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Abstract . The PC algorithm is a popular method for learning the struc­
ture of Gaussian Bayesian networks. I t carries out statistical tests to de­
termine absent edges in the network. I t is hence governed by two param­
eters: (i) The type of test, and (ii) its significance level. These parameters 
are usually set to values recommended by an expert. Nevertheless, such 
an approach can suffer from human bias, leading to suboptimal recon­
struction results. In this paper we consider a more principled approach 
for choosing these parameters in an automatic way. For this we optimize 
a reconstruction score evaluated on a set of different Gaussian Bayesian 
networks. This objective is expensive to evaluate and lacks a closed-form 
expression, which means that Bayesian optimization (BO) is a natural 
choice. BO methods use a model to guide the search and are hence able 
to exploit smoothness properties of the objective surface. We show that 
the parameters found by a BO method outperform those found by a 
random search strategy and the expert recommendation. Importantly, 
we have found that an often overlooked statistical test provides the best 
over-all reconstruction results. 

1 Introduction 

Graphical models serve as a compact representation of the relationships between 
variables in a domain. An important subclass is the Bayesian network, where 
conditional independences are encoded by missing edges in a directed graph 
with no cycles. By exploiting these independences, Bayesian networks yield a 
modular factorization of the joint probability distribution underlying the data. 
Of particular interest are Gaussian Bayesian networks for modelling variables in 
a continuous domain, which have been widely applied in real scenarios such as 
gene network discovery [11] and neuroscience [1]. 

When learning graphical models from data, two main tasks are usually dif­
ferentiated: structure and parameter learning. The former consists in recovering 
the graph structure, and the latter amounts to fitting the numerical quantities 
in the model. In Gaussian Bayesian networks, parameter learning involves us­
ing standard linear regression theory, whereas structure learning is not an easy 
task in general, given the combinatorial search space of acyclic digraphs. There 



are two main approaches one can find in the literature for structure discov­
ery in Bayesian networks: score-and-search heuristics, where the search space is 
explored looking for the network which optimizes a given score function, and 
constraint-based approaches, where statistical tests are performed in order to 
include or exclude dependencies between variables. 

A popular constraint-based method with consistency guarantees is the PC 
algorithm [6,16]. In this method, a backward stepwise testing procedure is per­
formed for determining absent edges in the resulting graph. Thus, of critical 
importance are the choice of the statistical test to be performed, and the signif­
icance level at which the potential edges are going to be tested. However, both 
are usually fixed after a grid search or directly set by expert knowledge [2,6]. 
In the literature on Bayesian network structure learning some empirical studies 
explore exact structure recovery [9], the behavior of score-and-search algorithms 
[8], and the impact of the significance level in the PC algorithm for high dimen­
sional sparse scenarios [2,6]. We are not aware, however, of any research work 
using elaborated methods for hyper-parameters selection in this context. 

In this paper we show that Bayesian optimization (BO) can be used as an 
alternative methodology for choosing the significance level and the statistical 
test in the PC algorithm. BO has been recently applied successfully in different 
optimization problems [14,15]. We consider here a structure learning scenario in 
moderately sparse settings that is representative of those considered in [6]. We 
show that BO outperforms, in terms of structure recovery error, in a relatively 
small number of iterations, both a baseline approach based on a grid search and 
specific values set by expert knowledge obtained from previous results on this 
problem [6]. Furthermore, we also analyze what values for the statistical test 
and the significance level are recommended by the BO approach, and compare 
them with those often used by the relevant literature on the subject. 

This article is organized as follows. In Section 2, we introduce the main 
concepts relative to Gaussian Bayesian networks that will be used throughout the 
rest of the paper. Then, in Section 3, we describe the PC algorithm, emphasizing 
its hyper-parameters and how they may affect its performance. Black box BO 
is outlined in Section 4, with emphasis on the particular characteristics of our 
problem. The experimental setting as well as the results we have obtained are 
described in Section 5. Finally, we conclude the paper in Section 6, where we 
also point out the main planned lines of future work. 

