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A b str a c t . Modelling the relationship between directional variables is a 
nearly unexplored field. The bivariate wrapped Cauchy distribution has 
recently emerged as the first closed family of bivariate directional distri­
butions (marginals and conditionals belong to the same family). In this 
paper, we introduce a tree-structured Bayesian network suitable for mod­
elling directional data with bivariate wrapped Cauchy distributions. W e  
describe the structure learning algorithm used to learn the Bayesian net­
work. W e also report some simulation studies to illustrate the algorithms 
including a comparison with the Gaussian structure learning algorithm 
and an empirical experiment on real morphological data from juvenile 
rat somatosensory cortex cells.

1 Introduction

Directional distributions are widely used in many areas such as geography, geol­
ogy, geophysics, medicine, meteorology, oceanography or biology [1]. Traditional 
statistics methods are sometimes unequal to the task of dealing with directional 
data because data periodicity has to be taken into account. For example, whereas 
0 and 360 are different points in non-directional data, dealing with angles, 0° and 
360° are considered as the same point. Hence, the analysis of directional data is 
different and more challenging than non-directional data. There is sub-stantial 
literature on directional data [6,8, 18]. The von Mises distribution [20] is the best- 
known directional model and can be considered the directional analogue of the 
univariate normal distribution. Mardia [15, 16] introduced a bivariate von Mises 
distribution and its extension to the multivariate case [17]. He showed that the 
conditional distributions are also von Mises distributions. However, the marginal 
distributions are either unimodal or bimodal, and only the unimodal case could be 
approximated to a von Mises distribution when the concentra-tion parameter was 
large. The wrapped Cauchy distribution is another popular symmetric 
distribution on the circle introduced by Levy [14]. It was studied
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by Wintner [25]. Further, it was shown that it could be obtained by mapping 
Cauchy distributions [19] onto the circle. Recently Kato and Pewsey [10] pro­
posed a five-parameter bivariate wrapped Cauchy distribution for toroidal data, 
whose marginals and conditionals follow univariate wrapped Cauchy distribu­
tions. Their family is therefore said to be closed.

Probabilistic graphical models are widely used for non-directional data. These 
models, as a marriage between graph theory and probability theory, have some 
interesting properties that make them a useful and interesting tool for data 
modelling. For example they are easy interpretable, handle missing data nicely, 
treat inference and learning together or focus on conditional independence and 
computational issues. These models have been successfully applied in several 
different areas such as medicine, education or neuroscience [12], but, no direc­
tional probabilistic graphical models have yet been developed. One exception 
is Boomsma et al. [3], who modelled a specific part of the geometry of pro­
teins called Ca  using a hidden Markov model that outputs amino acid symbols, 
secondary structure symbols and unit vectors. They used the directional five- 
parameter Fisher-Bingham distribution [11] on the unit sphere to represent the 
unit vectors. Also Razavian et al. [22] developed an undirected von Mises [20] 
graphical model using L\ regularization for structure learning and Gibbs sam­
pling for performing inference. They also compared their model with a Gaussian 
graphical model, demonstrating that the von Mises graphical model achieves 
higher accuracy than the Gaussian graphical model.

Our aim is to find a tree-structured model that reveals the relationship 
between several directional variables. A family distribution that is closed under 
conditionality and marginalization (marginals and conditionals belong to the 
same family) is necessary to make the modelling phase easier and simplify 
the subsequent inference process. In this paper we introduce a tree-structured 
Bayesian network for a five-parameter bivariate wrapped Cauchy, learning the 
structure from data using a directional mutual information criteria. The remain­
der of this paper is organized as follows. Section 2 reviews the univariate and 
bivariate wrapped Cauchy distributions. In Sect. 3 we explain the Bayesian net­
work structure learning from data. Section 4 presents the simulation process for 
this model. Section 5 addresses a real data example using the proposed tree- 
structured Bayesian network. The paper ends in Sect. 6 with some concluding 
remarks and some proposals for future work.

