Books
- Bielza, C., & Larrañaga, P. (2021). “Data-Driven Computational Neuroscience. Machine Learning and Statistical Models“. Cambridge University Press.
- Larrañaga, P., Atienza, D., Díaz-Rozo, J., Ogbechie, A., Puerto-Santana, C., & Bielza, C. (2019). “Industrial Applications of Machine Learning“. CRC Press.
- Bielza, C., Salmerón, A., Alonso-Betanzos, A., Hidalgo, J. I., Martínez, L., Troncoso, A., Corchado, E., & Corchado, J. M. (2013). “Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence, Vol. 8109“. Springer.
- Bielza, C., Salmerón, A. (2013). “Proceedings of the XV Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2013)”. CEDI.
- Pedro Larrañaga, Jose A Lozano. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation: 2 (Genetic Algorithms and Evolutionary Computation) October 30th, 2012. Springer.
- Ibañez, A., Bielza, C., & Larrañaga, P. (2011). “Scientific Productivity and Visibility of Public Spanish Universities Academic Staff in the Area of Computer Sciences“. Fundación General de la UPM.
- Lozano, J. A., Larrañaga, P., Inza, P., & Bengoetxea, E. (2006). “Towards a New Evolutionary Computation. Advances on Estimation of Distribution Algorithms“. Springer.
- Ríos-Insua, S., Mateos, A., Bielza, C., & Jimenez, A. (2004). “Operation Research. Deterministic and Stochastic Models“. Centro de Estudios Ramón Areces.
- P. Larrañaga, J. A. Lozano, J. M. Peña, I. Inza (2003). Probabilistic Graphical Models for Classification. Ruder Boskovic Institute.
- Larrañaga, P., & Lozano, J. A. (2002). “Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation“. Kluwer Academic Publishers.
- Ríos-Insua, S., Bielza, C., & Mateos, A. (2002). “Fundamentals of Decision Support Systems“. Ra-Ma, 2002. BibTex
- Ballestero, E., Bielza, C., Gómez, M., Maldonado, J. A., & Ballbe, P. (1999). “Health Economy, Statistics for Medical Doctors, Computer-Based Clinical Training“. Dossat 2000.
- Aizpurua, J. F., Mendizabal, X., Rodriguez, I., Larrañaga, P., Azkune, I., & Etxeberria, J. (1985). “Matematika. Batxilergo Balioaniztun Bateratua 2“. Elkar.
Book Chapters
- C. Puerto-Santana, P. Larrañaga, J. Diaz-Rozo, C. Bielza (2021). An online feature selection methodology for ball-bearing harmonic frequencies based on HMMs. Advances in Intelligent Systems and Computing, 1401, 546-555. Springer
- D. Quesada, C. Bielza, P. Larrañaga (2021). Structure learning of high-order dynamic Bayesian networks via particle swarm optimization with order invariant encoding. Lecture Notes in Computer Science, 12886, 158-171. Springer
- Córdoba, G. Varando, C. Bielza, P. Larrañaga (2018). A fast Metropolis-Hastings method for generating random correlation matrices. Lecture Notes in Computer Science, 11314, 117-124. Springer
- S. Gil-Begue, P. Larrañaga, C. Bielza (2018). Multi-dimensional Bayesian network classifier trees. Lecture Notes in Computer Science, 11314, 354-363. Springer
- Córdoba-Sánchez, E.C. Garrido-Merchán, D. Hernández-Lobato, C. Bielza, P. Larrañaga (2018). Bayesian optimization of the PC algorithm for learning Gaussian Bayesian networks. Lecture Notes in Artificial Intelligence, 11160, 44-54. Springer
- C. Puerto-Santana, C. Bielza, P. Larrañaga (2018). Asymmetric hidden Markov models with continuous variables. Lecture Notes in Artificial Intelligence, 11160, 98-107. Springer
- Ogbechie, A., J. Díaz-Rozo, P. Larrañaga, and C. Bielza, “Dynamic Bayesian Network-Based Anomaly Detection for In-Process Visual Inspection of Laser Surface Heat Treatment“, Machine Learning for Cyber Physical Systems: Selected papers from the International Conference ML4CPS 2016: Springer Berlin Heidelberg, pp. 17-24, 2017. BibTex
- Leguey, I., Bielza, C., Larrañaga, P. (2016). Tree-structured Bayesian networks for wrapped Cauchy directional distributions. Lecture Notes in Artificial Intelligence, 9868, 207-216. Springer
