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Abstract. Recent work in supervised learning has shown that a sur-
prisingly simple Bayesian classifier called näıve Bayes is competitive with
state of the art classifiers. This simple approach stands from assumptions
of conditional independence among features given the class. In this pa-
per a new näıve Bayes classifier called Interval Estimation näıve Bayes
is proposed. Interval Estimation näıve Bayes is performed in two phases.
First, an interval estimation of each probability necessary to specify the
näıve Bayes is calculated. On the second phase the best combination of
values inside these intervals is calculated using a heuristic search that is
guided by the accuracy of the classifiers. The founded values in the search
are the new parameters for the näıve Bayes classifier. Our new approach
has shown to be quite competitive related to simple näıve Bayes. Exper-
imental tests have been done with 21 data sets from the UCI repository.

1 Introduction

The näıve Bayes classifier [3,9] is a probabilistic method for classification. It can
be used to determine the probability that an example belongs to a class given the
values of the predictor variables. The näıve Bayes classifier guarantees optimal
induction given a set of explicit assumptions [1]. However, it is known that
some of these assumptions are not compliant in many induction scenarios, for
instance, the condition of variable independence respecting to the class variable.
Improvements of accuracy have been demonstrated by a number of approaches,
collectively named semi näıve Bayes classifiers, which try to adjust the näıve
Bayes to deal with a-priori unattended assumptions.

Previous semi näıve Bayes classifiers can be divided into three groups, de-
pending on different pre/post-processing issues: (i) to manipulate the variables
to be employed prior to application of näıve Bayes induction [13,15,19], (ii) to
select subsets of the training examples prior to the application of näıve Bayes
classification [11,14] and (iii) to correct the probabilities produced by the stan-
dard näıve Bayes [5,22].

We propose a new semi näıve Bayes approach named Interval Estimation
näıve Bayes (IENB), that tries to relieve the assumption of independence of the
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variables given the class by searching for the best combination of näıve Bayes
probabilities inside theirs confidence intervals. There is some related work with
this approach. In [7] it is described an algorithm named Iterative Bayes, that
tries to improve the conditional probabilities of näıve Bayes in an iterative way
with a hill-climbing strategy. In [20] is presented an algorithm named Robust
Bayes Classifier (RBC), a näıve Bayes classifier designed for the case in which
learning instances are incomplete. RBC takes into account all the possibilities
for the missing values, calculating an interval for each näıve Bayes probability. In
[23] a näıve Bayes extension named näıve Credal Classifier (NCC) is presented.
Credal sets represent probability distributions as points that belong to a close
and fenced geometrical regions. In [24] the authors propose to find the parameters
that maximize the conditional likehood in a Bayesian network in spite of the
sample joint likehood.

Interval Estimation näıve Bayes has been implemented in Visual C++ and
the experimental evaluation has been done with 21 problems from the UCI
database [18].

The outline of this paper is as follows: Section 2 presents the näıve Bayes clas-
sifier. Section 3 is a brief introduction to statistical inference. Section 4 presents
the new algorithm Interval Estimation näıve Bayes. Section 5 illustrates the re-
sults with the UCI experiments. Section 6 gives the conclusions and suggests
further future work.

2 Näıve Bayes

The näıve Bayes classifier [3,9] is a probabilistic method for classification. It per-
forms an approximate calculation of the probability that an example belongs to
a class given the values of predictor variables. The simple näıve Bayes classifier is
one of the most successful algorithms on many classification domains. In spite of
its simplicity, it is shown to be competitive with other more complex approaches
in several specific domains.

This classifier learns from training data the conditional probability of each
variable Xk given the class label c. Classification is then done by applying Bayes
rule to compute the probability of C given the particular instance of X1, . . . , Xn,

P (C = c|X1 = x1, . . . , Xn = xn)

Näıve Bayes is founded on the assumption that variables are conditionally
independent given the class. Therefore the posterior probability of the class
variable is formulated as follows,

P (C = c|X1 = x1, . . . , Xn = xn) ∝ P (C = c)
n∏

k=1

P (Xk = xk|C = c) (1)

This equation is highly appropriate for learning from data, since the proba-
bilities pi = P (C = ci) and pi

k,r = P (Xk = xr
k|C = ci) may be estimated from
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training data. The result of the classification is the class with highest posterior
probability.

