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Resumen

El objetivo de este trabajo es contribuir a salvar un obstáculo importante en la adop-
ción de la inteligencia artificial en la nuestra vida diaria: la falta de transparencia e
interpretabilidad de sus modelos. Este asunto es clave en sectores como la justicia
o la sanidad. Un sistema inteligente que proporcione al usuario explicaciones so-
bre cómo llegó a la conclusión, ya sea correcta o incorrecta, no solamente será más
confiable, sino que es necesario para cumplir con la legislación europea vigente.

Las redes bayesianas destacan sobre otros paradigmas del machine learning por pre-
sentar características que las hacen particularmente interpretables: la rápida visual-
ización de las relaciones entre variables en un grafo, y la posibilidad de todo tipo de
razonamientos: predictivo, diagnóstico, abductivo, contrafáctico. . . .

Existe una amplia variedad de casuísticas en las cuales las explicaciones pueden
ser útiles, así como un extensa categorización de explicaciones. Este trabajo tiene
como objetivo presentar nuevas propuestas que puedan mejorar la interpretabilidad
en la inferencia probabilística con redes Bayesiana. En primer lugar abordaremos
los dos métodos exactos más populares (eliminación de variables y árbol de cliqués),
centrándonos en describir el proceso de razonamiento con especial hincapié en el
orden de eliminación de variables. En segundo lugar abordaremos los métodos de
inferencia aproximada, centrándonos en justificar la convergencia del muestreo de
Gibbs.

Seguiremos con otro tipo de inferencia, la inferencia abductiva, para presentar una
nueva pregunta que puede ser de interés para el usuario en el caso concreto de datos
Gaussianos, y su posible resolución usando algoritmos de estimación de distribución
(EDAs). Para ello, en primer lugar se ha adaptado y extendido la librería EDAspy y
se han aplicado la metodología a dos conjuntos de datos distintos, con su respectiva
interpretación de resultados.

Por último, dada la ausencia de software para el cálculo de k explicaciones más
relevantes dada una evidencia (k-MRE), se llevará a cabo la implementación, con
funcionalidad añadida para una mejor comparativa de las explicaciones más rele-
vantes. En concreto, se lleva a cabo una representación con coordenadas paralelas
de las diferentes explicaciones, y se ofrece una métrica para medir la diversidad de
las diferentes explicaciones con respecto a la explicación más relevante.
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Abstract

The objective of this work is the contribution to overcoming the main obstacle in
the adoption of artificial intelligence in our daily life: the lack of transparency and
interpretability. This issue is key in sectors such as justice or health. An intelligent
system that provides the user with explanations of how the conclusion was reached,
whether correct or incorrect, will not only be more reliable, but is necessary to comply
with current European legislation.

Bayesian networks stand out from other machine learning paradigms for presenting
characteristics that make them particularly interpretable: the visualization of the
relationships between variables at a glance in the graph, and the possibility of all
kinds of reasoning: predictive, diagnostic, abductive, counterfactual. . . .

There is a wide variety of cases in which explanations can be useful, as well as
extensive categorization of explanations. This work aims to present new proposals
that can improve the interpretability in probabilistic inference in Bayesian networks.
First, we will address the two most popular exact methods (Variable elimination and
Junction tree clustering algorithm), focusing on describing the reasoning process
with special emphasis on the order of variable elimination. Secondly, we will address
the approximate inference methods, focusing on justifying the convergence of Gibbs
sampling.

We will continue with another type of inference, the abductive inference. The goal
is to present a new question that may be of interest to the user in the specific case
of Gaussian data, and its possible resolution using Estimation of Distribution Algo-
rithms (EDAs). Firstly, the EDAspy library has been adapted and extended. Secondly,
the methodology has been applied to two different data sets, with their respective in-
terpretation of results.

Finally, given the absence of software for calculating the k most relevant explanations
given some evidence (k-MRE), the implementation will be carried out, with added
functionality for a better comparison of the most relevant explanations. In particular,
we carry out a representation with parallel coordinates of the different explanations,
and offer a metric to measure the diversity of the different explanations with respect
to the most relevant explanation.
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Chapter 1

Introduction

We are entering the Fourth Industrial Revolution characterized by the combination
of artificial intelligence (AI) and automated machines. This technological advance-
ment has the potential to make an impact on our lives. However, there has been
little AI adoption in sectors like health care, justice or finance (Jordan and Mitchell
(2015)). In general, a key obstacle against the use of AI-based systems is that they
often lack transparency and interpretability: machine learning models can be ob-
scure and difficult for people to understand. Sometimes, AI is designed to achieve a
high performance on a given task, at the cost of interpretability. This problem can
be tackled using the so called explainable artificial intelligence (XAI), which is the
antithesis of black-box systems in AI. XAI (Gunning (2017)) makes progress in the
development of systems in which the high level of performance is combined with a
proper understanding of its behavior (Figure 1.1).

Figure 1.1: Goals of XAI: Performance and explainability. Source: Gunning (2017).

The need for interpretability arises when for certain problems it is not enough to get
the prediction: the model must also explain how it came to the prediction, because a
correct prediction only partially solves your original problem. The following reasons
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drive the demand for interpretability and explanations (Doshi-Velez and Kim (2017),
Molnar (2019)):

• Human curiosity and learning, for example when we have unexpected events.

• We want to understand the inconsistencies between elements of our knowl-
edge structures and the reality. For example, if a machine learning model
rejects a loan application, the applicant needs an explanation to understand
this unexpected event.

• In real-world tasks that require safety measures and testing. If we are confident
about the abstraction of the system, we can anticipate to solve the weak points
of the reasoning and foresee any possible problem.

• To increase social acceptance for the integration of machines and algorithms
into our daily lives.

• To allow debugging and audition during the research and development phase as
well as after deployment for the interpretation of erroneous predictions.

• To use it as a debugging tool for detecting bias in machine learning models.

The new legal restrictions have become an extra motivation for the development of
XAI in the European framework. In 2018, a series of guidelines were published to
achieve a trustworthy AI (High-Level Expert Group on Artificial Intelligence (2019)),
where transparency is a key requirement. Moreover, the General Data Protection
Regulation (GDPR), applicable since 2018, establishes the right to explanation. This
means that individuals need to be provided with a meaningful explanation of the logic
behind the AI system, as well as the possible consequences of the data processing.
Recently in June 2023, the European Parliament has approved to negotiate the first
law on AI in the world, which seeks to strengthen the right of citizens to demand
explanations of the decisions of high-risk AI systems (Parliament (2023)).

Many specific machine learning paradigms can be considered interpretable in differ-
ent ways (classification trees, rule induction, the k-nearest neighbor classifier, logistic
regression...). However, Bayesian networks present unique characteristics that make
them suitable for reaching a high level of interpretability:

• Bayesian networks use a graphical model that visually represents the probabilis-
tic dependencies between variables, making it easier for humans to comprehend
the model.

• Bayesian networks are a suitable tool to model uncertainty using probability
theory (Pearl (1988)). By incorporating probabilities, Bayesian networks can
provide a measure of confidence associated with their predictions.

• Bayesian network’s network structure, both the conditional independence as-
sertions it makes and the associated factorization of the joint distribution, allows
tractable inference even in complex networks (Koller and Friedman (2009)).

• Bayesian networks allow for causal reasoning (Jensen and Nielsen (2013)) en-
abling analysts to understand the cause-and-effect relationships.

• Bayesian networks support incremental learning (Koller and Friedman (2009)),
which means they can be updated with new data. This allows the incorporation
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Introduction

of new evidences, and the user can analyse the resulting changes in the network
structure or probabilities.

• Bayesian networks can incorporate prior knowledge through the specification
of prior probability distributions or prior relationships in the structure (Dar-
wiche (2009), Koller and Friedman (2009)). Therefore any experts can adjust the
probabilities and structure of the network, so that they align with their prior
knowledge.

In summary, Bayesian networks are useful for making inferences because they allow
modeling uncertainty, updating beliefs, reasoning causally, making informed deci-
sions, and addressing complex problems. These characteristics provide the basis for
developing interpretable probabilistic reasoning (inference) algorithms.

With everything into account, this work aims to enhance and increase the inter-
pretable solutions in the inference with Bayesian networks.

1.1 Objectives

The objective of this work is to contribute to show that inference in Bayesian networks
is interpretable. To accomplish this high level goal, we established different sub-
objectives:

• Literature review to be aware of the state-of-the-art situation.

• Identify proposals that are both incomplete or that admit improvements, or clear
gaps in the literature.

• Review current implementations to extend their functionality with new propos-
als for interpretability in Bayesian inference.

• Weekly discussion of the new proposals with the supervisors of this work.

• Conclusion about what we have accomplished in this work and what is still to
be done in the future.

1.2 Contents

The contributions of this work are organized as follows:

• First of all, we present in this chapter the different motivations that exist to
continue working on interpretability in general, and the reasons why we focus
on Bayesian networks.

• In Chapter 2, we review the state of the art related to our proposal. In Section
2.1 the fundamental concepts of Bayesian networks are introduced. Section 2.2
explains the basic properties that all explanations must have to be considered a
good explanation. Section 2.3 addresses the issue of inference. In the first place,
the exact and approximate algorithms are explained to calculate the posterior
probability of groups of variables given some evidence, placing special empha-
sis on the steps that are going to be chosen for the explanations of the model
reasoning. Then, section 2.3.3.1 makes a bibliographic review of other types
of queries: maximum a posteriori (MAP)/ most probable explanation (MPE) and
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1.2. Contents

most relevant explanation (MRE), identifying the knowledge gaps and highlight-
ing the aspects that have inspired this work.

• Next, in Chapter 3, we develop our new proposals and apply the methodologies
to different datasets. Our goal is to improve the interpretability in the different
types of inference. Regarding the algorithms that compute conditional prob-
abilities, we focus on extending the pgmpy library (the most complete library
on Bayesian network inference) to create visualizations that help understand
the exact algorithm steps. Regarding approximate algorithms, our contribution
focuses on creating a function that: 1. combines pgmpy (python) with another li-
brary (R) to offer different convergence diagnostics (both numerical and graphic)
for the inference with Gibbs sampling, to increase the reliability of the results;
2. allow making inferences with likelihood weighting. Regarding abductive in-
ference, we have posed a question that may be of interest to the user, which
combines concepts of sensitive analysis and counterfactual reasoning, and we
have solved it using a type of evolutionary algorithm. Finally, we have imple-
mented an approximate algorithm to calculate what is known as the k most
relevant explanations (k-MRE) given evidence. The proposal also includes a vi-
sualization and a metric to understand and compare the k explanations.

• Finally, in Chapter 4, we draw our conclusions and present our future lines of
research that will expand the proposals presented in this work.

• Additionally in the annex, implementation comments are added to clarify the
code and the interaction with the user. We add tabular results that are part of
the results section.
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Chapter 2

State of the art

2.1 Bayesian networks

A Bayesian network (BN) (Koller and Friedman (2009); Pearl (1988)), is a tuple B =
(G, θ), where G = (V,A) is a directed acyclic graph (DAG) with a set of nodes V =
{X1, . . . , Xn} and a set of arcs A ⊆ V × V . A Bayesian network represents the prob-
ability distribution, P (x) of a multivariate random variable X = (X1, ..., Xn). The set
θ = {P (xi|XPaXi

)} defines a conditional probability distribution (CPD) for each node
of the graph, where PaXi is the set of parents of Xi in the graph G. This allows to
represent the joint probability distribution P (x) as:

P (x) =
n∏

i=1

P (xi|XPaXi
). (2.1)

Bayesian networks provide a sound formalism for probabilistic reasoning under un-
certainty.

2.1.1 Gaussian Bayesian networks

A Gaussian Bayesian network (GBN) (Shachter and Kenley (1989), Geiger and Heck-
erman (1994)) is a BN where the joint probability density associated with the variables
X = {X1, . . . , Xn} is a multivariate normal distribution N(µ,Σ) given by

f(x) = (2π)−
n
2 |Σ|−

1
2 exp{−1

2
(x − µ)′Σ−1(x − µ)}, (2.2)

where µ is n-dimensional mean vector and Σ is the n× n positive definite covariance
matrix. The conditional probability density for Xi (i = 1, . . . , n) that satisfies equation
(2.1) is the univariate normal distribution given by

f(Xi|PaXi) ∼ N

µi +

i−1∑
j=1

βji(xj − µj), vi

 ,

where µi is the mean of Xi, βji is the regression coefficient of Xj ∈ PaXi when Xi is
regressed on its parents, and vi is the conditional variance of Xi given its parents.
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2.2. Explanation in Bayesian networks

The covariance matrix Σ can be got from vi and βji using the algorithm proposed in
Shachter and Kenley (1989):

Σ = (I − B)−1D(I − B)−1, (2.3)

where I is the identity matrix, D is a diagonal matrix with the conditional variances vi
and B is a strictly upper triangular matrix with the regression coefficients βji where
Xj is a parent of Xi for the variables in X with j < i.