- Luengo-Sanchez, S., Bielza, C., Larrañaga, P. (2016). Hybrid Gaussian and von Mises model-based clustering. Frontiers in Artificial Intelligence and Applications Series, 285, 855-862. IOS Press
- Atienza, D., Bielza, C., Díaz, J., Larrañaga, P. (2016). Anomaly detection with a spatio-temporal tracking of the laser spot. Frontiers in Artificial Intelligence and Applications Series, 284, 137-142, IOS Press
- Díaz, J., Bielza, C., Ocaña, J.L., Larrañaga, P. (2016). Development of a cyber-physical system based on selective Gaussian naive Bayes model for a self-predict laser surface heat treatment process control. Machine Leaning for Cyber Physical Systems, 1-8, Springer
- Rodríguez-Lujan, L., Bielza, C., Larrañaga, P. (2015). Regularized multivariate von Mises distribution. Lecture Notes in Artificial Intelligence, 9422, 25-35. Springer
- Córdoba-Sánchez, I., Bielza, C., Larrañaga, P. (2015). Towards Gaussian Bayesian Network Fusion. Lecture Notes in Artificial Intelligence, 9161, 519-528. Springer
- Varando, G., Bielza, C., Larrañaga, P. (2014). Expressive power of binary relevance and chain classifiers based on Bayesian networks for multi-label classification. Lecture Notes in Artificial Intelligence, 8754, 519-534. Springer
- Bielza, C., Larrañaga, P. (2014). 28 entries in the Concise Encyclopaedia of Bioinformatics and Computational Biology (second edition), J. Hancock and M.J. Zvelebil (eds.). Wiley
- Mihaljevic, B., Larrañaga, P., Bielza, C. (2013). Augmented semi-naive bayes classifier. Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence, 8109, 159-167. Springer
- López-Cruz, P.L., Nielsen, T.D., Bielza, C., Larrañaga, P. (2013). Learning mixtures of polynomials of conditional densities from data. Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence, 8109, 363-372. Springer
- López-Cruz, P.L., Bielza, C., Larrañaga, P. (2013). Learning conditional linear Gaussian classifiers with probabilistic class labels. Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence, 8109, 139-148. Springer
- Guerra, L., Benavides-Piccione, R., Bielza, C., Robles, V., DeFelipe, J., Larrañaga, P. (2013). Semisupervised projected clustering for classifying GABAergic interneurons. Lecture Notes in Artificial Intelligence, 7885, 156-165. Springer
- Karshenas, H., R. Santana, C. Bielza, and P. Larrañaga, “Continuous Estimation of Distribution Algorithms Based on Factorized Gaussian Markov Networks”, Markov Networks in Evolutionary Algorithms: Springer, pp. 157-173, 2012. BibTex
- P. Larrañaga (2012). 1969-1980: Mondrag_on-Toulouse-Mondrag_on-Berkeley-Mondrag_on. Festschrift in Honour of Ramon López de Mántaras, 205-216, Artificial Intelligence Research Institute
- Santana, R., Bielza, C., Larrañaga, P. (2010). Synergies between network-based representation and probabilistic graphical models for classification, inference and optimization problems in neuroscience. Lecture Notes in Artificial Intelligence, 6098, 149-158. Springer
- Borchani, H., Larrañaga, P., Bielza, C. (2010). Mining concept-drifting data streams containing labeled and unlabeled instances. Lecture Notes in Artificial Intelligence, 6096, 531-540. Springer
- Santana, R., Bielza, C., Larrañaga, P. (2010). Using probabilistic dependencies improves the search of conductance-based compartmental neuron models. Lecture Notes in Computer Science, 6023, 170-181. Springer
- Díaz, E., Ponce-de-León, E., Larrañaga, P., Bielza, C. (2009). Probabilistic graphical Markov model learning: An adaptive strategy. Lecture Notes in Artificial Intelligence, 5845, 225-236. Springer
