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Summary. Hybrid metaheuristics have received considerable interest in recent years. A wide
variety of hybrid approaches have been proposed in the literature. In this paper a new hybrid
approach, named GA-EDA, is presented. This new hybrid algorithm is based on genetic and
estimation of distribution algorithms. The original objective is to benefit from both approaches
and attempt to achieve improved results in exploring the search space. In order to perform
an evaluation of this new approach, a selection of synthetic optimization problems have been
proposed, together with some real-world cases. Experimental results show the competitiveness
of our new approach.

1 Introduction

Over the last years, interest in hybrid metaheuristics has risen considerably among
researchers. The best results found for many practical or academic optimization prob-
lems are obtained by hybrid algorithms. Combination of algorithms such as descent
local search [32], simulated annealing [21], tabu search [12] and evolutionary algo-
rithms have provided very powerful search algorithms.

Two competing goals govern the design of a metaheuristic [39]: exploration
and exploitation. Exploration is needed to ensure every part of the search space is
searched thoroughly in order to provide a reliable estimate of the global optimum.
Exploitation is important since the refinement of the current solution will often pro-
duce a better solution. Population-based heuristics (where genetic algorithms [18]
and estimation of distribution algorithms [23] are found) are powerful in the explo-
ration of the search space, and weak in the exploitation of the solutions found.

With the development of our new approach, GA-EDA, a hybrid algorithm based
on genetic algorithms (GAs) and estimation of distribution algorithms (EDAs), we
aim to improve the exploration power of both techniques.
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This hybrid algorithm has been tested on combinatorial optimization problems
(with discrete variables) as well as real-valued variable problems. Results of several
experiments show that the combination of these algorithms is extremely promising
and competitive.

This paper is organized in the following way: First, we will focus on different
taxonomies of hybrid algorithms found in the literature; in Sect. 3, the new GA-
EDA approach is proposed with a complete performance study presented in Sect. 4.
Finally we close with our conclusions and further, future work.

2 Taxonomy of Hybrid Algorithms

The goal of the general taxonomies is to provide a mechanism to allow comparison
of hybrid algorithms in a qualitative way. Additionally, taxonomies are useful to
indicate areas in need of future work, as well as assist in classifying new hybrid
approaches. In this section we include a survey of the current, most important hybrid
taxonomies.

In [4] three different forms of hybridization are described:

• Component Exchange Among Metaheuristics.
One of the most popular ways of hybridization concerns the use of trajec-
tory methods, such as local search, Tabu Search or Simulated Annealing, in
population-based algorithms. Most of the successful applications of Evolution-
ary Computation (EC) make use of local search algorithms. The reason for the
success comes from the strengths of trajectory methods and population-based
methods, finding a proper balance between diversification (exploration) and in-
tensification (exploitation).
The power of population-based methods is based on the concept of recombining
solutions to obtain new ones. In EC algorithms, explicit recombinations are im-
plemented by one or more recombination operations. In EDAs recombination is
implicit because new solutions are generated using a distribution over the search
space which is a function of earlier populations. This allows making guided steps
in the search space which are usually larger than the steps done by trajectory
methods.
The strength of trajectory methods is found in the way they explore a promising
region of the search space. A promising area in the search space is searched in a
more structured way than in population-based methods. In this way, the danger of
being close to good solutions but “missing” them is not as high as in population-
based methods.
In summary, population-based methods are better at identifying promising areas
in the search space, whereas trajectory methods are better at exploring promising
areas in the search space. Thus, metaheuristic hybrids that manage to combine the
advantages of population-based methods with the strength of trajectory methods
are often very successful.
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Some examples of this trend are: GASAT [14] which incorporates local search
within the genetic framework for solving the satisfiability problem or [45] a hy-
brid algorithm based on the combination of EDA with Guided Local Search for
Quadratic Assignment Problems.

• Cooperative Search.
A loose form of hybridization is provided by cooperative search [1, 8, 17, 38,
42, 43], which consists of a search performed by possibly different algorithms
that exchange information about states, models, entire sub-problems, solutions
or other search space characteristics. Typically, cooperative search algorithms
consist of the parallel execution of search algorithms with a varying level of
communication. The algorithms can be different or they can be instances of the
same algorithm working on different models or running with different parameters
settings.
Presently, cooperative search receives more attention which, among other rea-
sons, is due to the increasing research on parallel implementations of metaheuris-
tics [3, 6, 24, 34, 35]. The aim of research on parallelization of metaheuristics is
twofold. First, metaheuristics should be redesigned to make them suitable for
parallel implementation in order to exploit intrinsic parallelism. Second, an ef-
fective combination of metaheuristics has to be found, both to combine different
characteristics and strengths, and to design efficient communication mechanisms.

• Integrating Metaheuristics and Systematic Methods.
This approach has recently produced very effective algorithms especially when
applied to real-world problems. Discussions on similarities, differences and
possible integration of metaheuristics and systematic search can be found in
[11, 12, 15]. A very successful example of such an integration is the combina-
tion of metaheuristics and Constraint Programming [10].

Our hybrid GA-EDA algorithm, which is a completely new approach, can be
classified in the second form; cooperative search, of Blum and Roli’s classification.

Another excellent taxonomy can be found in [39]. In this hierarchical classifi-
cation, at the first level, low-level and high-level hybridizations are distinguished. In
low-level algorithms, a given function of a metaheuristic is replaced by another meta-
heuristic. In high-level algorithms, the different metaheuristics are self-contained; we
have no direct relationship to the internal workings of a metaheuristic.

At the second level, relay and co-evolutionary hybridizations are distinguished.
In relay hybridization, a set of metaheuristics is applied one after another, each using
the output of the previous as its input, acting in a pipeline fashion.

