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Bayesian Methods in Reservoir Operations: TheZambezi River CaseD. R��os Insua1;2, K.A. Salewicz3, P. M�uller4;1, C. Bielza11 Universidad Polit�ecnica de Madrid, Spain2 CNR-IAMI, Italy3 IMES, Strobl Gruppe, Austria4 Duke University, USAAbstractThis paper describes a general Bayesian methodology for reservoir opera-tions. This methodology is applied to the operation of the two main reservoirsin the Zambezi river: Lake Kariba and Cahora Bassa.KEYWORDS: Reservoir operations, Dynamic models, Multiattribute utility,Dynamic programming, Sensitivity analysis.1



1 Reservoir operationsMany reservoirs have been built and are operating under di�erent climatic andhydrological conditions, and with many di�erent purposes, including municipal, in-dustrial or agricultural water supply, hydropower generation, ood protection andcontrol and recreation. In fact, many reservoirs serve several conicting purposes,as in the case of having to secure water supply to a number of users and to provideood protection downstream.Multiple objectives are not the only di�culties associated with reservoir opera-tions. The inow process is typically uncertain and with varying dynamics. Waterdemand and priorities may also change from one period to another. Consequences ofoperational decisions might a�ect di�erent groups of people in di�erent ways. Theseand many other features of reservoir operation problems cause that, despite a longtradition of e�orts aimed at developing e�cient and secure methods for reservoiroperation, no generally accepted methodology is available yet.In this paper, we provide a general Bayesian methodology and describe its ap-plication to the main reservoirs in the Zambezi river.
2



1.1 Quantitative methods in reservoir operationThe literature dealing with various aspects of single and/or multiple reservoir man-agement is rich and covers a broad range of methods. Since there is no single, generalformulation for the problem, there is no universally applicable solution approach.We shall concentrate on reservoir operation problems, leaving aside related problemsof reservoir design (site and size). Thus, our problem is: given an existing reservoir,�nd the operating policy or set of rules specifying how much water has to be releasedfrom the reservoir for di�erent purposes and at various instants of interest.The very �rst methods in the �eld developed in the 19th century were based onsimple diagrams, Klemes (1981). Since then, both single and, much less frequently,multiple objective optimization methods have been proposed. Also, uncertainty hasbeen included, both explicitly (via probabilistic models and techniques) and implic-itly (via scenarios). We believe though that the literature dealing with reservoiroperation problems typically identi�es operation with a speci�c technique appliedto solve a certain formulation of the problem, leading to the false conclusion thatthe reservoir operation task can be solved by direct application of the optimizationmethod described in a paper. This 'technique focused' approach fails to present acomprehensive framework necessary to tackle reservoir operation problems without3



too many simplifying assumptions. The most common de�ciency of various 'tech-nique focused' approaches boils down to a lack of mechanisms for using incominginformation about inow and users' demands and preferences, thus limiting the useof up to date information concerning reservoir operation conditions.1.2 Bayesian methods in reservoir operationWe aim at solving the problem within the Bayesian framework. That would require:� de�ning the set of control alternatives, in our case release policies u;� providing a forecasting model for inows i to the reservoir;� modelling the consequences c(u; i), associated with policy u and inow i;� modelling the preferences of the decision maker by means of a utility functionF , typically multiobjective and multiperiod;Let h designate the predictive density of inows and D the inow history. Letsubindex j refer to period j, st+k+1 be the �nal storage, and k the planning horizon.Then, at time t, the reservoir management planning problem consists of �nding thecontrols (ut; :::; ut+k), maximising the expected utilityZ F (c(ut; it); :::; c(ut+k; it+k); st+k+1)h(it; :::; it+kjDt)dit:::dit+k4



taking into account the dynamics of the reservoir system, and the constraints overcontrols and reservoir storages. The problem becomes unmanageable for a realisticplanning horizon, say 36 months, since we have to solve a long term stochasticdynamic program; the evaluation of each control requires the solution of a highdimensional integral; and uncertainty about the inow process rapidly propagatesthrough time.Instead, we adopt a strategy based on a concept of 'reference trajectory', whichassumes having found a good 'reference' storage level for each period. Then, at eachperiod we would like to maximise the expected value of a utility function F � takinginto account the consequences of interest and the deviation from that reference state,i.e., Z F �(c(ut; it); �(st+1; s�t+1))h(itjDt)dit;where �(st+1; s�t+1) represents the deviation of the �nal state st+1 from the referencestate s�t+1. Intuitively, if the reference states are de�ned in such a way so as toaccount for the dynamic aspects of the problem, we would not loose too much withthis approach.This proposal is, in fact, based on a traditional and well established methodof reservoir operation using the concept of rule curves, which represent optimal5



