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Summary. This chapter introduces a new Evolutionary Computation method which applies
Bayesian classifiers in the construction of a probabilistic graphical model that will be used
to evolve a population of individuals. On the other hand, the satisfiability problem (SAT) is
a central problem in the theory of computation as a representative example of NP-complete
problems. We have verified the performance of this new method for the SAT problem. We
compare three different solution representations suggested in the literature. Finally, we apply
local search methods for this problem.

1 Introduction

This chapter introduces Evolutionary Bayesian Classifier-based Optimization Algo-
rithms (EBCOAs) as a new approach in Evolutionary Computation. The originality
of these algorithms comes from the fact that they evolve a generation of individu-
als by constructing Bayesian classifier models that take into account deeper differ-
ences rather than simply a subset of the better individuals of the previous population.
The main difference between this approach and Estimation of Distribution Algo-
rithms (EDAs) is the fact that the probabilistic graphical model in discrete EDAs is
a Bayesian network, while in EBCOAs we construct a Bayesian classifier that in-
cludes an extra C node that represents the different classes to which each individual
of a population is classified. EBCOAs take into account the differences between the
individuals in the population that make them be more or less fit regarding their fit-
ness value, and apply this knowledge to create a new population by enhancing the
characteristics of the fitter ones and tries to avoid such of the less fit ones. In order to
better understand the motivation for EBCOAs, this chapter analyzes the issues that
allows Estimation of Distribution Algorithms (EDAs) to converge to the best solu-
tion of a problem, as well as several new methods for improving the way in which
this convergence is done. The aim of this idea is to avoid a too fast convergence that
could lead to fall in local optima.
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In order to analyze the potential of this new method, we tried its performance
with a typical NP-hard optimization algorithm such as the SAT problem. This op-
timization problem is regarded as a very interesting one in the field of computer
science due to the big number of problems that can be formulated and solved using
SAT instances.

The rest of the chapter is structured in the following way. Section 2 is devoted
to the introduction to EBCOAs and the different Bayesian classifiers that can be
applied. The SAT problem is defined in Sect. 3. Section 4 shows the experimental
results obtained with this new method, and the conclusions of the chapter as well as
ideas for future work can be found in Sect. 5.

2 The Evolutionary Bayesian Classifier-based Optimization
Algorithm Approach

This section describes the EBCOAs [22]. Similarly as EDAs, EBCOAs combine
both probabilistic reasoning and evolutionary computing. The main characteristic of
EBCOAs that distinguish them from EDAs is that the learning of the probabilistic
graphical model is based on using Bayesian classifiers.

2.1 Motivation

In many Evolutionary Computation techniques such as Genetic Algorithms (GAs)
and EDAs only the best individuals of the generation are taken into account to pro-
ceed to apply crossover and mutation techniques–in GAs – or to learn the probabilis-
tic graphical model – in EDAs. In these approaches, the aim is to take into account
the characteristics of the N fittest individuals of the population. However, in most
of the cases the fitness value differences among the individuals are not taken into
account but for the purpose of deciding whether the phenotype of an individual is
relevant for generating the next generation. Therefore, in the case of most EDAs, the
best and worst individuals within the selected population of the lth generation are
considered to have the same relevance for the learning of the probabilistic graphical
model.

However, in many optimization problems the fitness differences between the se-
lected individuals are also important in order to ensure an adequate convergence of
the search process. This is essential in the case of EDAs in order to ensure conver-
gence. The literature shows different possibilities for taking into account the fitness
of each of the selected individuals in the learning step of EDAs:

• Making fitter individuals to influence the learning of the probabilistic graph-
ical model regarding their fitness value: this approach assigns a weight to each
individual to have more influence in the learning step in EDAs regarding the
respective fitness value. An example of this idea was proposed in BSC [26].

• Applying a proportional selection method: An example of this approach is the
use of a Boltzman distribution based selection [24].
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• Considering the fitness value as an additional node in the probabilistic
graphical model: the fact of including such a new variable together with vari-
ables X1, . . . , Xn makes a direct influence on the learning and sampling steps of
EDAs. Unfortunately, this fitness value variable is typically continuous and it is
therefore difficult to apply learning algorithms that are able to handle at the same
time discrete and continuous variables. In addition, these learning procedures are
computationally more complex and require considerable CPU time.

• Transform the learning of the probabilistic graphical model into a super-
vised classification problem: this approach is the one proposed in EBCOAs, in
which all the individuals of a population are classified in different classes, and
then these are used to build Bayesian classifiers that have the form of a Bayesian
network. These Bayesian networks have the characteristic of including the class-
variable in the probabilistic graphical model as the parent of the rest of the vari-
ables X1, . . . , Xn. The main idea of this approach is to guide the search taking
into account both the genotypes of the fittest and the less fit individuals.

EBCOAs are not the only approach in the literature that apply classification tech-
niques in optimization. The most relevant statistical approach that follows a similar
idea is the Learnable Evolution Model (LEM) [20] –in which an original machine
learning method based on inductive rules is applied– although other approaches that
apply decision trees [18] and hill climbing methods [2] can also be found. Examples
on the use of classification paradigms in optimization for the continuous domain can
also be found in the literature, such as the use of Gaussian modeling [1].

