Structure Learning of High-Order Dynamic
Bayesian Networks via Particle Swarm
Optimization with Order Invariant Encoding *

David Quesadam[0000_0002_7280_904X], Concha Bielzal [0000—0001—7109—2668]
and Pedro Larraﬁagal[0000_0003_0652_9872]

)

1 Artificial Intelligence Department, Universidad Politécnica de Madrid, Madrid,
Spain
2 Corresponding author email: dquesada@fi.upm.es

Abstract. Dynamic Bayesian networks usually make the assumption
that the underlying process they model is first-order Markovian, that is,
that the future state is independent of the past given the present. How-
ever, there are situations in which this assumption has to be relaxed.
When this order increases, the size of the search space grows greatly,
not all structure learning algorithms may be suited to learn higher-order
networks, and a new appropriate order has to be found. To address the
computational issues of huge networks, we propose a structure learning
method that uses particle swarm optimization to search in the space of
possible structures. To avoid the additional costs of increasing the Marko-
vian order, we provide an order-invariant encoding that represents the
networks as vectors of natural numbers whose length remains constant.
Due to this encoding, we only need to set a maximum desired order rather
than the exact one. Our experimental results show that this method is
efficient in high orders and performs better than similar algorithms in
both execution time and quality of the obtained networks.

Keywords: Dynamic Bayesian networks - Structure learning - Particle
swarm optimization.

1 Introduction

In recent years, the use of dynamic Bayesian networks (DBNs) [3] has received
more attention in different areas. Their applications range from bioinformatics,
where DBNs have been used to model gene regulatory networks [7,19,22], to
more industrial fields like damage assessment of steel decks and estimating the
remaining useful life of structures [2, 12, 21].

Traditionally, DBNs have been modelled with the assumption that they are
first-order Markovian models, that is, their future state is independent of the past
given the present [9]. However, in real world applications we can find processes

* This work was partially supported by the Spanish Ministry of Science, Innovation
and Universities through the PID2019-109247GB-100 project.

2 D. Quesada et al.

where this assumption does not hold and the future state is determined not only
by the last instant, as in the works of Lo et al. [11] and Vinh et al. [18].

If we increase this order, the model will require several time slices to represent
the state of the system instead of only two, making it increasingly complex by
adding new nodes and arcs. Given that the number of possible different Bayesian
network (BN) structures is super exponential in the number of nodes [14], in-
creasing the Markovian order also increases the search space greatly. For this
reason, simply applying a structure learning algorithm for first-order Markovian
DBNs in a higher-order space may not be an optimal solution.

Meta-heuristic optimization algorithms can be applied to structure learning
by searching over the space of possible network structures and assessing the fit-
ness of each solution with some score. In the case of particle swarm optimization
(PSO) algorithms [8], they offer a powerful solution for big search spaces but
require them to be continuous and real numbered, and the space of possible
network structures does not fulfill these requirements. To fix this issue, some au-
thors have translated the space of possible BN graphs into a continuous one over
which PSO can be applied [10]. Many other authors [4, 6,15, 20] have opted for
translating the operations of the PSO algorithm to perform discrete movements
and then be able to apply the framework of PSO to BN structure learning. In
particular, the work of Du et al. [4] proposes to encode particles as binary ad-
jacency matrices that are modified as the particle moves to represent additions
and deletions of arcs. Santos and Maciel [15] extend this concept by defining
particles as lists with the parents of each node, and so a particle moving means
adding or deleting parent nodes. However, these approaches become less efficient
as the number of nodes and the Markovian order increase, and the correct order
is assumed to be known beforehand. We will expand on both of those methods
by defining an encoding for particles that is unaffected by the Markovian order
and allows for more efficient searches in larger spaces.

The rest of the paper is organized as follows. In section 2 we introduce the
concepts of high-order DBNs and PSO. Section 3 contains the details of our
order invariant DBN structure encoding into PSO particles and its operators.
Section 4 shows the empirical results. Finally, Section 5 concludes the paper and
gives some final remarks.

