
UNIVERSIDAD POLITÉCNICA DE MADRID
Escuela Técnica Superior de Ingenieros Informáticos

New Advances in Estimation of Distribution
Algorithms for Quantum Machine Learning

and Industrial Scenarios

D O C T O R A L T H E S I S
Submitted for the degree of Doctor by:

Vicente Pérez Soloviev
MSc Artificial Intelligence

Madrid, 2024

UNIVERSIDAD POLITÉCNICA DE MADRID
Escuela Técnica Superior de Ingenieros Informáticos

Doctoral Degree in Artificial Intelligence

New Advances in Estimation of Distribution
Algorithms for Quantum Machine Learning

and Industrial Scenarios

D O C T O R A L T H E S I S
Submitted for the degree of Doctor by:

Vicente Pérez Soloviev
MSc Artificial Intelligence

Under the supervision of:
Dr. Concha Bielza

Dr. Pedro Larrañaga

Madrid, 2024

Title: New Advances in Estimation of Distribution Algorithms for Quantum Machine Learning
and Industrial Scenarios
Author: Vicente Pérez Soloviev
Doctoral Programme: Artificial Intelligence

Thesis Supervision:

Dr. Concha Bielza, Full Professor, Universidad Politécnica de Madrid (Supervisor)

Dr. Pedro Larrañaga, Full Professor, Universidad Politécnica de Madrid

External Reviewers:

Thesis Defense Committee:

Thesis Defense Date:

This thesis was partially supported by the Spanish Ministry of Science and Innovation through
the PID2019-109247GB-I00, RTC2019-006871-7, PID2022-139977NB-I00 and TED2021-
131310B-I00 projects, the BBVA Foundation (2019 Call) through the “Score-based non-
stationary temporal Bayesian networks. Applications in climate and neuroscience" project.
This thesis has also been also partially supported by Repsol through Agreement N.º6 UPM-
Repsol “Self-driving lab project" and "Batch Reinforcement Learning" project, and by the
Autonomous Community of Madrid within the ELLIS Unit Madrid framework Vicente P.
Soloviev was supported by the predoctoral grant FPI PRE2020-094828 from the Spanish
Ministry of Science and Innovation.

i

A Babushka y Dedushka

ii

Acknowledgement

En primer lugar mi más sincero agradecimiento a mis directores de tesis que me han acom-
pañado desde el trabajo de fin de máster hasta esta defensa de mi tesis doctoral. Pedro,
Concha, muchas gracias por los sabios consejos y directrices en esta primera etapa de mi
trayectoria como investigador.

Me gustaría también agradecer a aquellas personas que han colaborado conmigo durante
estos años a través de convenios con empresa. En mi opinión es muy interesante este tipo
de contacto entre la industria y la academia, en la que la transferencia tecnológica se ve
reflejada en problemas reales de la sociedad. Gracias por tanto a Javi, Marco, Pedro, Marina
y Gustavo por hacerme sentir parte de Repsol en nuestros proyectos en conjunto. Gracias
también a Pelayo, David y Alessandro por una corta pero intensa colaboración entre la UPM
e Idealista. Gracias Mayowa y Matthieu por otra corta pero intensa colaboración entre la
academia y Fujitsu Research.

Una mención especial también para el grupo entero en la Universidad de Leiden que me acogió
como un miembro más de la familia |aQa> por cuatro intensos y lluviosos meses en Países
Bajos. En concreto a Vedran Dunjko por dirigir mi proyecto durante mi estancia en el grupo,
y a Onur, Patrick, Yash, Adrian y Xavi por las muy interesantes charlas sobre computación
cuántica.

Hacer una tesis es un proceso largo e intenso, pero gracias a todos los compañeros del
laboratorio con los que he compartido risas, charlas, cabreos, viajes e incluso fiestas, estos
años han pasado hasta rápido. Muchas gracias a Alaia, Bojan, Carlos Li, Carlos Villa, Dani,
David Atienza, David Quesada, Enrique, Esteban, Fernando, Gabriel, Irene, Jorge, Kevin,
Laura, Marta, Rafa, Sebastiaan y Víctor.

Otra mención especial a Andrés Gómez por enseñarme tantas cosas sobre computación cuántica
que desconocía cuando empecé a estudiar y dedicarme tanto tiempo. Gracias por enseñarme
y espero seguir en contacto contigo. También me gustaría agrader en general al CESGA,
CITIUS y al IBM Quantum Researchers Program por el acceso a los superordenadores para
llevar a cabo parte de la experimentación de esta tesis doctoral.

Me gustaría agradecer también a aquellas personas que me facilitaron la llegada a Madrid.
Son así mis excompañeros de piso, Carmen, Blas y Carlos, que sin ellos la adaptación a las
tierras madrileñas habría sido menos amena.

Los últimos meses de esta tesis han sido compatibilizados con mi trabajo como investigador
en Fujitsu Research Europa. Ellos me han facilitado poder paralelizar la última etapa de la
tesis con mis labores en la empresa. Me gustaría agradecer a todas aquellas personas en el
equipo que de una forma u otra lo han hecho posible.

Me gustaría destacar a mi pareja Carla en estos agradecimientos por apoyarme día a día
durante estos años. Por esos días en los que he estado frustrado, pero también por aquellos en
los que había algo que celebrar. Independientemente, siempre me has apoyado y has estado a
mi lado.

iii

Por último, pero no menos importante, un enorme agradecimiento a mi padre, por sus sabios
consejos como gran investigador que es; a mi madre y a mi hermana, por sus enormes apoyos
durante estos años; y a mis abuelos, tíos, primos, y amigos que siempre han estado orgullosos
de mi.

iv

Abstract

Evolutionary algorithms span a wide range of domains, including Industry 4.0, machine
learning, and quantum machine learning (QML) due to their ease of implementation, scalability,
and interpretability. This PhD dissertation focuses on estimation of distribution algorithms
(EDAs), which use probabilistic models (PMs) to sample new solutions. Bayesian networks
(BNs) graphically represent conditional dependencies between variables, and their embedding
into EDAs can reveal patterns and enhance solution quality.

In this PhD thesis we first focus on the application of these approaches in industrial problems.
First, we extend an EDA with Gaussian BNs to optimize solvent mixtures for cost-effective
dissolution in a laboratory. The EDA explores an initial search space provided by the experts
in which several constraints are required (expert knowledge) and includes a parameter to
balance exploration. Results indicate that maximizing exploration replicates expert proposals,
while decreasing leads to more cost-effective solutions. This methodology was later extended
to a multi-objective (MO) problem in designing experiments for fuel fabrication in a laboratory.
To reduce resource use, we developed a framework based on EDAs to propose experimental
formulas, where some objectives cannot be evaluated analytically and are predicted with
surrogate models. A posteriori analysis revealed previously unknown dependencies between
fuel components.

Traditional EDAs for continuous domains usually involve assuming Gaussians. Moreover, the
EDA baseline updates a PM based on the top individuals from the previous iteration, risking
local optima convergence. We introduce a semiparametric EDA, relaxing the Gaussianity
assumption by using semiparametric BNs, where kernel estimated and Gaussian nodes coexist,
determined dynamically by the algorithm. Our approach incorporates information from
multiple past iterations to learn the PM. Empirical results show statistically significant
improvements over other methods.

EDAs share similarities with some QML algorithms. This dissertation secondly combines
EDAs with quantum computing (QC) for various optimization tasks.

On the one hand, quantum-inspired methods lead to classical algorithms assisted by QC.
We introduce a quantum-inspired EDA, replacing the PM with a quantum circuit. Results
indicate that quantum noise improves the results. We also compare computational costs
across different topologies and identify the ideal one for our EDA.

On the other hand, variational quantum algorithms (VQAs) are QC methodologies assisted
by classical optimizers. VQAs aim to minimize a given energy function by optimizing
the parameters of the quantum parametric circuit (ansatz). Our first contribution in this
field applies VQAs for BN structure learning. We analyze the algorithm’s noise resilience
across different types of noises, showing competitive results. Due to current quantum device
limitations, we employed the Digital Annealer for larger BNs.

We propose the use of EDAs for the parameter optimization of the ansatz by benchmarking
different EDAs in different scenarios. Our results show that EDAs offer competitive results
compared to other gradient-based / -free approaches in terms of CPU time and accuracy, with

v

and without quantum noise simulation. Quantum architecture search involves optimizing
not only the parameters but also the architecture of the ansatz. To manage this complex
multi-level optimization, we use an EDA assisted by a surrogate model to rank solutions by
expected energy. We also address both accuracy and barren plateau occurrence by framing it
as a MO problem. Results show that our approach, effectively enhances the trainability of
known architectures while maintaining strong performance.

Finally, we introduce EDAspy, a Python open-source library designed to advance EDA research.
Noting the lack of EDA implementations, we offer over ten variants and supports creating
custom EDAs with various components.

vi

Resumen

Los algoritmos evolutivos abarcan muchos dominios, como la Industria 4.0, aprendizaje
automático y automático cuántico (QML) debido a su fácil implementación, escalabilidad e
interpretabilidad. Esta tesis se centra en los algoritmos de estimación de distribución (EDA),
que usan modelos probabilísticos (PM) para generar nuevas soluciones. Las redes bayesianas
(BN) representan dependencias condicionales entre variables, y su integración en los EDA
puede revelar patrones y mejorar las soluciones.

En esta tesis nos centramos en la aplicación de los EDAs a problemas industriales. Primero,
extendemos un EDA con BNs Gaussianas para optimizar mezclas de disolventes en una
disolución en laboratorio. El EDA explora un espacio de búsqueda inicial con restricciones
(conocimiento experto) proporcionado por los expertos, e incluye un parámetro que equilibra
la exploración. Los resultados indican que maximizar la exploración imita a los expertos, y
reducirla conduce a mayor rentabilidad. Esta metodología se amplió después para abordar un
problema multiobjetivo (MO) en el diseño de experimentos para la fabricación de combustible.
Para reducir el uso de recursos desarrollamos una herramienta basada en EDAs para proponer
fórmulas experimentales, en las que algunos objetivos no pueden evaluarse analíticamente y
se predicen con modelos subrogados. El análisis a posteriori reveló patrones desconocidos
anteriormente entre los componentes del combustible.

Los EDAs tradicionales para dominios continuos asumen una distribución paramétrica.
Además, el EDA canónico actualiza un PM basándose en los mejores individuos de la iteración
anterior, con riesgo de convergencia prematura. Introducimos un EDA semiparamétrico,
relajando la asunción de gaussianidad usando BNs semiparamétricas, donde nodos estimados
por kernels coexisten con nodos gaussianos, determinados dinámicamente por el EDA. Nuestra
propuesta incorpora información de múltiples iteraciones pasadas para aprender el PM. Se
muestran mejoras estadísticamente significativas respecto a otros métodos.

El EDA se asemeja a algunos algoritmos de QML. Esta tesis combina EDAs con computación
cuántica (QC) para optimización. Por un lado, los métodos cuántico-inspirados son algoritmos
clásicos asistidos por QC. Introducimos un EDA cuántico-inspirado, sustituyendo el PM
por un circuito cuántico. Los resultados indican que el ruido cuántico mejora los resultados.
También comparamos el coste computacional de distintas topologías e identificamos la ideal
para nuestro EDA.

Por otro lado, los algoritmos cuánticos variacionales (VQA) son metodologías asistidas por
optimizadores clásicos. Los VQAs minimizan una función de energía tuneando los parámetros
del circuito paramétrico (ansatz). Nuestra primera contribución al campo aplica VQAs para
aprender BNs. Analizamos la resiliencia al ruido para diferentes tipos, encontrado resultados
competitivos. El Digital Annealer es usado para BNs grandes por las limitaciones actuales de
hardware.

Proponemos el uso de EDAs para la optimización de parámetros del ansatz comparando
diferentes EDAs y escenarios. Los resultados muestran que los EDAs son competitivos
comparado con otras metodologías, basadas o no en gradientes, en términos de CPU y calidad

vii

de soluciones, con/sin ruido cuántico. Buscar la arquitectura cuántica implica optimizar la
arquitectura y parámetros del ansatz. Para gestionar esta optimización multinivel, utilizamos
un EDA asistido por un modelo subrogado que ordena las soluciones por energía esperada.
También abordamos la calidad de la solución y aparición de la meseta barren como un problema
MO. Mostramos que nuestro EDA mejora la capacidad de entrenamiento de arquitecturas
manteniendo alto rendimiento.

Por último, se presenta EDAspy, una librería en Python, gratuita y de código abierto, diseñada
para avanzar en la investigación de EDAs. Dada la falta de implementaciones se ofrecen más
de diez variantes y permiten crear EDAs personalizados por componentes.

viii

Contents

Acknowledgement . iii
Abstract . v
Resumen . vii
List of Figures . xv
List of Tables . xviii
Abbreviations and acronyms . xxi
Notation . xxiii

I INTRODUCTION 1

1 Introduction 3
1.1 Hypotheses and objectives . 5
1.2 Document organization . 6

II BACKGROUND 9

2 Bayesian Networks 11
2.1 Introduction . 11
2.2 Representation . 11

2.2.1 Discrete BNs . 13
2.2.2 Continuous BNs . 14

2.2.2.1 Parametric BNs . 14
2.2.2.2 Non-parametric BNs . 15
2.2.2.3 Semiparametric BNs . 16

2.2.3 Hybrid BNs . 16
2.3 Learning . 16

2.3.1 Parameter learning . 17
2.3.2 Structure learning . 17

2.3.2.1 Score-based approaches . 18
2.3.2.2 Constraint-based approaches 21
2.3.2.3 Hybrid approaches . 22

2.4 Inference . 22
2.4.1 Gaussian distributions . 22

ix

3 Estimation of Distribution Algorithms 25
3.1 Introduction . 25
3.2 Evolutionary algorithms . 25
3.3 Estimation of distribution algorithms . 27

3.3.1 Toy example . 27
3.4 State of the art . 28

3.4.1 Univariate approaches . 29
3.4.1.1 Discrete EDAs . 30
3.4.1.2 Continuous EDAs . 30

3.4.2 Bivariate approaches . 30
3.4.2.1 Discrete EDAs . 31
3.4.2.2 Continuous EDAs . 31

3.4.3 Multivariate approaches . 31
3.4.3.1 Discrete EDAs . 31
3.4.3.2 Continuous EDAs . 32

3.4.4 Multi-objective approaches . 32
3.4.4.1 Problem formulation . 32
3.4.4.2 State of the art . 34

4 Quantum Computing 37
4.1 Introduction . 37
4.2 Foundations of quantum computing . 38

4.2.1 Qubits . 38
4.2.2 Multiple qubits . 39
4.2.3 Quantum gates . 39

4.2.3.1 One-qubit gates . 39
4.2.3.2 Multi-qubit gates . 40

4.2.4 Quantum measurement . 42
4.2.5 Quantum circuits . 42

4.3 Variational quantum algorithms . 43
4.3.1 Objective cost function . 43
4.3.2 Quantum parametric circuit . 44
4.3.3 Parameter optimization . 45

4.3.3.1 Barren Plateaus . 45
4.4 Quantum approximate optimization algorithm 46
4.5 Variational quantum eigensolver . 47
4.6 Quantum noise . 48

4.6.1 Amplitude damping error . 48
4.6.2 Phase damping channel . 48
4.6.3 Depolarizing channel . 49
4.6.4 Multi-qubit quantum error . 50
4.6.5 Measurement error . 50

x

III CONTRIBUTIONS 51

5 Industrial Problems Constrained by Environment Variables 53
5.1 Introduction . 53
5.2 Proposed solution . 55

5.2.1 Initialization . 56
5.2.2 Truncation . 57
5.2.3 Problem formulation . 58
5.2.4 Estimation of the density function . 59
5.2.5 Sampling . 60

5.3 Results . 60
5.4 Conclusions . 67

6 A Multi-objective Framework for Data-Driven Experimental Design 69
6.1 Introduction . 69
6.2 Optimizing the design of fuel . 71

6.2.1 Problem formulation . 73
6.3 Methods and results . 74

6.3.1 Prediction of descriptors . 74
6.3.2 Probabilistic model . 75
6.3.3 Truncation . 76
6.3.4 Initial data generation . 76
6.3.5 Performance analysis . 77
6.3.6 Knowledge discovery . 80
6.3.7 Comparison . 81

6.4 Conclusions . 83

7 Semiparametric EDA for Continuous Optimization 85
7.1 Introduction . 85
7.2 Semiparametric estimation of distribution algorithm 87

7.2.1 EGNA . 87
7.2.2 SPEDA . 90

7.3 Experimental results . 92
7.3.1 Experimental results on 30-d benchmarks 95
7.3.2 Experimental results on 50-d benchmarks 99
7.3.3 Portfolio optimization . 101
7.3.4 CPU time and complexity analysis 102

7.4 Conclusions . 103

8 Quantum-inspired EDA to Solve the Traveling Salesman Problem 105
8.1 Introduction . 105
8.2 QIEDA . 106

8.2.1 Representation . 107
8.2.2 Algorithm . 108

8.2.2.1 Initialization . 108

xi

8.2.2.2 Individuals Generation . 109
8.3 Results . 112

8.3.1 Algorithm Performance . 112
8.3.2 Analysis of computing topologies . 115

8.4 Conclusions . 118

9 QAOA for BN Structure Learning 119
9.1 Introduction . 119
9.2 QUBO formulation of BNSL . 120

9.2.1 H (score) . 121
9.2.2 H (max) . 122
9.2.3 H (trans) and H (consist) . 122

9.3 Method . 123
9.3.1 QAOA variables . 123
9.3.2 QAOA circuit . 124

9.3.2.1 Initial state . 125
9.3.2.2 Applying the cost operator 125
9.3.2.3 Applying the mixed operator 125

9.4 Results . 126
9.4.1 QAOA performance . 128
9.4.2 Noise resilience . 129
9.4.3 BNSL from real-world data . 134
9.4.4 Large BNs learning . 135

9.5 Conclusions . 136

10 VQAs Parameter Tuning with EDAs 137
10.1 Introduction . 137
10.2 Experimental results . 138

10.2.1 QAOA ansatz parameter tuning . 140
10.2.2 VQE ansatz parameter tuning . 142
10.2.3 Molecule simulation with parametric quantum noise 144
10.2.4 EDA hyper-parameter tuning . 146

10.3 Conclusions . 146

11 Trainability Maximization for Quantum Architecture Search 149
11.1 Introduction . 149
11.2 Related work . 150
11.3 Method . 151

11.3.1 Codification . 152
11.3.2 Probabilistic model . 153
11.3.3 Post-processing . 154
11.3.4 Surrogate model . 154
11.3.5 Evaluation . 155

11.4 Results . 156
11.4.1 Random initialization . 157

xii

11.4.2 Initialization with the dataset . 161
11.5 Conclusions . 162

12 EDAspy: An Extensible Python Package for EDAs 165
12.1 Introduction . 165
12.2 Software framework . 166
12.3 Related work . 167
12.4 Performance analysis . 169
12.5 Illustrative examples . 170
12.6 Conclusions . 171

IV CONCLUSIONS 173

13 Conclusions and Future Work 175
13.1 Summary of contributions . 175
13.2 List of publications . 177
13.3 Software . 178
13.4 Future work . 178

V APPENDIX 181

A Benchmarking Functions 183
A.1 CEC2014 benchmark . 183
A.2 CEC2017 benchmark . 183

B Exploration Data Analysis 185
B.1 Ingredients and properties description . 185
B.2 Optimization constraints . 185

C Algorithms Configuration 189
C.1 Configuration of regression models . 189
C.2 Competitors configuration . 189

D Large BNSL using Digital Annealing 191
D.1 Problem size fitted into device . 191
D.2 20 nodes BNSL . 191
D.3 50 nodes BNSL . 191

E Complementary Materials for Quantum Architecture Search 195
E.1 Hamiltonians . 195
E.2 Surrogate model prediction . 195
E.3 Distance computation . 196
E.4 Pareto frontier approximations . 196
E.5 IC and expectation values comparison . 196

xiii

F Library Required Metadata 203
F.1 Current executable software version . 203
F.2 Current code version . 203

VI REFERENCES 205

xiv

List of Figures

1.1 Context of PhD in classical and quantum computation 4

2.1 Student Bayesian network example . 12
2.2 Illustrative example of Markov blanket . 13
2.3 Types of Bayesian networks based on types of nodes 14

3.1 Toy example of simple EDA . 28
3.2 Examples of different types of PM structures used in EDAs. 29
3.3 Pareto frontier and hypervolume computation 33

4.1 Bloch sphere representation of a qubit. 38
4.2 Qubit measurement gate in the z-axis. 42
4.3 GHZ quantum circuit. 42
4.4 Variational quantum algorithm workflow . 43
4.5 QAOA ansatz example . 47
4.6 VQE ansatz example . 47