2.2 Main Steps of the EBCOA Approach

EBCOAs can be regarded as an Evolutionary Computation approach very similar to
EDAs in the sense that there are steps such as the learning of a probabilistic graphi-
cal model and the posterior sampling of this model in order to obtain the individuals
of the new population. These two steps are present in both paradigms, although the
most relevant differences are precisely in the type of Bayesian network to build:
in EDAs the learning algorithms applied are general purpose Bayesian network in-
duction algorithms while EBCOAs build Bayesian classifiers using the information
provided by the fitness function. In order to better compare the main differences be-
tween these two paradigms, Figs. 1 and 2 illustrate the EDA and EBCOA approaches
respectively. These two figures evidence this difference, in which it appears clearly
that the probabilistic graphical model learned in EBCOAs contains the additional
class variable which is the parent of the rest, and is denoted as C. Note also the dif-
ference in both approaches regarding the selection of individuals –in EDAs– or the
division in classes following a supervised classification approach made in EBCOAs.
Figures 3 and 4 show the pseudocode of these two different paradigms for a clearer
explanation of these main differences.

We denote by X = (X1, . . . , Xn) an n–dimensional random variable, and we
represent by x = (x1, . . . , xn) one of its possible instantiations –that is, one of the
possible individuals. The probability distribution of X will be denoted as p(x), and
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Fig. 1. Illustration of the EDA approach in the optimization process

the conditional probability distribution of the variable Xi given the value xj of the
variable Xj will be written as p(xi|xj).

LetDl be the population (database) of the l-th generation, formed byR individu-
als. This population has to evolve to the (l+ 1)-th one. In EBCOA, instead of having
a selection of the fittest step as in EDAs, the population Dl is firstly divided in |E|
different classes, where following a supervised classification approach the variable
E is defined so that to take the values {1, 2, . . . , |E|}. We denote byDE

l the database
Dl after being divided in |E| classes, in which each of the individuals in the popu-
lation is assigned to a class of the variable E. In many cases we will be interested
in enhancing the characteristics of the fittest and least fit classes, and therefore it is
very likely not to use all the different classes for the learning. Therefore, we select
|C| ≤ |E| classes and we ignore the rest of them for learning the Bayesian classifier.
We denote by DC

l the subset of DE
l that will be used for the learning, and similarly

we denote by C the variable that assigns a class c –with 1 ≤ c ≤ |C|– to each of the
individuals in DC

l .
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Fig. 2. Illustration of the EBCOA approach in the optimization process

The hardest task in EBCOA and the most critical one regarding the convergence
aspect, is the estimation of pl(x, c). This probability is estimated from the Bayesian
classifier that is learned every generation. As EBCOAs are based on Bayesian classi-
fiers, the Bayesian network structure S that is induced as a result of the learning step
contains the variables X1, . . . , Xn as in EDAs, but also the newly defined variable
C, and it will always be the parent of all the other variables in S. The next section
introduces the main characteristics of the different methods for building Bayesian
classifiers. See [22] for more details.

2.3 Bayesian Classifiers

The problem of supervised classification consists of assigning one of the |C| classes
of a variable C to a vector x = (x1, . . . , xn). The true class is denoted by c and
it takes values in {1, 2, . . . , |C|}. Following this definition, a classifier can be seen
as a function γ : (x1, . . . , xn) → {1, 2, . . . , |C|} that assigns a class label to each
observation.

The loss function is defined as the cost of misclassifying an observation. A loss
function 0/1 is defined as a loss function in which the cost of misclassifying an
element is always 1. In this case, it has been demonstrated that the optimum Bayesian
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D0← Generate R individuals (the initial population) at random

Repeat for l = 0, 1, . . . until satisfying a stopping criterion

DN
l ← Select N < R individuals of Dl following

a certain selection method

pl(x) = p(x|DN
l )← Estimate the distribution of probability

for an individual to be among the selected individuals

Dl+1← Sample R new individuals (the new population) from pl(x)

Fig. 3. Generic pseudocode of EDA

D0← Generate R individuals (the initial population) randomly

Repeat for l = 0, 1, 2 . . . until a stopping criterion is met

DE
l ← Divide the R individuals in E < R different classes from Dl

according to a criterion

DC
l ← Select the C ≤ E classes of DE

l that will be used for building the
Bayesian classifier, usually taking into account at least the best
and worst classes.
The individuals of the classes not included in DC

l ⊂ DE
l are ignored

pl(c|x) ∝ pl(c) · pl(x|c)← Estimate the probability distribution of an individual
in DC

l of being part of any of the different possible C classes

Dl+1← Sample R individuals (the new population) from pl(x|c)

Fig. 4. Generic pseudocode for the EBCOA approach

classifier that minimizes the total misclassification error cost is obtained by assigning
to the observationx = (x1, . . . , xn) the class with the highest a posteriori probability
[5].

This optimum Bayesian classifier is expressed more formally as follows:

γ(x) = arg max
c
p(c|x) (1)

In informative or generative classifiers such as the ones that are revised in this
section, p(c|x1, . . . , xn) is obtained indirectly by applying the Bayes rule:

p(c|x1, . . . , xn) ∝ p(c, x1, . . . , xn) ∝ p(c)p(x1, . . . , xn|c)

This section revises Bayesian classifiers that have been proposed specifically for
classification problems.
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Fig. 5. Example of graphical structures of different Bayesian classifiers for a problem of four
variables. The Bayesian classifiers presented are examples of (a) Naive Bayes, (b) Selective
Naive Bayes, (c) Seminaive Bayes, and (d) Tree Augmented Naive Bayes

Naive Bayes

The naive Bayes approach [21] is the most simple one presented in this section.
The Bayesian network structure that is applied is always fixed: all the variables
X1, . . . , Xn are considered to be conditionally independent given the value of the
class value C. Figure 5(a) shows the structure that would be obtained in a problem
with four variables.