2 Background

In the field of BN structure learning, one family of methods is dedicated to
applying PSO to move through the space of possible structures to find an optimal
solution. Depending on the type of BN that we want to model, encoding the
individuals and moving through the solution space can be done in different ways.
In our case, we will center our attention in DBN models and translating the PSO
operations to the discrete space defined by our encoding of a particle.

Structure Learning of HO-DBNs via PSO with Order Invariant Encoding 3

2.1 High-Order Dynamic Bayesian Networks

Dynamic Bayesian networks [13] are a type of probabilistic graphical model that
extend the BN framework to the case of time series. As in the static scenario,
a DBN is comprised of a directed acyclic graph that defines its structure and a
set of parameters that define the probabilistic relationships of the variables. In
the case of DBNs, time is discretized into time slices that represent consecutive
instants. Let X' = {X{, X1,..., X!} be the set of all variables in a single time
slice t. For some horizon t = T, we can define the joint probability distribution
of the network as:

0
p(XT, XTI X0) = p(XT0) = p(XT)] p(XIXTY, (1)
t=T—1

where p(X) = [];, p(z;|Pa(x;)) represents the probability distribution of a
set of nodes X and Pa(x;) represents the set of parent nodes of X; in the graph.
Usually, in the literature the oldest instant is the one defined as X°, but we will
reverse this notation and define X° as the most recent instant to differentiate
it from the others. In a dynamic scenario, nodes can have parents in previous
time slices and so all variables in all instants X7*0 have to be taken into account
to calculate the joint probability distribution as in equation 1. In this situation,
a very common assumption is to suppose the DBN to be first-order Markovian
[9]. This assumes that the future state of the system is independent of the past
given the present, that is, p(X*XT*1) = p(X!|X**+1). Although the model
is greatly simplified, it cannot represent systems where the future state is not
determined only by the state of the variables in the last instant. We call a high-
order dynamic Bayesian network (HO-DBN) a DBN model where the first-order
Markovian assumption is relaxed and the network is represented with more than
two time slices.

To leverage the increase in complexity of this kind of model, we can restrict
the arcs in the network so that they can only be directed to nodes in the most re-
cent time slice, in our case X°. This kind of DBN structures are called transition
networks [15] and they avoid by definition any kind of cycles, which simplifies
the search. The space of possible structures that transition networks allow is also
much smaller than that of regular DBN models. To prove this, let G be a DBN
network structure and G’ be a transition network, both with the same number
of nodes ng per time slice, total number of nodes n and Markovian order m. Let
D be the set of all possible inter-slice arcs in G and T be the set of all possible
arcs in G’. We can calculate the number of possible DBN structures g”? 2" as the
different combinations of the elements in D, that is, the different combinations
of all the possible arcs in the network:

D] D|
DBN _ DI\ _pp
’ iz—;(i);ﬂ(lDl—i)!' (2)

By definition, |T| < |D| because even though both have the same number of
nodes, the arcs in T are restricted in a way that satisfies T C D. If we apply

4 D. Quesada et al.

Equation (2) to calculate the number of possible transition networks g7V, we
can see that:

IT| < D] = ¢™V << gPBN. (3)

If we would also take into account the possible intra-slice arcs in D, the
inequality in Equation (3) would be super-exponentially bigger. Moreover, in-
creasing m by one translates into adding only n3 arcs in the case of the transition
network, as we only allow arcs from the new ny nodes to the nodes in X°. This
means that increasing m by one increases |T| by the constant n2. On the other
hand, this operation means adding ng * n new inter-slice arcs in the case of a
regular DBN, which increases |D| exponentially with each increase in m. This
shows that not only |T| is always smaller than |D|, but it also increases drasti-
cally slower when we increase the Markovian order of the network. For both the
lack of cycles in transition networks and their reduced, although still vast, space
of possible structures we will be using this kind of network in the rest of the
paper. An example of a HO-DBN with the restrictions of a transition network
can be seen in Figure 1.

Fig. 1. An example of an order 2 Markovian transition network with tree nodes per
time slice. Only arcs directed to to from earlier time slices are allowed.