2.2 Explanation in Bayesian networks

2.2.1 Introduction

First of all, we are going to briefly discuss the meaning and distinction of the terms
explainable and interpretable, since there is a wide debate about whether they are
equivalent or not.

Acoording to Miller (2019), the interpretability of a model is defined as the degree to
which an observer can understand the cause of a decision. Miller (2019) adopts the
assertion that explanation is post-hoc interpretability. Explanation is thus one mode
in which an observer may obtain understanding, but there are additional modes
that one can adopt. For practical purposes, the author equates interpretability with
explainability.

According to Montavon et al. (2018), an interpretation is the mapping of an abstract
concept (e.g., a predicted class) into a domain that the human can make sense of.
An example of a domain that is interpretable is images (arrays of pixels). On the
other hand, an explanation is the collection of features of the interpretable domain,
that have contributed for a given example to produce a decision (e.g., classification or
regression). An explanation can be, for example, a heatmap highlighting which pixels
of the input image most strongly support the classification decision. Therefore, both
concepts are not equivalent.

Due to the intrinsic characteristics of Bayesian networks presented in Section 1, the
boundary between both concepts becomes more diffuse, and we will treat them as
equivalent.

Moving the focus away from AI to take a more general view of explainability, an
explanation can be defined as (Lacave and Díez (2002)):

Definition 2.2.1 An explanation is the exposition of something in such a way that it is
understandable for the receiver of the explanation, which implies that he/she improves
his/her knowledge about the object of the explanation; and satisfactory as far as it
covers the receiver’s expectations.

In the field of expert systems, the best explanation varies across the different au-
thors. However, regardless of the type, they have to fulfill some properties which are
classified into three categories according to Lacave and Díez (2002), and are briefly
described below.

2.2.2 Properties of an explanation

The properties of an explanation can be classified into three categories:

6



State of the art

Content

It depends on:

1. Focus of explanation:
There are three basic issues that can be explained: the model (consists of dis-
playing, verbally, graphically or in frames, the information contained in the
knowledge base. For example, graphical modeling tools such as GeNIe, Elvira
and SamIam have funcionalities for visualizing the strength of the probabilistic
relations between the variables in a domain.); the reasoning process performed
by the system to obtain (or not) a conclusion and the evidence propagated if
any. This last explanation consists of determinig which values of the unobserved
variables justify the available evidence. This process is usually called abduction
(for example, MPE or k most probable explanation).

2. Purpose: description (the underlying knowledge base, the conclusions or inter-
mediate results) and comprehension (the conclusions and the relations between
them).

3. Level of explanations: at micro level (variations produced in a particular node
as a consequence of the variation in its neighbors) or macro level (main lines of
reasoning that lead from the evidence to a certain conclusion).

Communication

The way in which the explanation is offered to the user. This depends, basically,
on the methods of interaction between the user and the system and the manner in
which it is presented. We can distinguish how explanations are presented to the user:
verbally or graphically or both.

Adaptation

One of the key features of an effective explanation is the ability to address each user’s
specific needs and expectations, which essentially depends on the knowledge he/she
has about the domain and the reasoning method. It is also possible to set the level of
detail.

2.3 Inference in Bayesian networks

Inference refers to finding the probability of any variable conditioned on a given evi-
dence or fixed values of some of the variables in the Bayesian network. Inference also
refers to finding values of a set of variables that best explain the observed evidence.
This is called abductive inference.

The previous inference types can be carried out with exact inference or with approx-
imate inference methods. Exact inference includes the brute-force approach, the
variable elimination algorithm (Zhang and Poole (1994)) and the message passing al-
gorithm (Lauritzen and Spiegelhalter (1988a)). Exact inference is tractable for many
real-world applications. However, it is limited by its worst-case exponential perfor-
mance. In such cases approximate inference is the only alternative that will produce
any result at all. Probabilistic logic sampling (or forward sampling) (Henrion (1988)),
likelihood weighting (Fung and Chang (1990)), and Gibbs sampling (Pearl (1997)) are
the most popular approximate methods for inference in Bayesian networks.
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2.3. Inference in Bayesian networks

2.3.1 Exact inference

2.3.1.1 Variable elimination

The variable elimination algorithm keeps a list of potentials (local distributions in-
volving a variable and its parents) and eliminates all variables one by one following
an ordering and operating over the potentials.

Definition 2.3.1 A factor is a function from a set of random variables to a number.

When we manipulate the potentials, we obtain a new function called factor. The
algorithm works using two fundamental operations over factors: multiplying them
and summing out variables.

An ordering involving a reduced number of operations (multiplications and additions)
is essential for this method. Finding the optimal (minimum cost) elimination ordering
is an NP-hard problem (Bertelè and Brioschi (1972)), and many heuristics have been
proposed to find good orderings. However, none stands out above the others (Koller
and Friedman (2009)). This project includes a software proposal that integrates the
comparison of these heuristics using the induced-width. The heuristics, and the
induced-width will be explained in the following sections.

Elimination as graph transformation

As we have mentioned, the complexity of the algorithm has to do with the number of
operations on the factors. This quantity is related to the structure of the underlying
graph that induced the set of factors on which the algorithm is run.

First of all we define the notion of an undirected graph associated with a set of factors:

Definition 2.3.2 Let Φ be a set of factors. We define

Scope[Φ] = ∪ϕ∈ΦScope[ϕ]

to be the set of all variables appearing in any of the factors in Φ. We define HΦ to be
the undirected graph whose nodes correspond to the variables in Scope[Φ] and where
we have an edge Xi − Xj ∈ HΦ if and only if there exists a factor ϕ ∈ Φ such that
Xi, Xj ∈ Scope[Φ].

In this subsection we want to clarify this concept of elimination as graph transforma-
tion as operating on an undirected graph H.

The algorithm input is the set of factors Φ and the undirected graph H obtained
from G (the only relevant information from the BN structure in this algorithm is the
undirected graph). When a variable X is eliminated, several operations take place.
First, we create a single factor Ψ that contains X and all of the variables Y with
which it appears in the factors. Then, we eliminate X from Ψ, replacing it with a new
factor τ that contains all of the variables Y but does not contain X. Let ΦX be the
resulting set of factors that will be used in the subsequent elimination steps. How
does the undirected graph HΦX

differ from HΦ? The step of constructing Ψ generates
edges between all of the variables Y . Some of them were present in HΦ, whereas
others are introduced due to the elimination step and are called fill edges. The step
of eliminating X from Ψ to construct τ has the effect to removing X and all of its
incident edges from the graph (Figure 2.1).

Definition 2.3.3 A graph G is said to be complete when all nodes are pairwise linked.

8



State of the art

Figure 2.1: On the left, the undirected graph associated to the Student Bayesian
network (Koller and Friedman (2009)). In the middle, graph transformation after
eliminating variable Coherence. On the right, graph transformation after eliminating
Difficulty.

Definition 2.3.4 A subgraph over a set of vertices that is complete and maximal (it is
not a subset of another complete set) is called a clique.

We call induced graph to the union of all of the graphs resulting from the different
steps of the variable elimination algorithm.

Every factor that appears in one of the steps in the algorithm corresponds to a com-
plete subgraph of the induced graph, and is therefore a clique in the graph (Theorem
9.6 in Koller and Friedman (2009)). Therefore, there is a direct correspondence be-
tween the maximal factors generated by our algorithm and cliques in the induced
graph, and both depend strongly on the elimination ordering. Thus, we can refor-
mulate our goal of finding an elimination ordering so that the largest clique in the
resulting graph is as small as possible. These considerations will help us later to
establish a connection with the junction tree algorithm.

Definition 2.3.5 We define the width of an induced graph to be the number of nodes
in the largest clique in the induced graph minus 1. We define the induced width of
an ordering relative to a graph H (directed or undirected) to be the width of the graph
IH induced by applying variable elimination to H using the ordering. We define the
tree-width of a graph to be its minimal induced width.

We will use the induced width to compare between the different heuristic ordering-
selections that are going to appear in the following section.

How to compute ordering elimination

Our goal is to construct an ordering that induces cliques as small as possible. While
we cannot find an ordering that achieves the global minimum, we can eliminate vari-
ables one at a time, so that each step tends to lead to a small blow-up in size. At each
point, the algorithm evaluates each of the remaining variables in the networks based
on its heuristic cost function:

• Min-neighbors: The cost of a vertex is the number of neighbors it has in the
current graph.

• Min-weight: The cost of a vertex is the product of weights (domain cardinality)

9
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of its neighbours.

• Min-fill: The cost of a vertex is the number of edges that need to be added to
the graph due to its elimination.

• Weighted-min-fill: The cost of a vertex is the sum of weights of the edges that
need to be added to the graph due to its elimination, where a weight of an edge
is the product of weights of its constituent vertices.

It can be shown (Koller and Friedman (2009)) that none of these criteria is universally
better than others. Since the computational cost of the heuristic ordering-selection
algorithms is usually negligible relative to the running time of the inference itself, it
is worthwhile to run several heuristic algorithms in order to find the best ordering
obtained by any of them.

2.3.1.2 Junction tree clustering algorithm

This work aims to illustrate each of the steps of this algorithm to make it more in-
terpretable. This entails the creation of the junction tree (moralise, triangulate the
moral graph, obtain the cliques, create the junction tree and its separators, compute
the junction tree parameters), and the message passing algorithm for the calculation
of probabilities.

The first step of the algorithm consists of the moralization of the network structure.
This means that all variables with a common child are linked, after which all di-
rections on the arcs are deleted. The second step of the algorithm is the so-called
triangulation of the moral graph. A graph is triangulated if every minimal loop in
the graph is of length tree. The basic technique for triangulation repeatedly elimi-
nates nodes following an elimination ordering. Eliminating node X means: (1) adding
edges so that all nodes adjacent to X become pairwise adjacent (if they are not), and
(2) deleting node X and its adjacent edges. The added edges are called fill-in-edges.
The addition of edges can lead to the loss of independence information implied by the
graph structure, and hence an optimal triangulation should yield the fewest fill-in
edges. Cliques can be retrieved from the fill-in process because, when eliminating
a node X, edges are added to make the subgraph given by X and its neighbours
complete. Lots of approaches, most of which are based on heuristics, have been
proposed to find good triangulations. Here we present those that we will use through
the pgmpy library:

Let X be the set of variables and Xi denotes the i-th variable. If we call

• Si - The size of the clique created by deleting the variable.

• Ei - Cardinality of variable Xi.

• Mi - Maximum size of cliques given by Xi and its adjacent nodes.

• Ci - Sum of size of cliques given by Xi and its adjacent nodes.

Then, the heuristics are defined in the following way (Cano and Moral (1995)):

• H1 - Delete the variable with minimal Si.

• H2 - Delete the variable with minimal Si/Ei.

• H3 - Delete the variable with minimal Si −Mi.

10
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• H4 - Delete the variable with minimal Si − Ci.

• H5 - Delete the variable with minimal Si/Mi.

• H6 - Delete the variable with minimal Si/Ci.

In the last step, a junction tree is built. A common and efficient approach for building
the tree is the maximum spanning tree algorithm.

These first steps of the model (moralization, triangulation and junction tree building)
are explained to the user by depicting the network (Chapter 3). In this work, this
visual exploration is organized according to different layouts.

Finally, each potential in the BN is attached to a clique that contains its domain.
Whenever there is more than one potential attached to the same clique, the potential
at this clique is the product of those potentials. If a clique has no attached potential,
we attach the constant function 1.

To conclude, once a clique tree is constructed, it can be used for inference using the
message passage algorithm on top of the junction tree.

As can be read in Jensen (1996),

Since any elimination sequence will produce a triangulation it may not seem
as a problem, but for the propagation algorithm it is. In probability propaga-
tion, the cliques in the junction graph shall have joint probability tables at-
tached to them. The size of the table is the product of the number of states of
the variables. So, the size increases exponentially with the size of the clique.
A good triangulation, therefore, is a triangulation yielding small cliques; or to
be more precise, yielding small probability tables.

Wen (1991) demonstrated that the search for an optimal triangulation is NP-hard.

Larrañaga et al. (1997) proposed a way to search for the optimal node elimination
sequence based on genetic algorithm. As we want to obtain small probability ta-
bles after the triangulation, our objective is to minimize the following function w(G),
defined as

w(G) = log2
∑
C

∏
vi∈C

ni, (2.4)

where G is the graph, nk is the number of states of vertex vk ∈ V , which belongs to
clique C. This metric will be used in this work to compare the elimination orders
obtained by different heuristics.

When this process concludes, each clique contains the marginal probability over the
variables in its scope. We can compute the marginal probability over a particular vari-
able X by selecting a clique whose scope contains X, and eliminating the redundant
variables in the clique. A key point is that the result of this process does not depend
on the clique we have selected. That is, if X appears in two cliques, both must agree
on its marginal. This state which can be reached using belief propagation, and we
say that the clique tree is calibrated. This process is graphically shown to the user.

