
Bridge Maintenance, Safety, Management, Digitalization and Sustainability –  
Jensen, Frangopol & Schmidt (eds) 

© 2024 The Author(s), ISBN 978-1-032-77040-6 
Open Access: www.taylorfrancis.com, CC BY-NC-ND 4.0 license

Fast bridge health monitoring deployment with transferable 
expertise

R. Sojo-García
Universidad Politécnica de Madrid, Madrid, Spain 
Aingura IIoT, Donostia-San Sebastian, Spain

P. Larrañaga & C. Bielza
Universidad Politécnica de Madrid, Madrid, Spain

J. Díaz-Rozo
Aingura IIoT, Donostia-San Sebastian, Spain

ABSTRACT: Machine learning stands out as one of the most widely researched fields in the 
industry, where it has demonstrated great abilities to model complex system dynamics. This paper 
takes advantage of one of those models, Bayesian networks (BNs), for analyzing such dynamics in 
the infrastructure field. Specifically, bridge health monitoring tasks, which are crucial to prevent 
from dangerous changes within the structure’s behavior and ensure the durability of the bridge. 
However, such modeling requires to capture a substantial amount of data, which can be time- 
consuming. Considering this challenge, this work aims to accelerate the deployment of these 
models through related transferable expertise. This involves leveraging data from similar systems 
to facilitate the learning process of the network. Specifically, two methods, PC-MAX-TL and 
DBLogLP, are proposed for estimating the structure and parameters, respectively, of the BN 
under such settings. PC-MAX-TL is an adaptation of the PC-MAX method (a well-known con-
strained-based structural learning algorithm) tailored to incorporate auxiliary knowledge, while 
DBLogLP is based on log-linear pooling principles. To demonstrate the reliability of PC-MAX- 
TL and DBLogLP, an empirical evaluation will be conducted using data from a real scenario: the 
San Mamés bridge in Bilbao (Spain). This bridge is composed of six different spans that are evalu-
ated independently, and therefore, can be used to address the data scarcity of a certain target 
span. Then, the results will be compared against the model estimated just with PC-MAX from 
two perspectives: graphically, looking at the conditional dependencies found in the BNs; and 
quantitatively, analyzing (1) the network’s mean log-likelihood, and (2) the log-likelihood vari-
ance. Thus, we demonstrate the proposed methodology’s effectiveness, and justify for this bridge 
that we can accelerate in some days the deployment of the machine learning-based monitoring 
system.

1 INTRODUCTION

The construction of infrastructures is one of the ancient fields of human development, for 
which nowadays there are different devices designed to monitor their health evolution along 
time. Either in industrial environments or for the daily use of people, these systems are 
thought to withstand extremely variable loads. Therefore, it is important to carefully sensorize 
them to avoid changes that could affect the endurance of the structure. Since it is impossible 
to prevent from all kinds of hazards, the usual way of proceeding is to model the behavior of 
the system and use machine learning techniques to detect deteriorations, thus performing 
anomaly detection. When these anomalies are spread over time, the infrastructure’s model can 
experience concept drifts, causing it to no longer behave as it used to. One way of modeling 
that behavior is through BNs, which allow to represent the dependencies of variables 
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according to the dynamic response of the system and return a measure of how well the model 
fits the incoming data. However, a correct analysis depends on the collection of sufficient 
data, something that could require days or even weeks. This problem can be addressed fusing 
networks of similar characteristics to accelerate the deployment of the model during the earli-
est stages of data acquisition. Nevertheless, this solution does not consider the particularities 
of the new data that, indeed, affects the dynamic response. Two methods, PC-MAX-TL and 
DBLogLP, are proposed for estimating the structure and parameters of the model that repre-
sents the incoming data through transferable expertise based on the similarity of other infra-
structures with respect to the model of interest. Then, the proposed methodology will be 
tested with data from a real scenario, the San Mamés bridge in Bilbao (Spain), and evaluated 
through different analyses against a model obtained with conventional methods.

The paper is organized as follows. Section 2 provides the necessary knowledge about the 
different types of BNs covered throughout this paper. Section 3 reviews relevant state-of-the- 
art approaches related to the fusion and construction of networks as well as other transfer 
learning techniques. Section 4 details the proposed methodology. Section 5 describes the data, 
and analyzes the results obtained. Finally, Section 6 concludes the paper.

