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Summary. This paper discusses exact learning of Bayesian networks in estimation
of distribution algorithms. The estimation of Bayesian network algorithm (EBNA) is
used to analyze the impact of learning the optimal (exact) structure in the search. By
applying recently introduced methods that allow learning optimal Bayesian networks,
we investigate two important issues in EDAs. First, we analyze the question of whether
learning more accurate (exact) models of the dependencies implies a better performance
of EDAs. Secondly, we are able to study the way in which the problem structure is
translated into the probabilistic model when exact learning is accomplished. The results
obtained reveal that the quality of the problem information captured by the probability
model can improve when the accuracy of the learning algorithm employed is increased.
However, improvements in model accuracy do not always imply a more efficient search.

1 Introduction

In estimation of distribution algorithms (EDAs) [21, 30] linkage learning, un-
derstood as the ability to capture the relationships between the variables of the
optimization problem, is accomplished by detecting and representing probabilis-
tic dependencies using probability models. EDAs are evolutionary algorithms
that do not employ classical genetic operators such as mutation or crossover.
Instead, machine learning methods are used to extract relevant features of the
search space. The collected information is represented using a probabilistic model
which is later employed to generate new points. During the sampling or gener-
ation step, the statistical dependencies between the variables are used for the
construction of the new solutions.

In EDAs, the ability of learning an accurate representation of the relation-
ships between the variables is related to the class of probabilistic models used
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and the methods employed to learn them. One class of model that has been
extensively applied in EDAs is Bayesian networks [18]. Among the benefits of
EDAs that use this type of models [14, 28, 33, 45] is that the complexity of the
learned structure depends on the characteristics of the data (selected individu-
als). Additionally, the Bayesian networks learned during the search are suitable
for human interpretation, aiding the discovery of unknown information about
the problem structure.

Although, in the case of EDAs that use Bayesian networks, the role of the
parameters that penalize the complexity of the networks has been studied [28,
32], a detailed analysis of the accuracy of the methods used for finding the best
network and its influence in the behavior of EDAs has not been conducted. An
initial attempt to investigate this problem was presented in [13], where exact
Bayesian learning was introduced to EDAs.

Methods that do exact Bayesian structure learning [12, 20, 42, 43] compute,
given a set of data and a prespecified score (in our case, the BIC score [41]),
the network structure that optimizes the score. Since the problem of learning
the optimal Bayesian network is NP-hard [6], these methods set constraints on
the maximum number of variables and/or cases they can deal with. Usually,
dynamic programming algorithms are used to learn the structure.

In this chapter, we extend the preliminary results presented in [13] and provide
evidence that the methods for learning optimal (exact) Bayesian networks can
be very useful to analyze the relationship between the search space and the
structure of the learned probabilistic models. The advantage of using methods
that learn exact models is because alternative approximate methods commonly
applied to learn the models in EDAs are very often able to find only suboptimal
solutions. Therefore, using exact learning makes it easier to investigate to what
extent approximate learning algorithms are responsible for the loss in accuracy in
the mapping between the problem structure and the model structure. In general,
an exact learning algorithm can serve as a different framework to investigate the
influence of the EDA components in the ability of the probability models to
capture the problem structure.

The chapter is organized as follows. In the next section, Bayesian networks
are presented, the general procedures to learn these networks from data are also
discussed. In Section 3, we focus on the type of search strategies used to find the
Bayesian network structure. Approximate and exact learning methods are ana-
lyzed. Section 4 introduces the EBNA algorithm. In Section 5, the experimental
framework and functions used to evaluate the exact and local learning methods
used by EBNA are introduced. Sections 6 and 7 respectively present experimen-
tal results on the time complexity analysis and convergence reliability of the two
EBNA variants. Section 8 analyzes ways for using the Bayesian networks learned
by EBNA as a source of problem knowledge and presents experimental results
for several functions. Work related to our proposal is analyzed in Section 9. The
conclusions of our paper are presented in Section 10.
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2 Bayesian Networks

2.1 Notation

Let X be a random variable. A value of X is denoted x. X = (X1, . . . , Xn) will
denote a vector of random variables. We will use x = (x1, . . . , xn) to denote
an assignment to the variables. We will work with discrete variables. The joint
probability mass function of x is represented as p(X = x) or p(x). p(xS) will
denote the marginal probability distribution for XS . We use p(Xi = xi | Xj =
xj) or, in a simplified form, p(xi | xj), to denote the conditional probability
distribution of Xi given Xj = xj .

Formally, a Bayesian network [5] is a pair (S, θ) representing a graphical
factorization of a probability distribution. The structure S is a directed acyclic
graph which reflects the set of conditional (in)dependencies among the variables.
The factorization of the probability distribution is codified by S:

p(x) =
n∏

i=1

p(xi|pai)

where pai denotes a value of variable Pai, the parent set of Xi (variables from
which there exists an arc to Xi in the graph S), while θ is a set of parameters for
the local probability distributions associated with each variable. If the variable
Xi has ri possible values, x1

i , . . . , x
ri

i , the local distribution p(xi|paj
i , θi) is an

unrestricted discrete distribution:

p(xk
i |paj

i , θi) ≡ θijk

where pa1
i , . . . ,paqi

i denote the values of Pai and the term qi denotes the number
of possible different instances of the parent variables of Xi. In other words, the
parameter θijk represents the probability of variable Xi being in its k-th value,
knowing that the set of its parent variables is in its j-th value. Therefore, the
local parameters are given by θi = (((θijk)ri

k=1)
qi

j=1).