2 Preliminaries on Gaussian Bayesian networks 

Throughout the remainder of the paper, X\,..., Xp will denote p random vari­
ables, and X the random vector they form. For a subset of indices / C { 1 , . . . ,p}, 
Xi will denote the random vector corresponding only to the variables indexed by 
I. We will use Xj _LL Xj \ XK for denoting that Xj is conditionally indepen­
dent of Xj given the values of XK, being / , K, J disjoint subsets of { 1 , . . . ,p}. 
Let O = (V, E) be an acyclic digraph, where V = { 1 , . . . ,p} is the vertex set 
and E C V x V is the edge set. When O is part of a graphical model, its vertex 



set V can be thought of as indexing a random vector X = (X i , . . . ,XP). In a 
Bayesian network, the graph G is constrained to be acyclic directed and with no 
multiple edges. 

A common interpretation of edges in a Bayesian network is the ordered 
Markov property, although many more exist, which can be shown to be equiva­
lent [7]. This property is stated as follows. For a vertex i G V, the set of parents 
of i is defined as pa(i) := {j : (j, i) G E}. In every acyclic digraph, an ancestral 
order -< can be found between the nodes where it is satisfied that if j G pa(«), 
then j -< i, that is, the parents of a vertex come before it in the ancestral order. 
For notational simplicity, in the remainder we will assume that the vertex set 
V = { 1 , . . . ,p\ is already ancestrally ordered. The ordered Markov property of 
Bayesian networks can be written in this context as 

y\i _LL X {1^...:i— l}\pa(z) I Xpa(i) 

for all i G V. 
The above conditional independences, together with the properties of the 

multivariate Gaussian distribution, allow to express a Gaussian Bayesian net­
work as a system of recursive linear regressions. Indeed, if for each i G V = 
{ 1 , . . . ,p}, we consider the regression of Xi on its predecessors in the ancestral 
order, X\,..., Xj_i, then from the results regarding conditioning on multivariate 
Gaussian random variables we obtain 

i - l 

Xi = Y^Pm"'"i^1Xj + ei, (1) 

where the regression coefficient /3J'*'1'•••'l~1 = 0 when j £ pa(«), and £j are inde­
pendent Gaussian random variables with zero mean and variance equal to the 
conditional variance of Xi on X\,..., Xj_i. Therefore, both the structure and 
parameters of a Gaussian Bayesian network can be directly read off from the 
system of linear regressions in Equation (1). 

3 Structure learning with the PC algorithm 

The PC algorithm for learning Gaussian Bayesian networks proceeds by first 
estimating the skeleton, that is, the underlying undirected graph, of the acyclic 
digraph, and then orienting it. That is, for each vertex i G V = { 1 , . . . ,p\, it looks 
through the set of its neighbors, which we will denote as ne(«), and selects a node 
j G ne(i) and subset C C ne(i) \ {j}. Then, the conditional independence Xi _LL 
Xj | Xc is tested on the available data. It is a backward stepwise elimination 
method, in the sense that it starts with the complete undirected graph, and then 
proceeds by testing conditional independences in order to remove edges, doing 
so incrementally in the size of the neighbor subset C. 

The PC main phase pseudocode can be found in Algorithm 1. The output 
of Algorithm 1 is the skeleton, or undirected version, of the estimated Gaus­
sian Bayesian network, which is later oriented. Algorithm 1 is typically called 



Algor i thm 1 The PC algorithm in its population version 
Input: Conditional independence information about X = (Xi,... ,XP) 
Output: Skeleton of the Gaussian Bayesian network 
1: G *r- complete undirected graph on { 1 , . . . ,p} 
2: I i 1 
3: repeat 
4: I «— I + 1 
5: repeat 
6: Select i such that (i,j) G E and |ne(i) \ {j}| > I 
7: repeat 
8: Choose new C C ne(i) \ \j} with |C| = I 
9: if Xi _LL Xj \ Xc then 

10: E -s— E \ {(i, j), (j, i)} 
11: end if 
12: until (i,j) has been deleted or all neighbor subsets of size I have been tested 
13: until All (i,j) G E such that |ne(i) \ {j}| > I have been tested 
14: until |ne(i) \ {j}| < I for all (i,j) G E 

the population version of the PC algorithm [6], since it assumes that perfect in­
formation is available about the conditional independence relationships present 
in the data. This is useful for illustrating the behavior and main properties of 
the algorithm; however, in real scenarios this is unrealistic, and statistical tests 
must be performed on the data in order to determine which variable pairs, with 
respect to different node subsets, are conditionally independent. 

