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Abstract. This work presents an analysis of the convergence behaviour
of the Univariate Marginal Distribution Algorithm (UMDA) when it is
used to maximize a number of pseudo-boolean functions.

The analysis is based on modeling the algorithm using a reducible Markov
chain, whose absorbing states correspond to the individuals of the search
space. The absorption probability to the optimum and the expected time
of convergence to the set of absorbing states are calculated for each func-
tion. This information is used to provide some insights into how the ab-
sorption probability to the optimum and the expected absorption times
evolve when the size of population increases. The results show the dif-
ferent behaviours of the algorithm in the analyzed functions.

1 Introduction

Estimation of Distribution Algorithms (EDAs) constitute a new and promising
paradigm for EAs [5, 9]. Introduced by M�uhlenbein and Paa� [9], EDAs are based
on Genetic Algorithms (GAs) and constitute an example of stochastic heuristics
based on populations of individuals, each of which encodes a possible solution of
the optimization problem. These populations evolve in successive generations as
the search progresses, organized in the same way as most Evolutionary Compu-
tation heuristics. In contrast to GAs, which consider the crossover and mutation
operators as essential tools to generate new populations, EDAs replace those
operators by estimating and sampling the joint probability distribution of the
selected individuals.

Unfortunately, the bottleneck of this new heuristic lies in estimating the joint
probability distribution associated with the database containing the selected in-
dividuals. To avoid this problem, several authors have proposed di�erent algo-
rithms where simpli�ed assumptions concerning the conditional dependencies
between the variables of the joint probability distribution are made. A review of
di�erent approaches in the combinatorial and numerical �elds can be found in
[4, 5].

The purpose of this this paper is to further investigate the convergence be-
haviour of the simplest EDA {UMDA{, which is applied to the maximization of
a number of pseudo-boolean functions.
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The analysis is based on modeling the algorithm using a Markov chain whose
absorbing states correspond to the individuals of the search space. Hence some
natural questions immediately arise. What is the absorption probability to any
absorbing state (particularly to the optimal point)? How long must we wait until
the set of absorbing states are visited? Answering these questions will enable us
to learn the e�ects that changes in the individual and population size have on
the absorption probability to the optimum and the expected absorption times.
In order to do so we calculate those quantities for UMDA on the maximization
of an example of linear, pseudo-modular, unimax and almost positive functions,
for di�erent values of population size N and individual length l. Due to the high
computational cost of these calculations we have to use low values of N and l.

The remainder of this paper is organized as follows: Section 2 introduces the
UMDA algorithm. In Section 3 the Markov chain that models the algorithm is
described, and some useful theoretical results are revised. The studied functions
are introduced in Section 4. Section 5 explains the experiments carried out and
analyzes the results. Finally, we draw conclusions in Section 6.

2 The UMDA algorithm

The Univariate Marginal Distribution Algorithm was proposed by M�uhlenbein
[7] in 1998. A pseudocode for this algorithm can be seen in Figure 1. UMDA

UMDA
D0  Generate M individuals (the initial population) randomly
Repeat for t = 1; 2; : : : until the stopping criterion is met

DSe
t�1  Select the N �M individuals from Dt�1 according to

the selection method

pt(x) = p(xjDSe
t�1) =

Ql

i=1

P
N

j=1
Æj(Xi=xijD

Se
t�1

)

N
 Estimate the joint

probability distribution
Dt  Sample M individuals (the new population) from pt(x)

Fig. 1. Pseudocode for a general UMDA algorithm.

uses the simplest model to estimate the joint probability distribution of the
selected individuals in each generation, pt(x). This joint probability distribu-
tion is factorized as a product of independent univariate marginal distributions,
pt(x) = p(xjDSe

t�1) =
Ql

i=1 pt(xi).

Each univariate marginal distribution is estimated from marginal frequencies,

pt(xi) =

P
N

j=1
Æj(Xi=xijD

Se
t�1)

N
, where:

Æj(Xi = xijD
Se
t�1) =

�
1 if in the j-th case of DSe

t�1, Xi = xi
0 otherwise:

(1)
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In practice UMDA is used with elitism and the estimation of the parame-
ters is carried out by means of Laplace correction [1]: pt(xi) = p(xijDSe

t�1) =P
l

j=1
Æj(Xi=xijD

Se
t�1)+1

N+2 . This ensures convergence to the optimum [2].

Previous works on UMDA [6, 8] have been carried out by assigning a dynam-
ical system to the algorithm, and showing that the algorithm can converge to
any local optima of the search space. However this result is subject to the use of
an in�nite population, far from the �nite population case, where the algorithm
can converge to any point of the search space.