- Inza, I., B. Calvo, R. Armañanzas, E. Bengoetxea, P. Larrañaga, and J. A. Lozano, “Machine learning: An indispensable tool in bioinformatics”, Bioinformatics Methods in Clinical Research: Springer, pp. 25-48, 2009. BibTex
- D. Morales, E. Bengoetxea, P. Larrañaga (2009). Combining multi-classifiers with Gaussian-stacking multiclassifiers for human embryo selection. Data Mining and Medical Knowledge Management: Cases and Applications, 307-331, IGI Global
- Echegoyen, R. Santana, J. A. Lozano, P. Larrañaga (2008). The impact of exact probabilistic learning algorithms in EDAs based on Bayesian network. Linkage in Evolutionary Computation, 109-139, Springer
- López, M., Bielza, C., Sarro, L.M. (2006). Bayesian classifiers for variable stars. Astronomical Data Analysis Software and Systems XV, 351, 161-164. Astronomical Society of the Pacific Conference Series
- Robles, J. M. Peña, P. Larrañaga, M. S. Pérez, V. Herves (2006). GA-EDA: A new hybrid cooperative search evolutionary algorithm. Towards a New Evolutionary Computation. Advances on Estimation of Distribution Algorithms, 187-220, Springer
- T. Miquélez, E. Bengoetxea, P. Larrañaga (2006). Bayesian classifiers in optimization: An EDAlike approach. Towards a New Evolutionary Computation. Advances on Estimation of Distribution Algorithms, 221-242, Springer
- Armañanzas, R., B. Calvo, I. Inza, P. Larrañaga, I. Bernales, A. Fullaondo, and A. M. Zubiaga, “Clasificadores Bayesianos con selección consensuada de genes en la predicción del lupus eritematoso sistémico”, Minería de Datos: Técnicas y Aplicaciones: Ediciones Dpt. de Informática de la UCLM, pp. 107-135, 2005. BibTex
- S. Dizdarevich, P. Larrañaga, B. Sierra, J. A. Lozano, J. M. Peña (2005). Combining statistical and machine learning based classifiers in the prediction of corporate failure. Artificial Intelligence in Accounting and Auditing. Volume 6. International Perspective, 177-211, Markus Wiener Publishers
- P. Larrañaga, I. Inza, J. L. Flores (2005). A guide to the literature on inferring genetic networks by probabilistic graphical models. Data Analysis and Visualization in Genomics and Proteomics, 215-238, John Wiley.
- Bielza, C., J. A. Fernandez del Pozo, and P. Lucas, “Research and Development in Intelligent Systems XX“, Optimal Decision Explanation by Extracting Regularity Patterns: Springer, pp. 283-294, 2004. BibTex
- Gómez, M., J. A. Fernandez del Pozo, C. Bielza, and S. Ríos-Insua, “Gestión de la Ictericia Neonatal”, La Aventura de Decidir: Una Aproximación Científica mediante Casos Reales: Universidad de Málaga, pp. 73-94, 2004. BibTex
- Puch, R. O., J. Q. Smith, and C. Bielza, “Hierarchical Junction Trees: Conditional Independence Preservation and Forecasting in Dynamic Bayesian Networks with Heterogeneous Evolution“, Advances in Bayesian Networks Studies in Fuzziness and Soft Computing: Springer, pp. 57-76, 2004. BibTex
- 30. Bielza, C., Fernández del Pozo, J.A., Lucas, P. (2004). Optimal decision explanation by extracting regularity patterns. Research and Development in Intelligent Systems XX, 283-294. Springer
- Bielza, C., J. A. Fernandez del Pozo, and P. Lucas, “Finding and Explaining Optimal Treatments”, Lecture Notes in Artificial Intelligence: Springer, pp. 299-303, 2003. BibTex
- Bielza, C., and S. Ríos-Insua, “Análisis de Decisiones Clínicas”, Manual de Informática Médica: Menarini – Caduceo Multimedia, pp. 467-491, 2003. BibTex
- González, C., D. J. Rodriguez, J. A. Lozano, and P. Larrañaga, “Analysis of the univariate marginal distribution algorithm modeled by Markov chains“, Lecture Notes in Computer Science, pp. 510–517, 2003. BibTex
- Robles, V., P. Larrañaga, J. M. Peña, O. Marban, J. Crespo, and M. S. Pérez, “Collaborative filtering using interval estimation naïve Bayes“, Lecture Notes in Artificial Intelligence, pp. 46–53, 2003.