5.1 Chemical process sketch . 55
5.2 DAG learned where only decision variables are connected 59
5.3 Cost function convergence . 61
5.4 Mean and dispersion of the cost function in each generation 62
5.5 GBN learned where all the nodes are connected 63
5.6 Mean cost as a function of the α parameter 64
5.7 Mean cost and standard deviation of our approach, EMNA and PSO as a

function of the α parameter . 65

6.1 General flow chart of the multi-objective proposed approach for data-driven DoE. 72
6.2 Box plot of the log-likelihood of each sample in the model 76
6.3 First, second and third Pareto frontiers . 76
6.4 Convergence plot of the three objectives . 77
6.5 Mean hypervolume for different values of exploratory parameter α 78
6.6 Mean log-likelihood along the optimization process for different values of α . 79
6.7 Pairwise comparison of two dimensions of the problem landscape 80
6.8 Gaussian BN structure learned from the best solutions found in the last

iterations of the EDA . 81
6.9 Heatmap that represents the Pearson correlation 82

xv

6.10 Best solutions found by MO_EDA, NSGA-II and MOEAD 83

7.1 Iterative approximation of the search space by and EGNA 88
7.2 Elite approach and archive-based search processes 89
7.3 A search space iteratively approximated by SPEDA 90
7.4 Percentage of CKDE nodes during runtime 95
7.5 Credible intervals and expected probability of winning for d = 30 97
7.6 Mean standard deviation during runtime for EGNA, SPEDA and m_KEDA 98
7.7 Mean best cost found by SPEDA for different archive lenghts 98
7.8 Credible intervals and expected probability of winning for d = 50 101
7.9 Boxplot with the best results found for portfolio optimization 102
7.10 Comparison of the average CPU time . 103

8.1 Example of the quantum individuals sampling 109
8.2 Example of a W state circuit for n = 5 . 112
8.3 Probability distribution of the W state circuit sampling without and with noise113
8.4 Mean best cost for the TSP for different number of cities and different algorithms114
8.5 Convergence for the TSP for different number of cities and algorithms 116
8.6 Quantum computers topologies. 117
8.7 Chain topology customly designed . 118

9.1 QAOA circuit example for a BN structure learning problem 124
9.2 Two Pauli operators representation in the quantum circuit 125
9.3 Histograms for different numbers of layers 126
9.4 Best cost found as a function of number of layers and α parameter 127
9.5 Number of iterations for convergence as a function of number of layers 129
9.6 Quantum parametric circuit with noisy channels 130
9.7 Cost and iterations as a function of noise intensity 131
9.8 Best cost found as a function of the noise intensity 133
9.9 Original Cancer BN structure . 134

10.1 Optimization landscape for QAOA (1 layer) 138
10.2 GBN structures designed for QAOA . 139
10.3 Comparison of the EDA variants with the other optimizers for QAOA 140
10.4 Critical difference diagram between EDA variants 141
10.5 Critical difference diagram of EDAs and other optimizers 141
10.6 BN structure found with SPEDA . 142
10.7 Comparison of the EDA variants with the other optimizers for VQE 143
10.8 Critical difference diagram between EDA variants 144
10.9 Critical difference diagram when p > 6 . 144
10.10Cost function evaluations comparison for the VQE TwoLocal 145
10.11Critical difference diagram for the VQE TwoLocal 145
10.12EDA parameter analysis . 147

11.1 Flowchart of the proposed approach . 152

xvi

11.2 Four examples of the ansatz codifications (A1, A2, A3, A4) defined in Equa-
tion 11.2 . 153

11.3 Rules for post-processing of an ansatz . 154
11.4 Visualization of the ansatzes using t-SNE . 157
11.5 Confusion matrices for n ∈ {4, 8, 12}. 158
11.6 IC maximization convergence . 160
11.7 Ratio of gates in the ansatz design . 161
11.8 Number of parameters (Y-axis) as a function of the number of qubits 162

12.1 High order organization of the EDAspy library. 166
12.2 Probabilistic models graphical representations. 168
12.3 Best cost found analysis of some EDA variants for continuous optimization . 170
12.4 CPU runtime analysis of some EDA variants for continuous optimization . . 170

B.1 Frequency of each property P1, . . . , P14. 187

D.1 Number of qubits as a function of the number of BN nodes 191
D.2 Results for 20 nodes . 192
D.3 Results for 50 nodes . 193

E.1 Pareto frontier approximation where EDA is randomly initialized 197
E.2 Pareto frontier approximation where EDA is initialized from the given ansatz 198

xvii

xviii

List of Tables

3.1 Classification of EDAs . 29

4.1 Gate and matrix representations of one-qubit X, Y and Z Pauli operators. . 40
4.2 Gate and matrix representations of one-qubit RX(θ), RY (θ) and RZ(θ) operators. 40
4.3 Gate and matrix representation of the Hadamard gate. 41
4.4 Gate and matrix representation of CNOT, CZ and SWAP 41

5.1 Best result found by our approach as a function of α for each experiment . . 66
5.2 Best result found by EMNA as a function of α for each experiment 66
5.3 Best result found by PSO as a function of α for each experiment 67
5.4 Number of iterations and CPU time of each algorithm 67

6.1 Cross-validation leaving-one-out experiments after predicting 75
6.2 Hypervolume and diversity metrics for each approach 82

7.1 Best parameter configuration used for each algorithm 93
7.2 Best cost found for each benchmark and algorithm (d = 30) 94
7.3 Best cost found for each benchmark and algorithm (d = 50) 100

8.1 Algorithms configuration. 113
8.2 ANOVA test p-values . 115
8.3 Depth analysis of the W State circuit for different topologies 117

9.1 Best costs found for different noise intensities and types of noise 132
9.2 Comparison of QAOA approach with other state of the art methods 135

10.1 Best results found for different optimizers and noise intensities 146

11.1 ANOVA results to reject the null hypothesis of equal means 159

12.1 Summary of functionalities implemented in each library 169

A.1 CEC2014 single objective minimization test benchmarks 184
A.2 CEC2017 single objective minimization test benchmarks 184

B.1 Properties associated to each of the ingredients used for the fuel fabrication . 186
B.2 Formula, lower and upper bound for analytical descriptors 188

xix

C.1 Bayesian ridge model hyperparameters . 189
C.2 Lasso, Ridge and Kernel ridge regression models hyperparameters 190
C.3 Hyperparameters used for NSGAII algorithm 190
C.4 Hyperparameters used for MOEAD algorithm 190

E.1 Accuracy for each model as a function of number of qubits 196
E.2 Fidelity between each ansatz found by EDA and the ones from dataset (4 qubits)199
E.3 Fidelity between each ansatz found by EDA and the ones from dataset (8 qubits)200
E.4 Fidelity between each ansatz found by EDA and the ones from dataset (12

qubits) . 201
E.5 Expectation value and information content of the ansatz in dataset 202
E.6 Best results found by EDA when EDA is initialized from the dataset 202

F.1 Software metadata. 203
F.2 Code metadata. 203

xx

Abbreviations and acronyms

The most relevant abbreviations used during this PhD thesis are listed below:

AIC Akaike’s Information criterion

BP Barren plateaus

BN Bayesian network

BIC Bayesian information criterion

BD Bayesian Dirichlet

BNSL Bayesian network structure learning

CPD Conditional probability distribution

CD Crowding distance

CKDE Conditional kernel density estimation

CMA-ES Covariance matrix evolutionary strategy

CVaR Conditional value at a risk

DAG Directed acyclic graph

DE Differential evolution

DoE Design of experiments

DM Diversity metric

EA Evolutionary algorithm

EDA Estimation of distribution algorithm

EGNA Estimation of Gaussian network algorithm

EMNA Estimation of multivariate normal algorithm

ES Evolution strategy

GBN Gaussian Bayesian network

GA Genetic algorithm

HV Hypervolume

xxi

IC Information content

KDE Kernel density function

KDEBN Kernel density estimation-based Bayesian network

LHS Latin hypercube sampling

MAE Mean absolute error

MLE Maximum likelihood estimation

MMHC Max-min hill climbing

MSE Mean squared error

PDF Probability density function

PLS Probabilistic logic sampling

PSO Particle swarm optimization

QAOA Quantum approximate optimization algorithm

QC Quantum computing

RMSE Root mean squared error

SPBN Semiparametric Bayesian network

UMDAC Univariate marginal distribution algorithm for continuous domain

u_KEDA Univariate kernel density estimation of distribution algorithm

m_KEDA Multivariate kernel density estimation of distribution algorithm

UPM Universidad Politécnica de Madrid

VQA Variational quantum algorithm

VQE Variational quantum eigensolver

xxii

Notation

The following most relevant notation is used along the PhD thesis and is formalized as:

n Number of variables in a model

d Dimension of the optimization problem

N Population-size in evolutionary algorithms

l Archive-length

X = (X1, . . . , Xn) Set of variables

x = (x1, . . . , xn) Instance of the variables set X

Gi Set of solutions corresponding to the generation i

At Archive at iteration t

GS
i Subset of solutions selected from Gi according to some criteria

p(X) Probability distribution of X

f(X) Density function of X

L(·) Log-likelihood function

p(X|X) Probability distribution of X given Y

N Normal distribution

g(·) Cost function

x∗ Optimal solution found for an optimization problem

x∗ Global optima of an optimization problem

µ = (µ1, . . . , µn) Vector of means

Σ Covariance matrix

σ Standard deviation

| · | Cardinality of a set

H Hamiltonian

|·⟩ Quantum state represented with Ket notation

xxiii

|+⟩ Superposition state

H Hamiltonian

p Number of layers of an ansatz

ϵ(ψ) Quantum channel applied to a quantum state

Θ BN parameters

Θ∗ Optimal parameters of a BN model

G DAG representation of the BN structure

D Dataset with {X1, . . . ,Xn} instances, and n variables

O Set of operators in the BN learning algorithm

xxiv

Part I

INTRODUCTION

1

Chapter 1

Introduction

Evolutionary algorithms (EAs) [Dasgupta and Michalewicz, 2014] mimic the principles
of natural evolution to solve complex optimization and search problems. Rooted in the
mechanisms of natural selection and genetics, EAs employ a population-based approach,
iteratively evolving solutions to optimize a given objective function. In the context of machine
learning, EAs provide powerful tools for hyper parameter optimization [Alibrahim and Ludwig,
2021], feature selection [Wang et al., 2015], and neural network architecture search [Lu et al.,
2019], among others [Larrañaga and Bielza, 2024]. Unlike traditional optimization techniques
that may become trapped in local optima, EAs have shown to maintain a diverse population
of potential solutions, enabling more robust exploration of the search space.

Traditional EAs: genetic algorithms (GAs) ([Holland, 1975]), evolutionary strategies ([Rechen-
berg, 1971]), evolutionary programming ([Fogel et al., 1966]) or genetic programming ([Cramer,
1985]). The main disadvantage found in traditional EAs is that they do not explicitly consider
dependencies among the variables involved, and hence, new sampled solutions are not able to
exploit the information found in the data. This limitation is overcome by using a probabilistic
graphical models [Koller and Friedman, 2009] to reproduce new solutions. This type of EAs
are the estimation of distribution algorithms (EDAs) [Larrañaga and Lozano, 2001].

Industrial optimization tasks are often characterized by (i) the large amount of decision
variables, (ii) the uncertainty of the inter-dependencies between the variables, (iii) the need of
fast computation due to the existence of dynamic scenarios, (iv) the necessity of interpretability
of the implemented models, and (v) the need of a set of optimal solutions, among others.
In this sense, we state that EDAs make a perfect match for this necessity, because of the
following facts:

• EDAs are able to efficiently tackle large scale optimization tasks [Hong et al., 2021].

• Complex probabilistic models, such as Bayesian networks (BNs) [Koller and Friedman,
2009], can be embedded into the EDAs framework which are able to detect conditional
dependencies between the decision variables of the problem [Larrañaga et al., 2012].

• EDAs maintain a population of potential solutions, allowing simultaneous exploration
of multiple areas of the search space. Moreover, the evaluation of these solutions can be

3

Vicente Pérez Soloviev

CC CQ

QC QQ

Figure 1.1: Context of the PhD thesis in the topics of classical and quantum computation.
CC, CQ, QC, QQ refer to classical computation, classical computation assisted by quantum
computing, quantum computing assisted by classical computing, and quantum computing,
respectively.

easily parallelized to speed the computation [Falcón-Cardona et al., 2021].

• The ease of implementation of the EDAs approaches makes the framework to be easily
understood. Moreover, the BNs learned in each iteration represent the dependencies
encountered in several regions of the search space discovering uncertain knowledge that
can be analyzed a posteriori by the industrial crew [Mihaljević et al., 2021].

• EDAs not only return the best solution found so far, but also a ranking with the best
ones discovered during runtime [Larrañaga and Lozano, 2001].

• EDAs are usually resilient to noisy or imprecise cost function evaluations [Rakshit et al.,
2017].

• EDAs have been successfully applied to a wide range of industrial applications [Larrañaga
and Bielza, 2024].

EAs have also been combined with quantum computing (QC) technologies [Nielsen and
Chuang, 2002, Gyongyosi and Imre, 2019] in the last decade. QC has demonstrated to
be a way of saving energy consumption and outperforming classical computation in some
specific problems, such as optimization or chemistry simulation. This is leading to the noisy
intermediate-scale quantum (NISQ) era, which is characterized by being limited by the number
of qubits of the devices and the presence of quantum noise in the systems. The intersection
between QC and machine learning [Murphy, 2022] is quantum machine learning (QML).

Previous studies on QML [Schuld, 2018, Lau et al., 2017, Wiebe et al., 2012] have focused on
exploiting the benefits of the QC to improve the performance of the optimization algorithms.
With respect to EAs, QML revolves around three main research areas [Zhang, 2011]: (i)
quantum-inspired evolutionary algorithms, which take advantage of the concepts and principles
of quantum mechanics to improve the classic EAs; (ii) evolutionary-designed quantum

4

CHAPTER 1. INTRODUCTION

algorithms, which develop new quantum algorithms implemented by EAs; and (iii) quantum
EAs, which develop new EAs to be executed in quantum devices.

In this thesis we address two general aspects of the topic of EDAs. On the methodological side,
we aim to advance the state of the art of EDAs by proposing new approaches that improve
its current state. On the application side, we aim to introduce the use of these approaches
to real industrial problems, as well as in the field of QML. Figure 1.1 summarizes the main
focus of the thesis, and will be systematically referred to during this document. It depicts the
four ways of combining classical (C) and quantum (Q) computation. CC regards the new
methods introduced to the state of the art of the EDAs and the application of the methods to
industrial problems. CQ regards to EDAs assisted by QC, whereas QC regards to quantum
algorithms assisted by EDAs. Finally, QQ regards to those contributions in the area of QC,
in which EDAs are not present.

Chapter outline
The outline of the chapter is organized as follows. Section 1.1 enumerates the hypotheses and
objectives of this thesis, and Section 1.2 explains the document organization.

1.1 Hypotheses and objectives
The hypotheses of this thesis are as follows:

• H1. Allowing the EDA to decide itself whether to use parametric, non-parametric or a
combination of both probability distributions will improve traditional EDA approaches
performance for continuous optimization domains.

• H2. The combination of classical with quantum computing applied for Bayesian network
structure learning will achieve competitive results with the state of the art.

• H3. EDAs will provide competitive results for optimizing the architecture and parame-
ters of quantum parametric circuits for variational quantum algorithms.

• H4. Quantum-inspired evolutionary algorithms will outperform classical evolution-
ary algorithms for solving complex optimization problems by harnessing principles of
quantum mechanics.

• H5. EDAs will provide interpretable results and useful tools for facing single- and
multi-objective real problems in the Industry 4.0.

To prove these hypotheses, the following objectives are proposed:

• O1. To develop an EDA variant in which parametric and non-parametric probability
distributions can co-exist together for continuous optimization.

• O2. To develop a hybrid method between classical and quantum computations for
Bayesian network structure learning, and prove its resilience to quantum noise.

• O3. To compare the performance of EDAs with the state of the art for parameter

5

Vicente Pérez Soloviev

optimization in quantum parametric circuits.

• O4. To develop an efficient method for optimizing the architecture of quantum para-
metric circuits.

• O5. To develop an EDA variant where new solutions are sampled from a quantum
system.

• O6. To develop an open-source library in which several EDA approaches are available
and custom implementations can be easily extended.

• O7. To solve a single-objective real problem in the Industry 4.0 using EDAs.

• O8. To solve a multi-objective real problem in the Industry 4.0 using EDAs.

1.2 Document organization
The thesis is organized in five parts that include fourteen chapters and three appendices, with
the following contents:

Part I. Introduction
This part introduces the topic of the thesis and details its hypotheses and objectives.

• Chapter 1 enumerates the hypotheses and objectives of the work and describes the
document outline.

Part II. Background
• Chapter 2 provides an introductory background of Bayesian networks. The chapter

formally explains the representation of these models, and afterwards, the learning and
inference methods.

• Chapter 3 explains the main differences of EDAs compared to the rest of EAs, and
reviews the different research lines in the topic.

• Chapter 4 provides an introductory background for quantum computation. First the
general foundations of quantum mechanics and its representation are explained. Then,
variational quantum algorithms are introduced as a methodology widely used during
this thesis. The chapter finishes with a soft introduction to quantum noises.

Part III. Contributions
This part contains the nine chapters associated to each of the contributions of the thesis.

• Chapter 5 assesses the performance of traditional EDAs to solve a real optimization
problem in the industry. The algorithm searches over the landscape of initial solutions,
where the user is able to tune how different are the new samples compared to those

6

CHAPTER 1. INTRODUCTION

provided initially by the experts, but also specifies the desired values for a subset of
variables.

• Chapter 6 extends previous research done in Chapter 5 for multi-objective optimization
applied to a real industrial optimization problem which aims to design an optimal
formulation for fuel fabrication. Surrogate modelling is used for the approximation of
part of the restrictions set.

• Chapter 7 overcomes a major limitation of traditional EDAs in continuous optimiza-
tion proposing a novel methodology in which a coexistence of both parametric and
non-parametric probability distributions is allowed. The algorithm decides itself in
each iteration the type of distributions to use, and moreover, the algorithm uses the
information retrieved from more than one past iterations.

• Chapter 8 introduces a new methodology in which a quantum system is proposed as
the sampler engine of the EDA. The quantum system is iteratively updated based on
the best solutions selected in the previous iteration for the traveling salesman problem.

• Chapter 9 faces the problem of learning the structure of a Bayesian network using
different quantum approaches. On the one hand, variational quantum algorithms are
used, where a noise resilience analysis is performed. On the other hand, a quantum-
inspired device is used to learn larger problem instances.

• Chapter 10 proposes the usage of EDAs for the optimization of quantum paramet-
ric circuits, and compares different variants of the algorithm to the state-of-the art
approaches.

• Chapter 11 presents a methodology for quantum architecture search. That is, going one
step beyond Chapter 10 in which, not only the parameters are optimized, but also the
quantum circuit composition. An EDA-based approach assisted by surrogate modelling
faces the multi-objective optimization, where avoiding barren plateaus is one of the
objectives while improving the performance of the variational quantum algorithm.

• Chapter 12 presents EDAspy library, where many EDA variants are implemented. More-
over, visualization tools and modules to easily implement a custom EDA version are
also provided.

Part IV. Conclusions
This part rounds the thesis off with some conclusions and future work.

• Chapter 13 first summarizes the main conclusions agreed during this thesis, and then
proposes new open research lines.

Part V. Appendices
Supplementary materials are included in this part.

• Appendix A describes the benchmark suites used for the validation of the methodology
proposed in Chapter 7, and are publicly available in the library presented in Chapter 12.

7

Vicente Pérez Soloviev

• Appendix B describes the dataset provided by the experts from the industry for the
developed methodology presented in Chapter 6.

• Appendix C shows the configuration used for the algorithms to which our approach is
compared in Chapter 6.

• Appendix D shows the main results described as part of Chapter 9, in which large
Bayesian networks are learned using quantum-inspired technologies.

• Appendix E shows the complementary materials for the results shown in Chapter 11, in
which a novel approach is proposed for quantum architecture design.

• Appendix F presents the library required metadata for EDAspy, described in Chapter 12.

8

Part II

BACKGROUND

9

Chapter 2

Bayesian Networks

2.1 Introduction
Complex problems usually involve dealing with variables in which the relationships among
them are unknown. Discovering the dependencies between each other is highly interesting for
the experts in the case of industrial settings, but also in other fields.

