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Abstract. The naive Bayes is a competitive classifier that makes strong
conditional independence assumptions. Its accuracy can be improved by
relaxing these assumptions. One classifier which does that is the semi-
naive Bayes. The state-of-the-art algorithm for learning a semi-naive
Bayes from data is the backward sequential elimination and joining
(BSEJ) algorithm. We extend BSEJ with a second step which removes
some of its unwarranted independence assumptions. Our classifier out-
performs BSEJ and five other Bayesian network classifiers on a set of
benchmark databases, although the difference in performance is not sta-
tistically significant.

Keywords: semi-naive Bayes, tree augmented naive Bayes, Bayesian
network classifiers.

1 Introduction

A classifier is a function which uses a set of features of an object to assign it to
a class. The naive Bayes classifier [1,2] is an effective probabilistic classifier. It
assumes that the features are independent given the class. This assumption is
violated in many domains and more accurate classification can often be obtained
by avoiding unwarranted independence assumptions [3]. A common approach to
this is to augment naive Bayes by accounting for interactions between features,
obtaining an augmented naive Bayes model [3]

Semi-naive Bayes [4] is one such augmented naive Bayes classifier. It assumes
that correlations exist only inside disjoint subsets of features. No independence
assumptions are made within a feature subset, i.e., each feature directly depends
on every other. The best-known algorithm for learning a semi-naive Bayes is the
backward sequential elimination and joining (BSEJ) algorithm [4]. This algo-
rithm tends to capture few correlations among the features [3].

We set out to extend theBSEJ algorithmwith a second stepwhich removes some
of its independence assumptions that are notwarrantedby the data.We use tests of
conditional independence to identify the unwarranted independences.Weaugment
the semi-naive Bayes model with a restricted set of interactions. This procedure is
inspired by the selective tree augmented naive Bayes algorithm [5].

We report an empirical comparison of our proposal with the BSEJ algorithm
and with five other reference Bayesian network classifiers.
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This paper is organized as follows. Sections 2 introduces Bayesian network
classifiers. Section 3 explains the backward sequential elimination and joining
(BSEJ) algorithm. Section 4 describes the selective tree augmented naive Bayes
algorithm. Section 5 explains the proposed extension of BSEJ. Section 6 reports
the empirical evaluation of our proposal. Section 7 sums the paper up.

2 Bayesian Network Classifiers

We use upper-case letters to denote variables (X) and lower-case letters (x)
to denote variable values. We use boldface letters to denote multidimensional
vectors. A problem domain is described with n predictive variables or features
X = (X1, . . . , Xn) and a class variable C. In our setting, all variables are discrete
with xi ∈ {1, . . . , ri} and c ∈ {1, . . . , rc}. A Bayes classifier assigns a vector of
feature values x to the most probable class, i.e.

c∗ = argmax
c

p(c|x).

A Bayesian network classifier [3] uses a Bayesian network [6] to encode p(c,x).
A Bayesian network consists of two components: a directed acyclic graph G and
a set of parameters Θ. Each node V in the graph corresponds to a random
variable and the arcs represent direct dependencies between the variables. G en-
codes the conditional independence assumptions about the variables: a variable
V is independent of its nondescendants given Pa(V ), its parents in G. The pa-
rameters Θ quantify the network by specifying the local probability distribution
for each V , p(v|pa(v)), where pa(v) is a value of the set of variables Pa(V ). A
Bayesian network classifier assigns x to the class that maximizes p(c,x) since
argmaxc p(c,x) = argmaxc p(c|x).

The best-known Bayesian network classifier is the naive Bayes. It assumes
that the features are conditionally independent given the class (see Fig. 1a for
its network structure), factorizing p(c,x) as

p(c,x) = p(c)

n∏

i=1

p(xi|c).

This assumption is violated in many domains and more accurate classification
can often be obtained by avoiding unwarranted independence assumptions [3]. A
common approach to this is to augment naive Bayes’ structure with arcs between
features, obtaining an augmented naive Bayes model [3].

3 Semi-naive Bayes

The semi-naive Bayes (SB) is an augmented naive Bayes classifier. It assumes
that correlations exist only inside disjoint subsets of features. No independence
assumptions are made within a feature subset, i.e., each feature depends directly
on every other. This means that the structure of a naive Bayes is augmented with
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(a) (b) (c)

Fig. 1. Examples of Bayesian network classifier structures. Naive Bayes (a), semi-naive
Bayes (b), and augmented semi-naive Bayes (c)

an arc between every pair of features in the same feature subset. For simplicity
of representation, we depict the dependencies within a feature subset with a
compound node corresponding to the Cartesian product of the features within
the subset (see Fig. 1b). Unlike naive Bayes, the semi-naive Bayes model does
not necessarily include all the features of a domain. According to the semi-naive
Bayes,

p(c,x) = p(c)
∏

j∈Q

p(xSj |c), (1)

where Sj ⊆ {1, . . . , n} is the j-th feature subset, Q = {1, . . . ,K} is the set of in-
dices of feature subsets, and the following conditions hold: ∪j∈QSj ⊆ {1, 2, ..., n}
and Sj ∩ Sl = ∅, j �= l.

