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Abstract

Machine Learning has been one of the fastest-growing areas in the Computer Science
field. Several public and private entities are making significant efforts to take the
approach of this new set of tools. Today it is possible to see the effect of Artificial In-
telligence through Machine Learning on recommendation systems, facial recognition,
or natural language processing.
On the other hand, a new technology produces a gap between the people with exper-
tise in the domain and those who do not. In this case, the use of Machine Learning
algorithms is relegated to people who know how to program software. Already this
skill is not as spread as needed and now even more with the upcoming wave of in-
novations brought by the advances on Artificial Intelligence. Perhaps there are some
tools for performing Machine Learning through a user interface without writing code,
a complete web suite for performing machine learning seems necessary for reducing
this gap.
NeuroSuites is a project created at the UPM (Universidad Politécnica de Madrid) as
part of the Horizon 2020 Fet Flagship Human Brain Project and of a Spanish Ministry-
funded project (TIN2016 -P). It includes a set of tools for working with neuroscience.
There are two modules made for a general-purpose: data statistics and machine
learning. With the idea of making machine learning available to more users, The
Computer Intelligence Group has included the Machine Learning module inside Neu-
roSuites, which allows the society to use these new techniques without the necessity
of coding software.
This study is composed of the implementation of four parts: data pre-processing,
non-probabilistic clustering, multi-label classification and visual changes. The first
one is adding pre-processing to the already implemented supervised classification
module. With it, the user will have many options to make changes and configura-
tions to prepare the dataset that will be passed to the classification algorithms. The
non-probabilistic clustering functionality allows the use of many algorithms to create
and analyze clusters from a dataset, following the flow suggested by the application.
The multi-label classification is implemented over the supervised classification model.
The way NeuroSuites works within it depends on the number of target variables se-
lected. In the case of multi-label classification, users have a list of options for working
with this type of dataset. Finally, visual changes have been made to the application
for giving it a fresher and more harmonious image.
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Resumen

El aprendizaje automático ha sido una de las áreas de más rápido crecimiento en
el campo de la informática. Varias entidades públicas y privadas están realizando
importantes esfuerzos tomar ventaja de este nuevo conjunto de herramientas. Hoy
es posible ver el efecto de la inteligencia artificial a través del aprendizaje automático
en los sistemas de recomendación, el reconocimiento facial o el procesamiento del
lenguaje natural.
Por otro lado, una nueva tecnología produce una brecha entre las personas con ex-
periencia en el dominio y las que no. En este caso, el uso de algoritmos de Machine
Learning queda relegado a personas que tienen la capacidad de programar software.
Esta habilidad hoy no está tan extendida como se necesita y ahora aún más con la
próxima ola de innovaciones traídas por los avances en Inteligencia Artificial. Quizás
existen algunas herramientas para realizar Machine Learning a través de una inter-
faz de usuario sin escribir código, sin embargo, una suite web completa para realizar
Machine Learning parece necesaria para reducir esta brecha.
NeuroSuites es un proyecto creado en la UPM (Universidad Politécnica de Madrid)
como parte del Proyecto Horizonte 2020 Fet Flagship Human Brain Project y de un
proyecto financiado por el Ministerio de España (TIN2016 -P). Incluye un conjunto
de herramientas para trabajar con neurociencia. Hay dos módulos hechos para un
propósito general: estadística de datos y aprendizaje automático. Con la idea de
hacer que el aprendizaje automático esté disponible para más usuarios, El Grupo
de Inteligencia Computacional (CIG por sus siglas en inglés) ha incluido el módulo
de aprendizaje automático dentro de NeuroSuites, que permite a la sociedad utilizar
estas nuevas técnicas sin el requisito de saber escribir código de software.
Este estudio se compone de la implementación de cuatro partes: preprocesamiento
de datos, agrupamiento no probabilístico, clasificación multi-etiqueta y cambios vi-
suales. El primero es agregar preprocesamiento al módulo de clasificación super-
visada ya implementado. Con él, el usuario tendrá un conjunto de opciones para
realizar cambios y configuraciones para preparar el conjunto de datos que se pasará
a los algoritmos de clasificación. La funcionalidad de agrupamiento no probabilís-
tico permite el uso de varios algoritmos para crear y analizar grupos a partir de un
conjunto de datos, siguiendo el flujo sugerido por la aplicación. La clasificación de
etiquetas múltiples se implementa sobre el módulo de clasificación supervisado. La
forma en la que este módulo funciona depende del número de variables objetivo se-
leccionadas por el usuario. En el caso de la clasificación de etiquetas múltiples, los
usuarios tienen una lista de distintos algoritmos para trabajar con este tipo de datos.
Finalmente, se han realizado cambios visuales en la aplicación para darle una imagen
más actual y armoniosa.
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Chapter 1

Introduction

1.1 Machine Learning growth

Today machine learning is a hot topic by itself, but at the same time is part of two
big subjects: Data Science and Artificial Intelligence. It is often possible to find news
about new advances in this field, and its importance increases due to its use in dif-
ferent areas like disease diagnosis, self-driving vehicles, natural language processing,
and many other application fields that are present in several platforms.

The academic environment shows evidence of this wave of publications. Figure 1.1
shows that there are 100 new machine learning papers being published per day just
on arXiv in 2018, representing about 33000 papers per year. Additionally, this trend
does not seem to have changed, and the growth rate is even higher than Moore’s law,
that is of 2x every two years.

This expansion is appreciable in Figure 1.2 but this time in the European Machine
Learning market size. This extension exhibits a non-linear curve describing the num-
ber of challenges being solved, and that many more are coming. Furthermore, the
economic impact if this technology is getting more significant, and several industries
are making it part of their internal processes. Figure 1.3 displays the end-use share
adoption by sector, where banking, financial services & insurance and advertising
& media are receiving primarily the solutions provided by Machine Learning. More-
over, healthcare, automotive & transportation, and retail are fields with an important
and similar market share. Activities like agriculture or law seem to have room for
innovation, acquiring the newly available features given by Machine Learning.

The application of Artificial Intelligence powered by Machine Learning appears even
on services related to creativity for writing like narrative science1, which generates
storytelling taking data as a source, replacing it in this way to the dashboards.

Notably, artificial intelligence is turning a decisive factor, and that is why organiza-
tions like open.ai2 were founded to give insights about how this technology should
be driven. Another sign of it is the AI ethics meeting sponsored by the Vatican with
Microsoft and IBM3 to develop a plan to collaborate and manage the possible coming

1https://narrativescience.com/
2https://openai.com/about/
3https://www.bbc.com/news/technology-51673296
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1.2. NeuroSuites project

Figure 1.1: Machine learning papers per year
Chart obtained from https://ieeexplore.ieee.org/stamp

implications. Finally other initiatives like the Future of Life Institute 4 are currently
focused on Artificial Intelligence by trying to keep it beneficial tu humanity. All these
facts show the weight of this technology in the actual context.

1.2 NeuroSuites project

NeuroSuites is a web application that offers tools for mainly working with neuro-
science through a set of sub-applications with a defined use. The Computational
Intelligence Group at Universidad Politécnica de Madrid develops it starting by 2017.
This project has received funds from the Human Brain Project (SGA2 and SQA3)
and the Spanish government (LTIN2016). The project is accessible through the URL:
https://neurosuites.com/.

NeuroSuites includes two general-purpose modules: data statistics and machine
learning. It means that the same dataset can be used for performing statistical anal-
yses or/and machine learning. The data statistics module offers the possibility of
performing tests, relations among variables and visualizing plots about the selected
dataset.

