
Hierarchical Junction Trees:
Conditional Independence Preservation and
Forecasting in Dynamic Bayesian Networks
with Heterogeneous Evolution

Roberto 0. Puch 1 , Jim Q. Smith2 , and Concha Bielza3

1 School of Crystallography, Birkbeck College, University of London, London
WClE 7HX, UK

2 Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
3 Artificial Intelligence Department, Technical University of Madrid, Madrid

28660, Spain

Abstract. Propagation in decomposable Bayesian networks with junction trees
is inferentially efficient: no conditional independence in the Bayesian network is
ignored in the junction tree construction and in any propagation task. For non­
decomposable Bayesian networks, the junction tree construction uses moralisation
and triangulation that ignore some of the conditional independence. The junction
tree, therefore, trades inferential efficiency with generality: it can be used to com­
pute the distribution of any set of target nodes given any set of conditioning nodes.

In this chapter inferential efficiency for non-decomposable Bayesian networks is
addressed. We present the hierarchical junction tree, a framework that transpar­
ently represents the conditional independence in the Bayesian network. We discuss
propagation tasks where conditional independence is not ignored in the construction
of the hierarchical junction tree and in the propagation tasks. We also discuss their
use for efficient exact forecasting in dynamic Bayesian network with heterogeneous
evolution.

1 Introduction

Fast probability propagation in a decomposable Bayesian network (BN) is
often performed through a secondary structure called the junction tree (JT)
[6,3,2]. Conditional independence statements encoded in the BN are used
for constructing this structure. A JT provides a general facility for com­
puting probabilities of any set of variables of interest, subsequently called
target variables, given the values of any other set of observed variables, sub­
sequently called conditioning variables. However for non-decomposable BNs
the JT framework can only provide this facility at the cost of ignoring some
of the conditional independence encoded in that BN. Conditional indepen­
dence statements are ignored both in the moralisation step, where parents of
the same child are joined with an undirected edge and then edge direction

J. A. Gámez et al. (eds.), Advances in Bayesian Networks
© Springer-Verlag Berlin Heidelberg 2004

58 Puch et al.

is dropped, and also in the triangulation step, where undirected edges are
added. The addition of these undirected edges, the so-called fill-in's, has the
tendency to create large cliques in the JT. The JT propagation algorithm
can then become computationally inefficient. This inefficiency can become
critical particularly in dynamic settings.

To alleviate these problems, specifically in a non-dynamic setting, Madsen
& Jensen [13,14] proposed the Lazy propagation (LP) method. This method
records extra conditional independence which had been coded in the BN but
not retained in the JT through the potentials of each clique. They preserve
each edge direction by recording the potentials as conditional probability
distributions, and clique potentials are kept factorised. The LP method uses
therefore a hybrid representation, both graphical and algebraic, to store con­
ditional independence statements required for efficient propagation.

It is now timely to stand back and view propagation in a new light. In this
article we present a formal framework, the hierarchical junction tree (HJT),
for probability propagation that transparently and consistently encodes the
edge direction and potential factorisation in the BN. The HJT consistency
of graph and potentials representation allows us to prove separation theo­
rems which implies that the HJT is constructed without loss of conditional
independence.

For propagation tasks where the conditioning variables are ancestors of
the target variables and the ancestral graph of the conditioning variables is
decomposable, all conditional independence statements encoded in the BN
are transferred to the HJT. Examples of these propagation tasks arise in
dynamic models where the primary interest is in forecasting, and so the
level of generality that the JT provides is often not required. This setting
often occur in the development of decision support systems for emergency
planning under uncertainty [16,17]. In decision support systems in the case
of a nuclear accident, for example, counter-measures cannot affect the past
contamination levels but only future received radiation doses. In addition
the information that is usually received is on contamination levels in the
past. Although forecasting is a less complex computational task, in this type
of problems forecasting is required on-line and as soon as possible so that
counter-measures are implemented. In contrast, smoothing is done off-line.

In most dynamic settings, it is natural to construct the BN so that vari­
ables appearing earlier in the BN tend to be learned before the variables
appearing later in the network. In this setting we also have new descendant
variables added with time, and we forecast the future in the light of observ­
ing the past. Thus it is typical for the target variables to be descendants of
the conditioning variables. Furthermore the use of JT algorithms in settings
where new descendant nodes are continuously added to the net has some
inherent problems. First, the standard JT algorithms, that is the JT with
the Hugin architecture [1], provide no facility to move variables out of the
system as they are learned because this is not required for static networks.

Hierarchical junction trees 59

So, the number of variables in the system and cliques in the tree steadily
increase. Lazy propagation and Nested JTs inherit this feature because they
operate on the standard JT. Second, as new variables arrive with time, on­
line triangulation is required. This tends to progressively increase the average
clique size and further undermines efficiency. Although LP is not highly de­
pendant on the triangulation, on-line triangulation is still required because
LP operates on a standard JT.

In this article we also propose the HJT as a efficient framework for ex­
act forecasting in dynamic BNs with heterogeneous evolution. These issues
were first addressed in articles for time series with homogeneous time-slices
by Kjrerulff [10] and Kanazawa et al. [7]. However, in the methodology de­
scribed below we do not assume time homogeneity of structure. The HJT
is constructed from the BN without loss of conditional independence when
the ancestral graph of the conditioning variables is decomposable [15]. Only
this ancestral graph needs to be triangulated when it is not decomposable.
In contrast, the whole graph needs to be triangulated in the JT framework.
In addition the HJT decreases its size as variables are learned to offset any
increase in the descendants, see Section 5.4.

