
Universidad Politécnica
de Madrid

Escuela Técnica Superior de
Ingenieros Informáticos

Máster Universitario en en Inteligencia Artificial

Trabajo Fin de Máster

Interactive Structural Learning for
Discrete Bayesian Network Classifiers

Author: Iván Eugenio Tello López
Tutors: Pedro Larrañaga Múgica y Concha Bielza Lozoya

Madrid, July 2023

Este Trabajo Fin de Máster se ha depositado en la ETSI Informáticos de la
Universidad Politécnica de Madrid para su defensa.

Trabajo Fin de Máster
Máster Universitario en en Inteligencia Artificial

Título: Interactive Structural Learning for Discrete Bayesian Network Classifiers

July 2023

Author: Iván Eugenio Tello López
Tutors: Pedro Larrañaga Múgica y Concha Bielza Lozoya

Departamento de Inteligencia Artificial
ETSI Informáticos
Universidad Politécnica de Madrid

Acknowledgments

Thanks, primarily to my mentors, Pedro and Concha, who have helped and guided
me throughout this work, teaching me what research work is like. Without them, this
would not have been possible.

To my fellow research group members for always being there to help me and creating
a comfortable working environment.

To my parents, who are the cornerstone of my life and have been supporting me since
forever. And to my best friend, even though we are no longer studying together, she
is always there to support me and help me.

This work was partially supported by the Spanish Ministry of Science and Innovation
through the PID2019-109247GB-I00 and TED2021-131310B-I00 projects.

i

Resumen

Debido al auge de la Inteligencia Artificial, el uso de ella se ha vuelto cada vez más
cotidiano, utilizándola incluso para tomar decisiones en campos como el sanitario
o el financiero, en los que es necesario entender los resultados o predicciones que
proporciona el modelo. Debido a esto, surgen dos ramas en las que dividir los modelos
dentro de la .Explainable AI"(XAI): los modelos interpretables y los modelos explicables.

Los modelos explicables son aquellos que necesitan de otro modelo u otras técnicas
para entender las decisiones tomadas por este. En cambio, los modelos interpreta-
bles son entendibles directamente por el ser humano. Es por eso que muchos autores
indican que el futuro debería ser el estudio de los modelos encuadrados en la segun-
da categoría. Uno de los modelos más importantes de esta categoría son las redes
Bayesianas.

En este trabajo, se presenta la implementación de una interfaz gráfica y de diferen-
tes técnicas para mejorar la interpretabilidad intrínseca de las redes Bayesianas, en
concreto de las redes Bayesianas aplicadas a la clasificación supervisada: los clasifi-
cadores Bayesianos.

Además de esto, se propone un nuevo método para encontrar el manto de Markov
óptimo de la variable clase, esto es importante ya que el manto de Markov indica
cuáles son las variables que afectan más a la variable clase permitiendo así descartar
el resto, ya que no aportan información extra, esta característica se usa sobre todo en
problemas de selección de variables, un proceso indispensable para problemas que
utilicen muchas variables. Para encontrarlo, se ha hecho uso de los algoritmos de
estimación de distribución (EDAs en su acrónimo en lengua inglesa), se han escogido
este tipo de algoritmos ya que en espacios de búsqueda muy grandes, las búsquedas
exhaustivas son intratables por lo que aunque no aseguren alcanzar el óptimo, por
las ventajas que ofrencen en términos de rendimiento y de computación los EDAs
pueden ser una buena solución a este problema.

Además al nuevo modelo se le aplicaran diferentes técnicas de interpretabilidad ade-
más de incluir nuevas técnicas para facilitar al usuario el entendimiento de la evolu-
ción de las soluciones a lo largo de las generaciones.

iii

Abstract

Due to the rise of Artificial Intelligence, its use has become more and more common-
place, even being used to make decisions in fields such as healthcare or finance,
where it is necessary to understand the results or predictions provided by the model.
Because of this, there are two branches into which models can be divided: interpre-
table models and explainable models.

Explainable models are those that need another model or other techniques to unders-
tand the decisions made by the model. On the other hand, interpretable models are
directly understandable by humans. This is why some authors indicate that the fu-
ture should be the study of models of the second category. One of the most important
models in this category are Bayesian networks.

In this work, we present the implementation of a graphical interface with interaction
and different techniques to improve the intrinsic interpretability of Bayesian net-
works, specifically Bayesian networks applied to supervised classification: Bayesian
classifiers.

In addition to this, a new method to find the optimal Markov blanket of the class
variable. This is important since the Markov blanket indicates which variables affect
the class variable the most, thus allowing to discard the rest, since they do not provide
extra information. This feature is used mainly in variable selection problems, an
indispensable process for problems that use many variables. To find it To find it,
we have made use of Estimation of Distribution Algorithms (EDAs) is proposed. This
type of algorithms has been chosen because in very large search spaces, exhaustive
searches are intractable, so although they do not ensure reaching the optimum, due
to the advantages they offer in terms of performance and computation, EDAs can be
a good solution to this problem.

In addition, different interpretability techniques will be applied to the new model and
new techniques will be included to facilitate the user’s understanding of the evolution
of the solutions throughout the generations.

v

Table of contents

1. Introduction 1
1.1. Motivation . 2
1.2. Fundamentals . 3

1.2.1. Introduction to Bayesian networks 3
1.2.2. Markov blanket . 4
1.2.3. Inference . 5

1.2.3.1. Likelihood weighting . 6
1.2.4. Supervised classification . 6
1.2.5. Bayesian network classifiers . 7

1.3. Objectives . 7

2. State of the Art 9
2.1. Interpretability in Bayesian networks . 9
2.2. Bayesian classifiers based on the Markov blanket selection 13

3. Structure learning algorithms 19
3.1. Naive Bayes classifier and tree augmented naive Bayes (TAN) 20
3.2. Markov blanket selection with EDAs . 22

3.2.1. Estimation of Distribution Algorithms (EDA) 22
3.2.2. Individual codification . 22
3.2.3. Algorithm process . 24
3.2.4. Fitness metric . 26

4. Interactive Interface 27

5. Results 33

6. Conclusions and future work 39

Bibliography 46

Appendix 47

vii

List of figures

1.1. Representation of the Markov Blanket as green nodes of the node A . . . 5

2.1. Explanation types distribution . 13

3.1. Structure of the python files . 19
3.2. Example of naive Bayes classifier structure 20
3.3. Example of tree-Augmented naive Bayes classifier structure 21
3.4. Codification of an individual in early stages 23
3.5. Algorithm scheme . 25

4.1. Navigation diagram . 28
4.2. Main window: Markov blanket option (left) and the rest of the options

(right). 29
4.3. EDAs window . 29
4.4. Generation info window . 30
4.5. Steps window . 31
4.6. Overview window . 31
4.7. Inference window . 32

5.1. Best Markov blanket structure in Cars_evaluation dataset 34
5.2. Best Markov blanket structure in monk’s dataset 35
5.3. Structure of the best Markov blanket in Tic-Tac-Toe endgame dataset 37

ix

Chapter 1

Introduction

Over the past few years, Artificial Intelligence (AI) has gained relevance across nume-
rous fields that are embracing emerging information technologies. Furthermore, the
availability of vast datasets and improved computing power has enabled significant
progress in addressing complex computational tasks, leading to the development of
increasingly complex models and technologies. However, this complexity often ham-
pers our ability to comprehend and interpret these models effectively. That is why
ensuring transparency and interpretability of the AI models has emerged as a critical
concern.

For addressing this problem, explainability aims to bridge the gap between AI’s com-
plex inner workings and human comprehension by providing interpretable and mea-
ningful explanations for AI-based decisions. To achieve this objective AI systems must
elucidate the reasoning, factors, and rationale behind their outputs, enabling hu-
mans to understand and evaluate its behavior. This transparency is essential for
building trust, assuring safety, and facilitating the effective collaboration between
humans and AI particularly in high-stakes domains such as healthcare, finance, cri-
minal justice, and others.

Achieving this transparency is not an easy task, especially in black-box models. This
term refers to models whose internal workings and decision-making processes are
opaque for interpretation, making it challenging to comprehend how and why specific
decisions or predictions are made. This transparency problem is usually addressed
by post-hoc explanations.

Post-hoc explanations refers to the retrospective analysis and interpretation of the
decision-making process of an already trained and deployed machine learning or AI
model. It focuses on providing explanations and insights into the model’s outputs
and reasoning after the study has been concluded and predictions are already done.

Unlike other methods or techniques, post-hoc explanations are applied to existing
black-box models to uncover their internal workings and provide understandable
justifications for their outputs by analyzing the model’s behavior by examining its
internal representations, such as feature importance. These methods aim to identify
which input features or factors have influenced the model’s decision-making process
the most.

1

1.1. Motivation

Although these explanations offer insights into the model’s decisions, they are limited
to considering the input and output alone. As a result, they do not offer deeper in-
sights into the inner workings of the model beyond the outcomes, which is why many
authors such as Rudin (2019), consider this branch of thinking unuseful and likely
to perpetuate bad practices.

Consequently, the presence of more naturally transparent models, known as interpre-
table models, is needed, especially in high-stakes domains. We will focus throughout
this work on one of such models, Bayesian networks, which hold significant impor-
tance on AI field.

1.1. Motivation

Interpretability in AI holds significant importance, especially in high-stakes domains
where the consequences of AI system decisions can have direct impact on indivi-
duals and society as a whole. In such domains, it is essential to understand which
is the process an AI system did to get a particular decision or prediction. This un-
derstanding allows stakeholders, including users, regulators, and domain experts, to
evaluate the system’s reliability, fairness, and potential biases.

Additionally, interpretability helps build trust and acceptance of AI systems making
them more similar to human thinking, so users are more likely to adopt AI techno-
logies when they are able to understand and comprehend the reasoning behind their
outputs.

