a removal

followed by addition of the reversed arc.

These moves were introduced by Madigan et al. (1995). Combining them with

equations 3.37 and 3.38, and a score function that conforms to the Parameter Inde-

pendence property to compute r we get:

r(Gi+1|Gi) =
exp[Ψ(πi+1

n)|D)]p(Gi+1)|Nbh(Gi)|
exp[Ψ(πi+1

n |D)]p(Gi)|Nbh(Gi+1)| (3.39)

where Ψ(.) is the log score associated to the parent of variableXn in graphGi denoted

πi+1
n , which was the one that was modified by the arc addition or removal. Because we

34

3.2 Markov chain Monte-Carlo (MCMC)

assume that the score function obeys the Parameter Independence assumption, all

other parent sets cancel out since they have not changed and only the one associated

with the head of the arc needs to be computed (Geiger and Heckerman (1994)). The

kernel for these moves is then:

K(Gi+1|Gi) = q(Gi+1|Gi)α(Gi+1|Gi) (3.40)

By construction this kernel satisfies the detailed balance condition so under er-

godicity it will converge to the stationary distribution p:

p(Gi+1|D)K(Gi|Gi+1) = p(Gi|D)K(Gi+1|Gi) (3.41)

We note that in this kernel reversal has not been included. This move is generally

not used in the naive form since it has several disadvantages. First as noted in Robert

(2004) and Friedman and Koller (2003) simple arc operations including the above

mentioned (and thus reversal), produce reduced mixing rate and slow the conver-

gence of the chain due to the fact that modifications are small and adjacent graphs

have similar scores. In addition to this reversing an arc can create an isomorphic one

which is undesirable since it is in essence the same graph. In addition, reversal is a

computationally expensive move since not all arcs can be reversed without violating

the DAG property. Giudici and Green (1999) introduced the non-covered arc to sol-

ve the former problem as well as optimizations in the form of an ancestor matrix

which they efficiently update so as to easily find the arcs that can be reversed. Still

the convergence problem cannot be solved in this way.

3.2.3.1. The REV move for arc reversal

This is what the new edge reversal (REV) move of Grzegorczyk and Husmeier

(2008) attempts to fix (though the authors use the term “new edges reversal”, the

article is from 2008). The idea is that instead of reversing an arc that does not

violate the DAG property, which is constrained by the parent sets of both nodes,

we can reverse any arc and we resample the parent sets of both nodes. The parent

sets are restricted to those that contain the reversed arc and exclude the children of

both nodes (including the head of the new arc which is now a children of the former

head). This ensures that the DAG property is upheld and we can reverse any arc.

Since the moves involve several removals and additions of arcs it implies more

drastic moves across the search space that allow the random walk to escape from

35

3. BACKGROUND

local maximums more easily speeding up the convergence rate. In order to facilitate

this, sampling is not done uniformly, instead doing in accordance to their respective

scores. Addition and removal are still needed since this move is not irreducible (it

can reach every state) and must be embedded in an irreducible framework like the

one provided by these basic moves (it is easy to see that starting in any state we

can reach any other by removing arcs and the adding back the new ones).

Figura 3.1: The steps of the REV move from left to right and top to bottom. In

the first figure the original graph. In step two the arc between E → D is selected for

reversal. Both nodes are then orphaned, leaving them only connected to their children

in step 3 (bottom-left figure). The arc D → E is added, notice that since parent sets

where removed it does not violate the DAG property. Finally in this intermediate

graph, parent sets are sampled for both nodes according to the restriction that must

be enforced, namely the graph must be a DAG so all descendants are omitted and D

is forced to be in the new parent set of node E.

The proposal distribution thus depends on the number of existing arcs that we

can reverse such that the DAG property is not violated (denoted by |E|) and the

probability of the newly selected parent set for each node. In order to sample a

parent set we must then compute the normalizing constant or partition function

which implies summing over all possible parent sets. We note that in practice the

number of possible parent sets must be limited since otherwise computation of the

36

3.2 Markov chain Monte-Carlo (MCMC)

partition function becomes unfeasible. This is usually done by imposing a fan in

restriction on the number on arcs incident on a node. For the purpose of the following

exposition we first define two partition functions:

Z∗(Xn|G̃i, Xm) (3.42)

Z(Xm|G̃i, Xn) (3.43)

Where Xu and Xv are the variables corresponding to the arc which will be

reversed (u → v) and G̃i is the graph obtained by orphaning both nodes u and v in

Gi. The first partition function Z∗ excludes the parent sets that contains descendant

nodes of u in G̃i and force v to be in the new parent set of node u. The other partition

Z excludes parent sets that contain node u and any other of its descendants.

Formalizing how the score of the network changes between states, the ratios can

be obtained y simplifying the scores of the two modified parent sets of nodes u and

v, which follows from the above informal expositions (for a more visual explanation

check figure 3.1:

p(Gi+1)

p(Gi)
=

exp[Ψ(πi+1
u |D)] exp[Ψ(πi+1

v |D)]

exp[Ψ(πi
u|D)] exp[Ψ(πi

v|D)]
(3.44)

On the other hand, the proposal distributions is defined using the partition

functions and the indicator I(.) as:

q(Gi+1|Gi) =
1

|E(Gi)|
exp[Ψ(πi+1

u |D)] ∗ I(Xv ∈ πi+1
u)

Z∗(Xu|G̃i, Xv)

exp[Ψ(πi+1
v |D)]

Z(Xv|G̃i, Xu)
(3.45)

The first term correspond to the probability of selecting and arc for reversal

since it is chose uniformly from the available ones. The second factor corresponds

to probability of sampling a new parents set for node u, which is just the score

normalized by the sum of all possible parent sets. Analogously, the third term is

the corresponding sampling but for node v. Using this formula we can compute the

37

3. BACKGROUND

acceptance ratio by substituting in equation 3.35:

r(Gi+1|Gi) =
p(Gi+1)

p(Gi)

q(Gi|Gi+1)

q(Gi+1|Gi)

=
exp[Ψ(πi+1

u |D)] exp[Ψ(πi+1
v |D)]

exp[Ψ(πi
u|D)] exp[Ψ(πi

v|D)]

1
|E(Gi+1|

exp[Ψ(πi
u|D)]∗I(Xv∈πi

u)

Z∗(Xu| ˜Gi+1,Xv)

exp[Ψ(πi
v |D)]

Z(Xv | ˜Gi+1,Xu)

1
|E(Gi)|

exp[Ψ(πi+1
u |D)]∗I(Xv∈πi+1

u)

Z∗(Xu| ˜Gi,Xv)

exp[Ψ(πi+1
v |D)]

Z(Xv | ˜Gi,Xu)

=
|E(Gi)|
|E(Gi+1)|

Z∗(Xu|G̃i, Xu)

Z∗(Xv|G̃i+1, Xu)

Z(Xv|G̃i, Xu)

Z(xu|G̃i+1, Xv)
(3.46)

where the final expression can be obtained by simplifying the scores of the parent

sets in both expressions. We see that in practice, only the partition functions for each

move must be computed. The last step in order to define the kernel for the MCMC

using these moves is combine the kernel for this move obtained by substituting with

the one used by the addition and removal ones.

Defining ps and pr = 1− ps as the probabilities of selecting the standard moves

(addition and reversal) or the REV move respectively we obtain the combining kernel

defined as:

K+(Gi+1|Gi) = psK(Gi+1|Gi) + prK
′(Gi+1|Gi) (3.47)

Where K is the kernel with arc additions and removals and K ′ the one arising

form the use of the REV move. As we said the chain associated with REV move is

not irreducible since we can’t reach every state from any other just by performing it.

Combining it with the classical moves solves this problem and ensures irreducibility,

since the combination of both kernels uses the basic moves to ensure it can reach

any state. In this case, K+ is ergodic and since K and K ′ have the same stationary

distribution, by theorem 3.2.2 the mixture kernel also converges to the same unique

stationary distribution, as is desired.

38

4

Multi-dimensional Gaussian

Network Regressor

In this chapter we will describe our proposed algorithm. As discussed we will

make use of MCMC techniques combining them with the MBC DAG structure.