trajectories of the reservoir over a long time horizon, see Loucks and Sigvaldasson(1982).
2 The Zambezi river case studyThe Zambezi is the largest African river owing into the Indian Ocean. Its totalcatchment area covers 1300000 km2, while its length from the source in the CentralAfrican Plateau to the outlet is in the order of 2500 km (Balek, 1977). The catch-ment is shared by eight riparian countries; for Mozambique, Zambia and Zimbabweit constitutes the main water resource. The main use of the river is hydropowergeneration. The main reservoirs are Lake Kariba and Cahora Bassa.Lake Kariba, on the border between Zambia and Zimbabwe, is, currently, thefourth largest man-made lake in the world. At the maximum retention level it coversan area of over 5600 km2 and has an active storage exceeding 70 km3. Hydropowerplants installed at the northern (Zambian) and southern (Zimbabwean) banks of thedam plus a small hydropower scheme located on the Kafue River jointly supply morethan 70 % of the electricity produced in these two countries. Since the completionof the generating facilities in 1977, the Lake Kariba system has supplied a monthlyaverage of about 600 GWh/month, with little seasonal variation. Both countries6



operate the scheme jointly and share the electricity generated on a 50{50 basis.Cahora Bassa is located in Mozambique. The maximum area is 2700 km2. Themaximum impounded water is 60 km3. The energy produced is mainly sold to SouthAfrica. However, until recently, the transmission lines have been a favourite terroristtarget, limiting its operation. Figure 1 hereFigure 1: The Zambezi river basin2.1 The IIASA projectUpon request from the governments of Botswana, Zambia and Zimbabwe, the UnitedNations Environment Program (UNEP) assisted the Governments of the Zambezibasin countries developing the Zambezi action plan (ZACPLAN). In May 1987, anagreement on the Action Plan for the Environmentally Sound Management of theCommon Zambezi River System was adopted and signed in Harare (Zimbabwe), byrepresentatives of �ve basin countries (UNEP, 1987). ZACPLAN was then approvedby the summit of the Southern African Development Coordination Conference anda special unit was established to implement the plan.At the same time, UNEP recognised the need to improve government decision7



making processes, in selecting the best environmentally sound alternatives in plan-ning and managing large international water systems. The International Institutefor Applied Systems Analysis in Laxenburg (Austria) was then asked to contribute tothe work and develop appropriate methods and tools that could be used to supportdecision making processes associated with the management of Zambezi resources(Salewicz and Loucks, 1988; Salewicz, Loucks and Macdonald, 1989).IIASA studies in connection with the Zambezi case covered several issues (Pinay,1988) but focused mainly on two topics:� Development of an interactive river system simulation program, called IRIS,now in use in several countries (see Venema and Schiller, 1995).� Development of models and methods to improve the operation of the main hy-dropower scheme in the Zambezi basin at Lake Kariba. Gandol� and Salewicz(1990, 1991) conducted extensive studies and developed two sets of operatingpolicies for the scheme, combining simulation and multiobjective optimization,which improved upon the current management.These studies were the origin of the project described here.
8



3 Bayesian methods in Lake Kariba and Ca-hora Bassa operationIn R��os Insua and Salewicz (1995) (RS from now on), we explored the potential ofthe Bayesian framework described above and improved signi�cantly the performanceof Lake Kariba. Here we demonstrate the applicability of our framework to mul-tireservoir systems with the case of Lake Kariba and Cahora Bassa. As explainedin Lamond et al (1995), stochastic optimization of multireservoir river basin mod-els is bedeviled by the 'curse of dimensionality'. We suggest our methodology as apowerful alternative.In the study, one of us (Salewicz), drawing on experience of the operation of theLake Kariba over an extended period, plays the role of an expert providing beliefsand preferences, which are then thoroughly checked via sensitivity analysis. This isa common practice in public policy decision analysis (Keeney, 1992).As notation is concerned, superindex c will refer to Cahora Bassa, whereas su-perindex k will refer to Kariba Lake. For example, ict and ikt will designate theinows (in mln.m3/ month) to Cahora and Kariba at month t, respectively.
9



3.1 Operating policiesLet us start de�ning our operating policies. Current ones are de�ned by meansof parametric curves associating release with the amount of water stored in thereservoir. The parameters of these curves were chosen to optimise some performancefunction. Instead, we prefer to formulate more exible rules, as described for CahoraBassa:� At the beginning of the month, the operator announces the desired amountsof water uc1t and uc2t (in mln.m3/month) to be released, respectively, for energyproduction and for free storage provision to catch expected oods.� If there is not enough water to release uc1t, all available water is released forenergy production. Otherwise, uc1t is released for energy production.� If, after the release of uc1t, there is still water available, some water may be ad-ditionally released to control the reservoir storage level. If there is not enoughwater to release the volume uc2t announced, all available water is released. Oth-erwise, uc2t is released. In the event that, after the two releases, the remainingwater would exceed the maximum storage M c = 60000 mln.m3, all excesswater is spilled. 10