- Robles, V., P. Larrañaga, J. M. Peña, E. Menasalvas, and M. S. Pérez, “Interval estimation naïve Bayes“, Lecture Notes in Computer Science, pp. 143–154, 2003.
- Santafé, G., J. A. Lozano, and P. Larrañaga, “Fitting mixture models with estimation of distribution algorithms”, Actas del II Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados, pp. 232–236, 2003.
- I. Inza, P. Larrañaga, B. Sierra (2002). Estimation of distribution algorithms for feature subset selection in large dimensionality domains. Data Mining: A euristic Approach, 97-116, Idea Group Publishing.
- C. Cotta, E. Alba, R. Sagarna, P. Larrañaga (2002). Adjusting weights in Artificial neural networks using evolutionary algorithms. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, 361-377, Kluwer Academic Publishers.
- J. Roure, P. Larrañaga, R. Sangüesa (2002). An empirical comparison between K-means, GAs and EDAs in partitional clustering. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, 343-360, Kluwer Academic Publishers.
- L.M. de Campos, J. A. Gámez, P. Larrañaga, S. Moral, T. Romero (2002). Partial abductive inference in Bayesian networks: An empirical comparison between GAs and EDAs. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, 323-341, Kluwer Academic Publishers.
- B. Sierra, E. A. Jiménez, I. Inza, P. Larrañaga, J. Muruzábal (2002). Rule induction by estimation of distribution algorithms. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, 313-322, Kluwer Academic Publishers.
- I. Inza, P. Larrañaga, B. Sierra (2002). Feature weighting for nearest neighbor by estimation of distribution algorithms. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, 295-311, Kluwer Academic Publishers.
- I. Inza, P. Larrañaga, B. Sierra (2002). Feature subset selection by estimation of distribution algorithms. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, 269-293, Kluwer Academic Publishers.
- E. Bengoetxea, P. Larrañaga, I. Bloch, A. Perchant (2002). Solving graph matching with EDAs using a permutation-based representation. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, 243-265, Kluwer Academic Publishers.
- V. Robles, P. de Miguel, P. Larrañaga (2002). Solving the traveling salesman problem with EDAs. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, 211-229, Kluwer Academic Publishers.
- R. Sagarna, P. Larrañaga (2002). Solving the 0-1 knapsack problem with EDAs. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, 195-209, Kluwer Academic Publishers.
- E. Bengoetxea, T. Miquélez, P. Larrañaga, J. A. Lozano (2002). Experimental results in function optimization with EDAs in continuous domains. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, 181-194, Kluwer Academic Publishers.
- C. González, J. A. Lozano, P. Larrañaga (2002). Mathematical modeling of discrete estimation of distribution algorithms. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, 147-163, Kluwer Academic Publishers.
- J. A. Lozano, R. Sagarna, P. Larrañaga (2002). Parallel estimation of distribution algorithms. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, 129-145, Kluwer Academic Publishers.
- J. M. Peña, J. A. Lozano, P. Larrañaga (2002). Benefits of data clustering in multimodal function optimization via EDAs. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, 101-127, Kluwer Academic Publishers.