Having developed this framework we can start to formally address and
compare issues of efficiency of competing propagation algorithms. Perhaps
more importantly we can tailor these algorithms to the predictive needs of
the system, often necessary in propagation in dynamic BNs.

In Section 2 BNs are reviewed and the new concept of ancestrality parti­
tion is introduced. We review JTs in Section 3 while in Section 4 the using JTs
for forecasting in dynamics BNs with heterogeneous evolution is presented.
We introduce HJTs in Section 5 and their construction is illustrated through
an example. Also in this section we introduced the h-separation criterion for
HJTs and a method for propagating probabilities in HJTs. In the last section
conclusions are given and future research challenges are discussed.

2 Bayesian Networks

We recall that a Bayesian network is a pair (G, P) consisting of a directed
acyclic graph G = (V, E) and a probability distribution P. Set Vis the index
of a set of variables { Xv }vEV. Probability distribution P facto rises according
toG, that is, P(xv) = f1vEV Pr(Xv = xv!XPa(v) = XPa(v)) where Pa(v) is
the set of parents of node v in the node set V of G.

In the transition from the BN to the HJT, we divide the BN into layers.
This division relies on the following concept. A collider in a BN is a node
having at least two parents which are not joined by an edge. The layers of the
BN is then based on the configuration of the colliders. A decomposable BN
can be defined as a BN that has no colliders. Some of the nodes of the HJT will
be families of the nodes of a BN, that is, sets of the form Fa(v) = { v }UPa(v).

60 Puch et al.

In fact they will be maximal families where family Fa(v) is maximal if it is
not contained in another family.

The first step in the transition from the BN to the HJT is the identification
of the ancestrality partition of the BN. In the following we will introduce and
discuss this new concept.

Let B = (G, P) be a BN where G = (V, E). The ancestmlity partition of
B is the partition of V,

{I(1), H(1),I(2), ... ,I(m- 1), H(m- 1),I(m)}.
The elements of this partition are defined as,
I (1) = { v : v is not a collider and has no collider ancestors}
H (1) = { v : v is a collider and has no collider ancestors},
I(i) ={v: vis not a collider, has at least one collider ancestor in H(i -1)

and has no collider ancestors in V \ [H(1), ... , H(i- 1)]}.
H (i) = { v : v is a collider, has at least one collider ancestor in H (i - 1) and

has no collider ancestors in V \ [H(l), ... , H(i- 1))}.
I(i) is defined if H(i- 1) exists. H(i) is defined if H(i- 1) exists and if it is
not empty.

The ancestrality partition organises the BN into layers determined by the
pattern of colliders. The first layer consists of I (1), the second layer consists of
H(1) U I(2). In general, the i-th layer consists of H(i -1) U I(i), i = 2, ... , m.
These layers help to identify decomposable sections of the original BN from
which the JTs of the HJT are constructed, see Section 5.

We can construct the ancestrality partition of a BN given a total order
consistent with the partial order induced by the BN, by organising the nodes
in layers. Let (v(1), v(2), ... , v(n)) be a total order and L(v(i)) denote the
layer where v(i) is. Starting with v(1) the sequential rule is:
1) If Pa(v(i)) = 0, L(v(i)) = 1
2) If Pa(v(i)) f= 0 and v(i) is not a collider,

L(v(i)) = max{L(u): u E Pa(v(i))}
3) If Pa(v(i)) -1- 0 and v(i) is a collider,

L(v(i)) = max{L(u): u E Pa(v(i))} + 1.
Then the elements of I(1) are those nodes v with L(v) = 1. The elements
of H(i- 1) are those colliders v with L(v) = i and the elements of I(i) are
those non-colliders v with L(v) = i.

The ancestrality partition of the BN given in Figure 1 is,
I(1) = {a,b,c,d,e,J,g,h,j,l}, H(1) = {i}, I(2) = {k}, H(2) = {m}, I(3) =
0.

Note that the ancestrality partition is invariant under Markov equivalent
classes. Two BNs in the same equivalent class have the same collider structure
and therefore the same ancestrality partition.

In the dynamic setting introduced in Section 4, new descendants are added
sequentially to a BN as time passes. This sequential addition gives a total
order of the nodes that is consistent with the partial order induced by the

Hierarchical junction trees 61

b e k m

a d g

Fig. 1. BN B2 for the ancestrality partition example

BN, and therefore this order can be used for constructing the ancestrality
partition.

3 Junction Trees

In this section we review standard JTs, that is, JTs with the HUGIN archi­
tecture [1]. A junction tree for a vector for a potential ¢v with universe V,
is a pair T = (T, ¢v). T is a tree of subsets of V such that the so-called JT
property holds, that is, the intersection of two sets cl and c2 is contained in
all the sets in the unique path between C1 and C2 . The intersection C1 n C2

is called the separator of edge { C1 , C2 }. ¢v is a potential on X v, where a
potential ¢u is a function whose domain is the state space of the variable
Xu and whose counter domain is the non-negative real numbers. Potential
¢v factorises according to T such that,

¢v _ TicEC ¢c
- I1sES ¢s '

where C is the set of nodes of T and S the set of separators. A directed JT
is a JT with directed edges.