Four classes are derived from this hierarchical taxonomy:

• LRH (Low-level Relay Hybrid).
Algorithms in which a given metaheuristic is embedded into a single-solution
metaheuristic. A few examples from the literature belong to this class. For in-
stance in [28] a LRH hybrid which combines simulated annealing with local
search to solve the travelling salesman problem, is introduced.

• LCH (Low-level Co-evolutionary Hybrid).
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Algorithms in which population based heuristics have been coupled with local
search heuristics such as hill-climbing, Simulated Annealing and Tabu Search.
The local search algorithms will try to optimize locally, while the population
based algorithms will try to optimize globally. It is exactly the same form as
previously defined component exchange among metaheuristics.

• HRH (High-level Relay Hybrid).
In HRH hybrid self-contained metaheuristics are executed in a sequence. For
example, a HRH hybridization may use a greedy heuristic to generate a good
initial population for an EC algorithm. Once the high performance regions are
located, it may be useful to apply local search heuristics to these regions; thus,
in this example, we have three pipelined algorithms. Many authors have used
the idea of HRH hybridization for EC. In [25] the authors introduce simulated
annealing to improve the population obtained by a GA. In [27] the proposed
algorithm starts from simulated annealing and uses GAs to enrich the solutions
found.

• HCH (High-level Co-evolutionary Hybrid).
This schema is similar to the previously defined cooperative search. It involves
several self-contained algorithms performing a search in parallel, and cooperat-
ing to find an optimum. Intuitively, HCH will ultimately perform at least as well
as one algorithm alone, and more often perform better. Each algorithm provides
information to the others to help them. An example of HCH based on parallel
EDAs is the island model [34, 35].

In Talbi’s taxonomy GA-EDA is heterogeneous because different metaheuristics
are used; global because the algorithm search the whole state space, and general
because both, GAs and EDAs, solve the same target optimization problem (HCH
algorithm).

3 Hybrid GA-EDA Algorithm

Hybrid GA-EDA are new algorithms based on both techniques [33]. The original
objective is to get benefits from both approaches. The main difference from these
two evolutionary strategies is how new individuals are generated. These new indi-
viduals generated on each generation are called offspring. On the one hand, GAs use
crossover and mutation operators as a mechanism to create new individuals from the
best individuals of the previous generation. On the other, EDAs builds a probabilistic
model with the best individuals and then sample the model to generate new ones.

3.1 Introduction

Our new approach generates two groups of offspring individuals, one generated by
the GA mechanism and the other by EDA one. Populationp+1 is composed of the best
overall individuals from (i) the past population (Populationp), (ii) the GA-evolved
offspring, and (iii) EDA-evolved offspring.
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Fig. 1. Hybrid Evolutionary Algorithm Schema

The individuals are selected based on their fitness function. This evolutionary
schema is quite similar to Steady State GA in which individuals from one population,
with better fitness than new individual from the offspring, survive in the next one. In
this case we have two offspring pools. Figure 1 shows how this model works.

3.2 Participation Functions

In this approach an additional parameter appears, this parameter has been called Par-
ticipation Function. Participation Function provides a ratio of how many individuals
are generated by each mechanism. In other words, the size of GA and EDA offspring
sets. The size of these sets also represents how each of these mechanisms participates
on the evolution of the population. These ratios are only a proportion for the number
of new individuals each method generates, it is not a proportion of individuals in the
next population, which is defined by the quality of each particular individual. If a
method were better than the other in terms of how it combines the individuals, there
would be more individuals from this offspring set than from the other.

The following alternatives for Participation Functions are introduced:

Constant Ratio (x% EDA / y% GA)

The percentage of individuals generated by each method is constant during all the
generations.
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Alternative Ratio (ALT)

On each generation it alternates either GA or EDA generation method. If the genera-
tion is an even number GA mechanism generates all offspring individuals, if it is an
odd number, it is the EDA method.

Incremental Ratio (EDA++ and GA++)

The partition ratio for one of the mechanism increases from one generation to the
other. There are two incremental Participation Functions, GA Incremental Function
and EDA Incremental Function. The ratio is defined by the formula3:

i− ratio =
gen

M + gen
(1)

where,
i− ratioGA = 1 − i− ratioEDA (2)

Dynamic Ratio (DYNAMIC)

The previous functions do not take into account the quality of the evolution methods
they are merging. There is no simple method that outperforms the other in all the
cases and a static Participation Function could lead toward the same problem. A
constant ratio function, like 50% EDA / 50% GA could balance the benefits and the
problems from each approach, but if, for one problem, GAs do not provide good
individuals, the former Participation Function would waste computational resources
dealing with genetic operators and fitness evaluations for individuals that would not
improve the overall population.

As a difference with the previous Participation Functions that are static and de-
terministic, we also propose a dynamic adaptative Participation Function. The idea
is to have a mechanism that increases the participation ratio for the method which
happens to generate better individuals. This function evaluates each generation con-
sidering the possibility to change the participation criterion as defined by the ratio
array.

This function performs according to the algorithm in Fig. 2.
In Fig. 2 avg score represents an array of the average fitness score of the top

25% of the individual generated by each of the offspring methods. base is the av-
erage fitness of the first generation. dif represents the relative difference in terms
of improvement that the best method has compared with the other. ADJUST is
a constant that defines the trade-off between these two methods when one of them
performs better than the other (5% in our experimentation).