In the context of supervised classification, where the goal is to predict the class or ca-
tegory of a given input based on labeled training data, interpretability plays a critical
role. When deploying AI models for tasks like fraud detection or medical diagnosis, it
is essential to have insights into the factors influencing the model’s predictions.

Interpretability enables the identification of key features, relationships, and making
explanations about the prediction that contribute to the classification outcome. This
information not only enhances the model’s interpretability but also enables domain
experts to validate and potentially refine the model, improving its overall accuracy
and reliability.

Among the various machine learning models, Bayesian networks stand out for their
innate transparency, making them particularly promising in the pursuit of interpre-
table AI. The key strength of Bayesian networks lies in their ability to provide trans-
parent and interpretable explanations for their predictions thanks to their innate
probabilistic nature.

The graphical structure of the Bayesian network visually helps the user to unders-
tand the relationships between variables, making the understanding of how informa-
tion flows and influences the final classification easier.

By leveraging the principles of probability theory, Bayesian networks enable the iden-
tification of causal relationships, the exploration of feature dependencies, and the
impact of evidence on the final prediction. This inherent transparency makes Baye-
sian networks an ideal choice in domains where understanding the decision-making
process is of utmost importance.

2

Introduction

Not only Bayesian networks are transparent but also they hold an advantage over
other AI models: the integration of domain knowledge and expert input with the da-
ta. Prior beliefs and domain-specific constraints can be explicitly incorporated into
the network structure and the local probability distributions, allowing for a better
outcome, improving performance and granting user interaction.

In conclusion, the ongoing debate around the choice between using explainable or
adopting interpretable models persists as the demand for transparency and interpre-
tability in AI systems continues growing.

Within this paradigm, Bayesian networks, with their innate interpretability and abi-
lity to model complex dependencies, hold great potential for providing interpretable
and trustworthy solutions.

Which is why, this work aims to show the advantages of using them over explainable
machine learning models and other natural transparent machine learning models.

1.2. Fundamentals

1.2.1. Introduction to Bayesian networks

Bayesian networks (Pearl (1988)) are a specific type of probabilistic graphical model.
A probabilistic graphical model is a tool used to visualize and work with variables,
particularly with the conditional independences among them.

Two variables that are conditionally independent given another variable have no di-
rect impact between them.

Probabilistic graphical models are usually represented with a graph structure. This
structure is composed of a set of nodes, that reperesents the variables, and a set of
edges, they can be directed or undirected.

In particular, Bayesian network only allow a specific graph structures which is a
directed acyclic graphs (DAGs), that means all edges must be directed and cyclic
connections are not permitted within the graph.

A Bayesian network encodes a joint probability distribution (JPD). In general given a
set of n random variables X = {X1, ..., Xn} the JPD factorises as:

P (X) =

n∏
i=1

P (Xi|Pa(Xi)),

where Pa(Xi) is the set of the parents of Xi. The JPD is the product of the probabilities
of each variable given its parents’ values. In practice assuming complete dependence
among variables would make the JPD intractable, requiring an excessive number of
parameters (i.e. 2n − 1 in binary domains).

That is why taking advantage of conditional independence between variables is nee-
ded.

3

1.2. Fundamentals

Formally, an event α is independent of an event β in P , denoted:

P |= (α ⊥ β), if P (α|β) = P (α)or ifP (β) = 0

.

Independence is a strong property so it is not so commonly given, which is why we
need another concept that can occur more often such as conditional independence,
which is when two events are independent given an additional event.

The definition would be: An event α is conditionally independent of event β given
event γ in P , denoted

P |= (α ⊥ β|γ), if P (α|β ∩ γ) = P (α|γ)or ifP (β ∩ γ) = 0

.

One of the main advantages of conditional independence is that the computation cost
of JPD is reduced.

An efficient way to identify condit. independences in the graph is using d-separation
criterion (Koller and Friedman (2009)), which is defined as:

A set Z of nodes d-separates X and Y if in all undirected paths between any node of
X and any node of Y in the Bayesian network, there is an intermediate node C such
that either:

C is a converging connection in the path and C and its descendants do not
belong to Z

C is not a converging connection and it belongs to Z

Given the d-separation theorem of Verma and Pearl (1990), it states that if there is a
d-separation in the graph, then there is a conditional independence in the JPD. This
implication is not bidirectional.

1.2.2. Markov blanket

The Markov blanket of a variable is the set of variables that, when known, provide all
the information needed to make the variable independent of the remaining variables
in the network.

Formally, the Markov blanket of a variable consists of the union of three sets of
variables: its parents, its children, and the parents of its children, also known as
spouses.

These sets encapsulate the direct influences and relevant information that are re-
quired to determine the variable’s state or behavior. By conditioning on the Markov
blanket, all other variables in the network become conditional independent of the
variable of interest.

The concept of the Markov blanket has significant implications for inference and
reasoning in Bayesian networks. It allows for efficient computations by reducing the
number of variables that need to be considered when performing probabilistic infe-
rence or updating beliefs about a specific variable.

4

Introduction

Figure 1.1: Representation of the Markov Blanket as green nodes of the node A

In terms of conditional independence, the Markov blanket provides a property for
determining whether two variables are conditionally independent given a set of other
variables. According to the concept of d-separation explained before, two variables
are conditionally independent if they are disjointed or separated when conditioning
on the Markov blanket of both variables, reducing the space search from all network
to only both of Markov blankets.

1.2.3. Inference

Inference in Bayesian networks refers to the process of reasoning about unobserved
variables given observed evidence on some variables. The primary goal is to get pro-
babilities of interest, such as the probability of a particular event occurring, given the
evidence available.

Inference methods can be divided into two main types:

Exact inference: These methods aim to calculate the precise probabilities of in-
terest by leveraging the network’s structure and conditional probability tables.

Approximate inference: As Bayesian networks grow in size and complexity, exact
inference becomes computationally intractable. To address this issue, approxi-
mate inference methods are employed.

The approximate inference method known as likelihood weighting will be explained
in detail as it will be utilized and implemented in this work.

5

1.2. Fundamentals

1.2.3.1. Likelihood weighting

The likelihood weighting method Fung and Chang (1990) is a sampling-based infe-
rence technique to estimate the posterior probabilities or distributions of unobserved
variables given observed evidence.

The likelihood weighting method involves the following steps:

1. First step is the initialization of the evidenced variables with their respective
observed values, while ignoring unobserved variables.

2. After specifying the evidenced values, given an ancestral order (topological or-
dering of variables in the network based on their dependencies. It represents a
sequence of variables where each variable comes before its descendants in the
DAG), generate samples for all unobserved variables when their parents are al-
ready sampled. For each sample, assign values to the variables based on their
conditional probability distribution given the values of their parents.

3. Calculate the weight for each sample based on the likelihood of the evidence
given the sampled values. This weight represents the likelihood of the sample
being consistent with the observed evidence.

4. Aggregate the samples and their corresponding weights to estimate the posterior
probability or distributions of the unobserved variables. This can be done by
summing the weights for each combination of values of the unobserved variables
and normalizing them to obtain probabilities.

The key idea behind likelihood weighting is to assign higher weights to the samples
that are consistent with the observed evidence. By incorporating these weights, the
method focuses on the relevant parts of the probability space and provides accurate
estimations of the posterior probabilities.

1.2.4. Supervised classification

Supervised classification is a major task in machine learning that aims to assign
input data points to predefined categories or classes.

It is a predictive modeling approach where the learning algorithm is trained on a
labeled dataset, consisting of input samples along with their corresponding class
labels, which its main objective is to learn a model that can accurately generalize
from the training data to make predictions on unseen or future instances.

The process of supervised classification involves several components. First of all, the
input data, also known as predictive features or attributes, describe the characteris-
tics or properties of the instances which are going to be classified. These features can
take different forms, such as numerical values or categories.

The labeled training dataset serves as the basis for learning the classification model.
Each instance in the training data is associated with a known class label, indicating
the class it belongs. The model is trained by extracting patterns and relationships
from the feature values and their corresponding class labels.

6

Introduction

However, supervised classification needs the availability of labeled training data,
which may imply efforts in data collection and annotation. As the rest of machine
learning tasks, the quality of the data that is going to be used to train the model has
a direct impact on its results.

1.2.5. Bayesian network classifiers

Bayesian network classifiers (Bielza and Larrañaga (2014)) are Bayesian networks
designed to solve supervised classification problems . Compared to the other models,
Bayesian networks hold advantages such as: They offer an explicit graphical and in-
terpretable representation (which is one of the features that we will exploit throughout
this project). In addition decision theory is applicable to them.

Let X = (X1, ..., Xn) be a vector of predictor random variables or features and C be
the class variable with c ∈ ΩC . A Bayesian classifier assigns the most probable a
posteriori (MAP) class value to a given instance x = (x1, ..., xn), that is:

argmaxc p(c|x) = argmaxc p(x, c)

Friedman et al. (1997) proposed that Bayesian network classifiers approximate p(x, c)
with a factorization according to a Bayesian network.

Each of the Bayesian network classifiers has different factorization of p(x, c). The
models we are going to see in this work are divided into two different types:

Naive Bayes and Tree-augmented naive Bayes (TAN) have p(x, c) = p(c)p(x1, ..., xn|c)
factorization, because these models do not allow predictor features to be a pa-
rent of the class variable.

On the other hand, the Markov blanket based classifiers, have the next factori-
zation:

p(x, c) = p(c|pa(c))
n∏

i=1

p(xi|pa(xi))

1.3. Objectives

The main objective of this work is the development of a software program that allows
end-users to have an interactive interface with the main objective of improving user’s
understanding of Bayesian networks classifiers.

Users expected to use this interface are users with a certain level of understanding
and familiarity with the concepts, principles, and techniques related to Bayesian net-
works.

For achieving this objective, there is a series of tasks to be done:

Understand and comprehend the different methods of the current state of the
art for interpretability of Bayesian networks, specifically for Bayesian network
classifiers.