2.2 Learning Bayesian Networks from Data

There are different strategies to learn the structure of a Bayesian network. We
focus on a method called “score + search” which is the one used in the exper-
iments presented in this paper. In this strategy, given a set of data D and a
Bayesian network whose structure is denoted by S, a value (score) which eval-
uates how well the Bayesian network represents the probability distribution of
the database D is assigned. Different scores can be used. In this work we have
used the Bayesian Information Criterion score (BIC) [41] (based on penalized
maximum likelihood).
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A general formula for a penalized maximum likelihood score can be written
as follows:

log p(D|S, θ̂) − f(N)dim(S)

where dim(S) is the dimension –number of parameters needed to specify the
model– of the Bayesian network with a structure given by S. Thus:

dim(S) =
n∑

i=1

qi(ri − 1)

and f(N) is a non negative penalization function. The Jeffreys-Schwarz criterion,
sometimes called BIC [41], takes into account f(N) = 1

2 log N . Thus the BIC
score can be written as follows:

BIC(S, D) = log
N∏

w=1

n∏

i=1

p(xw,i|paS
i , θ̂i) − 1

2
log N

n∑

i=1

qi(ri − 1) (1)

To find the Bayesian network that optimizes the score implies solving an
optimization problem. This can be done with exhaustive or heuristic search al-
gorithms. In Section 3, we analyze two variants for finding the Bayesian net-
work structures. Each structure is evaluated using the maximum likelihood
parameters.

2.3 Learning of the Parameters

Once the structure has been learned, the parameters of the Bayesian network
are calculated using the Laplace correction:

θ̂ijk =
Nijk + 1
Nij + ri

(2)

where Nijk denotes the number of cases in D in which the variable Xi has the
value xk

i and Pai has its jth value, and Nij =
∑ri

k=1 Nijk.

3 Methods for Learning Bayesian Networks

Once we have defined a score to evaluate Bayesian networks, we have to set a
search process to find the Bayesian network that maximizes the score given the
data. Approximate and exact methods can be used.

3.1 Learning an Approximate Model

In practical applications, we need to find an adequate model structure as quickly
as possible. Therefore, a simple algorithm which returns a good structure, even if
not optimal, is preferred. An algorithm that fulfills these criteria is Algorithm B
[4] which is typically used by most of Bayesian network based EDAs. Algorithm
B is a greedy search which starts with an arcless structure and, at each step,
adds the arc with the maximum improvement in the score. The algorithm finishes
when there is no arc whose addition improves the score.
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3.2 Learning the Exact Model

Since learning the Bayesian network structure is an NP-hard problem, for a long
time the goal of learning exact Bayesian networks was constrained to problems
with a very reduced number of variables. In [20], an algorithm for learning the
exact structure in less than super-exponential complexity with respect to n is
introduced for the first time.

In [42], the most efficient method so far is presented and it is used in our work.
This algorithm is feasible for n < 33 and it was shown to learn a best network
for a data set of 29 variables.

In that work, the Bayesian network structure S is defined as a vector S =
(S1, .., Sn) of parent sets, where Si is the subset of X from which there are arcs
to Xi, for example S1 is the parent set of X1. Another necessary concept is the
variable ordering. This is simply the variables of X in a determined order. In this
order, the ith element is denoted by ordi. Therefore, the structure S = (S1, .., Sn)
is said to be consistent with an ordering ord when all the parents of the node
precede the node in the ordering.

Another important concept in the algorithm is the sink node. Every DAG has
at least one node with no outgoing arcs, so at least one node is not a parent of
any other node. These nodes are called sinks of the network.

In this algorithm, the data set D is processed in a particular way and it uses
two kinds of data tables. Given W ⊆ X, first it is defined the contingency
table CT (W) to be a list of the frequencies of different data-vectors dW in DW,
where DW is the data set for W variables. However, the main task is to calculate
conditional frequency tables CFT (Xi,W) that record how many times different
values of the variable Xi occur together with different vectors dW−{Xi} in the
data.

On the other hand, many popular scores such as BIC, AIC and BDe can be
decomposed to local scores:

score(S) =
n∑

i=1

scorei(Si) =
n∑

i=1

score(CFT (Xi, Si)),

Thus, the score of the network is the sum of the local scores that only depend
on the conditional frequency table for one variable and its parents. Algorithm 1
presents the main steps of the method:

The first step is the main procedure and the only one for which data is needed.
It starts by calculating the contingency table for all the variables X and contin-
ues calculating contingency tables for all smaller variable subsets, marginalizing
variables out of the contingency table. After that, for each contingency table,
the conditional frequency table is calculated for each variable appearing in the
contingency table. These conditional frequency tables can then be used to cal-
culate the local scores for any parent set given a variable. All the n2n−1 local
scores are stored in a table which will be the basis of the algorithm.

Having calculated the local scores, the best parents for Xi given a candidate
set C are either the whole candidate set C itself or one of the smaller candidate
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Algorithm 1. Exact learning algorithm

1 Calculate the local scores for all n2n−1 different (variable, variable
set)-pairs

2 Using the local scores, find best parents for all n2n−1 (variable,
variable set)-pairs

3 Find the best sink for all 2n variable sets
4 Using the results from Step 3, find a best ordering of the variables
5 Find a best network using results computed in Steps 2 and 4

sets {C\{c}|c ∈ C}. It must be computed for all 2n−1 variable sets (parent
candidate sets) related with Xi.

Step 3 of the algorithm is based on the following observation: The best network
G∗ for a variable set W must have a sink s. As G∗ is a network with the highest
score, sink s must have incoming arcs from its best possible set of parents. In
this way, the rest of the nodes and the arcs must form the best possible network
for variables W\{s}. Therefore, the best sink for W, sink∗(W), is the node that
maximizes the sum between the local score for s and the score for the network
S without node s.

When we have the best sinks for all 2n variable sets, it is possible to yield
the best ordering ord∗ in reverse order. Then, for each position from |X| to 1,
in ord∗i we have to store the best sink for the set

⋃|X|
j=i+1{ord∗j (X)}.

Having a best ordering and a table with the best parents for any candidate
set, it is possible to obtain a best network consistent with the given ordering. For
the ith variable in the optimal ordering, the best parents from its predecessors
are picked.

