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Resumen

Cada vez más la explicabilidad e interpretabilidad están siendo más importantes a la
hora de desarrollar modelos de machine learning, debido a la necesidad de entender
por qué toman las decisiones estos modelos para adoptarlos en distintos sectores.
En los últimos años se han desarrollado multitud de técnicas para explicar tanto los
modelos como las predicciones, haciendo más fácil la adopción de estos modelos.

Nuestro objetivo en este trabajo es contribuir desarrollando y mejorando técnicas
para la interpretabilidad de redes Bayesianas y clasificadores Bayesianos. Para ello
propondremos soluciones basadas en algoritmos de estimación de distribuciones.

Existen multitud de técnicas para explicar modelos de machine learning, métodos que
explican el razonamiento de los modelos, otros que intentan explicar las predicciones
o la importancia de las variables. Nosotros nos centraremos en una técnica que
busca explicar las predicciones de clasificadores Bayesianos, concretamente en las
explicaciones contrafactuales. Estas buscan qué se debe de cambiar en los datos
de entrada para obtener una salida deseada. Dentro de este ámbito propondremos
una técnica multi-objetivo que busque el contrafactual mínimo, el que más cerca esté
de la entrada optimizando varios objetivos. Este método utilizará los algoritmos de
estimación de distribuciones para encontrar el mejor contrafactual y lo aplicaremos
a un grupo de clasificadores Bayesianos.

En cuanto a las redes Bayesianas, propondremos un algoritmo para resolver el prob-
lema de la determinación de la explicación más relevante, que consiste en una técnica
que busca la explicación que maximice una métrica a partir de unas evidencias en la
red, obteniendo una explicacion buena y concisa. Propondremos un método basado
también en algoritmos de estimación de distribuciones, además de implementar otros
algoritmos heurísticos para su comparación. También se utilizarán algoritmos exis-
tentes para comparar los resultados entre todos los métodos desarrollados.
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Abstract

Increasingly, explainability and interpretability are becoming more and more impor-
tant when developing machine learning models, due to the need to understand why
these models make decisions in order to adopt them in different sectors. In recent
years a multitude of techniques have been developed to explain both the models and
the predictions, making the adoption of these models easier.

Our goal in this work is to contribute by developing and improving techniques for
interpretability of Bayesian networks and Bayesian classifiers. We will propose solu-
tions based on estimation of distribution algorithms.

There are many techniques to explain machine learning models, methods that explain
the model reasoning, others that try to explain the predictions or the importance of
the variables. We will focus on a technique that seeks to explain the predictions
provided by Bayesian classifiers, specifically counterfactual explanations. Counter-
factuals look for what should be changed in the input data to obtain a desired out-
put. Within this scope we will propose a multi-objective technique that looks for the
minimum counterfactual, the one that is closest to the input by optimizing several
objectives. This method will use estimation of distribution algorithms to find the best
counterfactual and we will apply it to a set of Bayesian classifiers.

Regarding Bayesian networks, we will propose an algorithm to solve the most rele-
vant explanation problem, which consists of a technique that searches for the expla-
nation that maximizes a metric from evidence in the network, obtaining a good and
concise explanation. We will propose a method based on estimation of distribution
algorithms, in addition to implementing other heuristic algorithms for comparison.
Existing algorithms will also be used to compare the results between all the devel-
oped methods.
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Chapter 1

Introduction

Each year artificial intelligence and machine learning models become increasingly
popular and powerful, but at the same time their complexity renders them less in-
terpretable. Explainable artificial intelligence has gained protagonism, enhancing
interpretable models and providing post-hoc explanations for black box models. This
interpretability is becoming an indispensable requirement for people to trust these
models, which is why within this field there is a large variety of methods and mod-
els developed to find explanations (Holzinger et al. (2022), Molnar (2022), Linardatos
et al. (2020)). Dwivedi et al. (2023) describe the different types of techniques in which
explainability can be approached depending on the objective pursued, such as ex-
plaining the reasoning of the model, explaining the importance of different variables
or explaining specific instances.

Interpretability usually comes with a drop of the model performance, therefore it
is necessary to evaluate if in the specific use case it is necessary or not. But at
the same time there are a lot of problems for which it is not enough to know the
correct prediction, being essential to know why. Some reasons of the importance of
interpretability and explainability are (Doshi-Velez and Kim (2017),Molnar (2022)):

• Human curiosity and learning: humans have a mental model of their environ-
ment, and this model is updated each time we find something unexpected or
new. As humans we want to know why the machine learning model makes a
prediction, either to understand the model or to reaffirm our knowledge in the
area.

• Safety: when we have a task that entails risk it is important to be able to imple-
ment safety measures into the model and test it. So explaining the decisions is
essential in order to reveal the possible failures and why they occur.

• Bias: interpretability can be helpful for detecting biases, and importantly why
and when these biases occur. Knowing this simplifies the task of changing the
training process or the training data to avoid a biased model.

• Social acceptance: in many areas when you try to get people to use a machine
learning model, they are skeptical because they do not know if the model’s an-
swer is correct or not.

• Debugging: knowing why the model predicts something permits to debug the
model easily, not only in the development phase but also after development to
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1.1. Objectives

fix mistakes.

All these factors allow for fairer, private, robust and reliable models, features increas-
ingly requested not only by model users but also by the new legislation on artificial
intelligence (Selbst and Barocas (2018)).

Having seen the importance of explainability, one may wonder what an explanation
is and what characteristics a good explanation has. Miller et al. (2017) conducted
a survey in search of answers to these questions. As to what an explanation is, he
concludes that it must answer a why-question, which can be answered simply or can
require more questions or knowledge of the area. The important questions to find
explanations in machine learning are the first ones, since they allow anyone to trust
the model or its results.

On the other hand, they found several characteristics present in the best explana-
tions:

• Explanations are contrastive, since many times we do not ask ourselves why
a prediction has been made but we want to know why that prediction and not
another. This means that users will care not only about explaining the actual
predictions but also about explaining why others not.

• Explanations are concrete: it is not expected that the explanation can explain
all the causes of an event but that concrete causes are explained. Therefore it is
better to give short solutions with few reasons, improving the comprehension of
the explanation.

• Explanations are social: depending on the target audience the explanation should
be different, being simpler or more complex.

• Explanations focus on the abnormal: people give an explanation of the events
that occur to abnormal causes. Therefore, models should include in their expla-
nations the variables that present strange and abnormal data.

• Explanations are truthful and general: good explanations must be reliable and
faithful, so if in one case something occurs and the model gives it as an expla-
nations it should be true for more instances.

All these characteristics about explanations will be considered during the develop-
ment of this work and applied to obtain better explanations. We will focus on ex-
planations based on counterfactuals, which look for what change is necessary in an
input to obtain a desired class with a Bayesian classifier, and explanations of evidence
in general Bayesian networks according to the concept of most relevant explanation.

1.1 Objectives

The main objective of this work is within the framework of finding explainability and
interpretability in machine learning models. The developed algorithms will be ap-
plied to Bayesian networks and Bayesian classifiers using estimation of distribution
algorithms and compared with existing algorithms.

Within the general explainability, we will seek to develop an algorithm for the com-
putation of counterfactuals with a multi-objective function based on estimation of
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Introduction

distribution algorithms. The proposal will be compared with the implementation of
genetic algorithms and tested with a set of Bayesian classifiers.

For this purpose, an algorithm based on estimation of distribution algorithms is pro-
posed to solve the most relevant explanation problem in Bayesian networks. The aim
is to improve both the search for the best explanation and the speed of the existing
algorithms and to implement other heuristic algorithms to obtain a more comprehen-
sive comparison.