2 THEORETICAL FRAMEWORK

A BN is a machine learning model denoted as B ¼ G; θð Þ that comprises a direct acyclic graph 
(DAG) G and a set of parameters θ for which G ¼ ðV ;A) is defined as a set of nodes V, and a set 
of arcs A � V ×   V between these nodes. When these arcs are not oriented, they are called edges 
E. For learning B we have a dataset D with n different variables X ¼ X1; . . . ;Xnf g and 
N instances D ¼ x 1ð Þ; . . . ; x Nð Þ

� �
: Each arc in A represents a probabilistic dependence between 

variables, therefore, for each DAG there is a set of conditional dependences and independences 
embedded in the parameters θ for the conditional probability distribution (CPD) associated to 
each variable. Then, the joint probability distribution (JPD) of X1, . . ., Xn can be factorized using 
these CPDs. For continuous variables each CPD can be seen as a conditional probability density 
function (PDF), that can be defined such that:

where Pa(i) denotes the parents of Xi in G. We can classify continuous BNs into three main 
types depending on the assumptions made about the data distribution. These types are para-
metric, non-parametric and semiparametric BNs.

Parametric BNs assume that the BN can be modeled using a finite number of parameters, 
where the most popular is the linear Gaussian Bayesian network (LGBN) (Shachter & 
Kenley, 1989). This type of model assumes that each conditional PDF can be modeled using 
a Gaussian distribution, for which the mean is a linear combination of some regression coeffi-
cients β associated to each node and its parents, and a variance σ2. On the other hand, non- 
parametric BNs do not assume any specific distribution for the data. Consequently, there is 
an unknown, potentially infinite number of parameters in the model. Considering this scen-
ario, Hofmann & Tresp (1996) introduced a non-parametric type based on kernel density esti-
mation (KDE) called KDE BNs. Here, the PDF is estimated taking into account the 
contribution of each individual instance, becoming a more flexible, but demanding solution, 
that depends on the training data size and the correct selection of the bandwidth matrix, 
which acts as a smoothing parameter. Finally, the semiparametric BNs (SPBNs) (Atienza, 
et al., 2022) encompass both types using Linear Gaussian (LG) CPDs to model parametric 
relationships, and conditional KDEs (CKDEs) to model the non-parametric ones.

Similarly, there are also different ways of estimating a BN, for which the structure of the data 
and its corresponding parameters are learnt. There are three main structural learning approaches: 
constrained-based, which perform conditional independence (CI) tests to assess whether two sub-
sets of variables are conditionally independent given another subset, for instance the PC family 
methods (PC (Spirtes & Glymour, 1991, PC-Stable (Colombo & Maathuis, 2014) or PC-MAX 
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(Ramsey, 2016); scored-based, where the best structure is found through an optimization algo-
rithm such as in hill-climbing (HC) (Bouckaert, 1994; and hybrid, where usually the skeleton of 
the graph is first found through constrained-based methods, and then a scored-based algorithm is 
used to orientate the edges. Then, depending on whether the CPDs of the nodes are Gausssian or 
not, the parameters can be obtained through different methods. For this work, we will use the 
standard maximum likelihood estimate (MLE) or the normal reference rule extended to the multi-
variate case (Wand, 1992) for bandwidth estimation, respectively.

3 RELATED WORK

Transferring expertise from related problems can be helpful for addressing challenges such as 
data scarcity or time constraints. This way, we can facilitate the learning process of a new BN 
taking advantage of the acquired knowledge. However, before exploring the different tech-
nologies related to the use of transferable expertise, it is crucial to have some knowledge 
about the fusion of networks within a specific domain. This process involves the fusion of 
structures and parameters during the construction of the new network.

Two popular techniques for the fusion of parameters are the linear pooling (Stone, 1961) 
and the log-linear pooling (Genest, 1984), for which a weighted arithmetic average and 
a geometric average are used, respectively, to aggregate the parameters of k models. In terms 
of structures, the first approach was made in Matzkevich & Abramson (1992) with FUSE_-
DAGS. Here, given two DAGs G1 and G2, the fusion of structures is performed as the union 
of their nodes and intersection of their arcs, i.e., G3 ¼ V1 [ V2; A1 \ A2ð Þ. On the other hand, 
since the structural fusion usually requires a common topological order among the nodes, two 
methods for transforming a DAG G into another given a topological order of nodes were 
introduced in Matzkevich & Abramson (1993). However, Peña (2011) later critiqued these 
methods and proposed a set of corrections as well as a complexity analysis. Alternatively, 
Puerta, et al. (2021) proposed a transformation algorithm and a heuristic search to identify 
and establish the optimal order, whereas Feng, et al. (2014) introduced a set of desirable prop-
erties to any DAG, like avoiding cycles and preserving the conditional independencies. Con-
sidering these properties, they proposed a set of addition and deletion rules for the structure 
learning together with a fuzzy fusion (Liu & Song, 2001) for the parameter aggregation.