MCMC will provide a search mechanism in order to traverse the space of possible

networks. The MBC will serve as a mechanism by which to impose constraints on

the structure of the graph. The hypothesis is that if the true graph follows a similar

structure to the one of MBC this will narrow the search space in a convenient way.

This is particularly useful for large graphs where it becomes common practice to

impose a fan in restriction. In these cases, being able to narrow the number of

parent sets can allow the use of a larger fan in, potentially improving the quality of

the discovered networks.

Additionally, instead of selecting a unique model, we will use the generated

samples to perform an approximation of the posterior probability of structures which

is useful for performing analysis of the posterior probability of arcs and for Bayesian

Model Averaging during prediction.

4.1. Using MCMC in CBD-GN

As was said, using MBc graphs first of all implies reducing the possible parent

sets to the ones that conform to the MBC structure given target and feature varia-

bles. This first step is pretty straightforward. When performing MCMC, the MCB

structure affects the size of the neighborhood of each state since arcs in the from

feature tu targets are not allowed even if the do not violate the DAG property.

39

4. MULTI-DIMENSIONAL GAUSSIAN NETWORK REGRESSOR

4.1.1. Deleting arcs

The MBC constraint can introduce a minor problem when deleting some arcs

depending on how we wish to enforce it. If a feature node v has only one parent who

is a target (call it u), then if we select the arc u → v for deletion this will leave v

with no parents in the set of target variables. For prediction tasks this means that

variable v will have no use whatsoever (though it would still be relevant for analysis

of the relationships in the domain).

If we wish to enforce the use of all feature variables for prediction then we have

two options: disallow the removal of these arcs or reattach v immediately after

performing such a removal to a different node w in the set of targets. The second

option seems like the best one since not allowing the arc deletion can limit the

capacity of the algorithm to efficiently explore the state space.

This operation is simple and does not introduce further difficulties. Reattaching

v to a new parent target w is always possible since by construction a cycle will never

be formed. Also, it does not violate any fan in restrictions since we always remove

an arc before adding a new one. Furthermore this move is clearly reversible since it

is simply a removal followed by an addition which are both reversible.

Using the same notation as in the previous chapter the expression for the proposal

distribution:

q(Gi+1|Gi) =
1

|Ei||V−u| (4.1)

where in this case V−u = V \ u, and Ei are the arcs in Gi. The proposal is just the

probability of selecting any of these arcs in the set Ei uniformly and, in the case

that v was a feature and u its only parent, sample a new parent w from the set of

targets excluding u uniformly.

Substituting this expression in 3.35 and taking into account that scores of un-

changed parent sets cancel out we obtain the following expression of the acceptance

probability:

r(Gi+1, Gi) =
p(Gi+1|D)

p(Gi|D)

q(Gi|Gi+1)

q(Gi+1|Gi)
=

exp[Ψ(πi+1
v |D)]

exp[Ψ(πi
v|D)]

1
|Ei+1||V−w|

1
|Ei||V−u|

=
exp[Ψ(πi+1

v |D)]

exp[Ψ(πi
v|D)]

|Ei||V−w|
|Ei+1||V−u| =

exp[Ψ(πi+1
v |D)]

exp[Ψ(πi
v|D)]

(4.2)

40

4.1 Using MCMC in CBD-GN

where the last step is a consequence of the fact that the sets of nodes and arcs are

the same size. This is evident in the case of the former. In the case of the arcs we can

see this is also true since, by the structural property of MCBs, arcs from the targets

to the features never add cycles and, furthermore, don’t make previously admissible

arcs for addition invalid. These could be incident to v from a feature which can’t be

a parent of w (a target) or from another target, in which case it either is a possible

parent of w or not, a situation that is not changed by making it a parent of v.

While we could make this a separate move, it would add unnecessary complexity

to the algorithm. So for our implementation we have just made it an extension of

the traditional arc removal.a

4.1.2. The Adjacency Resample move

Constraining the possible structures does not resolve the main problem with

sampling in a discrete setting like that of graph structures. Mixing in discrete spa-

ces is low and escaping local maxima is hard tasks in many situations due to the

jaggedness of the probability landscape.

A common strategy employed to overcome this is to do multiple restarts of

the chain from different states. If enough of these restarts are performed and their

initial states are sufficiently apart in the state-space then good approximation of

the posterior will more likely be found. This of course depends on the particular

probability landscape that we are dealing with. There are two problems with this

strategy, first it’s not always easy to know haw far we are apart these starting points

are from each other, i.e. how well they are covering the state space since if they are

clustered in one point then these restarts will be redundant. Second, restarting the

chain means that any progress we made towards its convergence is lost.

We propose a new move which is compromise between resampling as in the REV

move (Figure 4.1), which is done according to the scores of the parent sets, and the

random connections usually generated at the start of the chains when arcs are added

randomly. We call this new move Adjacency Resample (AR) and its objective is to

perform a large reconfiguration of the current state of the chain by jumping to a

potentially part of the state-space that is far from the current state without loosing

the convergence achieved so far. It achieves this by detaching a node from the graph

(except for one case which we will describe below) and reattaching it to a new set

of parent and children nodes.

41

4. MULTI-DIMENSIONAL GAUSSIAN NETWORK REGRESSOR

Figura 4.1: The AR move. In the the first figure the original network. In the second,

node C is detached from th rest of the graph. Lastly, we reattach it to a new parent

set and new children.

Informally, the move works as follows. First we choose one (call it u) of the nodes

at random from V (G). Next we proceed to disconnect u from its parents and children

(except in the case where a child of u is a feature and u is its only target parent).

Then we sample a new parent set with a probability that depends on the score of

the parent set (e.g. using the BGe score, equation 3.26) score from those that do

not violate neither the DAG nor the MCB properties when the corresponding arcs

are added to the graph. Finally, in this intermediate graph we sample some of its

admissible arcs that correspond to potential new children nodes of u.

The steps for the move are described in algorithm 1, where Πi
u are the allowed

parent sets of node u in graph G′. The disconnect step is done as mentioned before,

without detaching the children who are features and for which u is their only target

parent.

Algoritmo 1 AR move

1: procedure AR(Gi)

2: u ← sample(V (Gi))
 Pick a node at random

3: G′ ← disconnect(u,Gi)
 Disconnect u from Gi

4: πu ← sample(Πi
u)|D,G′)
 Sample a parent set according to its score

5: G′′ ← add arcsπu × {u}, G′)
 Add arcs of the new parent set

6: k ← sample(|admissible arcs(G′′, u)|)
 Sample the number of arcs to add

7: arcs ← sample(admissible arcs(G′′, u), k)
 Select k arcs randomly

8: Gi+1 ← add arcs(arcs,G′′)

9: return Gi+1

10: end procedure

It is important in step 6 that the size k (this is not the same k as when we

42

4.1 Using MCMC in CBD-GN

discussed the k-CBd in the previous chapter) of the set of arcs that will be added

in step 7 is not selected uniformly since the number of combinations is not the same

for different set sizes. Selecting k this way would bias the move towards extreme

set sizes, either too small or too large which have a lower amount of combinations

and hence higher probability for each of them. This is why we instead sample k in

accordance with the number of possible sets of that size normalized by the total

number of subsets. The probability of selecting subset size k when we have mi

admissible arcs in step 6 if we started from graph Gi is thus computed as:

p(k|mi) =

(
mi

k

)∑mi

j=0

(
j
k

) =

(
n
k

)
2mi+1 − 1

(4.3)

First of all we can see that the this move is reversible, since from Gi+1 we can

simply disconnect node u and we obtain the same graph G′. Furthermore the arcs

that could not be disconnected in Gi are the same as in Gi+1 since their parents

never change and if n is one of them then the corresponding arcs are not sampled for

addition in steps 6 and 7. In order to reduce the possible arcs to be selected in step

7, we exclude the ones that where present in the previous step. This means that the

set of arcs that are considered for admission are also disjoint from those that where

removed from the children of node n in Gi so we can always move in the opposite

direction no matter the state we started in step i of the chain.