The machine learning module is a tool that helps to perform classification or cluster-
ing processes, but as mentioned, it can work with any other domain. In fact, for the
case study for clustering (Section 4.5), the source was data from astronomy about
pulsar stars, and for multi-label classification (Section 5.4), an emotions dataset.

4https://futureoflife.org/team/
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Figure 1.2: Global machine learning market size, by component, 2014 - 2025
Chart obtained from

https://www.grandviewresearch.com/industry-analysis/machine-learning-market

Figure 1.3: Global machine learning market share, by end use, 2018
Chart obtained from

https://www.grandviewresearch.com/industry-analysis/machine-learning-market
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1.3. State of the art in no coding machine learning platforms

1.3 State of the art in no coding machine learning plat-
forms

Machine learning nowadays is a hot topic in Computer Science and Artificial Intelli-
gence; the advances are continuously growing on each sub-category of this domain.
There are several resources for learning machine learning foundations or practicing
like Scikit-learn for machine learning, Tensorflow for deep learning, or many other
options. However, there is a requirement that makes the learning process harder,
and it is the skill of coding software. That is why NeuroSuites, with its module for
performing machine learning, was created because users will be able to apply these
new techniques through a graphical user interface that is hosted online without pro-
gramming skills. The application is available on any operating system and any device
without installing it. Some tools aim at the same purpose, but there are differences,
mainly on how to approach the goal, of letting new users use several algorithms
without coding.

In this review four platforms with functions related to machine learning were taken
into account. These are Weka, BigML, IBM SPSS and RapidMiner Studio. The re-
sources that can be found on the Internet are mainly associated with coding scripts
but there are no tools for this goal of working with machine learning without cod-
ing. As a comparison between the platforms Table 1.1 relates them according to their
main implementation characteristics, and Table 1.2 displays them by their Machine
Learning features.

Weka5 (Waikato Environment for Knowledge Analysis) is an open-source application
that allows access through a graphical interface, a terminal or a Java API. It was
developed by the Waikato University and was written on Java. It includes a collection
of tools for visualizing and analyzing data, predictive modeling, and data mining. This
software can be installed on any operating system, but this is the restriction at the
same time because there is not a web interface for accessing the tool.

BigML6 differs from Weka, IBM SPSS and RapidMiner Studio because it is an online
platform that allows applying a variety of machine learning resources for training
models. It provides access from a graphical interface or through an API. This is not
an open-source software and provides a free access tier for small datasets up to 16
megabytes. In addition BigML is the same company that develops this software.

IBM SPSS7 is a desktop application that needs to be installed, but it can be on any
operating system. IBM SPSS offers an advanced statistical analysis that integrates
machine learning, and due to its easy use and flexibility, it lets access to users with-
out significant expert knowledge. This platform does not offer a free access layer nor
is open-source.

RapidMiner8 Studio is an informatics program for data analysis and data mining. Its
original version was developed at the Dortmund University, but the actual versions
are paid. It is a multi-platform desktop application and offers integration with other
programming languages like Python or R.

5https://www.cs.waikato.ac.nz/ml/weka
6https://bigml.com
7https://www.ibm.com/analytics/spss-statistics-software
8https://rapidminer.com/
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Introduction

Application Hosting plat-
form

Free Saves on
cloud

Open-source

NeuroSuites Web Yes No Yes
Weka Desktop Yes No Yes
BigML Web Yes (up to

16MB)
Yes No

IBM SPSS Desktop No No No
RapidMiner
Studio

Desktop Yes (for old
versions)

No Yes (for old
versions)

Table 1.1: Machine learning platforms comparison by implementation characteristics

Application Classification Regression Clustering Multi-label
classification

NeuroSuites Yes No Yes Yes
Weka Yes Yes Yes No
BigML Yes Yes Yes No
IBM SPSS Yes Yes Yes No
RapidMiner
Studio

Yes Yes Yes No

Table 1.2: Machine learning platforms comparison by Machine Learning features

1.4 Contributions

The main objective in this project is adding more capabilities to the machine learn-
ing module inside NeuroSuites. This work represents six months of work within the
Computational Intelligence Group CIG at Universidad Politécnica de Madrid. Dur-
ing this period, the principal machine learning module has incorporated three new
functionalities. The list of contributions has been divided into four chapters in this
report.

1. Feature pre-processing is part of the clustering and classification and allows
users to make transformations to the data before or later it be used for training
the models. The input options and elements for this purpose were previously
defined, but the code implementation was not done. Additionally, feedback on
specific steps is shown to the user for giving information about the internal
changes.

2. Non-probabilistic clustering was wholly designed and implemented during this
project. The results observation step shows graphical information about clus-
ters and samples all projected in a PCA of two components. The algorithms
permit the input of several hyperparameters, the obtained groups can be down-
loaded and in special cases additional tables or plots are available.

3. Multi-dimensional classification was built over the same visual elements of
the single class classification functionality; the reason was to give an intuitive
and standardized workflow to the system. This contribution is a distinctive
point in comparison with other platforms that do not include it. It allows users
to choose more than one classification algorithm and includes problem trans-
formation and algorithm adaptation methods for processing the task.
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1.4. Contributions

4. Visual changes are present in the application with a brand new logo, a new color
palette, and renovated menus colors and organization. Data stats with its two
sub-functionalities received a layout organized by tabs representing progressive
steps. In the same way, the previous single-class classification capacity was
changed to have the tab layout. All these changes aim to make the use of the
application more friendly in an attractive visual environment.
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Chapter 2

NeuroSuites platform

NeuroSuites is a system composed of a set of several modules that are mainly focused
on the neuroscience field. However, there are some other modules like machine
learning, which is the central part of work during this project. Table 2.1 presents
the list of applications organized by their characteristics.

2.1 Project architecture

NeuroSuites follows the MVC architecture, and the back-end is built using Python
31 as the programming language and Django2 as the framework. The front-end is
implemented with the Django templating system, which uses HTML 53, CSS 34 with
Bootstrap 35, and Javascript6 with Jquery7. The application performs several asyn-
chronous calls to the server, and Ajax8 is the tool used for this goal.

The project is contained over Docker9. For interaction with R10 packages, R2py11

is used. Finally, a PostgreSQL12 database stores the session data, and the message
broker is RabbitMQ13 for long time requests.

The version control system is Git14, that allows traceability over the code changes,
and this is hosted on Gitlab15. The code is available to anyone and, at the same time,
is protected through the URL: https://gitlab.com/mmichiels/neurosuite.

1https://www.python.org/download/releases/3.0/
2https://www.djangoproject.com/
3https://dev.w3.org/html5/html-author/
4https://developer.mozilla.org/en-US/docs/Archive/CSS3
5https://getbootstrap.com/docs/3.3/
6https://developer.mozilla.org/en-US/docs/Web/JavaScript
7https://api.jquery.com/
8https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX
9https://www.docker.com/

10https://www.r-project.org/
11https://rpy2.github.io/
12https://www.postgresql.org/
13https://www.rabbitmq.com/
14https://git-scm.com/
15https://about.gitlab.com/
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2.2. Machine learning in NeuroSuites before this project

Module Field of application Need of a dataset
L-Measure - Extract morphological
measurements

Neuroscience Yes

NeuroViewer - 3D Neuron reconstruc-
tion

Neuroscience Yes

NeuroSTR - Validator, format converter Neuroscience Yes
3DBasalRM - Repair cut-points in the
basal arborization

Neuroscience Yes

GabaClassifier - Interneuron classifier Neuroscience Yes
Statistics engine General-purpose Yes
Machine learning General-purpose Yes
3DspineS - Dendritic spine simulation Neuroscience No
3DSomaMS - Delimit the neuronal
soma

Neuroscience No

3DSynapsesSA - Analyze spatial distri-
bution of cortical synapses

Neuroscience No

Dendrite arborization simulation -
Generate synthetic dendrite arboriza-
tion

Neuroscience No

Table 2.1: List of modules that are part of NeuroSuites

Another element is the server that hosts the application, It is a server running over
Ubuntu Server16 with 64 GB of RAM memory and an i7-6800k processor with six
cores and a frequency of 3.40 GHz. These characteristics let to manage heavy load
jobs. The installed Docker container includes all the project images letting it run
without major configuration. A general view of the system’s structure is available at
Figure 2.1

2.2 Machine learning in NeuroSuites before this project

The machine learning module was composed of a set of three functionalities: Bayesian
networks, probabilistic clustering, and supervised classification. Bayesian networks
and probabilistic clustering are options that are beyond the scope of this study. On
the other hand, supervised classification was a non-complete functionality due to the
lack of a pre-processing step for data. It produces errors on algorithms which can
not deal with empty or null values. There are other missing functions like features
normalization or data discretization. The visual structure of data pre-processing was
already built, but the code implementation was not provided.