More details about the algorithm can be found in [42]. We use an implementa-
tion of Algorithm 1 given by the authors1. The computational complexity of the
algorithm is o(n22n−2). The memory requirement of the method is 2n+2 bytes
and the disk-space requirement is 12n2n−1 bytes.

4 Estimation of Distribution Algorithms Based on
Bayesian Networks

The estimation of Bayesian networks algorithm (EBNA) allows statistics of un-
restricted order in the factorization of the joint probability distribution. This
distribution is encoded by a Bayesian network that is learned from the database
containing the selected individuals at each generation. It has been applied with
good results to a variety of problems [3, 19, 23, 24, 25]. Other algorithms based

1 The C++ code of this implementation is available from
http://www.cs.helsinki.fi/u/tsilande/sw/bene/download/
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Algorithm 2. EBNABIC

1 BN0 ← (S0, θ
0) where S0 is an arc-less DAG, and θ

0 is uniform

2 p0(x) =
∏n

i=1 p(xi) =
∏n

i=1
1
ri

3 D0 ← Sample M individuals from p0(x) and evaluate them
4 t ← 1
5 do {

6 DSe
t−1 ← Select N individuals from Dt−1

7 S∗
t ← Using a search method find one network structure accord-

ing to the BIC score
8 θt← Calculate θt

ijk using DSe
t−1 as the data set

9 BNt ← (S∗
t , θ

t)
10 Dt ← Sample M individuals from BNt and evaluate them
11 } until Stopping criterion is met

on the use of Bayesian networks have been proposed in [28, 33, 45]. A pseudocode
of EBNA is shown in Algorithm 2.

In the experiments presented in this paper, EBNA uses truncation selection
and the number of selected individuals equals half of the population. The best
solution at each generation is passed to the next population, therefore, at each
generation N − 1 new solutions are sampled. The stopping criterion is changed
according to the type of experiments conducted.

5 Experimental Framework and Function Benchmark

To investigate the impact of exact learning in the behavior of Bayesian network
based EDAs, we compare the EBNA versions that use the two different Bayesian
network learning schemes described in Section 3. We call them EBNA-Exact and
EBNA-Local.

We used three different criteria to compare the algorithms. The time complex-
ity, the convergence reliability and the way in which probabilistic dependencies
are represented in the structure of the Bayesian network. In this section, we in-
troduce a set of functions that represent different classes of problems and which
are used in the following sections to test the behavior of EDAs.

5.1 Function Benchmark

Let u(x) =
∑n

i=1 xi, f(x) be a unitation function if ∀x,y ∈ {0, 1}n
, u(x) =

u(y) ⇒ f(x) = f(y). A unitation function is defined in terms of its unitation
value u(x), or in a simpler way u.
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Function OneMax:

OneMax(x) =
n∑

i=1

xi = u(x) (3)

Unitation functions are also useful for the definition of a class of functions
where the difficulty is given by the interactions that arise among subsets of
variables. One example of this class of deceptive functions is f3deceptive [15]:

f3deceptive(x) =
i= n

3∑

i=1

f3
dec(x3i−2, x3i−1, x3i) (4)

where f3
dec is defined as:

f3
dec(u) =

⎧
⎪⎪⎨

⎪⎪⎩

0.9 for u = 0
0.8 for u = 1
0.0 for u = 2
1.0 for u = 3

Function SixPeaks is a modification of the FourPeaks problem [1] and it
can be defined mathematically as:

SixPeaks(x, t) = max{tail(0,x), head(1,x), tail(1,x), head(0,x)} + R(x, t)
(5)

where
tail(b, x) = number of trailing b’s in x
head(b, x) = number of leading b’s in x

R(x, t) =

⎧
⎨

⎩

n if tail(0, x) > t and head(1, x) > t or
tail(1, x) > t and head(0, x) > t

0 otherwise

The goal is to maximize the function. For an even number of variables this
function has 4 global optima, located at the points:

(

t︷ ︸︸ ︷
0, . . . , 0, 1, . . . , 1) (0, . . . , 0,

t︷ ︸︸ ︷
1, . . . , 1) (

t︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) (1, . . . , 1,

t︷ ︸︸ ︷
0, . . . , 0)

These points are very difficult to reach because they are isolated. On the other
hand, two local optima (0, 0, . . . , 0), (1, 1, . . . , 1) are very easily reachable. The
value of t was set to n

2 − 1.
The Parity function [8] is a simple k-bounded additively separable function

that has been used to investigate the limitations of linkage learning by proba-
bilistic modeling. It can be seen as a generalization of the XOR function and the
Walsh transform. In this case we will work with the concatenated parity function
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(CPF) [8]. It is said that this problem is hard for EDAs in general. The Parity
function can be defined mathematically as:

parity(x) =
{

Ceven if u(x) is even
Codd otherwise

where Ceven and Codd are parameters of the function. The CPF is defined as m
concatenated parity sub-functions,

CPF (x) =
m−1∑

i=0

parity(xik+1, ..., xik+k) (6)

Where k is the size for each sub-function. As in [8], we use k = 5, Codd = 5 and
Ceven = 0. Notice that there are 2n−m solutions where the function reaches the
global optima.

Function Cuban5 [29] is a non-separable additive function. The second best
value of this function is very close to the global optimum.

Cuban5(x) =

F 5
cuban1(s0) +

m∑

j=0

(F 5
cuban2(s2j+1) + F 5

cuban1(s2j+2)) (7)

where
si = x4ix4i+1x4i+2x4i+3x4i+4 and n = 4(2m + 1) + 1

F 3
cuban1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.595 for x = 000
0.200 for x = 001
0.595 for x = 010
0.100 for x = 011
1.000 for x = 100
0.050 for x = 101
0.090 for x = 110
0.150 for x = 111

F 5
cuban1(x) = (8)

{
4F 3

cuban1(x1, x2, x3) if x2 = x4 and x3 = x5
0 otherwise

F 5
cuban2(x) =

⎧
⎨

⎩

u(x) for x5 = 0
0 for x1 = 0, x5 = 1

u(x) − 2 for x1 = 1, x5 = 1

The HP protein model

In our experiments we also use a class of coarse-grained protein folding model
called the hydrophobic-polar (HP) model [11].
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Fig. 1. An optimal solution of the HP model for sequence
HPHPPHHPHPPHPHHPPHPH. The optimal energy corresponding to this
sequence is −9.