4.1.2.1. Acceptance probability

From the above algorithm we can also see that the ratio of scores between the

two graphs depends on the change in parent sets for node u and the set of its children

that are different in Gi and Gi+1 (denoted C = Chi(u) ∪ Chi+1(u), where Chi(u)

are the children of node u in graph Gi):

p(Gi+1|D)

p(Gi|D)
=

exp[Ψ(πi+1
u |D)]

exp[Ψ(πi
u|D)]

∏
v∈C

exp[Ψ(πi+1
v |D)]

exp[Ψ(πi
v|D)]

(4.4)

The Hastings correction coefficient (ratio between the probabilities of the move

and its inverse) can be computed as follows. Suppose we start in state Gi, the first

step after we detach the node as outlined in 1 is to sample the new parent set of

node u, which we do with probability:

p(πi+1
u |G′) =

exp[Ψ(πi+1
u |D)]

Z(Xu|G′)
(4.5)

43

4. MULTI-DIMENSIONAL GAUSSIAN NETWORK REGRESSOR

Next we sample the number of arcs we are going to add from those that are

admissible in G′′. The probability of each set size k is obtained with equation 4.3

and the probability of each arc set of the given size is just the inverse of the number of

sets of that size since we select them uniformly. Combining both of these expression

we obtain the probability of each possible neighbor from G′′:

p(Gi+1|G′′) =

(
mi

k

)
(2mi+1 − 1)

(
mi

k

) =
1

2mi+1 − 1
(4.6)

Combining equations 4.5 and 4.5 we get the expression for the probability of one

move as:

q(Gi+1|Gi) = p(πi+1
u |G′)p(Gi+1|G′′) =

exp[Ψ(πi+1
u |D)]

Z(Xu|G′)2mi+1 − 1
(4.7)

where we follow the same notation as in the algorithm’s outline. To complete the

expression of the Hastings correction coefficient we just need to combine the proba-

bility of the move and its inverse:

q(Gi|Gi+1)

q(Gi+1|Gi)
=

exp[Ψ(πi
u|D)]

Z(Xu|G′)2mi+1+1−1

exp[Ψ(πi+1
u |D)]

Z(Xu|G′)2mi+1−1

=
exp[Ψ(πi

u|D)]2mi+1 − 1

exp[Ψ(πi+1
u |D)]2mi+1+1 − 1

(4.8)

where te simplification of the two normalization constants Z is possible since G′ is

the same in both directions. To see this observe that we always disconnect all arcs

from node u (the only exception being the case in which u is the only target parent

of a children v. This case however can be safely ignored since we don’t modify the

parent set of said node in any part of the move). Once we do this we thus have the

same graph G′ and the only difference between moves is that the new children that

we sample are not the same since we exclude the former ones to improve variance.

Multiplying 4.4 and 4.8 we obtain r(Gi+1, Gi) for the move:

r(Gi+1|Gi) =
p(Gi+1|D)

p(Gi|D)

q(Gi|Gi+1)

q(Gi+1|Gi)

=
exp[Ψ(πi+1

u |D)]

exp[Ψ(πi
u|D)]

(∏
v∈C

exp[Ψ(πi+1
v |D)]

exp[Ψ(πi
v|D)]

) exp[Ψ(πi
u|D)]2mi+1 − 1

exp[Ψ(πi+1
u |D)]2mi+1+1 − 1

=
2mi+1 − 1

2mi+1+1 − 1

∏
v∈C

exp[Ψ(πi+1
v |D)]

exp[Ψ(πi
v|D)]

(4.9)

44

4.1 Using MCMC in CBD-GN

where the scores of the new parent sets for node u cancel out, so only those of the

children need to be computed. This expression can be substituted in equation 3.40

along with 4.7 to obtain the final expression of the kernel for the AR move:

Kar(Gi+1|Gi) = q(Gi+1|Gi)α(Gi+1|Gi)

=
1

2mi+1 − 1
min

{
1,

2mi+1 − 1

2mi+1+1 − 1

∏
v∈C

exp[Ψ(πi+1
v |D)]

exp[Ψ(πi
v|D)]

}
(4.10)

We next demonstrate that this move is ergodic and thus converges to proper

posterior distribution.

Theorem 4.1.1 Irreducibility of the Kar kernel: The kernel induced by the AR move

in the MH sampler is irreducible.

Proof Since all arcs could be removed in at most |V | moves (we always sample the

empty parent set and no arcs to children for all the nodes in succession) and we

can always sample any network from the empty graph, then the move is irreducible.

In other words, observe that this move could behave like simple arc addition and

removal if the right steps are sampled when assigned a new parent set or children to

each node.

In the special case where we do not allow the removal of an edge that connects a

feature to its only target parent we observe that this does not change our demons-

tration since when we deal with these arcs a move may add another parent to them,

which will allow its removal in the next step.

Corollary 4.1.2 Ergodicity of the Kar kernel: The kernel induced by the AR move

in the MH sampler is ergodic.

Proof Since the kernel is defined over a finite state space and is irreducible we have

positive recurrence for all states and thus ergodicity.

Corollary 4.1.3 The AR kernel has p(G) as its limiting distribution.

Proof This is a direct consequence of kernels defined by the MH sampler satisfying

the detailed balance condition.

45

4. MULTI-DIMENSIONAL GAUSSIAN NETWORK REGRESSOR

Nonetheless, we do not use this as a standalone transition kernel, since it is

intended as a high variance move. Standard addition, removal and the REV move

are combined with the AR move to create a combination kernel:

K+(Gi+1|Gi) = pbasicKbasic(Gi+1|Gi)+prevKrev(Gi+1|Gi)+parKar(Gi+1|Gsi) (4.11)

where pad, prev, par are the probabilities of each move, such that pad+prev+pfmb = 1.

Since the first kernel is irreducible and ergodic then by theorem 3.2.2 K+ also con-

verges to the desired stationary distribution and so the proposed MCMC sampling

algorithm is correct.

4.1.2.2. Computational Complexity

Analyzing the computational complexity of these moves we find that if we follow

the same implementation of Giudici and Green (1999) which uses an ancestor matrix,

it takes O(1) to check for if an arc would violate the DAG property. In turn updating

this ancestor matrix takes O(|V |2) for each node. This means that in the worst case,

updating after a move takes O(|V |3) since we need to update for each descendants.

The modified delete that reattaches the feature node does not add further com-

plexity since it’s simply an arc removal followed by an addition. In the case of the

AR move the cost is O(|V |3). This is easy to see since we have to update the ancestor

matrix of all the descendant of node u which are at most |V | with a cost of O(|V |2)
each. These moves then add no further asymptotic complexity to the existing ones.

4.2. Prediction

To predict with a trained network, we have fit the parameters of the equivalent

underlying MVT taking into account the parents of each variable according to the

GN. We can determine the parameters of the network using equations 3.2 and then

use3.5 to obtain the corresponding MVN. We can then obtain a conditional distribu-

tion of the target variables Y given the features X using the conditioning formulas

for MVNs(3.6):

f(Y |x, θ) = N (Y |μY |X ,ΣY |X) (4.12)

46

4.3 Implementation details

Using the fact that GNs may decompose as a k-CBd, we can further decompose

the set of variables X and Y as X = X0, . . . , Xk and Y = Y0, . . . , Yk. This means

that the final distribution can be decomposed in its components yielding:

f(Y |x, θ) =
k∏

i=0

N (Yi|μi
Yi|Xi

,Σi
Yi|Xi

) (4.13)

A distinct advantage of using MCMC is that for situations where variance in

the models is high, for example when the number of data samples is low, we can

use the fact that the samples from the Markov chain approximate the posterior

over networks to perform an average over network configurations. This approach

has been explored in previous works (Madigan and Hutchinson (1995)) and yields

good results at the cost of more computational cost. In this case predicting can be

done using the following formula which is an approximation to the true Bayesian

posterior predictive distribution:

f(Y |X,D) =
Ns∑
i=1

f(Y |X,Gi, D) (4.14)

where Ns is the number of samples extracted from the Markov chain and each term

inside the product is equal to 4.13.

4.3. Implementation details

The algorithms were all implemented in Python (www.python.org), using

Numpy and Scipy (www.scipy.org) which provide efficient implementations of

arrays and operations over them along with mathematical functions like logarithms

and density functions. To operate with the graph structures we used Networkx

(networkx.github.io), which contains implementations of graphs and graph rela-

ted algorithms.