2 Univariate and Bivariate Wrapped Cauchy

One of the best-known directional distributions is the wrapped Cauchy distri­
bution [14]. A random variable O that follows a wrapped Cauchy distribution 
wC(p,e)  has a density function

f  (9)
1 1 -  e2

2n 1 +  e2 — 2e cos(9 — p) ’ 9 ,p 6 (—n, n], e £ [0, 1) (1)

where p is the mean angle and e the concentration parameter. Equation (1) is 
unimodal and symmetric about p, unless e =  0 which yields the directional



uniform distribution. Data simulation from a w C (m , £ ) is already implemented 
in the “Circular” R package [21].

Kato and Pewsey [10] proposed a five-parameter bivariate wrapped Cauchy 
distribution, which is unimodal, pointwise symmetric around the mean and has 
a closed-form expression for the mode. A  dependence parameter controls the cor­
relation from total independence to perfect correlation. This distribution mate­
rializes as an appealing submodel of a six-parameter distribution obtained by 
applying a restricted version of the Mobius circle transformation to a random 
vector from a bivariate directional distribution previously proposed by Kato [9].

A random vector (0 1 ,0 2) is said to follow a bivariate wrapped Cauchy dis­
tribution b w C (m 1,M2 , £ 1, £ 2 ,p) if its density function is given by

f  (01, 02) =  c [co -  C1 cos(# i -  M1) -  C2 cos(#2 -  M2 ) -  C3 cos(0 1 -  ^ i )cos(#2 -  M2 ) 
- C4 sin(0 i  -  Ml ) sin(02 -  M2 )]- 1, 0 1, 02 € ( -n ,  n ]

(2)
where
c =  (1 -  P2 )(1 -  £1 )(1 -  £2 ) / 4n 2 , co =  (1 +  p2 )(1 +  e\)(1 +  £ 2 ) -  8|p £  £2 , 

2(1 +  p2 )e 1(1 +  e2 ) -  4|p |(1 +  £ 1)£2 , c2 =  2(1 +  p2 )(1 +  £ 1 )£ 2 -  4H £ 1 (1 +  £ 2 ),
- 4(1 +  p )£1£2 +  2|p|(1 +  £1) (1 +  £2), c4 =  2p(1 -  £1)(1 -  £2^ M1,M2 €

c1 

c3
( -n ,n ] ,£ 1,£2 € [0,1),p € (-1 ,1 ), and with £1 and £2 regulating the concentra­
tion of the marginal distributions and p being the correlation coefficient between 
0 1 and 0 2 . When £1 ,£2 > 0 Eq. (2) is unimodal and pointwise symmetric about 
(M1 , M2 ) .

As explained by McCullagh [19], computations are simplified in many 
wrapped Cauchy models by representing them in complex form. Let Z 
where 0  is distributed as in Eq. (1), then the density function of Z is

AG

f  (z; A) . 1 11 -|A|2|
2n lz -  A|2 ’ z € ft, A € C \ ft (3)

where A =  £e®M, C =  C U {c » }  and ft =  {z  € C : lzl =  1}. We use the notation 
Z ~  C*(A) to denote that Z  is distributed as in Eq. (3) .

Similarly to Eq. (3) , by representing random variables in complex form, let 
(Z 1,Z 2) =  (eiGl ,e iG2), where ( 0 1, 0 2) is distributed as in Eq. (2), then the 
density of (Z 1, Z 2) is:

f  (Z1,Z2)
j 4 n 2) -\ 1  -  p2 )̂ 1 -  £ 1 )(1 -  £ j)  ,

|a u ( zTm )qZ2W2 +  a12(z1ni )q +  a 2 1Z2 M2 +  an|2 ’
Z1,Z2 € ft (4)

where q is the sign of p , nk =  el^k with k € { 1, 2} , zn is the complex conjugate 
of zn, a 11 =  £ 1£2 -  |p|, a 12 =  |p|£2 -  £ 1, an  =  |p|£ 1 -  £2 , a 22 =  1 -  |p|£1£2 , 
£ 1, £2 €  [0, 1), P € ( - 1, 1) and n1,n2 € ft.