For Kariba Lake, there are corresponding releases uk1t and uk2t, de�ned in a similarvein, with maximum storage Mk = 70980 mln.m3.We shall �nd optimal controls uc1; uc2; uk1; uk2 associated to our model. Note thatactual releases will di�er from the announced ones, depending on the available water.3.2 Consequences of operating policies>From the operational and managerial viewpoint, the consequences of an operatingpolicy for Cahora Bassa at the end of every month are:1. the amount of energy produced Ect in GWh/month,2. the reservoir storage sct in mln.m3.For Kariba the relevant consequences are:1. the existence of energy de�cit kt, with a target of 750 GWh/month,2. the volume of spilled water uk2t,3. the volume of water released uk1t + uk2t,4. the reservoir storage skt .Note the di�erences for both reservoirs: �rst, energy at Cahora Bassa would besold eventually to other countries, whereas energy at Kariba is consumed within the11



producing countries. The second consequence of interest for Kariba is due to anobjective related with homogenity in operation through time, for reasons describedin Gandol� and Salewicz (1991). The third one relates to the need to take intoaccount the release from Kariba in the inow model to Cahora Bassa. Reservoirstorages are required to keep track of the evolution of reservoirs through time.An important feature in the problem is the dynamics of the basin. Here wedescribe Cahora Bassa dynamics. Interreservoir dynamics are described in Sections3.3.2 and 3.3.3. Lake Kariba dynamics are described in RS.Let uct , ect denote, respectively, the amounts of water released and evaporatedduring month t, with ict and sct de�ned as above. A continuity equation describesthe relation between storage level, inow, outow and evaporation:sct+1 = sct + ict � uct � ect :Total outow is uct = uc1t + uc2t: (1)For evaporation, we use a modelect = mt �a� sct + sct+12 + b� ;
12



where mt represents evaporation intensity during month t. Simple computationslead to a new version of the continuity equation:sct+1 = dc1tsct + dc2t(ict � uct) + dc3t; (2)where dc1t, dc2t, dc3t are appropriate periodic constants obtained from simple transfor-mations and are in Table 1.Month dc1 dc2 dc3Oct. .994 .997 989.640Nov. .996 .998 990.375Dec. 1.000 1.000 992.395Jan. 1.000 1.000 992.476Feb. 1.000 1.000 992.807Mar. .998 .999 991.691Apr. .996 .998 990.772May .996 .998 990.567Jun. .996 .998 990.737Jul. .997 .998 990.965Aug. .996 .998 990.553Sep. .995 .997 990.016Table 1: Evaporation constants for Cahora Bassa13



Active storage, in mln.m3, should be not less than a minimum volume requiredto maintain �sh population life and not greater than the maximum1344 � sct �M c: (3)We assume that four generating units are operational (out of �ve). The maximumwater through each turbine is 1212.19 mln.m3/month. Therefore0 � uc1t � 4848:76 (4)There are also constraints on the volume uc2t of spilled water. Given the structureof the dam, release through spillgates will depend on the level of the reservoir. Weprovide the maximum release as a function of the level lt, measured in meters abovesea level: 0 � uc2t � 8>>>>>>>><>>>>>>>>: 36761; if lt � 3263423:822plt � 210; if 320 � lt < 3263338:186plt � 210; if lt < 320 (5)We provide a relation between storage and level, which we obtain �tting by leastsquares a curve lt = lt(sct) = �(1� exp(�sct)) + :The estimates are � = 48:83;14



� = �0:0000183393; = 296:11:Obviously, it is important to provide a relation for the energy produced. We �rstrelate head ht, level lt and tailrace rt, in meters:ht = lt � rt:Using available reservoir design data, we �t a model, by least squares, relatingtailrace and release rt = � log(uct) + �;with estimates � = 10:3816, � = 113:8537. Finally, the energy produced in GWh/monthis Ect = �uc1tht (6)with � = 0:002725� :85� :778 = :00180204:We may then build the following table showing consequences of various releasepolicies uc1; uc2, as a function of the inow ic and the available amount of water inCahora Bassa h(ic) = dc1sc + dc2ic + dc3, where, for simplicity, we drop subindices t.
15