In näıve Bayes these parameters are estimated using a point estimation (see
section 3.1). The first step in the new algorithm we propose is based on an
interval estimation for the parameters (see section 3.2).

3 Parameter Estimation

Statistical inference studies a collection of data based on a sample of these
ones. This sample represents the part of population considered in the analy-
sis. Amongst other things, statistical inference studies the problem known as
“estimation problem”.

There are two ways of accomplishing this task:

– Point Estimation: Point estimation uses a sample with the aim of assigning
a single value to a parameter. The maximum likelihood method is used in
this context.

– Interval Estimation: This technique calculates for each sample an interval
that probably contains the parameter. This interval is called confidence in-
terval. The probability of a parameter to be included in an interval is known
as confidence level.

3.1 Point Estimation of Parameters in Näıve Bayes

Considering the instances of the database D = {(x(1), c(1)), . . . , (x(N), c(N))} as
a random sample on size N where the predictor variables X1, . . . , Xn follow
Bernoulli distributions and using the maximum likelihood method, the next
intuitive results are reached:

p̂i =
Ni

N
(2)

where,
N is the size of the database
Ni is the number of instances where C = ci

p̂i
k,r =

Nkri

Ni
(3)

where,
Nkri denotes the number of instances where Xk = xr

k and C = ci

Ni denotes the number of instances where C = ci
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3.2 Interval Estimation of Parameters in IENB

In the case of IENB the calculation of confidence intervals of the parameters
is required. This estimation is achieved by the calculation of the sum of the
variables in the sample, which generate a binomial distribution that can be
approximated by a normal distribution, given the next result, obtaining that
the interval that contains the parameter value, p, with a confidence level of 1−α
is given by:

(
p̂ − zα

√
p̂(1 − p̂)

M
; p̂ + zα

√
p̂(1 − p̂)

M

)
(4)

where,
p̂ is the point estimation of the probability
zα is the (1 − α

2 ) percentil in the N (0,1) distribution
M is the corresponding sample size (Ni or N)

4 Interval Estimation Näıve Bayes – IENB

We propose a new semi näıve Bayes approach named Interval Estimation näıve
Bayes (IENB). In this approach, instead of calculating the point estimation of
the conditional probabilities from data, as simple näıve Bayes makes, confidence
intervals are calculated. According to this, by searching for the best combination
of values into these intervals, we aim to relieve the assumption of independence
among variables the simple näıve Bayes makes –because the effect of the com-
bination of probabilities is evaluated with the overall classifier accuracy–. This
search is carry out by a heuristic search algorithm and is guided by the accuracy
of the classifiers.

As it is represented in figure 3 at the end of the paper, there are three main
important aspects in IENB algorithm:

– Calculation of confidence intervals
Given the dataset, the first step is to calculate the confidence intervals for
each conditional probability and for each class probability. For the calcu-
lation of the intervals first the point estimations of these parameters (see
section 3.1) must be computed.
In this way, each conditional probability pi

k,r = P (Xk = xr
k|C = ci), that

has to be estimated from the dataset must be computed with the next
confidence interval, as it is introduced in section 3.1. The contribution of
this paper is addressed towards this approach.

For k = 1, . . . , n; i = 1, . . . , r0; r = 1, . . . , rk

(
p̂i

k,r − zα

√
p̂i

k,r(1 − p̂i
k,r)

Ni
; p̂i

k,r + zα

√
p̂i

k,r(1 − p̂i
k,r)

Ni

)
(5)
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denotes the interval estimation for the conditional probabilities pi
k,r, where,

rk is the possible values of variable Xk

r0 is the possible values of the class
p̂i

k,r is the point estimation of the conditional probability P (Xk = xr
k|C = ci)

zα is the (1 − α
2 ) percentil in the N (0,1) distribution.