We can construct a JT T = (T, ¢v) from a given decomposable BN
B = (G, P). The nodes of the tree Tare cliques of the undirected version of
G. The potentials ¢c are formed from the product of conditional probabilities
Pr(Xv = xviXPa(v) = XPa(v)), seen as a function of (xv, XPa(v)), where { v }U
Pa(v) ~ C. The potentials ¢s for the separators are initialised to 1. If the
BN is not decomposable but its moral graph is chordal we can still construct
a JT from the moral graph, but some conditional independence is lost in the
moralisation step. If the BN is not decomposable and its moral graph is not
chordal, then its moral graph is made chordal through a triangulation step
before we construct the JT and this step can be computationally expensive.
For a detailed study on triangulation see [8,9] or [12] . Triangulating the moral
graph requires us to ignore some of the conditional independence encoded in
the BN because we need to add extra edges, the so-called fill-in 's. In this
case a product of conditional distributions may be assigned to one clique,
and therefore losing part of the factorisation encoded in the BN.

62 Puch et al.

Propagation in JTs within the Hugin architecture is based on the opera­
tion of a sum-flow from a node to one of its neighbouring nodes. Let Ci and
cj be neighbours with separator s = ci n cj' and let ¢c;' ¢cj and ¢ s be
their corresponding current potentials. A sum-flow is performed as follows,
1) compute the potential ¢'s = Lc; \S cf;c;;

2) assign ¢'cj = ¢cj * ~;
3) assign ¢'s to S.

Propagation in the Hugin architecture is done in two steps. Let us suppose
that we learn Xa = x~, or for short, that we learned Xa. First, we choose
a clique that contains a, then we multiply the potential of this clique by
the finding fa,x~ for x~, where a finding for x~ is a potential with domain
Sp(Xa) that maps x~ to 1 and 0 for other elements of Sp(Xa)· Second, we
schedule sum-flows by choosing a clique as a root and then scheduling sum­
flows first from the leaves of the tree to the root, the so-called Collect Evidence
schedule, and then scheduling sum-flows from the root to the leaves, the so­
called Distribute Evidence schedule. After these two schedules have been
performed, the JT is sum-consistent, that is, the potentials on the nodes and
the separators hold the marginal potentials of the potential P of the JT. For
a description of the Hugin architecture see [5,2], and for a more technical
description see [3].

4 Forecasting in the Dynamic Setting Using Junction
Trees

In this section we describe how JTs can be used for forecasting in a dynamic
setting. We first address how a JT can be constructed sequentially and then
demonstrate how it can be used for forecasting. The sequential construction
is demonstrated fort= 1 and the transition from t = 1 tot= 2. However, the
second transition is trivially identical to constructing a JT at time t + 1 from
a JT valid at time t. Figure 2 displays the BNs B 1 for timet = 1 and B 2 for
time 2. BN B 1 is surrounded by the inner dashed lines and B 2 is surrounded
by the outer dashed lines. Descendant nodes k, l and m were sequentially
added into B 1 to obtain B2.

The construction of the JT T 1 from BN B 1 is done through a standard
procedure: the BN is moralised, the moral graph is then triangulated and
finally a tree of cliques is constructed from the triangulated graph. In the
construction of JT T 1 , displayed in Figure 3, the fill-in's are: {a,f}, {a,g},
{b, f} and {e, !}.

At time t = 2, the nodes k, l and m are added to B 2 . If we wish to
compute the marginals for Xm on B 2 , we need to construct a JT for B 2 .

One choice would be to start over again and construct a JT for B 2 . Another
choice would be to use the fill-in's in the triangulation of the moral graph of
B 1 as a starting point for the triangulation of the moral graph of B 2. Notice
that in both choices on-line triangulation is required. The second choice is