3.1 Signif icance level a n d s ta t i s t i ca l t e s t 

The criteria for removing edges is related to the ordered Markov property and 
Equation (1). In particular, from multivariate Gaussian analysis we know tha t 
for i G V and j < i, 

where p>t\1'---''l~1 denotes the partial correlation coefficient between Xj and Xj 
with respect to X\,..., X j _ i . In the P C algorithm, at iteration /, the null hypoth­
esis HQ : fPl\c = 0 is tested against the alternative hypothesis H\ : p^1'0' = 0, 
where C is a subset of the neighbors of i (excluding j) in the current estimator 
of the skeleton such tha t \C\ = I. 

The significance level at which HQ will be tested, which we will denote in 
the remainder as a, is typically smaller or equal than 0.05, and serves to control 
the type I error. The other parameter of importance is the statistical test itself. 
The usual choice for this is a Gaussian test based on the Fisher’s Z transform of 
the partial correlation coeficient [2,6], which is asymptotically normal. However, 
there are other choices available in the literature tha t could be considered and 
can be found in s tandard implementations of the algorithm. For example, the 



bnlearn R package [13] provides the standard Student’s t test for the untrans-
formed partial correlation coeficient, and the \2 test and a test based on the 
shrinkage James-Stein estimator, for the mutual information [4]. 

3.2 Evaluating the quality of the learned structure 

When performing structure discovery in graphical models, there are several ways 
of evaluating the results obtained by an algorithm. As a starting point, one could 
use standard error rates, such as the true positive and false positive rates. These 
rates simply take into account the original acyclic digraph G = (V, E), and the 
estimated one G, with edge set E. Then, E with E are compared element-wise. 
This is a common approach in Bayesian networks. 

We have preferred however to use the Structural Hamming Distance (SHD) 
[17]. This measure is motivated as follows. In Bayesian networks, there is not a 
unique correspondence between the model and the acyclic digraph that repre­
sents it. That is, if we denote as Ai(G) the set of multivariate Gaussian distri­
butions whose conditional independence model is compatible (in the sense of the 
pairwise Markov property and Equation (1)) with the acyclic digraph G, then we 
may have two distinct acyclic digraphs G\ and G-i such that M(G\) = Ai(G2). 
In such case, G\ and Gi are said to be Markov equivalent. 

The SHD measure between two acyclic digraph structures G\ and G-i takes 
into account this issue of non unique correspondence. In particular, it counts 
the number of operations that have to be performed in order to transform the 
Markov equivalence class of one graph into the other. Thus, given two acyclic 
digraphs that are distinct but Markov equivalent, their true positive and false 
positive rates could be nonzero, while their SHD is guaranteed to be zero. 

4 Black-box Bayesian optimization 

Denote the SHD objective function as f(9), which depends of the parameters in 
the PC algorithm, 9 = (a, T), that are going to be optimized, a, the significance 
level, and T, the independence test. We can view f(9) as a black-box objective 
function with noisy evaluations y^ = f(9) + ej, with ej being a, typically, Gaus­
sian noise term. With BO the number of evaluations of / needed to solve the 
optimization problem are drastically reduced. Let the observed data until step 
t — 1 of the algorithm be T>t-\ = {(0jj2/i)}j=i. At iteration t of BO, a proba­
bilistic model p(f(9) \ T>t-i), typically a Gaussian process (GP) [12], is fitted to 
the data collected so far. The uncertainty about / provided by the probabilistic 
model is then used to generate an acquisition function at(9), whose value at each 
input location indicates the expected utility of evaluating / there. Therefore, at 
iteration t, 9t is chosen as the one that maximizes the acquisition function. The 
described process is repeated until enough data about the objective has been 
collected. When this is the case, the GP predictive mean for /(•) can be opti­
mized to find the solution of the optimization problem, or we can provide as a 
solution the best observation made so far. 