2.2 Particle Swarm Structure Learning

The PSO algorithm [8] is a meta-heuristic technique that simulates a swarm
consisting of n particles moving in a k-dimensional space to find the optimal
solution. Particles can be defined as Pr; = {P;,V;, P}, P, }, where P, is its current

Structure Learning of HO-DBNs via PSO with Order Invariant Encoding 5

position, V; is its current velocity, P; represents the best position found by the
particle so far and P, is the best position found by the whole swarm. A position
represents one specific solution of the optimization problem, and the velocities
modify these positions, allowing the particles to move in the solution space. To
calculate in each iteration ¢ the next position Pf“ and the next velocity VitJrl
of each particle, the following updating rules are applied:

Vz‘t+1 = wVit +cr (P — Pit) + 027’2(Pg - Pit)’)
Pit—"_l _ Pit + ‘/it-’rl’ (5)

where w, c1, co € R, w is the inertia factor of the last velocity, c; is the factor
that weighs the importance of the local best position, cy weighs the global best
position and r and ro are two real numbers sampled uniformly from the interval
[0,1]. One of the key factors in PSO is the pondered effects that the global and
local best positions have on the current velocity of a particle, which can change
in each iteration if a particle finds a position that has a better score than P,
or P,. The inertia factor defines how much importance is given to the random
search of each particle, increasing or decreasing the exploratory capabilities of
the swarm. A higher inertia factor will mean that the ¢+ 1 velocity of the particle
will be very similar to the one it had in the previous instant .

Although PSO was originally designed for continuous and real valued spaces,
there are adaptations to discrete scenarios. In particular, the approach estab-
lished by Du et al. [4] defines positions and velocities as the binary adjacency
matrix of a BN. In this case, velocities matrices can take any value from the set
{—1,0, 1}, representing deletions, non modifications or additions of arcs respec-
tively. This same approach is taken by Santos and Maciel [15], but instead of
adjacency matrices they define a structure called causality list that establishes
positions and velocities as sets of parent nodes.

To be able to apply PSO to the problem of learning DBN structures, we need
a score that measures how likely it is that a network structure fits some data.
Let D be our training data and let G be the network structure represented by a
position. Our objective can now be defined as:

arg max score(G, D). (6)

This score of fitness is necessary to assess which particles in the solution space
fit the training data better and guide the exploration towards them. There are
many examples of scores in the literature, such as the Bayesian information
criterion (BIC) [16] and the Akaike information criterion (AIC) [1] scores for
discrete networks, or the Bayesian Gaussian equivalent (BGe) [5] score and the
adapted BIC and AIC scores for Gaussian Bayesian networks. Depending on the
type of score used, the same algorithms can be used to learn both discrete and
Gaussian Bayesian networks.

6 D. Quesada et al.

3 Encoding and Operators

One of the crucial elements of meta-heuristic optimization algorithms is the
encoding used. A suboptimal encoding could generate losses in efficiency by
having redundant solutions, having to fix invalid individuals each iteration or by
not allowing an even exploration of the solution space.

Our proposed encoding maps each possible transition network structure to a
vector of natural numbers. This mapping is bijective in both sets: a transition
network structure can only be represented with one specific vector, and a vector
only represents one specific transition network structure.

3.1 Natural Vector Encoding

In a particle swarm scenario, each particle has a position and a velocity. In
our case, positions represent specific transition network structures and velocities
represent additions and deletions of arcs.

In a transition network, there are several nodes representing the same variable
in different instants of time. We define the concept of a temporal family of nodes
X/ = {X0,X},...,XT} as the set of nodes representing a single variable X;
in all existing time slices of the network. Inside a temporal family, we call a
receiving node the node X! in the present time slice. This node is the only
one in a temporal family that can have arcs pointing to him from any other
node in earlier time slices. In our encoding, we will divide a vector in as many
sections as receiving nodes X? there are in the network. Each of these sections
is further subdivided into a subsection consisting of a single natural number
for each existing temporal family X{ in the network. This number defines with
its binary representation the existing arcs from a certain temporal family to a
specific receiving node. Each 1-bit encodes an arc from a specific member of the
temporal family to the receiving node. By definition, this encoding does not allow
invalid individuals because only receiving nodes can have arcs pointing to them
and no cycles can appear. Furthermore, the length of the encoded vectors only
depends on the number of existing receiving nodes, and not on the Markovian
order. Higher orders will only mean bigger natural numbers in the vector. To
clarify this explanation, an example of a position and the network it encodes can
be seen in Figure 2.