To conclude, given the analogy that we have presented between the elimination of
variables and the transformation on the graph, it is interesting to compare both al-
gorithms, variable elimination and junction tree algorithm. In principle, they both
use the same basic operations of multiplying factors and summing out variables, and
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both seek variable elimination ordering / triangulation leading to small cliques. So
both have the same computational complexity. In practice, however, they offer dif-
ferent trade-offs. The junction tree clustering algorithm allows to perform a fraction
of the operations in advance, and not during inference for any query: the choice of
triangulation/elimination ordering and the product of the CPDs in a single clique. It
also provides answers to multiple queries, at the expense, however, of increasing the
space required to store all intermediate messages, which variable elimination does
away with.

2.3.2 Approximate methods

The framework for this class of methods is as follows. Consider some distribution
P (X) over a set of variables X and assume we want to estimate the probability of
some event Y = y relative to P , for some Y ⊆ X and some value assignment y. We
approximate this probability by generating a set of M instantiations to all or some of
the variables in the network.

2.3.2.1 Forward sampling

Definition 2.3.6 Let G = (V,A) be a graph. An ordering of the nodes < X1, ..., Xn > is
a topological ordering relative to G if, whenever we have the directed arc Xi → Xj ∈ A
then i < j in the ordering.

It is the simplest approach for the generation of samples. Here, we sample the nodes
using the topological ordering of X in the BN, so that by the time we sample a node,
we have values for all of its parents. We can then sample from the distribution defined
by the CPD and by the chosen values for the node’s parents.

The approximation of marginal probabilities like P (y) is

P̂ (y) =
1

M

M∑
m=1

I(y[m] = y),

where we use y[m] to denote the assignment to Y in the m-th sample, and I(y[m] = y)
is the indicator function.

In general, however, we are interested in conditional probabilities of the form P (y|E =
e). One approach is the method called rejection sampling. We generate samples x
from P (X) with forward sampling. We then reject any sample that is not compatible
with e. The problem, of course, is that the number of unrejected samples can be
quite small.

2.3.2.2 Likelihood weighting

Regarding conditional probabilities P (y|E = e), it seems much more sensible to sim-
ply force the samples to take on the appropriate values at observed nodes. That is,
when we come to sampling a node Ei whose value has been observed, we simply set
it to its observed value. The problem with this approach is that it fails to account for
the fact that, in the standard forward sampling process, a sampled node Yi parent
of an evidence variable Ej could have a different conditional distribution when the
information Ej = ej is known. If we follow for sampling the topological order, we are
ignoring this key information.
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When we have multiple observations and we want our sampling process to set all of
them to their observed values, we need to consider the probability that each of the
observation nodes, had it been sampled using the standard forward sampling pro-
cess, would have resulted in the observed values. This is done by assigning weights
to the samples. If we call ui the value assignment to the parents of the evidence node
Ei, Pa(Ei), then the weigth for each evidence node is P (ei|ui).

The sampling events for each node in forward sampling are independent, and hence
the weight for each sample should be the product of the weights induced by each
evidence node separately

w =
∏
ei∈E

P (ei|ui).

The approximation P̃ (y|e) to P (y|e) is

P̃ (y|e) =
∑M

m=1w[m]I(y[m] = y)∑M
m=1w[m]

,

where we use y[m] and w[m] to denote the assignment to Y and weight in the m-th
sample, respectively.

2.3.2.3 Gibbs sampling algorithm

One of the limitations of likelihood weighting is that an evidence node affects the
sampling only for nodes that are its descendants. The effect on nodes that are nonde-
scendants is accounted for only by the weights. In cases where much of the evidence
is at the leaves of the network, we are essentially sampling from the prior distribution,
which is often very far from the desired posterior.

We now present an alternative sampling approach that generates a sequence of sam-
ples. This sequence is constructed so that, although the first sample may be gener-
ated from the prior, successive samples are generated from distributions that prov-
ably get closer and closer to the desired posterior. It is called Gibbs sampling algo-
rithm, and is classified as a Markov chain Monte Carlo method. This method starts
out by generating a sample of the unobserved variables from some initial distribu-
tion. Starting from that sample, we then iterate over each of the unobserved vari-
ables, sampling a new value for each variable given our current sample for all other
variables. This process allows information to “flow” across the network as we sample
each variable. As we repeat this sampling process, the distribution from which we
generate each sample gets closer and closer to the posterior P (X|e). This argument
can be formalized using the framework called Markov chain Monte Carlo (MCMC).

A key question is how many iterations we should perform before we can collect a
sample as being (almost) generated from the posterior.

An approach to solve the convergence issue to the posterior distribution is through
diagnostic tools of the output produced by the algorithm. Many diagnostic methods
are known (Cowles and Carlin (1996)). One of the most popular among the statistical
community is the Gelman and Rubin diagnosis. It is a univariate diagnosis for each
of the variables.

Multiple chains sampling the same distribution should, upon convergence, all yield
similar estimates. In addition, estimates based on a complete set of samples collected
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from all of the chains should have variance comparable to variance in each of the
chains. More formally, assume that K separate chains are each run for T +M steps
starting from a diverse set of starting points. After discarding the first T samples
from each chain, let Xk[m] denote a sample from chain k after iteration T + m. We
can now compute the B (between-chains) and W (within-chain) variances for variable
Xj , j = 1, . . . , n. If we call Xk

j [m] the instantiation of variable j in chain k after
iteration T +m (Koller and Friedman (2009)), then

X̄k
j =

1

M

M∑
m=1

Xk
j [m],

X̄j =
1

K

K∑
k=1

X̄k
j ,

Bj =
M

K − 1

K∑
k=1

(X̄k
j − X̄j)

2,

Wj =
1

K

1

M − 1

K∑
k=1

M∑
m=1

(Xk
j [m]− X̄k

j )
2.

The between chain variance relative to the within-chain variance should be about the
same if all chains have settled. If we define Zj =

M − 1

M
Wj +

1

M
Bj, one measure of

disagreement between chains is given by Rj =

√
Zj

Wj
. It is called the potential scale

reduction factor. If this value is close to 1, the chains have all converged to the true
distribution. A value higher than 1.1 is cause for concern.

There exist several multivariate versions of Gelman and Rubin’s diagnostic. In Brooks
and Gelman (1996) it is proposed a generalization of the univariate shrink factor that
may be used as an approximate upper bound to the maximum of the univariate
statistics over all variables.

Overall, the use of multiple chains demands a higher computational cost, but on the
other side, it allows us to evaluate the extent to which our chains are mixing.

Geweke (1992) proposed another convergence diagnostic for Markov chains based on
a test for equality of the means of the first and last part of a Markov chain. If the sam-
ples are drawn from the stationary distribution of the chain, the two means should
be close and Geweke’s statistic has an asymptotically standard normal distribution.
The test statistic is a standard Z-score: the difference between the two sample means
divided by its estimated standard error.

More convergence diagnostic tools are available in the R package coda.

In this project, we generate the samples using the python package pgmpy and test
the convergence using both test of diagnosis, implemented in the available R package
called coda. To communicate R with python I use as intermediary the rpy2 package.

2.3.3 Queries in Bayesian networks

In addition to the two types of queries presented so far, marginal probabilities P (x)
and the posterior probability of a set of variables Y ⊆ X given e, P (Y|e), there are

14



State of the art

other very interesting queries.

An important type of query is abduction, which consists of finding the most plausible
explanation of certain variables of interest, Yu ⊆ X for evidence e, i.e. find the value
assignment yu that maximises the posterior probability given the evidence:

yu = argmaxYuP (Yu|e).

The set Yu ⊆ X can be the complete set of unobserved variables, and we talk in this
case about most probable explanation (MPE) or total abduction. However, if we are
interested in only a subset of variables, this type of query is called partial abduction
(MAP).

The explanations found by MAP or MPE are often overspecified because irrelevant
target variables may also be included. MRE (see Section 2.3.3.2) is a method devel-
oped to address the limitations of MAP and MPE. Its main idea is to find a partial
instantiation of target variables that maximizes the generalized Bayes factor as the
explanation.

Both MPE and MRE are covered in more detail in the following sections.

2.3.3.1 Abductive inference

We have made a bibliographic review that focuses on the interpretability proposals
and the approximate algorithms for abductive queries: contrastive-counterfactual ex-
planations (Koopman (2020)), evolutionary algorithms and sensitive analysis. These
ingredients have inspired the proposal of this work. Our work focuses on study-
ing what knowledge gaps exist and what new proposals can help the user to better
understand the result and gain confidence about it. Based on this, we develop the
methodology of our proposal in the next chapter.

Contrastive-counterfactual explanations

Recently, Koopman (2020) elaborated another possibility to add explainability, slightly
different from counterfactuals, called contrastive-counterfactual explanations. First of
all, a contrastive-counterfactual explanation contains a sufficient explanation: given
the observations for the variables in this explanation, the other variables could have
an arbitrary value without changing the most probable value of the target. Secondly,
the contrastive-counterfactual explanation should have a counterfactual explanation:
this explanation states what minimal changes should be applied to the observations
for the target to result in the expected value of the user. The combination of the suf-
ficient and the counterfactual explanation give a contrast between the expected and
most probable value of the target. In addition the author makes a proposal of how
this could be computed from a Bayesian network.

Evolutionary algorithms (EAs) for abductive inference

In general, solving a problem, can be perceived as a search through a space of po-
tential solutions. Since usually we are after the best solution, we can view this task
as an optimization process. For large spaces, AI techniques must be employed and
evolutionary algorithms are among such techniques.

Evolutionary computation is a discipline that has been emerging for many decades
and has reached a stage of some maturity. It has been widely used in science and en-
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gineering. All methods within this discipline, as population-based metaheuristics, are
characterized by maintaining a set of possible solutions (individuals) to make them
successively evolve to fitter solutions generation after generation. The best known
algorithms in this class include genetic algorithms, evolutionary programming, evo-
lution strategies and genetic programming (Dasgupta and Michalewicz (1997)). In
particular, the behavior of some evolutionary computation algorithms (for example,
genetic algorithms (GAs) (Holland (1975))), depends on several parameters associated
with them (crossover and mutation operators, probabilities of crossover and muta-
tion, size of the population, rate of generational reproduction, number of generations,
etc.).

Abductive inference is known to be NP-hard (Koller and Friedman (2009)), so ex-
act computation is not always possible. Genetic algorithms have been successfully
applied to give an approximate algorithm for both types of abductive inference prob-
lems: total (Gelsema (1995, 1996); Rojas-Guzman and Kramer (1996)) and partial
(de Campos et al. (1999)). In Gelsema’s algorithm, a chromosome is a configuration
of the unobserved variables (Yu = X\E), i.e., a string of integers (associated to the
discrete values), and we want to maximize P (Yu,E). Dealing with partial abductive
inference (Yu ⊂ X) using GAs appears easier than that of dealing with total abduction,
because the size of the search space in the partial case is considerably smaller than
in the total abductive inference problem. However, this is not the case, because of
the increasing complexity of the evaluation function: in the partial case, we have to
marginalize the variables that are not present in the variables of interest and E. For
this reason, in de Campos et al. (1999) the fitness P (yu|E) of a chromosome yu is
computed by using probability propagation over a clique tree.

Traditional EAs present an additional disadvantage: they do not explicitly consider
dependencies among the variables involved, and hence, solutions reproduced by the
algorithm are not able to exploit the information found in the data. This limitation
is overcome by using another type of EAs called estimation of distribution algorithms
(EDAs) (Mühlenbein and Paass (1996)). In EDAs there are neither crossover nor mu-
tation operators. Instead, the new population of individuals is sampled from a proba-
bility distribution, which is estimated from a dataset containing selected individuals
from the previous generation. In EDAs the interrelations are explicitly expressed
through the structure of the BN that factorizes the joint probability distribution as-
sociated with the individuals selected at each iteration. In Campos et al. (2002), both
GA and EDAs are compared with respect to different parameters.

In EDAs, three steps,

1. selecting some individuals from a population of individuals,

2. learning the joint probability distribution of the selected individuals and

3. sampling from the learnt distribution,

are repeated until a -previously established- stopping criterion is met (for example,
when a fixed number of generations or a fixed number of different evaluated indi-
viduals are achieved, no improvement with regard to the best individual obtained
in the previous generation, etc.). We can apply EDAs to carry out abductive infer-
ence, specifically, to calculate the MPE given evidence. This technique will be key to
developing our proposal in the next chapter.
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Depending on the type of variables that the optimization problem deals with, a dis-
crete or a continuous EDA is used. When dealing with continuous variables, it is
common to assume an underlying probability distribution. The usual choice is a
Gaussian distribution. As discrete EDAs were studied before continuous EDAs, most
of the first continuous EDAs were adaptations of discrete EDAs to continuous envi-
ronments. An example of these algorithms is the estimation of Gaussian networks
algorithm (EGNA) (Larrañaga (2002)), which adapts the discrete EDA estimation of
Bayesian network algorithm (EBNA), to continuous environments using GBNs.

EDAspy is a Python package that implements EDAs (Soloviev (2020)). In Soloviev
et al. (2022), the package was used to solve industrial optimization problems.