We use the notation h1 = dc2uc1 � dc1sc � dc3dc2h2 = dc2uc � dc1sc � dc3dc2h3 = M c + dc2uc � dc1sc � dc3dc2and consider only the case 0 � h1, in which if ic = 0, we would not be able to meetthe operator's demands concerning water through turbines, that is, uc1 � h(0)=dc2.Inow Fin.Stor. Energyic � h1 0 � h(ic)dc2 [l(sc)� � log(h(ic)dc2 )� �]h1 < ic � h2 0 �uc1[l(sc)� � log(h(ic)dc2 )� �]h2 < ic � h3 dc2ic � dc2h2 �uc1[l(sc)� � log(uc)� �]ic > h3 M c �uc1[l(sc)� � log(sc dc1dc2 + ic + dc3dc2 � Mcdc2 )� �]Table 2: Consequences for Cahora Bassa policies. Case h1 � 0.Similarly, when the inow to Kariba is ik, the available water in Kariba reservoirwill be g(ik) = dk1sk + dk2ik + dk3. Then, ifg1 = dk2uk1 � dk1sk � dk3dk2 ;g2 = dk2uk � dk1sk � dk3dk2 ;16



g3 = Mk + dk2uk � dk1sk � dk3dk2 ;g4 = g1 + Mkdk2 ;where dk1; dk2; dk3 are evaporation constants for Kariba, we have the following table ofconsequences (see RS for further details):Inow Spill. Total Rel. Fin.Stor. Inow Def.ik � g1 0 g(ik)=dk2 0g1 < ik � g2 ik � g1 g(ik)=dk2 0 ik � o1 0g2 < ik � g3 uk2 uk1 + uk2 dk2(ik � g2)ik > g3 ik � g4 (g(ik)�Mk)=dk2 Mk ik > o1 1Table 3: Consequences for Kariba policies. Case g1 � 0.Again, we have included only the case 0 � g1, in which, if there was no inow toKariba, we would not be able to meet the operator's demands concerning waterthrough turbines. o1 is a minimum inow level not leading to energy de�cit, as aconsequence of the energy produced being a nondecreasing function of the inow.3.3 Forecasting modelsThe main source of uncertainty in reservoir management is associated with the inowprocess: monthly releases should take into account the inow in the corresponding17



and later months, which are uncertain. In order to solve the forecasting problem,we employ Bayesian Dynamic Models (DM). West and Harrison (1989) and West(1995) describe these models comprehensively.Given the location of both reservoirs, we consider a forecasting model for theinows to Kariba, which we only outline (see RS for details), and a forecastingmodel for the inows to Cahora Bassa. This one will depend on those inows notcoming from Kariba, which we call incremental inows, and on the releases fromKariba. This accounts for interreservoir dynamics.3.3.1 Inows to Kariba LakeAfter log-transformation, we modeled the Kariba inow time series with a levelterm, a term representing seasonal (annual) variation and a low coe�cient, �rstorder autoregressive term to improve short term forecasts. We only retained the�rst harmonic in the seasonal part.Figure 2 hereFigure 2: Logarithm of Kariba inows, in mln.m3.Consequently, we ended up working with the following Dynamic Linear Model(DLM): 18



Observation equation.ykt = z1kt + z2kt + z4kt + vkt ; vkt � N(0; vk)where ykt = log(ikt ) is the logarithm of the inow to Kariba; z1kt designates thelevel of the series; z2kt and z3kt refer to the seasonal term, see below; z4kt refers tothe autoregressive term; and vkt designates a Gaussian error term of constant, butunknown, variance vk.System equation.z1kt = z1kt�1 + w1ktz2kt = cos(�=6)z2kt�1 + sin(�=6)z3kt�1 + w2ktz3kt = � sin(�=6)z2kt�1 + cos(�=6)z3kt�1 + w3ktz4kt = :4z4kt�1 + w4ktwith wkt = (w1kt ; w2kt ; w3kt ; w4kt ) an error term such thatwkt � N 0BBB@0;0BBB@ vkW �kt 00 �k2 1CCCA1CCCA ;where �k2 is the autoregressive variance; and W �kt , the variance matrix (up to vk)of the �rst three terms. This matrix was de�ned using discounting, with a discountfactor of .8 for the level and a discount factor .95 for the seasonal part.19



Prior information. zk0j�k � N(mk0; vkC�k)�k � Gamma(nk0=2; dk0=2)with zk0 = (z1k0 ; z2k0 ; z3k0 ; z4k0 ) and �k = 1vk .Prior parameters were speci�ed judgementally, with mk0 as (7.8,-1.02,.33,0),
Ck� = 0BBBBBBBBBBBBB@