Hierarchical junction trees 63

---- --------- ----- ---, ,,....------ ------:-,
I I f = } b e l I k m I

I I
I I
I I
I I
I I

I I
I I

1 I d I
I a g 1 t=2 1

~~~~~~~~~~~~~~-------~ 
Fig. 2. The BN B1 at time t = 1 is surrounded by the inner dashed box; the BN 
B2 at time t = 2 is surrounded by the outer dashed box 

Fig. 3. The JT T1 constructed from BN B1 in Figure 2 

more computationally efficient because part of the moral graph of B2 has 
been already triangulated with the triangulation of the moral graph of B 1 . 

The JT T 2 , constructed in this fashion, is displayed in Figure 4. The extra 
fill-in's are {b,g}, {e,g}, {J,i}, {g,i}, {i,j} and {i,l}. 

Fig. 4. The JT T2 constructed from BN B 2 in Figure 2 

In addition to the triangulation process being computationally expensive, 
the sequential on-line triangulation results in a sequential increment of the 
node/clique sizes. In T2, for example, node {a, b,!} of T 1 is of size 3 and it is 
included in node {a, b, J, g} of T 2 which is of size 4. Note as well that nodes 
{ b, e,!} and { e, J, g} in T 1 are joined together into node {a, e,J, g} in T 2. 

Once we have constructed a JT, we can use it for forecasting. The JT 
presents an inefficiency in that the fill-in's added in the triangulation process 



64 Puch et al. 

may be superfluous once we learn a variable. In the JT T 2, for example, if we 
learn that Xa = x~ and we remove a from B 2 , then the fill-in's added because 
of the cycle (a, c, j, h, e, b) in the moral graph of Bz are no longer needed. A 
solution would be to construct a JT for the reduced BN, but this process is 
computationally expensive. We will see in Section 5.4, that the HJT does not 
have this problem because no fill-in's are added at all. 

5 Hierarchical Junction Trees 

5.1 Definition 

A hierarchical junction tree (HJT) 7-i for a potential ¢v with universe V is 
a directed rooted tree 7-i = (T, F) where the edge direction is towards the 
root. The root is a directed JT for ¢v. The node set is T = {T1 , T2 , ... , Tp} 
where each node Ti, 1 :::; i :::; p, is a directed JT. The ordered set (Ti, TJ) 
is in the edge set F if Ti is a directed JT for ¢c where C is a node in the 
directed JT T j. The node C is then called a covering node in T j and a cover 
of Ti. 

The covering nodes of a JT T' in the HJT act as dummy nodes. In fact, 
the potential associated with a covering node has a JT representation given 
by the parent TofT' in the HJT. The children of covering nodes are called 
upper doors and the separator of a covering node with an upper door is called 
an elevator. We say that a HJT is sum-consistent if all of its JTs are sum­
consistent. 

It is important to note that [11] first introduced the idea of JTs with nodes 
having JTs representations. He proposed the Nested JTs method to alleviate 
the loss of conditional independence in the construction process of the stan­
dard JT, where by standard we mean the JT with the Hugin architecture 
[1] without the Nested JTs and Lazy propagation methods. The motivation 
of the HJT is different as it is intended as a propagation framework with 
preservation and transparent representation of conditional independence. 

5.2 Construction 

In this section we describe the construction of a HJT from a BN for both 
the static and dynamic cases. In the first part the construction of the static 
case is described, which is also a description of the construction of a HJT for 
the first time step in the dynamic case. In the second part the we show the 
HJT update given that new nodes have entered the systems. Although the 
description is from time step 1 to time step 2, the update from time t to time 
t + 1 is analogous. This construction is illustrated with the BNs B 1 and B 2 

in Figure2. 



Hierarchical junction trees 65 

Construction of rt1 

In this part we present the general steps for constructing a HJT 1i for a BN 
B. \Ve also illustrate this steps to construct HJT 1i1 from BN B 1 . 

Step 1: Ancestrality partition identification. In general the ancestral­
ity partition is of the form 

{l(l),ll(l),/(2), ... ,I(~- l),ll(~- 1),1(~)}. 

We identify this partition using the ancestrality-partition algorithm intro­
duced in Section 2. 

In our example, a total order consistent with the partial order induced by 
BN B1 is {a,b,c,d,e,j,g,h,j,i}. The ancestrality partition for B1 is then: 
lt(l) = {a,b,c,d,e,J,g,h,j}, ll1(l) = {i}, h(2) = 0. 

Step 2: The construction of the directed JT for Layer 1. This JT is 
constructed from the BN BI(I) induced in the original BN B by the set I(l) 
in the ancestrality partition. The nodes in this JT are the maximal families 
in BI(l)· The edges are constructed as follows. A maximal family Fa(v1 ) is 
a parent of maximal family Fa(v2) if w1 is a parent of w2 in Br(I ) where 
Fa(wl) ~ Fa(v1) and Fa(w2) ~ Fa(v2), but in most cases v1 is a parent 
of v2. Note that if Br(l) is not a connected BN, a junction forest will be 
constructed using this algorithm. Each conditional probability distribution 
P(Xv!XPa(v)) is assigned to the node that contains Fa(v), and separator 
potentials are initialised to 1. 

Let us denote by T~ the JT constructed from the connected BN Bh(l) 

displayed in Figure 5. JT T~ is shown in Figure 6. For example, set {a, d, c} 
is maximal family Fa(c) and so, it is a node ofT~ . Set Fa(g) = {d, c,g} is 
also a node of TL but Fa( d) = {a, d} is not a node because it is a subset 
of Fa( c). The edge set ofT~ is constructed from the edge set of Bh ( l ) · For 
example, Fa(c) is a parent of Fa(g). 

b e 

a d g 

Fig. 5. BN B11(l) induced by the set h(l) on the BN B1 in Figure 2 



66 Puch et al. 

Fig. 6. The directed JT Tt constructed from Brl(l) 

Step 3: Construction of the JTs for Layer 2. In general, the JTs in 
Layer n, n > 2 are constructed in three stages. In the first stage JTs are 
