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Abstract . Conductance-based compartmental neuron models are tradi-
tionally used to investigate the electrophysiological properties of neurons. 
These models require a number of parameters to be adjusted to biologi-
cal experimental data and this question can be posed as an optimization 
problem. In this paper we investigate the behavior of different estima-
tion of distribution algorithms (EDAs) for this problem. We focus on 
studying the influence that the interactions between the neuron model 
conductances have in the complexity of the optimization problem. We 
support evidence that the use of these interactions during the optimiza-
tion process can improve the EDA behavior. 

1 Introduction 

The intrinsic electrophysiological properties of neurons condition the activity 
of neuronal circuits and ultimately determine biological responses to multiple 
stimuli. Conductance-based compartmental neuron models [6,7] have been very 
useful to study different aspects of neuronal dynamics. The electrical activity of 
this type of neuron model is mostly influenced by its ionic current conductances. 
Single compartmental models are particularly suitable for investigating the way 
in which different ionic currents act on the neuronal subthreshold behavior and 
spike generation. 

A common method used in the creation of conductance-based compartmen-
tal neuron models is to record the in vitro response of the neuron to a set of 
simple current stimuli and then attempt to replicate the response on a detailed 
compartmental model of that cell [2]. Usually the general form of the model 
(determined by a set of differential equations) is known but it is necessary to 
find a choice of the model parameters that guarantees a good match between the 
model behavior and the experimental data. This identification process can be 
posed as the problem of finding the optimal (given a predefined measure) values 
for the set of parameters. 



However, the parameter optimization problem is not straightforward. Dis-
parate parameter combinations can lead to similar neuron electrophysiological 
properties, interactions between the parameters can be highly nonlinear and the 
simulation of the models can be very costly. Therefore, it is an important issue to 
conceive optimization algorithms than can deal with this type of problems. We 
use EDAs, |9.10], a class of evolutionary algorithms that construct probabilistic 
models of the set of selected solutions. Our analysis focuses on the influence that 
the interactions between the neuron model parameters have in the behavior of 
the different EDAs. We support evidence that the use of these interactions during 
the optimization process can help to obtain better sets of neuron parameters. 

As a case study we use a database of about 1.7 million model neurons that were 
generated by independently varying the 8 maximal conductances of a realistic 
conductance-based model [13]. This information allows us to know the function 
landscape and optima, permitting us to accurately evaluate the performance 
of different variants of the optimization algorithms. It has already been shown 
[5,13.19] that databases of model neurons are particularly convenient to study 
the way in which the coordinated regulations (corregulations) of ionic currents 
influence different aspects of the neurons dynamics. We speculate that corregu-
lations are translated into interactions between the variables of the optimization 
problem. Therefore, the databases can also be useful to investigate the way the 
search is affected by the strong interactions between the conductance parameters 
and to design more appropriate optimization methods for these problems. 

2 Neurons and Models of Neurons 

Neurons can display different types of spontaneous electrical activity. A neuron 
is silent when no electrical activity is displayed. On the contrary, tonically active 
neurons display different patterns of electrical activity and can be classified ac-
cordingly based on these patterns. Spiking neurons are those that display narrow 
spikes while bursting neurons have a broad shoulder after each spike. Neuron can 
also show an irregular activity, where none of the previous classifications can be 
given. The same classification is used to describe the behavior of neurons under 
electrical stimulation, i.e. when a current is input to the neurons. In general, 
different input current stimuli may determine changes in the electrical activity 
of the neuron. 

To characterize the electrophysiological activity of neurons, measures that 
describe their electrical behavior have been defined. The burst, duration is the 
interval in which there are a significantly higher number of spikes as compared 
to other intervals in the spike train. The burst period is the burst duration plus 
the largest interspike interval. The number of maxima per period is the number 
of maxima comprised in a bursting period. The aft.er-h.yperpolarization (AHP) 
potential is the trough voltage between bursts. 

For tonically active and bursting neurons, the spike amplitude is the difference 
between the maximum value of the membrane potential and the value at the 
onset of the action potential. The average inter-maximum. interval (IMI) is the 



Fig. 1. Different measures that characterize the electrophysiological activity of neurons 

average of the distances between two subsequent voltage maxima. The discharge 
frequency is the inverse of the IMI. Figure [U illustrates some of these measures. 

Neuron models are indispensable tools for understanding the neuron structural 
organization and testing different hypotheses about their behavior. A neuron 
model should display an appropriate balance between its accuracy to reproduce 
the neuron behavior and its computational complexity and tractability. We use 
a single compartmental model. This type of model neglects the neuron's spatial 
structure and focuses on how its various ionic currents contribute to subthreshold 
behavior and spike generation. 

