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Abstract. Neural systems network-based representations are useful 
tools to analyze numerous phenomena in neuroscience. Probabilistic 
graphical models (PGMs) give a concise and still rich representation 
of complex systems from different domains, including neural systems. 
In this paper we analyze the characteristics of a bidirectional relation-
ship between networks-based representations and PGMs. We show the 
way in which this relationship can be exploited introducing a number 
of methods for the solution of classification, inference and optimization 
problems. To illustrate the applicability of the introduced methods, a 
number of problems from the field of neuroscience, in which ongoing 
research is conducted, are used. 

1 Introduction 

Neural systems can often be depicted using networks where each network node 
represents one constitutive element of the complete represented system. In net-
work representations of neurons, neuronal circuits and brain maps, nodes can 
respectively represent neuron compartments, neurons, or brain regions. Networks 
links between the nodes usually represent structural or functional relationships 
between the constitutive elements of the representation. Sometimes numerical 
and categorical data is added to the nodes and links, enriching the representation 
expressivity. 

Several authors have stressed the influence that the particular connectiv-
ity patterns in neural circuits have in neurophysiological and mental activities 
[6,16.17]. It is especially relevant to determine how particular connectivity pat-
terns may be related to neuronal diseases or mental disorders [3]. Research on 
network theory [2.9.18] has shown that network analysis can help to uncover and 
characterize the patterns of interactions in complex systems. Several applications 
of network theory have been reported in the field of neuroscience [3.6,29]. 

A network descriptor is a numerical value that measures a particular struc-
tural or topological characteristic of the network. Different network descriptors 
can offer valuable information about a single network or a family of networks. 



However, sometimes a concise representation of a set of networks (e.g. a set of 
alternative brain region structural connectivity patterns [29], a set of functional 
connectivity patterns derived from MEG data analysis of different individuals, 
etc.) is required. In these cases it is not clear to what extent the set of all single 
network descriptors can serve to represent common characteristics of the net-
works. An alternative is to construct a more general representation of the set of 
networks. This can be done using probabilistic modeling of the set of networks. 

Probabilistic graphical models (PGMs) [20] are one of the most recurrent ma-
chine learning paradigms to specify interactions in complex systems in terms 
of probabilistic dependencies. They can be used to represent complex relation-
ships between different data sets, including networks. They usually comprise two 
components: a graphical structure and a quantitative component. The graphical 
structure displays certain probabilistic conditional independence relationships 
between variables. The quantitative component, which is a collection of numer-
ical parameters, usually conditional probabilities, gives an idea of the strength 
of the dependencies. PGMs have been used to represent different neuronal and 
cortical processes [21,22;24], 

A PGM of a set of networks can serve to capture important regularities from 
the set of networks (e.g. frequent subnetworks) and patterns of interactions be-
tween the networks components. It can later be employed to make queries about 
different structural or topological hypotheses concerning the represented set of 
networks. 

From another perspective, an interesting fact is that the graphical structure 
of commonly employed PGMs can also be seen as a network. This fact allows 
the application of results from network theory to this particular domain. The 
goal is in this case is to extract, from the analysis of the PGMs' derived net-
work descriptors, particular structural characteristics with a possible valuable 
interpretation in terms of the original system represented by the PGM. 

Therefore, we have that, on one hand sets of networks can be conveniently 
modeled using PGMs, and on the other hand network analysis of the structural 
component of PGMs can reveal valuable information of the modeled domain. 
This relationship points to a synergy between network theory and PGMs. In 
this paper we analyze different aspects of the relationship between these two 
domains and discuss a number of ways in which research in neuroscience can 
benefit from this synergy. 

2 Networks 

We will focus the analysis on undirected, directed and weighted graphs which 
will also be called networks. 

G = (V, E) will represent an undirected graph, where V = { i ' i , . . . , vn} is the 
set of vertices (or nodes) and E = { e i , . . . , em } is the set of edges between the 
nodes. G' = (V, E') will represent a directed graph where E' = { o i , . . . , o m } is 
the set of arcs (directed edges) between the nodes. 



In some contexts, in which the distinction between an undirected and directed 
graph is not relevant, we will use the term link to refer to a connection between 
two nodes, either an edge or an arc. 

A -weighted graph is a directed or undirected graph where parameter m¿¿ repre-
sents the weight between nodes v.,, and Vj, whenever e¿¿ (respectively a¿¿) belongs 
to the set of edges (respectively arcs) of the network. 

There are two types of network descriptors: local descriptors that provide in-
formation about a node or a link, and global descriptors that contain information 
about the complete network. The following are examples of network descriptors. 