Bayesian networks (BNs) [Koller and Friedman, 2009] are useful tools founded on probability
theory for dealing with uncertainty in a given training dataset. Their representation allows
the combination of automatic learning with the incorporation of expert knowledge added by
the user. Once this model is trained, it allows to perform different types of reasoning for
discovering relationships between the variables, and to be implemented for decision-making
tasks.

Chapter outline
The outline of this chapter is organized as follows. Section 2.2 introduces the formal repre-
sentation of BNs. Section 2.3 reviews the three main ways of learning the model from some
given data. Section 2.4 introduces the concept of inference for BNs and how it is performed
in continuous domains.

2.2 Representation
Bayesian networks (BNs) [Koller and Friedman, 2009] are a type of probabilistic graphical
model that compactly represents the joint probability distribution of a set of random variables.
BNs are widely used in machine learning [Murphy, 2022] for different applications [Bielza
and Larrañaga, 2014, Puerto-Santana et al., 2021] due to their capability of representing the
uncertain knowledge contained in the data and the possibility of adding expertise.

BNs are defined as a pair (G,Θ) over a set of random variables X = {X1, X2, . . . , Xn},
where n is the number of variables. They are composed of: (i) a directed acyclic graph
(DAG) G = {V,A}, where V denotes the variables in X represented as nodes in the DAG

11

Vicente Pérez Soloviev

Difficulty (D) Intelligence (I)

Grade (G) SAT (S)

Letter (L)

Figure 2.1: Student BN in which nodes are the variables of the problem, arcs represent
conditional dependencies between the variables, and the tables are the CPDs.

and A contains the arcs between the nodes, which encode the conditional (in)dependence
relationships among the variables; and (ii) a set of parameters Θ that define the conditional
probability distribution (CPD) of each variable Xi given its parents P ai in G, where the
parents of a variable Xi are the variables directly pointing at Xi in the DAG.

Considering this notation, the joint probability distribution p(X) over a set of random
variables X is obtained as a product of all the CPDs of each variable given its parents
(p(Xi|P ai)) in the graph:

p(X) = p(X1, . . . , Xn) =
n∏

i=1
p(Xi|P ai) (2.1)

Regarding the parameters Θ = (Θ1,Θ2, . . . ,Θn), each parameter Θi defines the conditional
probability of a variable Xi to its parents P ai. If a variable does not have parents in the
graph, then Θi corresponds to its marginal probability (p(Xi)). On the other hand, if Xi has
parents in the graph, then its parameters correspond to the effects of its parents on its CPD.

Figure 2.1 shows an example of a BN, in which five random variables are represented: the
difficulty of an exam (D), the intelligence of a student (I), the grade that the student archives
(G), the student’s SAT score (S) and the quality of the recommendation letter (L). All
the variables are binary (0, 1) except G which can have three different values (1, 2, 3). Arcs
between the nodes represent conditional dependencies, and the tables represent the CPDs of
the model.

Regarding the BN structure (G), the grade of the student directly depends on both the

12

CHAPTER 2. BAYESIAN NETWORKS

B C

E

H

F

A

G

D

Figure 2.2: Illustrative example of the set of variables included in the Markov blanket of
variable E, which includes the parents, children, and parents of children of E.

difficulty of the exam and the intelligence of the student. However, the student’s SAT score
only depends on the intelligence of the student. The quality of the recommendation letter
only depends on the grade that the student achieves in the exam.

Regarding the BN parameters (Θ), the CPDs associated to D represent the marginal proba-
bility p(D) of intelligent (d = 0) versus non intelligent (d = 1). Another example is the CPD
associated to I. The distribution over the student’s grade, SAT score S and recommendation
letter L, are conditional probabilities p(G|D, I), p(S|I) and p(L|G), respectively. For example,
p(G|D, I) represents the probability of the student’s grade depending on the difficulty of the
exam and the intelligence of the student. The CPD assigns a specific value for all possible
variables configuration.

Following Equation 2.1 the joint probability distribution of the BN represented in Figure 2.1
is computed as

p(D, I,G, S, L) = p(D)p(I)p(G|D, I)p(S|I)p(L|G). (2.2)

The Markov blanket MB(Xi) of a variable Xi in the BN is the minimal set of variables
such that Xi is conditionally independent of all the other variables given MB(Xi). MB(Xi)
is considered the strongly related variables to Xi when data follow a stable distribution
[Tsamardinos and Aliferis, 2003], and includes parents, children and spouses (parents of
children) of Xi found in G. Figure 2.2 depicts an illustrative example of the Markov blanket
of the variable E in a BN structure.

Depending on the nature of the variables in the BN, we can distinguish among discrete,
continuous and hybrid BNs, which hold discrete, continuous and a combination of both types
of variables, respectively.

2.2.1 Discrete BNs
When dealing with discrete variables, the CPD is a tabular representation, where p(Xi|P ai)
is encoded as a table in which each entry is a joint assignment to Xi and each variable in P ai.
Note that each entry in the CPD table is nonnegative and is restricted to ∑xi

p(xi|pai) = 1 ∀i,
where pai denotes a value assignment for P ai.

13

Vicente Pérez Soloviev

A B

C

D

A B

C

D

A B

C

D(a) (b) (c)

Figure 2.3: Parametric (a), semiparametric (b) and non-parametric (c) BN examples, where
white nodes and grey nodes represent parametric and non-parametric conditional distributions,
respectively.

2.2.2 Continuous BNs
When dealing with continuous BNs, a tabular representation is unfeasible, and thus, each
CPD is factorized as a conditional probability density function (PDF). Then, Equation 2.1 is
redefined as

f(X) = f(X1, . . . , Xn) =
n∏

i=1
f(Xi|P ai). (2.3)

Depending on the CPD used for the variables in the BN, we classify the BNs for continuous
domains in parametric, non-parametric and semiparametric BNs. Figure 2.3 graphically
represents the models, in which white and grey nodes represent the nodes in which a
parametric and non-parametric CPD is used, respectively. On the one hand, parametric
BNs (Figure 2.3(a)) assume a parametric probability distribution over all the variables in the
model. On the other hand, non-parametric BNs (Figure 2.3(c)) overcome this assumption by
using non-parametric models over the variables. Semiparametric BNs (Figure 2.3(b)) are a
combination of both types of models in which parametric and non-parametric distributions
are considered in the BN and dependencies between both types are allowed [Atienza et al.,
2022b].

2.2.2.1 Parametric BNs

When a BN assumes a parametric distribution for each of its variables, such as Gaussian,
then the BN is a Gaussian Bayesian network (GBN), where all CPDs are defined using a
linear Gaussian CPD:

f(Xi|pai) = N (βi0 + βi1pai1 + · · ·+ βikpaik
;σ2

i) (2.4)

where βi1, . . . , βik are the weights associated to each of the k parents of Xi, σ2
i is the respective

variance, and βi0 is the intercept coefficient.

GBNs are the most widely used models in the BN area when dealing with continuous data, as
they provide many advantages, such as ease of implementation, the speed of fitting a dataset
to a Gaussian distribution, and the existence of closed formulas for performing inference in
such models.

14

CHAPTER 2. BAYESIAN NETWORKS

However, when the data do not fit Gaussians, then the distribution is poorly modelled.
Moreover, as GBNs assume linear interactions between Xi and P ai, they are not applicable
in representing nonlinear relationships among variables.

Other approaches related to the assumption of probabilistic parametric distributions include
mixtures of multivariate Gaussian distributions [Thiesson et al., 1998], mixtures of Gaussians
[Dasgupta, 1999], mixtures of truncated exponentials [Moral et al., 2001], mixtures of polyno-
mials [Shenoy and West, 2011], and mixtures of truncated basis functions [Langseth et al.,
2012]. However, because of factors such as the existence of closed formulas for inference and
the fact that learning the parameters is less expensive, the usage of GBNs is more flexible
and widespread than these alternatives.

2.2.2.2 Non-parametric BNs

The alternative to assuming a parametric distribution over a dataset is to use non-parametric
models. Non-parametric models have the advantage of better fitting the distribution function
that do not fit parametric models, but they sacrifice speed and simplicity.

An example of this type of non-parametric model is the kernel density estimation (KDE)
[Silverman, 2018], which can be considered as a mixture model in which the number of
components is equal to the number of data samples. Consequently, the KDE demands much
more memory compared to parametric models, and this demand grows according to the size
of the data used for its training. The KDE joint probability density is defined as:

f(x) = 1
N

N∑
j=1

KH(x− xj), (2.5)

where K(·) is the n-variate kernel function, KH(x) = |H|−1/2K(H−1/2x) is the kernel
function, xj is the j-th sample among the N samples used to train the KDE and H is
the bandwidth matrix: a square n × n matrix that defines properties of the KDE such
as the smoothness of the density estimation. If a Gaussian kernel is used, then K(x) =

1
(2π)n/2 exp(−1

2xT x), where xT is the transpose vector of x.

A BN where all the CPDs are estimated with KDEs is named a kernel density estimation-based
Bayesian network (KDEBN). This type of model is less common than GBNs but is still widely
used in the literature [Pérez et al., 2009, Wang et al., 2016] because of the goodness of fit
provided by the KDEs used. However, KDEBNs inherit the disadvantages of KDEs, such as
a high memory demand that grows linearly with N , the parameters to be tuned (such as H),
and the complexity of these models.

Other approaches that avoid parametric models include the combination of GBNs with non-
parametric Bayesian mixture models [Ickstadt et al., 2010] and the use of Gaussian processes
to learn functional relations between variables [Friedman and Nachman, 2000]. However, the
use of KDEs is more widespread due to the existence of different types of easily implementable
kernels.

15

Vicente Pérez Soloviev

2.2.2.3 Semiparametric BNs

The combination of both non-parametric and parametric CPDs results in semiparametric BNs
(SPBNs) [Atienza et al., 2022b]. This type of model allows the coexistence of Gaussian and
KDE nodes in the same models, and the connections among them. Figure 2.3(b) shows an
example of an SPBN structure where all possible dependencies between both types of nodes
are depicted. The seminal paper proposed different algorithms for learning the parameters
and the structure of SPBNs. During the learning process these learning algorithms decide
between the following two possibilities: (i) the dependency between a variable Xi and its
parents P ai is linear Gaussian,

f(Xi|P ai) = N
βi0 +

∑
Xj∈P ai

βijXj, σ
2
i


where βi1, . . . , βik are the weights associated with each of the k parents of Xi, βi0 is the
intercept coefficient and σ2

i the variance of Xi; or (ii) the dependency is given by a conditional
kernel density estimation (CKDE) CPD:

f(Xi|P ai) = f(Xi,P ai)
f(P ai)

,

where f(Xi,P ai) and f(P ai) are KDE models as defined in Equation (2.5).

Note that if all the CPDs in the SPBN are linear Gaussian, then the learned SPBN is
equivalent to a GBN, and if all the CPDs in the SPBN are CKDEs, the learned SPBN is
equivalent to a KDEBN. For a more exhaustive mathematical formalization, see Atienza et al.
[2022b].

2.2.3 Hybrid BNs
When considering both continuous and discrete variables in the same model, two types of
conditional dependencies must be addressed: discrete variables are parents of continuous
ones, and viceversa. In the first case, we can store a linear Gaussian CPD for each possible
discrete parents configuration (Equation 2.4). In the second case, this approach cannot be
used and other alternatives are considered, such as mixtures of Gaussians in which each
Gaussian component corresponds to a discrete instantiation of the discrete variables [Koller
and Friedman, 2009].

2.3 Learning
Learning a BN involves finding both the optimal structure (G) representation and the set
of parameters (Θ) that best fit some given data (D). Learning by hand involves an expert
specifying the relationships between variables in order to build the structure. Subsequently, the
underlying CPDs can be described by the expert. This entails extensive domain knowledge, and
becomes infeasible as the size of the model grows with the number of variables. Additionally,
uncertainty about the data being handled may lead to wrong domain knowledge.

16

CHAPTER 2. BAYESIAN NETWORKS

An alternative to these limitations is using automatic tools to learn the entire model from
data, being possible to add expert knowledge during the learning process.

In this section we describe the general methodologies for learning both the parameters and
the BN structure automatically. This way, the inputs for the learning procedure are:

• Expert knowledge

• Training data D = {x1, . . . ,xN}, where N is the size of the dataset.

2.3.1 Parameter learning
A standard approach for parameter estimation is employing the maximum likelihood criterion,
which aims to select the set of parameters that maximize the likelihood function. The
likelihood function is defined as the probability of the training dataset D = {x1, . . . ,xN}
given the BN model:

p(D|Θ,G) =
N∏

j=1
p(xj|Θ,G) =

N∏
j=1

n∏
i=1

p(xji|Θi,G), (2.6)

where xj = (xj1, . . . , xjn) represents the j-th sample of the dataset D, and Θi is the set of
parameters for the CPDs of node i. Commonly, the logarithm of the likelihood (log-likelihood)
is optimized, as it is considered to provide better numerical precision, and it is defined as:

L(G,Θ : D) =
N∑

j=1

n∑
i=1

log p(xji|Θi,G). (2.7)

Once the likelihood function is defined, the maximum likelihood estimation (MLE) is stated
as choosing the parameter configuration Θ∗ that maximizes Equation 2.6 or Equation 2.7.

For cases in which the variables and the relationships between them are defined as linear
Gaussian (Equation (2.4)), the MLE for the mean is obtained using an ordinary least squares
estimator [Fox, 1997].

The CKDE CPDs are composed of two non-parametric distributions, f(Xi,P ai) and f(P ai),
which involve the estimation of bandwidth matrices Hi (for f(xi,P ai)) and H−

i (for f(P ai)).
However, a CKDE CPD can be fitted by estimating only the bandwidth matrix Hi [Atienza
et al., 2022b]. For the estimation of Hi, and due to the impossibility of using MLE, the
KDE models are trained using other error criterion models, such as the normal reference rule
[Scott, 2015], widely used for Gaussian KDE models where the mean integrated squared error
is minimized. It defines Hi = N−2/(|P ai|+5)Σ̂, where Σ̂ is the sample covariance matrix of
random variables Xi and P ai.

2.3.2 Structure learning
The BN structure learning (BNSL) problem is an NP-hard problem [Chickering, 1996] that
is well-known in the state-of-the-art research due to the combinatorial explosion of possible
DAGs which can represent the relationships among the variables in X. Given a dataset D

17

Vicente Pérez Soloviev

with n variables and as many examples as variable observations, the objective is to determine
the DAG that better depicts the relationships among the variables X found in D. Please, see
Scanagatta et al. [2019] and Kitson et al. [2023] for a more extended and recent review on the
approaches.

Three main BNSL approaches are identified in the literature: (i) score-based approach, whose
objective is to optimize a function that evaluates the quality of the structure given the data;
(ii) constraint-based approach, which performs some statistical tests to check conditional
independences among the variables; and (iii) hybrid methods that combine both approaches.

2.3.2.1 Score-based approaches

Score-based methods approach the BNSL as an optimization task, and are characterized by:

• Score function. Measures the fitness of each candidate structure.

• Space of structures. All possible structures in which the search is carried out.

• Search method. Optimizer that explores the spaces of structures guided by the score
function.

Score function A score function is defined which measures the fitness of a candidate
structure to a given dataset. Optimizing it will lead to finding the optimal structure as,

max S(G,D),

where G can be all the possible graphs that represent a set of variables X, D is the training
data, and S the defined score function.

Some well-known scores have been used for the BNSL problem. The decomposability property
is desirable for computational reasons, which means that the score of a structure given some
data is computed as the sum of the local scores of the subgraphs formed by each variable Xi

and its parents P ai,

S(G,D) =
n∑

i=1
Si(GXi,P ai

,D), (2.8)

The log-likelihood score (Equation 2.7) can be used as a score function to be optimized.
However, this metric favors the complexity of the BN graph. The more complex the structure
is, the better the metric value is. To avoid this structural overfitting, a penalization term is
added to the formula as,

L(G,Θ : D)− dim(G)pen(N), (2.9)

where dim(G) and pen(N) are the dimension of the model and a non-negative penalization
term, respectively.

Depending on the penalization term definition, different metrics are defined. If pen(N) = 1,
then Akaike’s information criterion (AIC) metric [Akaike, 1974] is obtained. Nevertheless,
Bayesian Information Criterion (BIC) [Schwarz, 1978] term is pen(N) = 1

2 log(N).

18

CHAPTER 2. BAYESIAN NETWORKS

A different strategy is trying to obtain the maximum a posteriori probability of the given
structure given the data. Using Bayes formula,

p(G|D) ∝ p(D|G)p(G), (2.10)

where p(G) denotes the prior distribution over all possible structures and p(D|G) is the
marginal likelihood of the data.

Depending on the probability distribution assumed over the prior information we identify the
K2 metric [Cooper and Herskovits, 1992] and the Bayesian Dirichlet (BD) scores [Heckerman
et al., 1995, Buntine, 1991], in which uniform and Dirichlet distributions are assumed,
respectively.

Space of structures The BNSL problem is known to be NP-hard [Chickering, 1996]
because the number of possible structures for a BN with n nodes (h(n)) increases more than
exponentially with the number of variables n in the given data [Robinson, 1977]:

h(1) = 1

h(n) =
n∑

i=1
(−1)i+1

(
n

i

)
2i(n−i)h(n− i), (2.11)

and thus, heuristic search algorithms are commonly used.

The space of structures can be reduced by different alternatives. One option that involves
adding expertise to the learning procedure, is fixing (white list) or forbidding (black list) some
of the arcs in the graph.

Search methods Once the score metric to be optimized and the search space are defined,
different methods can be applied to explore the landscape of solutions.

A well-known method is the Hill Climbing (HC) algorithm. The algorithm starts from an
initial graph G0, in which there are no edges between nodes, and small changes are added
iteratively over the structure. The set of available changes are defined in the set of operators
O and usually include adding, removing or reversing arcs in the graph. In each iteration, the
modification that better improves the chosen score is elected to be performed over G.

Algorithm 1 describes the HC baseline, which receives as input some training data D, an
empty structure G0, a set of available operators O and a score metric S. Iteratively, the
algorithm finds the best operator that better improves S (Line 5), applies it (Line 6), and
compares to the best one found so far (Line 7). If no improvement is found, then the algorithm
is considered to have converged.

Other approaches include a tabu list in order to avoid re-evaluating already analyzed structures
in the search space. Regarding other types of heuristics a wide range of approaches, such as
particle swarm [Aouay et al., 2013, Quesada et al., 2021], evolutionary algorithms [Blanco
et al., 2003, Larrañaga et al., 1996] and simulated annealing [Lee and Kim, 2019] have been
applied to solve the BNSL problem in recent decades.

19

Vicente Pérez Soloviev

Algorithm 1 Hill-climbing
Input: Training data D, starting structure G0, set of operators O, score metric S
Output: Optimal structure Gbest

1: flag ← false
2: Gbest ← G0
3: Gnew ← G0

4: repeat
5: o← FIND_BEST_OP (Gbest,O)
6: Gnew ← o(Gbest)
7: if S(Gnew,D) ≥ S(Gbest,D) then
8: Gbest ← Gnew

9: else
10: flag ← true
11: end if
12: until flag == true

13: return Gbest

Regarding SPBNs, the original paper [Atienza et al., 2022b] proposes a modified version of
HC algorithm in which a new operator is added to O in order to allow changing the type of
node (KDE or Gaussian fitted). The authors determined that optimizing traditional scores
such as BIC leads to overfitting by adding too many arcs in the structure, so they propose
using the K-fold cross-validated log-likelihood over the training set Dtrn as the score to be
optimized by the greedy algorithm,

SK
CV (D,G) =

K∑
m=1
L(G,ΘIm

trn
: DIm

test
), (2.12)

where L(G,ΘIm
trn

: DIm
test

) is the log-likelihood (Equation (2.7)) of the m-th test fold dataset
element in an SPBN composed of parameters ΘIm

trn
and DAG G, K is the number of folds

for cross-validation, and Im refers to the disjoint sets of indices used in the cross-validation
technique.

The overfitting is controlled using the validation set Dval = D\Dtrn which measures the
goodness of fit of the new structure at each iteration:

Sval(Dtrn,Dval,G) = L(G,ΘDtrn : Dval) (2.13)

where ΘDtrn are the parameters estimated using the training dataset Dtrn.

The HC proposed for SPBNs is improved by using a tabu list to constrain the search space
and explore different directions to escape from local optima. Its pseudocode is presented in
Algorithm 2. Lines 8-16 describe the process of searching for new structures that aims to
maximize the score function (Equation (2.12)) by applying different operators from O, and
Lines 17-24 enable and disable the tabu list depending on the evaluation of Equation (2.13).

