
Towards Gaussian Bayesian Network Fusion

Irene Córdoba-Sánchez, Concha Bielza, and Pedro Larrañaga

Departamento de Inteligencia Artificial,
Universidad Polit´ecnica de Madrid, Madrid, Spain

irene.cordoba.sanchez@alumnos.upm.es

{mcbielza,pedro.larranaga}@fi.upm.es

A b s t r a c t . Data sets are growing in complexity thanks to the increasing facilities we
have nowadays to both generate and store data. This poses many challenges to machine
learning that are leading to the proposal of new methods and paradigms, in order to be
able to deal with what is nowadays referred to as Big Data. In this paper we propose a
method for the aggregation of different Bayesian network structures that have been
learned from separate data sets, as a first step towards mining data sets that need to be
partitioned in an hori zontal way, i.e. with respect to the instances, in order to be
processed. Considerations that should be taken into account when dealing with this
situation are discussed. Scal-able learning of Bayesian networks is slowly emerging, and
our method constitutes one of the first insights into Gaussian Bayesian network aggre­
gation from different sources. Tested on synthetic data it obtains good results that
surpass those from individual learning. Future research will be focused on expanding the
method and testing more diverse data sets.

1 Introduction

Nowadays, we are entering the era of Big Data, as a result of both the generalised
trend of massive data collection and the increasing computer capabilities for
processing and storage. These data sets are characterized mainly for their huge
volume and complexity (they can be noisy, have a fast change rate, etc.). Machine
learning methods are rapidly being revised and new paradigms are arising in
order to be able to adapt to this kind of data.

One of the main approaches for dealing with high volume of data is to parti­
tion it across a cluster, perform some operations and then aggregate the results.
This partition can be either horizontal (across the instances) or vertical (across
the variables). Horizontal partitions can also naturally arise when we want to
jointly analyse information contained at different sources, e.g. records of patients
in different hospitals that store the same variables about each of them.

Bayesian networks (BNs) are well-known tools for modelling and dealing
with uncertain knowledge and data. Their aggregation has been studied since
the days of their conception as belief models from an expert. Martzkevich and

mailto:irene.cordoba.sanchez@alumnos.upm.es

Abramson [7] consider the problem of fusing networks from different experts
which shared some variables. They provide an algorithm which seeks to obtain
a graph containing all the nodes and arcs from the individual networks, or their
reversals. This however may not be the case of interest always when we are
thinking about fusing networks that have been learned from data, since the
individual networks in this case may contain spurious connections.

The work by del Sagrado and Moral [1] focuses on studying the fusion of
DAGs by means of intersection and union of the independence statements rep­
resented by each of the involved networks. Richardson and Domingos [11] use
knowledge from a group of experts to compute a prior distribution over the BN
structures. They motivate their proposal by stating that knowledge elicitation
can be facilitated if we allow experts to be noisy on their statements about the
BNs, and make up for this flexibility by using multiple different experts. This
argument is interesting because it can be compared with the case of huge, noisy
data sets, where instead of sub-sampling and learning an individual network, an
alternative approach could be to learn multiple networks on different partitions
of data and aggregate them afterwards.

Another use case where horizontal partitioning arises naturally is the problem
described by L´opez-Cruz et al. [5]. In this case a set of experts were asked to
classify different neurons, giving rise to one supervised training set from each
expert. A cluster process was applied to the set of the individual BNs obtained
and a representative BN for each cluster was constructed. These representative
networks were then aggregated into a Bayesian multinet.

Regarding the aggregation of parameters, recently Etminani et al. [2] propose
a method in which they cluster experts’ parameters and aggregate only those
that correspond to the cluster with the highest number of members, resembling
democratic societies. Other popular strategies for parameter fusion in Bayesian
networks are Linear Opinion Pools (LinOP) [6] and Logarithmic Opinion Pools
(LogOP) [9].

We propose a method for the aggregation of Gaussian BNs (GBNs), which
to the best of our knowledge is the first proposal of this kind. It covers both
the structure of the network and the parameters of the Gaussian distribution
encoded by it. The experiments carried out show promising results for the pro­
posed method.