3 Model Description 

The model was constructed based on experimental data obtained from lob-
ster stomatogastric neurons [13,21]. The 8 currents in the single-compartmental 
model are based on those of the lobster stomatogastric ganglion neurons (STG) 
[21,14] and include a Na+ current, Iwa', two Ca2+ currents, IcaT and IcaS] a 
transient I\+ current, I A', a Ca2+ dependent I\+ current, I KG A] a delayed rec-
tifier K+ current, Ixd', a hyperpolarization-activated inward current, and a 
leak current, Iieak- In what follows we present the basic details about the model. 
More details can be found in [14]. 

Each of the model membrane currents is described by 

Ii = Umi)phi(V - Ei)A (1) 

where E.¿ is the reversal potential, A = 0.628 x 10~3 cm2 is the membrane area 
and gi is the maximal conductance. The database of models was constructed 
varying the maximal conductances of all 8 currents independently. Information 



about the way in which the reversal potentials £¿ where computed, as well the 
equations for the activation and inactivation variables m¿ and h.¿ can be obtained 
from [14]. 

I input, being a given input current, the neuron potential V is modeled by 

= (2 ) 
i 

where C = 0.628 nF is the membrane capacity. In [14], some experiments were 
conducted to observe the model electrical activity with different input currents. 
For current step simulations, the input current was stepped from zero to a de-
polarizing DC current of 3 or 6 nA. 

Different assignments of the model maximal conductance parameters will in-
fluence the model electrical activity. Therefore, it is possible to investigate which 
are the particular characteristics of a set of models determined by different pa-
rameter combinations. In [14], the database of 1, 679, 626 models was generated 
by varying the 8 parameters of the model previously described over 6 equidistant 
values. 

Let X i and x\¿ respectively represent a discrete random variable and a pos-
sible assignment to X.,,. Similarly, we use X = (A" i , . . . , A"n) to represent an 
«•-dimensional random variable and x = ( x ' i , . . . , xn) to represent one of its pos-
sible values. In our problem representation, each variable will represent one of 
the neuron model parameters, n = 8 and x¿ G { 0 , . . . , 5} . Tab led shows the vari-
able codification of the neuron model parameters and the conductance values 
assigned to each of the membrane currents which were used in the construction 
of the database. 

Each set of conductances represented by a vector x = (A" i , . . . , A"g) defines a 
"model neuron" or simply a neuron. The spontaneous activity of each neuron 
was simulated and classified into 4 categories: silent, tonically active, bursting, 
and non-periodic. Several features were extracted from the neurons. Different 
descriptors of the electrical activity were computed. 

Table 1. Parameter representation and Conductance values assigned to each of the 
membrane currents and used in the construction of the database 

Var Current 0 1 2 3 4 5 
A'I IN A 0 100 200 300 400 500 
A 2 ICaT 0 2.5 5.0 7.5 10.0 12.5 
A 3 ICaS 0 2.0 4.0 6.0 8.0 10.0 
A 4 IA 0 10.0 20.0 30.0 40.0 50.0 
A'B IKCCI 0 5.0 10.0 15.0 20.0 25.0 
As IKd 0 25.0 50.0 75.0 100.0 125.0 
Ar IH 0 0.01 0.02 0.03 0.04 0.05 
A 8 1leak 0 0.01 0.02 0.03 0.04 0.05 



4 Optimization Approach 

Our goal is to find, from a large set of candidates, a neuron model that resembles 
the electrical activity of a given target neuron as described by recorded experi-
mental data. One simplification is to use a search of candidate solutions amenable 
for tractable exhaustive enumeration (neuron database). Since the neuron model 
database provides a description of all the neurons, we can carefully design a fit-
ness function based on this information and know a priori the function values 
for all the solutions of the search space. 

For each optimization problem, we will use as a target neuron, one neuron 
model selected from the database according to some predefined criterion related 
to its electrophysiological activity. This choice of the target neuron guarantees 
that there is at least a solution of the search space that optimizes the fitness 
function. However, the question of how to measure the similarity between the 
dynamics of the target neuron and any other neuron has to be solved. 

There are three main types of functions used to find optimal neuron model 
parameters [22] : feature-based functions, point-by-point comparison of voltage 
traces, and multi-objective functions. In this paper we use the first approach 
and the frequency of voltage maxima as the feature that will characterize the 
dynamics of the neuron models. The spontaneous frequency of voltage maxima 
contains information about the neurons dynamics but this information does not 
support much details about the neuron behavior. Therefore, in addition to the 
spontaneous frequency we use the steady state maximal frequencies as computed 
during 3 nA and 6 nA current injections. 