:02 0 0 00 :002 :0007 00 :0007 :003 00 0 0 :1
1CCCCCCCCCCCCCA ;

nk0 = 10 and dk0 = :8, and sensitivity thoroughly checked.3.3.2 Dynamic regression Kariba-Cahora BassaExploratory data analyses suggested regressing dynamically the inows to Karibaand Cahora Bassa, after a log-transformation.Figure 3 hereFigure 3: Di�erence of logarithms of inows to Cahora and Kariba.For that, we de�ne yct = log(ict) and zt = yct � ykt . We try to forecast zt plottedabove, again through a level and a seasonal part. In this case, since the expert had20



little feeling about this variable, we based the assessments on the data as reectedin Table 4. We checked them afterwards via sensitivity analysis.Lev Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug SepMean .85 1.64 1.59 1.06 .91 .85 .41 -.16 -.04 .36 .86 1.23 1.46E�ect -.79 -.74 -.21 -.06 -.00 .43 1.01 .89 .48 -.01 -.38 -.61Maxdev .33 .35 .38 1.06 1.11 .98 1.13 1.01 .85 .68 .69 .49 .39Stdev .16 .00 .02 .36 .39 .32 .39 .33 .25 .17 .17 .08 .03Table 4: Assessments for level and seasonal e�ects.Variances were deduced accordingly, assuming independence between level and monthlye�ects. For example, for the level, the maximum deviation from the expected valueis about .33 and we assume a standard deviation of .165.The Fourier decomposition of the seasonal part wasHarmonic 0 1 2 3 4 5 6ai 0. -.779 .056 -.122 .033 -.003 .017bi - -.103 .143 -.091 -.048 -.012 -Table 5: Fourier decomposition of seasonal e�ects.with covariance matrices deduced from those of the e�ects. For example, for the
21



�rst harmonic C�1 = 0BBB@ :017 :005:005 :015 1CCCA :Relevance of harmonics was assessed with methods described in West and Harrison(1989) with results:Harmonic 1 2 3 4 5 6Statistic -5.77 -.15 .49 -.28 -.00 .00Table 6: Relevance of harmonics.As a consequence, only the �rst harmonic was retained initially. However, posterioranalyses suggested the inclusion of the second harmonic as bene�cial, together witha low coe�cient, �rst order autoregressive term to improve short term forecasts.Consequently, we ended up working with the following DLM:Observation equation.zt = s1t + s2t + s4t + s6t + vct ; vct � N(0; vc)where s1t designates the level of the series; s2t and s3t refer to �rst harmonic of theseasonal term; s4t and s5t refer to the second harmonic and s6t refers to the autore-gressive term; and vct designates a Gaussian error term of constant, but unknown,variance vc. 22



System equation.s1t = s1t�1 + w1cts2t = cos(�=6)s2t�1 + sin(�=6)s3t�1 + w2cts3t = � sin(�=6)s2t�1 + cos(�=6)s3t�1 + w3cts4t = cos(�=3)s4t�1 + sin(�=3)s5t�1 + w4cts5t = � sin(�=3)s4t�1 + cos(�=3)s5t�1 + w5cts6t = :4s6t�1 + w6ctwith wct = (w1ct ; w2ct ; :::; w6ct ) an error term such thatwct � N 0BBB@0;0BBB@ vcW �ct 00 �c2 1CCCA1CCCA ;with �c2 the autoregressive variance; andW �ct , the variance matrix (up to term vc) ofthe �rst �ve terms. This matrix was de�ned using discounting, with a level discountfactor �c1 and a seasonal part discount factor �c2.Prior information. s0j�c � N(mc0; vcC�c)�c � Gamma(nc0=2; dc0=2)with s0 = (s10; s20; :::; s60) and �c = 1vc . 23



The assessment of the gamma parameters was more complicated, and we basedit on a guess for the expected variance and graphical representations of the corre-sponding densities. As a result of the assessments, mc0 was speci�ed as (.850,-.779,-.103,.056,.144,0),
C�c =

0BBBBBBBBBBBBBBBBBBBBBBB@
:09 0 0 0 0 00 :017 :005 0 0 00 :005 :015 0 0 00 0 0 :02 �:002 00 0 0 �:002 :022 00 0 0 0 0 :1

1CCCCCCCCCCCCCCCCCCCCCCCA
;

nc0 = 8 and dc0 = 1:2.Extensive sensitivity analyses were conducted with respect to: �c1 and �c2; thegamma parameters nc0 and dc0; the autoregressive coe�cient and variance. We stud-ied the e�ect of changes in the initial estimates of these parameters on the behaviourof predictive variances, mean absolute error of one step ahead forecast errors andtheir autocorrelation functions. The model seemed fairly robust and we selected thefollowing discount parameters: �c1 = :95 and �c2 = :95.
24