The paper is organised as follows. Section 2 introduces the necessary back­
ground knowledge for the rest of the paper. In Sect. 3 the details of the method
are described, whose results from experimental evaluation are discussed in
Sect. 4. Finally, the conclusions and future research lines are presented in Sect. 5.

2 Preliminaries

2.1 Bayesian Networks

A BN can be defined as a way of representing the factorization of a joint prob­
ability distribution over a random vector X = (X1 , ..., Xp), where P a(Xi) are
called the parents of Xi,

p

f(x)= f (xi\pa(xi)). (1)
i=l

A BN consists on a qualitative part, commonly called the structure, and a quan­
titative component, the parameters. More formally, it is defined [10] as a pair
(G, G), where G is a DAG and 0 are the numerical parameters which define the
factorization in Eq. (1). The nodes of G are the components of X and its arcs
represent probabilistic dependencies between the variables, in such a way that
the DAG satisfies the Markov condition: each variable is conditionally indepen­
dent of its non-descendants given its parents. Two DAGs are Markov equivalent
if they represent the same set of conditional independences between the vari­
ables. This defines a binary relation which gives rise to equivalence classes and
partitions the DAG space.

In order to learn a BN from data it is necessary to learn both the struc­
ture (G) and the numerical parameters (0). There are two main approaches for
BN structure learning: constraint based and score-and-search. Constraint based
methods try to find the Bayesian network structure that represents most of
the dependence relations present in data, detected by means of statistical tests.
The PC algorithm [14], which has as output an equivalence class of DAGs, is a
representative example of these types of methods.

On the other hand, score-and-search methods try to find the structure that
best fits the data. They are characterized by a representation of the solution
space, a search method and a score. The KES algorithm [8] is an example of such
methods, which performs the search in the equivalence class space. Searching in
this space has several advantages when compared to the DAG space, such as
it being a more efficient and robust representation [16], although there is still
some controversy regarding this choice. Many search heuristics and scores can
be combined and give rise to the different methods appearing in the literature.

2.2 Gaussian Bayesian Networks

A GBN [4] encodes a joint Gaussian distribution over X, i.e., with joint density
function

1 f 1 f _i 1
f(x)= exp < 2 (x — μ) 2u (x — μ) >,

where μ = (/xi,..., fj,p) is the vector of unconditional means and X is the covari-
ance matrix. Each factor in Eq. (1) corresponds in this case to a univariate
normal distribution,

f(xi\pa(xi)) = TV I /XJ + y f3ji(xj — /•%•)>w* , (2)
\ Xjepa{xi))

where (3ji reflects the strength of the relationship between Xi and its j-th parent,
and Vi is the conditional variance of Xi given its parents, i.e.,

Vi = ai- '£,ipa{Xi)'£,pa{Xi)'£,lPa{Xi). (3)

In Eq. 3 <Tj is the unconditional variance of Xi, TiiparXi) is the matr ix of covari-
ances between Xi and Pa(Xi), and TiparXi) is the covariance matr ix of Pa(Xi).

Thus, the parameters of a GBN are the vector of means /LX, the vector of
conditional variances v and the coefficients f3ji. Assuming standardized da ta
(pi = 0 and Vi = 1), the parameter estimation is reduced to solving the linear
regression model

Xi = y ftjiXj + Cj,
Xjepa{xi)

with £j being the Gaussian noise term with zero expectation.

3 Method

Although the aggregation of different individual GBNs is a first step towards the
analysis of massive data, where the da ta set would be split into slices distributed
across a cluster, here we will assume tha t we already have different da ta sets over
the same variables available (i.e., at this stage we are not concerned with the
preprocessing and splitting processes).

The structure learning method we have used for learning the individual net­
works is the score-and-search hill climbing [15] with the Bayesian information cri­
terion (BIC) [12] score on the DAG space. After each network has been learned,
they are aggregated using majority vote below a threshold. This procedure is
outlined in Algorithm .

A l g o r i t h m 1. Structure learning
Input: datasets. Data sets from where the individual Bayesian networks will be

learned.
Input: threshold. Threshold for the majority arc voting.
Output: Aggregated Bayesian network structure learned with the specified thresholds.