Also, in a similar way, the probabilities for the class values pi = P (C = ci)
are estimated with the next confidence interval,

(
p̂i − zα

√
p̂i(1 − p̂i)

N
; p̂i + zα

√
p̂i(1 − p̂i)

N

)
(6)

where,
p̂i

i is the point estimation of the probability P (C = ci)
zα is the (1 − α

2 ) percentil in the N (0,1) distribution
N is the number of cases in dataset

– Search space definition
Once the confidence intervals are estimated from the dataset, it is possible
to generate as many näıve Bayes classifiers as we want. The parameters of
these näıve Bayes classifiers must only be taken inside theirs corresponding
confidence intervals.
In this way, each näıve Bayes classifier is going to be represented with the
next tupla of dimension r0(1 +

∑n
i=1 ri)

(p∗
1, . . . , p∗

r0
, p∗1

1,1, . . . , p∗r0
1,1 , . . . , p∗r0

1,r1
, . . . , p∗r0

n,rn
) (7)

where each component in the tupla p∗ is the selected value inside its corre-
sponding confidence interval.
Thus, the search space for the heuristic optimization algorithm is composed
of all the valid tuplas. A tupla is valid when it represents a valid näıve Bayes
classifier. Formally,

r0∑

i=1

p∗
i = 1; ∀k∀i

rk∑

r=1

p∗i
k,r = 1 (8)

Finally, each generated individual must be evaluated with a fitness function.
This fitness function is based on the percentage of successful predictions on
each dataset, which means that we are carrying out one wrapper approach.

– Heuristic search for the best individual
Once the individuals and the search space are defined, one heuristic opti-
mization algorithm is ran in order to find the best individual.
To deal with the heuristic search, the continuous variant of EDAs –estimation
of distribution algorithms– algorithms have been selected. EDAs [16,17] are
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non-deterministic, stochastic and heuristic search strategies that belong to
the evolutionary computation approaches. In EDAs, a number of solutions
or individuals is created every generation, evolving once and again until a
satisfactory solution is achieved. In brief, the characteristic that most dif-
ferentiates EDAs from other evolutionary search strategies, such as GAs, is
that the evolution from a generation to the next one is done by estimat-
ing the probability distribution of the fittest individuals, and afterwards by
sampling the induced model. This avoids the use of crossing or mutation
operators, and, therefore, the number of parameters that EDAs require is
reduced considerably.

EDA

D0 ← Generate M individuals (the initial population) randomly

Repeat for l = 1, 2, . . . until a stopping criterion is met

DS
l−1 ← Select S ≤M individuals from Dl−1 according to

a selection method

ρl(x) = ρ(x|DS
l−1) ← Estimate the probability distribution

of an individual being among the selected individuals

Dl ← Sample M individuals (the new population) from ρl(x)

Fig. 1. Pseudocode for the EDA approach

In EDAs, the variables belonging to an individual are analyzed looking for
dependencies. Also, while in other heuristics from evolutionary computation
the interrelations among the different variables representing the individuals
are kept in mind implicitly (e.g. building block hypothesis), in EDAs the
interrelations are expressed explicitly through the joint probability distribu-
tion associated with the individuals selected at each iteration. The task of
estimating the joint probability distribution associated with the database of
the selected individuals from the previous generation constitutes the hardest
work to perform, as this requires the adaptation of methods to learn models
from data developed in the domain of probabilistic graphical models.
Figure 1 shows the pseudocode of EDA, in which the main steps of this
approach are sketched:
1. At the beginning, the first population D0 of M individuals is generated,

usually by assuming a uniform distribution (either discrete or continu-
ous) on each variable, and evaluating each of the individuals.

2. Secondly, a number S (S ≤ M) of individuals are selected, usually the
fittest.

3. Thirdly, the n–dimensional probabilistic model expressed better the in-
terdependencies between the n variables is induced.



Interval Estimation Näıve Bayes 149

4. Next, the new population of M new individuals is obtained by simulating
the probability distribution learnt in the previous step.

Steps 2, 3 and 4 are repeated until a stopping condition is verified. The
most important step of this new paradigm is to find the interdependencies
between the variables (step 3). This task will be done using techniques from
the field of probabilistic graphical models.
In the particular case where every variable in the individuals are continuous
and follows a gaussian distribution, the probabilistic graphical model is called
Gaussian network.

Figure 2 shows the result of the execution of the IENB algorithm in the pima
dataset with a zα value of 1.96. In the figure can be observed all the confidence
intervals calculated for this dataset and the final values selected by the algorithm.

In this execution IENB gets a result of 79.84% of successful classified while
näıve Bayes gets 77.73%.
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Fig. 2. Confidence intervals and final values obtained by IENB for the pima dataset

5 Experimentation

5.1 Datasets

Results are compared for 21 classical datasets –see table 1–, also used by other
authors [6]. All the datasets belong to the UCI repository [18], with the excep-
tion of m-of-n-3-7-10 and corral. These two artificial datasets, with irrelevant
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and correlated attributes, were designed to evaluate methods for feature subset
selection [10].