Under specific conditions, a protein sequence folds into a native 3-d structure.
The problem of determining the protein native structure from its sequence is
known as the protein structure prediction problem. To solve this problem, a
protein model is chosen and an energy is associated to each possible protein
fold. The search for the protein structure is transformed into the search for the
optimal protein configuration given the energy function.

The HP model considers two types of residues: hydrophobic (H) residues and
hydrophilic or polar (P) residues. In the model, a protein is considered as a
sequence of these two types of residues, which are located in regular lattice
models forming self-avoided paths. Given a pair of residues, they are considered
neighbors if they are adjacent either in the chain (connected neighbors) or in
the lattice but not connected in the chain (topological neighbors). The total
number of topological neighboring positions in the lattice (z) is called the lat-
tice coordination number. Figure 1 shows one possible configuration of sequence
HPHPPHHPHPPHPHHPPHPH in the HP model.

A solution x can be interpreted as a walk in the lattice, representing one
possible folding of the protein. We use a discrete representation of the solutions.
For a given sequence and lattice, Xi will represent the relative move of residue
i in relation to the previous two residues. Taking as a reference the location
of the previous two residues in the lattice, Xi takes values in {0, 1, . . . , z − 2},
where z−1 is the number of movements allowed in the given lattice. These values
respectively mean that the new residue will be located in one of the z−1 numbers
of possible directions with respect to the previous two locations. If the encoded
solution is self-intersecting, it can be repaired or penalized during the evaluation
step using a recursive repairing procedure introduced in [9]. Therefore, values
for X1 and X2 are meaningless. The locations of these two residues are fixed.

For the HP model, an energy function that measures the interaction between
topological neighbor residues is defined as εHH = −1 and εHP = εPP = 0. The
HP problem consists of finding the solution that minimizes the total energy.
More details about the representation and function can be found in [40].
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6 Time Complexity Analysis

In our case, the time complexity analysis will refer to the study of the average
number of generations needed by EBNA-Local and EBNA-Exact to find the
optimum.

Experiments were conducted for three functions, OneMax, f3deceptive and
SixPeaks. In the first function, there are no interactions between the variables.
In the rest, interactions arise between variables that belong to the same definition
set of the function.

To determine the average number of generations to find the optimum needed
by EBNA-Local and EBNA-Exact, we start with a population of 10 individuals
and the population size is increased by 10 until a maximum population size of
150 is reached. For each possible combination of function, number of variables
n, and population size N , 50 experiments are conducted. For each execution of
the algorithm, a maximum of 105 evaluations are allowed.

For the OneMax function we conducted experiments for n ∈ {15, 20}. In
order to increase the accuracy of the curves shown in the first figure, for n = 15
we exceptionally conducted 100 experiments. The original idea was to evaluate,
under the dimension constraints imposed by the exact learning algorithm, the
scalability of both EBNA versions with n ∈ {10, 12, 15, 20}. Nevertheless, in this
work we only present the results achieved for the last two sizes. The results of
the experiments for n = 15 are shown in Figures 2 (a) and the average results
for n = 20 are shown in Figure 2 (b).

The analysis of Figure 2 reveals that both algorithms exhibit the same time
complexity pattern. However, EBNA-Exact needs, in general, a higher number of
evaluations than EBNA-Local to find the optimal solution for the first time. The
difference in the number of generations is less evident when the population size
approaches 150. For this simple function, it seems that the error in the learning
of the model, introduced by the approximate learning algorithm, is beneficial for
the search.
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Fig. 2. Time complexity analysis for function OneMax,(a) n = 15 and (b) n = 20
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Fig. 3. Time complexity analysis for function f3deceptive,(a) n = 15 and (b) n = 18
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Fig. 4. Time complexity analysis for function SixPeaks, (a) n = 14 and (b) n = 16

In Figure 3 we can observe that both algorithms have an identical curve. For
this function, and for the values of n investigated, the influence of the exact
learning is not relevant. We can anticipate that the structures learned by both
algorithms are similar. For this function, a small population size determines
many generations are necessary to reach the optimum.

For the SixPeaks function, the optimal value is reached in a significantly
lower number of generations as can be appreciated in Figure 4. It can also be
observed that EBNA-Local is able to reach the optimum earlier than EBNA-
Exact. From this analysis we deduce that for SixPeaks function, the structures
learned by both algorithms could be different. We will later further analyze this
behavior of the algorithms when discussing the structures of the models they
learn for the f3deceptive and SixPeaks functions.

To illustrate the complexity of the function and to study in more detail the al-
gorithms, we introduce Figures 5 and 6 which show the total number of executions
needed by each algorithm in order to succeed, i.e. to find the optimum. It should
be noticed that in every run, the maximum number of evaluations is bounded by
105. This constraint strongly influences the behavior of the algorithms.



The Impact of Exact Probabilistic Learning Algorithms 121

0 50 100 150
0

2

4

6

8

10

12

Population size

E
xe

cu
tio

ns
EBNA Exact
EBNA Local

0 50 100 150
0

5

10

15

20

25

30

Population size

E
xe

cu
tio

ns

EBNA Exact
EBNA Local

a) b)

Fig. 5. Number of executions, for each population size, in order to obtain one optimal
value for f3deceptive function, (a) n = 15, (b) n = 18
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Fig. 6. Number of executions, for each population size, in order to obtain one optimal
value for SixPeaks function, (a) n = 14, (b) n = 16

7 Convergence Reliability

In the analysis of the convergence reliability, we focus on the critical population
size needed by the EDAs to achieve a predefined convergence rate. In the ex-
periments conducted, the goal was to determine the minimum population size
needed by the two different variants of EBNA to find the optimum in 20 consec-
utive experiments. We investigated the behavior of the algorithms for functions
Cuban5 (n = 13), SixPeaks (n ∈ {10, 12, 14}) and f3deceptive (n ∈ {9, 12, 15}).