1: njbn ^size(datasets);
2: bnlist <—list();
3: for ie {1,nbn} do
4: bnlist[i] ^learn_struc(datasets[i])
5: end for
6: v.matrix <— get_votes(bnlist);
7: result ^-bnaggr(threshold,vmatrix);
8: return result;

The functions getjvotes and bnjiggr in Algorithm 1 are further detailed in
Algorithms 2 and 3 respectively. getjvotes consists of the process of extracting
how many networks contribute to the same arc, i.e., how common across the
learned networks an arc is. Thus a matr ix containing the sums of the appearances
of each arc in the networks is obtained. The threshold for the majority vote is the

Algor i thm 2 . get votes
I n p u t : bn list. List of BN structures already learned on each data set.
O u t p u t : Matrix containing the votes for each arc.
1: n nodes nodes(bn);
2: v matrix matrix(n nodes, n nodes);
3: for bn ∈ bn list d o
4: bn arcs arcs(bn);
5: for arc ∈ bn arcs d o
6: from from(arc);
7: to to(arc);
8: v matrix[from][to] v matrix[from][to] + 1;
9: end for

10: e n d for
11: r e t u r n v matrix;

main parameter of this method and we will analyse it further on the experimental
section.

In bn aggr the threshold is compared with each of the entries in the matrix of
arcs, and the corresponding arc is added to the final network if its value reaches
the threshold. In the same algorithm we can notice that when an arc addition
causes a cycle in the DAG it is discarded.

A l g o r i t h m 3 . bn_aggr
Input: threshold. Threshold for the arc voting.
Input: Matrix containing the votes for each arc.
Output: bn. Aggregated Bayesian network.
1: bn <— empty_dag();
2: for i e cols(v-matrix) do
3: for j e rows(v-matrix) do
4: if vmatrix[i][j] > threshold then
5: if not arc_causes_cycle(bn, i, j) then
6: add_arc(bn, i, j);
7: end if
8: end if
9: end for

10: end for
11: return bn;

After the aggregation of the structure has finished, the linear regression coeffi­
cients of each variable on its parents is learned by maximum likelihood estimation
(MLE) from each data set, but this time using the aggregated structure. This is
what del Sagrado and Moral [1] call topological fusion, that is, obtaining a consen­
sus structure and then estimating the model parameters, as opposed to graphical
representation of consensus, which consists of aggregating the probability distri­
butions of each network and then obtaining the structure that represents it.

The aggregation of the parameters obtained from each da ta set is performed
using the method explained hereafter. Consider a multiple linear regression
model on {X1,..., Xn} predictors. Assume tha t the da ta is distributed across
k slices. Let ˆ • = (ˆ ,..., ˆ nj) be the vector of estimates obtained in slice j . For
each predictor Xi, i G {1,..., n}, let

k

˜ i = / ^ij ˆ ij
j=1

— 2 / ^k —2 n
be the aggregated estimate, where Wij = a^ 7 = 1 o"j7- , &ij = var(ˆ ij).
Because we are dealing with GBNs, MLE is equivalent to the least squares (LS)
method, and thus /3j is the estimator of minimum variance [3] among those with
form

k k
W. ˆ ij, where w^j =1, ij Hij,

j=1 j=1

Asymptotic normality is also established on Fan et al. [3].
The pseudo-code of the outlined procedure for learning the parameters of the

linear regression for each variable on its parents can be found in Algorithm 4.

A l g o r i t h m 4. Parameter learning
Input: datasets. Data sets from where the individual parameters will be learned.
Output: Bayesian network parameters aggregated.
1: njbn ^size(datasets);
2: paramjist <—listQ;
3: for i e {l,nJm} do
4: paramJist[i] ^learn_param(daiaseis[i]);
5: end for
6: njparam <—size(paramJis£);
7: njnodes <—nodes(paramJisi);
8: param <—matrix(n_nodes,n_rcodes);
9: for ie {l,n.param} do

10: for node e paramJist[i] do
11: for parent G parents(node) do
12: coef <—get_coeff(pararnJis£[i],node,parent);
13: weight <—get_weight(pararnJis£[i],node,parent);
14: param[node][parent] <— param[node][parent] + coe/ * weight;
15: end for
16: end for
17: end for
18: return normalize(param);

4 Experiments

We have used some utilities from the R package bnlearn [13] and tested the pro­
posed method using synthetic data sets generated from a multivariate Gaussian
distribution whose DAG structure is shown in Fig. 1.