We analyze UMDA with �nite population in order to provide new insights
into the circumstances under which UMDA will (will not) perform well.

3 Using Markov chains to model UMDA

Let us introduce some notation. The search space is represented by 
 = f0; 1gl,
where l 2 IN. The cardinality of the search space is j
j = 2l = n. We consider
the optimization problem maxx2
 f(x), where f : 
 �! IR is the objective
function.

We use a speci�c version of UMDA to solve the above problem. The algorithm
works as follows: at each step t we have a population of sizeM = 2N , Dt�1, from
which we select the N best individuals (truncation selection), obtaining DSe

t�1.
Later, using these selected individuals the joint probability distribution pt(x) is
estimated as in Figure 1. Finally we obtain the new population Dt sampling 2N
individuals from pt(x).

Given that the probability distribution at step t only depends on the prob-
ability distribution at step t � 1, the UMDA algorithm above can be modeled
using a Markov chain, where the states of the chain are the di�erent probability
distributions the algorithm can take. If we take into account that each prob-
ability distribution can be represented as a probability vector q = (q1; : : : ; ql)
(where qi is the probability of obtaining a 1 in the ith gene), the set of states
can be expressed as follows:

E =

�
(q1; : : : ; ql)

�� qi 2 f0;
1

N
; : : : ;

N � 1

N
; 1g; i 2 f1; : : : ; lg

�
: (2)

The cardinality of the state space is c = jEj = (N + 1)l. It is important to note
that the cardinality of the space states c increases exponentially as the individual
size does. This is the reason why, in order to have a reasonable computational
cost, the experiments will be carried out for small values of l.

We also want to stress that the Markov chain is not irreducible. More pre-
cisely, the absorbing states of the Markov chain correspond to the individuals of
the search space while the transient states are the rest, i.e. the states with some
component not equal to 0 or 1.

To aid in comprehension, note that each absorbing state is associated with
a uniform population of selected individuals (which is formed by N copies of

512 C. González et al.



the same individual). Taking into account that the absorbing states are the
individuals of the search space, the algorithm could converge to any of them.

Calculation of the absorption probabilities and the expected ab-

sorption times

Let's suppose that the states of the Markov chain are ordered in such a
way that the absorbing states are in the last places. Therefore the transition
probability matrix P associated with the Markov chain can be written as follows:

P =

�
Q R
; I

�
(3)

where ; is the null matrix, and I is the identity matrix.
The formulas for the absorption probability and expected absorption times

can be obtained from matrices: W = (I �Q)�1 and U =WR. These results can
be seen in [10].

The expected absorption time starting from the ith state vi is given by the
expression vi =

P
j wij .

The absorption probabilities to an absorbing state j starting from the ith
state, uij are given by the elements of the matrix U = (uij).

The computational cost of the calculation of the above quantities depends on
the cost of inverting W . Since the dimension of W is (N +1)l � 2l, it is directly
related to the individual size l.

Calculation of the transition probability matrix P
The calculation of the transition probability matrix P is basic to obtain the

remaining quantities. Each entry of P = (pij) is the probability of going from
state qi to state qj in a step of the algorithm, and can be obtained as follows:

pij = P (qj jqi) =
X
D

P (obtain population Dj the vector qi is sampled) ; (4)

where D varies in the populations that can be obtained from qi, and from the
selected individuals DSe of D, the probability vector qj is obtained. Unfortu-
nately, in order to calculate (4) it is necessary to solve a system of equations
with a large number of degrees of freedom (which depends on l), which has a
high computational cost. This is the reason why we use a di�erent method to
estimate the elements of matrix P . In Section 5.1 we explain in detail how the
estimation was carried out.

4 The functions used

The particular linear function analyzed in this work is f(x) = c0 +
Pl

i=1 cixi,

xi 2 f0; 1g, ci 2 IR such that ci >
Pi�1

j=0 cj . It is clear that (1; : : : ; 1) is the only
global maximum for this function.

The pseudo-modular function we have used is f(x) =
Pl

i=1

Qi

j=1 xj ,
xj 2 f0; 1g, whose optimal solution is (1; : : : ; 1).
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In the experiments we have carried out we used a well known unimax func-

tion, the long path function [3] (we can not include it here for reasons of space).
We want to stress that this function only has sense for odd values of l.

The almost positive function analyzed in this paper is f(x) = l�
Pl

i=1 xi+

(l+1)
Ql

i=1 xi, xi 2 f0; 1g. The optimal solution is (1; : : : ; 1), while the individual
(0; : : : ; 0) is a local optimum point.