7

1.3. Objectives

Study and develop of a visual interface with the tkinter1 python library, to im-
prove the interpretability of the models designed and used, showing the steps of
their construction.

In relation with the previous task, the implementation of interactive mechanisms
to allow the user change parameters and compare their influence on the results.
For example fixing evidence to see how this impacts on the probabilities of the
unobserved variables (not evidenced).

Create a new method of supervised classification in Bayesian networks using Es-
timation of distribution algorithms (EDAs) for searching the best Markov Blan-
ket based classifier and study the results of its performance and compare it with
state-of-the-art algorithms.

1Official tkinter documentation: https://docs.python.org/3/library/tkinter.html

8

Chapter 2

State of the Art

2.1. Interpretability in Bayesian networks

The explainable artificial intelligence approach tries to give explanation usually about
black-box models using another model to explain the decision made by the first one.
These explanations are usually not faithful. Relying on black-box models instead of
prioritizing the development of inherently interpretable models is a practice that may
perpetuate negative consequences and have significant societal repercussions and a
risk of propagating suboptimal practices.

Unlike black-box models, interpretable models do not require post-hoc explanations
to be understood by humans. Models such as logical rules, linear models, and deci-
sion trees are commonly regarded as interpretable due to their inherent transparency
and comprehensibility. These models allow for direct interpretation and understan-
ding of their underlying logic, making them more accessible and interpretable to hu-
man users.

However, there is an ongoing debate regarding the interpretability of certain models,
such as Bayesian networks. While some authors argue that Bayesian networks can be
considered interpretable, differing perspectives exist within the research community.
This discrepancy arises due to varying interpretations and criteria for what constitu-
tes interpretability.

Despite the debate, Bayesian networks possess characteristics that can facilitate un-
derstanding and provide insights into the relationships between variables, leading
some authors to classify them as interpretable models (as explained by Mihaljević
et al. (2021)).For example, Arrieta et al. (2020) claimed that Bayesian networks can
be classified as interpretable models, since they fulfill that they can be categorized as
simulatable, decomposable, and algorithmically transparent.

It is also important to acknowledge that under certain circumstances, such as when
dealing with excessively complex or unwieldy variables, a Bayesian network may lose
these first two properties. These challenges arise due to the increased intricacy and
difficulty in simulating and decomposing the model, which can impact its overall
transparency.

9

2.1. Interpretability in Bayesian networks

In addition to the content covered in the previous paragraph, it is important to take
into account that the internal mechanisms and knowledge base of Bayesian networks
can hinder the understanding to end users. The explanation of probabilistic reaso-
ning in Bayesian networks presents challenges, often resulting in counter-intuitive
or seemingly incorrect outcomes. This is why, the need for explanations becomes
crucial.

Lacave and Díez (2002) presented a review of the different methods for generating
explanations for Bayesian networks.

They give the next definition about explanations: explaining consists of exposing so-
mething in such way that it is understandable for the receiver of the explanation and
also satisfactory.

This explanation possess ten distinct properties that can be grouped into three pri-
mary categories, namely content (corresponding to what is being explained), commu-
nication (involving interaction with the user), and adaptation (relating to the intended
recipient of the explanation).

With this properties, Lacave and Díez (2002) proposed a division based on where we
put the focus of the explanation. Separating explanations in three different clauses:
the evidence propagated, the knowledge base (explanation of model) and the reaso-
ning process.

Explanation of evidence: Within this context, an explanation, denoted as w, encom-
passes the assignment of values to all variables within a specific subset W of the
network’s variables. As abductive methods focus solely on unobserved variables, gi-
ven that the values of observed variables are known with certainty, their objective is
to identify the most probable explanation (MPE), which corresponds to as maximum
a-posteriori probability (MAP). The MPE, denoted as w*, corresponds to the configu-
ration with

w* = argmax p(w|e)

where e represents the available evidence. Sometimes the k most probable expla-
nations are sought. When W encompasses all unobserved variables, this process is
referred to as total abduction; otherwise, it is known as partial abduction.

Primarily, the methods belonging to this section aim to identify the MPEs without
providing a justification for their higher probability compared to alternative explana-
tions. Therefore, the purpose of these methods is descriptive rather than explanatory.

Obtaining the MPE is a NP-complete problem (Shimony (1994)). However, as Kwisthout
(2011) explained, there are polynomial time algorithms for obtaining the MPE if cer-
tain parameters are known to be small (i.e. treewidth)

Bodlaender et al. (2002) presented an algorithm to determine whether the MPE sur-
passes a predefined probability threshold, denoted as q. Notably, in this algorithm, q
is considered a fixed parameter and is not part of the input. The algorithm exhibits a

runtime of: O(2
log q

log(1−q)n) with n representing the number of variables.

Specifically, when q is treated as a constant parameter, the algorithm’s runtime scales
linearly with n. Additionally, as q increases, the running time decreases, thereby ren-
dering the problem tractable for instances where the MPE exhibits a high probability.

10

State of the Art

Moreover, the problem can be straightforwardly extended to a functional problem va-
riant, where the algorithm returns the most probable assignment instead of a simple
true or false outcome.

The difference between abduction and inference is caused by states with the highest
probabilities for a set of nodes that may not always correspond to the most probable
joint value assignment for those nodes.

Explanation of model: The act of explaining the model involves presenting the infor-
mation stored within the knowledge base (the reasoning process made by the system
to obtain a conclusion and the evidence propagation if there is an evidence) in various
formats, such as verbal explanations, graphical representations, or step-by-step fra-
mes.

Explaining the model serves in providing novice users with domain-specific knowled-
ge for educational purposes. This enables users who are new to the domain to acquire
foundational knowledge and enhance their understanding of the subject matter.

The most straightforward and intuitive approach to represent the information encap-
sulated in a Bayesian network is by visually displaying the corresponding DAG. This
graphical representation offers a clear and concise visualization of the Bayesian net-
work structure, allowing for a better understanding of the interconnections among
variables.

There are several methods to generate static explanations such as translating the
qualitative and quantitative information of the network into linguistic expressions,
known as verbal descriptions of the model (Henrion and Druzdzel (1990)).

Explanation of reasoning: Explanations in this context obtain how probable a con-
clusion is given an evidence in terms of justifying the process that has been followed
to reach that solution. In the case that the expected results do not occur, this is
useful to be able to find the causes that have provoked them, and finally to theorize
possible solutions that are generated by changing some of the variables of the initially
observed set.

In this section, explanations can divided into micro level and macro level. Micro level
explanations focus only on one variable at each moment, One method within this
category is the representation of variations in the probability of a node through lin-
guistic or graphical explanations. Other methods focus on the study of the impact of
evidence or providing explanations for local updates in polytrees (Pearl (1988)).

At macro level, explanations are divided into two different categories, those that focus
on quantitative analysis and the ones that centre on qualitative analysis.

In quantitative analysis, explanations focus on statistical analysis and quantify re-
lationships, patterns, trends, and associations within the data. Usually this models
focus on probabilities or other parameters such as the fitness function (Echegoyen
et al. (2011)).

In qualitative analysis, in particular, Druzdzel (1996) proposed an explanation to
determine the qualitative impact of each finding F on a specific variable of interest,
V , and identify the paths from F to V .

11

2.1. Interpretability in Bayesian networks

There are three types of explanations related to the three types of elementary quali-
tative inferences:

Predictive inference: proceeds from causes to effects, following the direction of
the links.

Diagnostic inference: goes from effects to causes, opposite to the direction of the
arcs.

Intercausal inference: analyzes the qualitative impact of evidence for variable A
on another variable B when both variables influence a third variable C.

There are more examples of explanations found within explanations of reasoning
such as contrastive explanations (Miller (2021)), this explanations aim to answer why
an event X has happened in terms of hypothesized non-occurring events (“Why did
X happened rather than Y ?”), and counterfactual explanations (Koopman (2020))
, counterfactual explanations consider cases that have already happened and study
what would happen if a different decision had been made at some point of the process,
and study the relation of this alternative possible scenarios and compare them with
the one that actually happened and study its consequences.

This categorisation is extended by Derks and De Waal (2020) to include a new type of
explanation: explanation of decisions.

Explanation of decisions: In situations where the end user has to make a decision
with the information he gathered from the network, especially in cases where that
decision may endanger human lives, doubts and questions arise as to whether the
end users are prepared to make the decision or if further preparations are required
to enable them to make the decision.

In order to solve these doubts that arise in users and obtain an explanation, a method
known as the s̈ame-decision probabilityẅas proposed by Choi et al. (2012). This
method aims to provide an explanation of decisions by assigning a confidence le-
vel to each decision. This confidence level represents the probability that a decision
is made based on unobserved variables. The method uses a decision threshold, which
aids in determining the confidence associated with each decision.

Among the explanations of the evidence, there is a method known as MAP-explanation.
It is the outcome of computing MAP hypothesis. When responding to a MAP query,
all nodes that do not serve as hypothesis nodes or evidence nodes are marginalized.
Nevertheless, these intermediate nodes may contain valuable information regarding
the stability of the MAP explanation. It is crucial to determine whether the MAP ex-
planation remains consistent regardless of the specific values assigned to these in-
termediate nodes.

This consideration helps assess the robustness and reliability of the MAP explanation,
ensuring its validity across various scenarios and configurations of the intermediate
nodes, the concept to obtain the relevance of the intermediate nodes, was introduced
by Kwisthout (2021),and it is known as MAP-independence.

In contrast to much of the existing literature in this field, the concept of relevance,
specifically associated with MAP-independence, focuses exclusively on intermediate
nodes. This notion is motivated by its significant application in explainable AI, parti-
cularly in assessing the stability of MAP explanations.