Fig . 1 . Structure of the Bayesian network used for the experiments.

In a real use case of this method we could have been given a number of
separate data sets over the same variables but differing in the number of instances
each one contains. On the other hand, if we were to apply it to a huge data set,
the different partitions would probably contain a similar amount of instances.
In this synthetic experiment we have generated eight different data sets with a
sample size of 50 instances each.

Figure 2 shows the different BN structures obtained from each data set. We
can notice that a high portion of the original network is learned in most of the
cases, being false positives the most common error. We have aggregated the
results using all possible values for the threshold parameter, getting as result
the networks that appear on Fig. 3.

Fig . 2 . Structure learned on each of the data sets. Green arcs are those correctly
learned, red arcs are false positives and blue arcs are false negatives (Color figure
online).

Fig . 3 . Aggregated structures for the different thresholds (1 to 8), increasing from left
to right and top to bottom. Green arcs are those correctly aggregated, red arcs are
false positives and blue arcs are false negatives (Color figure online).

The metrics we are going to use to evaluate the results obtained with respect
to the original structure are the false positive, false negative and true positive
rate and the Structural Hamming Distance (SHD) [15]. The latter consists of the
number of operations needed to match the Partial DAGs (PDAGs) representing
the equivalence classes of each network. The operations considered are arc addi­
tion, deletion or reversal and edge addition or deletion. Therefore, the PDAG
is extracted from the respective DAGs before calculating this metric. SHD pro­
vides a way to compare the two BNs in terms of the conditional independencies
encoded by the BN, and thus avoids the penalization of differences in arcs that
might be statistically undistinguishable.

In Table 1 we can see the value metrics for the individual structures (left)
and the aggregated ones (right) when compared with the original network.

Table 1 . Results of the GBN learned on each data set (left) and the aggregated GBN
(right) compared with the original network. TP, F P and FN indicate the true positive,
false positive and false negative rates (respectively). SHD denotes the Structural Ham­
ming Distance. The networks are numbered according to their order of appearance in
Fig. 2

Network

1
2
3
4
5
6
7
8

SHD

3
3
2
3
2
0
0
5

TP

7
6
7
6
7
7
7
6

FP

2
2
2
2
2
0
0
4

FN

0
1
0
1
0
0
0
1

Threshold

1
2
3
4
5
6
7
8

SHD

8
3
0
0
0
1
1
1

TP

7
7
7
7
7
6
6
6

FP

8
3
0
0
0
0
0
0

FN

0
0
0
0
0
1
1
1

Obviously when the threshold is 1 every arc that appears in the individual
networks is added to the final one (unless a cycle is caused), so this produces
worse results than any individual network when comparing it to the original
structure. However, for thresholds above 1 the aggregated result is better than
most of the isolated ones, because thanks to the majority threshold false depen­
dences are eliminated. For too restrictive thresholds this can however result in
the deletion of a valid arc, so it should be adjusted to an intermediate value
for the best results. In a real use case this would depend on the data character­
istics, the application domain and the availability of a training set.

Finally, parameter learning is influenced by noise if the structure is not cor­
rectly learned because false parents of variables arise, which means that false
coefficients are estimated in the linear regression. However it is the case, as one
would expect, that the coefficients corresponding to these false parents are very
close to zero (e.g., 0.007 mean for the extreme case of threshold 1) and the vari­
ations on the value of the other parents are barely noticeable. This is not the
case when we learn from a single network. For example, in the last network in
Fig. 2, /3BF = 1-5, and B is a false parent of F.

5 Conclusions and Future Work

We have considered the problem of horizontal partitioning in the context of
Big Data and proposed a method for aggregating several GBNs learned from
different data sets as a first step towards scalable GBN learning. The method
obtains good results both in the case of structure and parameter learning on
synthetic data. The aggregated results surpass in most cases those derived from
learning from a single data set by taking into account all the data available
without the need of analysing it as a single block. This is specially useful for its
potential applications when analysing partitions of massive data sets.