1.2 Contents

The document is organized as follows:

• Chapter 2 explains and reviews the state of the art related to our proposal. First,
Bayesian networks are introduced in Section 2.1. Subsequently, the latest ad-
vances in explainability are discussed in general, specifying in their subsections
the methods related to our proposal. Explanations in Bayesian networks are
presented, focusing on most relevant explanation and on counterfactual expla-
nations. Finally, estimation of distribution algorithms will be introduced.

• Chapter 3 presents our proposal for finding counterfactual explanations. We
introduce the minimization function used, the algorithms applied and the set of
models. After this, the experiments carried out and the different results obtained
are shown.

• Chapter 4 shows our proposal to solve the most relevant explanation problem,
presenting the algorithms used and the different modifications made to improve
explanations and computational speed. Then, the experiments and results ob-
tained are shown.

• The conclusions obtained and possible improvements and modifications for fu-
ture work are outlined in Chapter 5.

• Additionally in the Appendix, more information of the most relevant explanation
example is shown.
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Chapter 2

State of the Art

2.1 Bayesian networks

A Bayesian network (BN) (Koller and Friedman (2009), Pearl (1988)), is a tuple B =
(G, θ), where G = (V,A) is a directed acyclic graph (DAG) with a set of nodes V =
{X1, . . . , Xn} and a set of arcs A ⊆ V × V . A Bayesian network represents the prob-
ability distribution, P (x) of a multivariate random variable X = (X1, . . . , Xn). The set
θ = {P (xi|PaXi)} defines a conditional probability distribution (CPD) for each node of
the graph, where PaXi is the set of parents of Xi in graph G. This allows to represent
the joint probability distribution P (x) as,

P (x) =
n∏

i=1

P (xi|PaXi) (2.1)

Although there are different types of Bayesian networks, such as ones that allow
continuous data, hybrid networks or dynamic networks, we will focus on discrete
Bayesian networks.

In addition to the explicitly represented conditional probabilities, a BN also implicitly
represents conditional independence assertions. Let X1, X2, . . . , Xn be an (ancestral)
enumeration of all the nodes in a BN such that each node appears after its parents,
and let PaXi be the set of parents of a node Xi. So each variable Xi is conditionally
independent of the variables in {X1, X2, . . . , Xi−1} given its parents.

2.1.1 Inference

Inference refers to finding the probability of any variable conditioned on a given evi-
dence or fixed values for some of the variables in the BN, i.e. P (Xi|e). Inference also
refers to finding values of a set of variables that best explain the observed evidence,
called abductive inference.

Referring to the first definition of inference, we can distinguished between exact in-
ference and approximate inference methods.
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2.1. Bayesian networks

2.1.1.1 Exact methods

Exact inference algorithms are designed to give an exact answer to the probabilis-
tic query. While these methods are tractable for many real world applications, they
are limited by its worst case exponential performance and they are NP-hard (Cooper
(1990)). The brute force approach is conceptually simple but computationally com-
plex, often very inefficient and intractable in real problems. Therefore other methods
have been proposed:

• Variable elimination (Zhang and Poole (1994)). The idea behind this method is to
successively remove variables from a BN while maintaining its ability to answer
the query of interest. Variable elimination works with local computations, giving
importance to the elimination ordering, but finding an optimal ordering is NP-
hard (Bertele and Brioschi (1972)).

• Junction tree. This method entails the creation of the junction tree (moralise,
triangulate the moral graph, obtain the cliques, create the junction tree and its
separators and compute the junction tree parameters) and the message passing
algorithm (Lauritzen and Spiegelhalter (1988)) for the calculation of probabili-
ties.

2.1.1.2 Approximate methods

Approximate inference algorithms are designed to give an approximate answer to
the probabilistic query, since exact methods are intractable with large and dense
networks. These methods use the network to generate a large number of cases from
the network distribution, estimating P (Xi|e) from the generated cases by counting
observed frequencies in the samples. As the number of cases increases, the estimated
probability converges to the exact one, but Dagum and Luby (1993) demonstrated
that approximate inference in BNs within an arbitrary tolerance or accuracy is also
NP-hard. The main methods are:

• Forward sampling. It is the simplest approach for generating samples, where
the method samples the nodes using the topological ordering of X in the BN.
With this, each time we sample a node we have values for all of its parents, so
then we can sample from the distribution defined by the CPD and by the chosen
values for the node’s parents.

• Likelihood weighting (Shachter and Peot (1990)). It takes into account the values
of the observed nodes, forcing them to these values. That means that when we
come to sample an observed node, we simply set it to its observed value. When
we consider multiple observations and we want our sampling process to set all
of them to their observed values, it is necessary to consider the probability that
each of the observation nodes would have in the observed values. This is done
by assigning weights to the samples depending of this probability.

• Gibbs sampling (York (1992)). This method generates a sequence of samples
which is constructed so that, although the first sample may be generated from
the prior, successive samples are generated from conditional distributions that
probably get closer and closer to the desired posterior.
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2.1.2 Learning

The problem of fitting BNs requires learning both the structure of the graph G and the
parameters θ. To learn the structure of the network we need to find the underlying
conditional independence relationships between our variables. This in turn fixes the
number of parameters of our model and, after making some assumptions on the
distributions of our variables, allows us to find the most appropriate values for θ.
Learning BNs is a very broad topic that depends on the specific goal and structure
searched (Daly et al. (2011)).

2.1.2.1 Parameter estimation

Let us assume that we already have a graph structure G and a dataset D = {d1,d2, . . . ,dm},
where di = (xi1, x

i
2, . . . , x

i
n) is a row in our dataset with the values of all variables

X = (X1.X2, . . . , Xn) in our graph. In this scenario, we want to learn the network
parameters θ defined by G that best fit our data D. We can typically perform this
automatically from data via maximum likelihood estimation or Bayesian estimation.

Maximum likelihood estimation

Maximum likelihood estimation (MLE) is one of the most common methods for pa-
rameter estimation. With this method, our aim is to obtain the parameter set θ by
using a point estimate based on all instances of D. To know whether a set θ fits some
data properly we use the likelihood function, but in practice it is often convenient to
use the the log-likelihood function. MLE will search for the set of parameters θ̂ that
maximizes the log-likelihood of the data:

θ̂ = max
θ

l(θ : D) (2.2)

This poses a high dimensional optimization problem, even for BNs with a low number
of nodes, since we need to optimize over all the CPDs in the network. But there exists
a factorization decomposing it into a summation of independent terms, one for each
CPD in the network, and then combine these individual solutions to get the MLE.

Bayesian estimation

These methods estimate the parameters by using a point, such as the MLE, now
there is a measure of uncertainty, and prior knowledge can be incorporated into the
learning process. The prior knowledge is introduced via a prior distribution over
the parameters, and uncertainty is reflected in its posterior distribution. The poste-
rior distribution encodes updated beliefs once prior knowledge and data have been
taken into consideration. For a fixed structure G, the posterior distribution of the
parameters is given with the Bayes theorem. Then Bayesian estimation gives a de-
composition, similar to MLE, for obtaining the best set of parameters for the data.

2.1.2.2 Structure learning

The task of learning the graph structure of a BN is a complex problem where the
search space of possible DAGs grows super-exponentially with the number of nodes.
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2.2. Explainability

In order to find appropriate structures, many authors have proposed different struc-
ture learning algorithms, but we will focus on the score-based method.

Score-based method

Score-based algorithms define the task of finding the best graph structure as an
optimization problem. If we define a score that identifies how well does a graph fit
some data, then we can maximize this score to find an optimal structure. However,
the problem of finding the optimal network is NP-hard (Cooper (1990)) and algorithms
have to resort to heuristics in the search phase to find the best possible structure
instead of the optimal one. These methods are divided into two phases:

• Score phase, consists of a score that will be maximized. Different scores have
been used such as the log-likelihood, Akaike information criterion or Bayesian
information criterion.