Moving to the transferable expertise, we will refer to the model of interest as the target G0, 
and the K models for which we have enough data as the auxiliary tasks G = fG1; . . . ; GKg. One 
of the most important contributions to the state of the art is the work conducted in Luis et al. 
(2010), where they proposed a modification of the PC algorithm, PC-TL, that linearly com-
bines the information provided by different tasks with the target. This combination is per-
formed considering just the most similar task on each iteration of the learning process. 
Additionally, they proposed two methodologies for aggregating the parameters, the distance 
based linear pool (DBLP) and the local linear pool (LoLP). Jia et al. (2010) extended this 
approach to a soil fertility grading issue by considering, not only the similarity, but also the 
geographical position of land squares, where it adjusts the weight factors of the linear combin-
ation based on the geographical position. Recent contributions such as Hou, et al. (2022) 
introduce a varying coefficient for parameter learning that adjusts the dependence on the 
target as the available data increases, whereas Hao et al. (2021) proposed an updating BN 
model for virtual machines performance estimation, where the structure and parameters are 
updated according to a re-weighting of the data based on the model performance.

4 METHODOLOGY

The structure learning process of this method is mainly constrained-based although it add-
itionally uses HC to eliminate possible cycles and orient the remaining edges. We refer to it as 
the PC-MAX-TL algorithm. PC-MAX-TL has been adapted to work without any constraint 
with both Gaussian and non-Gaussian variables, for which LGBNs and the Fisher’s Z test are 
used in the Gaussian case, and SPBNs and the conditional correlation independence (CCI) 
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test (Ramsey, 2014) in the non-Gaussian. In addition, we present the distance-based log-linear 
pooling (DBLogLP), which is an aggregation method based on DBLP for the fusion of 
parameters. This novel aggregation method has the advantage of preserving the conditional 
independencies and addresses the fusion of PDFs for both Gaussian and non-Gaussian 
domains. The steps that describe the complete learning process are the following:

1. PC-MAX phase.
a. Global similarity estimation.
b. PC-Stable adjacency phase.
c. Max p-value orientation.

2. HC phase.
a. Generation of a new fused dataset Df for the edge orientation.
b. Cycle detection. If no cycle is detected use HC to orient the edges, otherwise handle the 

conflicting arcs and then orient.
c. Return the best DAG.

3. MLE and DBLogLP for aggregating the target and the auxiliary tasks parameters.

4.1  PC-MAX-TL

PC-MAX-TL can be seen as a hybrid learning method with strong constraints into the search 
space of HC. First, it uses a constrained-based approach that takes advantage of the proposed 
methodology for PC-TL and one of the algorithms from the PC family, PC-MAX, to analyze 
the conditional dependencies of the graph. Then, a second phase uses the score and search 
method HC to address typical problems of this kind of algorithms.

Among the contributions proposed by PC-TL to find a better G0, there is a metric to meas-
ure the similarity Sk between a given auxiliary task and the target. This metric is calculated as 
the product of a global Sgk and a local Slk similarities, and used to get the task with the highest 
value, i.e. the closest task, during the PC adjacency phase. These similarities are defined as:

where depk and indk  are respectively, the number of common conditional dependencies and 
independencies between Gk and G0, and I0(X, Y|S) and Ik(X, Y|S) are the statistics of their CI 
tests for each pair of X and Y variables conditional on a subset S. Bearing this in mind, 
IF (X, Y|S) is defined as the linear combination of the target with its closest auxiliary task:

where abs(I) denotes the absolute value of the statistic, and α refers to its confidence factor.

4.1.1 PC-MAX phase
The similarity evaluation from PC-TL remains the same for PC-MAX-TL (step 1a). However, 
to evaluate the edge removals and arc orientations during our PC-Stable adjacency phase 
(step 1b), it is needed a suitable metric to assess the confidence of each continuous CI test in 
the combined independence measure. To do so, we kept the reasoning used for the confidence 
factor α in the original PC-TL, and defined a new confidence factor α0 such that:

where N0 is the size of the target dataset D0 and Nk the size of the most similar auxiliary data-
set Dk. This way, the trust on the target test increases proportionally to N0, resulting in better 
independence assessments during the earliest stages of the data acquisition and ensuring 
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future convergences. On the other hand, we reformulated Equation (4) to use the p-value of 
the statistic during the arc evaluation such that:

where pFðX ; Y jSÞdenotes the combined p-value for each pair of X and Y variables condi-
tional on a subset S. Then, the remaining edges are oriented as possible according to PC- 
MAX with the combined independence measure (step 1c).