The algorithm begins with a population size N = 16 which is doubled until
the optimal solution has been found in 20 consecutive experiments. The maxi-
mum number of evaluations allowed is 104. For each function and value of n, 25
experiments are carried out. Table 1 shows the mean and standard deviation of
the critical population size found.

Table 1 shows that for function Cuban5, EBNA-Exact requires a slightly
higher population size than EBNA-Local. The picture is drastically changed for
functions SixPeaks and f3deceptive, for which EBNA-Exact needs a much smaller
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Table 1. Mean, standard deviation and p-value of the critical population size for
different functions and number of variables

function n EBNA − Exact EBNA − Local T − Test
mean std mean std p − value

Cuban5 13 118.40 53.07 109.44 57.26 0.57
SixPeaks 10 153.60 52.26 215.04 109.11 0.014
SixPeaks 12 209.92 110.11 389.12 249.19 0.019
SixPeaks 14 312.32 133.64 604.16 318.97 0.001
f3deceptive 9 135.68 38.40 168.96 60.94 0.025
f3deceptive 12 168.96 60.94 261.12 86.50 0.001
f3deceptive 15 220.16 58.66 296.96 95.79 0.0013

population size. This difference is particularly evident for function SixPeaks.
Another observation is that the standard deviation of EBNA-Local is always
higher than that of EBNA-Exact. Since the only difference between EBNA-
Exact and EBNA-Local is in the class of algorithm used to learn the models,
the difference of behaviors is due to the ability of EBNA-Exact to learn a more
accurate model of the dependencies. Therefore, at least for functions SixPeaks
and f3deceptive, learning a more accurate model determines a better performance
of EBNA.

To determine if the population sizes obtained for each algorithm are signifi-
cantly different, we have carried out a Student’s t-test over the two sets of 25
population sizes for each function and value of n. In the last column of Table 1,
the probability values of the test are reported.

If we consider a significance level of 0.05, we would have to reject the null
hypotesis for all cases except for Cuban5 where there are not significant differ-
ences. An explanation of the similar behavior achieved with both algorithms for
Cuban5 will be presented in the next section, where the structures of the prob-
abilistic models learned by the algorithms are studied. Moreover, for SixPeaks,
using the highest value of n, and for f3deceptive, using the two highest problem
sizes, the difference between the algorithms is statistically significant at the 1%
level.

8 Problem-Knowledge Extraction from Bayesian
Networks

The objective of this section is to show a number of ways in which knowledge
about the problem structure can be extracted from the analysis of the Bayesian
networks learned by EBNA. In particular, we investigate the difference between
the structures learned using exact and approximate learning algorithms. We
also analyze the changes in the pattern (number and type) of the dependencies
captured by the algorithms during their evolution.
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8.1 Probabilistic Models as a Source of Knowledge About the
Problem

Although the main objective in EDAs is to obtain a set of optimal solutions,
the analysis of the models learned by the algorithms during the evolution can
reveal previously unknown characteristics of the problem. There is a variety of
information that can be obtained from the analysis of the models. Just to cite a
few examples, it could be possible to extract:

• A description of sets of dependent or interacting variables.
• Probabilistic information about most likely configurations for subsets of the

problem variables which can be translated into most-probable partial solu-
tions of the problem.

• Evidence on the existence of different types of problem symmetry.
• Identification of conflicting partial solutions in problems with frustration.
• In addition, by considering the change of the models during the evolution (a

dynamical perspective), it is also possible to identify patterns in the formation
of optimal structures.

A central problem in EDAs is the design of methods for extracting and in-
terpreting this information from the models. There are a number of approaches
that have been proposed to treat this issue for different classes of probabilistic
models used in EDAs. We postpone a review of some of these approaches for
the next section and focus now on the extraction of information from Bayesian
networks. We identify three main sources of information:

1. The structure of the Bayesian network: By inspecting the topological char-
acteristics of the graphs (e.g. most frequent arcs), we identify structural
relationships between the variables.

2. The probabilistic tables of the Bayesian networks: By analyzing the proba-
bility associated to variables linked in the network, it is possible to identify
promising and also poor configurations of the partial solutions.

3. Most probable configurations given the network: These are the solutions with
the highest probability given the model. Thus, they condense the structural
and parametrical information stored by the Bayesian network and have not
necessarily been generated during the evolution of the EDA.

In this paper we focus on the analysis of network structures.

8.2 Analysis of the Bayesian Structures Learned by EBNA

To investigate the type of dependencies learned by EBNA-Exact and EBNA-
Local, we saved the structures of the Bayesian networks learned during the
evolutionary process by both variants of the algorithm for functions f3deceptive,
SixPeaks, Cuban5, CPF and Protein.

In all the following experiments, we start by running EBNA-Local and EBNA-
Exact and choose 30 executions in which the optimum was found and the al-
gorithms did not converge in the first generation. The stopping criterion is a
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maximum number of 105 evaluations. In each of these experiments, the struc-
tures of the Bayesian networks learned in each generation are stored. From the
structures, the frequency in which each arc appeared in the Bayesian network
was calculated. Since we are not interested in the direction of the dependencies,
we add the frequency of the two arcs that involves the same pair of variables.
The matrices that store this information are called frequency matrices.

Two different ways of showing the information contained in the frequency
matrices are used. The first way to represent the frequencies is using images
where lighter color indicate a higher frequency. As another means to visualize
the patterns of interactions, we use contour maps in which dependencies with
a similar frequency are joined with lines. In this way, it is possible to identify
areas of similar strength of dependency. In addition, the number of contours is
a parameter that can be tuned to focus the attention on the set of the strongest
dependencies.