This algorithm starts with 50%/50% ratio distribution between the two methods.
On each generation the best offspring individuals from each method are compared

3 gen is the number of the current generation and M , called the Mid-point, represents at
which generation the ratio is 50%/50%. Participation Function is 0 at the first generation
and never reaches 1
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diff=(MAX(avg score[GA],avg score[EDA])-base) /

(MIN(avg score[GA],avg score[EDA])-base);

if (avg score[GA]>avg score[EDA]) {
ratio inc=ratio[EDA] * ADJUST * dif;

ratio[GA] += ratio inc;

ratio[EDA] = 1.0 - part[GA];

}
else if (avg score[GA]<avg score[EDA]) {

ratio inc=ratio[GA] * ADJUST * dif;

ratio[EDA] += ratio inc;

ratio[EDA] = 1.0 - part[GA];

}
Fig. 2. Pseudocode of Dynamic Participation Function

and the wining method gets a 5% of the opposite method ratio (scaled by the amount
of relative difference between the methods, dif variable). This mechanism provides
a contest-based DYNAMIC function in which methods are competing to get higher
ratios as they generate better individuals.

4 Binary-encoded Problems

Part of the experiments have been performed considering six different binary-
encoded problems:

❶ The MaxBit problem.
❷ Two deceptive tramp functions.
❸ A Feature Subset Selection wrapper approach for a classification problem.
❹ The Holland Royal Road function.
❺ One Satisfiability (SAT) problem.

On the figures, which represent the experiments, it is shown the results using five
different constant ratio functions: CONST 0.00 (0%GA / 100%EDA, pure EDA al-
gorithm), CONST 0.25 (25%GA / 75%EDA), CONST 0.50 (50%GA / 50%EDA),
CONST 0.75 (75%GA / 25%EDA) and CONST 1.00 (100%GA / 0%EDA, pure
GA). The best of these five constant Participation Functions is included also in the
second figure of the experiment, as well as the four variable Participation Functions:
ALT (Alternative Function), GA++ (Incremental GA function), EDA++ (Incremen-
tal EDA function), and DYNAMIC (Dynamic Participation Function).

The proposed hybrid algorithm is composed of the simplest versions of both
GA and EDA components. In this sense a single bit-string chromosome (for binary-
encoded problems) and real string (for continuous problem) have been used to code
all the problems. GA uses Roulette Wheel selector, one-point crossover, flip muta-
tion (with probability 0.01) and uniform initializer. EDA uses the Univariate Mar-
ginal Distribution Algorithm (UMDA) [30] in discrete problems and the continuous
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version (UMDAc) [22] in continuous problems. The overall algorithms generate an
offspring twice the size of the population. Depending on the ratios provided by the
Participation Function, this offspring is then divided between the two methods. The
composition of the new population is defined by a deterministic method, selecting the
best fitness scores from the previous population and both offspring sets. The stopping
criteria is quite straightforward, we stop when the difference of the sum of the fitness
values of all individuals in two successive generations is smaller than a predefined
value.

The experiments have been executed ten times and the average of these execu-
tions are presented. Several population sizes have been tested, but only the most
representative size has been included. All the experiments have been performed in
an 8-nodes cluster of bi-processors with Intel Xeon 2.4Ghz with 1GB of RAM and
Gigabit network running Linux 2.4.

In most cases we have applied the Mann-Whitney statistical test to compare the
results achieved by the algortihms. The fitness values of the best solutions found in
the search are used for this purpose.

It is important to highlight that the use of different individual representations to
the ones here used, can guide to very different results.

4.1 The MaxBit Problem

Definition

We try to obtain the maximum of the function defined as:

fM256(x) =
∑256
i=1 xi
n

xi ∈ {0, 1}
fM256(x∗) = max(fM256(x))

This problem is a typical benchmark function to evaluate the performance of
evolutionary algorithms and the global maximum is found in 1.

Results

We have done this experiment using a population size of 100 individuals. Figure 3a
shows that the performance of the pure genetic algorithm is very poor, while EDA
outperforms all the constant Participation Functions, although these other functions
also reach the optimum value.

Variable Participation Functions (see Fig. 3b) also succeed in finding the max-
imum but with few more iterations to converge. Dynamic Participation Function is
the second best approach.

This problem shows a lineal independence among the genes of each of the in-
dividuals. EDA profits from this characteristic better than any other Participation
Function. It should be considered that this feature is not quite realistic when consid-
ering real-world problems.