The number of possible partitions of the feature set into disjoint subsets grows
faster than exponential in n. That justifies the use of heuristics for learning a
semi-naive Bayes from data. The backward sequential elimination and joining
(BSEJ) [4] algorithm is the state-of-the-art algorithm for this purpose. It uses
a greedy search which, starting from the structure of a naive Bayes (where each
feature is a singleton feature subset), chooses between two operations in each
step:

– Removing a feature Xi from the model
– Creating a new feature subset XSk

by merging two subsets, XSj and XSj

A cross-validation estimate of predictive accuracy is used to evaluate the candi-
date operations. If no operation improves the accuracy of the current structure,
the search stops.

4 Selective Tree Augmented Naive Bayes

The tree augmented naive Bayes (TAN) augments the naive Bayes with a tree
over the features. That is, it conditions every feature except one (the root of the
tree) on exactly one other feature. The augmenting tree which maximizes the
likelihood of the TAN can be efficiently found using Chow-Liu’s algorithm.

The selective tree augmented naive Bayes (STAN) may remove less than n−1
conditional independence assumptions of the naive Bayes. Before learning the
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augmenting tree, STAN discards dependencies that are not statistically signifi-
cant. It may occur that a subset of features has no warranted conditional depen-
dencies on other features. In that case there can be no arcs between this feature
subset and the other features, and the augmenting structure will be a forest (a
set of trees) rather than a tree.

5 Augmented Semi-naive Bayes

We would like to know if correlating some of the disjoint (and conditionally
independent) feature subsets of a semi-naive Bayes can improve its predictive
accuracy. Just before outputting the final semi-nave Bayes model, the BSEJ
algorithm considers correlating each pair of feature subsets and finds that no
correlation improves its estimate of accuracy. We consider correlating a pair of
feature subsets if their conditional dependency is statistically significant. We
augment the semi-naive Bayes with a tree or a forest over the feature subsets
(see Fig. 1c), removing at most K − 1 unwarranted independence assumptions,
where K is the number of feature subsets. We select the augmenting edges that
maximize the likelihood of the model. Although correlating any feature subset
pair of the final semi-naive Bayes did not improve the accuracy estimate of BSEJ,
it is possible that removing several, unwarranted independence assumptions at
once can improve prediction. In any case, augmenting the semi-naive Bayes in
this way is fast compared to BSEJ’s time complexity.

The augmented semi-naive Bayes (ASB) factorizes p(c,x) as

p(c,x) = p(c)
∏

i∈R

p(xSi |c)
∏

i∈Q\R
p(xSi |xj(i), c),

where Q and Si are defined as in Equation (1), R ⊆ Q is the set of indices of
feature subsets that are conditioned only on the class variable (root(s) of the
trees(s)), and {Xj(i)} = Pa(XSi) \ C.

To test if two sets of features, XSi and XSj , are conditionally independent
given the class we use the χ2 test of conditional independence (see, e.g., [7]).
If the null hypothesis of conditional independence holds, then 2NI(XSi ;XSj |C)
asymptotically follows the χ2 distribution with (rSi−1)(rSj−1)rc degrees of free-
dom, whereN is the number of cases in our data sample, and rSi =

∏
k∈Si

ri. The

χ2 approximation is not reliable when there are little cases in the contingency
table over XSj , XSj , and C [8]. Following [9], we consider the χ2 approximation
to be reliable if the average cell count in the contingency table is at least 5.
Also following [9], we assume conditional independence when this condition is
not fulfilled. That is, we do not remove the independence assumption for a pair
of feature subsets if the test of their conditional independence is unreliable.

The procedure for finding the augmenting structure is based on Chow-Liu’s
algorithm. First, we build a complete undirected graph G = (K,A). Each vertex
j ∈ K corresponds to XSj , a subset of features correlated in the semi-naive
Bayes, and there is an edge between every two nodes i and j such that cor-
responding feature subsets, XSi and XSj , are not conditionally independent
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according to the χ2 test. As G is not necessarily a complete graph it is possibly
not connected. In this case, the augmenting structure that maximizes the likeli-
hood is not necessarily a tree but a maximum weighted forest (MWF) [10]. The
MWF is given by the union of the maximum weighted spanning trees (MWST)
for each connected component of G. This union of MWSTs can be found by
applying Kruskal’s algorithm on G (there is no need to run it separately for each
connected component of G) [10].