In the naive Bayes classifier, when classifying an example x, this will be assigned
to the class c which has a higher a posteriori probability. This a posteriori probability
is computed as follows:

p(c | x) ∝ p(c,x) = p(c)
n∏
i=1

p(xi|c) (2)

The a priori probability of the class, p(c), and the conditional probabilities
p(xi|c) are estimated from the database of cases.

Selective Naive Bayes

The main restriction of naive Bayes is that this model forces the classifier to take into
account all the variables. This aspect appears to be a drawback for some classifica-
tion problems, since some of the observed variables could be irrelevant or redundant
for classification purposes. Furthermore, it is known [13,17] that the behavior of the
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naive Bayes paradigm degrades with redundant variables, and therefore the motiva-
tion for this approach is to remove those variables in order to obtain more efficient
classifiers.

In the selective naive Bayes approach [14, 16] the variables in the classifier are
considered to be independent as well as in naive Bayes, but in this case some of the
variables can be ignored and not have them present in the final model. Figure 5(b)
shows the structure that could be obtained in a problem with four variables, where
one of them is missing in the final structure.

Following the selective naive Bayes model, and using the selective naive Bayes
classifier shown in Fig. 5(a), an individual x = (x1, x2, x3, x4) would be assigned
to the class

c∗ = arg max
c
p(c)p(x1|c)p(x2|c)p(x4|c) (3)

Seminaive Bayes

The previous two Bayesian classifiers have as a common property the fact that all
the variables in the structure are considered to be conditionally independent. That is,
all the variables can have uniquely the class variable C as a parent. The seminaive
Bayes approach [15] is able to take into account dependencies between the variables
X1, · · · , Xn as it allows groups of variables to be considered as a single node in
the Bayesian network. Figure 5(c) illustrates an example of a seminaive Bayesian
classifier in a problem with four variables, showing that the Bayesian network struc-
ture treats those grouped variables as a single node regarding the factorization of the
probability distribution. The grouping of variables as a single node means that all
the dependencies between them are considered implicitly for classification purposes.
On the other hand, and similarly as in selective naive Bayes, in seminaive Bayes it
is also allowed that some variables are not included in the final classifier (Fig. 5(c)
shows an example of this).

In [25] we can find a greedy approach to build seminaive Bayes classifiers, in
which redundant as well as dependent variables are detected. When dependent vari-
ables are found, a new variable is created as the cartesian product of these. Two
greedy algorithms are presented, the first of them on a forward direction called FSSJ
(Forward Sequential Selection and Joining), and the second on the opposite back-
ward direction named BSEJ (Backward Sequential Elimination and Joining). The
pseudocode of FSSJ is shown in Fig. 6. The algorithm BSEJ follows an analogous
approach, and can be interesting in optimization problems in which the objective
function depends on all or nearly all the variables. Figure 5(c) shows an example
of a possible structure for the Bayesian classifier that could be obtained as a result of
the seminaive Bayes approach.

Therefore, applying the seminaive Bayes model and using the final classifier ob-
tained in Fig. 5(c), an individual x = (x1, x2, x3, x4) would be assigned to the
following class:

c∗ = arg max
c
p(c)p(x1|c)p(x3, x4|c) (4)
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Initialize the set of variables to be used to the null set
Classify all the examples as being of the class with higher p(c)
Repeat in every iteration: choose the best option between

(a) Consider each variable that is not in the model as a new one to be
included in it. Each variable should be added as conditionally
independent of the variables in the model given the class

(b) Consider grouping each variable not present in the model with a variable
that is already in it

Evaluate each possible option by means of the estimation of the percentage
of cases well classified

Until no improvement can be obtained

Fig. 6. Pseudocode of the FSSJ algorithm for seminaive Bayes models

Tree Augmented Naive Bayes

The tree augmented naive Bayes [7] is another Bayesian network classifier in which
dependencies between the variables X1, · · · , Xn are also taken into account, condi-
tioned to the class variableC, by using a tree structure. In seminaive Bayes a wrapper
approach3 is applied to search for a good structure. In the tree augmented naive Bayes
algorithm the method follows a procedure analogous to the filter approaches where
only pairwise dependencies are considered.

The tree augmented naive Bayes structure is built in a two phase procedure illus-
trated in Fig. 7. Firstly, the dependencies between the different variablesX1, . . . , Xn

are learned by means of a score based on the information theory. The weight of a
branch (Xi, Xj) is given by I(Xi, Xj |C), which is the mutual information measure
conditioned to the class variable. These conditional mutual information values are
used to build a tree structure. Secondly, the structure is augmented to the naive Bayes
paradigm.