Basic operations like adding, removing and deleting arcs take O(1) using dic-

tionaries of dictionaries to the adjacency matrices of the graphs. Further efficiency

could be achieved in matrix form combined with GPUs but for the purpose of this

work this simple approach seemed sufficient.

To compute the BGe score we used the same factorizations and simplifications

presented in Kuipers et al. (2014). These simplified expressions for the score of each

parent set and other changes like using the Cholesky decomposition to calculate

47

4. MULTI-DIMENSIONAL GAUSSIAN NETWORK REGRESSOR

determinants of positive definite matrices, provide better numerical stability. This

is critical for large networks and databases. In order to operate with the scores

which can have quite small values that can cause underflow and precision errors we

also work in log-space, avoiding this problem. Finally a fan in restriction is used to

limit the number of parents. This is necessary o otherwise pre-computing the score

for each one takes to much time (a feature node in a large network has possible

O(2|V | − 1) parents).

The conditional probability table (CPTs) used to store the scores of each parent

set and from which we sample them where implemented using Pandas (pandas.pydata.org),

whose Series data structure provide an easy API for using hierarchical indexes and

performing operations like selection of values under arbitrary conditions.

48

5

Evaluation of our method

In this chapter we describe the experiments performed to asses the performance

of the model. We will have to rely on several visual tests since statistical hypothesis

tests used to determine the convergence of the Markov chain like the Geweke test are

designed for MCMC sampling in continuous domains. We also check the performance

against the MCMC algorithm using just the traditional moves with the REV edge

reversal. We also present the application of our method to the problem of discovering

the relation between morphological and electrophysiological variables of neurons

described in the Chapter 1.

5.1. Experimental setting

To evaluate the performance we plot the scores of the sampled networks obtained

in an MCMC run. This allows us to observe how fast both methods converge to

regions of high probability and how the vary once they arrive to those regions. To

check how much steps are spent in each region we also plot the distribution of the

scores obtained.

To evaluate convergence we monitor the scores of the networks in each state as

well as the presence of each arc and the acceptance ratio. In the case of the arc

values we use their running means for visualization since they are easier to interpret

than the values themselves.

Since we lack benchmark datasets of data generated by MBCs with continuous

variables we used simulated data. We randomly generated GNs with different net-

work sizes always respecting the MBC structure. The networks used for testing were

fixed at 15 variables with 5 targets and 10 features. The mean of each variable was

49

5. EVALUATION OF OUR METHOD

set to 0, with variance equal to 0.2 and a strength of the influence of the parents

over the children of 2. We could have chosen a random value for this parameter but

we wished that the influence was noticeable so check if the algorithm could find the

arcs. If the coefficients where very small this would be harder.

The MCMC sampler ran for 100 thousand iterations for each network example

with 20 restarts to check how the metrics vary with different initializations, and in

the case of the AR to see its ability to escape from local maxima.

5.2. Results

Having established the parameters of the experiments, in this section we present

the results along with our comments on their implications.

5.2.1. Convergence Reliabilty

First we will evaluate the convergence of the algorithm. We can run the MCMC

sampler from different starting points and trace the values of the parameters and

the scores. These provide an estimate of the posterior probability of the arcs. Scatter

plots of these values are then used to determine the reliability of the convergence

in the same way that it is done in other works on the subject (Friedman and Ko-

ller (2003), Grzegorczyk and Husmeier (2008), Su and Borsuk (2016)). Each axis

corresponds to the probability value of an arc for two different runs, each point co-

rresponds to one arc. If a point approaches the diagonal then this signals a reliable

convergence for that arc since both runs agree on the posterior probability for that

arc.

As we can see it shows that both runs tend to arrive at a similar probability for

each arc since they both approximate the diagonal. The probabilities however are

in many cases not close to the real presence values (though most missing arcs are

correctly avoided). This may be due to the fact that we are trying to learn with a

fan in restriction from a network without restrictions. As we increase the sample size

we observe that the spread of posteriors increases which means that it takes longer

for the chains to converge. This is expected since with more samples the posterior

landscape becomes more jagged and starting from different positions means that the

chains can be trapped in different local maxima.

Another way of visualizing the same results is shown in Figure 5.2, which shows

the progression of posterior values across time. We can observe that after an initial

50

5.2 Results

(a) (b) (c)

Figura 5.1: The scatter plot of the arc presence for the same network (network

seed=333) using datasets of different sizes. a) size=50, b) size=100, c) size=200. Each

point is the posterior probability of one arc obtained with two differently seeded runs.

If the points approach the diagonal it means that both runs agree on the probability

values.

period where there is a lot of change in the parameter values, they stabilize around

the posterior probability. Also noteworthy is that as the sample size increases, the

posterior probability of some arcs increases and more arcs start to have higher

probabilities, as shown by the accumulation of points in the upper right corner of

the plots in Figure 5.1 and the spreading of the posterior traces upward in Figure 5.2

(plot (c)). This is expected since arcs that are important become more identifiable.

We can test how much the fan in restriction could be affecting these posterior

values. A different test was thus conducted, in this case generating a network with

the same parent set restriction as the one used for learning. We can see in figure 5.3

we can see that in both chains exhibit high convergence to the same posterior (plot

a). We can see however that some arcs that are not present in the original graph

are assigned a high probability. This is probably a local maximum where these arcs

emulate the influence of the real ones. More iterations could probably force the chain

to a different part of the posterior landscape but this was not the objective of the

test and so it was not tested. With more examples, the algorithm did escape these

local maxima, but it also took more time to discover the real arcs (figure not shown).

However since in practice we cannot know the real network structure, it is useful

to see if the quality of the discovered structures is too divergent from the original

one. We can plot the densities of the scores of sampled networks. For example the

network obtained with seed=333 has an unnormalized log-score as computed with

BGe metric of around -800, -1400, -2100 for parameters computed from datasets

of size 50, 100, and 200 respectively. As we can see in Figure 5.4 these values are

51

5. EVALUATION OF OUR METHOD

(a) (b) (c)

(d) (e) (f)

Figura 5.2: The running mean of the parameter values (arc presence in graph for

a network with 5 targets and 10 features) for two independently seeded runs (top

and bottom) for each dataset size. These plots are easier to read than the presence

values at each iteration. The plotted values correspond to the samples taken every 100

iterations. a, d) size=50; b, e) size=100; c, f) size=200.

close to the scores of the structures found, even if these may not have the correct

structure.

5.2.2. Comparison to REV

In this section we compare the move proposed move against the sampler using

the REV along with the standard addition and removal of arcs. We remind the

reader that original (Grzegorczyk and Husmeier (2008)) article uses the uncorrected

BGe score, which means that those results could be misleading. We are interested

in finding how the convergence rate changes for both approaches and the score of

the networks found. In figures 5.5 and 5.6 we see the results of using both methods

(REV only and AR with REV) for 4 different networks, averaging 10 restarts using

a dataset of 200 samples. Both methods quickly converge to high scoring structures

(5.5).

We see that both moves quickly converge to local maxima and enter a phase

where they do not vary very much in value. Closer inspection in Figure 5.6 reveals

that though in the first and last cases both moves behave particularly better, in

52

5.2 Results

(a)
(b) (c)

Figura 5.3: The plots of the test on data generated by networks with the same parent

set restriction as the one used in the algorithm (in this case 5). a) Scatter plot of the

arc presence for two differently seeded runs (seeds 101 and 102). b, c) the progression

of posterior probabilities for the two runs (101 and 102 respectively).

(a) (b) (c)

Figura 5.4: The density plots for the scores of the samples structures for different

dataset sizes. a) size=50; b) size=100; c) size=200.

the other instances AR move has outperformed REV. In the second AR is clearly

sampling better networks according to score and in the third it managed to jump

to a higher probability region right at the end of the MCMC run.

If we plot the distribution of the scores (Figure 5.7) we see that these are no-

netheless pretty similar for both moves, with the only major difference being the

second example, where the AR move quickly exits a local maximum and proceeds to

the higher probability region. In general we find that the sampler with the AR move

never under performs relative to the REV and even allows the chain to exit some

local maxima and into higher scoring regions where REV was not able to move.