GA-EDA: A New Hybrid Cooperative Search Evolutionary Algorithm 195
M

a
x

B
it

0
,6

0
,6

5

0
,7

0
,7

5

0
,8

0
,8

5

0
,9

0
,9

51

1
9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

G
e
n

e
ra

ti
o

n
s

Fitness
C

O
N

S
T

0
.0

0

C
O

N
S

T
0
.2

5

C
O

N
S

T
0
.5

0

C
O

N
S

T
0
.7

5

C
O

N
S

T
1
.0

0

M
a

x
B

it

0
,6

0
,6

5

0
,7

0
,7

5

0
,8

0
,8

5

0
,9

0
,9

51

1
4

7
1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

G
e
n

e
ra

ti
o

n
s

Fitness

C
O

N
S

T
0
.0

0

A
L
T

E
D

A
+

+

G
A

+
+

D
Y

N
A

M
IC

F
u

ll
y

D
e

c
e

p
ti

v
e

f2

2
5
0

2
5
5

2
6
0

2
6
5

2
7
0

2
7
5

2
8
0

2
8
5

2
9
0

2
9
5

3
0
0

1
4

7
1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

G
e
n

e
ra

ti
o

n
s

Fitness

C
O

N
S

T
0
.0

0

C
O

N
S

T
0
.2

5

C
O

N
S

T
0
.5

0

C
O

N
S

T
0
.7

5

C
O

N
S

T
1
.0

0

F
u

ll
y

D
e

c
e

p
ti

v
e

f2

2
5
0

2
5
5

2
6
0

2
6
5

2
7
0

2
7
5

2
8
0

2
8
5

2
9
0

2
9
5

3
0
0

1
4

7
1

0
1

3
1

6
1

9
2

2
2

5
2

8
3

1
3

4
3

7
4

0
4

3
4

6
4

9
5

2
5

5

G
e
n

e
ra

ti
o

n
s

Fitness

C
O

N
S

T
0
.7

5

A
L
T

E
D

A
+

+

G
A

+
+

D
Y

N
A

M
IC

-
a
-

-
b

-

-
c
-

-
d

-

F
ig

.3
.M

ax
B

it
pr

ob
le

m
so

lv
ed

w
ith

-a
-

co
ns

ta
nt

Pa
rt

ic
ip

at
io

n
Fu

nc
tio

ns
an

d
-b

-
va

ri
ab

le
Pa

rt
ic

ip
at

io
n

Fu
nc

tio
ns

an
d

Fu
lly

D
ec

ep
tiv

e
f2

so
lv

ed
w

ith
-c

-
co

ns
ta

nt
Pa

rt
ic

ip
at

io
n

Fu
nc

tio
ns

an
d

-d
-

va
ri

ab
le

Pa
rt

ic
ip

at
io

n
Fu

nc
tio

ns



196 V. Robles et al.

4.2 4-bit Fully Deceptive Function

Definition

Deceptive trap functions are used in many studies of GAs because their difficulty
is well understood and it can be regulated easily [7]. We have used the 4-bit fully
deceptive functions of order 2 and order 3, defined in [44].

These deceptive functions (fD2 and fD3) are 40 bit long maximization problems,
and are comprised of 10 sub-problems, each 4 bits longs. The sub-problems evaluate
4 bits using the following lookup table shown in Table 1. Thus, the global maximum
is 300.

Table 1. Evaluation of four bits for 4-bit fully deceptive function

Evaluation Evaluation
Chromosome Order 2 Order 3 Chromosome Order 2 Order 3
1111 30 30 0000 28 10
1100 8 5 0101 16 5
1110 6 0 0001 26 25
1101 4 0 0110 14 5
1011 2 0 0010 24 26
0111 0 0 1001 12 5
0011 18 5 0100 22 27
1010 10 5 1000 20 28

Results

These problems have been solved with a population size of 250 individuals.
In both problems GAs get a performance better than EDAs, with p-value< 0.001.

Nevertheless in fD2 CONST 0.75 with p-value = 0.649 and Dynamic Participation
Function with p-value = 0.649 slightly improve the results of pure GA algorithms.
In fD3 CONST 0.50 with p-value = 0.811 and Dynamic Participation Function with
p-value = 0.257 also slightly improve to GAs.

Fully deceptive functions are problems designed to get GAs into trouble be-
cause the fitness values of the points in the neighborhood of the optimal values
are worse than points located far away. This characteristic penalizes EDAs more
severely, which are prone to fall into the deceptive tramps due to the combination
method used to generate new individuals (distribution of single genes in the individ-
ual encoding).

The combination of both techniques performs better because once the mutation
and crossover operators have reached the optimal value for a subproblem, no mu-
tation will break this building block afterwards. The performance of the different
constant or variable Participation Functions is not the same based on the particular
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characteristics of the deceptive tramp. DYNAMIC seems to perfectly adapt the par-
ticipation ratio in order to balance GA and EDA recombination techniques to deal
with these problems.

4.3 Feature Subset Selection

Definition

Feature Subset Selection (FSS) [20] is a well-known task in the Machine Learning,
Data Mining, Pattern Recognition and Text Learning fields. FSS formulates as fol-
lows: Given a set of candidate features, select the best subset under some learning
algorithm. As the learning algorithm, we are going to use naı̈ve Bayes [9,13]. A good
review of FSS algorithm can be found in [26]. To test the FSS problem we will use
the chess dataset from the UCI repository [31], which has a total of 36 features and
699 instances.

Results

We have done this experiment using a population size of 1000 individuals. Figure
4c shows that pure GAs are a better option than EDAs for the FSS problem, with p-
value = 0.004. The other constant Participation Functions do not reach results as good
as GAs. For instance, with respect to CONST 0.25, the best constant Participation
Function, the Mann-Whitney p-value is 0.197.

On the other hand, Fig. 4d also shows that variable Participation Functions are
close to the results of GAs, being DYNAMIC the best of these functions, with p-
value = 0.819. Nevertheless, the results achieved by GAs are the best for this prob-
lem.

It is important to consider that the number of generations is quite low and the
complexity of the problem is not very significant. A detailed study of more complex
FSS scenarios should be addressed to confirm the performance of the different al-
gorithms on this problem. The morphology of the problem, the dataset, its features
and the relationships among them, is very relevant to evaluate the performance of the
algorithms in them.

4.4 240 bit Holland Royal Road - JHRR

Definition

The Holland Royal Road functions were introduced in [29]. They were designed as
functions that would be simple for a genetic algorithm to optimize, but difficult for a
hillclimber. In [19], Holland presented a revised class of Royal Road functions that
were designed to create insurmountable difficulties for a wider class of hillclimbers,
and yet still admissible to optimization by a GA.
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The Holland Royal Road function takes a binary string as input and produces
a real value. The function is used to define a search task in which one wants to
locate strings that produce high function values. The string is composed of 2k non-
overlapping continuous regions, each of length b+g. With Holland’s defaults, k = 4,
b = 8, g = 7, there are 16 regions of length 15, giving an overall string length of
240. Each region is divided into two non-overlapping pieces. The first, of length
b, is called the block, and the second, of length g, is called the gap. In the fitness
calculation, only the bits in the block part of each region are considered. The fitness
calculation proceeds in two steps: the PART calculation, that considers each block
individually and, the BONUS calculation, created to reward completed blocks and
some combinations of completed blocks.