Following the tree augmented naive Bayes model building pseudocode presented
in Fig. 7, if we obtain the Bayesian classifier structure shown in Fig. 5(d) an individ-
ual x = (x1, x2, x3, x4) will be assigned to the class

c∗ = arg max
c
p(c)p(x1|c)p(x2|c, x1)p(x3|c, x1)p(x4|c, x3) (5)

2.4 Description of the Main Steps of EBCOAs

Evolutionary Bayesian Classifier-based Optimization Algorithms (EBCOAs) is an
approach that combines Bayesian classifiers such as the ones presented in the pre-
vious section and Evolutionary Computation to solve optimization problems. The

3 The wrapper approach consists of applying the induction algorithm itself as a part of the
evaluation function. On the other hand, the filter approach looks only at the intrinsic char-
acteristics of the data, such as probabilistic or distance scores, or the mutual information
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Calculate I(Xi, Xj | C) =
∑n
i=1

∑m
j=1

∑w
r=1 p(xi, yj , cr) log

p(xi,yj |cr)

p(xi|cr)p(yj |cr)

with i < j, j = 2, . . . , n
Build an undirected complete graph, where the nodes correspond to the predictor

variables: X1, . . . , Xn. Assign the weight I(Xi, Xj | C) to the edge connecting
variables Xi and Xj

Assign the largest two branches to the tree to be constructed

Repeat in every iteration:
Examine the next largest branch and add it to the tree unless it forms a loop.
In the latter case discard it and examine the next largest branch

Until n− 1 branches have been added to the structure

Transform the undirected graph in a directed one, by choosing a random
variable as the root

Build the tree augmented naive Bayes structure adding a node labelled as C, and
later add one arc from C to each of the predictor variables Xi (i = 1, . . . , n)

Fig. 7. Pseudocode of the tree augmented naive Bayes algorithm

main idea is that, having a population of solutions for the optimization problem, this
population will be evolved to a new generation formed by a next population of fitter
individuals. The main difference between EDAs and EBCOAs is that in EDAs the
evolution to the next population is performed by learning a probabilistic graphical
model using uniquely the information of the best individuals, ignoring simply the
worst ones, whilst in EBCOAs these worst individuals are also taken into account.
The EBCOA approach is based on constructing a Bayesian classifier that will rep-
resent the main characteristics between the fittest and the least fit individuals. This
approach, illustrated in Fig. 2, contains the following steps:

• Firstly, the initial population D0 of R individuals is generated. This initial popu-
lation is generated usually by assuming an uniform distribution on each variable,
similarly as in EDAs. Each of the created individuals is evaluated by means of
the fitness function.

• Secondly, each of the individuals in Dl are given a label e ∈ E to classify them
regarding their respective fitness value. This is the supervised classification step,
in which each of the R individuals is assigned an e label. As a result of this, the
class variable E is created in the new database denoted by DE

l .
• Thirdly, DC

l is created by selecting from DE
l only the |C| ≤ |E| classes that

will be used for building the Bayesian classifier. In EBCOAs we take into ac-
count uniquely the best and worst classes of individuals. The rest of the classes
in DE

l could be discarded to facilitate the learning by enhancing the differences
between the most distant classes. The individuals which are in DE

l \DC
l are sim-

ply ignored.
• A Bayesian classifier is built using the database DC

l and applying Bayesian
classifier model construction techniques such as the ones described in the pre-
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vious section. This classifier estimates the probability distribution pl(c|x) ∝
pl(c)pl(x|c) which represents the probability of any individual x to be classi-
fied in any of the different possible |C| classes.

• Finally, the new population Dl+1 constituted by the R new individuals is ob-
tained by carrying out the sampling of the probability distribution pl(c)pl(x|c).
This step can be performed very similarly as in EDAs.

Steps 2, 3, 4 and 5 are repeated until a stopping criterion is satisfied. Examples of
stopping conditions are: achieving a fixed number of populations or a fixed number
of different evaluated individuals, uniformity in the generated population, and the
fact of not obtaining an individual with a better fitness value after a certain number
of generations.

The performance of EBCOAs is mainly responsibility of the step of learning the
Bayesian classifier. In order to compare possible classifiers to be applied in EBCOAs,
the most strict criterion to be used would be the use of an honest validation using the
initial database of cases. However, this procedure is very expensive in computation
time and very often this is approximated using a filter approach. It is important to
note that in EBCOAs the most important criterion when choosing a Bayesian clas-
sifier is not to apply the one that best represents a strictly correct classifier, since
the convergence speed and computation time are also important aspects to take into
account. Indeed, the best Bayesian classifiers are usually the most time consuming
ones. A balance between these two performance criteria is required since this learn-
ing step (i.e. the classifier building step) is going to be applied every generation.

3 The Satisfiability Problem

The SAT is one of the most known problems in computational theory because it
results in a generic model in which many different decision making problems can be
represented. The SAT problem is known to be NP-hard.

This particular problem has been analysed for many years and diverse methods
have been applied for its resolution. Evolutionary computation methods have also
been applied to it, mainly GAs, but also EDAs [11].

3.1 Definition of the Optimization Problem

The SAT problem is proposed in a formula in conjunctive normal form composed by
a set of clauses. Each clause is formed by a set of literals, and a literal is a variable
or its negation. A possible interpretation for the problem is a function that assigns a
boolean value to each of the variables. An instantiation is said to be satisfiable if it
satisfies every single clause. In order to satisfy a clause, it is necessary that at least
one of the literals of the clause is satisfied by the instantiation.

The SAT problem is based on a set of Boolean variables Z = (Z1, . . . , Zv), and
a Boolean function g : Bv → B,B = {0, 1}. The formula g is in conjunctive normal
form g(z) = c1(z) ∧ . . . ∧ cu(z), where u is the number of clauses of the problem
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and each clause ci is a disjunction of literals. A literal is a variable or its negation. A
literal zi is said to be satisfied if the value 1 is assigned to zi, while the literal z̄i is
satisfied if the value 0 is assigned. A SAT instance is called satisfiable if there exists
such an z, and otherwise it is called unsatisfiable. Here the aim is to analyze and
check the existence of an assignation of z = (z1, . . . , zv) ∈ Bv such that g(z) = 1.