Let x* and x respectively be the target neuron and any other neuron of the 
search space. The fitness function / ( x ) is defined as: 

/ ( x ) = - ( ( / f c ( x ) - fqs(x.*))2 + ( / © ( X ) - / © ( x * ) ) 2 + ( / 9 6 ( X ) - /<Z6(x*))2)i 
(3) 

where fqs, fq-¿ and fqe respectively represent the spontaneous frequency and 
the steady state maximal frequencies as computed during during 3 nA and 6 
nA current injections. When x* = x, / ( x ) = 0 which is the maximum of the 
function. Therefore, we transform the search for a neuron model with similar 
electrical activity to the target neuron in the maximization of function / ( x ) . 
Notice that the fitness landscape of this function will depend on the choice 
of x*. 

5 Estimation of Distribution Algorithms 

EDAs [9; 10] are optimization algorithms that can learn and exploit the search 
space regularities in the form of probabilistic dependencies. They are very similar 
to genetic algorithms, but instead of using genetic operators, they construct an 
explicit probability model of a set of selected solutions. The model is used to 
generate new promising solutions. One characteristic that serves to distinguish 
different types of EDAs is the probabilistic model used by the algorithm. The 



models may differ in the order and number of the probabilistic dependencies 
that they represent. 

Let p(x) denote a positive probability distribution. In this paper, we use 
three different types of models: A univariate marginal model, a tree model and a 
Bayesian network model. In a univariate model, the joint probability distribution 
can be factorized as the product of the univariate probabilities of the variables, 
i.e. p(x) = n¿-p(x¿)- This is the model used by the univariate marginal distribu-
tion algorithms (IJMDA) [10j. 

A probability distribution pTree(x) that conforms to a tree is defined as 
PTree(x) = n¿=iP(xi\pa(xi)) where Pa(Xi) is the parent of X.,, in the tree, 
and p(xi\pa(xi)) = p(xi) when Pa{X.¡) = 0, i.e. X.,, is the root of the tree. Prob-
abilistic trees are represented by acyclic connected graphs. In this paper we use 
the Tree-EDA [18], an EDA that uses trees to represent the probability distri-
butions. A Bayesian network can be seen as a generalization of a tree where 
each variable can have multiple parents. In this paper we use the estimation of 
Bayesian networks algorithm (EBNA) [3], one of the ED As based on the use of 
Bayesian networks. 

Pseudocode for EBNA is shown in Algorithm 01 The algorithm was imple-
mented in Matlab using the MATEDA-2.0 software [15j. The implementations 
of the IJMDA and Tree-EDA follow the same scheme but the learning and sam-
pling steps are modified accordingly. These were implemented using the Matlab 
Bayes Net (BNT) toolbox [11]. The scoring metric used for the Bayesian network 
was the Bayesian metric with uniform priors, and each node was allowed to have 
a maximum number of 5 parents. The truncation parameter was T = 0.5. Best 
elitism, in which the selected population is passed to the next population, was 
used. 

Algorithm 1. EBNA 

1 Generate an initial population Do of individuals and evaluate them 
"2 t <- 1 

3 do { 
4 Dt-i ~ Select N individuals from Dt-i using truncation selection 
5 Using D't-i as the data set, apply local search to find one BN structure 

that optimizes the scoring metric 
6 Calculate the parameters of the BN using D't-i as the data set 
7 Dt Sample M individuals from the BN and evaluate them 
8 } until Stopping criterion is met 

6 Related Work 

There is considerable work on the application of optimization methods to neuron 
model parameter optimization. Usually, single objective functions that measure 
a particular aspect of the model performance given the parameters are used. 



Among the most commonly employed optimization methods are [12,22]: hand 
tuning, gradient descent, evolutionary algorithms, bifurcation analysis and hy-
brid methods. 

We review some of the work that seems to corroborate the convenience of 
modeling the interactions between the conductances in the search of neuron 
models that exhibit a desired electrophysiological behavior pattern. In the next 
section we present empirical results that show that this is indeed the case. 

Achard and De Schutter [1] use an evolutionary strategy to obtain a set of 
different good models of the cerebellar Purkinje cells. The authors investigate 
different hypotheses that could explain the large diversity models with similar 
good conductance density values. Although probabilistic models of the neuron 
model parameter space are not constructed, the correlations between pairs of 
parameters are computed and used to investigate the relationship between the 
parameters. 