• Search phase, consists of searching the space of possible networks as an opti-
mization problem. The common procedure is to apply some heuristic to search
for good candidate networks, such as hill-climbing or tabu.

2.2 Explainability

Explainability and interpretability can be achieved in different ways depending on our
objective, type of data or model. The different approaches can be divided into cate-
gories, where each technique is classified into one type in each of them (Linardatos
et al. (2020),Molnar (2022)):

• Model specific or model agnostic: model specific methods can be applied to a
single model or group of models, taking advantage of the capabilities of that
model and its characteristics, while model agnostic methods can be applied to
any model.

• Local or global: global methods search to explain the overall model while local
ones explain a single prediction.

• Intrinsic or post-hoc: intrinsic methods provide an intrinsic explainability, re-
sulting in interpretable models, while post-hoc methods analyze the model after
training.

• Result of an interpretability method: the interpretability methods can be dif-
ferentiated given what they provide. Some methods give a feature summary,
either statistic or visual, showing their interpretation and significance. Other
methods interpret the model internals, like the learned tree structure of deci-
sion trees, or give interpretable models as a result, where the model itself can be
interpreted, like BNs. Some methods explain data points, giving explanations to
given instances or modifying them to gain interpretability.

2.2.1 Counterfactuals

Among the techniques explaining the reasoning of the model, we will focus on coun-
terfactual explanations within supervised classification. They answer the question of
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which minimal change is needed in the input data to obtain a desired output. Ob-
taining good counterfactual explanations may not be straightforward, hence many
methods have been developed (Verma et al. (2020), Guidotti (2022)). Heuristic search
based approaches usually involve minimizing a cost function accounting for the
sought objective(s). Wachter et al. (2017) is one of the first works to propose to
optimize a function, combining the distance between the input and the generated
counterfactual, and the counterfactual estimated output class probability. Dhurand-
har et al. (2018) add plausibility in their cost function and Mothilal et al. (2020) focus
on plausibility and solution diversity, penalizing similar solutions. As for the heuris-
tic search used, Lash et al. (2017) use genetic algorithms and local search, Moore
et al. (2019) apply gradient-descent methods and Lucic et al. (2020) use Monte Carlo
simulation. Many existing methods combine different objectives into a single one to
fulfil the desired properties, at the expense of losing information when combined.
Other methods pose the problem as a multi-objective optimization one.

Different authors have defined counterfactual explanations from a variety of points
of view. For example, Guidotti (2022) formalized the problem with the objective of
minimizing the change of the input variables for achieving a different prediction.

Definition 1 (Guidotti (2022)) Given a classifier ϕ that outputs the decision c = ϕ(x)
for an instance x, a counterfactual explanation consists of an instance x′ such that
the decision for ϕ on x′ is different from c, i.e., ϕ(x′) ̸= c, and such that the difference
between x and x′ is minimal.

To find the best possible explanation, a counterfactual explainer will be used, which
will be in charge of finding x′ that meets the constraints of Definition 1. Thus, the
only thing that remains to be defined is what it means for the difference between x
and x′ to be minimal. Each method for calculating counterfactuals has defined which
objectives are important to obtain that minimal difference while being a high quality
counterfactual. The objectives that we consider most important are:

• Validity: the classification output has to be different from the original one.

• Minimality: the number of variables or the distance between x′ and x should be
as small as possible. Each counterfactual explainer will have its own aim.

• Plausibility: x′ should be coherent with an observation population, i.e., x′ can
occur with the given data.

2.2.2 Bayesian networks explainability

In the area of BNs, specific methods have been developed to provide explanations.
Unlike many machine learning methods that are mostly predictive methods, BNs can
be used for both prediction and explanation, with a good representation of a domain.
Explanations in BNs can be classified into explanation of reasoning, explanation of
model and explanation of evidence (Lacave and Díez (2002)). The objective of the
explanation of reasoning is to explain the reasoning process used to produce results,
so you can believe the obtained result. The explanation of model seeks to show the
knowledge encoded in the network in a understandable form, such as visual aids.
The goal of the explanation of evidence is to explain why some observed variables are
in their particular states using the other variables available.

We will focus on explanation of evidence, searching what nodes explains the evidence.
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2.2. Explainability

A multitude of methods have been developed to find these explanations, where some
of them simplify the problem and focus on singleton explanations. For example, it
is often assumed that the fault variables are mutually exclusive and collectively ex-
haustive, and there is conditional independence of evidence given any hypothesis
(Heckerman et al. (1995)). These explanations are not capable of fully explaining the
evidence, since in many cases their explanation requires multiple causes. Therefore,
methods capable of finding multivariate explanations have been developed. Maxi-
mum a posteriori assignment (MAP) finds a complete instantiation of a set of target
variables that maximizes the joint posterior probability given evidence on the other
variables (partial abduction). Most probable explanation (MPE) (Pearl (1988)) is sim-
ilar to MAP except that MPE defines the target variables to be all the unobserved
variables (total abduction). The main drawback of these methods is that they often
produce hypotheses that are overspecified and may contain irrelevant variables in ex-
plaining the given evidence. Due to this, various pruning techniques have been used
to avoid overly complex explanations, where these methods can be divided into two
categories: pre-pruning and post-pruning. Pre-pruning methods use the context spe-
cific independence relations represented in BNs to prune irrelevant variables. Post-
pruning methods first generate explanations using methods such as MAP or MPE
and then prune variables that are not important. Although various improvements
and methods have been proposed, many of them continue to produce explanations
that are either too simple or too complex.

2.2.2.1 Most relevant explanation

Yuan et al. (2011b) propose the most relevant explanation (MRE) method which finds
a partial instantiation of the target variables that maximizes the generalized Bayes
factor (GBF), this being the best explanation given the evidence.

MRE uses the GBF because it fulfills two indispensable characteristics of a good
explanation, which are precision and consistency. This implies that an explana-
tion should be precise which means that it should reduce the surprise about the
explanandum as much as possible, while consistency means that the explanation
should contain only the most relevant variables to explain the evidence, avoiding
irrelevant variables.

The Bayes factor is the ratio between the likelihoods of a hypothesis and an alterna-
tive hypothesis (Fisher (1935), Jeffreys (1961)). The Bayes factor assigns large values
when the probabilities approach certainty. The problem with the Bayes factor is that
it is difficult to use it to compare more than two hypotheses and therefore it is nec-
essary to make pairwise comparisons between multiple hypotheses. Because of this
limitation, the Bayes factor is generalized to be able to compare different hypotheses.

Definition 2 Generalized Bayes factor (GBF) of an explanation x for a given evidence
e is defined as

GBF (x;e) ≡ P (e|x)
P (e|x̄)

(2.3)

where x̄ means the set of all alternative hypotheses of x.

It should be noted that it is not necessary to compute P (e|x̄) directly when calculating
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GBF (x;e). Instead we compute

GBF (x;e) =
P (x|e)(1− P (x))
P (x)(1− P (x|e))

(2.4)

Yuan et al. (2011b) present different theoretical properties of the GBF that allow us
to identify the most relevant target variables for the explanation.

Handling extreme values

GBF assigns much more weight to probabilities in ranges close to 0 and 1, since these
values ensure certainty about the event. Therefore, any change in the probability
from a value down to 0 or up to 1 will imply a much higher weight even if the change
is minimal. Some special cases are also taken into account:

• If P (x) = 0.0, then P (x|e) will be 0 as well and the GBF will be 0.

• If P (x) = 1.0 and P (x|e) = 1.0, the GBF will be 0, since the explanation will be true
whether the evidence is there or not, therefore it does not provide information.

• If P (x) < 1.0 and P (x|e) = 1.0, the GBF will be infinite.