Following the complex notation, we denote (Z 1 , Z 2 ) ~  bC* (n1 ,n2,£1,£2 ,p) 
if (Z 1 , Z 2 ) is distributed as in Eq. (4) . This complex representation of a five- 
parameter bivariate wrapped Cauchy verifies the following result.



T h e o r e m  1 . (Kato and Pewsey [10]) A random vector (Z i , Z 2) with density 
given by Eq. (4) has marginals Z\ ~  C*(e\ni) and Z 2 ~  C*(£2P2 ), and condition­
als Z 1IZ 2 =  ^2 ~  C * (-n i [A o (^2^2) ]̂) and Z 2 IZ 1 =  z1 ~  C * ( -p 2 [AT o {zrql)q]),
where A is defined in Eq. (5) , A T is the transpose of A, and

a n z +  a 12 A o z =  .
a2iz +  a22

A : a 11

a 21

£i£2 -  Ip I 
IPI £ 1 -  £2

ai2 =  Ip I£2 — £1 
a22 =  1 — p £ 1£2 (5)

To the best of our knowledge, this is the first bivariate directional distribution 
for which marginal and conditional distributions are well-known, mathematically 
tractable and from the same family. Thus, we consider the wrapped Cauchy 
distribution to be suitable for developing our Bayesian network model, as we are 
using a tree structure that needs only bivariate and conditional densities.

2.1 Parameter Estimation

Working with the density given by Eq. (2), there is no closed-form expression for 
the maximum likelihood estimates, and numerical optimization methods must be 
used to find them. Although maximum likelihood estimation is the most common 
parameter estimation method, Kato and Pewsey [10] showed that method of 
moments is more efficient for our purpose. We use the method of moments, 
where all formulas for the estimates can be expressed in a closed form, as it is 
easier to implement and is computationally very fast.

Let {(01j , 02j ) , j  =  1,..., n, }  be a random sample from a bwC(pT, p2, £T,£2,p) 
as stated in Eq. (2) . Then the method of moments estimators [4] of p 1, p2, £1,£2 
and p from [10] are

P1 =  Argument(R.1 ) with R 1 
fi2 =  Argument(R.2 ) with R2 
£1 =  I.R1I, £2 =  I-R2 I,

p 1
n is n

with Prj

1 e i { * j - $2j ) | - | £ n

2 arctan tan1-Er

1 n
n j -
1  n
n j -

e ,
e i02j

t e} ( A l i  +  $2j ) |

Orj Vr
2 ’ 1,2

(6)

3 Wrapped Cauchy Tree-Structured Bayesian Network: 
Structure Learning

Assuming that the topology of the graph that we want to represent is unknown 
and not given, we must learn the structure of the model from our random sample. 
The so-called Bayesian networks structure learning has been studied at length 
for linear data. However, it is far from straightforward to adapt the structure 
learning algorithms to the directional domain. There are two different kinds of 
algorithms for structure learning in Bayesian networks. One kind of algorithm



learns a network structure by capturing the conditional independences between 
the different triplets of variables used for the model. The best-known method 
for this kind of structure learning is the PC algorithm [23]. The other kind of 
algorithm, which we’ve chose for our structure learning problem, is based on 
score and search. It tackles the problem of structure learning as an optimization 
problem.

We use a maximum weight spanning tree structure learning algorithm. This 
is a variant of the algorithm introduced by Chow and Liu [5]. Instead of the 
mutual information measure, traditionally used for running this algorithm, for 
the first time we introduce circular mutual information (CMI) for directional 
variables.