For example,

g(z) = (z1 ∨ z3 ∨ z̄4) ∧ (z2 ∨ z̄3 ∨ z4) ∧ (z̄1 ∨ z2 ∨ z̄3) (6)

This instance is considered satisfiable if all its clauses are satisfied, and each of
the single clauses is satisfiable if at least one of the literals is according to Z. For
instance,

z = (z1, z2,−, z4) (7)

satisfies the instance, where the value − in Z3 means that this variable can take the
positive or negated value.

One might find easy to find a solution to this type of problems, but when we
increase the number of variables and clauses the problem becomes very difficult to
be solved.

The sub-type of SAT problems called k-SAT is defined as the one that contains in
each clause exactly k different literals. While the 2-SAT class is solved in polynomial
time, k-SAT appears to be NP-hard for k ≥ 3. In 1971, Cook [3] showed that this
problem is NP-hard and that the SAT problem can be understood as a representative
for solving other NP-hard problems.

The optimization version of the SAT problem is known as MAXSAT, and it con-
sists on finding an assignation that maximizes the number of clauses satisfied for a
particular SAT problem. If the original set of clauses is insatisfiable, MAXSAT is
supposed to search for the assignation that satisfies the highest number of clauses
possible.

3.2 Related Research Work

SAT is a generic method for problem solving that has been analysed for many years
in the literature using very different approaches. This section concentrates on the
work oriented to solve SAT by means of heuristic methods, and more precisely on
Evolutionary Computation methods. In 1989, in [4] the authors apply GAs to the SAT
problem to transform other NP-hard problems into SAT. This initial work concludes
that GAs cannot perform better for the SAT, than other problem-specific algorithms,
although GAs are referred to as a robust, efficient, and promising method.

More recent works apply different ways of representing solutions, techniques to
adapt the definition of the fitness function, variations in crossover and mutation op-
erators, or local optimization techniques. The aim of all these techniques in most of
the cases is to improve the results obtained by GAs. As an example of these, [10]
proposes to concentrate on the importance of the clause regarding the problem and
proposes a new individual representation to guide the search following this idea.
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In [9] this option and its corresponding fitness function with improvements is com-
pared to using other type of representations, which also enhances the relevance of
the clause, although the paper concentrates on the need to satisfy a single literal in
each clause so that it becomes satisfied.

Finally, we would like to mention the work [8] in which the authors show an
interesting revision of evolutionary algorithms for the SAT problem.

3.3 Representation Types and Their Associated Fitness Function

When solving any optimization problem using Evolutionary Computation techniques
we need to choose a means of representing each of the possible solutions and to
define a fitness function that measures how good each solution is for this problem.
These two components are critical for an appropriated convergence of the algorithm.
We can find in the literature many different options to represent a solution for the SAT
problem. Each of these representations has a different appropriated fitness function.
Next, we will analyse three different individual representations and their respective
fitness functions: the first of them focuses on the individual literals that form the
problem, while the other two are concentrated on the clauses and on how to satisfy
them.

Bit-String Representation

This option is one the most applied in the literature, since it is the most natural way
of representing the SAT problem. It consists on representing each possible solution
as a string of bits of length v: (z0, . . . , zv), where v is the number of variables of the
problem, and each variable Zi is associated to a bit.

In this case, the aim is to satisfy the maximum number of clauses. Taking into ac-
count that the MAXSAT fitness function consists on counting the number of clauses
that are satisfied, and the idea is to maximize this value, in the MAXSAT formula-
tion the fitness value is equivalent to the number of satisfied clauses directly in the
following way:

gMAXSAT(z) = c1(z) + . . .+ cu(z) (8)

where ci represents the true value of the ith clause.

EXAMPLE 1:
Given Equation 6, a possible solution would be za = (1, 0, 0, 0) where

gMAXSAT(za) = 3, since all the clauses are satisfied with this particular
assignation.

On the other hand, if we consider another individual zb = (1, 0, 1, 0), we
have that gMAXSAT(zb) = 1, since the second and third clauses are not
satisfied.



234 T. Miquélez et al.

Path Representation

This representation was suggested in [9]. It is based on the idea that for satisfying
each particular clause it is enough with satisfying a single literal. Therefore, in order
to create a possible satisfiable solution, it also would be possible to select a clause
each time and generate a continuous path among clauses by choosing a literal in
each single clause. That is, in this case a possible solution has as many variables
as clauses, and each variable takes a value in 1, . . . , k (k-SAT) which expressed the
literal that is chosen in a particular clause.

The obvious problem created using this idea is that the same literal that appears
in different clauses with different boolean values can be selected in two positions of
the path, creating inconsistencies.

EXAMPLE 2:
Given Equation 6, the path (1-1-3), which means z1 = 1, z2 = 1, satisfies

the SAT problem and induces the next complete assignations to literals:
z = (1, 1, 0, 0), z = (1, 1, 0, 1), z = (1, 1, 1, 0), z = (1, 1, 1, 1).

On the other hand, the path (1-3-1), z1 = 1, z4 = 1, z1 = 0, contains an
inconsistency for z1.

A reasonable fitness function for this representation is the one that measures the
number of inconsistencies, with the aim of minimizing this function.