Results

We have done this experiment using a population size of 500 individuals. Holland
Royal Road problem, as shown by Fig. 5a, is a very complex scenario for EDAs. This
problem was designed to highlight and compare the benefits of GAs to hill climbers
or other optimizers that are neighborhood-oriented search methods. Although GAs
are well-suited for this problem, a combination of 25% EDAs and 75% GAs gets
better results, with Mann-Whitney p-value = 0.0353. As one of the benefits men-
tioned in the introduction of this technique, hybrid algorithms improves the results
by using two different exploratory techniques which increase the probability to find
the optimal values as the range of possible movements is more complete.

In this case, ALT Participation Function outperforms all the other functions,
including CONST 0.75 with p-value = 0.306. Figure 5b presents how GA++ also
performs better than CONST 0.75 with less number of generations and a
p-value = 0.3267. ALT gets more iterations to converge (∼ 10% more) which means
that GA and EDA offsprings change a little more when they are near to the optimum
value and then the exploration is more exhaustive.

4.5 SAT problem

Definition

The goal of the satisfiability (SAT) problem [36] is to attempt to find an assignment
of truth values to the literals of a given Boolean formula, in its conjunctive normal
form, that satisfies it. In theory, SAT is one of the basic core NP-complete problems.
In practice, it has become increasingly popular in different research fields, given
that several problems can be easily encoded into propositional logic formula such
as planning, formal verification, knowledge representation and so on. In GAs and
EDAs the SAT problem can be represented using binary strings of length n in which
the i-th bit represents the true value of the i-th propositional variable in the formula.
The fitness function used is the fraction of clauses satisfied.
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fSAT (x) =
1
C

C∑
c=1

s(xc)

s(xc) =

{
1 if the clause c is satisfied

0 in other case

In previous equation C denotes the number of clauses that the formula has. To
test the developed algorithm, the SAT instances 4blocksb.cnf was used since they
are widely-known and easily available from the SATLIB benchmark4. 4blocksb.cnf
contains 24758 clauses, 410 propositional variables and is satisfiable.

Results

SAT problem is one of the best scenarios for EDAs (Fig. 5c) by getting the top results
using less number of generations. The difference, when compared with GAs, are very
significant with a p-value < 0.001. This problem has been solved with a population
size of 1000 individuals.

A very interesting issue is that as the constant ratio varies the progression of the
algorithm seems to be the same with a gap between each of the graphs. This means
that the lack of accuracy shown by the GA components is located on the earliest
stages of the evolutionary process (the first iterations). The evolution curves are quite
similar after these first generations.

None of the constant or variable Participation Functions, see Figs. 5c and 5d,
reach the same fitness value as pure EDAs. Although their performance is not as bad
as GAs, their p-values are in all the cases smaller than 0.001.

Dynamic Participation Function goes quite slowly on the first generation. This
could drive to a new definition of this Dynamic Participation Function, with more
aggressive behavior in early generations and more conservative changes later.

5 Continuous Problems

The other part of the experiments have been performed considering ten continuous
problems:

➀ Five well-known continuous optimization problems: Branin RCOS function,
Griewank function, Rastrigin function, Rosenbrock function and Schwefel’s
problem. [16, 41]

➁ A new synthetic problem has been also defined (proportional Participation Func-
tion).

➂ A continuous version of the MaxBit problem.
➃ A real-coded solution for three different TSP problems.

4 http://www.satlib.org/benchm.html
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5.1 Branin RCOS Function

Definition

Results

This problem is a two-variable continuous problem with three global minimum and
no local minimum. The problem is defined as follows [5]:

fB(x1, x2) =
(
x2 − 5

4π2
x2

1 +
5
π
x1 − 6

)2

+ 10
(

1 − 1
8π

)
cos(x1) + 10

−5 < x1 < 10
0 < x2 < 15

The global optimum for this problem is 0.397887 that is reached in the points
(x1, x2) = (−π, 12.275), (π, 2.275), (9.42478, 2.475).

This problem is considered easy not only because of the number of variables, but
the small chance to miss the basin of the global minimum in a global optimization
procedure. This is due to the probability of reaching the global optimum using local
optimization methods, started with a small number of random points, is quite high.

This problem was solved using a population size of 150 individuals.
Branin is a very simple problem where in few generations all the algorithms

converge. Figure 6 shows CONST 0.25 is the best function, and GAs a very poor
option to solve this problem. CONST 0.25 aheads EDA with p-value = 0.063 and
CONST 0.50 with p-value = 0.339.

In this problem GA++ performs similarly to EDA. This is due to the reduced
number of generations which represents the participation share of GAs which do
not increase too fast to recover the majority of individuals generated by the EDA
mechanism. See Fig. 6b.

The simplicity of this function biases the performance of the algorithm towards
the trend addressed by the very first generations. Few modifications are achieved af-
ter these generations. For the DYNAMIC function, this could be a good justification
to define a more radical variations of the first iterations of the algorithm.

5.2 Griewank Function

Definition

This problem has ten variables with a unique global optimum with many (O(103))
local minima nearby.

fG10(x) = 1 +
1
d

n∑
i=1

x2
i −

n∏
i=1

cos
(
xi√
i

)
d = 4000;n = 10
−500 < xi < 500
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The global minimum for this problem can be found in the solution xi = 0, i =
1, . . . , n with a fitness value of 0.

It is considered a moderately difficult optimization problem, because of its non-
separable characteristic. Non-separable means that there is non-linear interaction
among variables.

Results

This problem was solved using a population size of 250 individuals.
In this problem the results achieved by EDAs are better than the ones provided by

GAs with p-value< 0.001. This feature is emphasized when it is shown even a small
participation ratio of EDAs increases the fitness obtained by the overall algorithm,
as shown by Fig. 6c.