In an undirected graph, the degree of a node is the number of adjacent vertices 
of the node. In a directed graph, the indegree (outdegree) is the number of 
incoming (outgoing) arcs of the node. 

A path is a sequence of linked nodes that never visit a single node more 
than once. The path length between two vertices is the number of vertices in 
the path. One node v is reachable from another node u if there is a path be-
tween them. The distance between a node v and a node u is the length of 
the shortest path between them if u is reachable from v, otherwise it is set to 
infinity. 

The characteristic path length of a graph is the average shortest path length 
between every pair of reachable vertices in the graph. The betweenness centrality 
of a node is the fraction of all shortest paths in the network that traverse a given 
node. Similarly, edge betweenness centrality is the fraction of all shortest paths in 
the network that traverse a given edge [4]. The clustering coefficient, of a node is 
defined as the fraction of the existing number of node links to the total possible 
number of neighbor-neighbor links [30]. 

A (structural) motif [18.29] is a connected graph or network consisting of M 
vertices and a set of edges with connectedness ensured forming a subgraph of 
a larger network. For each M there is a limited set of distinct motif classes. A 
module (also called community) is a densely connected subset of nodes that is 
only sparsely linked to the remaining network. 

3 Probabilistic Modeling of Network Sets 

We take a set of N directed networks Q = { G ' 1 ; . . . G'N} as a sample from a 
wider set of networks that possibly share some type of topological similarity. 
The number of nodes in each network G' is m. Self-loops are excluded and thus 
the maximal number of arcs in the network is _ Our goal is to obtain a 
probabilistic model of networks in Q. 

For probabilistic modeling, a representation of each solution is needed. We 
use Xi to represent a discrete random variable. A possible value of X.,, is denoted 
Xi. Similarly, we use X = (A" i , . . . , Xn) to represent an «-dimensional random 
variable and x = (x ' i , . . . , xn) to represent one of its possible values. 

Although alternative representations are possible, we will represent a network 
G' using a binary vector x = (x ' i , . . . , x n ) , where n = . jn this represen-
tation there is a unique mapping between each variable X.,, and a unique arc of 



G'. Xi = 1 is interpreted as the arc o¿ belongs to the network. If x¿ = 0, arc o¿ 
is absent from the network. 

The initial set Q can be mapped to a binary data-set V = { x ^ , . . . x ^ ) } . 
From this data set it is possible to compute different statistics about the set 
of original networks. For instance, it is possible to determine the frequencies of 
all possible subnetwork configurations between a subset of nodes by computing 
the marginal frequencies of the variables mapping the arcs that depart from or 
arrive at these nodes. Similarly we can learn a PGM from T>. This will serve 
as a model of the represented networks. The way in which the initial set Q is 
selected will influence of the learned probabilistic model [26]. 

Once a PGM is constructed, it can be used to make queries related to the 
network class for which the data-set serves as a sample. Applications of this type 
to a variety of domains exist. We focus here on applications to the domain of 
network-based problems. Also in this domain, the PGM can be used for tasks 
involving classification, inference and optimization. 

3.1 Classification 

Using the PGM it is possible to estimate the probability that a given network 
G' belongs to the class of networks represented by Q. In this case, G' should be 
transformed into its corresponding binary representation x, and the probability 
p(x) given by the model can be taken as the class membership probability. A 
similar strategy can be employed to assign a given network G' to one among a 
set of k different classes of networks Ç1... Qk. 

3.2 Inference 

The PGM can be used to estimate the probability of a particular subnetwork in 
the class of networks. In this context, partial inference is applied. It is possible, 
for instance, to estimate how likely is that a given arc is present in the class 
of networks represented by Q. Another approach allows the computation of the 
network that most likely belongs to the class of networks represented by Q. 
In this case, abductive inference is employed to compute the most probable 
configuration (or most probable explanation) given by the model, which is then 
transformed, using the variable to arc one-to-one mapping, to the corresponding 
network. 

3.3 Optimization 

Abductive inference is not the only alternative to obtain a given configuration 
from the PGM. Sampling methods can be also employed with that purpose. 
Therefore, from a PGM constructed from Q it is possible to generate, using 
sampling, new solutions that are expected to be similar to those in Q. An ap-
proach that iteratively applies PGM learning and sampling steps is at the core 
of estimation of distribution algorithms (EDAs) [14,19], an optimization method 
based on the use of probabilistic models. EDAs associate a fitness function value 



to each possible solution. The fitness function could measure, for instance, how 
close are the topological characteristics of the candidate network with respect to 
a given target network [27]. 