If the path with a smaller number of inconsistencies has at least a single one,
that particular SAT problem is not satisfiable. Otherwise, the fact of not having a
single inconsistency in the path means that it exists at least a sequence of assigning
variables that satisfies the SAT problem.

Clause Representation

A new individual representation also based on the clause-variables is proposed in
[10], in which the effect of each of the variables within the clause is stressed. In
other words, the main idea is to concentrate initially on finding an assignment of
values to satisfy individual clauses, and next to search for the particular assignment
of values in the literals of them to satisfy the problem globally.

Each clause with k literals can be regarded as to take 2k − 1 possible combina-
tions of value assignments to its literals that satisfy the clause, while only one would
not satisfy it. In the particular case of a 3-SAT problem, there exist eight different
possible values for each clause, and only one of would not satisfy the clause. There-
fore, in this representation the main idea is to choose any of the 2k− 1 combinations
of literal values in the clause that would satisfy it.

Following this idea, we can obtain an assignment that would satisfy all the
clauses. However, this representation is likely to propose different values (accord-
ing to whether the variable is negated or not) for the same literal which is present in
different clauses. This case would result in an inconsistency in a similar way than in
the previous path representation. Therefore, the idea is to choose any other clause-
value so that the total number of inconsistencies among clauses is minimized.
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Just as a simple example, for a clause (z2 ∨ z̄3 ∨ z4), the assignation of variables
not satisfied by this clause would be (z2, z3, z4) = (0, 1, 0). Next, we can see the
illustration of how to use this representation in an overall 3-SAT problem.

EXAMPLE 3:
Given Equation 6 the forbidden assignations are: (0 0 1), (0 1 0),
(1 1 0) respectively, which correspond to the representation (1 2 6). A pos-

sible solution is (0 1 1), that is (0 0 0), (0 0 1), (0 0 1),
000 → z1 = 0, z3 = 0, z4 = 0,
001 → z2 = 0, z3 = 0, z4 = 1,
001 → z1 = 0, z3 = 0, z2 = 1,
however, this solution presents inconsistencies in z2 and z4.
On the other hand, the solution (2 6 3), that is (0 1 0), (1 1 0),
(0 1 1), does not present inconsistencies.
010 → z1 = 0, z3 = 1, z4 = 0,
110 → z2 = 1, z3 = 1, z4 = 0,
011 → z1 = 0, z3 = 1, z2 = 1,
therefore there exists a global assignation of variables (0 1 1 0) that satisfies

the problem.

Similarly as with the previous representation, the fitness function proposed for
this representation measures the amount of inconsistencies, and the aim of optimiza-
tion algorithms is to minimize it.

When the clause representation is used, if the solution with the less possible
number of inconsistencies has at least one inconsistency, the SAT is not satisfiable.
Otherwise, the SAT problem is satisfiable.

3.4 Local Optimization

We propose in this section two types of local optimization techniques to converge
to a satisfactory solution. The local optimization types presented in this section are
applied in this case to EBCOAs, although they can also be used in other evolutionary
computation methods. These techniques are suggested to be applied after the search
process arrives to a determined generation number.

Firstly, we introduce a local optimization technique that flips each of the values
in the individual after it has been generated, evaluating the fitness of each of the
flips. If the individual is not improved, the original individual is included in the next
generation, and otherwise, the fittest flipped version is included in the population.
We call this method local optimization with flip.

Secondly, we present a method that detects the most difficult clauses of the prob-
lem to be satisfied, assigning them a higher weight in an adapted fitness function.
This method is called optimization through adaptation of weights.

These local optimization procedures try to improve the search for a satisfiable
version. Initially, the fitness function guides the search in a very efficient way, but
due to the ambiguity on assigning the same fitness value to very different individu-
als that are given rise by many individual representations and fitness functions, this
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guidance is not precise enough to guide the algorithm towards finding a satisfiable
solution in the search space. We suggest to apply this local optimization procedure
once the search has found a number of different individuals that have the same best
fitness value, since the algorithm will have no appropriated means to continue the
search. The key decision here is to choose the best time to start applying the local
optimization. The criterion that we propose is to start applying the local optimiza-
tion when all the individuals of the highest (fittest) class have all the same fitness
value. Other options are also possible, for instance to start to apply it once a concrete
generation number has been reached.

Local Optimization with Flip

The local optimization that we propose in this section is based on the FlipGA method
proposed in [19] for GAs. The main idea of FlipGA consists on applying the “Flip”
heuristic to each individual after the crossover and mutation operations. The heuristic
explores the genes randomly: each gen is “flipped”, and this modification is accepted
only if the improvement is bigger or equal than zero (that is, the number of satisfied
clauses after the modification is the same or higher).

We propose in this section a procedure to apply local optimization as follows:

1. Each generated individual will be evaluated and its variables that worsen the
individual – i.e. they make a clause not to be satisfied or create inconsistencies –
will be marked.

2. Next, the marked variables are taken individually, and each time we modify a
single variable and re-evaluate the individual. If a better fitness value is obtained,
this modification is kept for this variable, otherwise we discard it.

Depending on the type of individual representation chosen, the local optimization
will be applied in a different way.

Bit-string representation: The variables of the individuals represent directly the lit-
erals of the problem, while in the path and clause representations the variables
of the individual represent the different clauses and the value of the literals are
implicit.