Supervised classification was working just for classification problems with one target
variable. However, for multi-label classification problems with more target variables,
it was not possible.

2.2.1 Supervised classification

The flow for supervised classification follows four steps:

16https://ubuntu.com/server
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NeuroSuites platform

Figure 2.1: NeuroSuites architecture.
Chart obtained from CIG documentation

Figure 2.2: Supervised classification before this project (screenshot).
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2.2. Machine learning in NeuroSuites before this project

1. Feature pre-processing (incomplete)

2. Validation schemes: training-testing, k-fold cross-validation

3. Algorithm selection

4. Performance evaluation

On feature pre-processing (step 1), the user selects the class variable and predicting
features. There was wrongly available the option of choosing continuous variables
as target variables. All this falls into the regression category, beyond to date the
scope of NeuroSuites. All the other transformation steps were not implemented. Fig
reffig:supervisedbeforeshowsascreenshotofthefunctionalitybeforetheappliedchanges.

The second step corresponds to selecting the k value for the k-fold cross-validation
process for the learning phase. Establishing the percentage of instances that will be
used for training and testing sets is also decided. There is the possibility of shuffling
the samples.

For the learning process (step 3), the user has the possibility of selecting one or more
supervised classification algorithms. The options are: k-nearest neighbors, rule in-
duction, decision tree, random forest, support vector machines, neural network, lin-
ear discriminant analysis, quadratic discriminant analysis, logistic regression, Naive
Bayes, tree augmented Naive Bayes, bagging meta-classifier, boosting meta-classifier
and stacking meta-classifier. Each model receives its hyper-parameters that are set
by the users.

In step four, after the learning step, users can download the predictions generated by
each model on CSV or Parquet gzip format, see the hyper-parameters and download
wrong predictions. Users can also check performance evaluation metrics like training
time, accuracy, F-score, precision, recall, and Brier score.
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Chapter 3

Implementation of data
pre-processing techniques in
NeuroSuites

Several algorithms are sensitive to not standardized data or empty values; conse-
quently, a previous step before feeding models is necessary for fixing all possible
errors or biases inside the dataset. Data pre-processing is present in supervised
classification entirely

This chapter presents the options added in supervised classification and non-probabilistic
clustering. The internal implementation is built using javascript and AJAX for send-
ing the parameters to the server asynchronously. Once the server has received the
request, it transforms the uploaded dataset with the options selected by the user
for pre-processing the data and returns to the client a status response and some
information depending on the method, e.g. a plot of the data after dimensionality
reduction.

3.1 Functionality flow

The dataset follows a set of steps almost lineal. Each part helps to prepare the
source and receive the parameters defined by the user a screenshot of this module is
presented in Figure 3.1. The list that conforms this functionality in NeuroSuites is:

1. Fill missing values

2. Remove constant features

3. Values normalization

4. Continuous values discretization

5. Feature subset selection

6. Dimensionality reduction (can be applied before, after, or before and after feature
subset selection)
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3.2. Implementation design

Figure 3.1: Feature pre-processing flow

3.2 Implementation design

In order to achieve pre-processing, were implemented two classes: Preprocessing and
MachineLearningHelpers. The first one is responsible of applying the different steps
to data in the mentioned flow and processing those steps which do not need Machine
Learning. For the other cases where Machine Learning must be used, Feature selec-
tion and dimensionality reduction the class MachineLearningHelper lets this func-
tions and the first class has access to these methods. Figure 3.2 displays the UML
class diagram with the details of methods implemented by each class.

Figure 3.2: Pre-processing UML class diagram
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Implementation of data pre-processing techniques in NeuroSuites

Figure 3.3: Missing values

Figure 3.4: Constant features

3.3 Missing values

A missing value is a null or empty value that corresponds to a feature in an instance.
Missing values may produce errors for specific algorithms; that is the reason for
cleaning the dataset. NeuroSuites includes two options for handling missing values:
rows deletion and mean imputation. The element is shown in Figure 3.3

3.3.1 Rows deletion

This method eliminates each instance with an empty or null value on any feature.

3.3.2 Mean imputation

This option fills an empty or null value with the mean of the corresponding feature.
It means that the value depends on the population, avoiding to lose information as
with rows deletion.

3.4 Constant features

A feature with no variation among each instance shows no interaction between the
other features. With this premise, the feature will pass noise to the classification
algorithm. Therefore this method removes this kind of features from the dataset.
This element is visible in FIgure 3.4

3.5 Values normalization

Features with higher values scales tend to have more impact over the process. With
the intention of reducing this bias normalization or scaling aims to set the same
degree of importance to all features using a defined rule (Huang et al., 2015).
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3.6. Continuous values discretization

Figure 3.5: Values normalization

Method Description
Equal width Each bin has the same range of values
Equal frequency Each bin has the same amount of values
Fayyad & Irani MDL Uses mutual information to recursively get the best bins

(Fayyad and Irani, 1993)

Table 3.1: Discretization options

3.5.1 Max-min

This method scales the values in all features to range from 0 to 1. The way his process
works is by applying the formula:

y = x−min(x)/max(x)−min(x)

The code implementation used in this project was the once available from the Library
Scikit-Learn:

3.5.2 l2 norm

This approach calculates the vector’s length of features in a Euclidean space. The
definition is given by the square root of the total sum of the squares of the values on
each feature. Finally each feature is divided by the calculated distance and the result
will be obtained for each feature.(Li and Jain, 2009). The results are from -1 to 1.

3.6 Continuous values discretization

Some classification algorithms, like trees or rule induction, work better with discrete
values. Discretization reduces complexity in the data althought some information is
lost. The result is a set of intervals called bins, which contains grouped values with
labels for each interval. In order to add discretization was used the library Scikit-
Learn as in all the functions in this chapter. In NeuroSuites were implemented three
different options of discretization detailed in Table 4.2 and FIgure 3.6
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Implementation of data pre-processing techniques in NeuroSuites

Figure 3.6: Values discretization

Parameter Option Description
Method Chi squared Applies the chi squared test to each feature

Mutual information Evaluates mutual information of each fea-
ture with the target

ANOVA F score Evaluates ANOVA F score of each feature
with the target

Filter criteria k best Selects the k best features according the
score or p-value

Percentile Selects the selected percentile of features
Family wise error test Selects the features that pass the test

Table 3.2: Feature subset selection parameters

3.7 Feature subset selection

Predictor features can be relevant, redundant, or noisy in a dataset. From this idea,
what features subset selection does is selecting a subset with the features that have
a better impact than using the whole set of variables (Huang et al., 2015).