12

State of the Art

With this new concept, Valero-Leal et al. (2022) introduced a new category known
as support methods, which covers methodologies designed to enhance and evaluate
the quality of explanations within Bayesian networks. These methods aim to provide
improved insights into the underlying mechanisms and factors that contribute to the
robustness and reliability of the explanations.

Later on, some contributions have been made related to the concept of MAP indepen-
dence and robustness of explanations (Renooij (2022), Valero-Leal et al. (2023)).

The actual distribution of types of explanations is shown in the Figure 2.1.

Figure 2.1: Explanation types distribution

2.2. Bayesian classifiers based on the Markov blanket selec-
tion

Bielza and Larrañaga (2014) divided into three different sections Bayesian classifiers,
depending on how they made the structural learning: finding conditional indepen-
dencies, score + search techniques and hybrid approaches.

Finding conditional independencies: Markov blanket search can be seen as a fea-
ture selection problem in which, with a backward greedy strategy, starting from all
the features, each step a variable is eliminated until an approximate Markov blanket
of the class variable MBC is obtained. A predictor variable is eliminated if it provides
little or no additional information about C beyond what is known from the other va-
riables. Usually all these algorithms assumes that D = (x(1), c(1)), ..., (x(n), c(n)) (where
x are values of the predictor variables and c values of the class variable) is a sample
from a probability distribution P faithful to a DAG representing a Bayesian network.
It is important to note that none of these algorithms consider the arcs within the
Markov blanket that do not involve the class variable.

13

2.2. Bayesian classifiers based on the Markov blanket selection

The first method presented by Koller and Sahami (1996), eliminates feature by feature
trying to keep the conditional probability of C given the current estimation of the
Markov blanket at step t, p(C|MB

(t)
C), close to p(C|X). Metric used to define closeness

is the expected Kullback-Leibler (KL) divergence. After iterate, the distance between
the current estimation of the Markov blanket and the real Markov blanket, is as
short as possible, so the algorithm converges to the true Markov blanket of the class
variable.

The number of steps is defined as a parameter before the algorithm. Another prede-
fined parameter is k, the number of variables selected in each step with the smallest
KL divergence. Because of these predefined parameters, the algorithm is suboptimal
since its effectiveness heavily relies on the accurate selection of both parameter va-
lues.

This algorithm is based on the observation that the class variable C, and a feature
that is not present in the MBC are conditionally independent under P given MBC .

The grow-shrink (GS) Markov blanket algorithm (Margaritis and Thrun (2000)) starts
inversely to the previous algorithm, that is, it starts with an empty Markov blanket.
Variables are added as long as C and X are not conditionally independent given the
MB at each instant, until there are no variables left. This first phase is called growing
phase. The second phase, shrinking phase, identifies and removes the variables one
by one that are independent of C given the other variables in the MBC .

The GS Markov blanket algorithm is the first correct Markov blanket induction algo-
rithm, meaning it returns the true Markov blanket of the class variable and not an
approximated one, assuming faithfulness between P and the DAG. The algorithm is
not considered data efficient as it requires a sample size that increases exponentially
as the complexity of the problem grows to ensure reliable results from the conditional
independence tests.

Tsamardinos and Aliferis (2003) introduced a variant of the GS algorithm called the
incremental association Markov blanket (IAMB) algorithm. It consists of two phases:
a forward phase and then a backward one. The first phase checks the same condition
as the growing phase but variables are ordered by the conditional mutual information
between the variable and the class variable, and the stopping condition is when this
value is weak. For the backward phase, a variable is removed if it is independent
of C given the other variables in the MBC . This algorithm is also correct but data
inefficient.

Variants of this algorithm have been developed such as InterIAMBnPC (Tsamardi-
nos et al. (2003b)), which alternates both phases. It also substitutes the backward
conditioning phase with the PC algorithm(Spirtes and Glymour (1991)). Fast-IAMB
(Yaramakala and Margaritis (2005)) speeds up IAMB, minimizing the number of tests
during the initialization phase.

The HITON algorithm by Aliferis et al. (2003), first identifies the parents and children
of the class variable by calling algorithm HITON-PC. After that, it obtains the parents
and children of the parent and children of the class variable. This obtained set is
a superset of the Markov blanket of the class variable. False positives are elimina-
ted using a statistical test inspired by the SGS algorithm (Spirtes et al. (2000)). In
HITON-PC, variables from the current estimation of the parents and children set, are
examined individually.

14

State of the Art

If it is found that any variable, when considering a particular subset, becomes con-
ditionally independent of the class variable then that variable cannot belong to the
parents and children set (PCs). Consequently it is remove and not considered more in
the process. Even though they studied the correctness of the algorithm (Aliferis et al.
(2002)), later on was proved it is not correct by Peña et al. (2007).

The max-min Markov blanket (MMMB) algorithm (Tsamardinos et al. (2003a)) is si-
milar to HITON, which is why it has the same properties. However it changes the
selection phase proposing a max-min greedy search strategy to identify the best fea-
ture.

The parents and children-based Markov boundary (PCMB) algorithm by Peña et al.
(2007), takes a divide-and-conquer approach. First it gets parents and children of the
class variable, and after that it identifies the rest of the parents. Using the property
that if a variable is contained in the parent and children of the class variable the
reverse implication must also be given, they find false positives in the Markov blanket,
proving the correctness and data efficiency of the algorithm.

The property is relaxed in the Markov boundary search using the OR condition
(MBOR) algorithm (Rodrigues de Morais and Aussem (2010)) using an OR condition
when addressing neighbours: given two features X and Y , X and Y are neighbours if
X ∈ PCs(Y) “OR” if Y ∈ PCs(X), instead of an AND operator, this process is known
as symmetry check.

The discovery of the PCs set in the Markov blanket discovery algorithms is the most
expensive steps in terms of computation, due to the exhaustive search and the imple-
mentation of the symmetry check, which increases the computational cost by |PCs|
times. In order to address this performance bottleneck, Gao and Ji (2016) proposed a
method, called simultaneous Markov blanket (STMB), that aims to eliminate the need
for the expensive symmetry check step while still effectively removing false positive
PCs.

To achieve this, STMB initially follows the same procedure as PCMB. However, it goes
a step further by identifying the spouse and simultaneously removing non Markov
blanket descendants from the PCs set. Specifically, STMB examines the parent and
children set (PCf) for nodes that are potential false positives. It looks for a node Y
that unblocks a path from the class variable to a feature X not included in PCf,
thereby creating a candidate spouse set. If such a node Y is found, STMB tests for
false positive spouses X, such as the parents of the spouses, by conditioning on
other nodes that are unblocked by Y . If X is found to be independent of the class
variable, it is removed from the spouse candidate set. Additionally, STMB examines
other non Markov blanket descendants X in the PC set that may have multiple paths
to the target. If X is determined to be independent of the class variable, it is removed
from the PCs set. By adopting this approach, STMB avoids the need for the costly
symmetry check step while still effectively eliminating false positive PCs.

Wu et al. (2019) introduce cross-check and complement Markov blanket (CCMB) al-
gorithm based on the concept of PCMasking to the Bayesian network, which denotes
an error that can be risen from the conditional independence test that accepts in the
Markov blanket some children that may be independent from the class variable given
their parents and some parents that might be independent from the class variable
given their children.

15

2.2. Bayesian classifiers based on the Markov blanket selection

To detect this error, the cross-check and complement processes is used, in which
the crosscheck process can effectively detect the PCMaskings and the complement
process can repair the symmetry (between PC variables) broken by this phenomenon.

The balanced Markov blanket learning (BAMB) algorithm (Ling et al. (2019)) identifies
the parent and children set and spouses at the same time, interleaving them. It finds
the candidates for both of the sets and removes false positives from the candidate list
at the same time. To achieve this, when a new variable is added to PCs set, it search
for spouses of the class variable. After that, it removes false positives and update the
spouses list. This efficient use of data makes the algorithm data and time efficient.
Trying to tackle the problem of BAMB, Wang et al. (2020) proposed a new algorithm
known as efficient and effective Markov blanket (EEMB).

Khan et al. (2023) presented a new algorithm called feature selection via mining Mar-
kov blanket (FSMB). It obtains the Markov blanket through using a forward approach
that induces the true positive variables of the PCs set of the class variable. It remo-
ves false positives and discard them for the rest of the process. At the same time, it
finds the spouses set doing an exhaustive search using the V-structure strategy, an
strategy to unveil converging connections in the network, to detect the true positive
ones and removing the rest.

Score + search techniques: The partial Bayesian network (PBN) for the Markov blan-
ket around C (Madden (2002)) follows a process of three steps. In the first step, all
predictor variables are classified as parent, children or unrelated to C. In the second
step, the spouses of C are chosen from the set of parents and unrelated nodes. In the
last step the dependencies between children are determined. These three steps are
guided by the K2 score, which requires a node ordering. The inclusion of an arc is
decided with the score in a forward greedy way. A similar process using an ordering
starting with variable C, to apply the K2 algorithm is also explored in the work of dos
Santos et al. (2011). By employing this ordering, the algorithm provokes that C has
no parents, which makes an approximate Markov blanket for C.

Rather than using a filter score, the search process can be guided by a wrapper
approach using classification accuracy as the score metric. An example of it is illus-
trated in Sierra and Larrañaga (1998), where the search is performed by means of a
genetic algorithm. In this approach, each individual in the population represents a
Markov blanket structure of the class variable.

Niinimäki and Parviainen (2012) presented score-based local learning (SLL). It first
learns the PCs set by selecting a feature from the set of features and removing it from
the set, after that it learns the structure of a Bayesian network composed of the set
of class variable, PCs set of the class variable and the new feature selected with a
score-based approach. From the DAG of the Bayesian Network, SLL obtains the new
PCs.

SSL uses a score-based variant of symmetry checks for pruning the PCs set. For
obtaining possible spouses given the current PCs set, SSL finds the union of PCs of
features in the PCs of the class variable. After that, as in the first step, it obtains the
DAG, but this time including spouses, and from it, it calculates the set of spouses.