Path representation: When a variable creates an inconsistency this means that for the
same literal a clause has assigned a value while in another the value is the op-
posite. When this is identified, the literal that creates an inconsistency is marked
in order to choose another literal of the clause and try to satisfy it. This helps at
finding a satisfiable solution.

Clause representation: When a variable of the individual that creates an inconsis-
tency, this means that the value of at least a literal that has been assigned to
satisfy the clause is said to take a different value in two different clauses. This
variable of the individual is marked and the local optimization will try to choose
another combination of values of the clause to satisfy it and avoid the inconsis-
tency.
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Optimization Through Adaptation of Weights

The improvement presented in this section proposes to consider the different clauses
differently according to the difficulty to satisfy each of them. This idea has been
proposed for the first time in [6], and they apply the stepwise adaption of weights
principle (SAW) combined with the fitness function.

gSAW(z) = w1 · c1(z) + . . .+ wu · cu(z) (9)

The weightswi ∈ N are adapted to identify the most difficult clauses to satisfy in
each step of the search. Initially, all the weights are initialized to 1 (wi = 1 ), which
is equivalent to apply a MAXSAT function. After some time, the weights are adapted
according towi ← wi+1−qi(z∗), where qi(z∗) is the actual fitness. This adaptation
increases only the weights that correspond to clauses that have not been satisfied at
that time. This forces implicitly the evolutionary search focusing it on these difficult
clauses, and therefore guiding the search process applying these weights.

Here one of the tasks to perform is to decide when to start applying the opti-
mization to the search. Similarly as in the previous case, we consider that the search
process must start per se without applying the optimization procedure until some
concrete conditions are detected. A possible proposal is to start applying this proce-
dure when reaching a concrete generation number, or also when all the individuals
in the fittest class have the same fitness value. Another decision to take is the number
of generations after which we will adapt periodically the vector of weights.

4 Experimental Results

4.1 Comparison of the Different EBCOAs

In order to perform some experiments we have chosen 3-SAT instances randomly
from the collection of problems offered publicly by SATLIB [12]. The files se-
lected contain definitions of different SAT problems for which we know that a
satisfiable solution exists. We have used 5 different problem instances with 20 lit-
erals and 91 clauses each. For each instance we run each EBCOA presented in
Sect. 2.3 (EBCOANaiveBayes, EBCOASelectiveNB , EBCOAFSSJ , EBCOABSEJ
and EBCOATAN ) 10 times under the same conditions. For each algorithm we have
also applied three exposed possible individual representations and their respective
fitness functions as described in Sect. 3.3.

Table 1 shows the results of these experiments for each individual representation
type and EBCOA algorithm, without the addition of any local optimization at all.
The column Porc. shows the percentage of runs in which a satisfiable solution has
been found. The Dif. column represents the mean number of clauses that are not sat-
isfied in the last generation of the runs. As we can see, this column corresponds to
the percentage of runs in which a possible solution was found for the SAT problem:
the value in Dif. is bigger when the percentage of runs in which a satisfiable solution
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Table 1. Experimental results obtained with 5 different SAT problems containing 20 literals
and 91 clauses. No local optimization technique has been applied in any of these results

Bits Path Clause
Porc. Dif. Eval. Porc. Dif. Eval. Porc. Dif. Eval.

EBCOANaiveBayes 0.86 0.18 2222.84 0.06 1.72 54443.32 0.00 39.12 49832.62
EBCOASelectiveNB 0.82 0.20 2256.10 0.02 1.78 53788.66 0.00 41.78 49856.22
EBCOAFSSJ 0.98 0.02 2472.10 0.00 2.76 50253.64 0.00 53.56 49753.52
EBCOABSEJ 0.92 0.08 1700.60 0.02 1.74 52330.42 0.00 49.50 49881.02
EBCOATAN 0.52 0.66 5285.12 0.00 4.60 52767.50 0.00 26.02 49639.46

has been found. On the other hand, the Eval. column represents the number of differ-
ent individuals that have been evaluated, that is, the number of different individuals
that have been analyzed in the search process. The stopping criterion chosen for all
the cases is the fact of finding a satisfiable solution or to reach a maximum of 500
generations.

As we can see in Table 1 the bit-string representation is the one that shows the
best performance. The other two representations obtain considerably worse results
due to having a bigger search space and more different individuals with the same
fitness value. The EBCOA that performed best is the one that learns a seminaive
Bayes classifier, with which we obtain a satisfiable version in more than 90% of the
executions. In the case of EBCOAFSSJ we obtain even a result of 98%. EBCOATAN
is the one that obtains a satisfiable solution in only 50% of the executions.

4.2 The Result of Applying Local Optimization

In order to analyse the effect of local optimization in EBCOAs, we have performed
a set of experiments to compare the performance of not applying local optimization,
applying the optimization described in Sect. 3.4, and the optimization through adap-
tation of weights of Sect. 3.4. Table 2 shows the results obtained in our experiments.

On the other hand, when local optimization with flip is applied more bal-
anced results are obtained, and the differences between EBCOAs are reduced.
This is the result on a better guidance for the different EBCOAs over the search
space. EBCOATAN improves its performance to the 76% of the executions, and
EBCOAFSSJ obtains a lower percentage of success, although it is still far behind
the 90%.

When the weight adaptation optimization is applied, a satisfiable solution is ob-
tained in the 100% of the cases when applying an EBCOA based on a Selective Naive
Bayes classifier. For the rest of EBCOAs the success rate is also quite high (98% for
EBCOANaiveBayes and EBCOAFSSJ ) except for EBCOATAN which remains in a
72%.