In NeuroSuites univariate filtering algorithms were implemented. These algorithms
are part of Scikit-Learn, and like all the previous steps, it transforms the dataset and
passes the result to the next step. This process receives two different parameters. The
first one is the filtering method, and the second one is the filtering criterion. It could
provide the best k variables or the n percentage of features ordered by the method.
Additionally, this step shows the list of features ordered by its score according to the
filtering method. The user can then have an idea of the impact of variables in the
future model. Figure 3.7 shows the result of applying Feature Selection and Table
3.2 present the available parameters.

3.8 Dimensionality reduction

This method reduces the number of dimensions in a dataset. This reduction tries to
keep the geometry or variation depending on the method used (?). With the applica-
tion of this step, the source for learning algorithms tends to be simpler, and perhaps
losing some information, the results may be better. A different use of dimensionality
reduction is for analyzing the shape of the points in a lower dimensional space. An
example of this is checking if the data is is clustered or mixed among categories ac-
cording to its features. In NeuroSuites five algorithms were implemented, all of them
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3.8. Dimensionality reduction

Figure 3.7: Feature subset selection

available on Scikit-Learn. This process in NeuroSuites gives three results depending
on the input parameters. Table 3.3 shows the parameters accepted and Figure 3.8
exposes the result of applying dimensionality reduction with PCA.

1. Lower dimension dataset

2. A plot of the dataset if 2 or 3 dimensions are selected.

3. Variance ratio explained if PCA is selected.

Additionally, this step is the only in NeuroSuites, which lets the user define when to
be applied. Together with feature selection, these steps are active just for supervised
machine learning with one target variable; otherwise with multi-dimensional data
both are disabled.
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Figure 3.8: Dimensionality reduction
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Parameter Option
Algorithm PCA

Kernel PCA
ICA
t-SNE
Multi-dimensional scaling

When Before features selection
After features selection
Before and after features selection

Number of features An integer number with the number of selected dimensions

Table 3.3: Dimensionality reduction parameters



Chapter 4

Implementation of
non-probabilistic clustering in
NeuroSuites

Clustering is the process of grouping data according to their similarities among fea-
tures. It is part of unsupervised learning, which means that the learning process
does not need a label or category. This family of algorithms helps to find patterns in
the organization of samples in a dataset (Daelemans and Morik, 2008).

NeuroSuites included a module for applying probabilistic clustering, but there was a
lack of an option for performing non-probabilistic clustering. This new functionality
applies the previous pre-processing step from chapter 3 and a similar flow of data
used in supervised classification. Nevertheless, this module is a completely new
implementation because it includes the user interface design, the steps to be followed,
and the whole algorithm implementations using Scikit-Learn.

4.1 Functionality flow

The flow is composed of three steps; each one has a set of options and parameters
introduced by the user to achieve a result and analyze it. The list of actions associated
to different tabs is:

1. Feature selection and pre-processing

2. Clustering algorithm

3. Clustering result

4.2 Implementation design

In the development process a non-probabilistc-clustering class was created that con-
tains all the general functions available for the methods like as plotting a PCA graph
of two dimensions. Then each algorithm has its own specific class implementation.
NeuroSuites includes six different algorithms to choose. All the algorithms were taken
from the Scikit-Learn library and embedded in the NeuroSuites classes.
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4.3. Feature selection and pre-processing

Figure 4.1: Non-probabilistic clustering UML class diagram

The principal class related to this objective and is responsible of the communication
between the controller and the models is NonProbabilisticClass. This class access
to the embedded methods through the interface non-probabilistic-clustering-model.
With it that methods implemented by each specific algorithm are available to the
embedding class. The mentioned interface is shown but not built because the Python
syntax dealing with similar structures is not mandatory.

Additionally the Machine-learning-helpers class was reused in this context because
it provides the PCA plot and is accessed from the NonProbabilisticClass class. Figure
4.1 shows the UML class diagrams the methods and relationships among the different
classes related to this functionality.

Furthermore, is possible to see how Agglomerative clustering and Kmeans more func-
tions because these two method offers more plots, the elbow-method for both and and
dendrogram just for the first algorithm.

4.3 Feature selection and pre-processing

Regarding feature selection, a list of the dataset features is presented, and the user
manually chooses those that will be part of the study. If a dataset was not added
previously, a message would appear showing the link for uploading it to the platform.

Once the variables have been selected, four steps for pre-processing the data are
available, all of them coming from the previous data-preprocessing functionality added
in supervised classification:
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Implementation of non-probabilistic clustering in NeuroSuites

1. Fill missing values

2. Remove constant features

3. Values normalization

4. Continuous values discretization

4.4 Algorithm selection

The principal tab inside this functionality is the selection of the learning algorithm.
Each algorithm has its hyper-parameters and can be introduced by the user. One sig-
nificant difference compared to the supervised classification module is that the user
can select just one clustering algorithm. In contrast, on supervised classification, it
is possible to select more than one. The available methods are listed:

1. Agglomerative clustering

2. K-means

3. DBSCAN

4. Spectral clustering

5. BIRCH

6. OPTICS

It is important to mention that the affinity propagation method was implemented, but
due to its time-consuming solution, it was removed from the list of available options.

4.4.1 Agglomerative clustering

Agglomerative clustering is part of the category of hierarchical clustering, which
means that it creates a hierarchical tree of clustered samples. With the obtained
tree, a line (cutoff) divides the branches and with the upper side are taken the clusters
that represent the groups (?). Figure 4.2 shows a screenshot with the corresponding
parameters and Table 4.1 presents the available options.

4.4.2 K-means

K-means is part of the partitional clustering category of algorithms. It means that it
does not generate a hierarchical tree. Instead, it aims to find partitions in the dataset
that differentiates each cluster.

Therefore this clustering method creates partitions which are different according to
each class variance, and the number of clusters is a parameter set by the user (Mac-
Queen, 1967). The corresponding layout for this method is seen in Figure 4.3 and
the once parameter in Table 4.1

4.4.3 DBSCAN

Density-Based Spatial Clustering (DBSCAN) tries to find groups with significant sim-
ilarity. Basically what it does is counting the number of samples in a region within a
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4.4. Algorithm selection

Parameter criterion Option
Number of clusters Distance

K
Max distance Input integer number representing the cutoff height over

the dendrogram
Linkage Ward’s method

Complete
Average
Centroid
Single

Distance Euclidean
Hamming
Manhattan
Cosine

Table 4.1: Hierarchical agglomerative parameters
More information at: https://docs.scipy.org/doc/scipy/reference/cluster.
hierarchy.html

Figure 4.2: Screenshot with the input of the agglomerative clustering parameters
input

Parameter Option
K Input integer number representing the number of clusters

Table 4.2: K-means parameters
More information at: https://scikit-learn.org/stable/modules/generated/
sklearn.cluster.KMeans.html
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Figure 4.3: K-means clustering parameters input screenshot

Parameter Option
Epsilon The maximum distance between two samples
Min samples The number of samples for considering a core point
Distance Euclidean

Manhattan
Cosine

Table 4.3: DBSCAN parameters
More information at: https://scikit-learn.org/stable/modules/generated/
sklearn.cluster.DBSCAN.html

defined radius; those points with a density higher than a threshold are selected like
clusters (Birant and Kut, 2007).

4.4.4 Spectral clustering

The spectral method is an option that appeared after K-means and offered a better
performance depending on the problem. The process is based on using the top eigen-
vectors that come from a matrix that is derived from the existing distance among
points. There are several approaches and discussions on how to decide which are
the best list of eigenvectors (Ng et al., 2002). Figure 4.5 presents the visual elements
related to this algorithm and Table 4.4.4 the corresponding parameters.