3.3.3 Inows to Cahora BassaThe model we propose now for Cahora Bassa depends on the release from Karibaand the incremental inow (inct) to Cahora Bassa from the tributaries and basinbetween Kariba Gorge and inlet to Cahora Bassa. Taking into account that watertravelling time is less than a month, we use the following relation:ict = ukt + inct:Given that data about releases are not available (and they will actually depend onreleases of our approach) we shall estimate incremental inows as follows. First, ifthere was no reservoir, we would have:ict = ikt + inct:The second relation describes a dynamic regression between inows to Cahora andKariba, and reects the physical relation that inow is related with basin size:ict = �tikt :Simple computations suggest modelling incremental inows byinct = (�t � 1)ikt ;and inows to Cahora by ict = ukt + (�t � 1)ikt :25



Observe that we no longer have a dynamic linear model, since both the regressionweights and regressors are subject to uncertainty. Besides, the distribution of ukt isnot standard. Forecasting ict is easily done by simulation, since we know or caneasily sample the distributions involved. That of ikt is obtained from the model inSection 3.3.1; ukt is obtained from Section 3.3.1 and using the table from consequencesfor Kariba in Section 3.2; the distribution on �t comes from the inversion of thetransformation in Section 3.3.2 and the model there. After a su�cient number ofstages, it will follow a lognormal distribution.3.4 Utility functionsFollowing the description in Section 1.2, the utility function used in our approachtakes into account the consequences of interest, described in Section 3.2, and devi-ations to a reference trajectory. We describe �rst how we compute reference trajec-tories and then the full preference model.3.4.1 Computation of the reference trajectoryHere we describe the computation of the reference trajectory for Cahora Bassa. Asimilar procedure was applied in RS to obtain one for Kariba. Essentially, we usedeterministic versions of our problems, where inows are considered known and �xed26



at their predictive expected values. The dynamics are the same of Section 3.2. Weset the planning period equal to one year.For the deterministic problem, we need an initial volume. We adoptsc0 = :7M c = 42000: (7)The objective function includes a term relating to deviation from the initial state,a term relating to the main objective in the stochastic problem, which is energyproduction, and a term which deals with separation from the states allowing for�shing (storage between 41500 and 51600), de�ned by the functiong(sc) = 8>>><>>>: 0; 41500 � sc � 5160012141400000 (sc2 � 93100sc) + 1; otherwiseThen, the objective function isf(uc) = �0(sc12 � sc0)2 � �1 12Xt=1 �uc1t(lt � rt) + �2 12Xt=1 g(sct);with �0; �1; �2 positive numbers chosen to give similar weight to the three componentsand improve numerical stability.The optimisation problem is min f(uc) s.t. (1) � (7). We solved it by dynamicprogramming, with several reformulations to simplify the solution. Each subproblemat each stage was solved with a modi�ed version of OPQSQP (NOC, 1990). A27



multistart strategy was adopted to avoid bad local optima. For every month t, asmooth function was adjusted as an approximation to the optimal value function.The reference trajectory was obtained as the optimal solution of the above opti-misation problem and is described in Table 7. An additional constraint uc2t � 18000was introduced to achieve a more homogeneous performance.Month Initial Rel. Tur. Spill Energy FinalOctober 42000 4848 0 1052 42256November 42256 4848 0 1053 41420December 41420 4848 0 1049 43293January 43293 4848 0 1047 48258February 48258 4848 0 1063 55948March 55948 4848 18000 956 45969April 45969 4848 18000 922 32458May 32458 4848 0 1013 35660June 35666 4848 0 1026 38037July 38037 4848 0 1036 40065August 40065 4848 0 1044 41457September 41457 4848 0 1048 42179Table 7: Reference trajectory for Cahora Bassa.28



It corresponds to an excellent reservoir performance, with high energy output andfairly homogeneous releases.3.4.2 The expression of the utility functionAs described in RS, for Kariba we used an additive decomposition for the utilityfunction, because of good �rst order approximation. Therefore, we include a termrelating to de�cit and a term relating to spills. The last term is a penalty todeviations from the reference state. The general form is:FK(uk1; uk2) = FK(k; uk2; sk) = �f1(k) + (1� �)f2(uk2) + �K(sk � sk�)2where k represents the existence (1) or not (0) of de�cit; sk is the �nal state of thereservoir; sk� is the reference state; uk2 is the volume of water spilled; � and �K areweights; and f1 and f2 are component utility functions. For f1, given that k mayonly attain two values 0 (no de�cit) and 1 (de�cit), and 0 is better, we choosef1(k) = 1� k:For f2, given that current management is risk averse to large releases and small re-leases are preferred to large ones, we chose a (risk averse) nondecreasing exponentialutility function f2(uk2) = �:07171 + 1:08365 exp(�:0001415uk2):29