Monotonicity of GBF

Monoticity is studied by taking into account the difference between the posterior
and prior probabilities and the belief update ratio. For the first one, it is commonly
believed that the same amount of difference in probability in ranges close to zero or
one is much more significant than in other ranges. Figure 2.1 shows the GBF against
the prior probability when the difference between the posterior and prior probabilities
is fixed. It is clearly seen how the GBF is higher when the probability changes close
to 0 and 1.

Figure 2.1: The GBF as a function of the prior probability given a fixed increase in
the posterior probability from the prior. The different curves correspond to different
probability increases (Yuan et al. (2011b))

The belief update ratio is defined as follows,
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Definition 3 Assuming P (x) ̸= 0, the belief update ratio of x given e, r(x;e), is defined
as

r(x;e) ≡ P (x|e)
P (x)

(2.5)

Regarding the belief update ratio, we have the following theorem,

Theorem 1 (Yuan et al. (2011b)) For an explanation x with a fixed belief update ratio
r(x;e) > 1.0, GBF(x;e) is monotonically increasing as the prior probability P(x) increases.

Figure 2.2 shows the GBF as a function of the prior probability while fixing the belief
update ratio. As the prior probability of an explanation increases, under the same
belief update ratio of probability the GBF increases and becomes more and more
significant. Therefore, the GBF provides more discriminant power than the belief
update ratio.

Figure 2.2: The GBF as a function of the prior probability when the belief update
ratio is fixed. The different curves correspond to different belief update ratios (Yuan
et al. (2011b))

Achieving conciseness in explanations

The key property of GBF is that it is able to weigh the relative importance of mul-
tiple variables and only include the most relevant variables in explaining the given
evidence.

Theorem 2 (Yuan et al. (2011b)) Let x be an explanation with r(x;e) > 1 and Y a vari-
able that is conditionally independent from E given x, then for any state y of Y, we
have

GBF (x, y;e) < GBF (x;e). (2.6)

Theorem 2 captures the intuition that conditionally independent variables add no
additional information to an explanation in explaining the evidence. Note that these
properties are all relative to an existing explanation. It is possible that a variable is
independent from the evidence given one explanation, but becomes dependent on the
evidence given another explanation.

With GBF defined and the theoretical properties presented we are able to give a con-
crete definition for MRE for finding explanations for a given evidence in BNs.
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Definition 4 Let M be a set of target variables, and e be the partial evidence on the
remaining variables in a Bayesian network. Most relevant explanation is the problem
of finding an explanation x for e that has the maximum generalized Bayes factor score
GBF(x;e), i.e.,

MRE(M;e) ≡ argmaxx,∅⊂X⊆MGBF (x;e) (2.7)

Although MRE is general enough to be applied to any probabilistic distribution model,
MRE’s properties make it especially suitable for BNs. BNs model the conditional
independence relations between the random variables of a domain so that we not
only obtain a concise representation of the domain but also have efficient algorithms
for reasoning about the relations between the variables.

2.3 Estimation of distribution algorithms

Estimation of distribution algorithms (EDAs) (Larrañaga and Lozano (2002)) are evo-
lutionary algorithms that, at each generation, explore the solution space by sampling
a probabilistic model constructed from the best solutions found. The EDA proce-
dure is outlined in Algorithm 1. EDAs work with a population of candidate solutions,
which are scored using a cost function (line 3). This function ranks the solutions and
the best ones are selected to learn the probabilistic model (lines 4 and 5). Then a new
population is sampled from the model (line 6) and the process is repeated until a ter-
mination criterion is met (line 2). From this basic procedure a multitude of variants
have been developed, adapting it to different data types and more complex problems.

Algorithm 1 EDA procedure

Input: Population size, cost function, selection rate
Output: Best individual and cost

1: Initial population
2: for t = 1, 2, . . . until stopping criterion is met do
3: Evaluate population using a cost function
4: Select individuals
5: Learn a probabilistic model from the best individuals
6: Sample new individuals from the probabilistic model
7: end for

Note that EDAs follow a process similar to genetic algorithms but eliminating crossover
and mutation, since the probabilistic model will take care of generating new solutions.
There are many different EDAs (Hauschild and Pelikan (2011)), either for continuous
or discrete data, or depending on the probabilistic model they learn. In this work we
will focus on discrete data and will use two algorithms, univariate marginal distribu-
tion algorithm (UMDA) and estimation of Bayesian network algorithm (EBNA). UMDA
(Mühlenbein and Paass (1996)) is an EDA that assumes that all variables are inde-
pendent and thus their joint probability can be factorized as a product of univariate
marginal probabilities, while EBNA (Etxeberria and Larrañaga (1999)) uses BNs to
capture and exploit the dependencies between variables in the solution space.

EDAs will be used in this work to find the best solutions for counterfactuals and
most relevant explanation problems, where modifications and adaptations to these
problems will be proposed.
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Chapter 3

Counterfactual Explanations

3.1 Proposal

Let X = (X1, . . . , Xn) denote the predictor (categorical) features from N labeled in-
stances and D = {(x1, c1), . . . , (xN , cN )} the dataset, where for each xi = (xi1, . . . , x

i
n), i =

1, . . . , N , we have the respective value ci of a class variable C with labels in the domain
ΩC = {c1, . . . , cR}. The domain of each Xi is accordingly denoted ΩXi.

Definition 5 Given ϕ : ΩXi × · · · × ΩXn → ΩC a Bayesian classifier (Bielza and Lar-
rañaga (2014)), and (x∗, c) an instance of D, a counterfactual explanation x′ for x∗ is a
solution of the multi-objective problem

min
x

f(x) = (f1(x), f2(x), f3(x), f4(x)) (3.1)

where:

• f1(x′) is the prediction objective, defined as the Manhattan distance between the
class-posterior distribution of the counterfactual x′, P(C|x′), and the distribution
corresponding to the desired outcome (i.e., a vector P′ with all zeros except for a
1 in the position corresponding to the desired class),

f1(x) =
|ΩC |∑
i=1

|P′
i − Pi(C|x′)| (3.2)

• f2(x′) is the distance objective, defined as the distance between the input in-
stance x∗ and the counterfactual x′, calculated using the Gower distance (Gower
(1971)) dG,

dG(x′,x∗) =

n∑
i=1

di(x
′
i, x

∗
i )/n (3.3)

where the distance di per feature in the summation varies depending on whether
the feature is categorical, where the distance di is 0 if x′i = x∗i and 1 otherwise, or
numeric, where we use the normalized Manhattan distance for di.

• f3(x′) is the number of feature changes from the input instance x∗ to x′,

f3(x′) =

n∑
i=1

Ix′
i ̸=x∗

i
(3.4)
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• f4(x′) is the plausibility of x′ given D, which is the distance between x′ and its
nearest instance in D, given by the same distance as f2(x′).

These objectives will yield high quality counterfactuals, as they meet the objectives
described in Section 2.2.1. The prediction objective (f1) will allow the validity of the
solutions, the distance objective (f2) and the number of feature changes (f3) will give
minimality to the counterfactual and the plausibility objective (f4) will give plausibil-
ity.

Our proposal is to approach this multi-objective problem with an EDA (MOEDA),
where the individual selection is based on non-dominated sorting and crowding dis-
tance. Non-dominated sorting involves ranking solutions based on Pareto dominance,
where a solution is non-dominated if no other solution is better in all objectives.
Solutions are categorized into different fronts, where the first front consists of non-
dominated solutions, the second front consists of solutions dominated only by those
in the first front, and so on. Crowding distance is a measure used to maintain diver-
sity within each front by estimating the density of solutions surrounding a particular
solution. It is calculated based on the average distance of a solution to its neigh-
bors in the objective space. Together, these methods ensure that the algorithm not
only converges towards the Pareto front but also maintains a diverse set of solutions.
Dandl et al. (2020) used the genetic algorithm NSGA2 (Deb et al. (2000)) to opti-
mize a related function with four objectives. We will compare this algorithm and its
single-objective counterpart against our proposal.