- P. Larrañaga (2002). A review on estimation of distribution algorithms. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, 57-100, Kluwer Academic Publishers.
- P. Larrañaga (2002). An introduction to probabilistic graphical models. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, 27-56, Kluwer Academic Publishers.
- Fernández del Pozo, J.A., Bielza, C. (2002). An interactive framework for open queries in decision support systems. Lecture Notes in Artificial Intelligence, 2527, 254-264. Springer.
- Martín, J., Bielza, C. (2001). Aplicación de técnicas de simulación al análisis de decisiones: Estudio de una línea de clasificación de frutas. Gestao da Tecnología Empresarial e da Informacao: Conceitos e Estudos de Casos, 181-194. Editora Internet
- Ríos-Insua, S., Gómez, M., Bielza, C., Fernández del Pozo, J.A. (2000). Implementation of IctNeo: a decision support system for jaundice management. Operations Research Proceedings 1999, Gesellschaft fur Operations Research e.V., 554-559. Springer
- Bielza, C., Ríos-Insua, S., Gómez, M., Fernández del Pozo, J.A. (2000). Sensitivity analysis in IctNeo. Robust Bayesian Analysis, Lecture Notes in Statistics, 152, 317-334. Springer.
- Gómez, M., Ríos-Insua, S., Bielza, C., Fernández del Pozo, J.A. (2000). Multiattribute utility analysis in the IctNeo system. Research and Practice in Multiple Criteria Decision Making, Lecture Notes in Economics and Mathematical Systems, 487, 81-92. Springer
- P. Larrañaga, C. M. H. Kuijpers (1999). Moral graph (triangulation of). Encyclopedia of Statistical Sciences. Update Volume 3, 462-464, John Wiley & Sons Ltd.
- Ríos-Insua, S., Bielza, C., Gómez, M., Fernández del Pozo, J.A., Sánchez Luna, M., Caballero, S. (1998). An intelligent decision system for jaundice management in newborn babies. Applied Decision Analysis, 133-144. Kluwer.
- Bielza, C., Ríos Insua, D. (1998). Modelos gráficos para la toma de decisiones. Sistemas Expertos Probabilísticos, Colección Ciencia y Técnica, 20, 163-185. Eds. de la Universidad de Castilla – La Mancha
- Ríos Insua, D., Bielza, C., Martín, J., Salewicz, K.A. (1998). Intelligent decision support for reservoir operations. Applied Decision Analysis, 63-72. Kluwer.
- Ríos Insua, D., Bielza, C., Martín, J., Salewicz, K. (1997). BayRes: a system for stochastic multiobjective reservoir operations. Advances in Multiple Objective and Goal Programming, Lecture Notes in Economics and Mathematical Systems, 455, 319-327. Springer.
- Ríos Insua, D., Salewicz, K.A.,Müller, P., Bielza, C. (1997). Bayesian methods in reservoir operations: The Zambezi river case. The Practice of Bayesian Analysis, 107-130. Arnold
- Bielza, C., Ríos Insua, D., Ríos-Insua, S. (1996). Inuence diagrams under partial information. Bayesian Statistics 5, 491-497. Oxford U.P.
- P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, Y. Yurramendi, M. Graña, J. A. Lozano, X. Albizuri, A. d’Anjou, F. J. Torrealdea (1996). Genetic algorithms applied to Bayesian networks. Computational Learning and Probabilistic Reasoning, 211-234, John Wiley & Sons Ltd.
- Ríos-Insua, S., Mateos, A., Bielza, C. (1994). Teoría de la utilidad e inteligencia Artificial. Fronteras de la Informática, 169-189. Real Academia de Ciencias.
- P. Larrañaga (1989). Clasificación de las provincias españolas frente a los delitos comunes. Criminología y Derecho Penal al Servicio de la Persona. Libro-Homenaje al Profesor Antonio Beristain, 289-292, IVAC-KREI.