16

State of the Art

Hybrid techniques: The tabu search-enhanced Markov blanked is an algorithm pre-
sented in Bai et al. (2008) with two phases. In the first phase an initial Markov Blan-
ket is obtained based on conditional independence test by a breadth-first search heu-
ristic. In the last phase, it makes a tabu search enhancement, allowing four possible
movements: arc addition, arc deletion, arc switch and arc switch with node pruning.
Each movement is guided by its classification accuracy.

17

Chapter 3

Structure learning algorithms

This chapter presents the different methods used and implemented. Moroever it also
shows a new Markov Blanket selection method using estimation of distribution al-
gorithms (EDAs). The programming language chosen is Python. Python offers an ex-
tensive range of libraries and frameworks specifically designed for machine learning
and probabilistic modeling, making it a natural choice for working with Bayesian
networks. The graphical user interface explained in the next chapter has also been
developed in this language. The structure of the code developed1 is shown in Figure
3.

Figure 3.1: Structure of the python files

1The code developed is in the repository: https://github.com/IvanTelloLopez/ISL_BN

19

3.1. Naive Bayes classifier and tree augmented naive Bayes (TAN)

The functions that are not used in other python files and are used as auxiliary fun-
ctions are not included in the graph to make it more readable.

The main file, which is tk.py, contains the code related to the graphical user interface
that will be explained in the Chapter 4. To build each of the models, the main file calls
the functions of the models (NB.py, TAN.py and MarkovBlanketEDAs.py) with initial
parameters introduced by the user (i.e. dataframe, class variable). This functions
return the results of the models and the graphic displays of the networks obtained.
Inference.py does the same but receiving not the initial parameter but the network
already built in the previous steps.

Lastly, PyBNesian_CPT_to_df.py, converts the string resulting from calling the method
CPT of PyBNesian library (Atienza et al. (2022)) into a pandas (library made by Mc-
Kinney et al. (2010)) dataframe.

3.1. Naive Bayes classifier and tree augmented naive Bayes
(TAN)

The naive Bayes classifier (Maron and Kuhns (1960); Minsky (1961)) is the simplest
Bayesian network classifier shown in the figure 3.1. The algorithm assumes that all
predictor features are conditionally independent given the class variable. While this
assumption may not hold in scenarios where features are correlated, it can still yield
good results in practice.

Figure 3.2: Example of naive Bayes classifier structure

However, it is important to note that due to this assumption, the classifier is not be
able to accurately capture and interpret the relationships between features, which
can potentially lead to false interpretations of the results. Despite this limitation,
naive Bayes classifiers remain popular and effective in many real-world applications.

20

Structure learning algorithms

Tree-augmented naive Bayes (TAN) (Friedman et al. (1997)) is an extension of the
naive Bayes classifier that incorporates a tree structure to model the dependencies
between the feature variables given the class variable. In TAN, a tree structure is
created where each predictor variable is connected to the class variable and to other
predictor variables based on their conditional dependencies.

Figure 3.3: Example of tree-Augmented naive Bayes classifier structure

The advantage of TAN over the Naive Bayes classifier is that it takes into account the
dependencies between the feature variables, which can improve the accuracy of the
classification.

For the implementation of these methods, the library bnclassify (Mihaljevic et al.
(2018)) was used. However, since bnclassify is designed for the R programming lan-
guage, a way to integrate it into our python environment was needed. To accomplish
it, rpy22 library was used, which allows interaction between python and R libraries
from python. This enabled the use of bnclassify functionalities within our python-
based implementation.

For our interactive structural learning of these algorithms, it was needed, not only
the final result, as provided by the bnclassify library, but also the intermediate steps
of the process if the user decided to see them, thus facilitating the understanding
of the structural learning of the algorithms and also allowing users to choose an
intermediate step as the final model.

This is why, by means of the function of obtaining the mutual information between
each of the features and the class variables and the conditional mutual information
between two features given the class variable (for the case of the TAN).

Thanks to this information, the order in which the edges and nodes entered the
network is known, thus allowing the reconstruction of the network at each step.

But a new problem arose: a library was needed to allow the use of inference to make
predictions and obtain the accuracy of the intermediate models. This was a compli-
cated step throughout the development of the project, since it was not known how to
make inference over a network with a previously fixed structure with most libraries.
Finally, it was done with the pyAgrum library (Ducamp et al. (2020)).

2Oficial repository of rpy2: https://rpy2.github.io/doc.html

21

3.2. Markov blanket selection with EDAs

3.2. Markov blanket selection with EDAs

Bayesian classifiers based on identifying the Markov blanket of the class variable
can be seen as a feature selection problem, where identifying the variables, from the
original set of predictor variables, that are in the Markov blanket is the objective.

A variable is eliminated if it provides little or no additional information about C be-
yond what is known from the other variables. This means that variables outside the
MB would have little or no effect on the prediction of the classifier.

For obtaining the optimal Markov blanket for each classification problem there are
several methods such as those cited in the Chapter 2.

In this work the method presented is going to be based on estimation of distribution
algorithms approach.

3.2.1. Estimation of Distribution Algorithms (EDA)

Estimation of distribution algorithms (EDAs) is a class of evolutionary algorithms that
incorporates probabilistic models to guide the search for optimal solutions in optimi-
zation problems. Unlike traditional evolutionary algorithms that rely on mutation and
crossover operators, EDAs focus on learning and modeling the underlying probability
distribution of promising solutions.

The main idea behind EDAs is to iteratively update and refine a probability distribu-
tion based on a selected set of candidate solutions. This distribution represents the
knowledge gained from the solutions and is used to generate new candidate solutions
for subsequent iterations. By explicitly modeling the solution space using probability
distributions, EDAs are able to capture important features and dependencies among
variables, leading to more efficient exploration and exploitation of the search space.

3.2.2. Individual codification

In each EDAs problem a different codification for individuals is used depending on
what is to be modeled for each individual. In some problems there are even variable
length codifications such as length-adaptive genetic algorithm with Markov blanket
(LAGAM) proposed by Zhou et al. (2022).

Choosing a good codification is of utmost importance in EDAs as it directly affects the
effectiveness and efficiency of the process. A codification refers to the representation
of solutions or individuals in the search space. It involves mapping the problem-
specific individuals, in this case the MB networks, into a format suitable for the
algorithm to operate with.

The initial approach involved developing a binary codification, to operate with algo-
rithms that work with binary representations. In this codification, the first n (number
of features) bits denoted the presence or absence of variables in the Markov blanket,
followed by (n+ 1)n bits representing all possible arcs in the Bayesian network. As it
can be seen in the figure:

The main problem with this initial codification was the redundancy and the comple-
xity it generated in the validation process. The presence of cycles in DAG and the

22

Structure learning algorithms

Figure 3.4: Codification of an individual in early stages

inclusion of arcs connected to nodes outside the Markov blanket violated the require-
ments of the model. Furthermore, the redundant duplicate information was evident
in the arc values since if there was an arc from node A to node B, then there could
not be an arc from node B to node A.

To tackle this problem a new codification was chosen, departing from the binary
format. The first n values still represented the nodes; however, their interpretation
and representation underwent a significant change, as follows for a generic node Xi:

Xi =


0 if Xi is not in the Markov blanket,
1 if Xi is a parent of the class variable,
2 if Xi is a son of the class variable,
3 if Xi is an spouse of the class variable

The representation of arcs has also undergone a change, resulting in a reduction
in their number to n(n−1)

2 . This reduction is possible because the arcs connecting to
the class variable are already represented in the node values, in addition to the new
encoding scheme. Let xixj be a position belonging to the arcs:

xixj =


0 if Xi → Xj and Xj → Xi are not present,
1 if Xi → Xj is in the Markov Blanket,
2 if Xj → Xi is in the Markov Blanket,

Introducing the new codification successfully resolved the issue of redundancy, en-
hancing the validation process and improving the algorithm’s overall performance.
Cycles in the chain are solve during validation process that is explained in the next
Subsection 3.2.3. However, the new codification also introduced certain challenges.

A way of establish the correspondence between the codification index in the chain and
the arc it represent was needed. An initial approach for it was employing a dictionary,
where the index served as the key and the corresponding arcs were stored as values.
Nonetheless, using a dictionary for large Bayesian networks may incur severe memory
costs, so a new approach may be needed for future works.

23

3.2. Markov blanket selection with EDAs

3.2.3. Algorithm process

The EDA used is the simplest but eficcient algorithm, univariate marginal distribu-
tion algorithm (UMDA) (Mühlenbein and Paass (1996)). The core idea of this algorithm
lies in modeling the joint probability distribution of the variables based on the statis-
tics of the selected candidates of the current population, by estimating the marginal
distribution of each variable independently (we are assuming independency between
variables). The estimated univariate marginal distributions are then used to generate
new candidate solutions by sampling from them.

After sampling them, since in our current codification, some individuals may contain
cycles or arcs connecting nodes that do not belong to the Markov blanket. To ensure
that the generated chains represent a valid Markov blanket, it is necessary validate
them from the probability distribution in each iteration to verify that they represent
a feasible Markov blanket.

To perform this validation, the process starts by randomly selecting an initial position
in the chain to avoid any biases that may favor the first nodes and arcs over the rest
since the first positions would always be the first to be checked.

Then, iteratively we check if the value at the position is correct and forms no cycles,
knowing the values of the previous checked positions. If any issues are identified, the
chains are adjusted and corrected during the validation process. This ensures that
we obtain a correct and valid chain by the end of the process.

Initially, the first approach was to discard any incorrectly generated chains. However,
due to the vast number of potential incorrect chains in the search space, this ap-
proach significantly increased execution times. Therefore, we opted for the strategy
of correcting and adjusting the chains during the validation process, reducing the
need for discarding and improving overall execution efficiency.