Let Oi, &j be wrapped Cauchy random variables, the CMI between a pair of 
variables is

C M I(O i,O j )
•2n

0

2n

f  (0i,0j )log(
0

f  M ) 
f  O ) f  (Oj)

)d6j dOi (7)

where their marginal density functions f  (Oi), f (6 j ) and the joint density function 
f  (Ô Oj ) have been previously estimated.

Since the resulting integral is intractable, it has to be approximated using 
numerical methods. We use the Cubature method [2,24]. Cubature is an adaptive 
multidimensional integration algorithm over hypercubes. It is the best method 
in terms of approximation error and computational cost. This method is also 
best suited for dimensions lower than seven. This applies to the tree structure, 
whose maximum dimension is two.

Like the traditional mutual information measure for linear variables, the CMI 
represents the weight of the edge that links Oi and Oj . To determine the parent 
of each node (only one parent per node), we select the root node and follow the 
structure learned by our algorithm (Algorithm 1) (i.e., in Fig. 1a, the selected 
root node is O i , which is the parent of O2 and O3 , O2 is the parent of O4 and 
O3 is the parent of O5 and O6). Given a tree structure with N  nodes, there are 
N  possible resulting trees depending on the selected root node (see Fig. 1a).

Algorithm 1. Adaptation of Chow Liu algorithm
1: Given G i , G 2, ■■■,Gn  directional random variables, compute the joint distribution 

f (Oi ,0 j ) for all variable pairs.
2: Using the pairwise distributions, compute all N ( N  — 1 ) /2  edge weights and order 

them by CM I value.
3: Assign the largest two edges to the tree to be represented.
4: Examine the next-largest edge, and add it to the tree unless it forms a loop, in 

which case discard it and examine the next largest edge.
5: Repeat step 4 until N  — 1 edges have been selected (so the spanning tree is finished).

We use this algorithm for several reasons: (a) It uses only second-order sta­
tistics, which are easily and reliably measured from data, (b) we avoid the use



F ig . 1. (a) Wrapped Cauchy tree-structured network representation with N  =  6. Each 
node S i (i =  1 , 6 )  represents a wC random variable. The root node selected is S \. 
(b) Wrapped Cauchy non-directed tree-structured network learned by Algorithm 1 from 
the structure of (a) created by simulation.

of conditional independence tests, which are often computationally expensive 
and only available by simulation [10] from wrapped Cauchy and (c) is a way of 
ensuring a tree-structure.

4 Simulation

In order to demonstrate the accuracy of the learning algorithm, we report the 
results of several simulation studies and the comparison with the Gaussian struc­
ture learning algorithm [7]. Note that we present only some selected results from 
a broader simulation study. For each simulation, we generated a tree-structured 
Bayesian network (i.e., the six-node network in Fig. 1a), assigning random para­
meters to the nodes (0 < p < 2n, 0 < £ <  1) and enforcing some dependence 
between parent and child nodes (0.5 < \p\ <  1). From each node, we simulated 
n wrapped Cauchy samples using the “Circular” R package from [21]. Once we 
had completed the data simulation, we tested the algorithm by constructing the 
network from the created dataset (i.e., Fig. 1b) which we compared with the orig­
inal network. In order to measure the accuracy of the method, we counted the 
number of edges that are misplaced in the created network with respect to the 
arcs of the original graph, therefore it wouldn’t be necessary to direct the edges 
in the simulated network for measure accuracy. We simulated several networks 
changing the number of nodes from 3,6,10 (Fig. 3) , 20 and 30 and simulating

F ig . 2. Line chart that represents the increment of the computational time of our 
algorithm with the increment of the number of nodes in the network.



F ig . 3. Simulation output: wrapped Cauchy tree-structured network comparison in a 
10-node network. (a) The original network. (b) Non-directed network, learned from data 
simulated from (a) using our algorithm. Accuracy is 9 /9  (100% ). (c) Non-directed net­
work, learned from the same dataset using the Gaussian structure learning algorithm. 
Accuracy is 6 /9  (6 7% ).