20

CHAPTER 2. BAYESIAN NETWORKS

The tabu list prevents the algorithm from applying operators that may undo operations that
were recently applied. The algorithm uses the hyperparameter λ as the stopping criterion. λ
denotes the number of iterations with no improvement in the best score found, and once it is
reached, the algorithm is considered to have converged.

Algorithm 2 Greedy hill-climbing for SPBNs
Input: Training data D, starting structure G0, set of operators O, patience λ, number of

folds K
Output: Optimal structure Gbest

1: Gbest ← G0
2: Gnew ← G0
3: i← 0
4: Tabu← ∅
5: Dtrn,Dval ← Split(D) # training and validation
6: while i < λ do
7: G ← Gnew

8: for o in O do
9: if o does not reverse o′ ∈ Tabu then

10: Gcandidate ← o(G)
11: if SK

CV (Dtrn,Gcandidate) > SK
CV (Dtrn,Gnew) and SK

CV (Dtrn,Gcandidate) −
SK

CV (Dtrn,G) > 0 then
12: onew ← o
13: Gnew ← Gcandidate

14: end if
15: end if
16: end for
17: if Sval(Dtrn,Dval,Gnew) > Sval(Dtrn,Dval,Gbest) then
18: Gbest ← Gnew

19: Tabu ← ∅
20: i← 0
21: else
22: Tabu ← Tabu ∪onew

23: i← i+ 1
24: end if
25: Update_best_result(G, onew)
26: end while
27: return Gbest

2.3.2.2 Constraint-based approaches

Constraint-based approaches perform statistical hypothesis tests in order to study conditional
(in)dependence relationships between the variables in the model. Iteratively, this type of
approaches ask the data whether two variables X and Y are conditional independent, for all
pairs of variables in the model.

21

Vicente Pérez Soloviev

The PC algorithm [Spirtes et al., 2000] is the most well-known approach in which starting from
a complete undirected graph, the algorithm recursively performs conditional independence
tests over pairs of variables, and outputs a completed partially DAG. Several rules are proposed
for transforming a completed partially DAG, in which some of the arcs are undirected, to a
complete DAG.

2.3.2.3 Hybrid approaches

Combining constraint-based with score-based approaches leads to hybrid approaches. Usually,
a constraint-based strategy is used to reduce the search space by performing different statistical
tests, and afterwards, a score-based approach is used to find the optimal structure.

An example of hybrid learning approach is the max-min HC [Tsamardinos et al., 2006] (MMHC)
algorithm, in which the constraint- and score-based parts are fulfilled by constraint-based
max-min parents and children [Tsamardinos et al., 2003] and HC (Algorithm 1) approaches,
respectively.

2.4 Inference
Once the BN parameters (Θ) and structure (G) are learned, different types of reasoning can
be performed over the model. Inference involves obtaining the distribution of a set of variables
X1, given some fixed values x2 for a set of variables X2 (evidences). That is,

p(X1|X2 = x2) = p(X1,x2)
p(x2)

. (2.14)

This task is known to be NP-hard, regardless of using exact [Cooper, 1990] or approximate
[Dagum and Luby, 1993] inferences. Nevertheless, in the case of GBNs, there are closed
formulas for efficiently performing inference.

2.4.1 Gaussian distributions
In this section we discuss how to compute the conditional probabilities of a GBN. Gaussian
CPDs allow to be mathematically defined as multivariate Gaussian distributions (N (µ,Σ))[Koller
and Friedman, 2009]. Both the structure (G) and the parameters (Θ) are considered for this
direct transformation.

First, the mean vector is obtained by computing the most probable value for each of the
variables, considering the parameters in the GBN:

µi =
|P ai|∑
j=1

βjµj, (2.15)

where |P ai| denotes the number of parents of Xi in the graph representation G. Root nodes
compute the respective mean value without considering any parent.

22

CHAPTER 2. BAYESIAN NETWORKS

Second, the covariance matrix is computed in two parts. The first one involves the diagonal
elements of the matrix, while the second one involves the off-diagonal elements. Similarly to
the mean vector, the diagonal elements are defined as

Σii = σ2
i +

|P ai|∑
j=1

β2
jσ

2
j . (2.16)

Again, the diagonal elements corresponding to root nodes are computed without considering
any parent nodes. Off-diagonal elements are computed as

Σij = Σji =
|P aj |∑
k=1

βk

∑
i

k, (2.17)

where Σij denotes the covariance element between variables Xi and Xj, respectively.

To infer a conditional probability, the probability distribution of a set of variables (X1) is
calculated given a fixed value of one or more variables (X2). This is p(X1|X2). To work
with Gaussian probability distributions, some closed formulas are given [Murphy, 2022]. The
conditional probabilities are computed as follows: if X = (X1,X2) is jointly Gaussian with
parameters

µ =
(

µ1
µ2

)
, Σ =

(
Σ11 Σ12
Σ21 Σ22

)
, Λ = Σ−1 =

(
Λ11 Λ12
Λ21 Λ22

)
(2.18)

where µ and Σ denote the vector of means and the covariance matrix, respectively, computed
in previous steps and split now depending on the conditional probability to be computed.
Then marginal probabilities are given by,

f (x1) = N (x1|µ1,Σ11)
f (x2) = N (x2|µ2,Σ22)

and the posterior conditional is given by

f (x1|x2) = N
(
x1|µ1|2,Σ1|2

)
(2.19)

µ1|2 = µ1 + Σ12Σ−1
22 (x2 − µ2)

= µ1 −Λ−1
11 Λ12 (x2 − µ2)

= Σ1|2 (Λ11µ1 −Λ12 (x2 − µ2))
Σ1|2 = Σ11 −Σ12Σ−1

22 Σ21 = Λ−1
11

23

Vicente Pérez Soloviev

24

Chapter 3

Estimation of Distribution Algorithms

3.1 Introduction
Evolutionary algorithms (EAs) are stochastic approaches inspired in Darwin’s theory of
evolution, where the concept of natural selection is introduced as the driving force behind
the adaptation and evolution of species. Natural selection is based on the idea that in any
population, its degree of adaptation of the environment is biased by the characteristics of the
individuals. Those individuals with traits that better suit the environment are more likely to
survive and reproduce, passing those favorable traits to their offspring. Over generations, this
leads to the accumulation of advantageous traits in a population.

Estimation of distribution algorithms (EDAs) are a type of EA in which probabilistic models
are used during runtime for modelling the search space and sample new solutions. In this
chapter we deeply explain this type of approach, detail the main advantages and review the
state of the art in the literature.

Chapter outline
The chapter is organized as follows. Section 3.2 introduces the general outline of traditional
EAs and reviews the different research lines. Section 3.3 describes the EDA baseline and its
difference of this approach compared to other EAs. Section 3.4 reviews the different variants
of EDA found in the literature.

3.2 Evolutionary algorithms
EAs imitate the behavior of the natural evolution, where in each iteration of the algorithm
a population is evaluated according to a cost function g(·) to be optimized, and only the
best solutions of the generation survive and are used to generate the next population. The
general outline of the algorithm is described in Algorithm 3. The degree of adaptation of an
individual x to the environment is measured by the cost function to be optimized g(x), and
the new populations are obtained by applying recombination and mutation operators to the

25

Vicente Pérez Soloviev

Algorithm 3 Evolutionary algorithm baseline
Input: Cost function g(x)
Output: Best individual x∗ and cost found g(x∗)

1: GENERATE Initial population
2: EVALUATE population according to g(x)
3: while not stopping criteria do
4: SELECT survivals from population
5: GENERATE new population according to selection
6: EVALUATE new population according to g(x)
7: end while

best proposed solutions. The process is iteratively repeated until the stopping criteria is met.
Note that due to the stochasticity of the algorithm, EAs are non-deterministic approaches,
and thus, different executions of the algorithm may converge to different solutions.

Depending on the criteria used to select the survival individuals, and how the next population
is generated, different sub-categories are identified in the literature [Dasgupta and Michalewicz,
2014].

• Genetic algorithms (GAs) [Holland, 1975]. GAs are the earliest and most extended type
of EA. They involve crossover and mutation operators during runtime.

• Evolution strategies (ESs) [Rechenberg, 1971]. ESs are a variant of traditional GAs
implemented for continuous optimization where the main difference regards the self-
adaptation and that the modification of candidate solutions is limited to mutation
operators.

• Evolutionary programming (EP) [Fogel et al., 1966]. EP extends the principles of GAs
to evolve computer programs or symbolic expressions. In EP, the individuals in the
population are represented as trees, and genetic operators are applied to these tree
structures.

• Differential evolution (DE) [Storn, 1995]. DE is a variant of traditional GAs for
continuous optimization in which new individuals are perturbations of the solutions
with a scaled difference between two randomly selected individuals.

• Estimation of distribution algorithms (EDAs) [Larrañaga and Lozano, 2001]. Unlike the
previously mentioned EAs, EDAs iteratively use probabilistic models (PMs) to learn the
traits of a given population and generate the next one. Depending on the complexity of
the probabilistic model, different variants are identified in the literature.

Formally, a single-objective optimization problem is defined as a tuple (Ω, g), where Ω
represents the domain of the cost function g as,

g : Ω→ R, (3.1)

and the objective is finding the element x∗ ∈ Ω such as,

g(x∗) ≥ g(x) ∀x ∈ Ω, (3.2)

26

CHAPTER 3. ESTIMATION OF DISTRIBUTION ALGORITHMS

in the case of maximization problems and x is a vector solution with size d. When Ω is
graphically represented, its representation is named optimization landscape.

3.3 Estimation of distribution algorithms
EDAs [Larrañaga and Lozano, 2001] differ from traditional GAs in the sense that new solutions
are not sampled as a result of mutation and crossover operators. Instead, EDAs use PMs
estimated from a dataset containing the best solutions of the previous iterations; and model the
search space for posteriorly sample new solutions from promising subspaces in the landscape.

In addition to the possibility of contemplating dependencies between variables, EDAs have
more advantages compared to other EAs. Regarding the explainability of the model [Mihaljević
et al., 2021], due to its ease of implementation, introducing modifications or restrictions is very
simple. Additionally, the PM of each iteration can be analyzed in order to extract patterns in
the heuristic search of the algorithm, being possible in some variants to represent the PM
graphically.

Algorithm 4 EDA baseline
Input: Population size N , selection ratio α, cost function g
Output: Best individual x∗ and cost found g(x∗)

1: G0 ← N individuals randomly sampled
2: for t = 1, 2, ... until stopping criterion is met do
3: Evaluate Gt−1 according to g(·)
4: GS

t−1 ← Select top ⌊αN⌋ individuals from Gt−1
5: pt−1(·)← Learn a probabilistic model from GS

t−1
6: Gt ← Sample N individuals from pt−1(·)
7: end for

Algorithm 4 shows the basic EDA approach pseudocode. Only two parameters are required, the
size N of the population and the ratio of the population α ∈ (0, 1), which is selected to update
the probabilistic model (Line 4) according to a cost function g(x) (Line 3). Each generation
is denoted as Gt and is sampled (Line 6) from the probabilistic model pt−1(x) estimated with
the top ⌊αN⌋ individuals from the selected individuals of the previous generation GS

t−1 (Line
5). The initial generation G0 is sampled randomly (Line 1) considering the bounds of the
search space and with different sampling methods and assumptions about the density of the
solutions.

3.3.1 Toy example
Figure 3.1 depicts a toy example in which a simple EDA approach is applied to solve the
OneMax [Eshelman, 1991] optimization problem as,

g(x) =
d∑

i=1
xi (3.3)

27

Vicente Pérez Soloviev

where xi = {0, 1} and the objective is to maximize the cost function.

1 1 0 1 0 0 2

2 0 1 0 1 1 3

3 1 0 1 0 1 3

4 0 0 0 1 1 2

5 1 0 0 0 1 2

6 1 0 1 0 0 2

7 1 1 0 0 0 2

8 1 1 0 0 1 3

9 0 0 0 0 1 1

10 1 1 1 0 1 4

1 1 0 1 0 0 2

2 0 1 0 1 1 3

3 1 0 1 0 1 3

4 0 0 0 1 1 2

5 1 0 0 0 1 2

6 1 0 1 0 0 2

7 1 1 0 0 0 2

8 1 1 0 0 1 3

9 0 0 0 0 1 1

10 1 1 1 0 1 4

Selection

1 0 1 0 1 1 3

2 1 0 1 0 1 3

3 0 0 0 1 1 2

4 1 0 1 0 0 2

5 1 1 0 0 1 3

6 1 1 0 0 1 3

1

3
random (size=5) = [0.23, 0.54, 0.96, 0.15, 0.43]

1 1 0 0 1 1

10

x10
4

2

Figure 3.1: Toy example of EDA for the OneMax optimization problem.

The example shows one iteration of the algorithm in which the population size N = 10, the
selection ratio α = 0.6, and the dimension d = 5. Initially, (1) the population is evaluated
according to the cost function g(x) and (2) the top ⌊αN⌋ individuals are selected. From
this dataset, (3) the marginal probabilities of each variable, p(Xi), are computed. Finally,
(4) using the computed probabilities a new population is sampled. This process is repeated
iteratively until the stopping criterion is met.

3.4 State of the art
Different PMs have been proposed in the literature to be embedded into the EDA approach
[Larrañaga et al., 2012]. Depending on the dependencies considered into the PM we can
distinguish between (i) univariate approaches, in which no dependencies are considered, (ii)
bivariate approaches, in which pairwise dependencies are considered, and (iii) multivariate
approaches, in which no restrictions are considered between the dependencies among the

28

CHAPTER 3. ESTIMATION OF DISTRIBUTION ALGORITHMS

Name Probabilistic model Domain
UMDAD, UMDAC , UMDAG

C univariate continuous & discrete
PBIL, PBILC univariate continuous & discrete
cGA univariate continuous & discrete
u_KEDA univariate continuous
MIMIC, MIMICG

c bivariate continuous & discrete
COMIT, TREE bivariate discrete
BMDA bivariate discrete
ECGA multivariate discrete
EBNAP C , EBNAK2+pen, EBNABIC multivariate discrete
BOA multivariate discrete
EMNA multivariate continuous
EGNABDe, EGNABIC multivariate continuous
IDEA multivariate continuous
LFDA multivariate continuous
DEUM multivariate continuous
AM multivariate continuous

Table 3.1: Classification of the EDAs state of the art according to their type of probabilistic
model and domain of application

variables. Some examples of these PMs are shown in Figure 3.2, which are referenced in the
following sections.

A B

C D

A B

C D

A B

C D

E F E F E F

A B

C D

E F

A, B

C, D, E

F
a) b) c) d) e)

Figure 3.2: Examples of different types of PM structures used in EDAs.

Table 3.1 classifies some single-objective approaches according to their type of probabilistic
model and the domain (continuous/discrete) in which they are assigned.

3.4.1 Univariate approaches
Univariate EDAs are the first variant found in the field, in which all variables are assumed to
be independent. Thus, the joint probability distribution is computed as the product of the
marginal probabilities:

p(X) = p(X1, . . . , Xd) =
d∏

i=1
p(Xi), (3.4)

29

Vicente Pérez Soloviev

where d is the number of dimensions in the optimization problem, and p(Xi) is the marginal
probability distribution of variable Xi. Figure 3.2(a) shows an example of the probabilistic
model, graphically with six variables.

3.4.1.1 Discrete EDAs

Some examples are the univariate marginal distribution algorithm (UMDAD) [Mühlenbein
and Paass, 1996] and population-based incremental learning algorithm (PBIL) [Baluja, 1994].
The latter is a particular case of the former, in which only the best and the worse solutions
are considered to update the PM. The compact genetic algorithm (CGa) [Harik et al., 1999]
is another example characterized by sampling too few solutions from the PM.

Although the above mentioned approaches were initially proposed for binary and discrete
tasks, they were also adapted for continuous optimization.

3.4.1.2 Continuous EDAs

Some examples are the continuous univariate marginal distribution algorithm (UMDAC)
[Mühlenbein et al., 1996]), its adaptation using univariate Gaussian density (UMDAG

C),
[Larrañaga et al., 2000] and the continuous population-based incremental learning algorithm
(PBILC) [Baluja and Davies, 1997]. While both algorithms use a population to update the
probabilistic model, other univariate approaches, such as compact genetic algorithm (cGA)
[Harik et al., 1999], update it using just few individuals. Similarly, the stochastic hill climbing
with learning by vector of normal distributions (SHCLVND) [Rudlof and Koppen, 1996] uses
the Hebbian rule to update the PM.

The adaptation from the discrete approaches to continuous domains consisted in using
independent Gaussian distributions approximated for each variable. Recently, a univariate
EDA was proposed in which an independent kernel density estimation is used for each variable
[Luo and Qian, 2009] (u_KEDA).

Regarding other types of PM, it is worth to mention the marginal histogram model, in which
histograms are estimated and sampled in each iteration [Tsutsui et al., 2001]

Due to the simplicity and ease of implementation of these algorithms, these approaches have
been widely analyzed for theoretical results [Krejca and Witt, 2017, Zheng and Doerr, 2023].

3.4.2 Bivariate approaches
Bivariate EDAs restrict each variable to depend at most on one parent. Figure 3.2(b) depicts
an example of the probabilistic model, in which a chain structure is shown, graphically.
Formally, the maximum-in-degree of each node in the graph, is restricted to be at most one.
Then, assuming a set of variables, ordered following an ancestral order in the graph, the joint
probability distribution over all the variables in the graph is

p(X) = p(X1, . . . , Xd) =
d∏

i=1
p(Xi|Xj), (3.5)

30

CHAPTER 3. ESTIMATION OF DISTRIBUTION ALGORITHMS

where p(Xi|Xj) = p(Xi|Xi−1) in the case that there is an arc between Xi and Xi−1, and
p(Xi|Xj) = p(Xi) in the case that Xi has no parents in the graph (root node).

3.4.2.1 Discrete EDAs

An example of this variant for discrete domains is the Mutual-Information-Maximizing
Input Clustering (MIMIC) [De Bonet et al., 1997], which in each iteration uses the mutual
information between pairs of variables to build the chain structure. From an initial chain
structure, the algorithm changes the edges in the graph guided by the mutual information,
and ends with a pseudo optimal chain structure.

A PM with a tree structure was proposed by [Baluja and Davies, 1997] with combining
optimizers with mutual information trees (COMIT) algorithm where a local optimizer is
used to each generated individual in the algorithm. An upgrade of this algorithm was TREE
[Larrañaga and Lozano, 2001] in which this step was removed.

Other examples of this variant for discrete domains include bivariate marginal distribution
algorithm (BMDA) [Pelikan and Mühlenbein, 1999] in which an undirected acyclic graph is
assumed.

3.4.2.2 Continuous EDAs

MIMIC was posteriorly adapted to continuous domains (MIMICG
c) [Larrañaga et al., 1999,

Larrañaga et al., 2000] by using bivariate Gaussians for the edges represented in the chain
structure.

3.4.3 Multivariate approaches
When the number of dependencies considered between the variables involved in the opti-
mization problem is low, or there are none at all, the univariate and bivariate approaches fit
properly. Nevertheless, when a high number of dependencies or a more complex structure is
assumed, these approximations are too simple. This is covered by multivariate models, where
there are no restrictions on the maximum-in-degree of the nodes in the network.

3.4.3.1 Discrete EDAs

Regarding extensions of previously explained approaches, it is worth to mention extended
cGA [Harik, 1999] for discrete domains, in which those variables that are dependent in a given
iteration, are integrated together in a cluster, and each cluster is considered as an independent
variable in the model. An example of this structure is shown in Figure 3.2(e).

More complex probabilistic models include the use of BNs embedded in the approach. Fig-
ure 3.2(c) shows an example of the probabilistic model. Regarding discrete variables, we
find estimation of Bayesian network algorithm (EBNA) [Etxeberria and Larrañaga, 1999],
which learns a discrete BN in each iteration of the algorithm. Depending on the BN structure
learning approach used in each iteration, different variants are identified such as EBNAP C ,
EBNAK2+pen and EBNABIC , in which the PC [Spirtes et al., 2000] constraint-based algorithm,

31

Vicente Pérez Soloviev

the K2 approach with penalization term [Cooper and Herskovits, 1992] and a score-based
approach with BIC score [Schwarz, 1978] are used, respectively. A similar approach is Bayesian
optimization algorithm (BOA) [Pelikan et al., 1999] in which a BN is learned using BDe score
[Heckerman et al., 1995, Buntine, 1991].

3.4.3.2 Continuous EDAs

Estimation of multivariate normal algorithm (EMNA) [Larrañaga and Lozano, 2001] estimates
the vector of means and the covariance matrix of a multivariate Gaussian in each iteration,
from which the next generation is sampled.