In [4], Golowasch et al. generated a set of neuron models by randomly sam-
pling the maximal conductance of the STG neuron [21]. The models were used 
to identify sets of maximal conductances that generate one-spike bursters. A 
model using the means of the maximal conductance of this set was constructed. 
It turned out that the model was not itself a one-spike burster. The authors 
concluded that averages over multiple samples can fail to characterize a system 
whose behavior depends on interactions involving a number of highly variable 
components. 

In [5], a neuron database is used to investigate spiking variability in Globus 
pallidas neurons. The authors acknowledge that the effect of each conductance 
in the neuron electrophysiological properties was highly dependent on the back-
ground context of other present conductances. The fact that every conductance 
in the model could show opposite effects on spike rate when it was increased 
depending on the background of other present conductances [5] suggests that 
fitness functions that use the spike rate as a feature may have malign inter-
actions between the variables [8]. Malign interactions can deceive evolutionary 
algorithms that do not take interactions into account. 

In [19], Smolinski and Prinz analyze a different database of neuron models. 
From the analysis of the subset of models that resemble the electrophysiological 
behavior of natural neurons the authors identify three types of corregidations: 
1) No significant interactions. 2) Expression of co-preference for specific ranges 
of values and 3) Corregulation, expressed by a characteristic "ridge" in the plot 
of pair-by-pair co-occurrence of specific parameter values. We could expect that 
variables with no significant interactions are less likely to appear together in the 
graphical model structures learned by ED As. 

7 Experiments 

The main objective of our experiments is to investigate whether the use of in-
teractions, represented by the graphical models used by ED As, improves the 
results achieved when no interactions are taken into account. We assume that, 



Table 2. Target neuron models selected from the database and a number of properties 
and measures determined from their simulation 

Index IN* ICaT ICaS IA IliCa -fit d IH -̂ Zeafc Ts T3 T6 fqs fq 3 fqe 
720973 100 7.5 4 40 5 125 0 0.01 2 1 1 1.1632 54.6364 60.1949 
1522117 500 5.0 6 40 10 125 0 0.01 2 1 1 1.1559 37.7609 42.2354 
833389 100 12.5 10 10 0 25 0.04 0.01 2 0 0 215.0538 0 0 
965338 300 5.0 8 0 25 0 0.05 0.04 2 1 1 4.5382 5.8246 7.8225 
436821 100 7.5 4 10 0 25 0.05 0.03 2 0 0 68.2173 0 0 
1071411 300 10.0 10 40 20 25 0.02 0.03 2 2 2 3.9518 23.1826 27.9265 
83317 0 2.5 8 40 5 100 0.02 0.01 2 0 0 2.4422 0 0 

882103 300 0 10 20 15 100 0.05 0.01 2 1 1 18.0810 37.0142 42.6758 
300566 100 0 4 30 25 75 0 0.02 2 1 1 4.8984 26.9808 35.5637 
1374808 400 12.5 4 40 20 125 0 0.04 2 2 2 8.0523 35.9712 47.1328 

if EDAs that represent probabilistic dependencies, i.e. Tree-EDA and EBNA, 
outperform those that do not represent such dependencies, i.e. IJMDA, then the 
problem exhibits interactions between the variables and these interactions are 
important to solve the problems. 

To test the algorithms, we select 10 functions defined by selecting different 
target neuron models from the data sets. The target neurons, shown in Table E3, 
are all bursting neurons during the spontaneous activity and have been selected 
trying to cover different patterns of electrical activity of the neurons. Under 
spontaneous activity, the first five neurons have the following relevant character-
istics: for 720973: a high burst period and small burst duration; for 1522117: a 
high burst period and high burst duration; for 833389: the smallest burst period; 
for 965338: one of the smallest burst durations; for 436821: one of the highest 
number of maxima. The rest of the target neurons have been randomly selected 
from the set of bursting neurons. 

In the table, Index is the index of the neuron in the database, Ts, T-¿ and TQ are 
the types of electrical activity under the different experimental conditions, coded 
as silent neuron (0), spiking neuron (1), bursting neuron (2). Similarly f q s , fq-¿ 
and fqs represent the frequencies under the different experimental conditions. 

We conducted 30 experiments of UMDA, Tree-EDA and EBNA for each of 
the 10 functions and with two different settings: I) Population size is 500 and 30 
generations; II) Population size is 1000 and 60 generations are conducted. These 
settings were determined aiming to keep the number of function evaluations 
relatively small, and after preliminary experiments were conducted. The number 
of times each algorithm found the optimum for all the functions are shown in 
Table El It can be seen in the table that only one of the problems is relatively 
easier to solve by the methods. Instance 1071411 is particularly complex for 
all the methods. However, the best results are clearly achieved by EBNA that 
outperforms both the Tree-EDA and UMDA. 