53

5. EVALUATION OF OUR METHOD

Figura 5.5: The score progression for 4 different random networks without parent set

restrictions. In blue the values using the REV move, in red adding the AR move. Plots

are from samples taken every 100 samples and include only the first 10000 iterations,

after which the scores settle to a stable range of values. Darker shade corresponds to

the 67% confidence interval and lighter to the 95% confidence interval of the scores

across ten restarts.

54

5.2 Results

Figura 5.6: The score progression for 4 different random networks without parent

set restrictions. In blue the values using the REV move, in red adding the AR move.

Plots are from samples taken every 100 samples and after dropping the first 10000

iterations. At this point we estimated that burn in phase had ended since scores where

remained stable and close to that of the original network. Darker shade corresponds

to the 67% confidence interval and lighter to the 95% confidence interval of the scores

across ten restarts.

55

5. EVALUATION OF OUR METHOD

Figura 5.7: The comparison of the density plots for the scores for the sampled struc-

tures using the REV (blue) and AR (red) moves for different data sizes. a) size=50;

b) size=100; c) size=200.

56

6

Applying to Electro-Morpho

problem

For the purpose of this work we are interested in analyzing the data contained

in the Celltype Database of the Allen Institute for Brain Science (Allen Institute

(2017a)). This database contains 295 samples consisting of 23 morphological and 48

electrophysiological properties (along with other variables that indicate the position

of the cell and other diagnostic labels that are not relevant to our problem). This

last group can be further separated into variables that describe the response to

different types of stimuli while the in the former we can distinguish between the

ones that describe dendritic arborization patterns (number of bifurcations, angle of

said bifurcations) and those that describe the soma.

6.1. Data

In the case of morphological variables, we first eliminated those that are not

continuous since MVN are not very well suited to model them. This leaves us with

a list of 14 variables which we show below along with a description of their meaning

as found in Allen Institute (2017b).

57

6. APPLYING TO ELECTRO-MORPHO PROBLEM

Tabla 6.1: Morphological variables

Variable Description

Soma surface area The total area of the soma (the center of the
cell).

Neuronal height Height is computed on the y-coordinates and
it is the difference of minimum and maximum
y-values after eliminating the outer points on
either end by using the 95% approximation
of the y-values of the given input neuron.

Neuronal width Width is computed on the x-coordinates and
it is the difference of minimum and maximum
x-values after eliminating the outer points on
either end by using the 95% approximation
of the x-values of the given input neuron.

Neuronal depth Depth is measured on the z-coordinates and
it is the difference of minimum and maximum
z-values after eliminating the outer points on
either ends by using the 95% approximation
of the z-values of the given input neuron.

Average diameter
(thickness)

The avg. diameter of all compartments of the
neuron.

Total length The total length of the neuron is computed as
the sum of distances between two connected
nodes for all branches of the input neuron.

Total surface area The total surface area of the entire neuron.
Total volume The total volume of the entire neuron.
Maximum Eucli-
dean distance to
root

The maximum Euclidean distance of all no-
des. The Euclidean distance is the straight
line distance from the soma (root) to the no-
de.

Maximum path dis-
tance to root

The maximum path distance of all nodes.
The path distance is the sum of lengths of
all connected nodes from the soma, ending
with that node.

58

6.1 Data

Avg. contraction The avg. ratio between Euclidean distance of
a branch and its path length. Euclidean dis-
tance of a branch is the straight-line distance
from the soma to the branch. Path length is
the sum of the lengths between each node
along the path.

Average fragmen-
tation

The avg. number of compartments that cons-
titute a branch between two bifurcation
points or between a bifurcation point and a
terminal tip.

Average parent-
daughter diameter
ratio

The avg. ratio between the diameter of a
daughter branch and its parent branch. One
value for each daughter branch is generated
at each bifurcation point.

Average local am-
plitude angle

The avg. angle between the first two com-
partments (in degree) at a bifurcation. For
more information on how the order is esta-
blished details are in the cited report.

The electrophysiological variables (Allen Institute (2016)) were also subjected to

the same criterion. Also since there are several types of stimuli, which accounts for

the large number of variables, we choose to focus on the ones that correspond to one

type of stimulus, namely the Long Square. This consists of a long constant current

injection lasting several milliseconds. This reduces the data set to 19 variables whose

description we present in Table 6.2. The first 5 variables describe a single action

potential (or spike) while the rest describe features of the trains of actions potentials

obtained by applying the described stimuli. An action potential is the electrical

response to an input stimulus of a neuron.

59

6. APPLYING TO ELECTRO-MORPHO PROBLEM

Tabla 6.2: Electrophysiological variables

Variable Description

Action potential
peak voltage

Maximum value of the membrane potential
during the action potential (i.e., between the
action potential’s threshold and the time of
the next action potential, or end of the res-
ponse).

Action potential
peak time

Time from the start of the action potential.

Action potential
trough voltage

Minimum value of the membrane potential in
the interval between the peak and the time
of the next action potential.

Action potential
trough time

Time from the peak of the action potential
to the moment in which the minimum trough
voltage is achieved.

Action potential
fast trough voltage

Minimum value of the membrane potential
in the interval lasting 5 ms after the peak.

Action potential
fast trough time

Time from the peak of the action potential
to the moment in which the minimum fast
trough voltage is achieved.

Action potential
slow trough voltage

Minimum value of the membrane potential
in the interval from 5 ms after the peak until
the time of the next action potential. If the
time between the peak and the next action
potential was less than 5 ms, this value was
identical to the fast trough.

Action potential
slow trough time

The time from the peak action potential to
the moment of the slow trough.

Threshold voltage The voltage value at which the action poten-
tial starts. The start of an action potential is
defined as the maximum of the second deri-
vative of the change in voltage in time.

Threshold intensity The intensity value of the applied current at
which an action potential is unleashed.

Threshold time The time it takes for the start of an action po-
tential when applying a hyperpolarizing cu-
rrent.

Input resistance The change in voltage in response to an in-
crease in input intensity.

Upstroke downs-
troke ratio

The ratio between the absolute values of the
action potential peak upstroke and the action
potential peak downstroke.

60

6.1 Data

F/I curve slope The change in the rate of response frequency
of a neuron when the intensity of the input
is changed.

Average ISI The mean value of all inter-spike intervals in
a sweep. The inter-spike interval is the time
between the peaks of two contiguous spikes

Latency Time between the start of the stimulus until
the time of the first spike evoked by a stimu-
lus.

Adaptation index The rate at which firing speed increases or
decreases during a stimulus.

Time constant (τ) The time it takes the neuron to reach 67%
of steady state voltage.

Sag The ratio between the difference (or decrea-
se) in voltage after a step current and the
maximum hyperpolarization.

From the definitions we can see several variables which we would expect to be

related. Enumerating all of them could be a challenge but some of the most obvious

groups of interrelated features can be extracted from the definitions:

1. Max Euclidean distance and Max path distances along with the avg. contrac-

tion: Unless the neuron structure is cramped in a tight space, they should have

similar values and thus be highly correlated. The last value also is calculated

from the other two so it must be related to them.

2. Neuronal hight, Neuronal width, Neuronal depth and total volume: This is

evident from the definition of volume.

3. Total length, total surface area, total volume and soma surface area: All these

variables should be related since the larger a neuron the more surface area it

should have and the bigger the soma should be.

4. Input resistance, latency, τ : High input resistance should mean high latency

and more time to reach a determined level of voltage (in the case of τ , 67% of

the steady state voltage).

5. Time constant and all the time variables: Since the time constant determines

how fast the voltage changes in response to variation of stimuli these relations

should appear in the resulting network.

61

6. APPLYING TO ELECTRO-MORPHO PROBLEM

These relations give us an idea of the arcs that should be discovered by any

algorithm that tries to model the domain. In either case we must remember that

we use a fan in restriction when learning a model, which means that some relations

may not appear.

6.2. Preprocessing

Two variables (Upstroke/downstroke ratio and Max euclidean distance to root)

have a bimodal distribution, which means that modeling them with a Gaussian is

inadequate so they were dropped for the experiments. Others resemble exponential

distributions or have sharp minimum values (mostly at zero). This means that the

support for their empirical distributions is not infinite, so using a Gaussian could

be a bad idea if most of the density is outside the corresponding domain.