To compute the counterfactuals we build a group of models with five Bayesian clas-
sifiers, see Figure 3.1. The classifiers used are naive Bayes (NB), semi-naive Bayes
(SNB), tree augmented naive Bayes (TAN), hill-climbing tree augmented naive Bayes
(TAN-HC) and K-dependence Bayesian classifier (KDB). NB assumes that the pre-
dictive variables are conditionally independent given the class, SNB relaxes the NB
assumption by allowing dependencies within some groups of variables, TAN uses a
tree structure for the dependencies of the variables, TAN-HC finds this structure in
a wrapper-like manner, with hill-climbing search, and KDB allows each variable to
have K parents. To ensure that the generated counterfactual is as good as possible,
the classifiers are first filtered based on whether their predicted class is correct. Only
in this case the counterfactual will be computed. After this selection, the models are
sorted by their classification accuracy and the model with the highest accuracy is
used. Alternatively, we can also use the results of more than one model, so different
solutions can be obtained. Note that there is a possibility that no solution is found as
no model passes the first filter; however this restriction will allow to avoid generating
counterfactuals that are not accurate.

3.2 Experiments

3.2.1 Implementation and algorithms

The implementation for counterfactual computation can be found on GitHub1. It is
implemented in Python using the libraries Pymoo (Blank and Deb (2020)) for genetic
algorithms and EDAspy (Soloviev et al. (2024)) for EDAs. The Bayesian classifiers

1https://github.com/DanielZaragozaP/counterfactual_ensemble.
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Figure 3.1: Model filtering and selection. NB=Naive Bayes, SNB=Semi-naive Bayes,
TAN=Tree augmented naive Bayes, TAN-HC=Hill-climbing tree augmented naive
Bayes, KDB=K-dependence Bayesian classifier

were implemented in R in the bnclassify package (Mihaljević et al. (2018)). All exper-
iments were conducted on the same hardware (Intel i5-12500H and 16GB RAM).

Four different algorithms have been used to find the best counterfactual, splitting
them into single-objective and multi-objective:

• The single-objective algorithms used are a basic genetic algorithm (GA) and a
UMDA, where both aim at minimizing only the f2 distance.

• The multi-objective algorithms are NSGA2 and MOEDA, the latter based also on
a UMDA. Both algorithms will use the four objectives described in Section 3.1.

The results will consist of the average of all runs between datasets, where each run
with a dataset and algorithm will consist in 100 executions with different inputs. Dif-
ferences in prediction (f1), distance (f2), plausibility (f4) and run time will be shown,
where the objective (f3) of minimizing the number of variable changes will not be
presented, since in general a smaller distance implies fewer variable changes.

3.2.2 Datasets

The selected datasets have all discrete variables and without missing values. The
datasets have been obtained from the UCI Machine Learning Repository (Kelly et al.
(2023)) and from the OpenML repository (Vanschoren et al. (2014)). The datasets have
been selected to contain different number of instances and features to see how the
algorithms performs under different situations, see Table 3.1. In addition, although
most of them are binary classification problems, some contain more than two classes
to see how this affects the obtained counterfactuals. In each dataset, 90% of the data
was used for training and the remaining 10% for testing. The counterfactuals were
calculated from the test data, specifically using 100 instances, except for datasets
where 10% of instances is lower than 100, where we used all test instances instead.
The counterfactual comparisons are calculated taking those test data as an input
and a random class as the desired class.
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Table 3.1: Description of benchmark datasets

Dataset #Instances #Features #Classes

Tic-tac-toe 958 9 2
Car evaluation 1728 6 4
Chess (kr vs kp) 3196 35 2
Mushroom 8124 22 2
Nursery 12960 8 3
Monk 1 556 6 2
Monk 2 601 6 2
Monk 3 554 6 2
Letter 20000 16 26
Phishing Websites 11100 30 2

3.2.3 Results with the best model

The first comparison contrasts the results of the single-objective EDA with the GA
and then the two multi-objective counterparts, all using the filtered model with the
highest accuracy. In Table 3.2 we observe the average gain (in %) of the EDAs with
respect to the GAs in each of the objectives. In the single-objective case (first row),
where only the distance is taken into account, the EDA obtains an average improve-
ment of 33.88%, a considerable improvement with respect to the GA. Moreover, indi-
rectly we obtain a 19.29% improvement in the prediction while maintaining an almost
identical plausibility. In the multi-objective scenario (second row), NSGA2 obtains
a slight improvement in distance with respect to MOEDA. On the other hand in the
case of prediction it is observed that MOEDA obtains a much better prediction while
plausibility is higher in NSGA2. This means that MOEDA is more confident that its
counterfactuals are correctly classified since they obtain a probability of more than
double of being the class that is being searched. It should be noted that in prediction
and plausibility there is a higher variation of values than in distance, so depending on
the dataset, it is possible to obtain better results with one or the other. Also MOEDA
works better with datasets with more variables while NSGA2 obtains better results
with few variables.

Table 3.2: Percentage of average improvement (per objective) of EDAs vs GAs, in
single-objective and multi-objective problems

Distance Prediction Plausibility

EDA vs GA 33.88% 19.29% −1.05%
MOEDA vs NSGA2 −6.98% 169.36% −26.69%

Another factor to take into account is the execution time of each algorithm. Note that
if more than one model is used it will be necessary to sum the times taken by all
models. Table 3.3 shows the average time per model over all the datasets used. The
plausibility calculation slows down considerably the execution of the multi-objective
algorithms, since it has to go through all training data in order to find the closest
instance. It is observed that EDA takes on average half the time as the GA while in
the multi-objective case the distance is reduced, although MOEDA takes slightly less
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time than NSGA2. The important detail here is that if you do not need the results with
the best predictions and plausibilities you could run an EDA with all five Bayesian
classifiers in the same time as a MOEDA with only one model and this is even more
evident as the number of instances grows.

Table 3.3: Average execution time and standard deviation of each algorithm over all
datasets

EDA GA MOEDA NSGA2

Time (s) 1.62± 1.72 2.89± 2.20 6.22± 5.36 6.87± 6.06

3.2.4 Results with the two best models

Rather than using the best model (Figure 3.1), we now observe what happens if we
use more than one model to calculate the counterfactual. It is worth noting that
some models may achieve the same or almost identical accuracy, this will depend on
the dataset. First we analyze the possible gain when calculating the counterfactuals
by adding the second best model, see Table 3.4. It can be seen how the distance
improves with all the algorithms between 13% and 22%, while the prediction worsens
in general and plausibility improves a little bit. Although confidence in the prediction
is lost by using an additional model, this gain in distance can mean a considerable
improvement in the counterfactual obtained, also maintaining plausibility. MOEDA
is the algorithm that takes the most advantage with the use of two models, being the
one that obtains the biggest improvement in distance and plausibility.

Table 3.4: Gain (in%) when using the results of two best models versus only the best
model

Distance Prediction Plausibility

EDA 14.44% −25.77% 5.85%
GA 14.42% −23.20% 1.09%
MOEDA 22.52% −34.70% 20.13%
NSGA2 13.09% −23.11% −0.09%

To observe in a more visual way the effect of using two models in each algorithm,
Figure 3.2 shows the result for the Tic-tac-toe dataset. The boxplots show the
execution of 96 test cases where the algorithm tried to calculate the counterfactual,
where the line in the plot is the median. The results are similar to those seen in Table
3.4, although it is worth paying attention to the MOEDA improvement in distance
where its results are close to those seen with the single-objective EDA, taking into
account that the worsening of the precision is also observed. It can be seen that
switching to another model does not improve plausibility.