4.1.2 HC phase
The result of the PC-MAX phase can be a DAG, although most of the times we end up with 
a partially directed graph (PDG) that occasionally has cycles. To deal with those situations, we 
defined the algorithm presented in step 2, where the final orientation is conducted using HC with 
the k-fold cross-validation log-likelihood score function described in Atienza, et al. (2022). Here, 
it is important to note that the search space of HC is constrained to the undirected edges that 
were retained from step 1. Consequently, HC is forced to preserve the arcs of G0. The cycles are 
handled by removing one combination of conflicting arcs at a time and adding it into the search 
space of HC, thereby leaving the decision of either reversing or removing the conflicting arc to 
the algorithm. However, when D0 does not contain enough instances the results of the final 
orientation might be poor due to the lack of information. Therefore, we decided to include 
a 10% data from the two most similar auxiliary tasks selected throughout the previous phase to 
address this issue. The result is a new fused dataset Df that improves the orientation process 
leading to better arcs. From this loop, we end with a list of possible DAGs of which the most 
suitable is selected using the mean of the log-likelihood as a measure of the structure goodness.

4.2  DBLogLP

After the structure estimation, the parameters are obtained integrating the knowledge from the 
target and all the auxiliary tasks. To do so, we obtain a set of initial parameters for each dataset 
using MLE with the estimated DAG from PC-MAX-TL. This way, it is ensured that the param-
eters of both target and auxiliary tasks come from the same set of parents, otherwise the aggrega-
tion with DBLogLP (step 3) would not be possible. The procedure of DBLogLP first calculates 
a geometric average of auxiliary parameters that are later combined with those of the target, 
thereby preserving the conditional independencies. The mean PDF for node i is defined as:

where wki is the weight associated to the auxiliary task k for the PDF of node i. This weight is 
calculated as the normalized inverse of the maximum Kullback-Leibler divergence (KL) 
between the auxiliary conditional PDF fk Xið Þ and the target conditional PDF f0 Xið Þ (Kolian-
der et al., 2022). Then, the resulting parameters from Equation (7) are integrated with those of 
the target in the following way:

where cN is the confidence coefficient that indicates how much to trust the estimations of the 
target. Similarly to α0 in Equation (5), this coefficient depends on the number of instances 
from the target. Therefore, it is obtained as:

where Nmin  and Nmax are the normalization factors that must be defined at the beginning of 
the algorithm. Here, we decided to limit the values of the confidence coefficient cN to keep the 
trust in the target parameters between the 25% and 75%. Thus, neither the target is completely 
ignored, nor the auxiliary tasks. It must be noted that depending on the type of BN, the 
parameters to be combined are different. For Gaussian nodes, we will have to aggregate LG 
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CPDs whose parameters are the variance σ2 and the regression coefficients β, while for non- 
Gaussian nodes we have CKDEs and the bandwidth matrix.

5 EXPERIMENTS

We will use data from our Aingura Insights Edge device deployed at the San Mamés bridge in 
Bilbao, Spain. The bridge incorporates a mixed metallic structure with V-shaped supports and 
consists of six different spans whose characteristics are slightly different, allowing us to categor-
ize them as different structures within a common system (the bridge). The total length of the 
bridge encompasses 323 m, but each span has a specific length. These lengths are 53 m for spans 
1 and 5, 60 m for spans 2, 3 and 4, and 37 m for span 6. Each span has its corresponding data-
set, which is composed by different pairs of natural frequencies and damping factors estimated 
from accelerometers readings by proprietary algorithms deployed at the edge device. These vari-
ables capture the dynamic response of the bridge, expressed through natural frequencies charac-
terized by mixtures of Gaussians and damping factors following Gamma distributions. 
Anyhow, we will evaluate the methodology under both Gaussian and non-Gaussian circum-
stances. The data used for this purpose was collected between the 23rd of March and the 3rd of 
May 2023, which represents approximately 1000 vehicles per day. We run one experiment per 
target span, while the five remaining spans are use as auxiliary data. With respect to the config-
uration of the experiments, we have selected different significance level for each CI test associ-
ated to each BN. In the case of LGBNs and the Fisher’s Z test, we use a 0.05 significance level, 
however, experimentally we found that this level was too restrictive for the CCI test. Hence, in 
that case, we incremented the value from 0.05 to 0.08. Additionally, Nmin and Nmax are set to 20 
and 1500 in both LGBNs and SPBNs. Finally, we have selected the first 3000 instances for the 
training sets of the auxiliary data, whereas the target sample is gradually incremented in batches 
of 40, starting in 20 until 2000. The remaining data is saved for testing.