The key for BO success is that evaluating the acquisition function is very 
cheap compared to the evaluation of the actual objective, because it only depends 
on the GP predictive distribution for the objective at any candidate point. The 
GP predictive distribution for f(9t), the candidate location for next iteration, 
is given by a Gaussian distribution characterized by a mean /x and a variance a2 

with values 
/x = k^, (K + 0"nI)~ y, 

a = k(0t, Ot) — fe* (K + 0"nI)~ fe* . 

where y = (y i , . . . fyt-x) is a vector with the objective values observed so far; 
a2 is the variance of the additive Gaussian noise; fe* is a vector with the prior 
covariances between f(9t) and each yf K is a matrix with the prior covariances 
among each yf; and k(6t, 9t) is the prior variance at the candidate location Ot. 
The covariance function £;(•, •) is pre-specified; for further details about GPs and 
example of covariance functions we refer the reader to [12]. Four steps of the BO 
process are illustrated graphically in Fig. 1 for a toy minimization problem. 

In BO methods the acquisition function balances between exploration and ex­
ploitation in an automatic way. A typical choice for this function is the information-
theoretic method Predictive Entropy Search (PES) [5]. In PES, we are interested 
in maximizing information about the location of the optimum value, t) , whose 
posterior distribution is p(U \Dt-i). This can be done through the negative dif­
ferential entropy measure ofp(0*\Dt-i). Through several operations, an approx­
imation to PES is given by 

a(t>) = ti [p(y\Dt-i, t>)] — ^^(e*|x>t_1) [-W [p(y\ut-i, t),t) )]], 

where p(y\L>t_i, t), t) ) is the posterior predictive distribution of y given i / t - i and 
the minimizer 0* of / , and H[-] is the differential entropy. The first term of the 
previous equation can be analytically solved as it is the entropy of the predictive 
distribution and the second term is approximated by Expectation Propagation 
[10]. We can see an example of the PES acquisition function in Fig. 1. 

5 Numerical experiments 

Since we will consider networks of different node size p, we will use in our ex­
perimental setting as the validation measure a normalized version of SHD with 
respect to the maximum edge number p(p — 1)/2. The significance level a will 
be represented for the BO algorithm as a real variable whose range lies in the 
decimal logarithmic space [—5, —1]. The statistical test will be represented using 
a categorical variable whose value indicates one of the above mentioned four 
tests. Namely, two test based on the partial correlation coefficient: a Gaussian 
test based on the Fisher’s Z transform and the Student’s T test; and two test 
based on the mutual information: the \2 test, and a test based on the shrinkage 
James-Stein estimator. As outlined before, this problem is specially suitable for 
BO, since we do not have access to gradients, the objective evaluations may be 
expensive and they may be contaminated with noise. 



t=2 

• Observations 
GP Posterior Mean 
GP Posterior Uncertainty 

t=3 
Objective 

» New Observation 

• Observations 
GP Posterior Mean 
GP Posterior Uncertainty 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

l.Oi 1 1.0 
Acquisition function 
Acquisition Max 

'0.0 0.2 0.4 0.6 0.8 1.0 

t=4 
Objective / 

• New Observation JA 

^1 

• 

ik / / i 

Observations 
GP Posterior Mean 
GP Posterior Uncertainty 

0.0 0.2 0.4 0.6 

0.0 0.2 0.4 0.6 0.8 1.0 

Acquisition function 

Acquisition Max 

0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 1. An example of BO on a toy 1D noiseless problem, where a function (shown 
in red, dotted) sampled from a GP prior is optimized. The top figures show the GP 
(mean and standard deviation) estimation of the objective /(•) in blue. The acquisition 
function PES is shown in the bottom figures in yellow. The acquisition is high where 
the GP predicts a low objective and where the uncertainty is high. From left to right, 
iterations (t) of BO are executed and the points (black) suggested by the acquisition 
function are evaluated in the objective, we show in red the new point for every iteration. 
In a small number of iterations, the GP is able to almost exactly approximate the 
objective. 

We have employed Spearmint (https://github.com/HIPS/Spearmint) for 
BO and the pc.stable function from the bnlearn R package [13] for the P C al­
gorithm execution. We have run BO with the PES acquisition function over a set 
of Gaussian Bayesian networks generated following the simulation methodology 
of [6]. Tha t is, the absent edges in the acyclic digraph G are sampled by using in­
dependent Bernoulli random variables with probability of success d = n/(p — 1), 
where p is the vertex number of G and n is the average neighbor size. The prob­
ability d can be thought of as an indicator of the density of the network: smaller 
d values mean sparser networks. The node size p is obtained from a grid of val­
ues {25,50,75,100}, while the average neighbor size is n G {2,8}. Finally we 
consider different sample sizes N G {25, 50, 75,100}. Therefore, we have a total 
of 32 different network learning scenarios, tha t are representative of those tha t 
can be found in [6]. We create 40 different replicas of the experiment and report 
average results across them, in order to provide more robust results. In each of 
these replicas, the nonzero regression coefficients in Equation (1) are sampled 
from a uniform distribution on [0.1,1], following [6]. 