In Fig. 6d, a very similar performance of the variable Participation Functions can
be seen. There is almost no significant difference on any of the variable Participation
Function. For instance, between CONST 0.75 and EDA++ we have p-value = 0.853
and between CONST 0.75 and DYNAMIC we have p-value = 0.795.

It is interesting that this problem shows an interaction between variables which
could lead EDA evolution, when using UMDA, to suboptimal values, with higher
probability than GAs. Actually the dependence factor is not very significant as
the sum of the quadratic terms of the first part of the function, which is lineal-
independent, is much more significant than the product of values between [−1, 1].

5.3 Rastrigin Function

Definition

It is a scalable, continuous, and multimodal function that must be minimized. It is
the result of modulating n-dimensional sphere equation with a · cos(ωxi).

fRa5(x) = a · n+
n∑
i=1

(
x2
i − a · cos(ωxi)

)
a = 10;ω = 2π;n = 5
−5.12 < xi < 5.12

The global minimum for this problem can be found in the solution xi = 0, i =
1, . . . , n with a fitness value of 0.

Results

This problem was solved using a population size of 1000 individuals.
Rastrigin (Fig. 7a) function has no lineal dependency among the variables, but

the performance of EDAs is very poor. Near the optimum value there are many lo-
cal optimum and EDAs seems to be very sensitive to this characteristic. The best
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constant ratio function is CONST 0.50, with a p-value < 0.001 respect to GA. This
means that pure GA could be improved by the help of EDAs even if this method is
not very well-suited by itself.

In Fig. 7b, we can see that DYNAMIC is able to provide the best participation
ratio to outperform CONST 0.50 with a p-value = 0.006 and the other variable Par-
ticipation Functions.

5.4 Rosenbrock Function

Definition

It is a continuous, non-separable, and unimodal function. It has the global minimum
located in a steep parabolic valley with a flat bottom [37]. This issue represents a big
challenge to the optimization process.

fRo10(x) =
n−1∑
i=1

(
100 · (xi+1 − x2

i )
2 + (xi − 1)2

)
n = 10

−500 < xi < 500

The global minimum for this problem can be found in the solution xi = 0, i =
1, . . . , n with a fitness value of 0.

Results

This problem was solved using a population size of 1000 individuals.
In Fig. 7c, EDAs perform much better than the other approaches, and GAs are

far worse than any Participation Function with at least a small EDA ratio.
Variable Participation Functions on this problem are not better than pure EDAs.

It is very significant, as shown by Figure 7d, that performance of GA++ is much
better than EDA++. This is due to the small number of generations that represents a
more intensive participation of EDAs.

DYNAMIC does not perform very well. This can be explained in the same terms
previously used. In problems with few generations our Dynamic Participation Func-
tions has no time to balance the participation ratios of the algorithms.

5.5 Schwefel’s Problem

Definition

It is also a continuous unimodal function. Its difficulty also concerns the fact of
searching along the coordinate axes only gives a poor rate of convergence because
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function gradient is not oriented along the axes. As in the previous case global opti-
mum is surrounded by several local optimum in the neighborhood.

fS10(x) =
n∑
i=1

xi · sin(
√

|xi|)

n = 10
−500 < xi < 500

fS10(x∗) = min(fS10(x))

The global minimum for this problem can be found in the solution xi =
420.9687, i = 1, . . . , n with a fitness value of 0.

Results

This problem has been solved with a population of 250 individuals.
Schwefel’s problem is very difficult due to the large number of suboptimal points,

especially those near the global optimum. This feature drives EDAs to a very poor
performance, also due to the non-lineal relationships among the variables.

In Fig. 8a GAs is the best approach, much better than any other of the constant
ratio functions, although they are not able to find the optimal value in all of the cases.

All the results achieved by other than pure GA algorithms are not able to improve
the results reached after the first generations. Even GA++, which increments the ratio
of GA-based individuals, are very poor on this problem (see Fig. 8b). Many studies
have proved that significantly high mutation rates could help improve the results of
this problem.

5.6 Proportion Problem

Definition

This new function represents a model of similar real-world problems that deal with
the search of the correct proportions that should make it true that:

n∑
i=1

xi = 1 (3)

The fitness function is:

fP128(x) =
1
n

n∑
i=1

(
1 − |xi − x∗i |1/p

)

n = 128; p = 2;x∗i =
i

n·(n+1)
2

0 ≤ xi ≤ 1
fP128(x∗) = max(fP128(x))
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The objective of the function is to find the right proportion (represented by x∗),
with p-order distance function.

This problem is not difficult, as the distance function is separable and lineal. In
order to be compliant with the restriction expressed by Eq. 3 a Lamarckian correc-
tion is performed to the individual represented by x, instead of dropping malformed
elements.

xci =
xi∑n
i=1 xi

(4)

The individual xc substitutes the individual x in the population, before fitness cal-
culation is performed.

Results

This problem has been solved with a population of 250 individuals.
EDAs deal with this problem much better than any other constant functions. Be-

tween EDAs and CONST 0.25, the best constant function, the p-value is p-value <
0.001.

DYNAMIC slightly outperforms EDAs (with p-value = 0.185) and seems to
adapt perfectly to the characteristic of this problem (see Fig. 8d). EDA++ converges
prematurely due to the heavy ratio of the GA-based individuals.

5.7 The MaxBit Continuous Problem

Definition

This problem is a redefinition of the binary MaxBit problem previously presented.
The aim is to maximize:

fM12(x) =
∑n
i=1 xi
n

xi ∈ {0, 1};n = 12

In the continuous domain this problem is more complex, as the optimum value
of the function is located on the boundary of the search space.