To determine whether differences between the algorithms are statistically 
significant, we have used the Kruskal-Wallis test to accept or reject the null 
hypothesis that the samples have been generated from the same probability dis-
tribution. The test significance level was 0.01. For all instances, except instances 
833389 and 436821, significant statistical differences have been found between 



Table 3. Number of times each algorithm found the optimum for each of the 10 
functions 

Alg. 720973 1522117 833389 965338 436821 1071411 83317 882103 300566 1374808 Tot. 
Setting I II I II I II I II I II I II I II I II I II I II 
UMDA 0 0 0 0 6 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 

TREE - EDA 0 0 0 0 13 19 0 0 0 4 0 0 0 0 0 0 0 0 0 0 36 
EBNA 0 2 1 0 30 30 2 4 6 12 0 0 0 1 2 1 3 8 18 25 129 

I MDA • TREE • EBNA 
IUMDA • TREE • EBNA 

a) b) 

Fig. 2. Distance of the solutions found by the different ED As to the best solutions for: 
a) EDA setting (500 - 30). b) EDA setting (1000,60). 

the EBNA and the other two EDAs for the two settings. There were not signif-
icant statistical differences between EBNA and Tree-EDA for instance 436821 
for both EDA settings, and between EBNA and the other two EDAs for instance 
833389, setting II. 

It is interesting to note that the use of bivariate dependencies are not sufficient 
to improve the EDA results. To investigate the quality of the average solutions 
found by the algorithms, we also compute the average fitness distance of the best 
solutions found by the different EDAs to the optimal solutions. This information 
is shown in Figure El It can be appreciated that the increment in the number of 
allowed function evaluations, due to more individuals in the population and more 
generations, does not significantly improve the results of UMDA and Tree-EDA. 

Finally, we investigate the structure of the dependencies learned by EBNA. 
For each problem, we computed the frequency of the arcs learned by the Bayesian 
network. The arc frequencies were calculated from the set of 900 Bayesian net-
works learned using the first EDA experimental setting. Figure El a) shows the 
frequency matrix learned for instance 1071411. Lighter colors represent stronger 
dependencies between the variables. Note that not all the dependencies appear 
with the same frequency. 

For each problem, frequency matrices were thresholded to leave those arcs 
that were in at least 550 of the 900 Bayesian networks. We then computed 
the thresholded dependencies that were present in at least 5 of the 10 instances. 
These dependencies are shown in Figure El b). We hypothesize that some of them 



a) b) 

Fig. 3. Structure of the interactions captured by the Bayesian networks learned by 
ED As. Lighter colors represent stronger dependencies between the variables, a) Most 
frequent structures learned for instance 1071411. b) Dependencies that were frequent 
for at least five of the 10 functions. 

are due to the existence of important corregulations between the conductances 
of bursting neurons. To validate this hypothesis, we investigate previous studies 
of the conductance structure [20]. 

In [20], the construction of a dimensional stack image that visualizes the re-
lationship between the spontaneous neuron activity and the conductance values 
allowed to make some conclusions about the structure of the conductance space. 
Of the four statements made about the "layout" of neuron models in the conduc-
tance space, only two refer to the interactions between conductances: 1) Many 
one-maxima bursters that have nonzero gj\ra have zero delayed-rectifier potas-
sium conductance gxd- 2) There seems to be a regular gradation of bursters 
from few maxima per burst to many maxima per burst as one increases gxd and 
decreases gca.T- The interactions between the conductances pairs (gNa, 9Kd) 
and (gKd, ffcar) are both captured in the matrix shown in Figure El b). Further 
analysis, for instance the inspection of the corresponding marginal tables, should 
reveal the type of relationship between these pairs of parameter conductances as 
captured by the Bayesian networks. This remains as a subject of further work. 

8 Conclusions 

In this paper we have shown that interaction should be taken into account in 
the search of neuron models that have a predefined physiological activity. This 
is the first time, to our knowledge, that ED As have been applied in the context 
of neuron modeling^. In contrast with previous EDA applications to problems 
from the biological domain [17], where bivariate interactions are sufficient to 

1 This is not the case in the field of artificial neural networks where several applications 
of ED As have been reported. 



remarkably improve the results achieved by univariate models, for the problems 
addressed in this paper, higher order interactions are needed. 

Elucidating the relationship between the distribution of their intrinsic prop-
erties and dynamic activity of neurons is a crucial step in understanding larger-
scale phenomena such as network oscillations and inter-nuclei synchronization. 
We speculate that further application of intelligent data analysis techniques 
[15,16] to the data generated by the EDAs can unveil additional information 
about the structure of the conductance space. 
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