Sensitivity analysis

Castillo and Kjaerulff (2003) deal with the problem of sensitivity analysis in GBNs.
Chan and Darwiche (2006) raise the question How much change in a single network
parameter can we afford to apply while keeping the MPE unchanged?. Chan and Dar-
wiche (2002) characterize the changes in the parameters that are relevant or not,
and lower and upper bounds are given on the queries of interest P (y|e) depending
on the changes in the parameters. Leonelli and Riccomagno (2022), pose the sit-
uation in which the modeler has some idea of what the value of the probability of
interest should be (assume a value δ) and ask what the changes in the conditional
probabilities should be done so that the probability takes the value δ. In addition,
Leonelli et al. (2021) illustrate the use of the R package bnmonitor to carry out sen-
sitivity analysis on Bayesian networks. In Görgen and Leonelli (2020) the authors
warn that, for Gaussian graphical models, variations on the parameters often lead
to an inconsistent representation of the conditional independences structures of the
model (i.e. the perturbation may break its conditional independences). Therefore
the authors propose a new class of limited perturbations of Gaussian vectors, called
model-preserving.

Knowledge gap detected and proposal introduction

During the previous review of existing interpretability proposals in abductive queries,
a knowledge gap was identified: using EDAs to check how the Bayesian network has
to change (structure and parameters) so that the MPE probability exceeds a certain
value fixed by the user, and the comparison of the original network and the network
obtained after the optimization process. This new proposal therefore combines expert
knowledge with ideas inspired by sensitivity analysis and evolutionary algorithms. In
Leonelli et al. (2021), a sensitivity analysis has been carried out to modify the proba-
bility of the MPE to the requirements of a user. However, we do not want to restrict
ourselves to the disturbance of a specific parameter within the limits that allow us to
maintain the conditional independence of the model, but rather a greater flexibility
in the disturbance. Now both the structure and the parameters can change, and we
want to give meaning to the changes in the model that satisfy the probability change
required by the user. In other words, we will analyze the qualitative relationships
that have appeared and disappeared in the network (after the network perturbation),
as well as the quantitative variations in the mean and the covariance matrix.

Furthermore, most of the efforts regarding calculating the MPE using EAs, and in
sensitivity analysis, have focused on discrete datasets. In our proposal we are going
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to focus on Gaussian data. In chapter 3 we settle on the details of our new approach.

2.3.3.2 Most relevant explanation (MRE)

The approaches to finding abductive inference explanations MAP and MPE may gen-
erate explanations that are either too simple (underspecified) or too complex (over-
specified). It is desirable to find the most relevant contributing factors. This motivates
the following definitions.

Definition 2.3.7 Given a set of target variables M with explanatory interest in a Bayesian
network and partial evidence e in the remaining variables, an explanation for the ev-
idence is a joint instantiation x of a non-empty subset X of the target variables, i.e.
∅ ⊂ X ⊆ M.

Various pruning techniques have been used to avoid overly complex explanations:
pre-pruning and post-pruning. Pre-pruning methods use the context-specific inde-
pendence relations represented in Bayesian networks to prune irrelevant variables
before applying methods such as MAP to generate explanations. However, these in-
dependence relations are too strict and are unable to prune marginally or loosely
relevant target variables. In contrast, post-pruning methods first generate explana-
tions using methods such as MAP or MPE and then prune variables that are not
important. A variable is regarded as unimportant if its removal does not reduce the
likelihood of an explanation. In Yuan et al. (2011b) some of these methods are applied
on several Bayesian networks to find an explanation that contains only the most rel-
evant variables, showing that the methods usually fail to identify them. In addition,
they depend on tunable parameters subjected to human errors.

In order to enhance the quality of the explanation, it is necessary to state what is a
good explanation. An explanation is good if it has two basic properties: precision and
concision. As a way to measure these properties, we need a proper metric able to
not only evaluate the explanatory power of an explanation but also favor more concise
explanations so that only the most relevant variables are included in an explanation.
In Yuan et al. (2011b) several popular relevance measures are discussed, pointing
their drawbacks to motivate the need of a new measure, called the generalized Bayes
factor.

Definition 2.3.8 The generalized Bayes factor (GBF) of an explanation x for a given
evidence e is defined as

GBF (x;e) ≡ P (e|x)
P (e|x̄)

,

where x̄ denotes the set of all alternative hypothesis of x.

We do not really compute x̄ directly in calculating GBF(x; e). Instead we compute

GBF (x;e) =
P (x|e)(1− P (x))
P (x)(1− P (x|e))

.

Definition 2.3.9 The conditional Bayes factor (CBF) of explanation y for given evi-
dence e conditioned on explanation x is defined as

GBF (y;e|x) ≡ P (e|y,x)
P (e|ȳ,x)

.
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Yuan et al. (2011b) show that the GBF has several theoretical properties that enable
to automatically identify the most relevant target variables in forming an explanation
for a partial evidence. We present below some of them. The method that relies on this
metric (GBF) is called MRE.

Handling extreme values

The belief that the probability of an event is equal to 1 means that one is absolutely
sure that the event will occur. Therefore, any increase in probability from less than
one to one or decrease from non-zero to zero is extremely significant, no matter how
small the change is. A metric consistent with this interpretation such as GBF, assigns
much more weight to probabilities in ranges close to 0 and 1.

Monotonicity of GBF with regard to other measures

The measures we take into consideration for the monotonicity are: the difference
between the posterior and prior probability, and the belief update ratio.

It is commonly believed that the same amount of difference in probability in ranges
close to zero or one is much more significant than in other ranges. Figure 2.2 shows
a plot of GBF against the prior probability when the difference between the posterior
and prior probabilities is fixed. The figure clearly shows that GBF assigns much
higher scores to probability changes close to zero and one.

Figure 2.2: The GBF as a function of the prior probability given a fixed increase in
the posterior probability from the prior. The different curves correspond to different
probability increases. For example, “+0.01” means the difference between the poste-
rior and prior probabilities is 0.01. Source: Yuan et al. (2011b).

The belief update ratio is defined as follows

Definition 2.3.10 Assuming P (x) ̸= 0, the belief update ratio of x given e, r(x;e), is
defined as

r(x;e) ≡ P (x|e)
P (x)

. (2.5)

With regard to the belief update ratio, we have the following theorem.
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Theorem 2.3.1 (Yuan et al. (2011b)) For an explanation x with a fixed belief update
ratio r(x;e) > 1.0, GBF(x,e) is monotonically increasing as the prior probability P(x)
increases.

Figure 2.3: The GBF as a function of the prior probability when the belief update ratio
is fixed. The different curves correspond to different belief update ratios. Source:
Yuan et al. (2011b).

Figure 2.3 plots GBF as a function of the prior probability while fixing the belief
update ratio. As the prior probability of an explanation increases, under the same
belief update ratio of probability the GBF increases and becomes more and more
significant. Therefore, explanations that cannot be distinguished by the belief update
ratio can be ranked using the GBF.

Since lower-dimensional explanations typically have higher probabilities, GBF has
the intrinsic capability to penalize more complex explanations.

Achieving conciseness in explanation

The key property of the GBF is that it is able to weigh the relative importance of
multiple variables and only include the most relevant variables in explaining the
given evidence.

Theorem 2.3.2 (Yuan et al. (2011b)) Let x be an explanation with r(x;e) > 1 and Y a
variable that is conditionally independent from E given x , then for any state y of Y, we
have

GBF (x, y;e) < GBF (x;e).

The theorem captures the intuition that variables that are independent of the evi-
dence variable given the explanation add no additional information to an explanation
in explaining the evidence.

Theorem 2.3.3 (Yuan et al. (2011b)) Let x be an explanation with r(x; e) > 1, and y be
the state of a variable Y such that P (y|x,e) < P (y|x), then we have

GBF (x, y;e) < GBF (x;e).

This is again an intuitive result; the state of a variable whose posterior probability
decreases given the evidence should not be part of an explanation for the evidence.
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The theoretical properties already presented show that the GBF is able to automati-
cally identify the most relevant target variables in finding an explanation. We are now
in the position to give a concrete definition of MRE in terms of this metric.

Definition 2.3.11 Let M be a set of target variables, and e be the partial evidence
on the remaining variables in a Bayesian network. MRE is the problem of finding an
explanation x for e that has the maximum GBF score, GBF (x; e), i.e.,

MRE(M;e) ≡ argmaxx,∅⊂X⊆M GBF (x;e).

Although MRE is general enough to be applied to any probabilistic distribution model,
MRE’s properties make it especially suitable for Bayesian networks. The concise rep-
resentation of a Bayesian network is also beneficial to MRE in the following ways.
First, MRE can utilize the conditional independence relations modeled by a Bayesian
network to find explanations more efficiently. Such independence relations can be
identified through the graphical structure of a Bayesian network and may signifi-
cantly improve the efficiency of the search for an explanation.

2.3.3.3 k-MREs

In many decision making problems, decision makers typically would like multiple
competing options to choose from. This becomes especially useful when there are
multiple top solutions that are almost equally good. In that case, we want to know
not only which solution is the best, but also how much better it is than the other
solutions. It allows decision makers to determine the degree of confidence in the
quality of the best solution. A simple approach to finding the top k-MRE solutions is
to select the explanations with the highest GBF scores. However, this strategy may
find explanations that are supersets of other top explanations. It is often critical to
achieve diversity when the goal is to find multiple solutions. To this aim, Yuan et al.
(2011b) define two dominance relations among the candidate solutions of MRE. The
first relation is strong dominance.

Definition 2.3.12 An explanation x strongly dominates another explanation y if and
only if x ⊂ y and GBF (x) ≥ GBF (y).

If x strongly dominates y, x is clearly a better explanation than y, because it not only
has a higher or equal explanatory score but is also more concise. We only need to
include x in the top explanation set. The second relation is weak dominance.

Definition 2.3.13 An explanation x weakly dominates another explanation y if and
only if x ⊃ y and GBF (x) > GBF (y).

In this case, x has a larger GBF score than y, but y is more concise. It is possible that
we can include them both and let the decision maker to decide whether she prefers
conciseness or a higher score. However, we believe that we only need to include x,
because its higher GBF score indicates that the extra variables in X but not in Y are
important in explaining the given evidence.

Therefore, the k-MRE algorithm works as follows (Yuan et al. (2012)). Whenever we
generate a new explanation, we check its score against the best solution pool. If it
is lower than the worst score in the pool, reject the new explanation. If there are
fewer than K best solutions or if the score of the new explanation is higher than
the worst score in the pool, we consider adding the new explanation to the top pool.
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We first check whether the new solution is strongly or weakly dominated by any
of the top explanations. If so, reject the new explanation. Otherwise, we add the
new explanation to the top pool. However, we then need to check whether there
are existing top explanations that are dominated by the newly added explanation.
If yes, these existing explanations should be excluded. Otherwise we delete the top
explanation with the least score.

2.4 Comparison between Bayesian networks

Definition 2.4.1 An acyclic graph containing both directed and undirected edges is
called a partially directed acyclic graph or PDAG.

The structural Hamming distance (SHD) between two PDAGs is the number of the
following operators required to make the PDAGs match: add or delete an undirected
edge, and add, remove, or reverse the orientation of an arc (see Algorithm 1). It
penalizes all operations by the same amount (Tsamardinos et al. (2006)).

Algorithm 1: SHD algorithm
Input: PDAG H, PDAG G

1 shd = 0;
2 for every edge E different in H than G do
3 if E is missing in H then
4 shd+ = 1 ;

5 if E is extra in H then
6 shd+ = 1 ;

7 if E is incorrectly oriented in H then
8 shd+ = 1 ;

A higher value indicates more dissimilarity between the two PDAGs to be compared.

On theoretical grounds, PDAG measures should be preferred over DAG measures
(some edges are statistically indistinguishable). However, in general the measure-
ments performed either on DAGs or PDAGs are similar (de Jongh and Druzdzel
(2009)).

In this work we are interested in comparing DAGs, and we will make a natural exten-
sion of this metric to compare explanations x given evidence (Section 3.3.2).
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Chapter 3

Contributions and experiments

The ultimate goal of this work is to improve the interpretability of the different queries
in Bayesian networks exposed in Section 2.3.3. In each case, aspects to be explained
to the user, the methodology and the application on different datasets will be detailed.

3.1 Posterior probabilities

The two main exact inference methods are chosen for interpretation (variable elimina-
tion and junction tree clustering algorithm). In both cases the purpose is to describe
the intermediate results in the reasoning process.

To someone unfamiliar with Bayesian networks and probabilistic inference, both al-
gorithms may seem very complex at first sight. Faced with this situation, one can
choose to explain the mathematical calculations that take place, or to graphically il-
lustrate the sequence of steps that make up the algorithm. This work chooses for the
second option.

Variable elimination is based on the systematic and ordered removal of variables until
only the variables of interest remain. In this algorithm the order of elimination of the
variables plays a relevant role (Bertelè and Brioschi (1972)) since it is the basis for
the procedure efficiency. We wanted to justify the choice of the order of elimination of
variables and show the union of factors that give rise to new factors in the elimination
of each variable.