If a GBN is learned in each iteration, we find the estimation of Gaussian Bayesian network
algorithm (EGNA) [Larrañaga et al., 2000, Larrañaga et al., 1999]. Again EGNABDe and
EGNABIC variants are identified depending on the score used in the score-based BN learning
algorithm used. The former uses BDe [Schwarz, 1978], while the latter uses BIC score [Schwarz,
1978]. Similar approaches are iterated density estimation algorithm (IDEA) [Bosman and
Thierens, 2000] which uses mixtures of Gaussians, and learned factorized distribution algorithm
(LFDA) [Mühlenbein and Mahnig, 1999], which restricts the number of parents in the GBN.

Other approaches include the use of Markov networks in each iteration (DEUM) [Brownlee,
2009]; mixtures of models, such as adaptive Gaussian mixture model (AM) [Gallagher
et al., 1999], in which a mixture of Gaussian distributions is estimated in each iteration;
copulas and vines [Soto et al., 2012]; reinforcement learning assistance [Paul and Iba, 2003];
Boltzmann machines [Shim et al., 2013], auto encoders [Probst and Rothlauf, 2020] or
generative adversarial networks [Probst, 2015].

3.4.4 Multi-objective approaches
3.4.4.1 Problem formulation

Multi-objective optimization deals with the simultaneous optimization of multiple objectives
(g1(x), g2(x), . . . , gm(x) in the context of decision variables, where some of them might be
conflicting. Multi-objective optimization aims at identifying a set of solutions that represent
the trade-offs between different objectives, i.e. the best Pareto frontier approximation. Then,
a multi-objective optimization problem is defined as

max
x

G(x) = (g1(x), g2(x), . . . , gm(x))

subject to x ∈ Rd
(3.6)

where m and d are the number of objectives and variables involved in the problem, respectively,
and the optimization criterion is maximization.

For a maximization problem and a set X of solutions x′, a solution x∗ is part of the Pareto
frontier XP F if,

gi(x∗) ≥ gi(x) for all i = 1, . . . ,m and for all x ∈ X − XP F .

32

CHAPTER 3. ESTIMATION OF DISTRIBUTION ALGORITHMS

where gi(x) is the evaluation of solution x in the objective function i. Thus, the condition
essentially states that no other solution from X can make all objectives better than those of
Pareto frontier solutions.

(a) (b)

Figure 3.3: Panel (a) shows first, second and third Pareto frontiers represented as blue, red
and yellow circles, respectively, for maximizing g1(x) and g2(x) objectives simultaneously.
Panel (b) shows the hypervolume (HV) indicator computation for the first Pareto frontier
and the reference point gref .

The Pareto frontier is identified in Figure 3.3(a) with blue circles, among all the possible
solutions, where g1(x) and g2(x) are to be maximized. The second Pareto frontier is identified
with red circles, and defined as the Pareto frontier if the first Pareto frontier (blue circles)
was removed. None of the red samples maximizes both objectives better than any of the blue
set of samples. The same happens with the third frontier, represented with yellow circles,
and defined as the Pareto frontier if red and blue samples are removed.

Quality indicators in multi-objective optimization are quantitative measures used to assess
the performance and characteristics of solutions generated by multi-objective optimization
algorithms [Li and Yao, 2019].

The hypervolume (HV) measures the volume of the objective space that is dominated by a
set of solutions. It quantifies how well a set of solutions covers the entire Pareto front. A
higher hypervolume indicates a better spread of solutions. HV of a set S, given a reference
point gref = (gref

1 , gref
2 , . . . , gref

m), is the volume of the union of the hypercubes determined by
each of its solutions s ∈ S and gref ,

HV (S, gref) = Λ(
⋃
S

{
[
g1(s), gref

1

]
× · · · ×

[
gm(s), gref

m

]
}), (3.7)

where gref
i refers to the reference ideal point for objective function gi and Λ(·) refers to the

Lebesgue measure. Figure 3.3(b) illustrates an example of the HV computation over the first
Pareto frontier for m = 2 objectives.

The diversity metric (DM) quantifies the dissimilarity or spacing between solutions in a given
set. It can be measured with different geometric distances or using the crowding distance (CD),

33

Vicente Pérez Soloviev

which measures how densely solutions are distributed along the Pareto frontier in terms of the
objectives. This metric characterizes a set of solutions and, depending on the optimization
task to be solved, its evolution during runtime may vary. The CD of two solutions xi and xj

is defined as,
CD(xi,xj) =

m∑
k=1

(gk(xi)− gk(xj))2, (3.8)

where gk(xi) and gk(xj) are the objective function values of xi and xj for the objective gk,
respectively.

Then, we define DM over a set of solutions X as,

DM(X) = 1
|X |(|X | − 1)

∑
xi,xj∈X
xi ̸=xj

CD(xi,xj), (3.9)

where |X | is the number of solutions in X .

3.4.4.2 State of the art

When more than one cost function are desired to be optimized in parallel, we find multi-
objective approaches. Thus, the main difficulty in this variant regards in how to rank the
solutions and update the PM used in the framework.

Regarding approaches which use BNs we find Pareto BOA [Schwarz and Ocenasek, 2001],
in which the ranking is based in the Pareto strength method and uses the BOA baseline.
Bayesian multiobjective optimization algorithm (BMOA) [Laumanns and Ocenasek, 2002]
uses a similar ranking method to select subsets of solutions for the BN update. Decision
tree based multiobjective EDA (DT-MEDA) [Zhong and Li, 2007] uses GBNs an bases the
selection method in the non-dominated sorting genetic algorithm (NSGA-II) [Deb et al., 2002].

Some approaches use a mixture of probabilistic models to better approximate the Pareto
frontier, such as multiobjective mixture-based IDEA (MIDEA) [Bosman and Thierens, 2002].
More examples include multiobjective Parzen-based EDA (MOPEDA) [Costa and Minisci,
2003] which uses a mixture of kernel methods to reduce the risk in the estimation of the PM;
multi-objective hierarchical BOA (mohBOA) [Pelikan et al., 2005], in which each component
is a BN.

ECGa was extended to multiobjective approaches (meCGA) [Soh and Kirley, 2006] in which
each component is a univariate PM and the Pareto dominance ranking is used in the selection
step.

Some approaches have focused in keeping a certain diversity among the solutions sampled
in the algorithm, such as diversity preserving multi-objective rBOA (dp-MrBOA) [Ahn and
Ramakrishna, 2007] which uses adaptive sharing and dynamic crowding methods.

Is worth mentioning approaches which have been combined with other algorithms such as
multi-objective Bayesian optimization algorithm [Khan et al., 2002] in which BOA and
non-dominated sorting genetic algorithm (NSGA-II) [Deb et al., 2002] are combined; the
multi-objective hierarchical BOA [Pelikan et al., 2005], which modifies the previous algorithm

34

CHAPTER 3. ESTIMATION OF DISTRIBUTION ALGORITHMS

by identifying promising solutions using clustering; and the multi-objective estimation of
distribution algorithm [Karshenas et al., 2013], in which BNs are used to capture the depen-
dencies between the decision variables and the objectives to be optimized. Other approaches
have been found in which neural networks assist the EDA approach [Martí et al., 2013, 2016].

While most of the previously mentioned approaches use Pareto approximations for ranking
the solutions, some other proposals have been found in the literature such as decomposition
methods [Shim et al., 2012, Zhang et al., 2009].

35

Vicente Pérez Soloviev

36

Chapter 4

Quantum Computing

4.1 Introduction
Quantum computing (QC), a cutting-edge field at the intersection of physics and computer
science, represents a paradigm shift in the way we process information. Unlike classical
computers, which rely on bits as fundamental units of data, QC leverages quantum bits
or qubits. QC harnesses the principles of quantum mechanics, such as superposition and
entanglement, allowing quantum computers to perform complex calculations exponentially
faster than their classical counterparts for certain tasks. The promise of quantum computing
lies in its potential to solve problems that are currently intractable for classical computers,
ranging from optimization challenges to simulating quantum systems.

Currently, the state of the art of quantum computers is the noisy intermediate-scale quantum
(NISQ) era, which is characterized by quantum computers with hundreds of qubits and no error
correction. Thus, there is a need to develop algorithms that do not require a large number of
qubits and that offer resilience to the presence of quantum noise (which characterizes quantum
devices). Fault tolerance in QC involves implementing error correction techniques that can
detect and correct errors without compromising the overall quantum computation.

Variational quantum algorithms (VQAs) are well-known NISQ era approaches similar to
classical neural networks, in which a parameterized quantum system is used to solve a given
problem. Two examples are quantum approximate optimization algorithm (QAOA) and
variational quantum eigensolver (VQE). This thesis focuses in the use, improvement and
analysis of this type of algorithms.

Chapter outline
The outline of this chapter is organized as follows. Section 4.2 introduces the foundations of
quantum computing and how it is represented into a quantum circuit. Section 4.3 introduces
the background of VQAs. Section 4.4- 4.5 deeply explains QAOA and VQE, respectively.
Section 4.6 compares different types of quantum noise embedded into NISQ-era quantum
devices.

37

Vicente Pérez Soloviev

4.2 Foundations of quantum computing

4.2.1 Qubits
In classical computation the minimal piece of information is is a bit, which can represent
either zeros (0) or ones (1). In contrast, in QC all the computations are carried out by the
manipulation of quantum bits (qubits).

The representation of two possible qubit states following Dirac notation are the |0⟩ and |1⟩,
which correspond to 0 and 1 classical states, respectively. However, the main difference
between both types of computations rests in that qubits can represent states different from
|0⟩ and |1⟩, by linear combinations of quantum states. This is referred in the literature as the
quantum superposition:

|ψ⟩ = α |0⟩+ β |1⟩ , (4.1)
where α and β are complex numbers representing the amplitudes, and |α|2 + |β|2 = 1. Here,
|0⟩ and |1⟩ are known as the computational basis states of our quantum system. Although a
qubit can represent more states than |0⟩ and |1⟩, when it is measured, then it collapses to 0
and 1 classical states with probabilities |α|2 and |β|2, respectively. A one-qubit system with
equal probability to be measured in both computational basis states is represented as,

|+⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ , (4.2)

where P (0) = P (1) = (1√
2)2 = 0.5.

Figure 4.1: Bloch sphere representation of a qubit.

Geometrically, a qubit can be represented as a Bloch sphere (Figure 4.1), where θ and φ place
a point in the three-dimensional space of the sphere. Then, the quantum state is represented
following Dirac notation as,

|ψ⟩ = cos θ2 |0⟩+ eiφ sin θ2 |1⟩ , (4.3)

38

CHAPTER 4. QUANTUM COMPUTING

4.2.2 Multiple qubits

The combination of two qubits in a quantum system allows to represent the quantum states
|00⟩, |01⟩, |10⟩ and |11⟩, equivalently to classical computation using bits. The quantum state
is described as

|ψ⟩ = δ00 |00⟩+ δ01 |01⟩+ δ10 |10⟩+ δ11 |11⟩ , (4.4)

where δi are the corresponding amplitudes to each of the computational basis states of the
two-qubit system, in which each of the basis states owns an associated probability P (i) = |δi|2
to be measured, and ∑i∈(00,01,10,11) |δi|2 = 1.

The superposition over all the computational basis states of a two-qubit system is represented
as

|+⟩ = 1√
4
|00⟩+ 1√

4
|01⟩+ 1√

4
|10⟩+ 1√

4
|11⟩ , (4.5)

where P (00) = P (01) = P (10) = P (11) = (1√
4)2 = 0.25.

This notation is easily extended to an n-dimensional qubit system, where n is the number of
qubits and 2n the number of computational basis states.

4.2.3 Quantum gates

In classical computation, logical gates can be applied over a set of classical bits to perform
manipulations over the information initially represented. Analogously, QC defines a set of
quantum operations to be applied over a quantum state.

A quantum gate over n qubits is defined as a unitary matrix of size n× n, which is applied
over the quantum system.

4.2.3.1 One-qubit gates

A one-qubit quantum system (Equation 4.1) is represented in a vector notation as

[
α
β

]
, (4.6)

where α and β are the amplitudes of |0⟩ and |1⟩ the computational basis states, respectively.

The set of Pauli operators (X, Y, Z) includes the universal one-qubit quantum gates which
perform a rotation of π radians in the X, Y and Z-axis of the qubit Bloch sphere, respectively.
Table 4.1 shows the gate and matrix representations of each of the Pauli operators.

39

Vicente Pérez Soloviev

Operator Gate representation Matrix representation

Pauli-X X =
[
0 1
1 0

]

Pauli-Y Y =
[
0 −i
i 0

]

Pauli-Z Z =
[
1 0
0 −1

]

Table 4.1: Gate and matrix representations of one-qubit X, Y and Z Pauli operators.

Note than Pauli-X is equivalent to the classical NOT gate. Applying Pauli-X over the |0⟩
state, computes the |1⟩ quantum state:[

0 1
1 0

] [
α
β

]
=
[
β
α

]
,

where the probabilities of |0⟩ and |1⟩ have been exchanged after the computation.

Alternatively, the set of rotation operators (RX(θ), RY (θ), RZ(θ)) includes the universal one-
qubit quantum gates which perform a parametric rotation over the X, Y and Z-axis of the
qubit Bloch sphere, respectively, where θ ∈ [0, 2π] refers to the angle of rotation (in radians).
Table 4.2 shows the gate and matrix representations of each of the operators.

Operator Gate representation Matrix representation

RX(θ) RX(θ) =
 cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2


RY (θ) RY (θ) =

cos θ
2 − sin θ

2

sin θ
2 cos θ

2


RZ(θ) RZ(θ) =

e−i θ
2 0

0 ei θ
2


Table 4.2: Gate and matrix representations of one-qubit RX(θ), RY (θ) and RZ(θ) operators.

Additionally, the Hadamard gate imposes a linear superposition among all the computational
basis states of the quantum system. It is often used as an initial state of a quantum system.
Table 4.3 shows the gate and matrix representations of Hadamard operator.

4.2.3.2 Multi-qubit gates

Analogous to classical computation, in QC there exist some two-qubit gates in which two
qubits are considered for the computation. The use of two-qubit gates allows the system to
have quantum entanglement.

40

CHAPTER 4. QUANTUM COMPUTING

Operator Gate representation Matrix representation

Hadamard H =
1 −1
1 1


Table 4.3: Gate and matrix representation of the Hadamard gate.

In the two-qubits case, the quantum system (Equation 4.4) is represented in a vector notation
as 

δ00
δ01
δ10
δ11

 , (4.7)

where δ00, δ01, δ10 and δ11 are the amplitudes of the computational basis states.

Table 4.4 shows the gate and matrix representation of controlled-NOT (CNOT), controlled-Z
(CZ) and swap gates. CNOT gate executes a Pauli-X gate over the target qubit (q1) depending
on the control qubit (q0). If control qubit is |1⟩, then a Pauli-X gate is executed over the
target qubit, and none operation is executed otherwise. Equivalently happens in the case
of CZ, where the control qubit is q0 and the target qubit is q1. SWAP gate swaps the state
between two qubits q0 and q1.

Operator Gate representation Matrix representation

Controlled-NOT CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Controlled-Z CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



SWAP SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Table 4.4: Gate and matrix representation of controlled-NOT (CNOT), controlled-Z (CZ)
and swap (SWAP) gates.

As an example, applying a CNOT gate over the quantum state |01⟩ does not modify the

41

Vicente Pérez Soloviev

quantum system: 
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



0
1
0
0

 =


0
1
0
0

 ,
where the amplitude of the computational basis states remains constant. However, applying a
CNOT gate over the quantum state |10⟩ modifies it as


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



0
0
1
0

 =


0
0
0
1

 ,

where the second qubit flips the state resulting to the quantum state |11⟩.

4.2.4 Quantum measurement
Quantum measurement involves the collapse of the qubit into a classical bit. Although there
exists the measurement in the three axis, the z-axis is commonly used in the literature. The
computational basis states are probabilistically obtained according to the amplitudes repre-
sented in the quantum system. Figure 4.2 shows the gate representation for the measurement.

Figure 4.2: Qubit measurement gate in the z-axis.

4.2.5 Quantum circuits
A quantum circuit is a computational routine in which sequential operators (Section 4.2.3)
are applied over a set of qubits. The circuit is designed to be read from left to right, where
each line refers to a different qubit. Note that any quantum computation can be expressed in
a quantum circuit as a combination of one-qubit and two-qubit gates [Nielsen and Chuang,
2002].

0

0

0

Figure 4.3: GHZ quantum circuit.

42

CHAPTER 4. QUANTUM COMPUTING

Ansatz

Classical Optimizer

Set of solutionsMeasurement

Compute objective
function

Q
ua

nt
um

C
la
ss
ic

Figure 4.4: VQA workflow where, iteratively, the classical optimizer proposes a new set of
parameters (θ) for the ansatz ψ(θ), which is then measured (Z), and the objective function
is computed (E(Z)).

An example of a three qubit system is shown in Figure 4.3 which represents the following
quantum state, also known in the literature as GHZ state:

|ψ⟩ = 1√
2
|000⟩+ 1√

2
|111⟩ , (4.8)

where P (000) = P (111) = 0.5.

4.3 Variational quantum algorithms
Variational quantum algorithms (VQA) [Cerezo et al., 2021a] are classical-quantum hybrid
approaches that have been continuously adapted and modified in the literature. The three main
modules are (i) an objective cost function to be minimized, (ii) a quantum parametric circuit
(henceforth called as ansatz), and (iii) a classical optimization technique that manipulates the
ansatz.

In the following sections, we deeply explain each of the modules, which are represented in the
workflow in Figure 4.4.

4.3.1 Objective cost function
A Hamiltonian (H) is an Hermitian operator that describes a physical system, yielding the
energy of a quantum state, which is often used as the objective cost function to be minimized
in VQAs. Finding the global minima of the Hamiltonian (ground state) implies finding the
ground state of the quantum system.

There exist a wide range of objective functions in the literature [Bharti et al., 2022], such as
expectation value or conditional value at a risk [Barkoutsos et al., 2020].

Expectation value is simplified as

min
θ
E(θ, {⟨H⟩U(θ)}). (4.9)

43

Vicente Pérez Soloviev

where θ is the set of parameters to be manipulated classically, and ⟨H⟩U(θ) describes the
measurements of a quantum system as

⟨H⟩U(θ) = ⟨0|UT (θ)HU(θ) |0⟩ , (4.10)

where U(θ) is the unitary state generated by an ansatz, parameterized by θ ∈ [0, 2π]
parameters.

Conditional value at a risk (CVaR) is a modification of expectation value (Equation 4.9),
in which only part of the measurements are considered to compute the objective function.
Given a set of energy basis measurements {E1, . . . , EM}, sorted in an ascending order, CVaR
is simplified as

CVaR(α) = 1
⌈αM⌉

⌈αM⌉∑
k=1

Ek, (4.11)

where only the tail of the distribution of energy measures are considered and α ∈ (0, 1] is the
portion of measures considered.

4.3.2 Quantum parametric circuit
An ansatz is a quantum circuit which is parameterized by a set of parameters θ, and its
quantum state is denoted as,

|ψ(θ)⟩ = U(θ) |ψ0⟩ , (4.12)

where |ψ0⟩ is the given initial state, typically set to the |0⟩ state, i.e., |00 · · · 0⟩⊗n state, where
n is the number of qubits of the system.

The election of the ansatz influences in both, (i) the quality of solutions for a given problem,
and (ii) the possibility of being executed in a given quantum device. Given both limitations,
we can classify the ansatz in problem-inspired and hardware-efficient.

On the one hand, the problem-inspired ansatz involve the analysis of the underlying physics of
the Hamiltonian to be solved, and the decomposition of it into Pauli operators. An example
of this type is quantum approximate optimization algorithm (QAOA) [Farhi et al., 2014].

On the other hand, there exist several device constraints which lead to a specific optimal
design of an ansatz for each architecture. Some of these constraints are:

• Set of gates. Each quantum device allows a different set of operators to be executed in
the ansatz.

• Qubit connectivity. Each quantum device assumes a connectivity map (topology) which
describes which qubits are connected to which. Thus, executing a two-qubit operation
between qubits is only possible if both qubits are connected in the topology. If they are
not, then a combination of SWAP gates is carried out to place both qubits together,
which involves a deeper (longer) ansatz.

• Coherence times. The total ansatz execution time must be shorter than the coherence
time to ensure the results to be coherent.

44

CHAPTER 4. QUANTUM COMPUTING

4.3.3 Parameter optimization

The ansatz parameter tuning consists of a continuous optimization where the parameters
represent angle rotations of the qubits (in radians), and thus, are restricted to [0, 2π]. However,
depending on the type of VQA to be used, and the number of layers that compose the circuit,
the number of parameters vary substantially. Additionally, it is necessary to decide whether
to prioritize the algorithm runtime, or the quality of the solutions given by the optimizer.