In the following, for each function and variant of EBNA employed, two figures
are shown. The first figure shows the image graph of the dependencies learned by
the model in the last generation and contained in the corresponding frequency
matrix. The second figure shows the contour graph corresponding to a matrix
that stores all the arcs learned by all the models during the evolution. We call
this second matrix the cumulative frequency matrix. In order to fairly compare
both algorithms using the contour figures, we normalized the frequencies of the
arcs by the highest value among the two cumulative matrices learned by each
algorithm. The normalized values are later discretized in ten levels. This way
the contour lines refer to the same levels of frequencies.

Results for f3deceptive and SixPeaks functions

In the initial experiments we use functions f3deceptive (n = 15) and SixPeaks
(n = 16). We relate the behavior exhibited by these functions and analyze some
patterns identified in the structures of the models learned. We also try to link
the behavior in both studies.

We start by using a population size of 150, which was the highest population
size used on the complexity experiments shown in previous sections. Figure 7
and 8 respectively show the frequency matrices corresponding to EBNA-Local
and EBNA-Exact for function f3deceptive. Both algorithms are able to capture the
dependencies corresponding to the problem interactions. This fact may explain
the similar behavior exhibited in the time complexity experiments.

It can be noticed that the models include a number of additional spurious
correlations which are not determined by the function structure. This is partic-
ularly evident for the EBNA-Exact algorithm and is explained by the fact that
exact learning is more sensitive to the overfitting of the data when the popu-
lation size is small. Therefore, we increase the population size to N = 500 and
repeat the same experiment for this function. The frequency matrices obtained
are shown in Figures 9 and 10. They reveal the effect of increasing the population
size in the dependencies learned. It can be appreciated that spurious correlations
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Fig. 7. Frequency matrices calculated from the models learned by EBNA-Local for
function f3deceptive with N = 150 (a) Last generation (b) All generations

Variable i

V
ar

ia
bl

e 
j

2 4 6 8 10 12 14

2

4

6

8

10

12

14

5

10

15

20

25

30

Variable i

V
ar

ia
bl

e 
j

2 4 6 8 10 12 14

2

4

6

8

10

12

14

a) b)

Fig. 8. Frequency matrices calculated from the models learned by EBNA-Exact for
function f3deceptive with N = 150 (a) Last generation (b) All generations

have almost disappeared from the models. Both algorithms are able to learn an
accurate model with a population size of N = 500.

We conduct a similar analysis for function SixPeaks. Figures 11 and 12 re-
spectively show the frequency matrices calculated for EBNA-Local and EBNA-
Exact with a population size N = 150. It can be seen that both algorithms are
unable to learn the accurate structure. As in the case of the f3deceptive function,
EBNA-Exact learns more spurious dependencies than EBNA-Local. This fact is
specially evident in Figure 12. In this case the patterns of dependencies is spread
along the matrix while dependencies learned by EBNA-Local are grouped around
the diagonal. This fact may explain the better results achieved by EBNA-Local
in the time complexity experiments done for this function.

Insufficient population size might be the main reason that explains the poor
quality in the mapping between the function structure and the model structure.

The experiments presented in [13] showed that EBNA-Exact was able to learn
an accurate model for function SixPeaks with a smaller number of variables.
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Fig. 9. Frequency matrices calculated from the models learned by EBNA-Local for
function f3deceptive with N = 500 (a) Last generation (b) All generations
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Fig. 10. Frequency matrices calculated from the models learned by EBNA-Exact for
function f3deceptive with N = 500 (a) Last generation (b) All generations
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Fig. 11. Frequency matrices calculated from the models learned by EBNA-Local for
function SixPeaks with N = 150 (a) Last generation (b) All generations
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Fig. 12. Frequency matrices calculated from the models learned by EBNA-Exact for
function SixPeaks with N = 150 (a) Last generation (b) All generations
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Fig. 13. Frequency matrices calculated from the models learned by EBNA-Local for
function SixPeaks with N = 500 (a) Last generation (b) All generations
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Fig. 14. Frequency matrices calculated from the models learned by EBNA-Exact for
function SixPeaks with N = 500 (a) Last generation (b) All generations



128 C. Echegoyen et al.

Therefore, we repeat the experiment using a population size N = 500. Results
are shown in Figures 13 and 14.

The image graph reveals that by increasing the population size EBNA-Exact
is able to learn a very accurate structure. The model learned captures all the
short-order dependencies of the function. This fact is corroborated by inspecting
the contour graph in Figure 14 (b) where there is evidence that exact learning
has gains in accuracy with respect to a smaller population size. On the other
hand, EBNA-Local does not achieve a similar improvement. Furthermore, the
accuracy of the approximation is lower than when a population size N = 150
was used, as can be seen comparing Figures 11 and 13.

Cuban5 function

We analyze the Cuban5 function (m = 1, n = 13). For m = 1, Cuban5 is equal
to the sum of three subfunctions:

Cuban5(x) = F 5
cuban1(s0) + F 5

cuban2(s1) + F 5
cuban1(s2) (9)

The interactions are determined by two different functions, F 5
cuban1 and

F 5
cuban2. Therefore, we expect Cuban5 to exhibit a different pattern of interac-

tions than those previously analyzed. As in previous experiments, we start with a
population size N = 150. The frequency matrices corresponding to EBNA-Local
and EBNA-Exact are respectively shown in Figures 15 and 16.

It can be seen in the images calculated from the frequency matrices of the last
generation that only some of the dependencies determined by function F 5

cuban1
are captured by both algorithms. However, the cumulative frequencies clearly
show the existence of dependencies related to function F 5

cuban2. There are no
important differences between the two EDAs.