Results

This problem has been solved with a population of 250 individuals.
Figures 9a and 9b contain the obtained results. All the constant and variable

Participation Functions perform in a very similar way reaching the global optimum
in almost the same number of generations. However, pure GAs, which converge after
more generation, only reach a suboptimal value.

MaxBit performance, as we can see, is very similar in both cases with continuous
and with bit-string individuals.
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5.8 TSP Continuous

Definition

The Travelling Salesman Problem (TSP) objective is to find the shortest route for
a travelling salesman who, starting from his home city, has to visit every city on a
given list precisely once and them return to his home city. The main difficult of this
problem is the immense number of possible tours: (n− 1)!/2 for n cities.

The TSP is a relatively old problem. It was documented as early as 1759 by
Euler, however not using that name, whose interest was in solving the knights’ tour
problem in chess. A correct solution would have a knight visit each of the 64 squares
of a chessboard exactly once on its tour. The term “traveling salesman” was first
used in 1932, in a German book written by a veteran traveling salesman. The RAND
CORPORATION introduced the TSP in 1948. The corporation’s reputation helped
to make the TSP a well-known and popular problem.

Although there are different alternatives to encode this problem, in this paper
individuals of population are represented by using vectors with real numbers. Thus,
we need a method to translate these real vectors to a valid tour for the TSP. In the
following table we see one of these translations.

In Table 2 we can see a 6-city example. In the original vector the generated real
numbers are between 3 and -3. The obtained tour will be an integer vector in which
each of the elements is the index after the values of the original vector are sorted.
Thus, the calculus of the fitness function of individuals is more complex to compute.

Table 2. Translation of an individual to a correct tour

Original vector: 1.34 2.14 0.17 0.05 –1.23 2.18
Resulting tour: 4 5 3 2 1 6

The following files have been used in the empirical study: The well known
Gröstel24, Gröstel48 and Gröstel120. These are files that can be obtained via web
or ftp in many sites. They represent the distances between 24, 48 and 120 imaginary
cities. They are often used in TSP problems to know the fitness of the algorithm we
use, and can be defined as a classical experiment in the TSP.

Results for Gröstel24 Problem

This problem has been solved with a population of 1000 individuals.
In the TSP problem of 24 cities (see Fig. 9c) the best algorithms are pure GA,

CONSTANT 0.75 and CONSTANT 0.50 (p-values > 0.9 between them). The worst
algorithm is EDA which presents a very poor performance.

In the variable Participation Functions (see Fig. 9d) obtained results are excellent,
being the DYNAMIC approach being better than GA with a p-value = 0.161.

Although it has a very good beginning because of the number of GA individuals
created in the first generations, the EDA++ approach presents bad results.
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Results for Gröstel48 Problem

This problem has been solved with a population of 1500 individuals.
The results obtained for 48 cities with the constant Participation Functions (see

Fig. 10a) are very similar to the previous ones, CONSTANT 0.75 and pure GAs be-
ing the best constant approaches, without statistical significance difference between
them.

However, in this case, in the variable Participation Functions (Fig. 10b), GA++
is similar to the DYNAMIC approach, with p-value = 0.722, but worse than CONST
0.75, with p-value = 0.147.

Results for Gröstel120 Problem

This problem has been solved with a population of 1500 individuals.
TSP with 120 cities is a very hard problem for heuristic optimization approaches

such as GAs and EDAs without the help of local optimization techniques. How-
ever, the obtained results are quite similar to the previous ones, GA being the best
approach with constant Participation Function, and GA++ the best with variable Par-
ticipation Function, without significant difference respect to GA (p-value = 0.7393).

6 Conclusion and Further Work

In this chapter we have proposed a new hybrid algorithm based on genetic and es-
timation of distribution algorithms. This new algorithm has been tested on a set of
different problems. Although the hybrid algorithm proposed is composed by the sim-
plest versions of both GA and EDA components, the experimentation shows it is re-
ally promising and competitive. In most of the experiments we reach the best of the
values found by GAs or EDAs or we even improve them. There is still a lot of further
future work. Here are some possibilities: Extend the implementation to support more
sophisticated individual representations, make new Participation Functions based on
statistical tests, implement a parallel version based on the island model or use more
complex GAs and EDAs in the hybrid solution.

6.1 Evolution of the Dynamic Participation Function

One interesting issue is to survey the evolution of the dynamic Participation Function
in the series of different experiments. This function, as we have seen, adjusts the
participation ratio depending on the quality of the individuals each of the methods is
providing. Indirectly, this measure could be used to evaluate the quality of each of
the methods across the continuous generations of an algorithm.

As we see in Fig. 11 the evolution of the dynamic functions are able to guide the
hybrid algorithms towards the best option, either GA, EDA or other constant ratio
Participation Functions. For example, in TSP, GAs outperforms clearly all the other
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Evolution of dynamic PF
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Fig. 11. Evolution of Dynamic Participation Function (Continuous)

constant ratio approaches, and DYNAMIC (with similar results) changes the partici-
pation ratio in this direction. A similar case is shown by Proportion. However, in this
case EDAs are the best algorithm. In other problems, with a best option between pure
EDAs and pure GAs, the Participation Function moves to find the correct balance in
order to improve the results of the overall algorithm.

On the other hand, for bit-string problems in Fig. 12, the dynamic Participation
Function has this general trend:

• On early generations GA performs better than EDAs, the exploratory technique
is able to find better individuals using the same input information (the last gener-
ation).
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Fig. 12. Evolution of Dynamic Participation Function (Bit-string)
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• When the algorithm is close to the optimum, EDAs generate the best solutions.
That is probably due to the mutation ratio, which is very useful to avoid local
optimum, but once the environment of the global solution is reached it drives
towards malformed individuals, far from the local optimum.