The rationale behind the use of PGMs in ED As is to capture similar char-
acteristics shared by high quality solutions in order to increase the likelihood 
of obtaining better solutions, eventually leading to find the optimal solution. 
Another optimization methods based on PGMs include different applications of 
loopy belief propagation [31]. However, these methods usually employ a PGM 
to represent a single network and not a set of networks. 

4 Network Analysis of PGMs 

Let P = (G',& ) be a probabilistic model, where G' and O are respectively the 
graphical and quantitative components of the model. We can assume that G' is 
a network (e.g. a directed graph). To obtain a weighted network Gw, a matrix 
of weights could be computed from O (e.g. a weight associated to a link can be 
the mutual information between the related variables in P. In the general case, 
we have a set of N weighted networks Q = {G f,... Gassociated to a set of 
PGMs V = {PU... PN}. 

Our approach considers the computation of networks descriptors for the net-
works in Q and uses these descriptors to extract information about the models 
in V. Local and global networks descriptors can be used for different purposes. 
The former can be applied to reveal characteristics of a single variable or a pair 
of interacting variables in the PGM. The latter can be used to reveal global 
characteristics of the PGM. 

4.1 Classification 

Local network descriptors allow the unsupervised classification of variables (re-
spectively interaction pairs) in different groups according to their role in the sys-
tem modeled by the PGM. In this case, classification operates in an undirected 
way: The nodes of a network (respectively, the links) are clustered according to 
one or more local network descriptors. The variables mapping nodes that are in 
the same cluster are then considered to belong to the same class. For example, 
given a threshold, the network links can be classified into two groups accord-
ing to their betweennes centrality value: Links with low and high betweenness 
centrality values. We can interpret that links with a high betweenness centrality 
will play a more important role in PGM-based processes that involve informa-
tion transmission over the links (e.g. message passing based inference algorithms 
like loopy belief propagation). Similarly, classification of nodes based on other 
local network descriptors such as the degree, the clustering coefficient or the 
reachability values can support additional information about the role played by 
variables. 



Global network descriptors can be directly employed to classify different PGMs 
according to the topological characteristics of their graphical components. For 
example, structural network motifs and small cliques, both of which can be seen 
as a sort of network building blocks, can be used to distinguish PGMs learned 
from related but different classes of problems [25]. 

There are two general questions related to the use of network descriptors for 
classification. The first is the selection of an appropriate classifier. The second 
is the determination of the (subset of) global network descriptors that better 
serve to a clear discrimination between the different classes of networks. Another 
fundamental question is the interpretation that a given network descriptor has 
in terms of the relationships between the variables (respectively links) in the 
PGM. It is not clear that every type of network descriptor provides a meaningful 
interpretation. However, as one of the examples included in the next section 
shows, some descriptors contain useful information about the PGM. 

4.2 Inference 

In network theory some research has been devoted [7.8,15] to try to predict, 
using information about the connections already observed, which vertices are 
most likely to be connected. Among the network descriptors used to infer if a pair 
of nodes is linked are the clustering coefficient, the path length, or the vertices 
degree. Vertices are assumed to have a higher probability of being connected 
if they have many common neighbors, there are short paths between them or 
if the product of their degree is large [7]. Inference is not only used to predict 
the connectivity of missing vertices but also to detect false positive connections, 
i.e. links that appear in the network but which have a low probability of being 
connected using the network descriptors. 

The application of network descriptor based inference to PGMs seems straight-
forward. Network descriptors such as the clustering coefficient could be applied 
to infer interactions between variables in PGMs which are only partially known. 
They could also be used to detect false interactions which are not rare in PGMs 
learned from data. Local network descriptors defined for weighted networks could 
be also applied to predict different measures of interaction strength between 
variables. 

4.3 Optimization 

In optimization based on PGMs (e.g. ED As), the network descriptors extracted 
from the PGMs learned from the problem candidate solutions, can serve to 
identify particular characteristics of the optimization problem domain which are 
captured by the PGM. The network descriptors can also be used to evaluate 
the impact that the topological characteristics of the PGM graphical compo-
nent have in the behavior of the optimization algorithm. Network descriptors 
have been investigated for optimization methods based on belief propagation 
algorithms [28] and ED As [25], 

For example, in the case of EDAs, each run may produce several PGMs learned 
from data while evolving. As a result, at the end of the search the user obtains a 



set of models which store valuable information about the optimization problem. 
An analysis of the network descriptors corresponding to the PGMs learned at 
different generations (e.g. the average vertex degree) provides information about 
the behavior of the algorithm (e.g. the characteristics of the data sets produced 
by the EDA). Similarly we can compare the behavior of the EDA for different 
optimization problems using the obtained networks descriptors. 