That said, the first thing we can notice when we draw the DAG of the standard PC-MAX 
(Figure 1), is the inability of the algorithm to find relationships between the nodes at the earliest 
stages of the data acquisition. Besides, the SPBN is unable to correctly assess the type of the 
nodes in the DAG, where the white nodes are LG CPDs and the grey nodes CKDEs. Here, the 
natural frequencies 3 and 5, and the damping factors 2 and 4, were set as Gaussian nodes, when 
as we mentioned earlier they look like mixtures of Gaussians and Gamma distributions, respect-
ively. On the contrary, it can be seen from Figure 2 that PC-MAX-TL is able to address this 
issue quite effectively. In fact, it correctly captures the dependencies of the natural frequencies 
establishing arcs from the first two to the third, fourth and fifth, while each of them is paired 
with its damping factor both in LGBNs and SPBNs (NAT_FREQ and DAMP in the graph).

Figure 1.  PC-MAX DAG from span 1 with 20 instances. Top: LGBN. Bottom: SPBN.

Figure 2.  PC-MAX-TL DAG from span 1 with 20 instances. Left: LGBN. Right: SPBN.
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As regards the quality assessment of the network in terms of mean log-likelihood 
(Figure 3), the PC-MAX-TL models (blue lines) exhibit better starting points in general. 
Then, they maintain the score within a small range of variation, whereas the network alone 
(PC-MAX) needs some time to reach such level. The convergence of both systems depends on 
the model, for instance, in span 1 it happens around 1000 and in span 6 it is almost immedi-
ately, but around 500 instances most of them have converged or reduced significantly the dif-
ference. However, we also see some drops in the means of spans 1 and 5 within the SPBN, as 
well as span 6 in both LGBN and SPBN. In this case, the issue may lie within the training set. 
The inclusion of certain portions of noisy data during experiments could be contributing to an 
increase in the system’s variability, consequently resulting in a drop in the score. On the other 
hand, the SPBNs seem to be more sensitive to this noise than the LGBNs due to their param-
eter aggregation methodology, which requires the fusion of bandwidth matrices, thereby 
affecting to the smoothing of PDFs in the CKDE nodes.

Finally, the stability analysis (Figure 4) shows that the deviations of the PC-MAX-TL 
models (blue lines) exhibit very few variations from the very beginning, returning more stable 
measures with lower deviations in practically all cases from both LGBNs and SPBNs. In fact, 
even in the scenarios where the deviation of PC-MAX is lower, the stability tends to converge 
to the level of PC-MAX-TL, that is the case of spans 2 and 4. Additionally, it can be seen that 
the drops in the means detailed in the previous paragraph match the peaks in the deviations, 
which as mentioned, is caused by an increase in the variability of the data. However, even 
under the presence of noise their stability levels are higher than in PC-MAX. For instance, the 
deviations of spans 1 and 3 in the SPBN are 10 to 20 units lower.

6 CONCLUSION

The use of transferable expertise has been the basis of our methodology composed by two 
novel procedures, PC-MAX-TL and DBLogLP, for which we have reviewed all the aspects 
involved in the network construction and justify their reliability for building and aggregating 
models in presence of data scarcity. PC-MAX-TL returns DAGs with much better conditional 

Figure 3.  Networks mean log-likelihood. Left: LGBN. Right: SPBN.

Figure 4.  Networks stability. Left: LGBN. Right: SPBN.
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dependencies compared to PC-MAX at the earliest stages of data acquisition, and its combin-
ation with DBLogLP ensures a much more stable model despite the noise, which is crucial for 
its application in the industry. The convergences achieved in terms of mean log-likelihood are 
around 500 instances, while the stability returns better scores throughout the whole experi-
ment. Therefore, considering that on average the San Mamés bridge gets 1000 impulses 
per day, the most important impact is that the required time for the bridge health monitoring 
systems could be reduced by one or two days.
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