3.2.5 Results with all models

By having two models it is possible to obtain an improvement in distance without
significantly worsening the rest of the objectives, so it is worth checking what happens
if all five Bayesian classifiers available are used. To check this we will analyse how the
different algorithms compare with the best model, two best models and all models.

19



3.2. Experiments

(a) Best model

(b) Two best models

Figure 3.2: Results from all executions in the Tic-tac-toe dataset using the best
accuracy model (a) and the two best models (b)

Figure 3.3 shows with critical difference diagrams (Demšar (2006)) the comparison
in distance, prediction and plausibility average over all datasets. The values on the
axis indicate the average objective value obtained by the corresponding algorithm
and models used over all the datasets, where smaller the better. The lines linking
different results mean that they do not show a statistically significant difference,
calculated using the Friedman test followed by the post-hoc Nemenyi test. Starting
with the distance, Figure 3.3a, it is possible to see how the best results are obtained
by the single-objective algorithms, where the best is the EDA with all the models.
The multi-objective versions come after, alternating between NSGA2 and MOEDA.
In the case of prediction and plausibility, as expected, the multi-objective versions
are ahead of the single-objective ones, and in these objectives not always having all
the models improves the results. In prediction, Figure 3.3b, NSGA2 obtains the best
results followed by MOEDA with the best model, while in plausibility, Figure 3.3c, the
gap between NSGA2 and MOEDA is more remarkable, but all results are really close
for this objective. Note that in all objectives the version with the two best models
is better or it is close to the results obtained by all models, so adding these models
does not provide significant improvement given that they add execution time. Looking
at the significant differences in all critical difference diagrams, in general two cases
occur, the first one is that methods using the same number of models do not show
a statistically significant difference between them, and on the other hand the basic
genetic algorithm does not differ in some cases from MOEDA.

3.2.6 Counterfactual example

This section includes an example of a counterfactual explanation computation to bet-
ter understand how the different algorithms work. The dataset used is Car evaluation
(Table 3.1), which consists of a dataset of car specifications and the output is how ac-
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(a) Distance comparison

(b) Prediction comparison

(c) Plausibility comparison

Figure 3.3: Critical difference diagrams of distance, prediction and plausibility

ceptable the car is, based on the specifications (unacceptable, acceptable, good, very
good). The features consist of the price of the car, maintenance cost, number of doors,
passenger capacity, boot capacity and safety. We start from the initial instance that
appears at the beginning of Table 3.5, which correct prediction is unacceptable, and
we search for the changes necessary to obtain acceptable as a prediction. In Table 3.5
the result with the best model is observed, in this particular case the K-dependence
Bayesian classifier (with k=2). The features that have not been modified in each al-
gorithm are marked with a hyphen. The results show that a change in maintenance
and safety are essential to change the prediction output. Moreover, some models
obtain results with a smaller distance than others, the best ones being EDA and
NSGA2 since their distance is the smallest. Also, models with higher distance have
more feature changes, so they are worse solutions although having similar prediction
and plausibility values. On the other hand, in Table 3.6 the same counterfactuals
can be seen but using the results from all models, showing in the first column which
model(s) obtain the best solution. Note that there is no consistency between models,
since all models appear except the semi-naive Bayes, due to the fact that there are
few features. In this case it can be seen how practically all the algorithms obtain the
same result, i.e., maintenance should be reduced to medium and safety to high.

3.2.7 Counterfactuals in a real dataset

To show the potential of these methods and how to apply them, we are going to use a
real dataset. We will approach the problem of classifying GABAergic interneurons ac-
cording to their morphology. In DeFelipe et al. (2013) 48 leading neuroscientists were
asked to classify 320 interneurons by inspecting images of their morphology, being
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Table 3.5: Counterfactual explanation example obtained using the best model

Algorithm price maint doors persons lugboot safety dist prec plau

initial high vhigh 5more more small low - - -
EDA (KDB) - med - - - high 0.14 0.24 0.00
GA (KDB) - med - - big med 0.22 0.23 0.00
MOEDA (KDB) - med - - med med 0.30 0.30 0.00
NSGA2 (KDB) - med - - - high 0.14 0.24 0.00

Table 3.6: Counterfactual explanation example obtained using all models

Algorithm price maint doors persons lugboot safety dist prec plau

initial high vhigh 5more more small low - - -
EDA (KDB,TAN) - med - - - high 0.14 0.24 0.00
GA (TAN-HC) med - - - - high 0.14 0.22 0.05
MOEDA (NB) - med - - - high 0.14 0.24 0.00
NSGA2 (KDB) - med - - - high 0.14 0.24 0.00

the first work to look for a common classification of these, obtaining an agreement in
some types and disagreement in others among neuroscientists.

The data used in the work of DeFelipe et al. (2013) were globally available and la-
beled by Mihaljević et al. (2019). In addition to morphological features, some high-
level morphological features, named F1, F2, F3 and F4, are defined. They have the
following categories: (F1) intralaminar and translaminar; (F2) intracolumnar and
transcolumnar; (F3) centered and displaced; (F4) ascending, descending and both.
The class will be the type of interneuron, where eight different types are distin-
guished, shown in Figure 3.4. The data also contains an additional feature that can
be characterized and uncharacterized, where the uncharacterized category means
that the reconstruction of a cell is not good enough to reliably classify it, but we will
not use it because we are going to use a single neuroscientist who has all neurons as
characterized and fully labeled, where the neuroscientist used is the third one. We
will use the labels provided by this neuroscientist to train the classifiers, using 90%
of the data for training and the rest for testing.

We will show several examples on test data, using MOEDA with the two best models
(in this case SNB and TAN models). Applying counterfactuals on the interneurons
can allow us to detect what differentiates one type from another, by looking at the
key features of each type. In Table 3.7 we can see the change from common basket to
large basket, showing that the difference is in F1 and F2. On the other hand, in Table
3.8 we can see the change from horse-tail to Martinotti, where their similarity can be
seen visually in Figure 3.4, and as the only necessary change is the F4 changing
descending by ascending.

Due to the fact that this is a small dataset and some types of interneurons have
almost no instances, see Figure 3.5, the counterfactuals involving these classes will
be less accurate and less plausible, even not being possible to compute them because
the models do not correctly classify the input instances. This can be seen in Table 3.9,
where going from Martinotti to arcade the algorithm does not find a very accurate or
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Figure 3.4: Neuron types

Table 3.7: Counterfactual from a common basket to a large basket type

Algorithm F1 F2 F3 F4 class dist prec plau

initial intrasl intrac center None common basket - - -
MOEDA transr transc - - large basket 0.5 0.22 0.00

Table 3.8: Counterfactual from a horse-tail to a Martinotti type

Algorithm F1 F2 F3 F4 class dist prec plau

initial transr intrac displ descend horse-tail - - -
MOEDA - - - ascend Martinotti 0.25 0.19 0.00
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plausible explanation, since the distances tried to be minimized, although this does
not mean that it is not correct, as it would need more data to see its plausibility.

Figure 3.5: Number of instances of each neuron type

Table 3.9: Counterfactual from a Martinotti to an arcade type

Algorithm F1 F2 F3 F4 class dist prec plau

initial transr intrac displ ascend Martinotti - - -
MOEDA - transc None None Arcade 0.75 0.59 0.20

With these examples we can see how MODEA would be applied to a real dataset, and
how good and consistent results are obtained. The results will vary depending on
the classes used, since the method needs examples to be as accurate as possible,
but it can be applied to learn the differences of the classes and to reinforce previous
knowledge.