5 Applications in Neuroscience 

In this section we describe a number of potential application of probabilistic 
modeling of networks and network analysis of PGMs in the field of neuroscience. 
In some cases we report ongoing work in this direction. 

5.1 Applications to Classification Problems 

Different measures of association between neural systems components are usually 
employed to learn a network from neurobiological data such as MRI or diffusion 
tensor imaging data [6.23]. Usually a single network is constructed from the data 
collected for each individual. In many cases, the networks are a priori classified 
according to the experimental conditions in which the data has been collected or 
the characteristics of the individuals. For example, networks can correspond to 
two sets of healthy and pathological brains. In this case, PGMs representing each 
set of networks could be constructed and used for classification as described in 
Section IH.1L Similarly, sets of networks representing inter-neuronal relationships 
and derived from data corresponding to different single neurons can be used 
to construct PGMs of neurons and compute the probability of a given neuron 
configuration, as represented by the corresponding network. 

5.2 Applications to Inference Problems 

Network-based inference methods are particularly suitable to be applied to inter-
neuronal or inter-regional network reconstruction problems. This is also sup-
ported by the fact that nodes with similar connection patterns tend to exhibit 
similar neuronal function. 

Let us suppose an undirected (possibly loopy) PGM of a neuronal column is 
available. In this model, nodes represent neurons and links represent some prob-
abilistic evidence that there is a synapse between two neurons. Due to possible 
errors in the neuronal column reconstruction, we know that there exist missing 
(false negative) and false positive links (representing missing and false synapses). 
In this context, different local network descriptors can be used to classify the 
links and identify false positives. 

Not only inference can be made about links between variables. Algorithms able 
to determine the modular [11,12] and hierarchical structure [7] of networks have 
also been proposed and can be used to detect complex structural and functional 
organization patterns in different types of neuron networks. 



5.3 Applications to Optimization Problems 

In optimization problems, we have investigated the relationship between the 
properties of the a priori-known problem structural information and the struc-
tural information captured by the PGMs learned by ED As. To quantify this 
relationship, network descriptors have been employed. 

One of the problems considered has been to investigate the effect that biasing 
the axonal connection delay values has in the spike-timing dynamics of a class 
of spiking neural networks. The study of spike-timing dynamics in the brain 
is of interest for neuroscience since, among other reasons, it is a key issue to 
investigate the role that the relative timing of spikes of multiple neurons has in 
the temporal coding in the brain [5.10.13]. 

In the problem under consideration, we have started from a spiking network 
whose topological structure is given. Each link between two neurons has an asso-
ciated numerical value which corresponds to the conductance delay between the 
neurons. We know that the particular distribution of the spiking network delay 
values may have an effect in the number of synfire chains [1] and polychronous 
groups [13] generated by the spiking network. Our ultimate goal is to study the 
influence of conduction delays in the polychronization process and in particu-
lar, to investigate whether the conduction delays can be biased to maximize the 
number of coexisting polychronous groups. To find networks with optimal con-
duction delays, an EDA that uses as PGM a tree is applied. The initial spiking 
network structure is kept fixed and only the delay values are modified by the 
EDA. Therefore the sample solutions are network delay assignments. 

At the end of the EDA optimization process, the trees are processed and 
different average network descriptors are computed (e.g. degree of each vertex). 
These descriptors are compared with the network descriptors corresponding to 
the original spiking network topology. From this comparison we are able to 
determine to which extent the structural characteristics of the original problem 
are captured by the PGMs learned by the EDA, supporting information about 
the accuracy and effectiveness of the learning methods used by the optimization 
algorithm. 

6 Conclusion and Future Work 

In this paper we have presented different alternatives for the application of prob-
abilistic modeling of network-based representations and network-based analysis 
of PGMs to classification, inference and optimization problems. Our proposal re-
lies on two important properties: 1) The representational capabilities of PGMs to 
describe complex interactions between the components of a given system. 2) The 
amount of structural information that can be captured by network descriptors. 

Although considerable work has been devoted to the use of PGMs to represent 
the behavior of neural systems and the application of network theory to study 
neuronal and mental processes, the combination of both approaches has not 
been treated in detail. The results presented in this paper about the potential 
application of the synergy between PGMs and network-based representations 



are a first, still preliminary, step. We expect more results could be obtained in 
this domain from the combined approach of both types of representations. 
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