Figure 4.4: Screenshot with the input of the DBSCAN clustering parameters
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4.4. Algorithm selection

Parameter Option
Number of cluster selection Automatic

Manual
Number of clusters Input integer number representing the number of

clusters
Number of components Number of eigenvectors to be used

Table 4.4: Spectral clustering parameters

More information at: https://scikit-learn.org/stable/modules/generated/
sklearn.cluster.SpectralClustering.html

Figure 4.5: Screenshot with the input of the Spectral clustering parameters
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Parameter Option
K Number of clusters
Threshold The radius of the subcluster obtained by merging a new sample

and the closest subcluster should be smaller than the threshold
Branching factor Maximum number of subclusters in each node

Table 4.5: BIRCH parameters

More information at: https://scikit-learn.org/stable/modules/generated/
sklearn.cluster.Birch.html

Figure 4.6: Screenshot with the input of the BIRCH clustering parameters

4.4.5 BIRCH

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) algorithm was
presented as a solution for processing large datasets in a more efficient way than
other approaches. It is a good option for applying clustering with low computational
resources. The internal process generates a more compact summary of the dataset
containing the largest amount of distribution information that is possible. From this
reduction comes the efficiency in the method that turns the problem cost into linear
(Zhang et al., 1997). Figure 4.6 exposes a screenshot of the visual layout of this
method and Table 4.4.5 the available parameters.

4.4.6 OPTICS

Ordering Points To Identify the Clustering Structure (OPTICS) provides an augmented
ordering of the dataset clustering structure. Subsequently, this information will give
as result a cluster analysis and, also, will show the intrinsic clustering structure.
One crucial difference with other methods is that it does not need the number of
clusters as an input parameter, being useful because usually this number changes
in a significant way the final clusters, and this value is not always clear (Ankerst
et al., 1999). Figure 4.7 shows the visual elements related and Table 4.6 details the
parameters.
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4.5. Results observation

Parameter Option
Min samples The number of samples in a neighborhood for a point to be consid-

ered as a core point
Distance Euclidean

Manhattan
Cosine

Table 4.6: OPTICS parameters
More information at: https://scikit-learn.org/stable/modules/generated/
sklearn.cluster.OPTICS.html

Figure 4.7: Screenshot with the input of the OPTICS clustering parameters

4.5 Results observation

Finally, the last tab is devoted to visualizing the resulting clusters. The layout con-
tains three to five components depending on the selected clustering method. The
main idea behind this last step is to make use of the obtained model through a set
of resources for this purpose. The elements that compose this layout are presented
below:

1. Cluster instances table

2. Elbow method plot (K-means and agglomerative hierarchical method)

3. Download button

4. Dendrogram (K-means)

5. Dendrogram (agglomerative hierarchical method)

6. PCA plot of two components

In the first place, the clusters instances table has three columns representing the
number of the cluster, the number of instances, and the corresponding percentage
according to the population. This table size depends on the elbow method plot. If it
is present, the width will be half of the page; otherwise, if it is absent, the width will
be the total page width.

Then, the elbow method represents the explained variance as a function of the num-
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ber of clusters. The idea is that the best number is located in the "elbow" of the curve,
helping to determine the best parameter for the method. As mentioned before this
plot is available only for K-means and hierarchical agglomerative methods.

In all the methods there exists the option of downloading the resulting dataset in CSV
format through the download button. The structure of the CSV file contains all the
selected features and a final column with the label that corresponds to the instance’s
label. Internally it generates an AJAX request to the server, and the answer is the
CSV file to the client for its download.

In the case of agglomerative hierarchical clustering, the algorithm generates a den-
drogram representing the previously mentioned tree. when visualizing results, the
corresponding dendrogram is shown as part of the plots. Due to a significant num-
ber of samples that could be part of the data, the dendrogram is truncated to a
maximum of 16 branches for representing the clusters. The value line will be drawn
over the graph if the cutting line is selected as an option.

In addition, the K-means method has a result centroids, which means the point
located in the center of each cluster, so they act as the average description of the
cluster that they belong. In NeuroSuites only K-means is possible to watch a table
with the list of the centroids and the value over each variable.

Visualization of samples with more than three dimensions is impossible for humans.
Therefore, the approach followed in NeuroSuites for this problem is plotting a graph of
two dimensions. Both dimensions result from PCA application over the whole dataset,
letting users observe the obtained clusters comprehensively. Each point represents
a sample, and the color symbolizes the belonging cluster. This plot is available for all
the clustering algorithms.

In conclusion, all these resources let the user receive more information than the
resulting data by itself. Thus, the decisions over the parameters introduced in the
model can be edited or even change the algorithm for a better performance with the
uploaded data.

4.6 Case study

With the intention of comparing the results among all the options in algorithms im-
plemented in NeuroSuites, in this section will be presented the obtained clusters
table, the PCA plot for each method, and the time needed for the learning process.

The dataset used is Pulsar stars obtained from (Lyon et al., 2016) This data is the
result of watching pulsar stars, a particular type of stars made of neutrons that
produce radio emissions from each pole that can be detected from the Earth planet.
The data has nine attributes and 17898 samples and is useful for classification or
clustering purposes.

As pre-processing, three steps were applied, rows deletion for samples with null val-
ues, then removing constant features and finally the process of values standardiza-
tion with max-min scaling.

To decide the number of clusters for the algorithms two tools were employed, One is
the dendrogram provided by the hierarchical agglomerative method (Figure 4.8) being
a methodology that is exposed as a recommendation in (Bielza and Larrañaga, 2020).
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Figure 4.8: Obtained dendrogram from agglomerative hierarchical clustering

The second approach was using the elbow method taken from the K-means model
displayed in Figure 4.9. Perhaps the best option in both cases is two clusters. In this
case, three groups were selected in order to visualize the differences of each algorithm
in a more detailed way. The hyperparameters introduced are visible in Table 4.7 and
are the default ones except for spectral clustering, where minimum samples changed
from five to twenty because otherwise, it was producing 315 clusters.

Figure 4.10 exhibits the resulting clusters generated by each model. Agglomerative
hierarchical and K-means originated similar organizations with a cluster that is the
same in both cases, and this group is present on DBSCAN and BIRCH as well. For
two clusters, then the resulting output would be the same as found by the BIRCH
model. DBSCAN generated three clusters, with one them composed by one instance;
after reviewing this cluster graphically in fact, this sample is located far from the two
principal groups at the top of the plot. In the case of spectral, the eight clusters are
well separated, but the differences among them are not considerable. On the other
hand, OPTICS delivered three clusters with one big group representing 99.8 percent
of the samples; at the same time, the other two are not well separated and have 21
instances. A initial idea is that the location of these two sets inside the big set is
because of the PCA projection, but if it was the case all the other algorithms should
have shown similar problems, so in this case the OPTICS method with the given
parameters is not accomplishing an acceptable result. The tables of the obtained
clusters are available from Figure 4.11 to Figure 4.16.
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Figure 4.9: Elbow method applied to the K-means output

Method Parameters Learning time
(seconds)

Number of clusters

Agglomerative clustering Criteria: K,
Number of
clusters (K): 3,
Linkage: Ward,
Distance: Eu-
clidean

16.20 3

K-means K: 3 10.48 3
DBSCAN Epsilon: 0.5,

min samples:
5, Distance:
Euclidean

5.66 3

Spectral clustering Number of
clusters se-
lection: auto-
matic, Number
of components:
5

36.41 8

BIRCH K: 3, Thresh-
old: 0.5,
Branching
factor: 50

1.26 2

OPTICS Min samples:
20, Distance:
Euclidean

39.55 3

Table 4.7: Input parameters and learning times
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4.6. Case study

(a) Agglomerative hierarchical (b) K-means

(c) DBSCAN (d) Spectral

(e) BIRCH (f) OPTICS

Figure 4.10: Plots of the obtained clusters by method

Figure 4.11: Agglomerative hierarchical clustering table result
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Figure 4.12: K-means table result

Figure 4.13: DBSCAN table result

Figure 4.14: Spectral clustering table result

Figure 4.15: BIRCH table result

Figure 4.16: OPTICS table result
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Chapter 5

Implementation of
multidimensional classification in
NeuroSuites

This feature is uncommon among machine learning platforms, being this a particular
functionality inside NeuroSuites. This problem belongs to the supervised classifica-
tion family, but instead of the usual prediction of one class variable, in this case, one
or more target classes are simultaneously predicted.