In order to solve these issues we have tested several transformations for the

variables, namely: logarithm, square, square root and fourth root. The logarithm

transformation is the ideal since it has infinite support, the same as the Gaussian

distribution. One issue with all of them is that real minimum values of variables

must be known (since all of them work on positive values and we must shift them by

that amount). In the case of physical variables they are positive so we can transform

them without any problem. Electrical variables like the voltage have practical limits

when discussing action potential of close to −100mV so we can safely shift them

even though technically values beyond that point have probability 0.

For a small subset of variables we chose to use square and 4th root transforma-

tion even though they do not have infinite support since the shape of the resulting

distribution closely resembles a Kernel Density Estimate of the shape of the dis-

tribution and the density region that is not covered is small. We could drop these

variables instead but we prefer to use as much data as we can. The three variables

(soma surface, total volume, total surface) we transformed in this fashion are in

plots (d) to (f) of Figure 6.1 after scaling them to zero mean and unit variance.

Of the original 33 variables, 12 were dropped since their shapes were too deviated

from normality and transforming them did not improve this (this was the case for

variables describing the peak and trough voltage for example). Some variables were

kept either way, like the time constant since we think it is an important feature and

we wish to see if we can discover how influential it is. The full list of transformations

62

6.3 Applying the model

can be found in Table 6.3, where the selected procedure for the 33 variables is shown.

In the end 21 were used in the experiments, 11 targets and 10 features.

(a) (b)

(c) (d)

(e) (f)

Figura 6.1: The original variable shape and the result of applying the specified

transformation for 3 variables. First row: (a) Input resistance; (b) Overall width.

Second row: (c) Total length; (d) Soma surface. Third row: (e) Total Volume; (f)

Total surface. All values have been standardized

As we can see transformations work better on some variables than others (Figure

6.1). Nonetheless, they all look more Gaussian-like and the problems caused by the

truncation at zero that is observed in the three variables in the second row.

6.3. Applying the model

With the transformed variables we can apply the model to the data and expect

better results than just using the original data. The experiments where set up in

similar way to the ones in the previous chapter. The fan in restriction was set at 6,

63

6. APPLYING TO ELECTRO-MORPHO PROBLEM

Tabla 6.3: Applied trasformations for each variable

Variable Transform Variable Transform

Soma surface area Square

root

Neuronal height Logarithm

Neuronal width Logarithm Neuronal depth Dropped

Average diameter

(thickness)

None Total length Logarithm

Total surface area Square

Root

Total volume 4th Root

Maximum Euclidean

distance to root

Dropped Maximum path distance

to root

Dropped

Average contraction None Average fragmentation Logarithm

Average parent daugh-

ter diameter ratio

Logarithm Average local amplitude

angle

None

Action potential peak

voltage

Dropped Action potential peak ti-

me

Dropped

Action potential trough

voltage

Squared Action potential trough

time

Dropped

Action potential fast

trough voltage

Dropped Action potential fast

trough time

Dropped

Action potential slow

trough voltage

None Action potential slow

trough time

None

Threshold voltage None Threshold intensity Logarithm

Threshold time Dropped Input resistance Logarithm

Upstroke downstroke

ratio

Dropped F/I curve slope Dropped

Average ISI None Latency Dropped

Adaptation index None τ Logarithm

Sag Logarithm

64

6.3 Applying the model

the the number of iterations for the sampler was 200000, saving the state every 100

iterations. The burn in was set at 10000 iterations based on our experiments. In this

case we can plot the posterior distributions of the arcs and see how they evolve as

the chain progresses 6.2a.

(a) (b) (c)

Figura 6.2: (a) The evolution of the posterior for each arc as the chain moves for-

ward. (b) The scores of the networks dropping the first 10000 iterations shifted so the

maximum is at zero. (c) The acceptance ratio of the chain.

Using this plot we can asses the convergence of the model to the posterior distri-

bution. We can see that contrary to our simulated examples these are much harder

since real data has a lot more noise and does not follow the assumed distributions

faithfully. Here all possible arcs are plotted since we don’t know which ones are the

true ones. Nonetheless, we see that most of them have a probability of zero. There

are 310 possible arcs and 37 have non-zero probability. In any case most of them

have a small probability which is a consequence of the fact that we are using a fan

in restriction and that some influences are not very strong. Either way there is a

group of arcs with high probability (shown in 6.4).

In the case of this dataset, the algorithm quickly arrives at local maximum and

stays there. As we can see in Figure 6.2b after dropping the burn in samples, score

of the network remains very close to the maximum found and the accept ratio

quickly drops (Figure 6.2c). Most of the few moves performed after reaching this

peak correspond to the reversal of one single arc (more below).

For this setting we see that there are only 37 arcs with positive probability, most

of them with posterior probability 1. Two arcs are the reverse of one another and

together they have probability 1 too. This leaves us with a very specific network

where there is really no point selecting more than one model. Only 4 arcs have

probability different than 1 and significantly greater than 0 (Figure 6.2a). The others

quickly vanish to zero and must thus be considered irrelevant .

65

6. APPLYING TO ELECTRO-MORPHO PROBLEM

Tabla 6.4: The high probability arcs

Arcs Probability Arcs Probability

avg. contraction → avg. bifurcation angle 1.000000 total volume → adaptation index 1.000000

avg. diameter → trough voltage 1.000000 overall height → slow trough voltage 1.000000

soma surface total → sag 1.000000 soma surface total → threshold voltage 1.000000

total surface → tau 1.000000 total surface → threshold intensity 1.000000

adaptation index → input resistance 1.000000 avg. contraction → avg. parent/daughter ratio 1.000000

avg isi → sag 1.000000 sag → tau 1.000000

slow trough voltage → threshold intensity 1.000000 threshold intensity → avg isi 1.000000

threshold voltage → input resistance 1.000000 threshold voltage → trough voltage 1.000000

avg. diameter → avg isi 1.000000 avg. diameter → adaptation index 1.000000

avg. contraction → slow trough time 1.000000 soma surface total length → avg. parent/daughter ratio 1.000000

avg. diameter → avg. contraction 1.000000 avg. diameter → avg. fragmentation 1.000000

avg. diameter → overall width 1.000000 avg. parent daughter ratio → overall height 1.000000

overall height → overall width 1.000000 soma surface total length → avg. diameter 1.000000

soma surface total length → avg. fragmentation 1.000000 trough voltage → slow trough voltage. 1.000000

avg. bifurcation angle local → threshold intensity 1.000000 total surface → avg. bifurcation angle 1.000000

total volume → avg. diameter 1.000000 total volume → overall height 1.000000

total volume → total surface 1.000000 avg. fragmentation → adaptation index 0.563158

soma surface total length → total volume 0.519474 soma surface total length → adaptation index 0.512105

total volume → soma surface total 0.480526

We can observe several expected relations that we predicted. For example the

total surface of the neuron is related to the time constant. This is consistent with the

models that describe the electrical properties of neurons. Larger cells mean thicker

and larger dendrites which in turn modify resistance and capacitance at each point

of the neuron (these are the variables that determine the time constant). Other

relations are more evident, for example the total volume is connected to the total

volume, avg. diameter. Other expected relations include the ones between the overall

width, height and average diameter.

In the case of electrophysiological variables, the trough voltage and the slow

trough voltage since they can even be the same under the conditions outlined in

the definition. Another expected relation is that of the threshold intensity and the

average ISI. Generally, the lower the intensity at which neurons fire the lower the

inter-spike interval when subjected to a step current. These are the burst neurons

which produce spikes and short groups of spikes.

As for possible hypothesis testing, we could propose to validate the relation

between the average fragmentation and the adaptation index for example. This

would mean that the number of compartments that constitute a branch between

bifurcations is related to how a neuron responds to trains of action potentials.

6.3.1. Final remarks

A main problem in this application was the fact that we could not use a signifi-

cant part of the variables effectively. This was the result of trying to adhere to the

assumptions of the model. We also did not test prediction capabilities since we were

66

6.3 Applying the model

more interested in finding the right arcs. Once this is done, predicting is a much

easier task. A greater problem is then that we need to use all variables together wit-

hout incurring in the difficulties associated with different types of random variables.