The junction tree clustering algorithm is a more advanced and technical method.
We think that, despite ignoring the mathematical details, it is possible to reach an
understanding about the reasoning process and the relevant variables taking ac-
tion. It allows the user to get closer to an algorithm that is not specifically designed
for the interpretability of the results. The elimination order that enables triangula-
tion (Larrañaga et al. (1997)) and the subsequent creation of the junction tree has a
paramount importance. The steps that go from the triangulation of the moral graph
to the message passing scheme between cliques within the junction tree, and the
final pruning will be shown.

For approximate inference, the main objective is to extend pgmpy to show the user
the process of convergence towards the stationary distribution that Gibbs sampling
requires (Pearl (1997)), as it increases the degree of confidence in the result really
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3.1. Posterior probabilities

reflecting the posterior distribution. To this end, the following tasks have been carried
out:

• Study the different options to study the convergence in Gibbs sampling. Finally
we decided to use statistical tests for convergence diagnostics.

• The next step was to get to know the functionalities and limitations of all the
Bayesian inference libraries that offer approximate methods (bnlearn, pgmpy
and pomegranate).

bnlearn is probably the most mature project in the Bayesian network commu-
nity. However, it may be complex to add extensions to the package (Atienza
et al. (2022)). Furthermore, it only makes approximate inferences with forward
sampling and likelihood weighting. On the other side, pomegranate does not
diagnose convergence of Gibbs sampling.

We decided to continue using pgmpy to perform approximate inference (Ankan
and contributors (2022)) and look for another specialized library in convergence
diagnostic tests to the equilibrium distribution of the Markov chain, in order to
to extend pgmpy functions.

• Find the way to communicate R with python and the transformation of objects
from one library to another. Finally we decided to use as intermediary the rpy2
package.

• Perform the implementation.

• As a secondary goal, we have extended pgmpy to be able to make approximate
inferences with likelihood weighting.

In addition, knowing when the convergence is reached allows increasing the compu-
tational efficiency by stopping the generation of samples.

3.1.1 Results

The objective of the different functions defined in the previous section is to enrich
the numerical result of the query with additional information that accounts for the
internal mechanisms of the algorithm, in order to get a better understanding of the
process. For illustrative purposes, I use the well-known Asia Bayesian Network, men-
tioned in Lauritzen and Spiegelhalter (1988b)), which can be seen in Figure 3.1. Each

Figure 3.1: Asia BN. Source: Lauritzen and Spiegelhalter (1988b).

node represents a facet that may relate to the patient’s condition. From now on we

24



Contributions and experiments

will use the following notation: "smoke" indicates whether is a confirmed smoker,
"asia" shows if he/she recently visited Asia, "dysp" indicates if the patient suffers
from shortness of breath, "lung" means the presence of lung cancer, "xray" indicates
abnormalities on an x-ray of the lungs, "tub" refers to tuberculosis, "bronc" is bron-
chitis and "either" means that the patient can suffer from either bronchitis or lung
cancer.

Figure 3.2: Comparison of the different variable elimination costs. On the X axis,
the different heuristics, where WMF is weighted-min-fill, MN is min-neighbors, MW
is min-weight and MF is min-fill (see Section 2.3.1.1). On Y axis, the induced-width.

Since the ordering of variables that the elimination process follows in Variable elim-
ination is key to efficiency, we want to offer the user the opportunity to choose the
best one with an adequate justification. We provide a comparative plot of the variable
elimination cost due to the different heuristics (Figure 3.2).

In addition, for optimization processes, it is advisable to identify irrelevant variables.
Some variables may have no impact on the variables of interest or the final inference
result. By identifying and eliminating them from the computation graph, we can sig-
nificantly reduce the computational complexity and improve efficiency. For example,
if we compute the joint probability (Y,e), we can remove any leaf node if it does not
belong to Y ∪ e. If we recursively prune unobserved leaf nodes, we get Figure 3.3.

Regarding the junction tree clustering algorithm, the user can follow the sequence
of steps of the algorithm. First of all, the construction of the Clique tree is carried
out (Figure 3.5). We give special detail to the order of variable elimination ordering
in the triangulation (see Figure 3.4), and to the calibration of the junction tree. This
last step is the one that requires the most prior knowledge on the part of the user,
given the nomenclature used for clique beliefs β(C), sepset beliefs µ(Ci, Cj), and the
auxiliar terms σ(Ci, Cj) defined ad hoc for this algorithm. One of the properties that
must have an explanation, according Lacave and Díez (2002), is adaptation. This
implies establishing the degree of detail according to the knowledge of the user and
his expectations. The degree of interpretability only affects the calibration step; a
high level give more details about the message passing (Figure 3.6); a low level can
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3.1. Posterior probabilities

Figure 3.3: Reduced model for variable elimination (optimization). In dark blue, the
remaining nodes after pruning. In light blue, the pruned node. Query variable: bronc.
Evidence: Lung = ’Yes’.

be seen in Figure 3.7.
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Figure 3.4: Comparison of the different variable elimination costs for triangulation.
On the X axis, the different heuristics in Section 2.3.1.2. On Y axis, the metric defined
in equation (2.4).



3.1. Posterior probabilities

Figure 3.5: Sequence of steps in the construction of the junction tree (node names in
the legend).
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Figure 3.6: Calibration step in the junction tree clustering algorithm. Degree of
interpretability: high.

Figure 3.7: Calibration step in the junction tree clustering algorithm. Degree of
interpretability: low.
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3.1. Posterior probabilities

With regard to the approximate methods, due to the lack of flexibility that rpy2 allows
when combining python objects with R objects, we have fixed to 3 the number of
Markov chains when Gibbs sampling is requested. In the following example, we make
the query P (bronc), using Gibbs sampling, and set the size of the chain to 15000
samples. For example, in Table 3.1 we can confirm that after 15000 iterations, the
shrink factor of variable Smoke takes the value 1.03, which is a sign of convergence.
A potential problem with Gelman’s test is that it may misdiagnose convergence if
the shrink factor happens to be close to 1 by chance (Plummer et al. (2006)). By
calculating the shrink factor at several points in time and providing a plot of the
evolution, it shows if the shrink factor has really converged, or whether it is still
fluctuating. Figures like the one in Figure 3.8, allows to confirm the convergence of
the variable Smoke shrink factor: the between chain variance relative to the within-
chain variance are about the same and the chains have all converged to the true
distribution. It is the case of a univariate convergence diagnosis.

Point est
asia 1.00
tub 1.32

either 1.85
dysp 1.04

smoke 1.03
bronc 1.00
lung 1.73
xray 1.55

Table 3.1: Gelman and Rubin shrink factors.

Figure 3.8: Evolution of the shrink factor in time. Variable: Smoke.

1 Multivariate psrf
2

3 1.44

We also obtain a multivariate value of the Gelman Rubin shrink factor equal to 1.44.
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It gives us an approximation of the global convergence of all the variables. Although
the convergence of some variables is not cause for concern, it is not the case of all
the variables, and the multivariate factor warns that we have not reached the true
posterior distribution (Multivariate psrf > 1.1).

If the user is familiar with z-score tests, can request another type of convergence diag-
nosis such as Geweke’s, which is also univariate, and allows observing the evolution
of the statistic when successively discarding a greater number of initial iterations of
the chain (Plummer et al. (2015)).
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3.2 Abduction queries

3.2.1 Datasets

The scope in this section is multivariate Gaussian data. The main difficulty is that it
is practically impossible to find real (not synthetic) datasets where the random vari-
ables follow a multivariate Gaussian distribution. Our approach consists, therefore,
in assuming Gaussianity in the variables and modeling them as if they were. This
causes the generated results to be less accurate than desired. We have chosen two
datasets to illustrate the methodology that is going to be developed.

3.2.1.1 Electric motor temperatures

These are measurements from various sensors within an electric motor over time. The
dataset, extracted from Kaggle (available at https://www.kaggle.com/datasets/
wkirgsn/electric-motor-temperature), is quite large, with tens of thousands of
rows and 10 variables. It is clean and free of missing values.

All recordings are sampled at 2 Hz. The data set consists of multiple measurement
sessions in which the engine is stressed to bring it to high temperatures. They can
be distinguished from each other by column profile id. A measurement session can
be between one and six hours long. For our purpose we assume that the data rows
do not have a temporal relationship.

The motor is excited by hand-designed driving cycles denoting a reference motor
speed and a reference torque. Currents in d/q-coordinates (columns id and iq) and
voltages in d/q-coordinates (columns ud and uq) are a result of a standard control
strategy trying to follow the reference speed and torque. Columns motor speed and
torque are the resulting quantities achieved by that strategy, derived from currents
and voltages.

The most interesting target features are rotor temperature (pm), stator temperatures
(stator*) and torque. Being able to have strong estimators for the rotor temperature
helps the automotive industry to manufacture motors with less material and enables
control strategies to utilize the motor to its maximum capability. A precise torque
estimate leads to more accurate and adequate control of the motor, reducing power
losses and eventually heat build-up.

The experiments have been carried out focusing on a measurement session, that is,
on a specific value of the profile id column. Also, there is a high correlation between
current and voltage with motor speed, and the 99% of motor speed variability can be
linearly explained by current and voltage (R squared coefficient). Therefore current
and voltage variables have been removed.

To better understand the meaning of the variables, it is necessary to put some context
in the operation of a PM motor (Jaszczolt (2017)).

A PM motor is an alternating current (ac) motor that uses magnets imbedded into
or attached to the surface of the motor’s rotor. A rotating field is generated by the
stator winding and induces a current in the rotor bars. The interaction between the
field and the current produces the driving force. The variable motor speed refers to
the angular rate at which the motor’s rotor rotates in response to the application of
electrical power. As the motor speed increases in a PM motor, there are increases in

https://www.kaggle.com/datasets/wkirgsn/electric-motor-temperature
https://www.kaggle.com/datasets/wkirgsn/electric-motor-temperature
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resistance losses (generated due to current flowing through the windings and electri-
cal resistance of the conductors), mechanical losses, and difficulty in dissipate heat,
which can result in an increase in rotor temperature. In a PM motor, the relationship
between the rotor temperature (pm) and the motor speed can be influenced by several
factors: motor design, load conditions, cooling mechanisms, and thermal character-
istics (heat dissipation for example).

As we already mentioned, it is rare to find real data whose joint distribution is mul-
tivariate Gaussian. This is confirmed by performing a multivariate Gaussianity hy-
pothesis test on our data set. In particular, the Henze-Zirkler test (Henze and Zirkler
(1990)) rejects the null hypothesis of Gaussianity. A univariate exploration of the
variables using histograms also confirms the lack of Gaussianity in the marginal
densities.

In the domain of interest we are dealing with, it is vital to accurately monitor the sta-
tor temperature to prevent a temperature rise and to ensure that motor performance
does not deteriorate. Maintaining cost-effective motors is crucial. It is therefore pos-
sible that the engineer, faced with the need to make decisions, may be interested in
taking his system to a behavior state in which he can know the most probable state
with greater reliability. Hence, the motivation of this experiment, is not to predict fu-
ture values, but to model a Bayesian network with a higher MPE probability than the
minimum value requested by the user from the original system. If the user has less
uncertainty about the most probable situation given evidence, he/she can, for ex-
ample, know the explanation for an unexpected behavior of the motor and plan with
greater security the repair of the manufacturing plants, achieving a more efficient
maintenance.

3.2.1.2 COVID-19

The COVID-19 data (Constantinou et al. (2020)) captures the development of the
pandemic in the UK over a period of 2.5 years, with a focus on viral tests, infections,
hospitalisations, deaths, vaccinations, policy interventions, and population mobility.
Data were collected from different public sources, with the majority of information
coming from official UK government websites for COVID-19.

Our goal is not predictive. Again, the goal is to understand the variables relationships
in a hypothetical reality in which the health authorities would have predicted the
most likely situation with greater reliability. For our purpose we assume that the
data rows do not have a temporal relationship.

The dataset is free of missing values. As our scope is continuous data, we removed
categorical variables: Majority COVID-19 variant, Lockdown, Face masks, Trans-
portation activity..., losing important information about UK policy interventions re-
garding lockdowns and mask mandates and indices about mobility (flights, buses,
trains and transit stations, visits to parks, school activities, ...).

We describe and categorise the data variables by the type of information they capture
(Constantinou et al. (2023)):

• Viral tests: A single variable fits this category; the Tests across all four pil-
lars. Testing conducted under Pillar 1 represent tests carried out by the Na-
tional Health Service and the UK Health Security Agency, under Pillar 2 by the
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UK government COVID-19 testing programme, under Pillar 3 involves antibody
serology testing, and under Pillar 4 involve testing for national surveillance.

• Infections: Three variables make up this category; namely Positive tests, New
infections, and Reinfections. These variables capture information about daily
cases, and whether those cases were new infections or reinfections.