There are two approaches to solving these problems. The first one is problem trans-
formation that aims to transform a multi-label problem into one or more single-label
problems (Bielza and Larrañaga, 2020). With this approach is possible to pass to data
to a known classifier independently from the previous process. In Neurosuites four
different problem transformation methods are available, all of them coming from the
Scikit.ml. Finally is possible to embed some of the usual classification algorithms,
but not all of them:

1. K nearest neighbors

2. Decision tree

3. Support vector machine

4. Linear discriminant analysis

5. Quadratic discriminant analysis

6. Logistic regression

7. Naive Bayes

The list of problem transformation methods is:

1. Binary relevance

2. Classifier chains

3. Label powerset

4. RAkEL
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5.1. Functionality flow

Figure 5.1: Pre-processing step for multi-label classification (screenshot)

Secondly, the other approach is algorithm adaptation methods. It refers to the adap-
tation of an algorithm for working with multi-label data. NeuroSuites has two options
for solving this kind of problem: k nearest neighbors and support vector machines;
these both are part of the Scikit.ml package.

For solving this challenge, Scikit.mll was the solution used for adding this function-
ality. Scikit.mll is a Python Package created for handling multi-label problems. It has
the code implementation of methods and metrics.

5.1 Functionality flow

The process for working with multi-label data is almost the same used in supervised
classification. In fact, single-class and multi-label share the same option and screens.
To work with common single-class classification the user should select just one target
class. However, selecting choose more than one target class activates the multi-label
classification functionality. Subsequently, the composing steps are the same:

1. Feature selection and preprocessing: The first step is the same explained in
Chapter 3 and is able to accept more than one target class. The main difference
with the usual process is that feature selection and dimensionality reduction
are not present. Figure 5.1 shows a screenshot of the corresponding layout to
the preprocessing step.

2. Training and testing sets: On this tab, the user selects the percentage of data
used for training and testing the model. It also lets define the number of k-folds
for cross-validation. In Figure 5.2 is shown the tab for setting the parameters
for this step.

3. Supervised learning algorithm: On this step, the user selects the learning algo-
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Figure 5.2: Training and validation sets screenshot

rithm and passes the hyper-parameters needed by the model.

4. Performance evaluation: Once the model or models have been trained, this lay-
out shows the evaluation metrics to the user. It also allows to download the
predicted samples in two formats: CSV or Parquet gzip.

In conclusion, the main idea of this functionality is to make the use of these functions
easier, taking advantage of the already developed solutions. In this case, the flow is
the same used for normal classification problems.

5.2 Implementation design

In terms of composition this is the most complex module related to Machine Learning
inside NeuroSuites 17 classes in total are related in way of accomplishing this func-
tionality. The central and most important is SupervisedClassification, a class that
can manage single labeled and multi labeled datasets. This class is responsible of
dealing with the controller and the models. Supervised-classification-model is an in-
terface that is not entirely created because of the Python syntax but help to describe
all the methods that must be implemented by each one of the Multi-Label specific
models. This class uses Supervised-classification-metrics, which is class that can
deal with single and multi label data as well and has the responsability of calculating
the different metrics.

For the problem-transformation methods, a single-label classification algorithm is
needed and will be embedded inside the parent class (transformation method). All
of these methods uses again the Supervised-classification-model but in this case to
use single-label algorithms and be accessed from the embedding class. Figure 5.3
exposes the UML class diagram used to build this functionality.

Finally it is important to mention that all the methods used in NeuroSuites related to
this module are taken from Scikit-multilearn Python library created for performing
Machine Learning problems with Multi-label problems.

5.3 Algorithm selection

This section lists the algorithms that have been implemented as part of NeuroSuites.
The structure is a brief description, a table with the parameters, and a screenshot of
the corresponding layout.
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Figure 5.3: Multi-label performance evaluation screenshot (rotated image)
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Parameter Option
Classification algorithm K nearest neighbors

Decision tree
Support vector machine
Linear discriminant analysis
Quadratic discriminant analysis
Logistic regression
Naive Bayes

Table 5.1: Binary relevance parameters
More information at: http://scikit.ml/api/skmultilearn.problem_
transform.br.html#skmultilearn.problem_transform.BinaryRelevance

Figure 5.4: Screenshot with the input of the binary relevance parameters

5.3.1 Binary relevance

This method is usually known as the most intuitive approach since it decomposes
the multi-label problem into several binary tasks. The inconvenience is the not to
consider relationships between the labels (Zhang et al., 2018). Figure 5.4 displays
the visual elements of this method, and Table 5.1 list the available options.

5.3.2 Classifier chain

This algorithm combines the computational efficiency of binary classifiers with the
addition of relationships among the labels. The way it works is by creating a chain
structure where, following a given order, for the class variables each predicted class
variable turns into a prediction feature for the next target label (Read et al., 2009).
Figure 5.5 shows the related layout to classifier chains, and Table 5.2 presents the
list of accepted parameters.

5.3.3 Label powerset

Label powerset transforms the problem into a multi-class classification task for train-
ing a model with all the combinations found in the dataset. One of the possible prob-
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Parameter Option
Classification algorithm K nearest neighbors

Decision tree
Support vector machine
Linear discriminant analysis
Quadratic discriminant analysis
Logistic regression
Naive Bayes

Table 5.2: Classifier chain parameters
More information at: http://scikit.ml/api/skmultilearn.problem_
transform.cc.html#skmultilearn.problem_transform.ClassifierChain

Figure 5.5: Screenshot with the input of the classifier chain parameters
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Parameter Option
Classification algorithm K nearest neighbors

Decision tree
Support vector machine
Linear discriminant analysis
Quadratic discriminant analysis
Logistic regression
Naive Bayes

Table 5.3: Label powerset parameters
More information at: http://scikit.ml/api/skmultilearn.problem_
transform.lp.html#skmultilearn.problem_transform.LabelPowerset

Figure 5.6: Screenshot with the input of the label powerset parameters

lems detected is that if some combination is absent in the data, the model will not be
able to predict this new class because each combination of labels becomes a unique
label id (Szymański and Kajdanowicz, 2017). The visual layout is exposed in Figure
5.6 and the possible parameters are presented in Table 5.3.

5.3.4 Random K-labEL sets

This method is based on label sets, but it creates k label set partitions in the dataset
for generating a multi-class classifier per subset with all the combinations inside it.
In the end, the prediction is derived from the votes of all the predicted values by
each sub-model. This method has shown a better performance compared to other
approaches. (Tsoumakas et al., 2011). A screenshot of the related visual elements is
visible in Figure 5.7 and the available parameters are presented in Table 5.4
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Parameter Option
Classification algorithm K nearest neighbors

Decision tree
Support vector machine
Linear discriminant analysis
Quadratic discriminant analysis
Logistic regression
Naive Bayes

Table 5.4: RAkEL parameters
More information at: http://scikit.ml/api/skmultilearn.ensemble.rakeld.
html#skmultilearn.ensemble.RakelD

Figure 5.7: Screenshot with the input of the RAkEL parameters

5.3.5 Multi-label K-nearest neighbors

This method (MLKnn) and support vector machines belong to the model adaptation
algorithms. MLKnn is based on the K-nearest neighbors algorithm, and the process is
that for each unseen instance, the K nearest neighbors are identified; then Bayesian
inference is applied in order to extract the assigned labels (Zhang and Zhou, 2007).
This method only receives two parameters and are visually presented in Figure 5.8
and detailed in Table 5.5.