constructed for the BN induced by Pa(H(n- 1) U H(n- 1) U I(n). In the 
second stage covering nodes are identified as the universes of the JTs in Layer 
n - 1, and in the third stage covering nodes are connected with directed edges 
to the JTs constructed in stage 1. 

In our example, Pa(H1 (1)UH1 (1)Uh (2) = { e, h, i} and so, there is one JT 
consisting of a single node. There is also one covering, {a, b, c, d, e,J, g, h, j} 
which is the universe of the only JT T~ in Layer 1. We joined these two nodes 
with a directed edge from the covering node to the upper door because their 
intersection is not empty. we also assign potential P(XiiXe,h) to upper door 
{ e, h, i} and initialise the potential of its separator { e, h} to 1. The resulting 
JT is displayed in Figure 7. Notice that covering node {a,b,c,d,e,J,g,h,j} 
is not given a potential because its potential is given by JT T~. 

a,b,c,d,e,J,g,h,j 

Fig. 7. The directed JT Ti in Layer 2 

Step 4: Construction of 1-£1 edge set. We recall that the nodes of a 
HJT are JTs. In Steps 2 and 3 the nodes of the HJT were constructed in 
this step we construct the edge set. The general rule is to join JT T with a 
directed edge toward T' if T' has a node which is the covering node ofT. In 
our example 1{1 has two nodes T~ and T~, and the latter JT contains the 
covering node ofT~. The edge set of 1-l1 consists of edge (TLTi). Figure 8 
displays HJT 1i1. 

Construction of 1-£2 

Nodes k, l and m are sequentially added to B1 to obtain B2, see Figure 2. In 
the following steps we update HJT 1{1 by accounting for the addition of k, l 
andm. 

Step 1: Ancestrality partition update. The ancestrality partition is 
sequentially constructed using the algorithm introduced in Section 2 which 



Hierarchical junction trees 67 

Fig. 8. Hierarchical junction tree 'H1 

uses a total order of the nodes ofthe BN. Since the new nodes are descendants 
of the nodes already in the BN, they can be added at the end of the totally 
ordered sequence of nodes and apply the ancestrality partition algorithm. 

In our example, node k is not a collider and its only parent is i E H(1), 
therefore fz(2) = {k}. Node lis also not a collider and its only parent is 
j E h(1) and so, ! 2(1) = {a,b,c,d,e,g,f,h,j,l}. Node m is a collider with 
parents k E fz(2) and l E /z(1), thus H2(2) = {m}. The updated ancestrality 
partition is, 

!2(1) = {a,b,c,d,e,g,f,h,j,l}, H2(1) = {i}, /z(2) = {k}, H2(2) = {m}. 

Step 2: HJT update. We recall that non-covering nodes in the HJT are 
maximal families of the BN and that edges are also inherited from this BN. 
The arrival of a node is therefore translated to adding a new non-covering 
node in the HJT. If a new node is not a collider only a new non-covering 
node is added to an existing JT, while if a new node is a collider, a new JT 
has to be created to accommodate the extra layer added by this collider. 

In our example, the addition of node k to B 1 add the non-covering node 
Fa(k) = {i,k} to Ti to obtain T~. Since k is in Layer2 we add Fa(k) to Ti 
with an edge from Fa(i) to Fa(k) because i is the parent of k. The addition 
of l introduces the non-covering node Fa(l) = {j, l} to Ti toT~ because l is 
in !2(1). 

Adding node m requires creating new JT T~ because m is a collider. 
The upper door for this node is Fa(m) = {k,l,m} and intersects JT T~, 
thus {a, b, c, d, e, j, g, h, i, j, k, l} is a covering node in T~. In this JT we also 
add directed edge from this covering node to upper door Fa(m). Potential 
P(XmiXk> Xl) is assigned to Fa(m) and separator {k, l} is initialised to 1. 

We have introduced new node T~ and therefore the edge set has to be 
updated. The new HJT has new directed edge {T~, rn. Updated 7-{2 is dis­
played in Figure 9. 

5.3 Separation 

The construction of the HJT preserves the edge direction of the originating 
BN through the edge direction of the directed JTs and the edge direction 



68 Puch et al. 

Fig. 9. Hierarchical junction tree 1-£2 

of the HJT joining the JTs. This provides a basis for translating Pearl's d­
separation criterion [18] that enables to determine the conditional indepen­
dence statements implied by the BN to to a criterion that we call h-separation 
criterion that facilitate reading the conditional independence statements im­
plied by the HJT, [15]. In this section we describe this new criterion and and 
illustrate it using HJT 1-l2 in Figure 9 constructed from BN B2 in Figure 1. 
For a detailed discussion of the h-separation criterion see [15]. 

The edge direction in the originating BN is mostly preserved through the 
edge direction of the JTs. For example, edge ( {a, b }, {b, e}) in 1-l2 corresponds 
to (b, e) in B2 • However, edges from a collider's parents to that collider are 
not directly visible in the HJT. We called these edges meta edges. More 
specifically, if w is a collider and v is one of its parents, the corresponding meta 
edge to (v,w) is (Fa(v),Fa(w)). For example meta edge ({b,e},{e,h,i}) 
corresponds to (e,i). Note that {b,e} is in JT T~ while {e,h,i} is in T~. 

Each edge in a BN corresponds to either an edge in a JT or a meta edge, 
except for non-maximal families. For a proof see [15] page 121. For example, 
edge (b,e) corresponds to edge ({a,b},{b,e}) and edge (e,i) corresponds to 
({b,e},{e,h,i}). Fa(a) is not a maximal family and so, edges (a,b), (a,c) 
and (a, d) correspond to ( {a, b}, {a, d, c}). This exception has no effect on the 
bijection between the set of conditional independence statements encoded 
in a BN and the set of conditional independence statements encoded in its 
corresponding HJT. 

The introduction of meta edges gives a natural extension to parents and 
children of nodes. More formally, for either an edge in a JT of a HJT or a 
meta edge (C1, C2), C1 is a meta parent of C2 and C2 is a meta child of C1. 
For example, {b, e} is a meta parent of { e, h, i}. 