The velocities follow the same encoding, but represent arc additions or dele-
tions instead of the presence or absence of an arc. Each velocity is composed of
two vectors, V,, and V,,, defining additions and deletions of arcs respectively.

3.2 Position and Velocity Operators

To perform the operations of the PSO, we will adapt them to the discrete space
defined by our encoding. In essence, we will need to be able to add positions
and velocities, subtract positions and multiply velocities by real numbers. All
operators shown are supposed to be bitwise logical operations. Both positions
and velocities have the same vector length, so when operated together this bitwise

Structure Learning of HO-DBNs via PSO with Order Invariant Encoding 7

X0 X9 X9

Gl e [o]e]o o] = ()" () /(=)
}(}(2)(3)(1%)(3)(,)(2)(3 @

: -
1 1 1 0 1 1
X X Xz X X X

2 2 1 1
Fig. 2. Representation of a position natural vector on the left and its equivalent tran-
sition network on the right. The transition network has three nodes per time slice and
a Markovian order 2 for simplicity and clarity. Notice how increasing the order, thus
adding many possible nodes and arcs, only implies bigger natural numbers in the vec-
tor, but it does not increase its length. For example, increasing the order up to 3 in the
figure would only mean that natural numbers up to 7 can now appear in the vector.

operations will be performed throughout both vectors to each pair of natural
numbers.

Position plus velocity

To add a velocity to a position, first we add all the arcs in V), by performing a
logical ‘or’ in the form of P’ = P vV V. As for the negative part, we define the
© operator as:

T1 O x9 = 21 N\ T2, (M)

This operator is equivalent to a 1-bit subtractor without borrow. By per-
forming P’ & V,,, we remove the 1-bits that are present in both the position
and negative velocity temporal families and maintain the rest unaffected. The
consecutive positive and negative operations will add and remove the marked
arcs of the velocity in the original position. An example of this operation can be
seen in Figure 3.

Pzz‘z 0‘2 V=1‘0‘3‘2 : 2‘1‘0‘1
pov =[] [3]2]-» s wova-[1]2]3]7]

Fig. 3. An example of adding a position and a velocity encoding a network with two
receiving variables XJ and X? and maximum Markovian order 2 for simplicity. All the
operations are performed bitwise on the natural numbers of all vectors.

8 D. Quesada et al.

Addition of velocities

Given two velocities V! and V2, to add them we first need to combine their
positive and negative parts. For this, we operate V;) = Vzl7 \Y V% and V! =
V15 v V2 Afterwards, we perform a bitwise logical ‘and’ operation to identify
redundancies in the form of Rd = V|, AV],. Any 1-bit present in Rd means that
an arc is being added and deleted at the same time in the resulting velocity, and
it has to be set to 0 in both positive and negative vectors of V' with the ‘xor’
operator by performing V;, @ Rd and V!, @ Rd respectively. An example of this
operation is shown in the following lines:

V! =11,0,2,0];2,0,0,3],V* = [0,1,2,1];[0,2,0,2],
Vivv?=[1,1,21];[2,2,0,3] = V',

VI, AV, =[0,0,0,1] = Rd,

V'eRd =[1,1,2,0];[2,2,0,2].

Subtraction of positions

Given two positions P and P, the operation P; — P = V' returns the velocity
V'’ such that P; + V' = P,. This effect is obtained by using the operator &
defined in Equation (7) to calculate both the positive part V, = Py © Py and
the negative part V! = P; © Py of the velocity. Notice that the © operator is
not commutative, and so the inverted positions in each operation give different
results. The © operator can be used to get the bits that need to be added to
transform a position into another. An example to clarify this operation is shown
in the following lines:

P, =[1,0,2,1],P, = [1,1,0,3],
V/ =P, P, =[0,1,0,2],
V/ =P, oP,=[0,0,2,0],

V' =1[0,1,0,2];[0,0,2,0].