Considering the previous optimization requirements, we list the following state-of-the-art
optimizers grouped according to whether they are gradient-based or not [Bharti et al., 2022],
which will be analyzed in the comparison performed in this work (Chapter 10).

A common technique is to compute the gradients over the landscape of solutions given the d
dimensions, where d is the number of parameters to be tuned in the ansatz. This computation
is carried out in each step of the algorithm given the direction towards finding better solutions.
Some gradient-based optimizers include:

• Conjugate gradient method (CG) [Hestenes and Stiefel, 1952]: designed for systems of
linear equations whose matrices are symmetric and positive-definite.

• Limited-memory Broyden–Fletcher–Goldfarb-Shanno Bound algorithm (L-BFGS-B)
[Byrd et al., 1995]: limited memory-based and designed for non-linear optimization
problems.

• Sequential least squares programming (SLSQP) [Boggs and Tolle, 1995]: finds a local
search direction by solving the second-order local approximation of the objective function.

• ADAM [Kingma and Ba, 2014]: stochastic version of the gradient descent.

• Gradient descent [Ruder, 2016]: a first-order optimization algorithm, commonly used in
deep learning to optimize the loss function.

Alternatively, some gradient-free optimizers have been included in the literature, such as:

• Constrained optimization by linear approximation (COBYLA) [Powell, 1998]: uses
linear approximations of the objective functions, and is mostly used when the derivative
of the objective function is unknown.

• Simultaneous perturbation stochastic approximation (SPSA) [Spall, 1992]: suited for
large-scale optimizations.

• Other approaches include EAs [Anand et al., 2021] or reinforcement learning [Garcia-Saez
and Riu, 2019].

4.3.3.1 Barren Plateaus

Increasing the complexity of the ansatz in terms of number of qubits and circuit depth leads
to theoretical challenges such as Barren plateaus (BPs) [McClean et al., 2018, Ragone et al.,
2023, Cerezo et al., 2021b, Wang et al., 2021]. BPs are known to be exponential vanishing
gradients, leading to flat landscapes in which gradient-based optimizers get stuck and can no

45

Vicente Pérez Soloviev

longer improve the results. Formally, BPs are characterized by the following properties,

E(∂kE(θ)) = 0, (4.13)

Var(∂kE(θ)) ∈ O(exp(−n)), (4.14)
where E(∂kE(θ)), and Var(∂kE(θ)) are the expectation and variance of the gradients for the
objective cost function, respectively, θ is the set of parameters of the unitary representing the
ansatz, and n is the number of qubits.

Recently, Pérez-Salinas et al. [2023] have stated that the norm of the gradients can be bounded
efficiently with a small number of quantum measurements (which grows linearly with the
number of parameters), without the need of optimizing the ansatz parameters. This method
performs a random walk in the parameter space and measures the entropy of fluctuations of
cost values along the walk. The measured entropy value can be used to analytically bound
the gradient of the cost function along the walk. We notice that the average of the gradient
field (henceforth named as IC) can be approximated by the average along the random walk
(due to Monte Carlo integration):

∥ ∇E ∥≈ EW

(
m∑

k=1
(∂kE(θ))2

)
=

m∑
k=1

VarW (∂kE(θ)), (4.15)

where VarW denotes the variance found in the objective cost function using m different θ
parameters generated from a random walk W .

4.4 Quantum approximate optimization algorithm
QAOA was originally proposed in Farhi et al. [2014] for solving combinatorial optimization
problems. The QAOA ansatz is composed of p ∈ N layers, which internally builds two
sequential operators: (i) the cost operator U(HC , γ) parameterized by γ ∈ [0, 2π], which is
built specifically for each problem instance and encodes the classical cost function through a
combination of single and two-qubit rotation gates,

U(HC , γ) = e−iγHC =
m∏

α=1
e−iγCα , (4.16)

where Cα is the cost function to be minimized, and m the number of clauses that define the
classical cost function to be optimized; and (ii) the mixed operator U(HB, β) parameterized
by β ∈ [0, 2π], which represents a rotation in the X-axis in each qubit (σx

j),

U(HB, β) = e−iβHB =
n∏

j=1
e−iβσx

j , (4.17)

where n is the number of qubits of the quantum system.

Thus, an ansatz composed by p layers has 2p parameters to be optimized θ = (γ1, β1, . . . , γp, βp),
as shown in the ansatz example in Figure 4.5. The quantum state represented by the QAOA
ansatz is,

ψ(γ,β) = U(HB, βp)U(HC , γp) · · ·U(HB, β1)U(HC , γ1) ⟨s⟩ , (4.18)

46

CHAPTER 4. QUANTUM COMPUTING

where p ≥ 1, γ = (γ1, . . . , γp), β = (β1, . . . , βp), and ⟨s⟩ is the superposition state over the
computational quantum states.

+

+

+

+

Figure 4.5: An ansatz with p layers and 2p parameters to be tuned. The quantum circuit
starts from a superposition state over all the possible computational states, then applies p
layers, and measures the qubits in the Z-axis.

4.5 Variational quantum eigensolver

VQE was originally proposed by Peruzzo et al. [2014]. In contrast to QAOA, the VQE
ansatz is not designed specifically for each problem instance. There exist several pre-designed
ansatz which are used independently of the optimization problem to be solved, and usually
involve a larger number of parameters to be optimized. The parameters are tuned following
the workflow defined in Figure 4.4. An ansatz example is the TwoLocal ansatz1, shown in
Figure 4.6.

0

0

0

0

Figure 4.6: TwoLocal ansatz used for the VQE with p ∈ N layers, n qubits and pn parameters.
Each layer applied a rotation gate in the Y -axis over each qubit. Between each layer, a linear
entanglement is applied in the system, where each qubit i is connected through a two-qubit
rotation gate in the X-axis to the qubit i+ 1.

1https://qiskit.org/documentation/stubs/qiskit.circuit.library.TwoLocal.html

47

https://qiskit.org/documentation/stubs/qiskit.circuit.library.TwoLocal.html

Vicente Pérez Soloviev

4.6 Quantum noise
Two main disadvantages of NISQ computers are their limited numbers of qubits and the
presence of quantum noise. Thus, there is a need to implement approaches that offer resilience
to quantum noise and to optimize the number of qubits used to solve the given problem. It
has been shown that VQAs can compensate for quantum errors such as those in over-/under-
rotations [McClean et al., 2016].

Following the formalism of Kraus operators [Nielsen and Chuang, 2002], each quantum channel
ε is defined given a set of matrices Ei, which are applied to a quantum state, where i runs
through all the operators considered for a given channel and k is the number of operators that
define the noise channel. Thus, given a state ψ, the resulting state after applying a quantum
channel is

ε(ψ) =
k∑

i=1
EiψE

†
i , (4.19)

where the Kraus operators must meet the restriction ∑k
i=1 EiE

†
i = 1. Note that all the

operators defined in this section are one-qubit operations (E(1)
i), and that all the channels are

parameterized by ω ∈ [0, 1], which regulates the probability of occurrence of the respective
noise.

4.6.1 Amplitude damping error
The amplitude damping channel (εAD) describes the energy dissipation of a quantum system.
This channel involves a parameter ω ∈ [0, 1] that tunes the probability of a quantum state to
decay from state |1⟩ to |0⟩. Then, ω = 0 represents no amplitude damping error, while ω = 1
is the maximal noise, which in this case means the state |0⟩ ⟨0|.

This quantum operation describes the energy dissipation of the quantum states. The operation
over a one-qubit system is defined as

εAD(ψ) = E1ψE
†
1 + E2ψE

†
2,

where E1 and E2 are defined as

E
(1)
1 =

(
1 0
0
√

1− ω

)
, E

(1)
2 =

(
0
√
ω

0 0

)
.

The E2 operation converts a |1⟩ to a |0⟩, representing the physical process of the environment
energy lost. E1 leaves |0⟩ unaltered but decreases the amplitude of a |1⟩ state. Physically,
this occurs because some energy was not lost to the environment, and thus the quantum state
is more likely to be in the |0⟩ state, rather than in the |1⟩ state.

4.6.2 Phase damping channel
The phase damping channel (εP) describes the loss of information of a quantum state without
loss of energy. It can be due to the iteration of the system with the environment, which can
cause random phase shifts in the quantum states. This channel involves a parameter ω ∈ [0, 1]

48

CHAPTER 4. QUANTUM COMPUTING

that tunes the probability of a quantum state to lose information. Then, ω = 0 represents no
phase damping error, while ω = 1 is the maximal noise, which in this case means any linear
combination of |0⟩ ⟨0| and |1⟩ ⟨1|. The longitudinal relaxation time (T1) and the dephasing
time (T2) are two quality metrics related to the amplitude and phase damping channels,
respectively. After T1, the quantum behaviour is no longer that predictable, and T2 accounts
for the phase loss of a qubit, after which the qubit can perform different phase rotations from
those it was required to perform.

This quantum operation describes the loss of quantum information without loss of energy.
The operation over a one-qubit system is defined as

εP D(ψ) = E1ψE
†
1 + E2ψE

†
2,

where E1 and E2 are defined as

E
(1)
1 =

(
1 0
0
√

1− ω

)
, E

(1)
2 =

(
0 0
0
√
ω

)
.

In this case, the E1 operator acts in the same way as in the case of the amplitude damping
noise channel, leaving |0⟩ unchanged, but reducing the amplitude of |1⟩. However, in this
case, E2 also reduces the amplitude of the |1⟩ state, but does not change it to |0⟩.

4.6.3 Depolarizing channel
The depolarizing channel (εD) describes the probability of a qubit to be depolarized. The
depolarization of a qubit is the replacement of the current state with the mixed state I/2.
This event occurs with probability ω ∈ [0, 1], and the qubits leave untouched with probability
1− ω. Then, ω = 0 represents no depolarizing error, while ω = 1 is the maximal noise, which
in this case means the mixed state I/2.

This quantum operation describes the depolarization of a qubit. That is, with certain
probability ω a quantum state is replaced by the mixed state I/2. The operation over a
one-qubit system is defined as

εD(ψ) = ω
I

2 + (1− ω)ψ. (4.20)

Despite the fact that Equation 4.20 does not involve any Kraus operators, it is possible to
define the depolarizing channel with the following Kraus operators [Nielsen and Chuang,
2002],

E
(1)
1 =

√
1− 3ω

4 I2, E
(1)
2 =

√
ω

4 σ
x,

E
(1)
3 =

√
ω

4 σ
y, E

(1)
4 =

√
ω

4 σ
z,

(4.21)

where σx, σy and σz are the Pauli operators, and ω = 1 implies the output state εD(ψ) to be
the mixed state I/2.

49

Vicente Pérez Soloviev

4.6.4 Multi-qubit quantum error
The application of the Kraus operators defined in Equation 4.21 for a two-qubits quantum
system is defined as:

E
(2)
1 = E

(1)
1
⊗
E

(1)
1 , E

(2)
2 = E

(1)
2
⊗
E

(1)
2 ,

E
(2)
3 = E

(1)
3
⊗
E

(1)
3 , E

(2)
4 = E

(1)
4
⊗
E

(1)
4 .

4.6.5 Measurement error
Quantum measurement error regards to the precision error during the qubit measurement
process. It is usually emulated as a white Gaussian noise (N (0, 1)) over the samplings obtained
from the quantum system.

50

Part III

CONTRIBUTIONS

51

Chapter 5

Industrial Problems Constrained by
Environment Variables

5.1 Introduction
In this chapter we analyze the performance of traditional EDAs. Concretely, the implemented
approach shares characteristics with EGNA variant, and introduces the environment variables
concept, widely used in the following chapters, for restricting the search space during the
optimization runtime.

The typical optimization problems that are usually referenced in the literature involve
optimizing a cost function with a specific number of variables that are introduced to the
algorithm in order to find the best solution. However, there are many real-world optimization
problems in which variables that are not present in the cost function, influence the behaviour
of the algorithm during the optimization process. Therefore, the total set of variables (X) is
decomposed into two subsets: those that are present in the cost function and can change their
value during the optimization process (Y = {Y1, . . . , Yp}) which will be henceforth called as
decision variables, and others, which are the inputs of the algorithm, and remain constant
during the optimization (Z = {Z1, . . . , Zc}), henceforth called as environment variables.

X = {Y ,Z} = {Y1, . . . , Yp, Z1, . . . , Zc}

The relations within and between both subsets of variables must be considered in order to
find coherent solutions to the problem.

In this chapter, we aim to solve one of these problems. The motivation for the problem comes
from a real situation in an industry: a chemical process is carried out for the dissolution of a
solid substance. Depending on the properties of the substance, the solvents to be used may
change. Moreover, the final product after dissolving is stored in a tank and must comply
with some further restrictions. Thus, the combination of solvents depends not only on the
substance properties, but also on the final product restrictions. The industry aims to optimize
the dissolution process and relies on a system to decide which is the optimal combination of
solvents (Y) for the specific environment variables (Z): some substance properties and final

53

Vicente Pérez Soloviev

product restrictions. In this problem, optimization is evaluated from an economic point of
view: each solvent is associated with a price, and it is desired to minimize the total cost. The
optimization process uses the historic records of the laboratory technicians that dissolved the
substance so far. Figure 5.1 shows a sketch of the process.

Depending on the properties of the substance and the restrictions imposed on the final tank,
the solvent combinations vary, since the dependencies between the variables are different. If
the dependencies between and within both subsets of variables are not considered, only the
p variables involved in the cost function will be observed during the optimization process.
Thus, the cheapest combination of solvents found by the algorithm will be to use 100% of the
cheapest solvent and not using the others, as they would increase the cost. Optimizing only
the solvent variables could be solved using a simpler optimizer, such as a gradient descent.
The aim of this paper is to find the cheapest solvent combination, but keeping the patterns
identified in the historical data between and within both subsets of variables. These patterns
constrain the cost, and, for this reason, the implemented algorithm must identify the patterns
in the initial data, and generate valid solutions according to them.

The cost function is then given by,

g(y) =
p∑

i=1
yici (5.1)

where yi and ci are the percentage of each solvent in the mixture (∑p
i=1 yi = 1) and its cost,

respectively, and p is the total number of solvents. The optimizer should search for the
optimum values of yi such that the dependencies with the environment variables hold.

The problem consists of p+ c continuous variables: p solvents where each one specifies the
percentage of the total mix of solvents, and c substance properties and restrictions. The
substance properties specifically describe the substance, such as thermodynamic properties
or chemical elements present in the substance, and some final product restrictions are for
example the density, volatility or viscosity of the final liquid or a quality index calculated by
the industry. Thus, the algorithm receives as input a total of c constant values b1, . . . , bc for
Z1, . . . , Zc, and must output the optimum combination of the p solvents. In this particular
problem, the available historic records of how laboratory technicians have combined the
solvents has a total of 1056 instances.

The application of most population-based algorithms and conventional solvers does not
consider explicitly the relationship between the variables or does not allow the existence of a
subset of constant inputs. In this chapter, a novel technique of EDAs is prepared to overcome
this limitation. It includes a PM to identify conditional independence relationships between
and within both Y and Z subsets of variables. The PM allows to set a subset of constant
variables as observed evidence (Z) of the model and then sample from the rest of the variables.
Moreover, a new hyper-parameter is added to the implementation to control the influence of
the historical data in the algorithm’s decision making.

In this chapter, a PM learned in each generation of the algorithm builds an abstract representa-
tion of the relationships among the variables (solvents percentages, substance properties, and
restrictions) of the promising solutions. In this representation, the patterns among variables

54

CHAPTER 5. INDUSTRIAL PROBLEMS CONSTRAINED BY ENVIRONMENT
VARIABLES

Figure 5.1: Sketch of the chemical process to optimize. The combination of solvents is
influenced by the substance properties and the quality that the final product must attain.

can be identified in order to find better solutions. The use of PGMs provides the algorithm
with the ability to deal with problems that involve variables with strong dependencies among
them.

This chapter includes the developed methodology and results included in Soloviev et al.
[2022b]. The dataset used for the evaluation is not publicly available due to confidentiality,
although the implemented methodology is available in EDAspy library1.

Chapter outline
The chapter outline is organized as follows. Section 5.2 details the proposed methodology.
Section 5.3 presents some results of the evolution of the optimization process and the behaviour
of the algorithm for different problem instances and different parameter tuning. Section 5.4
rounds the paper off with the conclusions and future work.

5.2 Proposed solution
As mentioned above, an EDA using a GBN is used to solve the optimization problem. The
pseudocode in Algorithm 5 shows how the proposed EDA is implemented.

In the pseudocode, the main functions of the algorithm are shown. Initially, G0 is an
input to the code. Then, in each iteration, the algorithm selects the top individuals of
the generation considering the cost function. The algorithm learns a GBN, a multivariate
Gaussian distribution is then derived from the GBN, and new individuals are sampled from
joint distribution of it. Each set of new individuals constitutes a generation that is the input
for the next iteration of the algorithm. The stopping criteria may be based on a maximum
number of iterations, a state in which no better solutions are found by the algorithm, or a
state in which the algorithm is not able to generate valid individuals. In this implementation

1https://github.com/VicentePerezSoloviev/EDAspy

55

Vicente Pérez Soloviev

Algorithm 5 EDA
1: G0 ← N individuals from the historic records
2: Gaux ← Select similar situation individuals from the historic records
3: for t = 1, 2, ... until stopping criterion is met do
4: Gt−1 ← Select E individuals from Gt−1
5: Gt−1 ← Append Gaux to Gt−1
6: GBNt ← Learn GBN from Gt−1
7: f(X)← Compute the joint density function from GBNt

8: Gt ← Sample N individuals from f(X)
9: end for

the stopping criterion is a number of iterations after which the algorithm cannot improve the
best global cost. The main functions used in the algorithm are described below.

The GBN learned in each generation is an abstract representation of the region of the search
space explored, which guides the algorithm to promising areas. The individuals sampled from
the GBN keep the patterns identified in the data used to learn the multivariate model. The
use of GBNs allows generating solutions that were not contemplated in the learning of the
GBN.

The use of some algorithms is restricted to the amount of data availability. For example,
using neural networks demands a large amount of data to be trained. However, building a BN
does not require such a large amount of data. The EDA can be run correctly with the 1056
instances we dispose of for the initialization step. Another advantage of the use of GBNs is
that the DAG can be visualized in each generation in order to show patterns in data, or to
easily analyse the algorithm behaviour.

5.2.1 Initialization
The initialization of the algorithm has a large influence on how the algorithm moves through
the search space during execution. The aim of this chapter is to implement an algorithm
which finds the optimum solution of the problem keeping the patterns identified in the data.
A random initialization would generate some random patterns that would be kept through
iterations and this is not desired. This could be addressed implementing a whitelist in the
GBN in order to fix the arcs that are desired in the generated samples, but this would over-bias
the algorithm, as exploration would be limited.

In our approach, the initialization is based on the historic records of how technicians of the
laboratory have been manipulating the solvents. In the chemical laboratory, different sensors
record values of the variables used in the problem. First, some sensors measure the substance
to be dissolved providing the properties variables. Second, the tank where the final product is
to be stored has some further restrictions that must be accomplished, and are also sensorized.
Also, the amount of each solvent introduced in the solvent mixture is recorded. These values
are the historic records. We assume that the staff has been manipulating the solvents to
obtain the best results, considering the restrictions and the final cost. As these historic records
are considered nearly optimum, the algorithm is expected to converge soon.

56

CHAPTER 5. INDUSTRIAL PROBLEMS CONSTRAINED BY ENVIRONMENT
VARIABLES

5.2.2 Truncation
When a generation is obtained in each iteration, the individuals whose values in the subset Y
of variables minimizes the cost function, are interesting and must therefore be selected. Once
they are selected, all the individuals chosen have the same relevance regardless of the cost
of the individual. Moreover, those selected individuals may have a very low probability of
occurrence in the historic records. This can lead the algorithm to learn confusing patterns,
and future generations will be sampled incorrectly. For this reason, two modifications are
made in the baseline of the algorithm.

First, the cost is added as a new node of the GBN. By adding this new variable, a certain
coherence is ensured among all the samplings. If the cost is considered as a new variable, the
majority of the individuals in a generation will be sampled around the mean cost according
to the shape of the normal distributions, and thus, anomalous individuals are less likely to be
obtained when sampling. This does not avoid anomalous individuals to be sampled, because
a small part of the samples will be in the tails of the normal distributions, but maximum
dispersion among individuals is reduced. This new variable is calculated with the cost function
given in Equation 5.1. In this way, the GBNs learned in each iteration are more coherent.
Other multi-objective EDAs has also added the cost as nodes of the BN, such as [Karshenas
et al., 2013].