Our procedure for augmenting the semi-naive Bayes is similar to the STAN
algorithm for augmenting the naive Bayes. The differences are that ASB can
remove independence assumptions between non-singleton sets of features and
that it uses the standard procedure for testing for conditional independence (the
one described in [7]). Namely, it seems that the authors of STAN were not aware
of the test for conditional independence and therefore they developed and used
a heuristic based on the χ2 test of independence.

The full augmented semi-naive Bayes algorithm is specified more formally in
Algorithm 1.

Algorithm 1. Augmented semi-naive Bayes

1. B ← a semi-naive Bayes model
2. S ← a partition of features such that ∪K

j=1Sj = S and XSj is a set of features
correlated in B

3. rSj ←
∏

l∈Sj
rl, j ∈ {1, . . . ,K}

4. G← (K,E), a complete undirected graph with nodes K and edges E
5. for all i, j = 1, . . . ,K,i < j do
6. if N

rSj
rSi

rc
≥ 5 and 2NI(XSi ;XSj |C) passes the X2

(rSi
−1)(rSj

−1)rc
test at sig-

nificance level α then
7. weight of edge i—j in E ← I(XSi ;XSj |C)
8. else
9. remove edge i—j from E
10. end if
11. end for
12. T← maximum weighted forest obtained by applying Kruskal’s algorithm on G
13. T′ ← for each T ∈ T choose a root node at random and direct edges away from it
14. for all i, j such that arc i→ j ∈ T′ do
15. augment B with arcs from each Xl in XSi to every Xk in XSj

16. end for

6 Experimental Evaluation

6.1 Setup

We compare the augmented semi-naive Bayes (ASB) algorithm to six reference
algorithms for learning Bayesian network classifiers. Two of those algorithms
learn a selective naive Bayes (SNB) [11] model. The forward sequential selection
(FSS) algorithm [11] performs a greedy search guided by predictive accuracy
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while the filter forward sequential selection (FFSS) omits from the model the
features that are deemed independent of the class by the χ2 independence test.
Besides SNB, we consider the naive Bayes (NB), the tree augmented naive Bayes
(TAN), the selective tree augmented naive Bayes (STAN), and the backward
sequential elimination and joining (BSEJ) algorithm.

We compare the classifiers over 14 natural domains from UCI repository [12]
(see Table 1). Prior to classifier comparison, we removed incomplete rows and
discretized numeric features with the MDL method [13].

For the BSEJ and the FSS, we used 5-fold stratified cross-validation to esti-
mate predictive accuracy. For statistical tests of (conditional) independence we
used a significance level of 0.05 and applied the criterion of χ2 approximation
reliability. In FFSS, if a test of independence of Xi and C is not reliable, then
independence is assumed and Xi is omitted from the model. For STAN, we used
the same test of conditional independence as for ASB. Laplace’s correction of
maximum likelihood was used to estimate parameters. We estimated predictive
accuracy of the classifiers with 5 repetitions of 5-fold stratified cross-validation.

The Bayesian network classifiers are implemented in the bayesClass [14]
package for the R statistical environment [15]. We used the caret [16] package
for R to estimate predictive accuracy with cross-validation.

Table 1. Data sets. #Instances column displays the number of complete instances

No. Data set #Features #Instances #Classes

1 Balance Scale 4 625 3
2 Breast Cancer (Wisconsin) 9 683 2
3 Car 6 1728 4
4 Chess (kr vs. kp) 36 3196 2
5 Dermatology 34 358 6
6 Ecoli 7 336 8
7 House Voting 84 16 232 2
8 Ionosphere 34 351 2
9 Lymphography 18 148 4
10 Molecular Biology (Promoters) 57 106 2
11 Molecular Biology (Splice) 61 3190 3
12 Primary Tumor 17 132 22
13 Tic-tac-toe 9 958 2
14 Wine 13 178 3

6.2 Results

Following [17], we performed Friedman’s test [18,19] and Iman and Devenport’s
correction [20] to compare the classifiers over all the data sets. Our proposal
outperforms the other methods (see Table 2 for Friedman’s ranks) although the
difference is not statistically significant1.

1 The p-value from both Friedman’s and Iman and Davenport’s test was 0.2.
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Table 2. Average Friedman’s ranks. Lower ranking means better performance. ASB =
augmented semi-naive Bayes, STAN = selective tree augmented Bayes, FSS = forward
sequential selection, BSEJ = backward sequential elimination and joining, FFSS =
filter forward sequential selection, NB = naive Bayes, TAN = tree augmented naive
Bayes.