Multiplication of velocities by real numbers

Let |V| be the total population count in a velocity, that is, the total number of
1-bits in both positive and negative vectors. As proposed by [15], multiplying a
velocity by a real number increases or decreases |V| in the form of |a * [V|] =
|V]'. This means that we will randomly add or delete 1-bits in the velocity
until the new total number of operations is obtained. We will follow a uniform
distribution when sampling a temporal family in the vector and the open bits in
the natural numbers. If o < 0, V,, and V,, will be swapped with each other to
invert all additions and deletions of arcs in the velocity and the absolute value
of o will be used.

Structure Learning of HO-DBNs via PSO with Order Invariant Encoding 9

4 Results

In this section we will first discuss the implementation of our PSO structure
learning algorithm (natPSOHO) and compare it with two other algorithms: the
PSO for HO-DBNs proposed by Santos and Maciel [15] and a variation of the
dynamic max-min hill climbing algorithm [17]. This comparison will consist of re-
covering several synthetic randomly generated networks from sampled datasets,
evaluating the execution time and how many of the original arcs are recovered
from the data. The Markovian order and the number of receiving nodes will
vary, to assess the efficiency and precision of the algorithms as both these fac-
tors increase. The number of iterations of the PSO algorithms is set to 50 with
populations of 300 particles, and all the datasets will consist of 10.000 instances.
These parameters remain constant through all the experiments.

4.1 Implementation

All the algorithms have been implemented in R and C++-. The code of the natP-
SOHO algorithm, the experiments and the generation of the synthetic datasets
have been combined into an R package that is publicly available in a GitHub
repository 3. All experiments were conducted on an Ubuntu 18 machine with an
Intel i7-4790K processor and 16 Gb of RAM.

Due to the translation of the position and velocity operations to our specific
encoding, we can use the normal pipeline of the PSO algorithm shown in Figure
4 without any change. For the evaluation of the positions based on the dataset,
we will use the BGe score.

I

- Score each Check if a new Apply updating .
;ﬂ:é?g:e\léifm Pr; € Pr global best rules of positions l}{lam{pum IRO?:Irné};ﬁigs?r:
P Pr and update position has been and velocities to Irzraacgds 9 pPr
their local best found in Pr each Pr; € Pr

Fig. 4. Pipeline of the PSO algorithm. The particles move applying the updating rules
described in Section 2.2 and the operators described in Section 3.2. The position with
the best fitness is translated into its DBN equivalent and returned as the best solution
found.

As recommended in other PSO works [10], the inertia value w is set high
at the beginning and slowly decreases as the iterations advance to favour ex-
ploration at first, and c; is set high and decreases over time while ¢y is set low
and increases over time, so that the positions close to the global optimum are
properly explored prior to finishing the execution.

3 https://github.com/dkesada/natPSOHO

10 D. Quesada et al.

4.2 Experimental comparison

The results for Markovian orders 1 and 2 networks can be found in Table 1.
We can see that for smaller networks with few nodes and low Markovian order,
the DMMHC algorithm is much faster than the particle swarm ones, but its
execution time scales rapidly with the number of variables. We will not be test-
ing the DMMHC algorithm on higher orders, given its poor scalability and the
similar performance to the other two algorithms in terms of number of real arcs
recovered. On the other hand, the natPSOHO algorithm is less efficient in time
than the binary PSOHO for low-order networks and many receiving nodes, but
it consistently outperforms the other two algorithms in terms of real recovered
arcs.

Table 1. Results for low-order networks

[Order, ng,Arcs] Algorithm Rec. arcs Exec. time

natPSOHO 47 1.49 m
[1,10,47] PSOHO 42 155 m
DMMHC 36 0.22's
natPSOHO 96 3.24 m
[1,15,111] PSOHO 78 2.81 m
DMMHC 69 2.54 s
natPSOHO 152 5.81 m
[17 20, 201] PSOHO 118 4.22 m
DMMHC 100 4221 s
natPSOHO 86 3.37T m
(2,10, 96] PSOHO 68 2.88 m
DMMHC 71 24.1s
natPSOHO 175 7.1 m
[2,15,234] PSOHO 139 12.68 m
DMMHC 132 40.73 m
natPSOHO 288 14.24 m
(2,20, 398] PSOHO 215 23.15 m
DMMHC 233 19.1h