We used standard assessment methods, see e.g. French (1986), for eliciting theparameters, with � = :75. We chose �K = �10�10 to appropriately scale penaltieswith other component utilitites.For Cahora Bassa, we modelledFC(uc1; uc2) = FC(Ec; sc) = f3(Ec) + �C(sc � sc�)2;where Ec is the energy produced, sc and sc� are the storage and reference storageat Cahora Bassa. Using standard utility assessment techniques, we used a convex-concave utility function with 765 GWh/month as inection point:f3(Ec) = 8>>><>>>: 0:0038(�1 + exp(0:0066Ec)); if Ec � 7651:003473� :4034728 exp(�:02377571(Ec � 765)); otherwiseFor the same reasons above, we used �C = �10�10.Finally, both utility functions are composed so thatF (uk1; uk2; uc1; uc2) = �FK(uk1; uk2) + (1� �)FC(uc1; uc2)and the expected utility is	(uc1; uc2; uk1; uk2) = Z F (uc1; uc2; uk1; uk2) dH(ik; icjD);where H(ik; icjD) is the predictive distribution for the inows to the reservoirs,obtained from the forecasting model in Section 3.3. As initial value for � we used0.5. This, and other parameters, were checked via sensitivity analysis.30



3.5 Expected utility maximizationAt every time step, the expected utility function had to be maximized with respectto control variables and subject to constraints on the controls (releases from thereservoir): the amount of water released has to be nonnegative and the amounts ofwater released for energy production and ow control are limited by the capacity ofthe turbines and the spillgates. The optimization problem is thus given as:max 	(uc1; uc2; uk1; uk2)s:t: 0 � uk1 � mk0 � uk20 � uc1 � mcwith the constraints imposed on uc2 due to the structure of the Cahora Bassa dam,as in (5). mk and mc designate the maximum releases through Kariba and CahoraBassa turbines, respectively.Note, though, that we do not have an explicit expression for the expected util-ity. The complications from the calculation are reected in the following inuencediagram describing the decision making problem at each stage.Figure 4 here31



Figure 4: Decision problem at each stageHowever, for each (uk1; uk2; uc1; uc2), the expected utility may be easily computedby simulation:For (uk1; uk2; uc1; uc2),1. Generate (i1k; :::; iNk ), from the predictive distribution in 3.3.12. For each ikj , and given (uk1; uk2; uc1; uc2)-Compute spill, total release, �nal storage, de�cit, FK(uk1; uk2)j (with appropri-ate tables, like Table 3)-From the predictive distribution in 3.3.1,3.3.2 and 3.3.3 and release fromKariba, generate icj-Compute energy, �nal storage, FC(uc1; uc2)j (with appropriate tables, like Table2).3. Approximate 	(uc1; uc2; uk1; uk2) by	̂N(uc1; uc2; uk1; uk2) = 1N NXj=1 ��FK(uk1; uk2)j + (1� �)FC(uc1; uc2)j�Consequently, at each stage we solve the problemmax 	̂N(uc1; uc2; uk1; uk2)32



with the constraints above.We solved those problems, with Nelder Mead algorithm, as implemented in IMSL(1989), the main reason being the need for a robust method, given the changes inobjective function at di�erent stages, and the need of a method requiring onlyfunction evaluations. To avoid convergence to bad local optima, we used a guidedmultistart strategy.3.6 PerformanceThe proposed approach was tested with monthly inow data from October 1930 toSeptember 1965. Simulations included a warming up period for the forecasting algo-rithm, followed by a period in which both forecasting and optimisation took place.The �rst issue we analysed was the impact of key parameters in the performanceof the reservoir, mainly �, �K and �C . Sensitivity analysis of other parameters hasbeen described in RS.First, since spills from Kariba were fairly irregular, �K was modi�ed to �10�9,and, for homogeneity, a similar change was made for �C . In spite of improvements,we decided to include upper bounds for announced spills from both reservoirs. Ef-fectively, we introduced maximum announced spills of 4000 and 8000 mln.m3, for33