It is also important to note that the effect of the individual representation is very
important in EBCOAs. Other studies in the literature also show that the path repre-
sentation has a worse performance than bit-string representation even when applied
to GAs [9]; however, under the conditions of our experiments using EBCOAs the
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Table 2. Experimental results obtained with 5 different SAT problems containing 20 literals
and 91 clauses

Results applying local optimization with flip
Bits Path Clause

Porc. Dif. Eval. Porc. Dif. Eval. Porc. Dif. Eval.
EBCOANaiveBayes 0.92 0.08 1326.24 0.16 1.40 51113.16 0.00 12.52 49656.04
EBCOASelectiveNB 0.80 0.22 2274.98 0.12 1.48 50822.18 0.00 12.90 49654.14
EBCOAFSSJ 0.92 0.08 2137.82 0.00 2.20 49956.84 0.00 29.28 49655.04
EBCOABSEJ 0.94 0.08 1806.74 0.06 2.02 48897.10 0.00 15.04 49600.00
EBCOATAN 0.76 0.28 3437.08 0.00 4.10 50130.92 0.00 70.44 49625.38

Results applying weight adaptation optimization
Bits Path Clause

Porc. Dif. Eval. Porc. Dif. Eval. Porc. Dif. Eval.
EBCOANaiveBayes 0.98 0.04 2155.10 0.58 0.76 31726.54 0.00 12.58 49600.00
EBCOASelectiveNB 1.00 0.00 4912.80 0.52 0.88 34284.70 0.00 11.42 49600.00
EBCOAFSSJ 0.98 0.04 3105.50 0.00 5.86 49600.00 0.00 33.86 49600.00
EBCOABSEJ 0.94 0.08 5420.42 0.64 0.76 32599.72 0.00 12.38 49600.00
EBCOATAN 0.72 0.38 14698.92 0.00 6.42 49600.00 0.00 47.86 49600.00

performance is quite poor. EBCOAs are able to find a satisfiable version when using
this representation, and only if we apply weight adaptation optimization we man-
age to find satisfiable solutions in more than 50% of the cases – but not for all the
EBCOA types. Results are even worse for the case of clause representation, since no
EBCOA did manage to find a satisfiable solution in any of the executions.

4.3 Performance of EBCOAs Depending on the Complexity
of the SAT Problem

It is a common practise to define the complexity of a SAT problem by using a u/v
ratio, where u is the number of clauses and v is the number of variables. In all our ex-
periments, we use instances with ratio u/v ≈ 4, 3, which have been reported by [23]
to be the hardest instances. With this ratio, we performed an experiment to analyse
the performance of EBCOAs when increasing the number of literals of the SAT prob-
lem. For this, we have applied other problems from SATLIB [12] containing SAT
with 50 literals and 218 clauses. We chose again 5 different instances of these SAT
problems and we run 10 times each EBCOA using the different local optimization
possibilities. This time we have applied uniquely the bit-string representation. The
results obtained are presented in Table 3.

As we can see in this table, the tendency shown in the previous experiments
is kept for this case, although the increase in complexity results in a much lower
performance than the case with 20 literals.
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Table 3. Results for a SAT problem with 50 literals and 218 clauses. These results have been
obtained using a bit-string representation

Results without local optimization
Porc. Dif. Eval.

EBCOANaiveBayes 0.18 1.62 15933.72
EBCOASelectiveNB 0.08 1.78 16633.78
EBCOAFSSJ 0.34 1.14 98698.86
EBCOABSEJ 0.14 1.90 17962.96
EBCOATAN 0.00 4.06 25691.80

Results applying local optimization with flip
Porc. Dif. Eval.

EBCOANaiveBayes 0.10 1.62 13620.32
EBCOASelectiveNB 0.20 1.36 14232.72
EBCOAFSSJ 0.46 0.94 90296.14
EBCOABSEJ 0.26 1.44 14749.36
EBCOATAN 0.00 3.76 20471.18

Results applying weight adaptation optimization
Porc. Dif. Eval.

EBCOANaiveBayes 0.50 1.06 69199.38
EBCOASelectiveNB 0.52 0.94 66921.32
EBCOAFSSJ 0.62 0.74 72924.72
EBCOABSEJ 0.46 1.14 71453.36
EBCOATAN 0.10 2.82 110144.16

5 Conclusions

This chapter presents a new evolutionary computation approach called EBCOA, and
its performance has been studied for a classical NP-hard problem, the satisfiability
one. We have analysed the behavior of EBCOAs for three different individual rep-
resentations together with the appropriated fitness function for each case. In our ex-
perimental results we demonstrate that the bit-string representation obtains the best
results than the ones based on the clause structures. This is due to the fact that the
bit-string representation reduces the search space since the variables of the individual
are binary.

We have also applied two different local optimization options based on the spe-
cific characteristics of the SAT problem. In this sense, in one of them we differentiate
the clauses which are more difficult to be satisfied and a weight is assigned to each
clause regarding this aspect. The results obtained in this local optimization method
are the most promising.

EBCOAs are a very new research paradigm that has still a lot of work to be done.
Possible future working trends that we are currently facing are the use of other more
complex Bayesian classifiers, the definition of other mechanisms to adapt the learn-
ing step in EBCOAs to take into account the a priori information of the optimization
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problem, and the use of other local optimization techniques designed specifically for
EBCOAs.
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