This would in turn allow a better assesment since we feel that in this case too much

information has been lost by dropping the non normal variables. More knowledge

could probably be extracted but this falls outside the scope of this work and in the

field of Neuroscience.

67

6. APPLYING TO ELECTRO-MORPHO PROBLEM

68

7

Conclusion

In this work we have presented an algorithm for the discovery of relationships

in continuous domain, specifically for the analysis of the dependence between elec-

trophysiological and morphological descriptors of neurons (though the algorithm

could be applied to any other field of inquiry). To that end we have presented

an adaptation the Multidimensional Bayesian Network Classifier to the continuous

domain which in this case allows for a clear separation of both sets of variables,

facilitating the learning network structures by reducing the amount of total possible

graphs.

In order to create a model that is as precise as possible we have opted for the

use of a combination of models instead of a single estimate. To obtain those models

we presented a variant of the popular MCMC scheme for structure learning with a

new move that promotes exploration of the state space and attempts to escape. This

move was applied in conjunction with the CBD structure restriction to accelerate

convergence.

Finally we applied the method with data from the Cell Type database of the

Allen Institute and showed some of the results obtained and how we can use the

model to formulate hypothesis about the domain.

7.1. Future research and improvements

In future works several enhancements could be made. To increase the seep at

which the algorithm moves converges and to increase its ability to escape local

maximum the acceptance probability could be modified online, increasing its value

with each rejection in order to overcome the difference in scores for adjacent states.

69

7. CONCLUSION

In a more algorithmic approach much of these operations like arc addition, deletion

and updates of matrices could be implemented with matrix operations and ported

to the GPU for faster computation speeding up the learning procedure, specially for

larger domains.

A common problem with continuous domains is the difficulty in finding a good

way to approximate the probability distributions of the domain variables. In this

work we have used the MVN since it posses desirable mathematical properties that

make working with it practical. The problem is that many of the variables that

describe the properties of neurons do not have normal distributions when we plot the

histogram of their values. In particular we found that some followed a distribution

that more resembled a Gamma, although other had much more unstructured shapes.

This may bebe related to the low number of observations used, at least for some of

the variables, though others exhibit to extreme behavior to think that the problem

will go away with large sample sizes.

A direction of research them would be to design a convenient way to manage

these different distributions together. This problems has been tackled before and

has proven very difficult but maybe a solution for a small subset of density functions

could be found.

Although the CBD property can be exploited for prediction tasks it was not

used in the learning phase. Two ways could be presented: trying to sample in the

space of CBDs in a similar manner as order-MCMC or using defining a prior on

them to encourage certain types of structures. The first option would give more

control of the learning procedure but is also much more complicated. It will require

to integrate over all graphs compatible with qa given CBD, which is all the DAGs

that are compatible with that CBD. This means somehow enumerating them which

is a NP-hard. This and other issues make this approach less appealing so instead

working with a prior distribution seems like a better option from this point of view

as it can easily be combined with the standard methods.

70

Bibliography

Akaike, H. (2011). Akaike’s information criterion. In International Encyclopedia of Sta-

tistical Science, pages 25–25. Springer. 12

Allen Institute, B. S. (2016). Technical white paper:electrophysiology. Technical report,

Allen Institute for Brain Science. 59

Allen Institute, B. S. (2017a). Celltype database. http://celltypes.brain-map.org/.

57

Allen Institute, B. S. (2017b). Technical white paper:morphology. Technical report, Allen

Institute for Brain Science. 57

Appice, A. and Džeroski, S. (2007). Stepwise induction of multi-target model trees. In

European Conference on Machine Learning, pages 502–509. Springer. 9

Bielza, C., Li, G., and Larra ñaga, P. (2011). Multi-dimensional classification with bayesian

networks. International Journal of Approximate Reasoning, 52(6):705–727. 9, 26

Borchani, H., Varando, G., Bielza, C., and Larrañaga, P. (2015). A survey on multi-output

regression. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,

5(5):216–233. 8

Bouckaert, R. R. (2001). Bayesian belief networks: from construction to inference. PhD

thesis. 14

Box, G. E. and Tiao, G. C. (2011). Bayesian inference in statistical analysis, volume 40.

John Wiley & Sons. 28

Buntine, W. (1991). Learning classification trees. Artificial Intelligence frontiers in sta-

tistics, pages 182–201. 12

Campos, L. M. d. (2006). A scoring function for learning bayesian networks based on

mutual information and conditional independence tests. Journal of Machine Learning

Research, 7(Oct):2149–2187. 12

71

BIBLIOGRAPHY

Caruana, R. (1998). Multitask learning. In Learning to learn, pages 95–133. Springer. 8

Carvalho, A. M. (2009). Scoring functions for learning bayesian networks. Inesc-id Tec.

Rep. 12

Chickering, D., Geiger, D., and Heckerman, D. (1995). Learning bayesian networks: Search

methods and experimental results. In proceedings of fifth conference on artificial inte-

lligence and statistics, pages 112–128. 12

Chickering, D. M. (1996). Learning bayesian networks is np-complete. In Learning from

data, pages 121–130. Springer. 10

Chickering, D. M. (2002). Learning equivalence classes of bayesian-network structures.

Journal of machine learning research, 2(Feb):445–498. 11

Cooper, G. F. and Herskovits, E. (1991). A bayesian method for constructing bayesian

belief networks from databases. In Proceedings of the Seventh conference on Uncertainty

in Artificial Intelligence, pages 86–94. Morgan Kaufmann Publishers Inc. 10

Cooper, G. F. and Herskovits, E. (1992). A bayesian method for the induction of proba-

bilistic networks from data. Machine learning, 9(4):309–347. 12, 13

De’Ath, G. (2002). Multivariate regression trees: a new technique for modeling species–

environment relationships. Ecology, 83(4):1105–1117. 9

DeFelipe, J., López-Cruz, P. L., Benavides-Piccione, R., Bielza, C., Larrañaga, P., Ander-

son, S., Burkhalter, A., Cauli, B., Fairén, A., Feldmeyer, D., et al. (2013). New insights

into the classification and nomenclature of cortical gabaergic interneurons. Nature Re-

views. Neuroscience, 14(3):202. 4

DeGroot, M. H. (2005). Optimal statistical decisions, volume 82. John Wiley & Sons. 23,

24

Delaplace, A., Brouard, T., and Cardot, H. (2006). Two evolutionary methods for lear-

ning bayesian network structures. In International Conference on Computational and

Information Science, pages 288–297. Springer. 14

Ding, P. (2016). On the conditional distribution of the multivariate t distribution. The

American Statistician, 70(3):293–295. 25

Eaton, D. and Murphy, K. (2007). Exact bayesian structure learning from uncertain

interventions. In Artificial Intelligence and Statistics, pages 107–114. 16

Ellis, B. and Wong, W. (2006). Sampling bayesian networks quickly. Interface. 11, 15

72

BIBLIOGRAPHY

Eyal, G., Mansvelder, H. D., de Kock, C. P., and Segev, I. (2014). Dendrites impact the

encoding capabilities of the axon. Journal of Neuroscience, 34(24):8063–8071. 3

Fourcaud-Trocmé, N., Hansel, D., Van Vreeswijk, C., and Brunel, N. (2003). How spike

generation mechanisms determine the neuronal response to fluctuating inputs. Journal

of Neuroscience, 23(37):11628–11640. 3

Friedman, N. and Koller, D. (2003). Being bayesian about network structure. a bayesian

approach to structure discovery in bayesian networks. Machine learning, 50(1-2):95–125.

11, 14, 15, 35, 50

Geiger, D. and Heckerman, D. (1994). Learning gaussian networks. In Proceedings of the

Tenth international conference on Uncertainty in artificial intelligence, pages 235–243.

Morgan Kaufmann Publishers Inc. 13, 21, 27, 35

Giudici, P., Green, P., and Tarantola, C. (2000). Efficient model determination for discrete

graphical models. 15

Giudici, P. and Green, P. J. (1999). Decomposable graphical gaussian model determina-

tion. Biometrika, 86(4):785–801. 15, 35, 46

Green, P. J. and Hastie, D. I. (2009). Reversible jump mcmc. Genetics, 155(3):1391–1403.