Second, the likelihood of each individual in the historic records is considered. If only the
individuals that minimize the cost function were selected, it would be possible that very
anomalous individuals would be selected, as individuals from different promising spaces, even
located at the tails of the distribution, may be found. To avoid this, both, the cost of the
individual and the likelihood of the individual in the historic records must be considered
in the truncation ranking. An individual that costs very cheap is very attractive, but if its
likelihood is low in the historic records, it might not be worth choosing. Therefore, those
individuals whose cost is not as cheap as the so attractive ones of the generation, but their
likelihood is higher, are preferable. For this reason, the likelihood in the historic records must
be considered.

The ideal is to find a balance between the likelihood in the historic and the randomness of the
samples of the individuals in the multivariate model. Consequently, a new hyper-parameter α
is added to the implementation, which controls the influence of the likelihood in minimizing
the cost function. We define the parameter as a value in the range [0, 1]. If the likelihood is
not taken into account (α = 0), the solutions can be dispersed, and different executions of the
EDA can provide very diverse solutions that may be very cheap. However, if the likelihood is
totally considered (α = 1), the optimizer can nearly not optimize the solutions in the historic
records, as the EDA will try to find a similar solution to those that can be found in the
historic records, and not a solution based on the patterns found in the data. An analysis of
this parameter is provided below. Thus, the function used in the truncation is,

Cα(x) =
∑p

i=1 yici∑p
i=1 ci

− α p(x|Θ0,G0), (5.2)

where p(x|Θ,G) is the likelihood (Equation 2.6) of an individual x in the Gaussian multivariate
model estimated from the initial generation (the historic records) represented by a DAG

57

Vicente Pérez Soloviev

G0 and some parameters Θ0; and yi and ci are the solvent amounts percentages and costs,
respectively. The first term of the equation has been normalized so that a comparison with
the second term is possible, as likelihood is represented as a probability. For α → 1 the
historic relevance tends to have the same relevance as the cost of the individual. For α = 1
the cost and the historic influence have the same relevance in Equation 5.2.

It is expected that the likelihood of the individuals of each generation will increase. Because
of this, Equation 5.2 is not the cost function that should be minimized. It is only a function
used to evaluate the individuals in the truncation step, and establish a ranking, to guide the
selection of the top individuals.

With these two modifications it may happen that some very cheap individuals are rejected
from a generation due to their anomalous costs in comparison with those of the rest of the
population. In this case, these rejected individuals will appear in future generations, where
their likelihoods and costs are more consistent with those of the other individuals in the
population. This favours the building of coherent GBNs in each iteration, as more coherence
among individuals is obtained.

5.2.3 Problem formulation

The mathematical formulation of the problem is presented in this section. The problem
involves p + c variables, X = {Y ,Z} = {y1, . . . , yp, z1, . . . , zc}, where Y are the decision
variables and Z are the environment variables fixed as constant.

The optimization problem is,

minimize min
x

(∑p
i=1 yici∑p

i=1 ci

− α p(x|Θ0,G0)
)

(5.3)

subject to gi(x) = bi, for i = 1, . . . , c, (5.4)

where ci ∈ R+ are constant terms predefined in the problem by C = {c1, . . . , cp}, the
parameter α ∈ [0, 1], and ∑p

i=1 yi = 1.

Here, the vector x = (y1, . . . , yp, z1, . . . , zc) is the optimization variable of the problem, the
function Cα(x) : Rp+c → R is the objective function defined in Equation 5.2, the functions
gi : Rc → R, i = 1, . . . , c are the constraint functions and the constants b1, . . . , bc are the
constraint values that the constraint functions should meet. A vector x∗ is optimal if it has
the lowest objective value among all vectors that satisfy the constraints. Thus, for any x with
g1(x) = b1, . . . , gc(x) = bc we have Cα(x) ≥ Cα(x∗).

Despite the fact that the cost function is defined in Equation 5.1 in terms of the decision
variables yi, the environment variables Z in the problem statement must be considered using
Equation 5.2 during the optimization process. However, as this approach has an industrial
perspective, the results shown in Section 5.3 represent the economic cost calculated with
Equation 5.1 for each solution x provided by the algorithm.

58

CHAPTER 5. INDUSTRIAL PROBLEMS CONSTRAINED BY ENVIRONMENT
VARIABLES

Figure 5.2: DAG learned in an EDA execution where the input variables are fixed as evidence
of the GBN. Only the yi variables (red nodes) are connected in the DAG, and the rest are
independent. The blue nodes represent the environment variables and the green node is the
cost.

5.2.4 Estimation of the density function
When the top individuals are selected using Equation 5.2, the structure of the GBN can be
learned. As the only variables that the EDA can optimize are the subset Y of variables, the
environment variables are inputs of the problem and hence, evidences of the multivariate
Gaussian distribution. Thus, in each generation the subset of environment variables will assign
to each individual the same value. When the learning algorithm tries to find dependencies
among variables, all the fixed environment variables are found to be independent, and if
some dependence is found it would be spurious. This means that the variables included in
the subset Y of variables would only influence and be influenced by each other, without
considering the subset Z of variables. This would be a situation in which the algorithm finds
the optimum combination of solvent amounts, without considering the rest of the variables:
Y ⊥ Z. Figure 5.2 shows this type of situation where the red nodes represent the subset Y of
variables, the green node represents the cost function, and the blue nodes are the environment
variables Z.

The patterns identified in the historic records must be translated to the GBN learned from
the top individuals of each generation. Therefore, some individuals from the historic records
are added to the selection made in the truncation phase of the algorithm. These added
individuals Gaux (see Algorithm 5) are selected from the historic records in such a way that
individuals similar to the problem situation are selected, that is, similar environment variables.
If a random set of individuals is added from the historic records, a lot of dispersion may
be introduced, or solutions from different zones of the search space may be selected, and
hence, confusing patterns could be learned by the algorithm. For this reason, clustering is
implemented in the historic records considering the subset of environment variables. In this
way, Gaux is incorporated into the selection of the E (see Algorithm 5) individuals made in
the truncation. Gaux will provide to the E selection of individuals, the patterns of the search

59

Vicente Pérez Soloviev

space explored by the algorithm in order to identify the dependencies among the variables.

Once Gaux is added to the selection made in the truncation phase, the GBN can be learned.
The score-based hill climbing algorithm is used. The subset of environment variables are the
inputs of the problem, and thus, evidences of the GBN. If z are the input values that the
subset Z of variables take, the multivariate Gaussian distribution built is f(Y |Z = z) with
the evidences as fixed values in the multivariate Gaussian distribution. Expert knowledge is
added by specifying the black list and white list.

When the optimal combination of yi is found, an optimal structure of the GBN is learned for
specific substance properties and further restrictions. Thus, this GBN can be used to perform
inferences and analyze different combinations of yi. The structure can be also used by experts
to infer patterns among variables of the system. By introducing the cost as a node of the
GBN, it can be used by the experts to calculate some posterior probabilities of the cost C
given some variables values x1, . . . , xt, for example, f(C|x1, . . . , xt) for classification tasks.

5.2.5 Sampling
Once the GBN is built, the next generation can be sampled. It is expected that the dispersion
among the individuals in the initial iterations is higher than in later iterations. The behaviour
of the algorithm is designed to make the space search move towards the optimal space and to
reduce the dispersion. The more iterations of the algorithm, the lower dispersion between
individuals, until convergence of the algorithm is reached and the dispersion among individuals
is minimum. Thus, the individuals in the last iterations should be similar and centered in the
optimal solution found.

Despite the fact that the multivariate Gaussian distribution is estimated from real data, it is
possible that non-real data are sampled. These samplings must be discarded. Otherwise, the
algorithm will tend towards a minus infinite cost.

Depending on the input values the number of samplings removed may be different. In some
situations, the optimizer may find solutions in which some of the yi variables are reduced to
nearly zero, so due to the Gaussian distribution, some of the samplings will lead to solutions
with values less than zero. However, other input variables will make the optimizer stabilize
the amounts at a realistic percentage, and the number of removed samplings will be smaller.
The frequency of appearance of these invalid individuals is small, so it does not imply a
significant computational cost.

5.3 Results
As the system was implemented to optimize a process in an industry, the model was run
considering expert knowledge. The optimizer results were validated with expert technicians
of the chemical laboratory.

In the problem we aim to solve in this chapter, the substance properties and the final
liquid restrictions in the tank are given as inputs (environment variables), and the optimal
combination of the six solvent amounts are returned as output. In this section, some real

60

CHAPTER 5. INDUSTRIAL PROBLEMS CONSTRAINED BY ENVIRONMENT
VARIABLES

Figure 5.3: Best cost (Equation 5.1) found in each iteration of an EDA execution for a specific
substance with restrictions.

problem results are provided. To validate the optimizer, real historic records situations have
been selected. The values of the subset of environment variables are selected and the process
and final results of the optimizer are analyzed by expert knowledge in the field. Expert
knowledge is of great importance in this validation process as it must corroborate that the
existing relationships that are identified between the data are correct.

Figure 5.3 shows the best cost evolution with an increasing number of iterations. In each
iteration, note that the algorithm tries to converge towards a better solution than it has so
far. When the algorithm cannot improve the best solution found after an specific number
of iterations, the algorithm converges and returns the best solution found. When the curve
flattens, the EDA has found the optimal area of the initial search space (iteration 60). One
of the advantages of this algorithm is that not only a single solution can be returned. The
algorithm can return a set of solutions with similar costs, in order to select one preferable by
laboratory technicians.

The expected behaviour of the algorithm evolution is that the dispersion among individuals
is reduced as the number of iterations increases. Figure 5.4 shows the evolution of the mean
cost and the dispersion among individuals along an EDA execution. The dispersion does not
have to decrease in a linear way, but a decreasing trend is appreciated in its evolution. The
way to measure this dispersion is the distance from the mean cost of the generation.

The ability to return a set of optimal solutions to the problem is not the only notable
advantage of this algorithm. Another one is that once the algorithm finds the optimal area of
the search space, it is possible to save the GBN of this area as the optimal structure for the
concrete problem. This GBN can be used with different purposes. The GBN found for an
EDA execution is shown in Figure 5.5, which is a representation of the optimal space that the
EDA found in the initial search space. Note the difference between both learned structures in

61

Vicente Pérez Soloviev

Figure 5.4: Mean cost (Equation 5.1) and dispersion among individuals in each generation for
a specific substance with restrictions.

Figure 5.2 and Figure 5.5. Figure 5.2 shows a situation in which environment variables (Z)
are independent nodes and only the solvent variables (Y) are influenced by each other as
they are continuously being optimized during the process: Y ⊥ Z. However, this is solved by
adding Gaux in each generation of the algorithm (see Algorithm 5). This way, we ensure that
dependencies between both Y and Z subsets of variables are considered and the algorithm
reaches a realistic situation as shown in Figure 5.5, where environment variables influence the
decisions in the solvent variables.

Notions of expert knowledge in the field will not be explained, but different aspects of the
DAG shown in Figure 5.5 must be analyzed. In a BN a variable depends on those in its
MB. All yi variables are dependent on each other. This relation is obvious as are percentages
of a total amount of solvent mix. If some of the solvents amount are reduced, others must
compensate this reduction (∑p

i=1 yi = 1). Thus, all the solvents are dependent on each other.
The cost node depends on all the solvents, and other environment variables. The modification
of some of the solvent amount is directly related to the cost variation. Other relations can
be appreciated, such as some environment variables which are directly related to the cost
variable. This GBN can be used to perform different inferences, to try different combinations
of solvents amounts, and infer the most probable solvent combination always keeping in mind
that the GBN represents an optimal area in the initial search space.

Figure 5.6 shows the value of the cost function C as a function of the α parameter (Equa-
tion 5.2). For the same problem (same inputs), the EDA was run 20 times for each value
of α. Cα (Equation 5.2) was used to perform the truncation, and find the minimum cost
function (Equation 5.1). Note that the mean C value increases with α while its dispersion
among different solutions decreases. As α → 1, C tends toward the value determined by
expert knowledge (C ≈ 58.5). However, although the dispersion increases for α = 0, for all
the simulations the optimal costs found is below that determined by theoretical expertise.
The figure also shows that the cost converges to a constant value (dashed line) for α > 0.5,
which represents the cost based on expert knowledge.

62

CHAPTER 5. INDUSTRIAL PROBLEMS CONSTRAINED BY ENVIRONMENT
VARIABLES

Figure 5.5: DAG of the GBN resulting from an EDA execution. The optimal GBN is obtained
for specific substance properties and restrictions. No nodes are independent. The blue nodes
represent the substance properties and restrictions, the green node is the cost, and the red
nodes are the solvent amounts.

For α > 0.5, the optimizer obtained similar costs and small dispersion among solutions. In
Equation 5.2 the cost of the solvent combination tends to have the same relevance as the
likelihood in the historic records. Thus, the algorithm will not provide solutions that do not
fit well with the historic records. The solution provided by the algorithm will be the same or
nearly the same as that of the historic records, as the laboratory records are assumed to be
nearly optimum. For highest values of α the optimizer performs as a predictive model, as the
solutions provided are the ones that can be found in the historic records.

For low values of the α parameter, the solutions provided have a larger dispersion. The
algorithm is therefore more stochastic than it is for high values of the α parameter. For each
iteration, only the cost of the solvent combination is considered, and thus, the individuals
that have a lower density in the historic Gaussian multivariate data will not be removed and
can lead to new solutions not contemplated. As the likelihood is nearly not considered, the
solutions provided by the algorithm are more stochastic, and thus, in different executions,
different GBNs can be learned. This explains the dispersion among the different executions
shown in Figure 5.6 for low values of α.

Facing an industrial application, it must be considered the α hyper-parameter tunning.
Despite the fact that the theoretical basis on which the implementation of the algorithm is
based is correct, using those solutions found by the algorithm for α close to zero may carry a
risk; the algorithm may have learned wrong patterns during runtime so not reliable solutions
may have been found, or more constraints should be added to translate the savoir-faire of the
technicians.

Thus, it is necessary to find a balance between the stochasticity of the algorithm and the
solutions already found in the historic records. This balance must be found using expert
knowledge, or even carrying out virtual simulations of the chemical process to properly tune

63

Vicente Pérez Soloviev

Figure 5.6: Mean cost as a function of the α parameter (Equation 5.2). For each value of α,
20 simulations were run. The dashed line corresponds to the cost of solvents traditionally
used in the laboratory processes for this specific substance and set of restrictions.

this novel hyper-parameter. The new hyper-parameter can be discussed from the exploitation-
exploration point of view. For high values of the parameter, the exploration of the search
is minimum while the exploitation of the already existent solutions in the historic data is
maximum. Though, low values of the parameter leads to explore the search space.

In order to perform a deeper analysis, the proposed approach has been executed for different
instances of the problem. We have designed four experiments in which the substance to be
dissolved is the same, but different environment variables are present.

• Experiment 1. The viscosity index of the dissolution result has a value of 10% below
the mean found in the historical data.

• Experiment 2. The viscosity index of the dissolution result has a value of 10% above
the mean found in the historical data.

• Experiment 3. The volatility index of the dissolution result and the quality index defined
by the industry are decreased a 10% below the mean found in the historical data.

• Experiment 4. The volatility index of the dissolution result and the quality index defined
by the industry are increased a 10% above the mean found in the historical data.

The experiments have been executed for EMNA, the Particle Swarm Optimization (PSO)
[Kennedy and Eberhart, 1995] and our approach. The EMNA approach has a similar pseudo-
code as our approach but instead of learning a Gaussian Bayesian network in each iteration
of the evolutionary algorithm, it learns a multivariate Gaussian distribution from where it is

64

CHAPTER 5. INDUSTRIAL PROBLEMS CONSTRAINED BY ENVIRONMENT
VARIABLES

Figure 5.7: Mean cost and standard deviation of EDA with a Gaussian Bayesian network,
and the EMNA and PSO algorithms as a function of the α parameter (Equation 5.2) for
the different experiments. For each value of α, 20 simulations were run. The dashed line
corresponds to the cost of solvents traditionally used in the laboratory processes for this
specific substance and set of restrictions.

sampled (lines 6-7 of Algorithm 5). PSO in each iteration updates its parameters in order to
minimize the cost function but not considering dependencies among variables. This way, we
compare the difference between using Gaussian Bayesian networks and not using them during
the optimization process.

The results are shown in Figure 5.7 and in Table 5.1, Table 5.2 and Table 5.3. If we analyze
each of the experiments individually, it can be seen that the behavior of our approach is
as expected. For low values of α it finds very cheap solutions, and the cost increases with
α, until the cost settles to the value determined by expert knowledge for α→ 1, shaping a
curve with a logarithmic profile. However, the behaviour of the EMNA and PSO is not as
predictable as our approach for different values of α. For α→ 0 our approach seems to find
better solutions than EMNA. However, for α→ 1, EMNA and PSO find better solutions than
our approach, but always very far from the costs provided by the experts and with high values
of standard deviation. EMNA and PSO are not learning the patterns found in data and thus,
they are converging to solutions that are cheaper but are not of interest for the company
when fully considering the likelihood of solutions in the historical data (Equation 5.2). Facing

65

Vicente Pérez Soloviev

α Experiment 1 Experiment 2 Experiment 3 Experiment 4
0.0 36.22 ± 5.66 34.27 ± 5.76 36.67 ± 5.55 37.46 ± 3.99
0.1 45.17 ± 1.77 46.52 ± 3.45 42.55 ± 6.50 48.03 ± 1.23
0.2 55.54 ± 2.01 48.55 ± 3.72 48.84 ± 1.46 52.26 ± 4.26
0.3 59.40 ± 2.70 47.29 ± 3.68 51.29 ± 1.57 50.33 ± 3.22
0.4 63.14 ± 0.85 49.97 ± 4.42 51.61 ± 1.41 56.40 ± 1.95
0.5 64.05 ± 1.24 49.84 ± 3.26 50.95 ± 2.50 59.49 ± 1.58
0.6 63.87 ± 1.71 52.47 ± 0.77 50.20 ± 3.54 63.50 ± 0.71
0.8 63.45 ± 2.97 53.30 ± 1.34 52.20 ± 2.12 67.50 ± 2.12
1.0 64.40 ± 0.88 53.84 ± 0.91 51.18 ± 2.12 68.00 ± 1.41

Table 5.1: Mean and standard deviation for each of the four designed experiments and different
values of α executed by our approach (Figure 5.7).

α Experiment 1 Experiment 2 Experiment 3 Experiment 4
0.0 55.35 ± 5.590 42.22 ± 4.360 43.68 ± 8.727 53.15 ± 5.432
0.1 52.25 ± 11.46 41.86 ± 7.251 39.61 ± 11.08 56.74 ± 10.74
0.2 52.41 ± 10.25 43.23 ± 10.24 32.52 ± 8.702 53.26 ± 7.166
0.3 51.48 ± 7.700 49.01 ± 8.911 42.24 ± 11.57 55.03 ± 12.01
0.4 48.58 ± 7.990 46.48 ± 7.833 38.46 ± 6.135 53.04 ± 12.53
0.5 40.37 ± 4.380 42.13 ± 7.845 39.56 ± 7.312 60.90 ± 8.631
0.6 45.43 ± 8.640 53.03 ± 5.448 34.84 ± 7.151 51.26 ± 15.58
0.8 51.33 ± 10.69 46.53 ± 4.821 38.17 ± 6.170 46.87 ± 10.06
1.0 47.64 ± 11.07 49.80 ± 10.22 36.18 ± 8.651 47.64 ± 11.62

Table 5.2: Mean and standard deviation for each of the four designed experiments and different
values of α executed by the EMNA approach (Figure 5.7).

an industrial solution, when our approach considers the likelihood completely, the laboratory
technicians will obtain solutions which they are accustomed to, and as α is decreased, solutions
that are somewhat more risky and therefore cheaper will be obtained, but they still take into
account the patterns found in the data. It is interesting how the results obtained by the PSO
approach when the likelihood is not considered (α = 0) outperforms the ones obtained by
EMNA and by our approach, and the small standard deviations observed in Table 5.3 for
α > 0. From this, we conjecture that PSO is falling in local optima solutions which seems to
have been avoided by EMNA and our approach.

The set of experiments shows how in general experiments 2 and 3 are cheaper than the others,
which makes sense because in both experiments we lead to solutions in which the final product
is closer to a solid than to a liquid, and therefore it is not necessary to dissolve the substance
as much as in experiments 1 and 4.