Table 1. Description of the data sets used in the experiments

Attributes Instances
Name Total Continuous Nominal Classes Learning Validation
breast 10 10 - 2 699 -
chess 36 - 36 2 3196 -
cleve 13 6 7 2 303 -
corral 6 - 6 2 128 -
crx 15 6 9 2 692 -
flare 10 2 8 2 1066 -
german 20 7 13 2 1000 -
glass 9 9 - 7 214 -
glass2 9 9 - 2 163 -
hepatitis 19 6 13 2 155 -
iris 4 4 - 3 150 -
lymphography 18 3 15 4 148 -
m-of-n-3-7-10 10 - 10 2 300 1024
pima 8 8 - 2 768 -
satimage 36 36 - 6 6435 -
segment 19 19 - 7 2310 -
shuttle-small 9 9 - 7 5800 -
soybean-large 35 - 35 19 683 -
vehicle 18 18 - 4 846 -
vote 16 - 16 2 435 -
waveform-21 21 21 - 3 300 4700

5.2 Experimental Methodology

To estimate the prediction accuracy for each classifier our own implementation
of a näıve Bayes classifier has been programmed. This implementation uses the
Laplace correction for the point estimation of the conditional probabilities [8,10]
and deals with missing values as recommended by [1].

However, our new algorithm does not handle continuous attributes. Thus, a
discretization step with the method suggested by [2] has been performed usign
MLC++ tools [12]. This discretization method is described by Ting in [21] that
is a global variant of the method of Fayyad and Irani [4].

Nineteen of the datasets has no division between training and testing sets.
On these datasets the results are obtained by a leave-one-out method inside of
the heuristic optimization loop.

On the other hand, two out of these twenty one datasets include separated
training and testing sets. For these cases, the heuristic optimization algorithm
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uses only the training set to tune the classifier. A leave-one-out validation is
perfomed internally inside of the optimization loop, in order to find the best
classifier. Once the best candidate is selected, it is validated using the testing
set.

5.3 Results

Experiments were ran in a Athlon 1700+ with 256MB of RAM memory. The
parameters used to run EDAs were: population size 500 individuals, selected
individuals for learning 500, new individuals on each generation 1000, learn-
ing type UMDA (Univariate Marginal Distribution Algorithm) [17] and elitism.
Experiments were ran 10 times with the percentile 0.95 (zα = 1.96).

Table 2. Experiment results for Interval Estimation näıve Bayes

Dataset Näıve Bayes IENB Time(min) Improv. Iter. Bayes impr
breast 97.14 97.71 ± 0.00 † 1 0.57 -0.16
chess 87.92 93.31 ± 0.10 † 221 5.39
cleve 83.82 86.29 ± 0.17 † 2 2.47 0.1
corral 84.37 93.70 ± 0.00 † 1 9.33
crx 86.23 89.64 ± 0.10 † 14 3.41
flare 80.86 82.69 ± 0.13 † 3 1.83
german 75.40 81.57 ± 0.10 † 81 6.17 -0.05
glass 74.77 83.00 ± 0.20 † 2 8.23 -1.19
glass2 82.21 88.27 ± 0.00 † 0 6.06
hepatitis 85.16 92.60 ± 0.34 † 1 7.44 1.41
iris 94.67 95.97 ± 0.00 † 0 1.30 1.4 †
lymphography 85.14 94.56 ± 0.00 † 5 9.42
monf-3-7-10 86.33 95.31 ± 0.00 † 64 8.98
pima 77.73 79.84 ± 0.09 † 2 2.11
satimage 82.46 83.88 ± 0.32 † 496 1.42 3.59 †
segment 91.95 96.38 ± 0.08 † 692 4.43 1.5 †
shuttle-small 99.36 99.90 ± 0.00 † 32 0.54
soybean-large 92.83 95.67 ± 0.10 † 585 2.84
vehicle 61.47 71.16 ± 0.25 † 64 9.69 4.39 †
vote 90.11 95.07 ± 0.19 † 4 4.96 1.45 †
waveform-21 78.85 79.81 ± 0.10 † 4 0.96

Results for the UCI problems are shown in the table 2. Columns in the table
are: first, the value obtained by the näıve Bayes algorithm, second, the mean
value ± standard deviation from IENB, third, the average time –in minutes–
for the executions, fourth, the improvement (IENB-Näıve Bayes) and finally
the improvement respect to näıve Bayes obtained by Iterative Bayes, the most
similar semi näıve Bayes approach.