Undirected paths in the originating BN can now be mapped to undi­
rected paths in the HJT. We called these paths undirected meta paths because 
meta edges are allowed in them. For example, path (b, e, i, h, f, c} is mapped 
to meta path ({a, b}, {b, e}, {e, h,i}, {!, h}, {c, J,g}, {d,c,g}, {a,d,c}). Note 
that this path contains meta edges ({b,e},{e,h,i}) and ({f,h},{e,h,i}). 
Analogously we can define directed meta paths by allowing directed meta 
edges in directed paths. Path ( { e, h, i}, { i, k}, { k, l, m}) is a directed meta 
path. 



Hierarchical junction trees 69 

Meta descendants can now be defined using directed meta paths. A non­
covering node c2 is a meta descendant of a node cl if there is a directed 
meta path from C1 to C2. Node {k, l, m} is a meta descendant of {e, h, i}. 

We need undirected paths that connect elements of the universe of a HJT 
to read conditional independence from that HJT. More specifically, for two 
elements v and w of the universe V of a HJT, a { v, w} meta path is a meta 
path from a node that contains v to a node that contains w. Meta path 
({a,b}, {b,e}, {e,h,i}, {f,h}, {c,f,g}, {d,c,g}, {a,d,c}) is actually a {b,c} 
meta path. 

In Pearl's d-separation theorem head-to-head nodes in an undirected path 
play an important role. Undirected meta paths also have head-to-head nodes. 
In the meta path above, node { e, h, i} is a head-to-head because of meta edges 
( {b, e }, { e, h, i}) and ( {J, h }, { e, h, i}) are directed towards this node. 

In the construction of a HJT in Secion 5.2 we saw that non-covering nodes 
are families Fa(v) = {v}UPa(v) in the originating BN. If we do not have the 
BN, we can still write a non-covering node C in this form. In fact, Pa(v) = 
UrSr where Sr are separators of C shared with its meta parents in the HJT, 
and { v} = C \ Pa( v). For example node { b, e} in T~ can be written as 
{e} U Pa(e) where Pa(e) = {b}, because {b} is the only separator with its 
parent {a, b}. For a no-covering node C = Fa( v), v is called the head of C 
and it is denoted by 8. For example, the head of {b, e} is e. Note that writing 
non-covering nodes as families gives a basis for reconstructing a BN from a 
HJT. In fact, there is a bijection between the set of maximal families in a BN 
and the set of non-covering vertices in its corresponding HJT. For a proof see 
[15] page 113. 

In the d-separation criterion the concept of blocking undirected paths 
between two nodes is used. Analogously, in the h-separation criterion uses 
blocking of undirected paths. Formally, a { v, w} meta path is blocked by a 
set Z, v, w (j_ Z, if either 

(a) there is a separator in this path contained in Z, or 

(b) there is a head-to-head C in this path such that 8 U ( U J 8J) does 
not intersect z, where cj is a meta descendant of c. 

For example, path ({a,b},{a,d,c}) is blocked by {a}. Meta path ({a,b}, 
{b,e}, {e,h,i}, {f,h}, {c,J,g}, {d,c,g}, {a,d,c}) is also blocked by {a} be­
cause { i, k, m} does not intersect {a}. Set { i, k, m} is the set of heads of 
{e,h,i} {i,k} and {k,l,m}, and sets {i,k} and {k,l,m} are the meta de­
scendants of { e, h, i}. 

The definition of h-separation is based on the concept of blocking paths. 
For subsets A, Band C of the universe V of a HJT, A and Bare h-separated 
by Z if each {a, b} meta path, a E A and b E B are h-separated by Z. We 
can now state the h-separation theorem. 

H-separation criterion. XAJJ..XBIXc if A and B are h-separated by 
c. 



70 Puch et al. 

Using this criterion we deduce that XallXciXb in HJT 1-i2, because all 
{a, b} paths are blocked by {a}. 

Theorem. The set of conditional independence statements read in a BN 
using the d-separation criterion is the same as the set of conditional inde­
pendence statements read in its corresponding HJT using the h-separation 
criterion. Proof: see [15] page 147. 

The translation of the d-separation gives a proof that the HJT can be 
constructed without loss of conditional independence [15]. In particular note 
that no triangulation was required to construct the HJT. 

The Madsen & Jensen's Lazy propagation method [13] also preserves the 
conditional independence from the originating BN in the construction of their 
JT. They keep the directionality of the potentials by recording them as con­
ditional distributions, they keep the potentials for the cliques factorised, and 
they set the separator potentials to 1. The factorisation of the joint distribu­
tion in the BN and the JT coincide and so does the conditional independence 
encoded in these graphical structures. However the JT is not a transpar­
ent representation of the conditional independence as it is in the HJT: in 
a HJT the domain of its potentials is consistent with the nodes. For exam­
ple, if {a, b, c} is a node in a HJT, the domain of its potential would be 
Sp(Xa) x Sp(Xb) x Sp(Xc), where Sp(Xv) denotes the state space of vari­
able Xv. In a JT a node can contain more elements than the domain of its 
associated potential. 

5.4 Propagation 

In this section we illustrate how propagation operates in HJTs for a propaga­
tion task when we learn a variable in the first layer I (1). If we were to address 
a propagation task when we learn variables in a higher layer, we would need 
to first customise the HJT by constructing a JT for the ancestral graph of 
these conditioning variables. The same propagation principles can then be 
used for propagation in this customised HJT. 

We start with the HJT in Figure 11 constructed from the BN in Figure 10. 
We compute the propagation task where we learn that Xa = x~ and we want 
to compute the distribution of Xh and Xi. At this point the potentials of 
the non-covering nodes Fa( v) have the conditional distributions Pr(Xv 
xviXPa(v) = XPa(v)), except for Fa(d) that has Pr(Xa = Xa) * P(Xd = 
xdiXa = xa)· All separators have been initialised to 1. 