15

Grünwald, P. (2000). Model selection based on minimum description length. Journal of

Mathematical Psychology, 44(1):133–152. 12

Grzegorczyk, M. and Husmeier, D. (2008). Improving the structure mcmc sampler for ba-

yesian networks by introducing a new edge reversal move. Machine Learning, 71(2):265–

305. 16, 19, 35, 50, 52

Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their

applications. Biometrika, 57(1):97–109. 32

Heckerman, D. (1998). A tutorial on learning with bayesian networks. In Learning in

graphical models, pages 301–354. Springer. 10

Heckerman, D. and Geiger, D. (1995). Learning bayesian networks: a unification for dis-

crete and gaussian domains. In Proceedings of the Eleventh conference on Uncertainty

in artificial intelligence, pages 274–284. Morgan Kaufmann Publishers Inc. 14

Heckerman, D., Geiger, D., and Chickering, D. M. (1994). Learning bayesian networks: The

combination of knowledge and statistical data. In Proceedings of the Tenth international

conference on Uncertainty in artificial intelligence, pages 293–301. Morgan Kaufmann

Publishers Inc. 12, 28

73

BIBLIOGRAPHY

Kocev, D., Vens, C., Struyf, J., and Džeroski, S. (2007). Ensembles of multi-objective

decision trees. In European Conference on Machine Learning, pages 624–631. Springer.

9

Koivisto, M. (2012). Advances in exact bayesian structure discovery in bayesian networks.

arXiv preprint arXiv:1206.6828. 15, 16

Koivisto, M. and Sood, K. (2004). Exact bayesian structure discovery in bayesian networks.

Journal of Machine Learning Research, 5(May):549–573. 15

Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles and techni-

ques. MIT press. 10, 18, 21

Kuipers, J. and Moffa, G. (2017). Partition mcmc for inference on acyclic digraphs. Journal

of the American Statistical Association, 112(517):282–299. 17

Kuipers, J., Moffa, G., Heckerman, D., et al. (2014). Addendum on the scoring of gaussian

directed acyclic graphical models. The Annals of Statistics, 42(4):1689–1691. 13, 28, 47

Larkman, A. and Mason, A. (1990). Correlations between morphology and electrophysio-

logy of pyramidal neurons in slices of rat visual cortex. i. establishment of cell classes.

Journal of Neuroscience, 10(5):1407–1414. 3

Larrañaga, P., Kuijpers, C. M., Murga, R. H., and Yurramendi, Y. (1996a). Learning baye-

sian network structures by searching for the best ordering with genetic algorithms. IEEE

transactions on systems, man, and cybernetics-part A: systems and humans, 26(4):487–

493. 14

Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R. H., and Kuijpers, C. M. H. (1996b).

Structure learning of bayesian networks by genetic algorithms: A performance analysis

of control parameters. IEEE transactions on pattern analysis and machine intelligence,

18(9):912–926. 13, 14

Lauritzen, S. L. (1996). Graphical models, volume 17. Clarendon Press. 10

López-Cruz, P. L., Larrañaga, P., DeFelipe, J., and Bielza, C. (2014). Bayesian network

modeling of the consensus between experts: An application to neuron classification.

International Journal of Approximate Reasoning, 55(1):3–22. 4

Madigan, D. and Hutchinson, F. (1995). Enhancing the predictive performance of bayesian

graphical models. In Communications in Statistics – Theory and Methods. 47

Madigan, D., York, J., and Allard, D. (1995). Bayesian graphical models for discrete data.

International Statistical Review/Revue Internationale de Statistique, pages 215–232. 11,

14, 15, 34

74

BIBLIOGRAPHY

Mainen, Z. F. and Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern

in model neocortical neurons. Nature, 382(6589):363. 3

Margaritis, D. (2003). Learning Bayesian network model structure from data. PhD thesis,

US Army. 13

Masegosa, A. R. and Moral, S. (2013). New skeleton-based approaches for bayesian struc-

ture learning of bayesian networks. Applied Soft Computing, 13(2):1110–1120. 16

Metropolis, N. and Ulam, S. (1949). The monte carlo method. Journal of the American

statistical association, 44(247):335–341. 32

Mohan, H., Verhoog, M. B., Doreswamy, K. K., Eyal, G., Aardse, R., Lodder, B. N.,

Goriounova, N. A., Asamoah, B., B. Brakspear, A. C., Groot, C., van der Sluis, S., Testa-

Silva, G., Obermayer, J., Boudewijns, Z. S., Narayanan, R. T., Baayen, J. C., Segev,

I., Mansvelder, H. D., and de Kock, C. P. (2015). Dendritic and axonal architecture of

individual pyramidal neurons across layers of adult human neocortex. Cerebral Cortex,

25(12):4839. 3

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press. 10, 23,

24, 32, 33

Niinimaki, T., Parviainen, P., and Koivisto, M. (2012). Partial order mcmc for structure

discovery in bayesian networks. arXiv preprint arXiv:1202.3753. 16

Parviainen, P. and Koivisto, M. (2009). Exact structure discovery in bayesian networks

with less space. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Arti-

ficial Intelligence, pages 436–443. AUAI Press. 15

Pearl, J. (2014). Probabilistic reasoning in intelligent systems: networks of plausible infe-

rence. Morgan Kaufmann. 10

Press, S. J. (2012). Applied multivariate analysis: using Bayesian and frequentist methods

of inference. Courier Corporation. 24, 28

Rall, W., Segev, I., Rinzel, J., and Shepherd, G. M. (1995). The theoretical foundation of

dendritic function: selected papers of Wilfrid Rall with commentaries. MIT press. 3

Robert, C. P. (2004). Monte carlo methods. Wiley Online Library. 30, 31, 32, 35

Robinson, R. W. (1978). Asymptotic number of self-converse oriented graphs, pages 255–

266. Springer Berlin Heidelberg, Berlin, Heidelberg. 10

75

BIBLIOGRAPHY

Roos, T., Silander, T., Kontkanen, P., and Myllymaki, P. (2008). Bayesian network struc-

ture learning using factorized nml universal models. In Information Theory and Appli-

cations Workshop, 2008, pages 272–276. IEEE. 12

Sánchez-Fernández, M., de Prado-Cumplido, M., Arenas-Garćıa, J., and Pérez-Cruz, F.

(2004). Svm multiregression for nonlinear channel estimation in multiple-input multiple-

output systems. IEEE transactions on signal processing, 52(8):2298–2307. 9

Shachter, R. D. and Kenley, C. R. (1989). Gaussian influence diagrams. Management

science, 35(5):527–550. 22

Spiegelhalter, D. J. and Lauritzen, S. L. (1990). Sequential updating of conditional pro-

babilities on directed graphical structures. Networks, 20(5):579–605. 12

Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., and Vlahavas, I. (2012). Multi-label

classification methods for multi-target regression. arXiv preprint arXiv:1211.6581. 8

Su, C. and Borsuk, M. E. (2016). Improving structure mcmc for bayesian networks through

markov blanket resampling. Journal of Machine Learning Research, 17(118):1–20. 16,

50

Tierney, L. (1994). Markov chains for exploring posterior distributions. the Annals of

Statistics, pages 1701–1728. 31

Tsamardinos, I., Brown, L. E., and Aliferis, C. F. (2006). The max-min hill-climbing

bayesian network structure learning algorithm. Machine learning, 65(1):31–78. 13

Van Der Gaag, L. C. and De Waal, P. R. (2006). Multi-dimensional bayesian network

classifiers. 9, 26

Vazquez, E. and Walter, E. (2003). Multi-output support vector regression. In 13th IFAC

Symposium on System Identification, pages 1820–1825. 9

Wang, T., Touchman, J. W., and Xue, G. (2004). Applying two-level simulated annealing

on bayesian structure learning to infer genetic networks. In Computational Systems

Bioinformatics Conference, 2004. CSB 2004. Proceedings. 2004 IEEE, pages 647–648.

IEEE. 14

Yuste, R. and Tank, D. W. (1996). Dendritic integration in mammalian neurons, a century

after cajal. Neuron, 16(4):701–716. 3

76