3.3 Conclusion

We have explored counterfactual explanations using estimation of distribution algo-
rithms with Bayesian classifiers. Our work involved comparing the performance of
single-objective and multi-objective solutions against their genetic algorithm coun-
terparts. In terms of the number of models, the best configuration in the experiments
is to use the two best models, regardless of the algorithm employed. The NSGA2 algo-
rithm consistently yielded the best results overall when considering metrics such as
distance, prediction, and plausibility. However, if minimizing execution time is cru-
cial, a single-objective EDA is advisable despite producing slightly worse results. The
multi-objective EDA performs exceptionally well with datasets that have numerous
features, often matching or surpassing NSGA2 in prediction accuracy. Also, we have
observed how MOEDA behaves in a small real dataset, seeing how its results can be
useful to observe differences between classes and what problems can arise with small
datasets.
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Most Relevant Explanation

4.1 Proposal

The solution space of most relevant explanation (MRE) is very large and therefore to
find it is a very computationally expensive task as the number of nodes and states
of the BN grows. Yuan et al. (2011a) showed that MRE is at least NP-hard and
thus not feasible by a brute-force algorithm, as can be seen in Figure 4.1. Some
optimization algorithms and heuristics have been applied in the literature to solve this
problem. Yuan et al. (2011a) proposed to use reversible jump Markov Chain Monte
Carlo (MCMC) and compare it with other solutions such as local search, tabu search
or simulated annealing. Later, Zhu and Yuan (2017) proposed an algorithm based
on hierarchical beam search, improving the results obtained with other previously
tested algorithms.

Figure 4.1: MRE solution space for three nodes, where each one is binary (the nodes
are {a,A},{b,B} and {c,C}) (Yuan et al. (2011a))

Our proposal is to use EDAs to solve MRE. For this we will use two different EDAs,
UMDA and EBNA, both in their discrete version. The algorithm will follow the basic
structure of an EDA presented in Section 2.3, creating a cost function that calculates
the GBF of the current solutions. Each individual will consist of a vector, where each
position corresponds to a node and its values are the possible states adding a value
indicating that this node is not included in the explanation. The process that the
MRE will follow with EDAs can be seen in Algorithm 2.

In addition to modifying the cost function, other modifications are proposed to im-
prove the solutions found and the speed of the algorithms. The first one is not to
initialize completely randomly the initial population, but rather to initialize the algo-
rithm with short solutions (line 2). This change aims to speed up the search, since
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the GBF eliminates redundant variables in the explanations and therefore MRE will
find the best solutions with a small number of variables. The second improvement
has to do with the solutions with a single variable, since Zhu and Yuan (2017) found
that quite often the best solution can be found among those with a single variable.
For this reason, a variant of EDA is made that takes into account these solutions
together with the one found by the algorithm (lines 1 and 9).

Algorithm 2 EDA for MRE with all modifications

Input: Evidence nodes, target nodes
Output: Most relevant explanation

1: Calculate one node solutions
2: Pseudo-random initial population
3: for t = 1, 2, . . . until stopping criterion is met do
4: Evaluate each individual of the population using the GBF
5: Select individuals
6: Learn a probabilistic model from the selected individuals
7: Sample new individuals from the probabilistic model
8: end for
9: Compare best solution with one variable solutions

MRE works with three sets of nodes: evidence, target and neutral (see Equation 2.7).
Evidence nodes are the nodes E instantiated to a value in the BN and are used in the
GBF calculation. Target nodes are the nodes M that are part of the search space and
must be selected by the user, either to relevant nodes (nodes for which an explanation
is sought) or all nodes. The neutral nodes correspond to all other nodes and are only
taken into account by the BN. When the number of target nodes is very large, the
inference in the network will be very slow and therefore it will not be feasible to
compute it many times during the MRE computation. For this reason, a threshold
has been set for the number of nodes to be used for explanations even if there are
more target nodes. Where to put this limit will depend on the machine being used
and we will try to keep it as high as possible. This limitation with large targets does
not significantly affect the results obtained, since the explanations in general will not
have as many nodes. When you want to calculate the GBF with a greater number
of nodes than possible, two ways of selecting nodes are proposed. The first one is to
randomly select nodes until the maximum limit of nodes is reached, while the second
alternative is to select the nodes that have higher GBF separately. These proposals
will allow the target to be larger and at the same time feasible to be solved by MRE.

4.2 Experiments

4.2.1 Implementation and algorithms

The implementation of the different algorithms is done in Python using different spe-
cific libraries for each algorithm. For EDAs we have used EDAspy (Soloviev et al.
(2024)), genetic algorithms with Pymoo (Blank and Deb (2020)) and inspyred (Tonda
(2020)) for different algorithms like differential evolution algorithm (DEA) or particle
swarm optimization (PSO). All experiments were conducted on the same hardware
(Intel Xeon Gold 6230 and 128GB RAM).

Algorithms based on EDAs have been implemented using UMDA and EBNA, where
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the former has a variant that adds the modifications described in Section 4.1 (in the
results it is named as UMDA2). There are two implementations of genetic algorithms,
a basic implementation and one based on NSGA2 (Deb et al. (2000)) with a single
objective. In addition to these algorithms, we implemented tabu search, evolution
strategy (ES), differential evolution algorithm (DEA) (Storn (1995)), particle swarm op-
timization (PSO) (Kennedy and Eberhart (1995)) and hierarchical beam search (HBS)
(Zhu and Yuan (2017)). These algorithms have been selected because they have been
used previously to solve the MRE problem or because they are relevant heuristic al-
gorithms that will allow to obtain more complete results. In the results all algorithms
use the improved initialization explained in Section 4.1, although some algorithms
have one version that does not use it and another that does (it will be denoted as “-i”,
i.e. EBNA-i).

4.2.2 Bayesian networks used

Different BNs have been used for the experiments, with different numbers of nodes
and parameters. In Table 4.1 the networks used can be seen, which have been
obtained from the bnlearn repository (Scutari (2010)). For each BN, all leaf nodes
are used as evidence and from the remaining nodes the targets are chosen randomly.
Two target sizes will be evaluated, a small one of 12 nodes and a large one of 20
nodes. Small networks will not be used with 20 target nodes. For each algorithm,
200 test cases will be generated, where the evidence will be instantiated by simulating
instances from the BN and the target nodes will be chosen randomly.

Table 4.1: BNs used for the experiments

Networks Nodes Arcs Parameters

Child 20 25 230
Insurance 27 52 1008
Alarm 37 46 509
Hepar2 70 123 1453
Win95pts 76 112 574

4.2.3 Twelve target nodes

In this section we use a target size of 12 nodes, being this a standard configuration
of target nodes without having a limitation of resources and time. First we will com-
pare the average position of the algorithms with respect to the rest of algorithms for
all the BNs used. In Figure 4.2 we can see how the best results are obtained with
the DEA algorithm, closely followed by PSO. HBS and UMDA2 are quite close, and
DEA and UMDA2 are connected and therefore their results cannot be distinguished
statistically. It can also be seen that the algorithms with improved initialization per-
form better than the randomly initialized algorithms and that the UMDA2 algorithm
improves the results of basic UMDA. There is a difference between the algorithms
depending on the datasets, observing that in datasets with many nodes and many
parameters the algorithms such as DEA or PSO obtain better results. On the other
hand, UMDA-based algorithms improve these for smaller networks or with a smaller
number of parameters.
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Considering how many times the algorithms find the best solution, UMDA2 obtains
the best results 157 times out of 200 on average. This result is an improvement of
8% over DEA and 10% over PSO, these being the next algorithms that find the best
solutions more often.

Figure 4.2: Critical difference diagram for all algorithms in the 12 target setting

Another important detail to take into account is execution time. Figure 4.3 shows the
execution time for all BNs. It can be seen how the UMDA-based algorithms obtain the
lowest and most stable times, with times concentrated in the same interval. Behind
these are the NSGA2 and Tabu algorithms with times not very far from the UMDA
ones. It should be noted that the algorithms that obtain the best ranking results are
the algorithms that take the longest to execute. DEA and PSO take on average four
times as long as the improved version of UMDA, which is even longer than the basic
version. It is also worth noting that the basic version of UMDA takes on average 40%
less time than UMDA2, being a good choice if you are looking for speed and good
results.