The frequency matrices obtained by increasing the population size to N = 500
are shown in Figures 17 and 18. In this case, the dependencies determined by
function F 5

cuban2 are easier to recognize in the frequency matrices of the last
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Fig. 15. Frequency matrices calculated from the models learned by EBNA-Local for
function Cuban5 with N = 150 (a) Last generation (b) All generations
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Fig. 16. Frequency matrices calculated from the models learned by EBNA-Exact for
function Cuban5 with N = 150 (a) Last generation (b) All generations
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Fig. 17. Frequency matrices calculated from the models learned by EBNA-Local for
function Cuban5 with N = 500 (a) Last generation (b) All generations
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Fig. 18. Frequency matrices calculated from the models learned by EBNA-Exact for
function Cuban5 with N = 500 (a) Last generation (b) All generations
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generation. However, although the population sizes have grown, for this function
both algorithms have learned a similar structure. This fact could explain the
results achieved in the study of the convergence reliability presented in Section 7.

Results for the CPF function

The CPF function represents another interesting class of functions. It has been
shown that Bayesian network based EDAs such as BOA are deceived by this
function. Being CPF a decomposable function of bounded complexity, BOA
has an exponential scaling for it. Furthermore, in [8] it is shown that increasing
the population size does not always produce an improvement in the algorithm’s
behavior. Authors point to the fact that the learning algorithm used by BOA
may fail to detect the higher order type of interactions that occurs in the CPF
function.

We will investigate whether there are differences between exact and local
learning for the CPF function with parameters: n = 15, k = 5, codd = 5 and
ceven = 0. For these parameters, the optimum can be reached in 212 different
points. As a consequence, it is very likely that EBNA reaches the global solution
in the first generation. On the other hand, the limitations of the exact learning
algorithm do not allow to deal with a higher number of variables. Therefore,
we will only analyze the models learned in the first generations of the EDAs,
disregarding whether the optimum has been found or not. The models have been
calculated using 30 independent experiments.

We start with a population size N = 150. For this value and higher values
of the population size, none of the algorithms was able to recover any type
of structure. However, for N = 1000, EBNA-Exact was able to detect some
structure. The frequency matrices calculated for EBNA-Local and EBNA-Exact
are shown in Figure 19.

Surprisingly, EBNA-Exact was able to recover an almost perfect structure
while EBNA-Local was not. These results reveal that, for problems such as
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Fig. 19. Frequency matrices calculated from the models learned in the first generation
of the EDAs for function CPF with N = 1000 (a) EBNA Local (b) EBNA-Exact
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CPF , an accurate learning of the model might be essential to recover the cor-
rect structure of the problem. It also shows, that even with exact learning, the
population size required to discover the problem structure is higher than for the
other additive functions considered.

HP protein model

The HP model has served as a benchmark for studying different issues
related with the behavior of EDAs [35, 38, 40]. It is a non-binary, non-
decomposable problem for which extensive investigation using evolutionary and
other heuristic algorithms have been conducted (see [10, 40] and references
therein). We use one instance of the HP model to investigate the impact of
exact learning. Figure 1 shows one optimal folding for the chosen sequence
HPHPPHHPHPPHPHHPPHPH .

In the evaluation of the HP model, two variants are considered. In the first one,
infeasible individuals are assigned a penalty. In the second variant, individuals
are first repaired and after that the HP function (from now on Protein function)
is used to evaluate them. In all the experiments conducted for the Protein
function, N = 200 and 50 independent experiments of EBNA-Local and EBNA-
Exact were run.

Since the Protein function is not decomposable, a detailed description of the
problem structure is not available and we can not contrast the dependencies
learned with a perfect model of the interactions. However, previous research on the
application of EDAs to the HP problem [40] has shown that important dependen-
cies between adjacent variables arise. These dependencies are in part determined
by the codification used, in which each residue’s position depend on the position
of the previous two. Thus, the objective of our experiments is twofold. Firstly, to
compare the class of models learned by EBNA-Local and EBNA-Exact. Secondly,
to investigate the effect that the application of the repair mechanism has in the
number and patterns of the interactions learned by the EDAs.
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Fig. 20. Frequency matrices calculated from the models learned by EBNA-Local
for function Protein, repairing procedure with N = 200 (a) Last generation (b) All
generations
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Fig. 21. Frequency matrices calculated from the models learned by EBNA-Exact
for function Protein, repairing procedure with N = 200 (a) Last generation (b) All
generations
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Fig. 22. Frequency matrices calculated from the models learned by EBNA-Local for
function Protein, without repairing procedure with N = 200 (a) Last generation (b)
All generations
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Fig. 23. Frequency matrices calculated from the models learned by EBNA-Exact for
function Protein, without repairing procedure with N = 200 (a) Last generation (b)
All generations
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Fig. 24. Number of dependencies learned, by EBNA-Exact and EBNA-Local, at each
generation for the Protein function, (a) with repairing procedure (b) without repairing
procedure

Figures 20 and 21 respectively show the frequency matrices learned by EBNA-
Local and EBNA-Exact when the repairing procedure is applied. Figures 22
and 23 show frequencies corresponding to the variant in which the repairing
procedure is not applied.

An analysis of the figures reveal that EBNA-Exact learns a pattern of interac-
tions more localized around the diagonal representing the dependencies between
adjacent variables. The dependencies found by EBNA-Local are more spread-
out, away from the diagonal.

We also observe some differences due to the application of the repairing pro-
cedure. These differences are particularly noticeable from the analysis of the
contour graphs. Taking as an accuracy criterion the connectness of the adjacent
variables in the problem representation, we see that repairing helps EBNA-Local
to learn more accurate structures. Without repairing, the pattern of interactions
is more fragmented. However, repairing does not help EBNA-Exact, which is able
to recover a more connected structure without the application of the repairing
procedure.

We also analyze the number of dependencies learned by the algorithms at
each generation. Figures 24 (a) and (b) respectively show the sum, for the 50
experiments, of the number of dependencies learned by EBNA-Exact and EBNA-
Local with and without the application of the repairing procedure.