The results for recovering high-order networks from data can be seen in Table
2 and in Figure 5. We can see how the execution time for the natPSOHO algo-
rithm scales better than the other method as we increase the Markovian order of
the networks. We can also see that the number of recovered arcs is consistently
higher in the case of the natPSOHO algorithm. In order to evaluate the networks,
the BGe score is used to find the fitness of the particles. We have enhanced this
score by omitting the scoring of nodes outside of ty, due to the fact that in
transition networks these nodes never have parents and their structure remains
constant. Regardless of this, the score takes longer to compute for networks with

Structure Learning of HO-DBNs via PSO with Order Invariant Encoding 11

Table 2. Results for high-order networks

[Order, ng,Arcs] Algorithm Rec. arcs Exec. time

3,10, 147] natPSOHO 125 4.93 m
PSOHO 85 7.56 m
3,20, 616] natPSOHO 398 23.8 m
PSOHO 308 37.06 m
[4, 10, 208 natPSOHO 157 6.87 m
PSOHO 110 11.06 m
[4, 20, 825 natPSOHO 533 38.02 m
PSOHO 423 1.04 h
[5,10,247] natPSOHO 181 9.23 m
PSOHO 148 16.87 m
[5,20,982] natPSOHO 622 57.45 m
PSOHO 425 1.3 h
[6,10,294] natPSOHO 208 12.43 m
PSOHO 170 21.6 m
[6,20,1171] natPSOHO 739 14h
PSOHO 517 2.04 h

a higher number of arcs. Given that the natPSOHO algorithm consistently re-
covers more arcs from the real networks that generated the synthetic data, the
execution time of the score is also consistently higher. This makes it impossible
to achieve a constant execution time on the evaluation of the networks, but the
constant execution time in the operations of the particles is shown in the overall
better performance of the algorithm.

The percentage of recovered arcs decreases in both algorithms as we increase
the order due to the PSO not being close to convergence. The solutions obtained
are the best ones found after 50 iterations, but it is expected that the algorithms
did not yet converge to a solution due to the number of iterations being constant
in all experiments. As the size of the search space increases, the number of
iterations should also increase accordingly.

5 Conclusions

We have presented a new high-order dynamic Bayesian network structure learn-
ing algorithm that employs particle swarm optimization to find the network
structure that best fits the training data provided. Its order invariant encoding
allows a good scalability to bigger networks and high Markovian orders. It also
offers the possibility to search up to a maximum desired order rather than having
to specify it beforehand.

When learning high-order networks, the search space becomes huge rapidly.
Algorithms that rely on independence tests, like the DMMHC algorithm, can

12 D. Quesada et al.

= natPSOHO
120 = PSOHO

* natPSOHO
= PSOHO

6

2
g

Execution time (m)
9% arcs recovered

40

20_ ‘ ' I i . I i
4
1 2 3 1 2 3 4 5

Markovian order Markovian order

o

4

Fig. 5. Execution time in minutes and percentage of recovered arcs of both PSO algo-
rithms with 300 particles, 50 iterations and 20 receiving nodes when learning transition
networks as we increase the Markovian order.

become unfeasible in terms of execution time due to the high number of variables
and the datasets with thousands of instances. On the other hand, particle swarm
algorithms can scale well to finding solutions in bigger search spaces, but suffer
slightly in smaller ones.

The execution time of the proposed natPSOHO algorithm scales much better
in high orders due to the underlying data structures being constant in size and
the operations being performed bitwise. It is shown to be an effective algorithm
when dealing with processes with big search spaces generated by high-order net-
works. In situations where the exact Markovian order is not known beforehand,
a higher number of iterations and a maximum desired order can be provided and
the algorithm will search for a fitting network in that scenario.

In future work, we would like to refine our encoding and generalize it to be
used with any meta-heuristic algorithm, not only with PSO. The main issue
that it presents is that even though it relies on vectors of natural numbers, the
operators must be bitwise. This would require a transition to a different encoding
that is able to take advantage of the natural numbers, like the Gray code, or a
generalization of the bitwise treatment before being able to extend it to other
frameworks.