Figure 4.3: Time comparison of all algorithms in the 12 target setting

4.2.4 Twenty target nodes

When the number of targets grows, the inference time and the resources needed for
its computation grow as well and thus it is not feasible to compute the MRE with
large target sets. Therefore, an adaptation has been made to support any number of
nodes, as explained in Section 4.1. Two ways of selecting nodes when the algorithm

28



Most Relevant Explanation

encounters too many for an explanation are described, corresponding to selecting the
best ones individually (algorithms marked with "-b") or selecting randomly (algorithms
marked with "-r").

Figure 4.4 shows the critical difference diagram taking into account all BNs and
algorithms. When having 20 target nodes the PSO and DEA algorithms obtain a
greater difference with respect to the others than in the cases with fewer nodes in the
target, although these algorithms do not show significant statistical differences with
the algorithms based on EDAs. It is also remarkable how Tabu and HBS obtain a
better ranking than the UMDA-based algorithms. In terms of best solutions found,
UMDA2 is close to or equal to PSO, DEA or HBS, although it falls further behind
them when it does not find the best solution. Regarding the two variants proposed
for selecting nodes, in general, it can be seen that the random version obtains better
results than the one based on selecting the best ones.

Figure 4.4: Critical difference diagram for all algorithms in the 20 target setting

As the number of nodes increases, the search space and the complexity increase,
and therefore the times increase, as can be seen in Figure 4.5. It can be seen how
the times of many algorithms grow, especially how some executions can take much
longer, where DEA, NSGA2 and PSO stand out. It is observed that UMDA algorithms
with improved initialization take much less time than the others and achieve a lower
variability, the latter is also obtained in genetic algorithms. Taking the average times
in the different datasets, it can be seen that UMDA2 takes on average between 7 and
13 times less time than PSO or DEA.

Figure 4.5: Time comparison of all algorithms in the 20 target setting
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4.2.5 Brute force comparison

To check how good are the solutions found by the different algorithms we are going
to compare them with the brute force algorithm. As this algorithm is computationally
very expensive, these tests are performed on a six node target setting and on the BN
Alarm. Figure 4.6 shows the ranking of the algorithms with respect to the brute force
(BF) algorithm. The algorithm that comes closest is UMDA2, since it only fails to
find the best solution in one case. Close behind are the HBS, UMDA, DEA and Tabu
algorithms which find almost all the best solutions. The worst algorithm of all is
NSGA2, although not statistically different from the genetic algorithm, which in turn
is not statistically different from the solutions found by the brute-force algorithm.

Figure 4.6: Critical difference diagram for the BN Alarm with a 6 target setting

As for the times, it can be seen in Figure 4.7 how the GA, DEA and PSO algorithms
take the same time or more than the brute-force algorithm. On the other hand, the
fastest algorithms are UMDA, HBS and Tabu, finding the solutions about 10 times
faster than the brute-force algorithm. In the case of UMDA2, the added time it takes
to compute the individual scenarios is noticeable, although it is still significantly
faster than others that find worse solutions.

Figure 4.7: Time comparison of all algorithms in the 6 target setting for the Alarm
network
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4.2.6 Execution example

Having seen how the different algorithms compare, we are going to see how they be-
have with a concrete example and how the GBF varies from one method to another.
For this we have used the BN Alarm, see Table 4.1 for more information about the net-
work. All leaf nodes have been used as evidence, in this particular case eleven nodes
and as target nodes, twelve nodes have been randomly selected from the remaining
ones. The specific nodes used in both evidence and target are listed in Appendix A. In
Table 4.2 the results with the different algorithms can be seen, observing the length
of the solutions (number of variables, out of 12), GBF obtained and execution time. It
can be seen that there is a lot of variability in the lengths of the solutions found, al-
though the GBF has more variability. HBS finds the best solution, followed by Tabu,
PSO and UMDA2, where all but HBS are seven or eight in length, while the HBS
solution is longer. In terms of times UMDA2, ES and NSGA2 are the fastest, while
on the other hand DEA, GA, HBS and PSO are the slowest. Although the algorithms
find different solutions, some variables remain the same among the solutions and
therefore will be important variables to explain the evidence. The complete solutions
can be seen in Appendix A.

Table 4.2: Solutions found by each algorithm for the MRE example

Algorithm Solution Length GBF Time

UMDA2-i 7 162.99 8.38
DEA 1 77.95 21.81
EBNA 7 132.55 16.56
ES 6 50.11 6.95
GA 8 137.06 28.03
HBS 11 181.79 24.86
NSGA2 7 151.93 8.92
PSO 8 169.61 27.53
TABU 8 175.70 10.14

4.3 Conclusion

We have proposed a new algorithm for most relevant explanation based on estimation
of distribution algorithms. Different variants of the algorithm have been proposed and
other heuristic algorithms have been implemented. We have compared the existing
algorithms to solve the MRE with all the implemented ones, observing the results
with different target sizes and different Bayesian networks. It has been observed that
algorithms such as PSO, HBS, DEA or the proposed UMDA obtain the best results,
although the algorithm based on EDAs runs much faster, taking 4 to 13 times less
time.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work we have explored explainability in BNs and Bayesian classifiers, using
algorithms based on EDAs.

We have approached counterfactual explanations with EDAs using Bayesian classi-
fiers. We compared our single-objective and multi-objective solutions with the genetic
algorithms counterparts. Regarding the number of models the best configuration in
the experiments is to use the two best models regardless of which algorithm is being
used and the NSGA2 algorithms obtain the best results on average taking into ac-
count distance, prediction and plausibility. However, if the priority is execution time,
it is recommendable to use a single-objective EDA, even if the results are slightly
worse. MOEDA obtains very good results when dealing with datasets with many fea-
tures, with results equal or superior to NSGA2, especially in prediction. Due to this,
and the fact that it is slightly faster than NSGA2, in datasets with many features you
can take advantage of its use.

For the most relevant explanation problem we have proposed a new algorithm based
on EDAs. Different variants of the algorithm have been proposed and other heuristic
algorithms have been implemented. We have compared the existing algorithms to
solve the MRE with all the implemented ones, observing the results with different
target sizes and different BNs. It has been observed that algorithms such as PSO,
HBS, DEA or the proposed UMDA obtain the best results, although the algorithm
based on EDAs runs much faster, taking 4 to 13 times less time.

5.2 Future work

As for future work, different ideas have been proposed and discussed as potential
future upgrades in the algorithms or alternative methods. In this section we will
present some ideas for improving counterfactuals and most relevant explanations.

As for counterfactual explanations, it would be interesting to see how to improve
MOEDA to better deal with cases with few variables. We could also use other types of
classification models or use continuous predictor variables. In addition, an alterna-
tive could be searched for when none of the classifiers is able to find a solution, either
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because no model is able to predict the input correctly or because the algorithms do
not find a solution of the desired class.

Regarding MRE, it would be interesting to explore and develop improvements to be
able to use larger target sets without requiring large hardware resources and time.
On the other hand, improvements can be sought to allow EDA to find better solutions
that outperform slower algorithms, all this while minimizing the execution time.

5.3 Scientific dissemination

The counterfactual explanation work was accepted and peer reviewed in the con-
ference Probabilistic Graphical Models 2024 (https://www.ru.nl/en/about-us/
events/probabilistic-graphical-models-pgm-2024) (Zaragoza et al. (2024)).
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Appendix

A MRE example complete results

In this Appendix the concrete details about the MRE example are shown, presenting
the complete evidence, the target nodes and the complete results of the algorithms.
Table 1 shows the evidence nodes used, Table 2 shows the target nodes and Table 3
shows the complete results obtained by each algorithm.
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A. MRE example complete results
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