Kariba and Cahora Bassa respectively, reecting the desire to control more tightlyKariba, and the relatively less dangerous downstream e�ects of Cahora spills. More-over, since at high inow levels reservoirs tended to be too full, a rule was introducedwhich increased �K and �C to �5� 10�9 when reservoirs were at 90% of their maxi-mum storage. � was initially �xed at .5, and varied in the range [0,1]. The behaviourwas fairly stable in the range [.4,.6], whereas for more extreme values a more irreg-ular behaviour was appreciated. As a consequence, our �nal simulations were madewith our initial value of � = :5. The �gures provide the behaviour of both reservoirswith our policies, showing releases through turbines, spilled water, energy producedand storage. Figure 5 hereFigure 5: Simulated performance of Kariba: releases, storage and energy output.Figure 6 hereFigure 6: Simulated performance of Cahora: releases, storage and energy output.As Kariba is concerned, note that the energy output is well above the target set of750 GWh/month, which is much higher than the current target of 600 GWh/month,hence suggesting potential for a much more e�cient operation. Regarding releases,34



they are always below the set up level of 4000 mln.m3, except for two periods:one of three months, in which release were 19451, 11331 and 4491, respectively;another of two months, with spills of 5392 and 7108, respectively. Note, though,that the inows in those months were 25486, 27690 and 14281 (enough to �ll upthe reservoir!!!), and 12295, 17475, 15899, 10637, therefore corresponding to a fairlyacceptable regulation of the inow. Globally, the spills are fairly homogeneous andmuch smaller than those under current management. Also, except for those �vemonths in which the reservoir was at maximum retention level, the operation wasunder safe conditions. Releases through turbines tend to be close to the maximumof 3820 mln.m3.A similar pattern emerges for Cahora Bassa. Releases through turbines tend tobe close to the maximum of 4848.76. Spills are smaller than 8000, and fairly homo-geneous, except for six months with spills of 9093 (with inows the previous fourmonths equaling 56000), 29302 and 13539 (with inows the previous four monthsof 81000) and 17506, 15116, 9794 (with inows the previous six months of 106000).Again, we operate at fairly safe levels regulating inows satisfactorily. The energyoutput ranges between 895 GWh/month and 1066 GWh/month. The operation ofboth reservoirs is fairly well balanced, both in economic and safety terms.We tested several scenarios. First, we studied performance of the reservoirs35



starting from very low storages. Initially, the energy production was not very high,in an attempt to �ll up the reservoir progressively, until high enough storages wereachieved, after which the performance was good enough. Similarly, we tested theoperation of the reservoir for initial storages close to their maxima: again reservoirgradually reached safer (lower) levels. In this case, adaptation was much faster thanthat described in RS, given the rule for high storages introduced.Finally, we simulated the reservoir with very low inows. Since real inowsavailable were not low, we generated inows arti�cially by dividing real ones by 4.Under these extreme conditions the performance was still acceptable, in the senseof there being only releases for energy production and only so as to satisfy energytargets. Obviously, those settings are too high for very low inows suggesting theneed of changing targets under these conditions or reformulation of objectives andpreferences.The typical shape of the release rules obtained as the result of the computationsis: for low values of storage, the amount of water released for energy production isdecreasing as the storage increases, since smaller amounts of water are required toachieve given energy production target and we want to remain close to the referencestate; at high storage levels, the operating policy tends to release as much water aspossible to generate electricity, minimizing spills. For very high storage levels, the36



mechanism controlling deviation of the current state from the reference values 'turnson' and excessive water is spilled in order to secure that the reference trajectory isfollowed. Figure 7 hereFigure 7: Typical shape of policies
4 DiscussionVarious reviews (e.g., Yakowitz, 1982; Yeh, 1985) of reservoir operations describemultireservoir operation problems under uncertainty as extremely complex. In ourcase, there were additional complications due to the presence of multiple objectives.We have shown that our approach may succesfully cope with this kind of problems.Key issues are the de�nition of exible policies; the use of Bayesian forecastingmodels; a careful modelling of preferences, which include a term reecting deviationfrom a reference trajectory; a heuristic providing policies of approximate maximumexpected utility; and, thorough checking of our policies through sensitivity analyses,to provide additional modelling insights.We would like to stress that a basic principle underlying our approach is that ofmanagement by exception, West and Harrison (1989). The central idea is that we37



use a set of models to process information, make predictions and decisions, unlessexceptional circumstances arise, in which subjective intervention is required. Thismay be reected in various ways. For example, the forecasting model could requireinterventions if sudden rainfall suggests an increase in the inow level. It is alsoreected in the use of predictive expected inows in the de�nition of the referencetrajectory, with obvious di�erences from wet to dry years. Finally, it is also reectedin the rule introduced to handle cases in which reservoir storages are very high.Obviously, other types of interventions would be permitted, making our approachtruly interactive.This case study, and our previous RS, suggest the enormous potential of ourapproach in handling reservoir operation problems, and, more generally, multistagedecision problems under uncertainty. However, its application is far from simple.We are currently building Bayres (R��os Insua, Bielza, Mart��n, Salewicz (1996)), adecision support system for reservoir operations that would support all the phasesof our approach. On a more theoretical stand, we are evaluating the goodness of ourheuristic in general multistage decision problems. Other applications of Bayesianmethods in water resources problems are described in Berger and R��os Insua (1996).
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