5 Experimental results

Our aim is to �nd the absorption probability to the optimum and the expected
absorption times to some absorbing states when the UMDA algorithm is used to
maximize the pseudo-boolean functions introduced in the previous section. Once
we have those quantities we analyze how they evolve when the size of population
N varies. We have made our analysis when l = 2 and 2 � N � 8, and when
l = 3 and 3 � N � 8.

Estimation of the transition probability matrix P
The computational complexity of the exact calculation of P = (pij) forces us

to estimate these values instead of carrying out an exact calculation. To obtain
the values of the jth row of P corresponding to probability vector qj , we carry
out k times the following two steps for each j:

{ qj is taken as the initial vector of probabilities, each time carrying out the
basic steps of UMDA: (i) The initial population is obtained sampling qj , (ii)
The N best individuals are selected, giving us the selected population, (iii)
The new vector of probabilities qi is obtained from the selected population.

{ After the previous step the obtained probability vector is picked up.

If we denote by ki the number of times that we reach the state qi, then each
value pij , i 2 f1; : : : ; cg of row j is estimated as pij =

ki
k
.

It is clear that when the number of experiments carried out k increases the
estimation improves. In our experiments we chose k in order to obtain a rea-
sonable computational cost. We made a number of k = 5; 000; 000 experiments
which �xes the 5th decimal of pij .

The absorption probability to the optimum and the expected ab-

sorption time to some absorbing state

In practice, the �rst probability vector used to be (1=2; : : : ; 1=2), so we have
calculated the absorption probability (resp. time) to the optimum from this state
when N is even. In case of odd N we have used the mean of the probability
vectors that are the nearest to (1=2; : : : ; 1=2) (see Table 1).

Summarizing the results

The results can be seen in Figure 3. The absorption probability to the op-
timum (and the expected absorption time to some absorbing state) is given in
a graph, where the y axis shows the absorption probability (resp. the expected
absorption time) and the x axis shows the size of the population N . The same
graph shows the results for l = 2 and l = 3.
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7
) ( 4

7
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7
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7
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8 ( 4
8
; 4
8
) ( 4

8
; 4
8
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Table 1. Starting probability vectors chosen.

Several comments can be made in view of the graphs. We can distinguish the
behaviour of the �rst three functions (the easiest to optimize) from the almost
positive.

As was expected, for the �rst three functions, the absorption probability in-
creases with N . This probability is near to one in the linear and pseudo-modular
functions, which means that in almost all executions the algorithm will converge
to the optimum. On the other hand, in the unimax function this probability is
lower than 0.6. However, it seems that the growth of this probability with N
is higher in this third function. Similarly this probability is smaller when l is
bigger. The small number of generations to reach convergence is noteworthy.

We obtained surprising results regarding the expected absorption times. In
the linear and pseudo-modular functions this time does not increase with pop-
ulation size. We think it is related to the absorption probability. Because the
absorption probability is higher the algorithm converges faster. On the other
hand in the unimax function this time increases linearly with N . In this last
case the function is harder to optimize than the others so the algorithm needs
more time to converge. The same as before, absorption time increases with l.

The case of the almost positive function is the most interesting. While with
l = 2 the absorption probability increases a little with N , in dimension 3 this
probability decreases. Apparently going to 0 with N . It seems the algorithm can
be absorbed by the local optimum point (0; : : : ; 0). So this function is hardly
optimized with UMDA.

6 Conclusions and future work

In this work we have used Markov chains to model and analyze some interesting
questions about UMDA algorithm behaviour on pseudo-boolean functions. We
hope that further theoretical studies on the behaviour of UMDA can be based
on this work.

For each analyzed function, we have calculated the absorption probabilities
to the optimal point and the expected absorption times. This calculation enables
us to see the e�ects that changes in population size have on these two quanti-
ties. The analysis shows the behaviour of the algorithm when the complexity of
the function increases: the absorption probability decreases while the expected
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absorption time increases. Even in the almost positive function the absorption
probability goes near to zero when N increases.

There is much further work to be done to increase our understanding of the
EDAs algorithm's behaviour on di�erent classes of problems. A �rst task would
be to increase both individual length and population size. Another interesting
direction would be to explore the relationship between the probability of reaching
the optimum or any other point of the search space. It would also be helpful to
arrive at an analogous model and analysis for other EDAs.
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Fig. 2. Absorption probability and absorption time for the linear, pseudo-modular,
unimax and almost positive functions.
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