• Hospitalisations: This category consists of the variables Hospital admissions,
Patients in hospital, and Patients in MVBs. These three variables capture infor-
mation about the number of patients admitted to hospital with COVID-19, the
number of patients in hospitals with COVID 19, and the number of patients in
mechanical ventilator beds (MVBs) with COVID-19 respectively.

• Vaccinations: A single variable, called Second dose uptake, that captures infor-
mation about the 2nd dose vaccine uptake, and which represents the proportion
of the eligible population who received the vaccine.

• Deaths: two variables, called Deaths with COVID on certificate and Excess mor-
tality, that capture the number of deaths with COVID-19 listed on the death
certificate, and overall excess mortality.

3.2.2 Methodology

As a first approximation to our proposal in the area of abductive inference, we begin
with a brief summary of the steps that make up our work:

1. Identify existing proposals in the literature regarding abductive inference.

2. Identify knowledge gaps and interesting questions that remain to be answered
and that can add value to the user’s understanding (’Knowledge gap detected
and proposal introduction’ in Section 2.3.3.1) .

The general goal is to find a Gaussian Bayesian network that describes a hy-
pothetical reality in which the most probable situation has a higher probability
(than the lower threshold set by user).

Although at first, this question may sound confusing, we are going to verify its
usefulness by applying it to two datasets from very different areas.

3. Define a methodology based on the use of EDAs and the analysis of the differ-
ences (qualitative and quantitative) between the original BN and the BN after
running the EDA to draw conclusions (Figure 3.9).

As we have already mentioned, the methodology relies heavily on the use of EDAs.
Next, we are going to detail the cost function and the stopping criteria designed to
achieve the stated objective.

Suppose the vector X is partitioned into two components X = (Y,E), where Y are the
variables of interest to the user and E are the evidence variables. In our approach
we consider a flexible idea of evidence (which we will refer to as ’soft evidence’) in the
following way:
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The goal is to minimize the cost function Cl, l = 1, 2, 3 . . .

Cl(x) =


log(fl(µl))− log(fl(x)) ∥ẽ − e∥∞ ≤ ϵ

99999 other case
(3.1)

where l is the iteration number, x = (y, ẽ), and

fl(x) = (2π)−n/2|Σl|−1/2exp−1

2
(x − µl)

′Σ−1
l (x − µl).

The cost function is a piecewise function that assigns:

• A very high cost to those individuals whose evidence variables are not within the
range [ei − margini, ei + margini] (where margini is the maximum disagreement
between variable Xi and the evidence ei).

• The difference between the loglikelihood of the mode, and the individual to be
evaluated.

The selected stopping criterion is

death iter ≥ Niter or
fl(µl)

f0(µ0)
≥ α,

where α is the probability density growth factor and Niter is the maximum number of
iterations without a cost function improvement (both decided by the user), µ0 is the
mean of the original dataset, and µl is the mean of the population in each iteration l.
The second stopping criterion accounts for the increase in the mode density function
in iteration l with respect to the initial value

For implementing the EDAs, we use the python package EDAspy, with slight modifi-
cations to:

• Allow the definition of cost functions that dynamically vary during the iterative
process,

• Allow a softer concept of evidence: evidence variables may differ to some extent
from the fixed value, and

• Customize the stopping criterion.

These code modifications will be clarified in the Implementation section (Appendix B).

To carry out the experiments, some decisions were to be made: size of the popula-
tion, maximum number of iterations during runtime, number of iterations with no
improvement after which the algorithm finishes, percentage of population selected to
update the probabilistic model, percentage of previous population selected to add to
the new generation, constraints over the network structure, growth probability factor
α ... Most of them are hand tuned by trial and error to get the best (in the sense of
little cost and big probability dense function increase) and fastest results, and α = 1.5
(just for illustrative purpose).

Once we have the results, the original and optimized Bayesian networks will be an-
alyzed: the qualitative relationships that have appeared and disappeared in the net-
work will be compared, as well as the quantitative variations in the mean and the
covariance matrix.
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3.2.3 Results

We want to compare both the qualitative part of the Bayesian network (DAG) and
the density function. As in this case it is a multivariate Gaussian, we provide a
comparison of the covariance matrix of the original Bayesian network and after the
optimization process.

3.2.3.1 Electric motor temperature

Original BN Optimized BN

Table 3.2: Evidence: torque=25 and coolant=18.9. We have set the margins of dis-
agreement with the evidence at 0.5 and 0.1 respectively.

For illustrative purposes, we want to increase the value of the density function in
the MPE by a factor greater than 1.5. After the optimization process we successfully
obtain a probability density function increase of 1.638. The next step is to interpret
the qualitative and quantitative changes (Table B.3 in Appendix) in the Bayesian
networks (Figure 3.2).

In the first place we have as distinct edges (ambient, motor speed) and (motor speed,
stator yoke). Now, regarding the initial situation, motor speed

• is conditionally independent of ambient and stator york,

• decreases its correlation by more than 1
4 with stator tooth, stator winding and

stator yoke,

• decreases its correlation with pm.

Therefore, the new reality is a situation in which the variables of greatest interest
(rotor temperature -pm- and stator temperature -stator_*-) have less dependence on
motor speed.

Taking into account the engine operation described in previous Section 3.2.1.1, a
decrease in the dependence of the rotor temperature on the motor speed, ultimately
translates into an adequate design of the cooling system and following the manufac-
turer’s instructions, to isolate as much as possible one effect from another.

If we isolate (to a certain extent) some effects from others (in this case motor speed
and stator/rotor temperature), it is easier to predict the evolution or causes of engine
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damage. Therefore, the modeled hypothetical reality responds to the objective of
increasing confidence about what is actually happening.

3.2.3.2 COVID-19

Original BN Optimized BN

Table 3.3: Evidence: Second dose uptake=45, Excess mortality=9. The allowed dis-
agreement in the evidence is set to 5.

We successfully obtain a probability density function increase of 1.592 (over the 1.5
requested). In a similar way to what was done with the previous dataset, we analyzed
the results by comparing the Bayesian networks (Figure 3.3). We have as different
edges: (Reinfections, Deaths with COVID on certificate), (Reinfections, Tests across all
4 Pillars), (Positive tests, Second dose uptake). In this case the quantitative changes in
the parameters (mean and covariance matrix) are more remarkable and we highlight
them in Table 3.4.

Positive tests Excess mort Tests Death with COVID Reinfections Patient in MVBs Hospital admission Second dose Patient in hosp New infections
Positive tests 1,28E+00 2,49E+00 1,43E+00 1,24E+00 1,35E+00 1,15E+00 1,17E+00 1,03E+00 1,26E+00 1.28E+00
Excess mort 2,49E+00 9,33E-02 1,14E-01 2,48E+00 1,66E-02 -9,64E-01 2,39E-01 2,22E-02 2,44E-01 -2.19E+01
Tests 1,43E+00 1,14E-01 9,69E-02 1,76E-02 -1,98E-02 2,02E-02 2,31E-02 -1,26E-02 1,91E-02 1.70E+00
Death with COVID 1,24E+00 2,48E+00 1,76E-02 1,72E-01 1,34E-03 2,65E-01 7,48E-02 7,08E-03 7,64E-02 1.55E+01
Reinfections 1,35E+00 1,66E-02 -1,98E-02 1,34E-03 8,25E-03 6,79E-04 -6,55E-03 4,17E-03 -4,90E-03 1.35E+00
Patient in MVBs 1,15E+00 -9,64E-01 2,02E-02 2,65E-01 6,79E-04 2,68E-01 5,41E-02 5,33E-03 6,04E-02 1.12E+01
Hospital adm 1,17E+00 2,39E-01 2,31E-02 7,48E-02 -6,55E-03 5,41E-02 9,52E-02 5,05E-03 8,90E-02 1.66E+00
Second dose 1,03E+00 2,22E-02 -1,26E-02 7,08E-03 4,17E-03 5,33E-03 5,05E-03 4,13E-03 5,53E-03 9.89E-01
Patient in hosp 1,26E+00 2,44E-01 1,91E-02 7,64E-02 -4,90E-03 6,04E-02 8,90E-02 5,53E-03 1,12E-01 1.78E+00
New infections 1.28E+00 -2.29E+01 1.70E+00 1.55E+01 1.35E+00 1.12E+01 1.66E+00 9.89E-01 1.78E+00 1.54E+00

Table 3.4: Ratio covarianceoriginalij /covarianceoptij between the covariances of the original
BN and the optimized BN (data available in Appendix, Section 3.4). In yellow, re-
marked decreases in this metric.

The direct dependencies Reinfections-Death with COVID, Reinfection-Test cross and
Positive test-Second dose in the optimized network disappear. Furthermore, if we
compare the mean vectors (data in the Appendix, Section 3.4) the number of reinfec-
tions represents a larger factor with respect to the total new infections. With these
statements and looking at the comparative Table 3.4 of covariance matrices, we con-
clude that in the new hypothetical reality, we have a higher proportion of reinfections
and these are less correlated with hospital admission, and the second dose is inocu-
lated less. The new infections are not directly related to death with COVID-19. The
optimized Bayesian network models a reality in which there is greater herd immu-
nity, since there are more people who have already suffered from the disease in the
past, have developed antibodies and may not need to get a second vaccine. There-
fore, it is a more controlled and predictable situation, with less drastic changes, and
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it makes sense that the MPE is more likely. Specifically the increase in probability is
the change in volume below the surface of the multivariate probability density around
the mean. A higher value of the density function, a higher probability.

In Figure 3.10, we can see the change in density function for each variable. In the
optimized model, we have less uncertainty in the values (although not always, as
happens in the first and last graph). In Figure 3.11 we can visualize notable changes
in the relationships between the two variables (Reinfections and Hospital admissions):
not only we have a higher density function value in the mode, but also a less flattened
curve.

39



3.2. Abduction queries

Figure 3.10: Comparison, for each variable, of the density functions in the original
model (blue) and the optimized model (orange).
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Figure 3.11: Two-dimensional probability density function change for Reinfections
and Hospital admissions. In blue, the original data. In red, the data from the opti-
mized generation.
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3.3 Most relevant explanation

We have identified a gap of available software for the task of finding the MRE and
k-MRE. The objective of this section is to design the methodoly to perform the tasks
with discrete datasets and enrich the comparison in the k-MRE list.

3.3.1 Methodology

Since MRE is NPPP (Yuan et al. (2011a)), approximation methods may be the only
feasible approach to solving MRE in large Bayesian networks. In this work we use an
adaptation of a local search method, the forward search, to find the MRE.

In forward search, we first generate one or more starting solutions. Then for each
starting solution, we greedily improve the solution by either adding an additional
variable with some state or changing the state of one variable in the current solution.
In the meanwhile, MRE needs to select the states for these variables in maximizing
the GBF score as an explanation.

Algorithm 2: Forward search algorithm for MRE
Input: Bayesian network B with a set of target variables X, and a set of

evidence variables E.
Output: An MRE solution over X.

1 Initialize the starting solution set I with an initialization rule
2 Initialize the current best solution ybest = ∅
3 for s in I do
4 y = s
5 while y does not stop updating do
6 Find the neighboring solution set N of y by either adding one target

variable with any state or changing one variable to another state
7 Compute GBF score for each solution in N
8 Update y if the best solution in N has higher GBF score

9 if GBF (y) > GBF (ybest) then
10 ybest = y

11 return ybest

The solution space of MRE has a lattice structure similar to the graph in Figure 3.12
for three binary variables A, B and C. The two possible values for each variable appear
with the same letter as the name of the variable, in lowercase and uppercase. Each
node in the graph contains a potential solution, and the edges show the connectivity
between the solutions. Two solutions are connected if they differ only by one variable:
either the state of the variable is different, or one solution has an extra variable than
the other. The solutions range from singletons to full configurations of the target
variables. In forward search, we are searching the graph in Figure 3.12 top down
while allowing horizontal moves. A forward search algorithm is outlined in Algorithm
2.

Our method for obtaining the MRE, relies on GBF in finding explanations for a given
evidence. This measure is not directly applicable to continuous data, because con-
tinuous variables have an infinite number of possible values. Therefore the GBF is
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Figure 3.12: Solution space of MRE for three binary variables. Source: Yuan et al.
(2011a).

specifically designed for discrete data.

The datasets we have considered until this moment, are continuous, and the al-
gorithm we have implemented is discrete-data dependent. Therefore the dataset’s
usage requires a previous discretization. This can have several disadvantages, in-
cluding loss of information, arbitrariness of binning... leading to a sensitivity to
binning methods and a new source of variability and subjectivity (Nojavan A. et al.
(2017)). Therefore, the suitability of discretization depends on the nature of the data,
the problem at hand and the requirements of our analysis. To prevent this obstacle
from staining the analysis of our implementation, we use a well-known benchmark
dataset for evaluating Bayesian networks: the ALARM dataset (Beinlich et al. (1989)).
It consists of categorical variables.