Algorithm Friedman’s ranks

ASB 3.11
STAN 3.96
FSS 5.21
BSEJ 3.57
FFSS 4.35
NB 3.53
TAN 4.25

p-valueFriedman 0.20
p-valueIman-Davenport 0.20

Table 3. Estimated accuracies (in %) of the compared classifiers. The best performing
classifiers on a data set are marked in bold. Some data set names are shorter than
in Table 1 but the order is the same. ASB = augmented semi-naive Bayes, STAN =
selective tree augmented Bayes, FSS = forward sequential selection, BSEJ = backward
sequential elimination and joining, FFSS = filter forward sequential selection, NB =
naive Bayes, TAN = tree augmented naive Bayes.

No. Data set ASB STAN FSS BSEJ FFSS NB TAN

1 Balance Scale 72.9±2.5 73.2±2.9 73.6±2.2 72.8±2.3 73.3±2.3 73.3±2.3 73.2+-2.9
2 Breast Cancer 97.1±1.1 97.1±1.1 96.9±1.4 97.5±1.0 97.5±1.0 97.5±1.0 97.1±1.1
3 Car 93.3±1.6 93.5±1.5 70.0±0.1 90.0±1.8 85.1±1.7 85.3±1.4 94.1±1.6
4 Chess 94.1±1.1 92.6±0.8 94.1±1.0 92.2±1.1 87.8±1.4 87.8±1.4 92.4±0.9
5 Dermatology 98.2±1.5 98.0±1.6 95.1±3.4 98.2±1.5 98.0±1.6 98.0±1.6 97.1±1.7
6 Ecoli 85.7±3.4 85.7±3.4 83.4±2.8 85.7±3.4 85.7±3.4 85.7±3.4 84.5±3.2
7 House Voting 84 94.3±2.8 92.9±2.8 97.0±2.4 91.2±4.5 91.3±4.5 91.2±4.4 93.6±2.7
8 Ionosphere 92.0±3.7 91.9±3.7 90.7±3.6 90.7±3.8 90.7±4.1 90.7±4.1 92.2±3.1
9 Lymphography 85.4±6.1 82.7±5.6 78.4±7.3 85.0±6.5 82.7±7.1 84.6±6.2 83.4±6.0
10 Promoters 89.8±6.4 90.5±5.0 84±11.2 89.8±6.4 90.5±5.0 91.7±6.2 48.7±1.2
11 Splice 94.9±0.7 95.0±0.8 93.5±0.8 95.5±0.8 95.4±0.9 95.5±0.8 52.5±0.3
12 Primary Tumor 46.5±9.4 21.3±2.0 42.5±7.7 46.5±9.4 21.3±2.0 48.3±9.3 41.6±8.0
13 Tic-tac-toe 75.3±3.2 74.8±2.9 69.6±3.4 71.7±3.7 70.4±3.9 70.4±3.8 75.8±2.9
14 Wine 98.7±1.6 98.7±1.6 95.4±2.9 98.9±1.4 98.9±1.4 98.9±1.4 96.9±2.6

The ASB significantly2 improves on BSEJ on four data sets (car, chess, iono-
sphere, and tic-tac-toe. See Table 3 for accuracies.). The BSEJ outputs a model
similar to the NB on those data sets (e.g. on ionosphere it removes a single
feature and accounts for one interaction) while the ASB heavily augments the
BSEJ (e.g. on ionosphere it builds a full tree among feature groups). This shows
that useful interactions missed by BSEJ can be recovered by ASB.

There is no significant difference between ASB and BSEJ on the remaining
data sets. The ASB degrades BSEJ on only three data sets and the degradation is

2 According to Wilcoxon’s signed rank test at 5% significance level.
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minor (by at most 0.6% accuracy). On four data sets the ASB model is identical
to the BSEJ. One of those data sets - primary tumor - has many classes (22) and
not many cases (132). This yields the conditional independence test unreliable
for every pair of features and therefore no arcs are be added. On the other three
data sets, lowering the significance threshold would have would have produced
augmented BSEJ models (i.e. arcs would have been added).

7 Concluding Remarks

We have presented the augmented-semi naive Bayes (ASB) algorithm, a method
for removing some of the unwarranted independence assumptions of a semi-naive
Bayes model. The ASB is computationally inexpensive compared to the BSEJ,
the algorithm used for learning a semi-naive Bayes. Our experiments show that
ASB improves BSEJ in some domains without degrading it others. The ASB
outperformed BSEJ and five other Bayesian network classifiers on 14 bench-
mark data sets, although the improvement in performance is not statistically
significant. Further experiments, over more data sets, might give more conclu-
sive results. Since ASB seems to improve BSEJ, it might be interesting to extend
the approach to augmenting other Bayesian network classifier learned by max-
imizing predictive accuracy, such as the forward sequential selection algorithm
for learning a selective naive Bayes.
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