5.3.6 Multi-label Support vector machine

The internal process performed by multi-label support vector machines (MLTSVM) is
to determine several nonparallel hyperplanes for capturing the multi-label informa-
tion inside the data in order to maximize the margin or distance between two classes.
The main goal with this method is that each pair of hyperplanes is closer to the corre-
sponding class and as far as possible from the other one.(Chen et al., 2016). Details

Parameter Option
Cross-validation grid search yes

no
K integer that represents the number of neighbors

Table 5.5: Multi-label K nearest neighbors parameters
More information at: http://scikit.ml/api/skmultilearn.adapt.mlknn.html#
skmultilearn.adapt.MLkNN
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Figure 5.8: Screenshot with the input of the multi-label K nearest neighbors param-
eters

Parameter Option
Cross-validation grid search yes

no
c l2 regularization penalty: It represents the empirical

risk penalty defined in order to determine a trade-off
between the set of loss terms

Table 5.6: Multi-label Support vector machines
More information at: http://scikit.ml/api/skmultilearn.adapt.mltsvm.
html#skmultilearn.adapt.MLTSVM

about the accepted parameters are available in Table 5.6 and the visual layout is
shown in Figure 5.9.

5.4 Results observation

The corresponding tab for this functionality uses the same structure found with con-
ventional single-class classification. In the software development process it included
the creation of a new Python class that shares a similar behavior according to the
internal methods for training and evaluating models between the existing and new
processes. This new class has internally implemented the inherent methods in order
to access to the data, functions and metrics from the selected algorithm.

The layout has two components, and each one is a table with the same columns and

Figure 5.9: Screenshot with the input of the multi-label support vector machines
parameters
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rows. The first one shows information about the training set, whereas the second
table corresponds to the testing set.

The rows correspond to each of the selected algorithms and the list of columns is:

1. Model

2. Hyperparameters

3. Download predictions in CSV format option

4. Download predictions in Parquet gzip format option

5. Model explanation option

6. Training time

7. Accuracy

8. Hamming loss

9. F-score

10. Precision

11. Recall

12. Jaccard similarity

The first two columns show the user’s introduced options according to the model
and parameters. The next two are buttons for downloading the resulting data with
predictions, and the fifth column is a button for viewing a model explanation if is
possible, depending on the model. For multi-label classification, there is not a model
that can be explained graphically.

Then, from the sixth to the last option there are metrics that correspond with the
performance of the algorithms, including the training time.

The tables have more possibilities, like ordering the samples by column or exporting
the table to Excel format, CSV format, or pdf format, even copying the data to the
clipboard. Another possible option is showing a statistical summary of the column
values and four distinct plots:

1. Bar chart

2. Probability density functions using Gaussian kernel density estimation (KDE)

3. Box plot points

4. Scatter plot

5.5 Case study

For practically presenting the results, a case study for comparing all the six algo-
rithms is shown in this section. In order to compare them, the tables generated by
the application will be used including the metrics and training times.

The dataset used is Emotions obtained from Trochidis et al. (2008) and represents
music and the associated emotions. Music uses to produce more than one feeling
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Model Hyperparameters
Binary relevance ’classification algorithm name’: ’K-nearest neighbors’
Classifier chains ’classification algorithm name’: ’logisticRegression’
Label powerset ’classification algorithm name’: ’naiveBayes’
RAkEL ’classification algorithm name’: ’svm’
MLKnn ’cross validation’: True, ’K’: 3
MLTSVM ’cross validation’: True, ’c k’: 0.125

Table 5.7: Parameters by model

Model Training
time (s)
(mean)

Accuracy
(mean)

Hamming
loss
(mean)

F-score
(mean)

Precision
(mean)

Recall
(mean)

Jaccard
simi-
larity
(mean)

Binary
rele-
vance

5.29 0.401 0.153 0.731 0.785 0.693 0.624

Classifier
chains

15.217 0.409 0.175 0.733 0.726 0.757 0.639

Label
power-
set

0.008 0.435 0.185 0.698 0.715 0.705 0.614

RAkEL 12.552 0.481 0.142 0.771 0.769 0.787 0.691
MLKnn 10.725 0.511 0.117 0.806 0.824 0.791 0.718
MLTSVM 25.831 0.127 0.325 0.652 0.502 0.949 0.512

Table 5.8: Training metrics

making it an excellent example of multi-label classification. The descriptive features
are related to the description of sounds, and all of them are continuous variables.

The pre-processing steps applied were a standardization through a max-min scale,
which turns the vales from 0 to 1, removing constant features if any, and rows dele-
tion in case of missing values inside a sample. The configuration for cross-validation,
if applicable, is of K equal to 5, and the percentage of instances used for the test set
20 percent.

To decide the embedded algorithms for transformation models we previously tried all
the options and the best model was selected for each one. For every embedded model
and algorithm adaptation models cross-validation was used for automatically setting
the best hyper-parameters. Table 5.7 exhibits the configurations applied.

The training phase metrics are presented in Table 5.8. Note that MLKnn is the model
with the best performance in terms of all the metrics and taking 10.725 seconds
making it the third faster option. In terms of Hamming loss, Jaccard similarity and
accuracy, binary relevance with an embedded K-nearest neighbor classifier together
with random k-labelsets (Rakel) with a support vector machines algorithm are the
second best options. Clearly MLTSVM is the model with the worst performing.

During the validation phase shown in Table 5.9 with the test dataset, the best per-
forming model changed now. Instead of MLKnn, in terms of accuracy, F-score and
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Model Training
time (s)
(mean)

Accuracy
(mean)

Hamming
loss
(mean)

F-score
(mean)

Precision
(mean)

Recall
(mean)

Jaccard
simi-
larity
(mean)

Binary
rele-
vance

5.29 0.319 0.182 0.677 0.76 0.624 0.546

Classifier
chains

15.217 0.286 0.21 0.679 0.712 0.681 0.552

Label
power-
set

0.008 0.319 0.209 0.67 0.701 0.664 0.557

Random
k-
labelsets

12.552 0.353 0.199 0.681 0.686 0.686 0.574

MLKnn 10.725 0.303 0.199 0.667 0.732 0.637 0.54
MLTSVM 25.831 0.101 0.343 0.642 0.514 0.889 0.479

Table 5.9: Test metrics

Jaccard similarity random k-labelsets (RAkEL) is the best model. On the other hand,
corresponding to Hamming loss and precision, binary relevance has the best results.
MLTSVM has the highest score for recall, but together with the lowest accuracy and
precision. It means that it is taking a significant number of cases as truth instead of
filtering them correctly. The obtained tables are presented in the corresponding tab,
and a screenshot has been made in order present it in the report in Figure 5.10.
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Figure 5.10: Multi-label performance evaluation screenshot (rotated image)
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Chapter 6

Visual changes for NeuroSuites

One component that is part of every platform is visual design. This characteristic
has the impact of attracting more or fewer users, depending on the ease of use or an
attractive user interface. Another objective of this project was to give a better look to
the application in terms of aesthetics and usability.