Currently, candidate selection process is performed by choosing the best individuals
according to the fitness function (elitism approach). This selection process ensures
that promising solutions are used to estimate the distribution of the next generations.

The algorithm process of the Markov blanket selection is shown in the figure 3.5.

Through repeated iterations of sampling, evaluation, and selection, UMDA explores
the search space and converges towards promising solutions.

While UMDA was originally designed for binary-encoded optimization problems, it
has been adapted for handling discrete variables with non-binary encoding, as in
this research. This adaptation involves modifying the encoding scheme and adjusting
the probability distribution estimation techniques accordingly.

24

Structure learning algorithms

Figure 3.5: Algorithm scheme

25

3.2. Markov blanket selection with EDAs

3.2.4. Fitness metric

The fitness of each candidate solution is evaluated using a fitness function, in this
case the performance of the classifier made by the Markov Blanket or the Bayesian
information criterion (BIC) metric of the network associated with each individual can
be chosen as the fitness function.

Initially, the fitness of each individual was calculated by creating the corresponding
Bayesian network using the individual’s codification using pyAgrum library.

However, as will be explained in Chapter 5, during experimentation with different
datasets, it was observed that using Bayesian networks with an average size of 20
nodes and a dataset of 5000 instances, the library consumed too much RAM memory
causing a performance failure in the process during the execution of some functions
in the library.

As this problem was external to the implemented algorithm, alternative solutions we-
re explored. After careful evaluation of different libraries based on their performance
and resource consumption, the decision was made to switch to PyBNesian library.
This library has proven to be efficient. The main drawback of using PyBNesian was
the lack of implemented inference methods, so a new one had to be developed.

The chosen approach for approximate inference was likelihood weighting, explained
in the Section 1.2.3.1. This method only needs to focus on sampling the class variable
since, in a classification problem, the features are already evidenced.

With this implementation the memory cost problem was solved but the code was still
underperforming in terms of execution times.

26

Chapter 4

Interactive Interface

The interactive interface has been built with tkinter a popular Python graphical user
interfaces (GUI) toolkit. It provides a set of tools and widgets to build interactive
and visual interfaces, this library was chosen over others because it offers several
advantages such as:

It is already included in the standard Python library, which means it is readily
available without the need for additional installations. This makes it highly ac-
cessible and ensures compatibility across different Python distributions and ver-
sions.

It is easy to understand and to use for beginners in GUI programming and has
many tutorials about how to implement different software apps.

It offers a wide range of built-in widgets, including buttons, labels, text entry
fields, and more. These widgets can be customized and styled to match the
desired look and feel of the application. It also supports the use of images allo-
wing to show graphics and results of the networks.

As someone with limited GUI experience but a desire to implement a user interface
for enhanced system interaction and explainability, Tkinter proved to be the optimal
selection.

As explained in Chapter 3, the file tk.py contains the code for the tkinter interfa-
ce. Each window is represented as a Python class, with an ’__init__’ method that
initializes the window, with each window having its own set of functions.

To provide an overview of the user interface and have a better understanding of how
the windows are displayed, a window navigation diagram was made (see Figure 4),
also known as a window flow diagram or screen flow diagram.

27

Figure 4.1: Navigation diagram

The interface is divided in 6 different windows: Main window, steps window, overview
window, EDAs window, generation information window and inference window.

The main window (see Figure 4) is the first window, in which the parameters are
selected. The first parameters to choose are the dataset and the model. Once the
model has been chosen, the rest of the parameters are unlocked. These parameters
change depending on the model:

In the Markov blanket selection (MBS) by EDAs model, the following parameters
can be selected: The number of generations, the number of individuals, the
number of fixed candidates considered when calculating the distribution for the
next generation, the class variable chosen from the dataset variables, and the
fitness metric used to sort the individuals.

For the rest of the models (naive Bayes and TAN) the parameters are: iterations
between steps (number of steps not displayed between shown steps), selection
parameter (order in which arcs are added to the Bayesian network), no steps
(skips all steps), and the class variable chosen from the dataset variables.

28

Interactive Interface

Figure 4.2: Main window: Markov blanket option (left) and the rest of the options
(right).

From this window, three possible paths can be followed based on the user’s choices.

If the user selects MBS by EDAs model, he/she will navigate to the EDAs window. In
the EDAs window, the best solution obtained by the algorithm is displayed, showing
its score and the graph of the Markov blanket obtained, see figure 4.

Figure 4.3: EDAs window

From the EDAs window (Figure 4), the user has two navigation options: If the user
clicks on the ’Show generations’ button, navigates to the Generation Info window or
either proceeds to the final Inference window clicking on ”Choose this model’ button.

29

The Generation Info window provides detailed information about each iteration dis-
playing the best Markov blanket in each generation, and a graph displaying the dif-
ference with the last generation. User can navigate with the buttons of prev and next
between generations.

Figure 4.4: Generation info window

In this graph, arcs that were present in the best solution of the last generation but
are not in the current one would be displayed in red. This color indicates the removal
or absence of those arcs from the current solution.

Similarly, new nodes added in the current generation would be shown in green, along
with the arcs connecting them. This color scheme highlights the introduction or ap-
pearance of these new nodes in the current solution.

Nodes and arcs that remain unchanged between the last and current generation
would be represented in blue for nodes and black for arcs, indicating their continuity
and persistence throughout the evolutionary process.

By utilizing this graph, users can easily identify the specific modifications that have
occurred in the network structure.

The red, green, and blue color scheme provides a clear visual distinction, enabling a
quick comprehension of how the nodes and arcs have changed or remained constant
between the last and current generations of the Markov blanket of the class variable.

On the other hand, if the user selects a different model (from MBS by EDAs), it
would navigate to two possible windows. If no additional steps are chosen, he/she
will transition to the overview window. Alternatively, if the user selects additional
steps, it would navigate through a series of step windows.

30

Interactive Interface

Each Step window (see Figure 4) displays a specific step or stage in the process,
guiding the user through the required steps of the structural learning of the selected
method, in each step the current Bayesian network classifier is displayed, showing
in each arc how they are changing the score of the structure. Once the algorithm is
finished, the user navigates to the Overview window of the model.

Figure 4.5: Steps window

In overview window (see Figure 4), an overview of the selected model is displayed
showing all graphs of each step allowing choosing one (button over score) for the
next last step: The inference. To navigate to this functionality the user must click on
’Choose this model’.

Figure 4.6: Overview window

31

Lastly, where all models would converge to a common window, in the Inference win-
dow (see Figure 4), the graph of the conditional probabilities is presented, allowing the
user to interact and set fixed values (evidence) for specific variables. By fixing values
for certain variables, the user can observe how these changes affect the probabilities
of the non-fixed variables. This interactive feature provides a dynamic visualization
of how the univariate marginal probability distributions within the Bayesian network
are influenced by the user’s input.

Figure 4.7: Inference window

Through this graph, users can gain insights into the dependencies and relationships
between variables, as well as understand the impact of variable values on the ove-
rall probability distribution. By exploring different scenarios and adjusting variable
values, users can analyze and interpret the behavior of the Bayesian network in res-
ponse to specific conditions, thereby enhancing their understanding of the underlying
probabilistic model.

Thus, in Figure 4, at left, the variables are shown with a button that displays all the
values each variable can have, when fixing one of them, the graphical node changes
its color to orange and all probabilities are updated. The user can evidence all the
variables he/she wants to.

The explanations created in this work would be framed within explanation of model,
displaying graphical model, showing the step by step processes and allowing the user
an interaction with the system in all stages of construction of the model.

32

Chapter 5

Results

In this chapter we study the performance results of the implemented method MBS
with EDAs. Other algorithms are not tested because they are from other libraries, as
said in Chapter 3, and in this work we did not make any changes that may affect
their performance.

A test with users to study the interpretability and user friendliness of the interface
is something that would enhance the results of the interface because its objective its
not improving state-of-the-art algorithm performance but to improve the algorithms
in terms of explaining the models and build trust of users in AI models. However, the
lack of time and people to make the tests did not let us carry them.

MBS with EDAs has been tested with different parameters and different datasets from
UCI datasets1: cars_evaluation, monk’s problems and Tic-Tac-Toe endgame. In
the next tables we are going to display the results of the algorithm with the different
parameters used.

The cars_evaluation dataset which its class variable is named as class and has 4
different values (unacc, acc, good, vgood). This dataset has 6 different features which
are: buying (vhigh, high, med, low), maint (vhigh, high, med, low), doors (2, 3, 4,
5more), persons (2, 4, more), lug_boot (small, med, big) and safety (low, med, high).
The number of instances is 1728.

The monk’s problems dataset which its class variable is binary and named class.
And 6 features: a1 (1, 2, 3), a2 (1, 2, 3), a3 (1, 2), a4 (1, 2, 3), a5 (1, 2 , 3, 4), a6 (1,
2). The number of instances is 432.

The Tic-Tac-Toe endgame dataset which its class variable is binary and named
class. And 9 features (top-left-square, top-mid-square, top-right-square, mid-left-
square, mid-mid-square, mid-right-square, bot-left-square, bot-mid-square, bot-right-
square) with the same three posible values (x, o, b). The number of instances is 958.

The brfg column contains the result (% accuracy) of the best individual in the first
generation of the EDA.

1UCI datasets webpage: https://archive.ics.uci.edu/datasets

33

individuals selected candidates generations time (s) brfg (%) best result (%)
50 25 3 35.03 86.3426 95.3704

100 50 3 60.90 93.0556 95.6019
100 50 5 90.53 87.9630 95.3704
300 150 3 78.54 94.6759 96.0648
300 150 5 187.95 94.2130 96.7593
500 250 3 94.20 96.9907 96.2963
500 250 5 148.12 95.8333 97.4537

1000 500 5 283.12 96.5278 97.4325
2000 1000 5 518.04 96.2963 96.7593
2000 1000 10 936.10 96.5278 98.1481
2000 1500 5 558.87 95.3704 96.7593
5000 1000 10 1454.20 97.9167 98.3796

Table 5.1: Cars_evaluation dataset results in accuracy

As shown in Table 5.1 the best performance is 98.3796 % and the network structure
of the solution is shown in Figure 5.1.