Step 1: Propagation within T 1 

We enter and propagate that Xa = x~ using standard JT propagation, de­
scribed in Section 3. We first choose node {a, d} as the root and multiply its 
potential with the finding for x~. We then propagate this information through 
T 1 by performing a schedule of sum-flows given by a Collect Evidence op­
eration to {a, d}, followed by a schedule of sum-flows given by a Distribute 



a 

b 

d 
(a) 

e 

g 

Hierarchical junction trees 71 

h 

(b) 

Fig.lO. (a) The BN in Madsen & Jensen [13]. Edges {e,!} and {f,g} (dotted 
lines) were added in the moralisation step, and fill-in's {a,!}, {b,!} and {d,f} 
(dotted lines) were added in the triangulation step. (b) The JT constructed from 
the BN in (a) 

a,b,c,d,e,f,g 

Fig. 11. A HJT for the BN in Figure lO(a) 

Evidence operation from {a, d}. All the sum-flows in the Collect Evidence 
to {a, b} are vacuous because they do not affect any of the potentials. This 
feature is a consequence of the preservation of the edge direction in t he HJT. 
In the sum-flow from {b, e} to {a, b }, for example, node {b, e} has t he condi­
tional distribution Pr(Xe = Xe iXb = xb) and when we sum-marginalise it, we 
obtain a potential identical to 1. The potential of the separator { b} is already 
identical to 1. Thus replacing it with the same potential is unnecessary. It is 
also unnecessary to multiply the potential of node {a, b} by 1. 

The identification of vacuous sum-flows is also a facility of the LP method 
[13]. Their method records the edge direction in the potentials which is then 
used to identify vacuous sum-flows. The LP method is intended for general 
propagation tasks, that is, the computation of the marginal distribution of 
any set of nodes conditional of any other set of nodes. This level of generality 
requires triangulation which does not allow to fully take advantage of the 
edge direction of the original BN. The sum-flow from node {a, c, f} to node 
{a, b, f} is not vacuous because of the fill-in 's {a , f} and {b, f} int roduced 
in the triangulation step in the construction of the JT. In contrast the HJT 
allows to fully exploit the BN's edge direction and so, none of the sum-



72 Puch et al. 

flows in the Collect Evidence to {a, d} schedule need to be computed for the 
propagation task at hand. 

We only need to compute the sum-flows in the Distribute Evidence from 
{a, d}, and after this schedule has been computed JT T 1 is sum-consistent. 

Step 2: Graph simplification 

After we have propagated the information through T 1 , we can then continue 
propagating this information to the JT in one layer above, but before this we 
can remove unnecessary zeros encoded in T 1 . 

The potential of {a, d} is a function that maps (xa, xd) to 0 if X a # x~ and 
to Pr(Xa =X~, xd = xd) otherwise. The potential of the separator { d} maps 
Xd to Pr(Xa = x~, xd = Xd)· The potential for {a, d} is in the numerator of 
the factorisation encoded in the JT, while the potential for separator { d} is in 
the denominator. These potentials quotient is either zero or one and therefore, 
we can remove them. The same applies for node {a, b} and separator { b}, 
and for node {a, c} with separator { c}. The potentials of separators {a} are 
constant functions that take the value Pr(Xa = x~) and so, they can be also 
removed. The resulting JT consist of three disconnected nodes: {b, e }, { c, f} 
and {d,e}, displayed in Figure 12. Hugin [10] has a facility for compressing 
the tables that takes many zeros but the graph of the JT is not simplified 
by removing the learned nodes, because Hugin is a shell for building BNs for 
static systems. The HJT adjusts its graphs in line with its potentials, and 
so, it provides a transparent representation of the factorisation of potentials 
that it encodes. 

b,c,d,e,f,g 

Fig. 12. The HJT after the graph simplification 

Step 3: Propagation within T 2 

At this point the potentials of the non-covering nodes have the conditional 
distribution inherited from the original BN, and the separator potentials are 



Hierarchical junction trees 73 

set to 1. The sum-flows in the Collect Evidence schedule to the covering node 
{ b, c, d, e, J, g} are all vacuous for the same reasons as we discussed in Step 1. 
The sum-flows in the Distribute Evidence from { b, c, d, e, f, g} are computed. 
Note that for the sum-flow from {b, c, d, e, J, g} to { e, J, h }, we compute the 
marginals for X f and Xe from the disconnected nodes and then we assign 
this product to the separator { e,!}. If f and e were in the same JT but not 
in the same node, we would need to use the method of firing variables for 
computing their joint distribution, see [5]. The nested junction trees method 
also uses this type of propagation, [11]. 

Step 4: Graph Simplification 

The purpose of the layers in a HJT is to break cycles. Now that JT T 1 has 
unconnected nodes, we do not need to have the second layer because there is 
no cycle to break. We can therefore remove the covering node {b,c,d,e,J,g} 
and connect the upper doors { e, J, h} and {/, g, i} with the nodes that in­
tersect them. The resulting JT is displayed in Figure 13. The HJT is now 
sum-consistent and so, the potentials of { e, J, h} and {!, g, i} now encodes 
the joint distributions of their associated variables. For example the poten­
tial of { e, J, h} contains the joint distribution of (Xe, X f, X h) from where the 
marginal distribution of Xh can be computed. Analogously, we can compute 
the marginal distribution of xi from the potential of {f, g, i}. 

b e h 

3 
d g 

(a) (b) 

Fig. 13. (a) The BN obtained from the BN in Figure lO(a) after learning X a = x~ 
and deleting it. (b) The HJT obtained from the HJT in Figure 12 after graph 
simplification 

Notice that if we construct a HJT from the BN in Figure 13(a), we would 