In NeuroSuites some existing modules were changed, and for the newly added ones
the flow in terms of functionality was applied. Then, more changes were applied
to the colors and logo of the application. For a better explanation, each change is
described in a separate section in this chapter.

6.1 Logo

One of the first impressions received after watching a new application is the icon or
logo. The previous logo had a descriptive but not friendly image. It included three
overlapped components: a brain with a irregular pattern of blue color, a cloud without
background, and yellow lightning. Due to the complexity, it was not giving a modern
impression, that was the reason for designing a new logo with a fresher image for
presenting the project.

The new logo only contains the name and a cloud linked to the last letter. The colors
used were selected to be consequent with the new menu, in blue scales. Additionally
a second option was created for dark backgrounds. The previous logo is visible in
Figure 6.1 and the two new versions are in Figure 6.2.

Figure 6.1: Previous logo

47



6.2. Menu and colors

(a) Logo for light background (b) Logo for dark background

Figure 6.2: New logo

Figure 6.3: New colors used for NeuroSuites

6.2 Menu and colors

With the previous palette, the logo and menu did not harmonize, as seen in the
Figure 6.6. While, the logo was not including any purple color, the menu had purple
as the main color. To obtain a harmonic combination the Google Material Design
color tool1 was used. The list of colors in hexadecimal notation decided after the
recommendations were (see Figure 6.3):

1. 23527c

2. 4dd0e1

3. 01579b

4. ffffff

For the main menu the electric blue for the selected option was replaced by the new
main blue color: 23527c at the same time that the logo was changed. On the other
hand, the side menu purple background color was replaced by 23527c. Aditionally
a new grouping organization was added according to the functionality that a module
provides, being all the neuroscience related modules: 3DspineS, 3dSomaMS , 3DSy-
napsesSA and Dendrite arborization simulation grouped in the "Neuro Apps" item.
The previous and new main menus are presented in Figure 6.4 and FIgure 6.5, and
the previous and new side menus are shown in Figure 6.6.

6.3 Upload data page

Previously (see Figure 6.7), the page only included the instructions in textual format,
which was not intuitive for a new user. Furthermore, the list of available modules was
shown without filters or classifications, making it harder to categorize the modules.

1https://material.io/resources/color/

Figure 6.4: Previous main menu
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Figure 6.5: New main menu

(a) Previous side menu (b) New side menu

Figure 6.6: Previous and new side menu layouts
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6.3. Upload data page

Figure 6.7: Previous upload page layout

Figure 6.8: New upload page layout
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Alternatively, the new layout (see Figure 6.8) includes two steps graphically with
descriptive text, and with the different options inside buttons. The list now contains
a header with working filters for the applications according to five criteria depending
on the functionality and the need of a dataset:

1. All

2. Neurosience

3. General purpose

4. With dataset

5. Without dataset

6.4 Supervised classification

The supervised classification layout was changed to add pre-processing and multi-
label classification, in fact, the layout for showing the steps was intervened too. Be-
fore the new version, the page was spread in a single tab, being the scroll the only
option for changing the current step of the process. It made it messy to reach a con-
figuration parameter. In order to give more organization and information about the
actual step, the layout was divided into four tabs ordered by the learning process,
making it more intuitive and faster to navigate through the flow. These tabs repre-
sent each step to achieve the classification models that were described previously. A
comparison between the previous and new Classification layouts is visible in Figures
6.9 and 6.10 respectively.

6.5 Statistics module

This module is a separated functionality from machine learning. At the same time,
it shares the same uploaded dataset. Its functionality is complementary for the ma-
chine learning process, including several graphs and hypothesis tests. The problem
found here is the same as in supervised classification; all the elements are distributed
on the same single page with scrolling as the unique navigation option. The issue,
in this case, is more noticeable because the space used by graphs and the number
of options and combinations among variables are significant, making it easy for the
user to get lost in the layout. The statistics module is composed of two different sub-
modules: discrete statistics and continuous statistics, each one showing information
about the corresponding kind of variables.

The solution implemented for both cases is dividing the whole layout into tabs ac-
cording to its function inside the process. Each tab has sub-tabs in case of being
necessary as the case of discrete descriptive statistics with univariate and bivariate
statistics. The previous and new continuous statistics layouts are presented in Fig-
ures 6.11 and 6.12. Additionally the previous and new s discrete statistics layouts
are available in Figures 6.13 and 6.14.
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6.5. Statistics module

Figure 6.9: Previous supervised classification page layout

Figure 6.10: New supervised classification page layout
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Figure 6.11: Previous continuous statistics layout

Figure 6.12: New continuous statistics layout
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6.5. Statistics module

Figure 6.13: Previous discrete statistics layout

Figure 6.14: New discrete statistics layout
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Chapter 7

Conclusions and future work

7.1 Conclusions

1. Machine learning is a hot topic with a growing trend for the next years. The im-
portance that is receiving is noticeable even for governments and corporations,
given the impact of this technology on society.

2. In the current context, NeuroSuites fills the necessity of a free online coding-
less machine learning platform. The other web applications have a commercial
objective whereas NeuroSuites has an academic goal and gives tools directly to
users without expecting payments.

3. Supervised classification and non-probabilistic clustering are now included also
with pre-processing facilities. They give users the flexibility to configure more
than the models hyperparameters to achieve better results.

4. The flow, layouts, and results observation inside non-probabilistic clustering
were completely designed and created in this project and now are part of the
machine learning module.

5. Multi-label classification is a non-common functionality implemented and now
offered as part of NeuroSuites. This extension was built over the one-class su-
pervised classification functionality to maintain standardization in the platform.

6. The image of the platform was refreshed in order to have harmonic colors to-
gether with a new logo, which combines well with the new palette. At the same
time, the menu grouping of items has changed to have context options according
to the use needed. Then, the layout distribution for data-stats and supervised
classification was improved in a more intuitive and clean way that gives an order
to steps and saves time to users.

7.2 Future work

The machine learning module is a general-purpose service, and a critical feature
offered by other platforms is regression. NeuroSuites would thus cover the two ap-
proaches of supervised learning. With this addition, the use-cases will increase and
more users will employ the platform.
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Additionally, Feature selection and dimensionality reduction are functionalities that
can be implemented in probabilistic clustering, non-probabilistic clustering and multi-
label classification because it will provide standarization to the system and new con-
figuration possibilities.

In order to promote the use of NeuroSuites, search engine optimization for appearing
in the searches for machine learning platforms should be applied. With more users
and the feedback received from them would help to improve the application.

The general-purpose modules data-stats and machine learning, could be in a sepa-
rate project or platform to avoid possible confusions about restrictions with neuro-
science requirements for the datasets.

A functionality that could be added is the possibility of downloading the models. It
would be useful for users who want to continue working with the model generated on
NeuroSuites but in a programmatical way.

7.3 Personal remark

Carrying out this project was an opportunity to combine my previous experience with
web development and my new knowledge gathered during the Data Science Master,
so enhancing professional experience.

The challenge of taking the whole project with the administration of the server and
learning about Docker technology was hard but exciting at the same time. At this
moment, having finished the project gives me a satisfying feeling.

Additionally, for me, it is a priceless experience to have been part of a project that is
mounted in the wave of machine learning, aiming to reduce the gap generated with
new technologies. In particular, being part of an academic environment gave me a
perspective of how the scientific and research community work from inside, by the
daily share with the office coworkers and teachers.

Finally, I am feeling motivated because I resolved the question of how to put into
production machine learning models. NeuroSuites gave this answer with a complete
flow that passes from pre-processing, training, and testing models, and all this inside
a web application. Now I want to solve many other problems mixing my two profiles
of software developer and data scientist.
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