The k-MRE algorithm (Section 2.3.3.3), which is summarized in Algorithm 3, takes
into account two dominance relationships in order to achieve diversity among the
explanations. These relationships make sure that no explanation is contained in
another one in the list. In addition, we can measure the amount of diversity by
comparing with some metric all the explanations with the most relevant one (the
first). To this purpose we propose to use a Hamming distance between explanations,
that is, the number of variable states in which the two explanations differ. This metric
could be useful if two explanations are close in GBF, but one is much more diverse
with respect to the MRE than the other. In this case, the user may prefer the most
diverse one.

3.3.2 Results

ALARM is a diagnostic application that implements an alarm message system for pa-
tient monitoring in a hospital intensive care unit (ICU). The goal is to provide specific
text messages advising the user (the doctor) of possible problems.

For illustrative purposes, we run the k-MRE algorithm with k = 3 and evidence of low
lung ventilation on top of the ALARM dataset. The objective is to facilitate the com-
parison between the k most relevant explanations. For that purpose we use a parallel
coordinate plot (Figure 3.13 and Table 3.5) to visualize the differences between the
different explanations. The continuous color scale for the lines represents the GBF
value.

These explanations, with GBF belonging to the range 10 − 30, can be considered as
strong explanations (Yuan et al. (2011b)). In addition they are consistent with the
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Algorithm 3: k-MRE algorithm
Input: A list of different Most Relevant Explanations.
Output: k-MRE list (the pool).

1 Initialize an empty list for the k-MRE (pool)
2 for x in MRE list do
3 if GBF(x) < min(GBF_pool) then
4 Continue

5 if GBF(x) > min(GBF_pool) then
6 if x is strongly/weakly dominated by other instances in the pool then
7 Continue

8 else
9 Add x to the pool

10 if Other top explanations are dominated by x then
11 Remove those explanations from the pool

Figure 3.13: 3-MRE with ALARM dataset. Evidence: VENTLUNG (lung ventilation)
= LOW. Variables: MINVOL (minimum volume), ARTCO2 (arterial CO2), VENTALV
(pulmonary alveoli ventilation), EXPCO2 (expelled CO2).

corresponding MAP query:

1 inference.map_query(variables=[’MINVOL’, ’INTUBATION’, ’VENTALV’, ’ARTCO2’, ’EXPCO2’],evidence
={’VENTLUNG’: ’LOW’})

2 {’MINVOL’: ’HIGH’, ’INTUBATION’: ’NORMAL’, ’VENTALV’: ’NORMAL’, ’ARTCO2’: ’NORMAL’, ’EXPCO2’:
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MINVOL INTUBATION VENTALV ARTCO2 EXPCO2 GBF Hamming distance
HIGH NORMAL 19.93 0 (MRE)

NORMAL NORMAL 19.79 2
NORMAL ZERO 14.39 4

Table 3.5: Tabular results of 3-MRE in ALARM dataset. The last two columns allow
a bivariate comparison taking into account both GBF and diversity.

’ZERO’}

Let’s see what information it provides in medical terms. The most relevant explana-
tion is high minimum volume and normal intubation. Minimum volume refers to the
minimum volume of air that must be exchanged in the lungs for adequate breathing.
Essentially, the result indicates that despite the normal intubation, a high minimum
volume of ventilation may be a contributing factor to the low lung ventilation ob-
served. We may think that the data is from a patient whose air volume needs are
high and current ventilation does not meet his/her needs.

From the second most relevant explanation we can see that MINVOL and VENTALV
are almost equally relevant variables, with similar explanatory power. In the case of a
normal VENTALV, it can be inferred from this explanation that the patient is resting
or under sedative medications that decrease his/her pulmonary ventilation.

With regard to the diversity of explanations, we can observe that in the 3-MRE list, no
explanations are contained in one another, which has been achieved by taking into
account the relationships of strong dominance and weak dominance. In addition, we
can quickly measure the diversity incorporated by the second and third explanations
regarding MRE with the ’Hamming distance’ column. Although the third has a lower
GBF value, it incorporates more diversity than the second.
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Chapter 4

Conclusions and future work

4.1 Conclusions

We have increased the interpretability of exact inference algorithms by visualizing the
different steps. This can help support the decision-making by

1. Sheding light on how calculations are made at each stage.

2. Detecting unexpected results that could indicate problems in the inference pro-
cess.

3. Validate the results.

4. Enhancing the communication: visual representations can be more accessible
than purely mathematical descriptions. In addition, we can also detect which
variables have an impact on the result and which ones are irrelevant.

With regard to approximate inference, we have added to the pgmpy library the possi-
bility of diagnosing convergence when making inferences with Gibbs Sampling. The
diagnosis of convergence is important for several reasons: it helps determine if the
Gibbs Sampling algorithm has reached a stable sampling distribution. If the algo-
rithm has not converged, the results obtained may not adequately reflect the desired
posterior distribution, hence decreasing the precision of the results, and indicates
that the results are likely to vary in different executions of the algorithm; addition-
ally, visualizing the evolution of the convergence factor with the iterations allows us
to approximate the number of additional samples needed to achieve convergence.

We have addressed a new question related to the most probable explanation, which
has not been answered in the existing literature until now. It is about finding a
hypothetical reality modelled by a Bayesian network, in which the most probable
explanation has a higher probability. This reality can serve as a reference to guide
our actions towards a situation in which we can act under less uncertainty. In the
case of motor dataset, the new knowledge allows a successful maintenance and re-
pair of the manufacturing plants; in the case of COVID-19 dataset, it is not always
possible to take the current reality to a more favorable state, but some variables are
more controllable than others and by knowing what their configuration is in the new
hypothetical reality, the health authorities can try to redirect the situation. In both
cases, the initial situation must be compared with the final model, looking for the
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direct relationships that have appeared or disappeared, and the quantitative changes
in the vector of means and the covariance matrix. This enables to advise experts in
the field of research who want to answer the question: what should I change to be
able to predict the explanation of evidence with greater certainty?

The limitation of our approach consists in assuming Gaussianity in the variables and
modeling them as if they were. This causes the generated results to be less accurate
than desired.

We have implemented an approximate algorithm, based on local search (forward
search), to find MRE. Its implementation is supported by the pgmpy library. This
work would not only add extra functionality to pgmpy, but is one of the first open
access implementations known. Additionally, we have made a proposal for the pre-
sentation of results that can help to compare the different explanations, both visually
using parallel coordinates and through a new metric, a Hamming distance between
explanations.

All the proposed explanations meet the following requirements in Definition 2.2.1:
they are understandable, improve the knowledge about the object of the explanation.
We think they also answer interesting questions that can satisfy the wishes of the
person requesting them.

Finally, given the classification of an explanation according to its properties (Chapter
2), we do the same with the proposals of this work (Figure 4.1).

Figure 4.1: Classification of explanations developed in this master thesis.

All the implementations are available in https://github.com/martatubia/TFM

4.2 Future work

During the development of this master thesis, questions, difficulties and new work
lines arose. Although they were out of the scope of our work, either due to the limi-
tation in time or because they went beyond the pre-established goals, they motivate
the following proposals:
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• As far as we know, the open/free access libraries used to make approximate
inferences do not have integrated the possibility of diagnosing the convergence of a
chain of Gibbs samples. We have circumvented the difficulty by combining a python
library with an R library. Executing R code through rpy2 is slower compared to
directly executing R code in a native R environment. Possible causes are: translation
and communication between Python and R, the additional function call overhead due
to invoking R functions from Python... The execution time is an area to be improved.

• The interpretability proposal for the MPE has been implemented on top of EDAspy,
which has functionality for Gaussian variables, binary variables (UMDAd) and inde-
pendent categorical variables (categorical EDA). It would be interesting to implement
our proposal for categorical variables and hybrid datasets, without any constraint.

• The GBF definition is specially designed for discrete variables. If we want to gen-
eralize it to the case of continuous variables, we would have to talk about ranges of
values. Also, pgmpy does not support continuous variables (Table 4.2). Therefore,
other libraries would have to be used. So far, with open source software, there is
only possibility to do inference with Gaussian BNs, and conditional Gaussian BNs,
using bnlearn or LGNpy. However they have not an extensible design. We find our-
selves with a double obstacle to generalize the MRE to continuous variables or hybrid
networks: the need to redefine the GBF and the need to implement it using other
libraries.

Figure 4.2: Summary of the functionalities implemented by BN library. Source:
Atienza et al. (2022)

• Integrate the comparison of queries in other tools that have graphic user interface
(GUI).

One of the most powerful tools to construct model-based decision support systems is
Elvira. Figure 4.3 shows an explanation option in Elvira, that helps in building med-
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Figure 4.3: Elvira main window in inference mode. A BN for the differential diagnosis
of two diseases. Source: Lacave et al. (2007).

ical applications: the simultaneous display of several evidence cases. For instance,
it shows how the probabilities of two diseases increase or decrease when several
findings are introduced. The finding that the patient has a Symptom increases the
probability of both Disease 1 and Disease 2 (see red bar in nodes Disease 1 and Dis-
ease 2). The presence of a certain Sign confirms Disease 1 and reduces our suspicion
of Disease 2 (see the blue bar in nodes Disease 1 and Disease 2) (Díez (2004)).

We believe that it would be useful to be able to compare queries of interest, and
not just posterior probabilities of single variables. As an example, in Figure 4.4 we
have made a prototype with the COVID-19 dataset presented above. On the X axis
we have the possible combinations of the variables of interest ordered in the form
Reinfections/Patients in Hospital. On the y axis, the probabilities associated with the
query P (Reinfections,Patients in Hospital|e), where the evidence takes the possible
values described in the legend.
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Appendix A

Inference algorithms

A.1 Variable elimination

In order to compare the different available heuristics and choose the best one, the
best_heuristic function is defined. It calculates the induced width of all the different
elimination orderings obtained by the different heuristics and plots the results in a
bar chart.

Once we have already chosen the elimination ordering, we extend the query function
of the Variable elimination class (from pgmpy) to plot the optimized subtree after
pruning unnecessary variables. In addition to the results in Section 3.1.1, we show
both the factors from the list that participate in the construction of the new factor,
and the resulting factor (Figure A.1). Everything mentioned above is integrated into
a report in pdf format.

A.2 Junction tree clustering algorithm

The different heuristics to decide the variables deletion order for the triangulation are
compared using the metric defined in Equation (2.4). This task is performed by the
functions cost_triangulate and best_heuristic.

Once we have the elimination order to do the triangulation, the next step is to con-
struct the junction tree. The sequence of steps that go from the moralization of the
network to the junction tree can be visualized with the aid of the function dibujar.
This function is supported by the networkx package, a software for network analysis.

Finally, the algorithm ends with the calibration, and consists of using belief prop-
agation, with an upward and downward pass. In the upward pass we first pick a
root and send all messages to the root. When this process is complete, the root can
send the appropriate message to all of its children. This algorithm continues until
the leaves of the tree are reached, at which point no more messages need to be sent
(downward pass). We represent the sending of messages in the upward and down-
ward pass with arrows of two different colors, and labels on each arrow. According
to the user’s knowledge, more or less detail can be attached to the labels, represent-
ing the calculation of the messages. The code for the representations can be seen in
function calibrate_junction_tree. To conclude, in a similar way to the dibujar function,
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(a) List of the potentials involving the variable (smoke) to be
eliminated.

(b) Final factor.

Figure A.1: One step in the variable elimination process.

we have another function dibujar_subtree that represents the subtree of the junction
tree on which the elimination of variables is done.

Everything mentioned above is integrated into a report in pdf format.

A.3 Approximate inference

The added functionality focuses on improving the interpretability of the Gibbs sam-
pling algorithm, showing the convergence of the sampling process. The pgmpy library
allows to generate Gibbs samples, but does not diagnose its convergence. If we re-
strict ourselves to open-source software, to this purpose we decided to use the R
package coda, which provides functions for diagnostic tests of convergence to the
stationary distribution of the Markov chain. The user will be able to choose between
the Gelman and Robin’s, Geweke’s or Heilde’s test, and in the Gelman case, choose
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between the multivariate or univariate shrink factor.

In addition, we want to increase as much as possible the user’s flexibility by allowing
him to choose between the different sampling algorithms: if there is evidence in the
query, choose between ’rejection’ and ’likelihood’ sampling; if there is no evidence,
choose between ’Gibbs’ and ’forward’ sampling (this sampling functions do not al-
low evidence in pgmpy). pgmpy use rejection sampling in presence of evidence, and
forward sampling in abscence of evidence.

The way to communicate both libraries, pgmpy and coda, is through rpy2, which acts
as an intermediary between R and python. In particular, we use robjects to represent
any R object in python.

The GibbsSampling_int class extends the pgmpy GibbsSampling class, adding the
sample_convergencia function. This function receives as arguments the sizes of the
Markov chains, the chosen convergence diagnosis method, and a boolean argument
with the Gelman Rubin multivariate option. This function generates three chains (a
hyperparameter that had to be fixed due to the lack of flexibility when pgmpy commu-
nicates with rpy2) and saves them in different csv files. Then, it creates robject with
the necessary R syntax to read the csv files and execute the convergence diagnostics
(from coda). After that, we have extended the ApproxInference class with a function
called query_GibbsChoice. This function is used to allow making approximate infer-
ences using Gibbs sampling (and is supported by the function sample_convergencia).
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Appendix B

MPE

B.1 Implementation

The implementation is based on introducing new functionalities to EDAspy. There-
fore, only these details will be commented, and not all the programming of the EDAs
itself.