EBNA-Local and EBNA-Exact have a similar behavior. In the initial genera-
tions, the number of dependencies learned increases until a maximum is reached
and then the number of dependencies starts to diminish.

9 Related Work

In [3], an empirical comparison of EBNAs that use different learning algorithms
has been presented. Also in [44] different variants of learning algorithms have
been evaluated in the context of EDAs that use polytree models (a constrained
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class of Bayesian networks). The use of exact learning algorithms of Bayesian
networks was introduced to EDAs in [13], where preliminary results were
presented.

Our work is part of an ongoing research trend that investigates the relation-
ship between the problem structure and the class of structure learned during
the search by the probabilistic models. A number of researchers have studied
the most frequent dependencies learned by the probabilistic models in EDAs
and analyzed their mapping with the function structure [2, 22, 27, 34, 37]. A
promising related idea is the use of the dependency relationships represented by
the probabilistic model to define functions with a desired degree of interactions
[31].

The relationship between problem structure and dependencies is analyzed
from two different perspectives in [36]. First, using Pearson’s chi-square statis-
tics as a measure of the strength of the interactions between pairs of variables
in EDAs, the arousal of dependencies due to the selection operator is shown.
Secondly, it is shown that for some problems, only a subset of the dependencies
may be needed to solve the problem.

More recently, some work has been devoted to analyzing the way in which the
different components of the EDA influence the arousal of dependencies [16] and
to use the probabilistic models obtained by EDAs to speed up the solution of
similar problems in the future [17]. However, the accuracy of the learning algo-
rithm to recover the problem structure from the data has not been investigated
in these papers. For instance, for the spin glass problem used as testbeds in
[16], most of the dependencies found by hBOA are short dependencies between
neighbors in the grid but some long range interactions also appear. We point
out that the approximate learning algorithm may produce models that are only
an approximate representation of the actual dependencies that arise in the pop-
ulation. The error introduced by the learning method in the estimation of the
dependencies should also be taken into account.

10 Conclusions

In this work we have accomplished a detailed analysis of the use of exact learning
of the Bayesian network structure in the study of EDAs. We have conducted sys-
tematic experiments for several functions. Results show that the type of learning
algorithm (whether exact or approximate) may produce significant differences
in the class of models learned and in the performance of the EBNA. This fact is
important because usually Bayesian network models learned using approximate
algorithms are thought to accurately reflect the dependencies that arise in the
population. As the example of the CPF function illustrates, this might not be
the case for functions with a particular type of higher order dependencies.

On the other hand, we have shown that whenever the size of the problem is
manageable, exact learning of Bayesian networks is a more appropriate option
for theoretical analysis of the probabilistic dependencies. We have shown that
the analysis of the probabilistic models can reveal the effect that some EDA
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components, such as repairing procedures, have in the arousal of dependencies.
By using exact learning, we have confirmed the critical effect that an inadequate
population size may have to capture an accurate probabilistic model.

Among the trends for future research we identify the followings:

• Design of feasible approaches to apply Bayesian network exact learning algo-
rithms to problems with a higher number of variables. A possible alternative
will treat these problems by initially identifying interacting sets of variables
of manageable size and applying exact learning in each set to obtain a more
accurate model of the interactions. Efficient methods for clustering the vari-
ables according to the mutual information have already been applied in EDAs
[39].

• Application of more advanced techniques for extracting and visualizing the
information contained in the models. As the importance of using the informa-
tion contained in the probabilistic models learned by EDAs is acknowledged,
it becomes more necessary to apply more advanced tecniques for information
extraction and data visualization.

• Use of the most probable configurations to investigate the influence of the
learning algorithms and other EDA components. Procedures that use the
probabilistic models learned by EDAs either take advantage of the prob-
lem structure or use the probabilistic tables corresponding to some sets of
marginal and conditional probabilities. However, information contained in
the models can, in many cases, be translated into a set of most probable
configurations (with their associated probabilities), which are usually not
generated during the evolution. Most probable configurations can help to
improve EDA behavior [26] but they could also be used to investigate the
algorithms and extract relevant problem information.

• Another way to improve the results of the learning algorithms, particularly
of the exact variant, in the discovery of accurate models, could be to increase
the quality of the information contained in the population size. Research on
this direction has been reported in [7].

• Exact learning could be used to investigate the effects that the existence
of constraints, such as those imposed by repairing procedures, have in the
arousal of dependencies: Constrained problems remain an important chal-
lenge for EDAs. While it is generally difficult to represent the constraints in
the probabilistic model, the use of repairing procedures may introduce un-
desired bias in the construction of solutions. By investigating the structure
of the model, it could be possible to detect the bias introduced and conceive
ways of correcting it.

Finally, we emphasize that the study of the relationship between the prob-
lem structure and the dependencies captured by the probabilistic model should
provide answers for the fundamental question of how to select appropriate prob-
abilistic models to optimize a given problem in the framework of EDAs.
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27. Mühlenbein, H., Höns, R.: The estimation of distributions and the minimum rela-
tive entropy principle. Evolutionary Computation 13(1), 1–27 (2005)

28. Mühlenbein, H., Mahnig, T.: Evolutionary synthesis of Bayesian networks for op-
timization. In: Patel, M., Honavar, V., Balakrishnan, K. (eds.) Advances in Evolu-
tionary Synthesis of Intelligent Agents, pp. 429–455. MIT Press, Cambridge (2001)

29. Mühlenbein, H., Mahnig, T., Ochoa, A.: Schemata, distributions and graphical
models in evolutionary optimization. Journal of Heuristics 5(2), 213–247 (1999)



138 C. Echegoyen et al.

30. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of dis-
tributions I. Binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M.,
Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidel-
berg (1996)

31. Ochoa, A., Soto, M.R.: Linking entropy to estimation of distribution algorithms.
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