Results are really interesting. Respect to näıve Bayes, using the 0.95 per-
centile, we obtained an average improvement of 4.30%. Besides, although this
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Data Set

X X ... X Class1 2 n

1 2 ... 1 A

2 2 ... 1 A

2 1 ... 2 B

...

Naïve Bayes Interval Estimation Naïve Bayes

Class

X1 X2 Xn
... X1 X2 Xn

...

Learning

...

Generation of the valid combinations of
probabilities (individuals for the heuristic search)

...

With

Individual =

(0:712; 0:288; 0:13; 0:87; . . .; 0:95)

(0:734; 0:266; 0:17; 0:83; . . .; 0:942)
...

Search Space

Best individual

Heuristic
Optimization

Abbrevations

pêA1;1 = 0:15

pêB1;1 = 0:85

pêA1;2 = 0:45

pêB1;2 = 0:55

pêA
n;2 = 0:05

pêB
n;2 = 0:95

pêA
n;1 = 0:78

pêB
n;1 = 0:22

pêA = 0:72

pêB = 0:28

Learning

Class

pêã ñ Value inside interval (pã
A
; pã

B
; pãA1;1; p

ãB
1;1; . . .; p

ãB
n;2)P

i p
ã
i
= 1; 8k8i

P
r p
ãi
k;r

= 1

pãi
k;r
2 (pêi

k;r
à zë Ni

pêi
k;r
(1àpêi

k;r
)

r
; pêi

k;r
+ zë Ni

pêi
k;r
(1àpêi

k;r
)

r
)

pã
i
2 (pêi à zë N

pêi(1àpêi)
q

; pêi + zë N

pêi(1àpêi)
q

)

N ñ number of instances

pA 2 (0:705; 0:735)

pB 2 (0:265; 0:295)

pA1;1 2 (0:11; 0:19)

pB1;1 2 (0:83; 0:87)

pA1;2 2 (0:40; 0:60)

pB1;2 2 (0:47; 0:53)

pA
n;1 2 (0:75; 0:81)

pB
n;1 2 (0:19; 0:22)

pA
n;2 2 (0:035; 0:065)

pB
n;2 2 (0:94; 0:96)

Ni ñ number of instances where C = ci

pêi = Pê(C = ci)

pêi
k;r

= Pê(Xk = xr
k
jC = ci)

Fig. 3. Illustration of the differences between näıve Bayes and Interval Estimation
näıve Bayes

is not always true, better improvements are obtained in the datasets with less
number of cases, as the complexity of the problem is lower.

The non-parametric tests of Kruskal-Wallis and Mann-Whitney were used to
test the null hypothesis of the same distribution densities for all of them. This
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task was done with the statistical package S.P.S.S. release 11.50. The results for
the tests applied to all the algorithms are shown below.

– Between näıve Bayes algorithm and IENB:
• Näıve Bayes vs. IENB. Fitness value: p < 0.001

These results show that the differences between näıve Bayes and Interval
Estimation näıve Bayes are significant in all the datasets, meaning that the
behavior of selecting näıve Bayes or IENB is very different.

6 Conclusion and Further Work

In this work a new semi näıve Bayes approach has been presented. In our experi-
ments this approach has an average improvement of 4.30% respect to the simple
näıve Bayes.

As this is the first time we use this approach, many issues remain for future
research. For instance, Interval Estimation näıve Bayes can also be used with
continuous variables. It is possible to estimate intervals for the parameters µ and
σ of the Gaussian distribution.

IENB can also be executed with different percentiles, in order to enlarge the
confidence intervals. This also means an increment in the search space of the
heuristic algorithm and therefore the execution time also increases.

The accuracy increment for the cases with correlated and redundant at-
tributes (corral and m-of-n-3-7-10) is much better than the other cases. This
can be interpreted as an improvement in terms of the assumptions problems of
the original näıve Bayes.

Also, it is possible to change the objective of the heuristic search. We can
try to maximize the area under the ROC curve instead of the percentage of
successful predictions. Another factible idea is to combine Interval Estimation
näıve Bayes with a feature subset selection. On a first phase it is possible to
make a subset selection, and on a second phase to apply interval estimation to
the previous results.
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