100 observations per node for the dataset. The number of simulations differs for 
each network type due to the high computational cost of the biggest networks. 
For this reason, the maximum number of nodes used for simulation is 30. We 
have scaled our algorithm (Fig. 2) in order to show the computation complexity, 
as our algorithm has to perform N  * (N — 1)/2 iterations.

The results (Table 1) show that of our method is highly accurate and the 
constructed graph is the same as the initial network in most cases, and outper­
forms the Gaussian method in terms of structure learning. Any cases where one 
or more than one edge is misplaced could probably be due to the randomization 
of the given parameters.

T able 1. Simulation results. Accuracy values are given by the mean of the non­
misplaced edges in the total number of simulations.

Wrapped Cauchy Gaussian

Number of nodes Simulations Number of edges Accuracy Accuracy

3 1794 2 1.87 1.46

6 1764 5 4.37 2.61

10 1666 9 7.65 4.09

20 674 19 15.76 8.61

30 200 29 24.09 11.71

5 Real Data Example

Since our main application interest is in neuroscience, we applied our proposal 
to a real-world dataset of 3027 combinations of dendritic bifurcation angles com­
posed by 288 3D pyramidal neurons from six different layers of the 14-day-old



F ig . 4 . (a) Angles of different branch orders measured between sibling segments in a 
dendritic arbor showing orders from 1 to 6. (b) Tree-structured Bayesian network for 
dendritic bifurcation angles from orders 1-6 . Root node is 0 i .

(P14) rat hind limb somatosensory (S1HL) neocortex recently published in [13]. 
Dendritic bifurcation angles are an important part of the geometry of pyramidal 
cell basal arbors. The comprehension and capability of modelling these angles 
is crucial for advances in neuroscience in order to replicate brain structure and 
functioning. Our purpose is to model the conditional relationship between the 
bifurcation angles of the whole neuron dataset in a tree-structured Bayesian 
network for wrapped Cauchy distributions. Each angle is generated by two sib­
ling segments originating from the bifurcation of basal dendritic trees. Using the 
same notation as in [13], we denote the first bifurcation that takes place in a 
dendritic arbor path that starts from the soma and ends at the angle as O1, the 
second bifurcation would be O2, etc. (Fig. 4a). Bifurcation angles from orders 
higher than six are not included in the model because they are relatively few in 
number.

We fitted a wrapped Cauchy distribution for every set of angles of the 
same bifurcation order (Table 2) . The resulting tree-structured Bayesian net­
work learned from the dataset is the six-node directed graph shown in Fig. 4b. 
Looking at Fig. 4b, it is evident that the S 6 node has the highest CMI values 
for every pair of nodes. We have selected G\ as the root node in order to finish 
the structure of our network and transform the undirected graph into a directed 
graph.

T able  2. Characteristics of the 6 different branch orders shown in Fig. 4a . Circular 
mean ( i )  is measure in radians.

Bifurcation order Variable Number of angles 1  (radians) £

O1 0 i 1607 1.02 0.90

O2 02 2072 0.9 0.91

O3 0 3 1773 0.82 0.92

O4 04 998 0.78 0.92

O5 05 382 0.77 0.92

O6 06 106 0.81 0.92



6 Conclusions and Future Work

The main objective of this paper is to introduce the first Bayesian network that 
deals with directional wrapped Cauchy variables. We introduced the methods for 
learning and representing the model. The proposed model applied to real and 
simulated data is capable of representing the relationship between directional 
data nodes that fit wrapped Cauchy distributions.

In future work we intend to explore different distributions in order to extend 
this model to other directional families. This task is tough because the known 
directional family distributions are not closed. Another interesting possibility is 
to develop a supervised classification algorithm using wrapped Cauchy variables. 
An analogue of the tree-augmented naive Bayes would be rather straightforward, 
since we already developed the inference process.

This preliminary model is confined to tree structures. We hope to extend this 
model to a more general Bayesian network case, capable of accounting for more 
than one parent per node.
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