obtained the HJT in Figure 13(b). This implies that the conditional indepen­
dence recorded in this BN is the same as the conditional independence in 
this HJT. This exemplifies the use of incoming conditional independence to 
simplify the HJT, and so keeping the HJT to the lowest size as possible. 



74 Puch et al. 

6 Conclusions 

We have now defined a formal graphical structure that efficiently codes all 
conditional independence statements in the BN in a form compatible with 
the construction of propagation algorithms. It transparently represents the 
factorisation of the joint distribution of the variables in the system, includ­
ing features of the factorisation used in the lazy propagation method. This 
transparency enables us to explore new ways of propagating information for 
structure inference. 

An important building block of the HJT is the ancestrality partition of 
a BN. This new concept gives a decomposition of a non-decomposable BN 
into decomposable components. This decomposition facilitated proving the h­
separation. We believe that the ancestrality partition may have an important 
role in providing a framework for proving theorems on BNs. 

We have proven with the h-separation theorem that the HJT is con­
structed with no loss of conditional independence. The HJT construction uses 
decomposable components of a BN and so, no moralisation and triangulation 
is required. Propagation tasks only require the moralisation and triangula­
tion of the ancestral graph of the conditioning variables. Total inferential 
efficiency is achieved when this ancestral graph is decomposable because no 
conditional independence is lost in this task. 

New algorithms can be customised via the HJT to pre-specified infer­
ential tasks and classes of BNs which are not decomposable. In this paper 
we briefly considered such case. Inferential efficiency gains have important 
computational cost savings in exact forecasting in dynamic BNs with hetero­
geneous evolution. We saw that when using JTs for exact forecasting, on-line 
triangulation is inevitable, even when the lazy propagation method is used 
because this method operates on a JT. In this dynamic setting, computa­
tional savings are achieved with the HJT potentials and graph simplification, 
which utilises the incoming conditional independence. 

We believe that HJTs provide an ideal framework for the development of 
architectures for probability propagation in highly structured settings. 

Acknowledgements 

We wish to thank Dr. Lorenz Wernisch for his helpful comments. Part of this 
research was developed while R. 0. Puch was sponsored by Wellcome Trust 
programme grant GR066790MA. 

References 

1. SK Andersen, KG Olesen, FV Jensen, and F Jensen. Hugin - a shell for 
building Bayesian belief universes for expert systems. In Proceedings of the 
11th International Joint Conference on Artificial Intelligence, pages 1080-5. 
Morgan Kaufmann, San Mateo, California, NS Shridharan ( ed.), 1989. 



Hierarchical junction trees 75 

2. RG Cowell, AP Dawid, SL Lauritzen, and DJ Spiegelhalter. Probabilistic net­
works and expert systems. Springer Verlag, 1999. 

3. AP Dawid. Applications of a general propagation algorithm for probabilistic 
expert systems. Statistics and Computing, 2:25-36, 1992. 

4. Hugin. A shell for building Bayesian networks. www.hugin.dk, 2002. 
5. FV Jensen. An introduction to Bayesian networks. University College London 

Press, London, United Kingdom, 1996. 
6. FV Jensen, SL Lauritzen, and KG Olesen. Bayesian updating in causal prob­

abilistic networks by local computations. Computational Statistics Quarterly, 
4:269-282, 1990. 

7. K Kanazawa, D Koller, and S Rusell. Stochastic simulation algorithm for 
dynamic probabilistic networks. pages 346-351. Morgan Kaufmann, San Fran­
cisco, California, 1995. 

8. U Kjaerulff. Triangulation of graphs - algorithms giving small total state 
spaces. Research Report, Institute of Electronic Systems, Department of Math­
ematics and Computer Science, Aalborg University, Aalborg, Denmark., 1990. 

9. U Kjaerulff. Optimal decomposition of probabilistic networks by simulated 
annealing. Statistics and Computing, 2:7-17, 1992. 

10. U Kjaerulff. dHugin: A computational system for dynamic time-sliced Bayesian 
networks. International Journal of Forecasting, Special Issue on Probability 
Forecasting, 11:89-111, 1995. 

11. U Kjrerulff. Inference in Bayesian networks using nested junction trees. In 
Learning in graphical models, (Ed. M. I. Jordan), pages 51-74. Kluwer Aca­
demic Publishers, Dordrecht, The Netherlands, 1998. 

12. P Larrafi.aga, CMH Kuijpers, M Poza, and RH Murga. Decomposing Bayesian 
networks: triangulation of the moral graph with genetic algorithms. Statistics 
and Computing, 7:19-34, 1997. 

13. AL Madsen and FV Jensen. Lazy propagation in junction trees. In Proceedings 
of the 14th Annual Conference on Uncertainty in Artificial Intelligence (Eds. 
GF Cooper and S Moral), pages 362-9. Morgan Kaufmann, San Francisco, 
California, 1998. 

14. AL Madsen and FV Jensen. Lazy propagation: a junction tree inference algo­
rithm based on lazy evaluation. Artificial Intelligence, 113:203-245, 1999. 

15. RO Puch. Hierarchical junction trees. PhD thesis, Department of Statistics, 
University of Warwick, available at"www.warwick.ac.uk/staff/R.Puch-Solis", 
2000. 

16. JQ Smith, AE Faria, S French, D Ranyard, D Vlesshhouwer, J Bohunova, 
T Duranova, M Stubna, L Dutton, C Rojas, and A Sohier. Probabilistic data 
assimilation within RODOS. Radiation Proteccion Dosimetry, 73(1-4):57-9, 
1997. 

17. JQ Smith and KN Papamichail. Fast Bayes and the dynamic junction forest. 
Artificial Intelligence, 107:99-124, 1999. 

18. T Verma and J Pearl. Causal networks: Semantics and expressiveness. In 
Uncertainty in Artificial Intelligence 4, pages 69-76, New York, N. Y., 1988. 
Elsevier Science Publishing Company, Inc. 