The create_widgets method creates the main window with checkboxes for selecting
columns from the DataFrame and an entry field for entering the numeric value ’In-
crease in density function’. If everything is valid, the open_values_window method is
called. It opens a new window to enter the values for each evidence variable, and its
‘soft margins’.

Once we have all this information, we are ready to instantiate the class myEDA_evidence
and the function minimize to start the EDA. This class extends the EDA class of the
EDAspy library, with the cost function defined in Equation 3.1. In addition, we have
implemented an automation of the white list to speed up the procedure.

White list automation

The software offers the user the possibility of

• Defining a white list and a black list, and

• Automating these lists dynamically during successive iterations, when the re-
sults are good enough. In our case, we save the edges for the next iteration if
the cost is less than 1, and the increase in the value of the density in mode is
greater than ’Increase in density function’. Experimentation tells us that this
procedure speeds up and facilitates obtaining good results in successive itera-
tions of the algorithm.

B.2 Initial interaction with the user

In order to facilitate the introduction of input arguments to our programs, we have
created a graphical interface with the tkinter library (Figure B.1).
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Figure B.1: Interaction with the user: on the left, window to select the variables for
which the evidence is known and the increase in the probability density function.
On the right, window to select the values of the evidence and the margins (the ’soft
evidence’ described above in Section 3.2.2).



MPE

B.3 Results

B.3.1 Electric motor temperature

For the electric motor temperature dataset, the covariance matrix of the original BN,
the covariance matrix of the optimized BN, the mean of the original BN and the mean
of the optimized BN can be seen in Tables B.1, B.2, B.3, B.4, respectively.

Coolant Stator
wind-
ing

Stator
tooth

motor
speed

pm stator
yoke

ambient torque

coolant 0.76 0.96 0,59 0.83 5.84 0,1 -0.05 128.33
stator winding 0.96 126.93 85.99 519.79 84.86 49.46 0 226.83
stator tooth 0.59 85.99 59.82 401.31 63.19 35.01 1.28 138.35
motor speed 0.83 519.79 401.31 60057.82 437.38 239.41 51.33 193.62
pm 5.84 84.98 63.19 437.38 784.66 57.73 4.69 1370.96
stator yoke 0.1 49.46 35.01 239.42 57.73 54.66 1.25 23.02
ambient -0.05 0 1.28 51.33 4.69 1.25 1.41 -12.41
torque 128.33 226.83 138.35 193.62 1370.96 23.02 -12.41 30093.95

Table B.1: Covariance matrix of the original BN.

Coolant Stator
wind-
ing

Stator
tooth

motor
speed

pm stator
yoke

ambient torque

coolant 0.43 0.98 0.59 0.46 4.87 0.00 -0.06 53.46
stator winding 0.98 131.68 89.31 129.62 88.33 51.50 0.00 230.23
stator tooth 0.59 89.31 62.23 90.32 65.91 36.54 1.33 139.76
motor speed 0.46 129.62 90.32 17968.65 73.28 53.03 1.92 108.31
pm 4.87 88.33 65.91 73.28 1659.06 57.15 4.91 1145.94
stator yoke 0.00 51.50 36.54 53.03 57.15 60.25 1.31 0.01
ambient -0.06 0.00 1.33 1.92 4.91 1.31 1.45 -13.31
torque 53.46 230.23 139.76 108.31 1145.94 0.01 -13.14 12586.90

Table B.2: Covariance matrix of the optimized BN.

Coolant Stator
winding

Stator
tooth

motor
speed

pm stator
yoke

ambient torque

18.89 60.66 50.13 4987.03 58.81 37.25 23.94 25.68

Table B.3: Mean of the original BN.

Coolant Stator
winding

Stator
tooth

motor
speed

pm stator
yoke

ambient torque

18.94 60.61 53.52 5051.80 61.5121 39.15 24.018 25.20

Table B.4: Mean of the optimized BN.

B.3.2 COVID-19

For the COVID-19 dataset, the covariance matrix of the original BN, the covariance
matrix of the optimized BN, the mean of the original BN and the mean of the optimized
BN can be seen in Tables B.6, B.7, B.8, B.9, respectively.
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Coolant Stator
wind-
ing

Stator
tooth

motor
speed

pm stator
yoke

ambient torque

Coolant 1,77E+00 9,80E-01 1,00E+00 1,80E+00 1,20E+00 8,33E-01 2,40E+00
Stator winding 9.80E-01 9.64E-01 9.63E-01 4.01E+00 9.61E-01 9.60E-01 9.85E-01
Stator tooth 1.00E+00 9.63E-01 9.61E-01 4.44E+00 9.59E-01 9.58E-01 9.62E-01 9.90E-01
motor speed 1.80E+00 4.01E+00 4.44E+00 3.34E+00 5.97E+00 4.51E+00 2.67E+01 1.79E+00
pm 1.20E+00 9.62E-01 9.59E-01 5.97E+00 4.73E-01 1.01E+00 9.55E-01 1.20E+00
stator yoke 9.60E-01 9.58E-01 4.51E+00 1.01E+00 9.07E-01 9.54E-01 2.30E+03
ambient 8.33E-01 9.62E-01 2.67E+01 9.55E-01 9.54E-01 9.72E-01 9.32E-01
torque 2.40E+00 9.85E-01 9.90E-01 1.79E+00 1.20E+00 2.30E+03 9.44E-01 2.39E+00

Table B.5: Ratio covarianceoriginalij /covarianceoptij between the covariances of the original
BN and the optimized BN. In green, remarked increases in this metric.

P test Excess mort Tests across Death w COVID Reinfections Patient in MVBs Hospital admission 2nd dose Patient in H New inf
P tests 1.21E+09 -2.73E+04 8.87E+09 3.18E+05 1.03E+08 1.68E+06 1.42E+07 5.41E+05 9.42E+07 1.10E+0.9
Excess mort -2.73E+04 4.61E+04 1.99E+07 2.51E+04 -7.37E+05 -2.73E+05 1.21E+05 -1.20E+04 1.07E+06 -1.73E+04
Tests across 8.87E+09 1.99E+07 2.12E+12 2.18E+09 -5.62E+10 9.35E+09 5.98E+09 -4.57E+08 5.77E+10 8.21E+09
Death w COVID 3.18E+05 2.51E+04 2.18E+09 4.34E+06 -6.77E+07 1.16E+07 9.72E+06 -9.30E+05 9.63E+07 3.94E+06
Reinfections 1.03E+08 -7.37E+05 -5.62E+10 -6.77E+07 1.73E+09 -2.85E+08 -1.82E+08 1.41E+07 -1.76E+09 9.17E+0.7
Patient in MVBs 1.68E+06 -2.73E+05 9.35E+09 1.16E+07 -2.85E+08 4.47E+07 3.78E+07 -3.45E+06 3.65E+08 2.00E+06
Hospital adm 1.42E+07 1.21E+05 5.98E+09 9.72E+06 -1.82E+08 3.78E+07 2.34E+07 -2.05E+06 2.34E+08 1.32E+07
2nd dose 5.41E+05 -1.20E+04 -4.57E+08 -9.30E+05 1.41E+07 -3.45E+06 -2.05E+06 2.00E+05 -2.12E+07 4.90E+05
Patient in H 9.42E+07 1.07E+06 5.77E+10 9.63E+07 -1.76E+09 3.65E+08 2.34E+08 -2.12E+07 2.16E+09 8.77E+07
New inf 1.10E+09 -1.73E+04 8.21E+09 3.94E+05 9.17E+07 2.00E+06 1.32E+07 4.90E+05 8.77E+07 1.01E+09

Table B.6: Covariance matrix of the original BN.

P test Excess mort Tests across Death w COVID Reinfections Patient in MVBs Hospital admission 2nd dose Patient in H New inf
Positive tests 1.55E+09 -6.78E+04 1.27E+10 3.95E+05 1.38E+08 1.93E+06 1.65E+07 5.58E+05 1.19E+08 1.41E+09
Excess mort -6.78E+04 4.30E+03 2.27E+06 6.23E+04 -1.22E+04 2.63E+05 2.88E+04 -2.67E+02 2.60E+05 3.97E+05
Tests 1.27E+10 2.27E+06 2.05E+11 3.83E+07 1.11E+09 1.89E+08 1.38E+08 5.78E+06 1.10E+09 1.40E+10
Death with COVID 3.95E+05 6.23E+04 3.83E+07 7.44E+05 -9.06E+04 3.08E+06 7.27E+05 -6.59E+03 7.36E+06 6.11E+06
Reinfections 1.38E+08 -1.22E+04 1.11E+09 -9.06E+04 1.43E+07 -1.94E+05 1.19E+06 5.88E+04 8.62E+06 1.24E+08
Patient in MVBs 1.93E+06 2.63E+05 1.89E+08 3.08E+06 -1.94E+05 1.20E+07 2.05E+06 -1.84E+04 2.20E+07 2.24E+07
Hospital adm 1.65E+07 2.88E+04 1.38E+08 7.27E+05 1.19E+06 2.05E+06 2.23E+06 -1.03E+04 2.09E+07 2.18E+07
Second dose 5.58E+05 -2.67E+02 5.78E+06 -6.59E+03 5.88E+04 -1.84E+04 -1.03E+04 8.24E+02 -1.17E+05 4.85E+05
Patient in hosp 1.19E+08 2.60E+05 1.10E+09 7.36E+06 8.62E+06 2.20E+07 2.09E+07 -1.17E+05 2.43E+08 1.56E+08
New infections 1.41E+09 3.97E+05 1.40E+10 6.11E+06 1.24E+08 2.24E+07 2.18E+07 4.85E+05 1.56E+08 1.55E+09

Table B.7: Covariance matrix of the optimized BN.

P test Excess mort Tests across Death w COVID Reinfections Patient in MVBs Hospital admission 2nd dose Patient in H New inf
26278.38 9.53 608611.09 230.63 1506.21 857.68 1044.15 45.30 9656.13 24910.40

Table B.8: Mean of the original BN.

P test Excess mort Tests across Death w COVID Reinfections Patient in MVBs Hospital admission 2nd dose Patient in H New inf
26920.59 8.67 556539.81 238.04 1931.50 819.49 1088.38 43.50 10209.25 25081.32

Table B.9: Mean of the optimized BN.



Appendix C

MRE

C.1 Implementation

The MRE implementation presents a modular structure. The main function is the
main entry point of the program called myEDA and is responsible for

1. Calling the file functions preprocessing_* to load the data, and do the prepro-
cessing. This function will be customized for each dataset.

2. Creating the main window to select the columns on which you want to declare
the evidence using a checkbox, and save those variables in a dictionary. It
then creates a new window where the dropdown menus will be displayed. Ad-
ditionally, when the "Save Selection" button is clicked the selected values from
the dropdown menus are retrieved, creating a DataFrame selected_df using the
selected values.

3. Generating the k-MRE list by calling the functions defined in functions (see
below).

4. Generating the parallel coordinate graphs to visualize the results obtained. The
funciones_plot file is responsible for generating the parallel coordinate graphs
from the k-MRE list.

The file functions contains all the necessary implementation to generate a Bayesian
network model from the data, to calculate the MRE for the inserted evidence, following
the forward search algorithm exposed above (Section 3.3.1), and to generate a list with
the k-MRE using the algorithm based on strong and weak dominance.

The initialize function is used to initialize the local lookup process. A random variable
and a random state are selected to begin the search.

The neighbors_add function generates neighbors for the current state by adding differ-
ent values to unobserved variables.

The neighbors_change function generates neighbors for the current state by changing
the values of observed variables.

The GBF function calculates the GBF for the evidence explanation. It uses exact
inference to calculate the necessary conditional probabilities.
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C.2. Initial interaction with the user

The get_MRE function compares the GBFs of the neighbors and returns the neighbor
with the highest GBF.

The strong_dom function checks if an explanation is strongly dominated by any in-
stance in the dataframe in terms of explanations and GBF.

The weak_dom function checks if an explanation is weakly dominated by any instance
in the dataframe in terms of explanations and GBF.

The get_kMRE function performs the MRE search algorithm to generate a list of
most relevant explanations. It uses the initialize, neighbors_add, neighbors_change,
get_MRE, GBF , strong_dom and weak_dom functions to perform the lookup process.
Then, it filters the explanations found by removing those that are strongly or weakly
dominated by other explanations. Finally, it returns the three best explanations.

The learn_model function induces a Bayesian model from a dataframe using the Hill-
Climb search algorithm and the K2 score.

C.2 Initial interaction with the user

The user introduces the input arguments (the number of explanations (k) and the
evidence) through a graphical interface (Figure C.1).

Figure C.1: Selection of the number of explanations, evidence variables and their
values.
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