References

1. Akaike, H.: Information theory and an extension of the maximum likelihood prin-
ciple. In: Selected Papers of Hirotugu Akaike, pp. 199-213. Springer (1998)

2. Cai, B., Shao, X., Liu, Y., Kong, X., Wang, H., Xu, H., Ge, W.: Remaining useful
life estimation of structure systems under the influence of multiple causes: Subsea
pipelines as a case study. IEEE Transactions on Industrial Electronics 67(7), 5737—
5747 (2019)

3. Dean, T., Kanazawa, K.: A model for reasoning about persistence and causation.
Computational Intelligence 5(2), 142-150 (1989)

4. Du, T., Zhang, S., Wang, Z.: Efficient learning Bayesian networks using PSO. In:
International Conference on Computational and Information Science. pp. 151-156.
Springer (2005)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Structure Learning of HO-DBNs via PSO with Order Invariant Encoding 13

Geiger, D., Heckerman, D.: Learning Gaussian networks. In: Uncertainty in Arti-
ficial Intelligence Proceedings 1994, pp. 235-243. Elsevier (1994)

Gheisari, S., Meybodi, M.R.: BNC-PSO: Structure learning of Bayesian networks
by particle swarm optimization. Information Sciences 348, 272-289 (2016)
Godsey, B.: Improved inference of gene regulatory networks through integrated
Bayesian clustering and dynamic modeling of time-course expression data. PloS
One 8(7) (2013)

Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of 1995
IEEE International Conference on Neural Networks. vol. 4, pp. 1942-1948. IEEE
(1995)

Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. The MIT Press (2009)

Liu, X., Liu, X.: Structure learning of Bayesian networks by continuous particle
swarm optimization algorithms. Journal of Statistical Computation and Simulation
88(8), 1528-1556 (2018)

Lo, L.Y., Wong, M.L., Lee, K.H., Leung, K.S.: High-order dynamic Bayesian net-
work learning with hidden common causes for causal gene regulatory network.
BMC Bioinformatics 16(1), 1-28 (2015)

Ma, Y., Wang, L., Zhang, J., Xiang, Y., Liu, Y.: Bridge remaining strength predic-
tion integrated with Bayesian network and in situ load testing. Journal of Bridge
Engineering 19(10) (2014)

Murphy, K.P.: Dynamic Bayesian Networks: Representation, Inference and Learn-
ing (2002)

Robinson, R.W.: Counting unlabeled acyclic digraphs. In: Combinatorial Mathe-
matics V, pp. 28-43. Springer (1977)

Santos, F.P., Maciel, C.D.: A PSO approach for learning transition structures
of higher-order dynamic Bayesian networks. In: 5th ISSNIP-IEEE Biosignals and
Biorobotics Conference (2014): Biosignals and Robotics for Better and Safer Liv-
ing. pp. 1-6. IEEE (2014)

Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6(2), 461—
464 (1978)

Trabelsi, G., Leray, P., Ayed, M.B., Alimi, A.M.: Dynamic MMHC: A local search
algorithm for dynamic Bayesian network structure learning. In: International Sym-
posium on Intelligent Data Analysis. pp. 392-403. Springer (2013)

Vinh, N.X., Chetty, M., Coppel, R., Wangikar, P.P.: Gene regulatory network mod-
eling via global optimization of high-order dynamic Bayesian network. BMC Bioin-
formatics 13(1), 1-16 (2012)

Wang, Y., Berceli, S.A., Garbey, M., Wu, R.: Inference of gene regulatory network
through adaptive dynamic Bayesian network modeling, pp. 91-113. Springer (2019)
Xing-Chen, H., Zheng, Q., Lei, T., Shao, L.P.: Research on structure learning
of dynamic Bayesian networks by particle swarm optimization. In: 2007 IEEE
Symposium on Artificial Life. pp. 85-91 (2007)

Zhu, J., Zhang, W., Li, X.: Fatigue damage assessment of orthotropic steel deck
using dynamic Bayesian networks. International Journal of Fatigue 118, 44-53
(2019)

Zou, M., Conzen, S.D.: A new dynamic Bayesian network (DBN) approach for iden-
tifying gene regulatory networks from time course microarray data. Bioinformatics
21(1), 71-79 (2005)

https://www.researchgate.net/publication/354602610