This trend is also shown, with small variations, by the continuous problems
shown before, in the case neither pure GAs nor pure EDAs are clear options. Al-
though special abnormalities are present, for example Rosenbrock is best solved by
EDAs, but DYNAMIC trend increases the participation ratio of GAs instead.

These trends of the fitness, provided by each of the methods, could be useful in
order to tune up either genetic and estimation of distribution algorithms by them-
selves. Updating mutation rate is one of the issues already considered by works such
as [2, 40].

6.2 Experiments Summary

On Tables 3 and 4, the summary of the results obtained by these experiments show
that hybrid algorithms, in most of the cases, are a better option than the pure EDA or
GA algorithms by themselves. Although there are specific problems in which EDA
(SAT, Proportion and Rosenbrock) or GA (FSS and Schwefel) are the best options,
hybrid algorithms show a competitive behavior. The opposite is not as common, as
there are experiments (like JHRR, Branin, Griewank, Rastrigin, and MaxBit Contin-
uous) in which neither EDAs nor GAs present good results compared to most of the
hybrid approaches.

Table 3. Result Summary Table

EDA CONST 0.25 CONST 0.50 CONST 0.75 GA
Problem Mean Gen Mean Gen Mean Gen Mean Gen Mean Gen

Max Bit 1 45 1 48 1 51 1 59 0,9793 115
Deceptive f2 280,0 28 289,8 62 296,4 45 298,2 42 297,6 38
Deceptive f3 272,4 68 296,5 74 298,6 51 298,3 41 298,2 40
FSS 0,8041 20 0,8059 22 0,8057 20 0,8057 20 0,8070 27
JHRR 12,85 43 20,09 130 20,75 111 20,99 92 19,37 74
SAT 47803,6 42 47800,1 44 47790,9 47 47752,7 51 47096,5 63
Branin –0,4035 19 –0,3999 19 –0,4006 19 –0,4235 19 –0,4513 19
Griewank 626,38 24 626,45 25 626,51 25 626,42 25 625,45 32
Rastrigin –3,69683 43 –0,06368 34 –0,00054 32 –0,00473 30 –0,10823 30
Rosenbrock –12403 21 –29197 21 –81222 22 –118522 22 –157107 23
Schwefel 1778,36 19 1863,85 20 1894,66 20 1862,60 20 2068,70 24
Proportion 0,9851 51 0,9810 51 0,9756 51 0,9473 19 0,9449 19
MaxBit Cont 0,9999 37 0,9999 37 1 36 1 35 0,9909 53
TSP 24 –2324,7 45 –1531,3 128 –1381,3 104 –1378,9 95 –1372,2 69
TSP 48 –15037,2 45 –8873 181 –6814,2 126 –6222,8 142 –6227,3 131
TSP 120 –41809,1 35 –34666,9 145 –22859,9 154 –19983,7 149 –19640,5 134
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Table 4. Result Summary Table

ALT GA++ EDA++ DYNAMIC
Problem Mean Gen Mean Gen Mean Gen Mean Gen

Max Bit 1 52 1 56 1 51 1 50
Deceptive f2 296,8 55 292,4 49 296,6 48 298,2 42
Deceptive f3 298,0 55 297,7 52 297,3 58 299,2 45
FSS 0,8057 21 0,8060 22 0,8059 21 0,8065 21
JHRR 21,48 121 21,33 82 18,40 105 20,88 97
SAT 47783,0 48 47745,9 47 47799,4 46 47798,7 50
Branin –0,4006 19 –0,4001 19 –0,4085 19 –0,4033 19
Griewank 626,42 25 626,47 25 626,49 26 626,42 25
Rastrigin –0,00159 33 –0,00027 32 –0,00472 31 –0,00005 30
Rosenbrock –70688 22 –36544 21 –366490 22 –73786 22
Schwefel 1826,47 19 1863,35 20 1874,48 20 1836,26 24
Proportion 0,9574 36 0,9659 36 0,9426 19 0,9851 54
MaxBit Cont 1 36 1 36 0,9999 37 1 35
TSP 24 –1371,6 93 –1378 95 –1522,5 95 –1351,3 78
TSP 48 –6962,8 169 –6413,1 128 –9484,5 127 –6641,9 113
TSP 120 –24875,1 159 –19457,4 159 –33759,5 121 –21327,8 147

In order to compare the results, for the experiments carried out, the relative po-
sition (ranked-based) has been computed. This ranking has been developed using
fitness-driven criteria. The best fitness is #1, next one #2, and so on. Using this
method, the average ranking has also been computed:

avg rank(PF ) =
∑N
i=1 rank(PF, i)

N
(5)

being rank(PF, P ) the relative ranking of Participation Function PF in the problem
P .

DYNAMIC is the best Participation Function, as can be seen on Table 5. Another
interesting result is that CONST 0.50 also behaves quite well. Among the worst re-
sults are both pure EDAs and pure GAs. Of course, the set of experiments is not rep-
resentative of all the possible optimization problems, but have been selected to cover
a wide spectrum of possible real-world scenarios. In the performance of EDA++ and
GA++, we should consider that several experiments do not last for many genera-
tions, thus the influence of the first generations biases the results achieved by these
approaches.

The experimentation and research perspective of hybrid methods is very promis-
ing, and several issues are still open in terms of alternatives of the presented Partici-
pation Functions, using of more complex EDAs approaches, hybridization with local
heuristics, three or multi hybrid algorithms (using more than one GA or one EDA
algorithm), and parallel definition of the hybrid algorithms.
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Table 5. Average ranking of the Participation Functions

Participation Function avg rank

EDA 6,625
CONST 0.25 4,9375
CONST 0.50 3,8125
CONST 0.75 4,4375
GA 5,4375
ALT 4,25
GA++ 3,5
EDA++ 5,6875
DYNAMIC 3,0625
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