As a future line of research, when learning the aggregated structure the treat­
ment of cycles will be refined and will involve more sophisticated techniques such
as arc reversal, checking the strength of the connection in each of the individual
networks (coefficients of the regression), establishing a suitable ordering of arc
consideration, etc.

In the case of applying the proposed method on a distributed setting, where
each data set is in a computer within a cluster, it would be interesting to define
some communication protocol during the learning process. This would be useful
for gathering stepwise information that could be used later on for example when
aggregating the individual networks (e.g. cycles) but also for developing more
sophisticated voting schemes which could depend on the adequateness of each
data set for the learning process.

Finally, we will also focus on performing more testing with diverse (noise,
missing values) and real data sets.

Acknowledgements. The authors thank the reviewers for comments and critics
which significantly contributed to improve the paper; and also J.M. Pena, J. Nielsen,

J . Mengin and M. Serrurier for the valuable help. This work has been partially sup­
ported by the Spanish Ministry of Economy and Competitiveness through the Cajal
Blue Brain (C080020-09; the Spanish partner of the Blue Brain initiative from EPFL)
and TIN2013-41592-P projects, and by the Regional Government of Madrid through
the S2013/ICE-2845-CASI-CAM-CM project.

References

1. del Sagrado, J., Moral, S.: Qualitative combination of Bayesian networks. Int. J .
Intell. Syst. 18(2), 237–249 (2003)

2. Etminani, K., Naghibzadeh, M., Pen˜a, J.M.: DemocraticOP: A democratic way of
aggregating Bayesian network parameters. Int. J . Approximate Reasoning 54(5),
602–614 (2013)

3. Fan, T.H., Lin, D.K., Cheng, K.F.: Regression analysis for massive datasets. Data
Knowl. Eng. 61(3), 554–562 (2007)

4. Geiger, D., Heckerman, D.: Learning Gaussian networks. In: Proceedings of the
Tenth International Conference on Uncertainty in Artificial Intelligence, pp. 235–
243. Morgan Kaufmann Publishers Inc. (1994)

5. L´opez-Cruz, P.L., Larran˜aga, P., DeFelipe, J., Bielza, C.: Bayesian network mod­
eling of the consensus between experts: an application to neuron classification. Int.
J . Approximate Reasoning 55(1), 3–22 (2014)

6. Maynard-Reid II, P., Chajewska, U.: Aggregating learned probabilistic beliefs. In:
Proceedings of the Eighteenth International Conference on Uncertainty in Artificial
Intelligence, pp. 354–361. Morgan Kaufmann Publishers Inc. (2001)

7. Matzkevich, I., Abramson, B.: The topological fusion of Bayes nets. In: Proceedings
of the Eighth International Conference on Uncertainty in Artificial Intelligence, pp.
191–198. Morgan Kaufmann Publishers Inc. (1992)

8. Nielsen, J.D., Ko˘cka, T., Pen˜a, J.M.: On local optima in learning Bayesian net­
works. In: Proceedings of the Nineteenth International Conference on Uncertainty
in Artificial Intelligence, pp. 435–442. Morgan Kaufmann Publishers Inc. (2002)

9. Pennock, D.M., Wellman, M.P.: Graphical representation of consensus belief. In:
Proceedings of the Fifteenth International Conference on Uncertainty in Artificial
Intelligence, pp. 531–540. Morgan Kaufmann Publishers Inc. (1999)

10. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc, California (1988)

11. Richardson, M., Domingos, P.: Learning with knowledge from multiple experts. In:
Proceedings of the Twentieth International Conference on Machine Learning, pp.
624–631. AAAI Press (2003)

12. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)
13. Scutari, M.: Learning Bayesian networks with the bnlearn R package. J. Stat.

Softw. 35(3), 1–22 (2010)
14. Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and Search. MIT

press, Cambridge (2000)
15. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian

network structure learning algorithm. Mach. Learn. 65(1), 31–78 (2006)
16. Vidaurre, D., Bielza, C., Larra˜naga, P.: Learning an L1-regularized Gaussian

Bayesian network in the equivalence class space. IEEE Trans. Syst. Man Cybern.
Part B Cybern. 40(5), 1231–1242 (2010)