Figure 5.1: Best Markov blanket structure in Cars_evaluation dataset

Naive Bayes and TAN results for this dataset are around 85.5244 % and 93.7458 %.
Which are worse than the obtained with our algorithm.

34

Results

Table 5.2 Shows the results for the monk’s dataset.

individuals selected candidates generations time (s) brfg (%) best result (%)
300 150 5 90.95 67.6259 71.9424
500 250 3 125.40 65.4676 71.2230
500 250 5 186.12 70.2230 73.3230

1000 500 5 257.60 71.2230 75.4181
2000 1000 5 388.18 73.3813 76.9784
5000 2500 5 539.70 70.5036 74.6190
5000 2500 10 675.74 71.2230 80.4173

10000 2500 10 927.22 71.9424 83.4532

Table 5.2: monk’s dataset results in accuracy

Note that the best performance is 83.4532 % and the network structure of the solu-
tion is shown in Figure 5.2.

Figure 5.2: Best Markov blanket structure in monk’s dataset

35

Thanks to the fact that in monk’s dataset results from other machine learning models
are included in the UCI webpage (see Table 5.3), we are going to compare our result
with them: Our model surpasses the Logistic Regression (70.6020 %) and Neural Net-
work Classification (78.704 %). Its near to Support Vector Machine (86.8060 %) but
its outperformed by Xgboost and Random Forest Classification.

model worst result (%) best result (%)
Xgboost 95.6020 98.6110

Support Vector Machine 79.6300 86.8060
Random Forest 88.6570 93.9810
Neural Network 70.3700 78.7040

Logistic Regression 61.8060 70.6020

Table 5.3: monk’s dataset results

Table 5.4 Shows the results for the Tic-Tac-Toe endgame dataset.

individuals selected candidates generations time (s) brfg (%) best result (%)
50 25 3 40.60 41.6667 43.3333

100 50 3 78.90 40.4167 44.5833
100 50 5 95.53 42.5000 45.8333
300 150 3 96.54 41.6667 43.9167
300 150 5 151.95 42.5000 46.2500
500 250 3 87.20 42.0833 44.5833
500 250 5 192.12 43.7500 47.0833

2000 1000 5 287.66 45.0000 47.8333
5000 2500 3 178.20 44.1667 48.5833
5000 2500 5 180.57 42.5000 46.2500

Table 5.4: Tic-Tac-Toe endgame dataset results in accuracy

The best performance for the Tic-Tac-Toe endgame dataset is 48.5833 % and the
network structure of the solution is shown in Figure 5.3.

36

Results

Figure 5.3: Structure of the best Markov blanket in Tic-Tac-Toe endgame dataset

Same as before, in the Tic-Tac-Toe endgame dataset, some results are included in
the UCI dataset webpage (see Table 5.5), but this time our model performs as the
Random Forest Classification with an average of 47.5 % of accuracy which is the
worst of the models displayed. The rest of the models outperforms ours.

model worst result (%) best result (%)
Xgboost 52.9170 65.4170

Support Vector Machine 82.9170 91.6670
Random Forest 41.250 53.7500
Neural Network 98.7500 100.0000

Logistic Regression 97.0830 100.0000

Table 5.5: Tic-Tac-Toe endgame dataset results

37

Chapter 6

Conclusions and future work

The development of a software application that enhances interpretability for Bayesian
network classifiers through an interactive interface was the main objective of this
work.

By providing an intuitive and interactive interface, the software application empowers
users to explore and comprehend the underlying mechanisms of Bayesian network
classifiers, allowing users to visualize the structure of the Bayesian network, unders-
tand the conditional probability tables, and analyze the impact of different variable
values on the overall probabilities. This level of transparency and control enhances
the interpretability of the model and enables users to gain insights into the decision-
making process of Bayesian classifiers.

Interpretability plays a crucial role in AI systems as it enables users to understand
and trust the decisions made by these models by providing clear explanations for
the model’s predictions and decisions. Furthermore, interpretability helps in identif-
ying biases, potential errors, or limitations in the model, enabling improvements and
mitigating potential risks.

The work developed focused on interpretability aligns with the growing demand for
responsible and ethical AI practices. It empowers users to understand, validate, and
explain the decisions made by Bayesian network classifiers, fostering transparency
and accountability in AI systems.

In addition to the creation of the interface to enhance the interpretability of Bayesian
networks, a new algorithm has been created to find the Markov blanket of the class
variable. This algorithm is not exhaustive, so it does not need to traverse the entire
search space, although it does not guarantee reaching the optimum.

Although many functionalities have been developed, this field is still in its early stages
so there are many things still to be done.

This is why there are many future lines of research, especially in relation to the
developed software application itself.

The first line of future work is the extension of the variable domain. Due to the libra-
ries used such as bnclassify or pyAgrum that are designed for discrete variables, our
development was also conditioned to be limited to these, which is why the extension
to continuous variables is an interesting proposal to continue this work.

39

Another possible line of research is the inclusion of new types of models. The software
application could be expanded to incorporate a broader range of Bayesian classifiers,
providing users with a diverse set of modeling options (i.e. k-DB, Bayesian multinet,
AODE). Furthermore, enabling users to compare different models would facilitate the
exploration of model complexity and its impact on performance.

This comparative analysis would empower users to study the trade-offs between mo-
del complexity, interpretability, and predictive accuracy, deepening their understan-
ding of the underlying relationships and aiding in informed decision-making.

Additionally, ongoing efforts can focus on improving the user experience and interface
design. Usability studies and user feedback can provide valuable insights for refining
the software application’s interface, making it more intuitive, user-friendly, and ac-
cessible. This iterative process of user-centric design would ensure that the interface
meets the specific needs and preferences of the target users, further enhancing their
ability to interact with and interpret Bayesian Network classifiers effectively.

In addition to enhancing the user-friendliness of the application, conducting user tes-
ting with real users would be a valuable step to ensure that the techniques employed
to enhance model interpretability are truly beneficial for end-users.

By involving real users in the evaluation process, valuable insights can be gained
such as identify possible issues in terms of usability, ensure that the interface meets
the specific needs and preferences of the target users and that the explanations that
have been developed are of value to users.

Unfortunately, due to the time constraints of the project, conducting extensive user
testing was not feasible.

Continuing along this line of work, it would be an interesting approach to explore
additional techniques for generating explanations and improving the interpretability
that our interface brings to Bayesian network models. While the developed software
application already provides information about the model’s behavior and conditional
probabilities, there is still room for further innovation in this field.

A possible area of interest could be the development of explanation generation methods.
Currently, the software application allows users to explore the impact of fixing eviden-
ced features on the probabilities of non-evidenced values and also visual explanations
of the model construction.

However, generating concise and meaningful explanations for model decisions or pre-
dictions could greatly enhance interpretability such as conterfactual or contrastive
explanations.

Another crucial aspect for future work is the improvement of performance and execu-
tion time of the models, particularly when dealing with large Bayesian networks. As
the complexity of the network increases, the computational demands grow exponen-
tially, posing challenges for tractability and real-time analysis, making it currently
unfeasible.

40

Conclusions and future work

By addressing these performance challenges, the software application can empower
users to tackle complex real-world problems that involve intricate and bigger Baye-
sian network structures, expanding their applicability and usability.

As explained throughout this chapter, the field of interpretability for AI presents many
research lines for further exploration and advancement. It is a rapidly evolving area
that has great potential for introducing machine learning techniques on a daily ba-
sis for end-users. I am very grateful for the opportunity given to work in this field,
especially the invaluable support and guidance of my tutors throughout this work.

Undoubtedly, there are several aspects that are left unexplored due to the scope of
the project. However, I am fulfilled with working in such important matter and have
completed this work.

41

References

Aliferis, C., Tsamardinos, I., and Statnikov, A. (2002). Algorithms for large-scale local
causal discovery in the presence of small sample or large causal neighborhoods.
Book Algorithms for Large-Scale Local Causal Discovery in the Presence of Small
Sample or Large Causal Neighborhoods, Vanderbilt University, pages 445–498.

Aliferis, C. F., Tsamardinos, I., and Statnikov, A. (2003). HITON: a novel Markov
blanket algorithm for optimal variable selection. In AMIA Annual Symposium Pro-
ceedings, volume 2003, page 21.

Arrieta, A. B., Díaz-Rodríguez, N., del Ser, J., Bennetot, A., Tabik, S., Barbado, A.,
García, S., Gil-López, S., Molina, D., Benjamins, R., et al. (2020). Explainable arti-
ficial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward
responsible AI. Information Fusion, 58:82–115.

Atienza, D., Bielza, C., and Larrañaga, P. (2022). PyBNesian: An extensible python
package for Bayesian networks. Neurocomputing, 504:204–209.

Bai, X., Padman, R., Ramsey, J., and Spirtes, P. (2008). Tabu search-enhanced
graphical models for classification in high dimensions. INFORMS Journal on Com-
puting, 20(3):423–437.

Bielza, C. and Larrañaga, P. (2014). Discrete Bayesian network classifiers: A survey.
ACM Computing Surveys, 47(1):1–43.

Bodlaender, H. L., van den Eijkhof, F., and van der Gaag, L. C. (2002). On the com-
plexity of the MPA problem in probabilistic networks. In European Conference on
Artificial Intelligence, pages 675–679.

Choi, A., Xue, Y., and Darwiche, A. (2012). Same-decision probability: A confiden-
ce measure for threshold-based decisions. International Journal of Approximate
Reasoning, 53(9):1415–1428.