For BO, we have used the PES acquisition function and 10 Monte Carlo 
iterations for sampling the parameters of the GP. The acquisition function is 
averaged across these 10 samples. We have used the Matern covariance function 

http://github.com/HIPS/Spearmint


for £;(•, •) (Equation (2)) and the transformation described in [3] so that the GP 
can deal with the categorical variable (the test type). We compare BO with a 
random search (RS) strategy of the average normalized SHD error surface and 
with the expert criterion (EC), taken from [6]. These authors recommend a value 
of a = 0.01 and use the Fisher’s Z partial correlation test. At each iteration, BO 
provides a candidate solution which corresponds to the best observation made 
so far. We stop the search in BO and RS after 30 evaluations of the objective. 

The average normalized SHD results obtained are shown in Fig. 2. We show 
the relative difference in log-scale with respect to the best observed result. There­
fore, the lower the values obtained, the better. We show the mean and standard 
deviation of this measure along the 40 replicas of the experiment, for each of 
the three methods compared (BO, RS and EC). We can see that EC is easily 
improved after only 10 iterations of BO and RS. Furthermore, BO outperforms 
RS providing significantly better results as more evaluations are performed. Im­
portantly, the standard deviation of the results of BO are fairly small in the last 
iterations. This means that BO is very robust to the different replicas of the 
experiments. 

Gaussian Bayesian network reconstruction with the PC algorithm 
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Fig. 2. Logarithmic difference with respect to the best observed average normalized 
SHD obtained in 40 replicas of the 32 considered Gaussian Bayesian networks. 

Since the expert criterion is outperformed, we are interested in the parameter 
suggestions delivered by BO. In order to explore these results, we have generated 
two histograms that summarize the suggested parameters by BO in the last 
iteration, shown in Fig. 3. We observe that the most frequently recommended 
test is the James-Stein shrinkage estimator of the mutual information [4], while 
the most frequent recommendation for the significance level is concentrated at 
values lower than 0.025. 

These results are very interesting from the viewpoint of graphical models 
learning. The first observation is that the optimal value obtained for the signifi­
cance level is fairly close to the one suggested in [6]. However, the SHD results are 
arguably better for the BO than for the human expert. This may be explained 
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Fig . 3. Histograms with the recommended parameters by BO in the last iteration. 

by the second interesting result we have obtained. Namely, the shrinkage James-
Stein estimator of the mutual information is suggested more times than the that 
the extended Fisher’s Z partial correlation test. Therefore, in the context of 
sparse, high-dimensional networks, where we may have p > N (such as in our 
experimental set-up and the one in [6]), it may be better to focus on the selection 
of the statistical test, rather than on carefully adjusting the significance level. In 
the literature, however, i t is often done the other-way-around, and more effort 
is put on carefully adjusting the significance level. 

6 Conclusions and future work 

In this paper we have proposed the use of BO for selecting the optimal parame­
ters of P C algorithm for structure recovery in Gaussian Bayesian networks. We 
have observed tha t , in a small number of iterations, the expert suggestion is out­
performed by the recommendations provided by a BO method. Furthermore, an 
analysis of the recommendations made by the BO algorithm shows interesting 
results about the relative importance of the selection of the statistical test, as 
opposed to the selection of the significance level. In the literature, however, it is 
often tha t the selection of the significance level receives more attention. 

For future work, we would like to apply BO in higher dimensional settings, 
where the number of nodes increases exponentially, whereas the number of sam­
ples increases linearly. This is also a typical scenario in Gaussian Bayesian net­
work real applications. We would also like to explore how different error mea­
sures, such as the true positive and false positive rates, affect the obtained results 
when they are optimized using BO. Finally, we plan to extend this methodology 
to consider multi-objective optimization scenarios and also several constraints, 
since current BO methods are able to handle these problems too. 
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