Derks, I. P. and De Waal, A. (2020). A taxonomy of explainable Bayesian networks.
In Artificial Intelligence Research: First Southern African Conference for AI Research,
SACAIR 2020, Muldersdrift, Proceedings 1, pages 220–235. Springer.

dos Santos, E. B., Hruschka Jr, E. R., Hruschka, E. R., and Ebecken, N. F. (2011). Ba-
yesian network classifiers: Beyond classification accuracy. Intelligent Data Analy-
sis, 15(3):279–298.

Druzdzel, M. J. (1996). Qualitiative verbal explanations in Bayesian belief networks.
AISB QUARTERLY, pages 43–54.

Ducamp, G., Gonzales, C., and Wuillemin, P.-H. (2020). aGrUM/pyAgrum: a toolbox

43

REFERENCES

to build models and algorithms for probabilistic graphical models in python. In In-
ternational Conference on Probabilistic Graphical Models, pages 2640–3498. PMLR.

Echegoyen, C., Mendiburu, A., Santana, R., and Lozano, J. A. (2011). Toward unders-
tanding edas based on bayesian networks through a quantitative analysis. IEEE
Transactions on Evolutionary Computation, 16(2):173–189.

Friedman, N., Geiger, D., and Goldszmidt, M. (1997). Bayesian network classifiers.
Machine Learning, 29:131–163.

Fung, R. and Chang, K.-C. (1990). Weighing and integrating evidence for stochastic
simulation in Bayesian networks. In Machine Intelligence and Pattern Recognition,
volume 10, pages 209–219. Elsevier.

Gao, T. and Ji, Q. (2016). Efficient Markov blanket discovery and its application.
IEEE Transactions on Cybernetics, 47(5):1169–1179.

Henrion, M. and Druzdzel, M. J. (1990). Qualitative propagation and scenario-based
approaches to explanation of probabilistic reasoning. In Uncertainty in Artificial
Intelligence, volume 6, pages 17–32.

Khan, W., Kong, L., Noman, S. M., and Brekhna, B. (2023). A novel feature selection
method via mining Markov blanket. Applied Intelligence, 53(7):8232–8255.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and
Techniques. The MIT Press.

Koller, D. and Sahami, M. (1996). Toward optimal feature selection. In International
Conference on Machine Learning, volume 96, page 292.

Koopman, T. (2020). Computing contrastive, counterfactual explanations for Baye-
sian networks. Master’s thesis, Utrecht University.

Kwisthout, J. (2011). Most probable explanations in Bayesian networks: Complexity
and tractability. International Journal of Approximate Reasoning, 52(9):1452–1469.

Kwisthout, J. (2021). Explainable AI using MAP-independence. In Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, pages 243–254. Springer
International Publishing.

Lacave, C. and Díez, F. J. (2002). A review of explanation methods for Bayesian
networks. The Knowledge Engineering Review, 17(2):107–127.

Ling, Z., Yu, K., Wang, H., Liu, L., Ding, W., and Wu, X. (2019). BAMB: A balan-
ced Markov blanket discovery approach to feature selection. ACM Transactions on
Intelligent Systems and Technology, 10(5):1–25.

Madden, M. G. (2002). A new Bayesian network structure for classification tasks. In
Artificial Intelligence and Cognitive Science: 13th Irish Conference, pages 203–208.
Springer.

Margaritis, D. and Thrun, S. (2000). Bayesian network induction via local neigh-
borhoods. Advances in Neural Information Processing Systems, 12.

Maron, M. E. and Kuhns, J. L. (1960). On relevance, probabilistic indexing and
information retrieval. Journal of the ACM (JACM), 7(3):216–244.

44

REFERENCES

McKinney, W. et al. (2010). Data structures for statistical computing in python.
In Proceedings of the 9th Python in Science Conference, volume 445, pages 51–56.
Austin, TX.

Mihaljevic, B., Bielza, C., and Larrañaga, P. (2018). bnclassify: Learning Bayesian
network classifiers. The R journal, 10(2):455–468.

Mihaljević, B., Bielza, C., and Larrañaga, P. (2021). Bayesian networks for interpre-
table machine learning and optimization. Neurocomputing, 456:648–665.

Miller, T. (2021). Contrastive explanation: A structural-model approach. The Know-
ledge Engineering Review, 36:e14.

Minsky, M. (1961). Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–
30.

Mühlenbein, H. and Paass, G. (1996). From recombination of genes to the estima-
tion of distributions I. Binary parameters. In International Conference on Parallel
Problem Solving from Nature, pages 178–187. Springer.

Niinimäki, T. and Parviainen, P. (2012). Local structure discovery in bayesian net-
works. In Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial
Intelligence, pages 634–643.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann.

Peña, J. M., Nilsson, R., Björkegren, J., and Tegnér, J. (2007). Towards scalable and
data efficient learning of Markov boundaries. International Journal of Approximate
Reasoning, 45(2):211–232.

Renooij, S. (2022). Relevance for robust Bayesian network MAP-explanations. In
International Conference on Probabilistic Graphical Models, pages 13–24. PMLR.

Rodrigues de Morais, S. and Aussem, A. (2010). A novel Markov boundary based
feature subset selection algorithm. Neurocomputing, 73(4-6):578–584.

Rudin, C. (2019). Stop explaining black box machine learning models for high sta-
kes decisions and use interpretable models instead. Nature Machine Intelligence,
1(5):206–215.

Shimony, S. E. (1994). Finding MAPs for belief networks is NP-hard. Artificial Intelli-
gence, 68(2):399–410.

Sierra, B. and Larrañaga, P. (1998). Predicting survival in malignant skin melanoma
using Bayesian networks automatically induced by genetic algorithms. An empi-
rical comparison between different approaches. Artificial Intelligence in Medicine,
14(1-2):215–230.

Spirtes, P. and Glymour, C. (1991). An algorithm for fast recovery of sparse causal
graphs. Social Science Computer Review, 9(1):62–72.

Spirtes, P., Glymour, C. N., and Scheines, R. (2000). Causation, Prediction, and
Search. The MIT Press.

45

REFERENCES

Tsamardinos, I. and Aliferis, C. F. (2003). Towards principled feature selection: Rele-
vancy, filters and wrappers. In International Workshop on Artificial Intelligence and
Statistics, pages 300–307. PMLR.

Tsamardinos, I., Aliferis, C. F., and Statnikov, A. (2003a). Time and sample efficient
discovery of Markov blankets and direct causal relations. In Proceedings of the ninth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 673–678.

Tsamardinos, I., Aliferis, C. F., Statnikov, A. R., and Statnikov, E. (2003b). Algorithms
for large scale Markov blanket discovery. In FLAIRS conference, volume 2, pages
376–380.

Valero-Leal, E., Bielza, C., Larrañaga, P., and Renooij, S. (2023). Efficient search for
relevance explanations using MAP-independence in Bayesian networks. Internatio-
nal Journal of Approximate Reasoning.

Valero-Leal, E., Larrañaga, P., and Bielza, C. (2022). Extending MAP-independence
for Bayesian network explainability. In Workshop on Heterodox Methods for Inter-
pretable and Efficient Artificial Intelligence.

Verma, T. and Pearl, J. (1990). Causal networks: Semantics and expressiveness. In
Machine Intelligence and Pattern Recognition, volume 9, pages 69–76. Elsevier.

Wang, H., Ling, Z., Yu, K., and Wu, X. (2020). Towards efficient and effective discovery
of Markov blankets for feature selection. Information Sciences, 509:227–242.

Wu, X., Jiang, B., Yu, K., Chen, H., and Miao, C. (2019). Accurate Markov boun-
dary discovery for causal feature selection. IEEE Transactions on Cybernetics,
50(12):4983–4996.

Yaramakala, S. and Margaritis, D. (2005). Speculative Markov blanket discovery for
optimal feature selection. In Fifth IEEE International Conference on Data Mining,
pages 4–pp. IEEE.

Zhou, J., Wu, Q., Zhou, M., Wen, J., Al-Turki, Y., and Abusorrah, A. (2022). LAGAM:
A length-adaptive genetic algorithm with markov blanket for high-dimensional fea-
ture selection in classification. IEEE Transactions on Cybernetics, 1:1–12.

46

Appendix

The code developed is in the repository: https://github.com/IvanTelloLopez/ISL_BN

Installation guide for the Python libraries:

The Python libraries used in this project are:

1 pip install pyAgrum
2 pip install rpy2
3 pip install pybnessian
4 pip install pandas
5 pip install networkx
6 pip install matplotlib

and the R libraries used are: bnclassify and utils.

Before installing rpy2, make sure you have R installed on your system. You can down-
load and install R from the official R Project website (https://www.r-project.org/).

But if you are running the scripts in the operative system Windows there are some
extra steps you must follow:

In order to work with inference graphics, the library graphviz is needed. For its insta-
llation, the installation of the anaconda software is required. After that execute this
command:

1 conda install -c anaconda graphviz

If an error about “dot.exe not found” still persists, install the library from this page:
"https://www.graphviz.org/download/".

The last resource to fix this error, is to change line 1784 of the graphviz.py from pydot
folder from:

1 self.prog = ’dot’

to:

1 self.prog = ’dot.exe’

47

	Introduction
	Motivation
	Fundamentals
	Introduction to Bayesian networks
	Markov blanket
	Inference
	Likelihood weighting

	Supervised classification
	Bayesian network classifiers

	Objectives

	State of the Art
	Interpretability in Bayesian networks
	Bayesian classifiers based on the Markov blanket selection

	Structure learning algorithms
	Naive Bayes classifier and tree augmented naive Bayes (TAN)
	Markov blanket selection with EDAs
	Estimation of Distribution Algorithms (EDA)
	Individual codification
	Algorithm process
	Fitness metric

	Interactive Interface
	Results
	Conclusions and future work
	Bibliography
	Appendix