Table 5.4 shows a quantitative comparison of the EMNA, PSO and our approach analyzing
the number of fitness evaluations and computation time until convergence. All the approaches
have been evaluated under the same conditions. We can observe how our approach takes the
larger runtime compared to the two other algorithms. This is due to the GBN learning in each

66

CHAPTER 5. INDUSTRIAL PROBLEMS CONSTRAINED BY ENVIRONMENT
VARIABLES

α Experiment 1 Experiment 2 Experiment 3 Experiment 4
0.0 36.22 ± 5.66 34.27 ± 5.76 36.67 ± 5.55 35.89 ± 3.99
0.1 45.17 ± 1.77 46.52 ± 3.45 42.55 ± 6.50 47.98 ± 1.23
0.2 55.54 ± 2.01 48.55 ± 3.72 48.84 ± 1.46 54.47 ± 4.26
0.3 59.40 ± 2.70 47.29 ± 3.68 51.29 ± 1.57 49.00 ± 3.22
0.4 63.14 ± 0.85 49.97 ± 4.42 51.61 ± 1.41 57.03 ± 1.95
0.5 64.05 ± 1.24 49.84 ± 3.26 50.95 ± 2.50 59.12 ± 1.58
0.6 63.87 ± 1.71 52.47 ± 0.77 50.18 ± 3.54 63.52 ± 0.71
0.8 63.45 ± 2.97 53.31 ± 1.34 52.24 ± 2.11 67.45 ± 2.15
1.0 64.40 ± 0.88 53.84 ± 0.91 51.98 ± 2.08 68.02 ± 1.41

Table 5.3: Mean and standard deviation for each of the four designed experiments and different
values of α executed by the PSO approach (Figure 5.7).

Algorithm # iterations CPU time
EDA with GBN 1 ± 1 1 ± 1

EMNA 1.12 ± 4.90 0.33 ± 2.98
PSO 1.43 ± 0.37 0.39 ± 0.20

Table 5.4: Mean and standard deviation of the number of iterations and runtime until
convergence for our approach, EMNA and PSO after 20 simulations. This experiment has
been carried out with population size N = 100 and α = 0.6.The number of fitness evaluations
would be NQ, where Q is the number of iterations until convergence. All the results have been
normalized taking as reference the results of our approach. The experiment was conducted on
a Windows 10 machine with an Intel i7-5820K processor and 16 GB of RAM.

iteration, which is a characteristic that makes our algorithm to take more than double of the
runtime. Our approach seems to need a smaller number of fitness evaluations until convergence
compared to its competitors. However, the main advantage of our approach is that we are
able to obtain solutions that can approximate those given by experts, parameterized by α,
while EMNA and PSO are not able.

Our approach seems to be a good option in those industrial situations where it is crucial to
provide similar solutions to the ones offered by the experts (α→ 1) but also when cheaper
solutions are sought (α→ 0) under relaxed computation time requisites.

5.4 Conclusions
In summary, the aim of this chapter was to propose a solution for those optimization problems
in which there exist two types of subsets of variables: a subset of variables that define the
cost function and can be optimized, and a subset of fixed variables that are the input of the
problem. The dependencies between and within both subsets must be considered in order to
keep the patterns observed in data. To solve this, an EDA is used which incorporates a GBN
that is rebuilt in each iteration to find the best model for the optimum area of the search
space.

67

Vicente Pérez Soloviev

As the algorithm is initialized based on the historic records, a novel hyper-parameter α
was introduced to control the influence of the historic conditions on the individuals that
constitute each generation. Our results show that cheaper solutions can be obtained when the
algorithm is not constrained by the historic conditions (α = 0). In this case, the dispersion
of the solutions among different EDA executions is higher, but the worst solution for α = 0
is cheaper than the solutions in which historic records are considered (α > 0). This way,
this hyper-parameter must be tuned. Our approach is compared with the EMNA and PSO
algorithms in which no GBNs are used to identify the relationships among variables in each
iteration. The results show that our approach can approximate the solution given by experts
when α→ 1 unlike EMNA or PSO.

Future work to this chapter is listed below:

• The EGNA approach is assuming that the given data fit Gaussian distributions. Future
work should consider avoiding this limitation.

• This chapter is focused on optimization tasks in which only one objective is considered.
Future implementations should extend this work to multi-objective tasks in the industry.

• The hyper-parameter tunes the influence of the historic data in the decisions made
during runtime by comparing the individuals likelihood. A different heuristic could be
applied, such as comparing the individuals likelihood in the previous generations, in
such a way that, the decisions made during runtime would be influenced by the previous
generations, and not only by the historical data.

• Future work also includes adapting this approach to dynamic environments in which
environment variables or the cost function may vary during runtime.

68

Chapter 6

A Multi-objective Framework for
Data-Driven Experimental Design

6.1 Introduction
Chapter 5 assesses the performance of EGNA approach for a real application in the Industry
4.0. In this chapter we extend the previous methodology for multi-objective optimization
tasks in a real application in the industry, as suggested in the conclusions and future work
section in Section 5. The approach is embedded into a bigger framework which explodes
the capabilities and interpretability of the model, and is applied for the design of chemical
experiments.

The United Nations’ global goal of net zero emissions by 2050 [Deutch, 2020, Seto et al.,
2021] is demanding an increase in the production of high-performance fuels from sustainable
feed-stocks in order to reduce dependence on petroleum-based products and mitigate the
environment footprint. Considering the small time-window available to achieve the net-zero
emission goal, the design of a new generation of fuels that can improve sustainability by
reducing carbon dioxide emissions, can benefit from the speed-up provided by an holistic
approach that integrates artificial intelligence and laboratory experiments.

Fuel design is a black-box optimization task, where the result of the target properties of a
proposed fuel formulation are most of the time unknown until experiments are performed,
and can seldom be estimated (predicted or analytically imputed, depending on the problem).
Thus, smart fuel design relies on methodologies that propose promising formulations, and
analyze past experiments to improve future proposals, minimizing the number of experiments
in the real laboratory.

Traditional experimental design methods involve modelling and sampling with the aim of
exploring unknown regions of the design landscape. Some examples are factorial design
[Jankovic et al., 2021], in which linearity between variables is assumed and samplings are
located at the orthogonal corners of the landscape. There are more complex methods such as
Latin hyper-cubes sampling with general purpose space-filling designs [Viana, 2013, Vieira Jr
et al., 2013], and response surface methodologies [Myers et al., 2016], where polynomials are

69

Vicente Pérez Soloviev

used to model the search space. However, the main drawback of these approaches is that
once sampled, most of the solutions are unnecessarily evaluated, and the knowledge extracted
from the promising ones is not incorporated into future samplings, as these are not iterative
processes.

Data-driven design of experiments (DoE) is a powerful approach that leverages statistical
and machine learning techniques to optimize the design and execution of experiments. By
leveraging previous data provided by experts and computational models, data-driven DoE
aims at identifying the most informative and efficient experimental configurations, thus
minimizing the number of experiments required to obtain a fuel with the desired properties
while maximizing the insights gained. This methodology allows researchers and scientists
to strategically select experimental conditions, variables, and sample sizes, leading to more
accurate and robust conclusions from the available data. It has become instrumental in a
wide range of scientific disciplines, including chemistry, biology, physics, and engineering,
ultimately accelerating the pace of knowledge discovery and innovation. Data-driven DoE
becomes even more complex when: (i) some of the variables involved in the historical data
must be set to a specific value, as determined by the experts [Soloviev et al., 2022b]; (ii) there
are several constraints on the variables; or (iii) there is no historical data available from which
to learn.

Recent approaches include complex simulation methodologies such as adaptive sampling
[Liu et al., 2018a] in which promising regions of the search space are detected and sampled
iteratively. Adaptive sampling has been combined with Bayesian optimization and widely
used as a data-driven DoE approach. This leverages a surrogate model that can be sampled
efficiently and an acquisition function which is used to select promising solutions from the
search space [Greenhill et al., 2020, Hanaoka, 2021, 2022]. Other approaches found in the
literature face the task as a multi-level optimization problem, where evaluating a given solution
involves solving further optimization tasks [Sun et al., 2020], although this design decision
is problem dependent. However, all these approaches act as gray boxes where all variables
are of equal importance and it is not possible to find knowledge of the relationships between
variables.

In this paper, we present a new data-driven DoE approach aimed at obtaining an optimal
multi-ingredient fuel exploiting previous experimentation provided by experts. The design of
the fuel is modeled as a black-box multi-objective optimization problem with m = 3 objectives,
in which one of the objectives (f1(x)) is estimated using an embedded regression model, while
the others (f2(x), f3(x)) are computed analytically. Moreover, several bounds are imposed
regarding the fuel descriptors which lead to a constrained optimization problem. Starting
from an initial set of experiments, provided by the experts, the EDA approach converges to
a new set of experiments to be evaluated into a laboratory, where the real properties are
experimentally measured. The new data points are fed back in the framework loop and the
EDA is newly executed to further explore the Pareto frontier in search of the optimal solutions.
By the use of Gaussian Bayesian networks, our approach is able to restrict the search space and
propose feasible solutions for the optimization problem. The level of exploration/exploitation
over the initial set of experiments is regulated by the introduction of a new parameter, which
is experimentally analyzed. A posteriori analysis is performed, in which relevant variables

70

CHAPTER 6. A MULTI-OBJECTIVE FRAMEWORK FOR DATA-DRIVEN
EXPERIMENTAL DESIGN

during the optimization process are identified.

Thus, the main contributions of the paper are:

• The use of multi-objective EDAs to approach data-driven DoE.

• The probabilistic model enforcement by a regression model to improve the accuracy.

• The parametrization of the level of exploration and exploitation of the algorithm in the
landscape.

• The posteriori analyses in which dependencies between the variables are detected based
on the findings of the BN.

This chapter includes the developed methodology and results included in Soloviev et al. [2024c].
Data has not been publicly disposed for confidential reasons. However, a deep description of
the data is provided in Appendix B. The implementation of the algorithm will be added to
EDAspy1 after paper acceptance.

Chapter outline
The outline of this chapter is organized as follows. Section 6.2 presents the formal formulation
of the black-box multi-objective optimization problem. The proposed methodology for the
optimization task and further results are presented in Section 6.3. Section 6.4 rounds the
chapter off with the conclusions and future research lines.

6.2 Optimizing the design of fuel
A fuel is a physical mixture of several ingredients of different chemical nature and is normally
defined in terms of the relative weight percentage of each ingredient in the formulation.

By starting from an initial pool of n available ingredients, the design of a fuel for a specific
application requires to efficiently explore an n-dimensional search space in order to find
optimal combinations of ingredients, whose physical properties must meet a set of constraints.

In this work we are dealing with n = 24 ingredients I1, . . . , I24 that can be grouped into
six different categories {A,B,C,D,E, F} and each ingredient is characterized by a set of
physical properties P1, . . . , P14, as shown in Table B.1 (B). B shows a histogram for each of
the properties.

Additionally, the total fuel mixture is characterized by a set of descriptors, namely W =
(Wcalc,Wlab). The former (Wcalc) includes the percentage of some of the ingredients, and certain
physical properties that can be computed analytically as weighted sums of the individual
properties of the ingredients. The latter (Wlab) refers to physical properties that cannot be
computed analytically, and have to be evaluated experimentally in the laboratory. Both types
of descriptors are bounded by a lower (LB) and upper (UP) bounds, respectively, leading to
optimization constraints. B.2 describes Wcalc formulas, and bounds for all the descriptors.

1https://github.com/VicentePerezSoloviev/EDAspy

71

Vicente Pérez Soloviev

Initial data generation

Experiments

Designed
experiments

XOR Data-driven
Optimization

Final set
solutions

Chemical laboratory

Multi-objective EDA framework

Evaluation

1.a

1.b 2

3 4

Figure 6.1: General flow chart of the multi-objective proposed approach for data-driven DoE.

Although the properties of the ingredients are known, their interaction as well as how they
affect the laboratory descriptors (Wlab) is not known a priori. The optimizer proposed in
this work not only allows to efficiently navigate the search space to accelerate the design
of optimal fuels but also provides useful insights into the effect of each ingredient over the
descriptors of interest.

From the set of descriptors, W 1
lab, W 1

calc and W 2
calc are desired to be maximized in the multi-

objective optimization problem.

Figure 6.1 depicts a schematic view of the multi-objective sequential learning framework for
fuel design presented in this paper. Considering the high dimension of the search space and
that laboratory experiments are time consuming and subjected to budget restriction, it is
advantageous to assist the fuel design task with a multi-objective optimization algorithm that
efficiently and iteratively explores the Pareto frontier guiding the search towards an optimal
fuel that meets all the previously mentioned constraints.

By leveraging past experiments (step 1a), our methodology aims at finding a sweet spot
between testing new fuels with different compositions from those already tested (exploration)
and exploiting the knowledge enclosed in the existing data points, to suggest a batch of new
formulations to be tested in the laboratory. Once these new fuels are tested in the laboratory,
if none of the suggestions meets the constraints, the optimization procedure is run again
to suggest a new batch of experiments (step 3) until convergence to a final set of optimal
solutions is achieved (step 4). Additionally, if no past experiments are provided, we propose
a method based on a Latin hypercube sampling for proposing an initial set of experiments
(step 1b, Section 6.3.4) to be tested in the laboratory (step 2). The data-driven optimization

72

CHAPTER 6. A MULTI-OBJECTIVE FRAMEWORK FOR DATA-DRIVEN
EXPERIMENTAL DESIGN

process is carried out starting from either a set of historical data, or, the set of proposed
experiments (XOR).

The proposed approach also allows including domain knowledge to further guide or restrict
the search for optimal solutions. For example, experimentalists can be interested in fixing the
amount of certain ingredients to either 0 or a finite value between 0 and 100 and no solutions
should suggest different values for those ingredients whose amount has been fixed. Previous
research in this line has referred to these variables as environment variables [Soloviev et al.,
2022b].

6.2.1 Problem formulation

The problem involves n = p+ c variables, X = (Y ,Z) = (Y1, . . . , Yp, Z1,
. . . , Zc) = (X1, X2, . . . , Xn), which represent percentages of each ingredient in the total mixture
of the fuel, where Y and Z are the environment variables whose value (y) is predefined by
the experts and the decision variables (Z) that are to be tuned by the algorithm, respectively.
The optimization problem is defined as

max
x

G(x) = (g1(x), g2(x), g3(x))

g1(x) = W 1
lab(x)− i(x)

g2(x) = W 1
calc(x)− i(x)

g3(x) = W 2
calc(x)− i(x)

i(x) =
4∑

i=1
j(x,W i

lab(x)) +
7∑

i=1
j(x,W i

calc(x))

j(x,W i
lab(x)) =

0 if LBi
lab ≤ W i

lab(x) ≤ UBi
lab,

δ otherwise

j(x,W i
calc(x)) =

0 if LBi
calc ≤ W i

calc(x) ≤ UBi
calc,

δ otherwise
subject to x ∈ Rn

+

L(G0,Θ0 : x) + α ≤ 0
n∑

i=1
xi = 100,

where L(G0,Θ0 : x) is the log-likelihood of a solution x in the probabilistic model learned
from the initial data formally represented by a DAG G0 and some parameters Θ0 (Equa-
tion 2.7); α ≥ 0 represents the level of exploration-exploitation, being the higher, the more
exploratory; δ > 0 represents the penalization term for the constraint set in the problem; and
(g1(x), g2(x), g3(x)) are the three objectives related to (W 1

lab(x), W 1
calc(x),W 2

calc(x)) functions
to optimize, respectively.

73

Vicente Pérez Soloviev

6.3 Methods and results
In this section we deeply explain the methodology implemented to solve the task described
in Section 6.2. Figure 6.1 outlines the framework used in this task. The pseudocode in
Algorithm 6 shows the algorithm behind the multi-objective EDA framework described in
Figure 6.1.

Algorithm 6 Multi-objective data-driven EDA
Input: Population size N , selection ratio τ , cost functions (g1, g2, g3), exploration ratio α

and historical data Xtrain

Output: Best individual x′ and cost found G(x′)
1: G0 ← Xtrain historical data
2: for t = 1, 2, ... until stopping criterion is met do
3: Evaluate Gt−1 according to (g1, g2, g3)
4: Rank Gt−1 according to Pareto dominance for (g1, g2, g3)
5: GS

t−1 ← Select ⌊τN⌋ individuals from Gt−1
6: pt−1(·)← Learn a Gaussian BN from GS

t−1
7: pt−1(·)← Set environment variables Y = y
8: Gt ← Sample N individuals from pt−1(Z|Y = y)
9: end for

In each iteration of the general workflow (Figure 6.1), the EDA approach (MO_EDA) is
executed and receives a new historical data Xtrain, which includes the historical data used in
the previous iteration as well as the new batch of solutions suggested and validated in the
laboratory. The exploration ratio α is tuned in each iteration of the workflow as desired by
the experts.

The EDA approach is an iterative algorithm that evaluates a set of individuals (line 3) in each
iteration, starting starting from the historical data, according to (g1, g2, g3) (Section 6.2 and
Section 6.3.1). The solutions are ranked based on the Pareto dominance criteria for the cost
functions (line 4 and Section 6.3.3). From this ranking, ⌊τN⌋ solutions are selected (line 5)
to train the posterior conditional probability described in Section 6.3.2 (line 6-7), and sample
N new solutions (line 8).

6.3.1 Prediction of descriptors
As described in Section 6.2, one of the objectives to be maximized (W 1

lab) cannot be computed
analytically, and thus, has to be predicted based on the rest of variables. Therefore, a
regression model has been implemented to predict W 1

lab.

Considering the target variable W 1
lab found in the historical data provided by the experts,

we train different regression models, where the input variables are the decision variables
Z (set of fuel ingredients in the feature space to be tuned by the EDA approach). We
prepare a cross-validation leaving-one-out experiment to find the model that most accurately
predicts W 1

lab. The tested models [Pedregosa et al., 2011] are Bayesian ridge regression,
Lasso regression, Ridge regression, XGBoost regression and kernel ridge regression and are

74

CHAPTER 6. A MULTI-OBJECTIVE FRAMEWORK FOR DATA-DRIVEN
EXPERIMENTAL DESIGN

BRidge Lasso XGBoost Ridge KRidge
R2 (%) 57.01 55.53 39.73 53.54 47.82
MAE 1.47 1.51 1.95 1.58 1.75
MSE 1.48 1.53 2.07 1.61 1.79
RMSE 1.22 1.24 1.44 1.27 1.34

Table 6.1: R2, MAE, MSE and RMSE results of cross-validation leaving-one-out experiments
after predicting W 1

lab using Z as input variables

available at scikit-learn-1.3.0 [Pedregosa et al., 2011]. Hyperparameter configurations for
these algorithms can be found in C.1.

Table 6.1 shows the R2, mean absolute error (MAE), mean squared error (MSE) and root
mean squared error (RMSE). It can be observed that Bayesian ridge regression obtains the
best results, while XGBoost performs the worst. In order to improve the performance of the
regression model, we have carried out a hyperparameter tuning using Bayesian optimization
[Bergstra et al., 2013], and R2 results have been increased to 60%. The final configuration is
available in C.1.

For each sample generated from the probabilistic model, we predict W 1
lab with the regression

model and use Ŵ 1
lab to evaluate the solution in the cost function G(x) (Section 6.2). W 1

calc and
W 2

calc are computed analytically, and the rest of the W i
calc are sampled from the probabilistic

model.

6.3.2 Probabilistic model
The algorithm will utilize the embedded probabilistic model to learn patterns identified during
the optimization process and to sample new feasible solutions. Gaussian BNs have been
chosen for the following reasons: (i) they allow the use of evidence in the model, causing
that all the samplings will have the environment variables fixed to a specific value [Soloviev
et al., 2022b]; (ii) they represent uncertain knowledge as a graph; and (iii) we are dealing
with continuous variables.

In the historical data, we find fuel formulas with ingredients that traditionally belonged to
the set of decision variables Z. However, due to current governmental restrictions on fuels,
they must be restricted to a specific value or be entirely banned. Thus, we must set these
variables to a fixed value, i.e. environment variables [Soloviev et al., 2022b]. The environment
variables Y are evidence in the learned Gaussian BN, so that future solutions are sampled
from the posterior conditional probability f(Z|Y = y).

The sampling process has been parameterized so that the degree of exploration and exploitation
is controlled by the log-likelihood (L()̇) of each sample x in the model learned from Xtrain,
where Xtrain is the historical data. A sample is only valid if L(G0,Θ0 : x) + α ≤ 0. As a
reference, we have computed the log-likelihood of each sample in Xtrain under the model
represented by (G0,Θ0). A box plot is shown in Figure 6.2 where mean and median are
approximately -46 and -42, respectively. Thus, for increasing values of exploratory parameter

75

Vicente Pérez Soloviev

(α→∞), the sampling process becomes more exploratory, and for α values close to zero, the
sampling process tends to an exploitation behavior. Further analyses on the performance of
the EDA approach depending on α parameter are analyzed in Section 6.3.5.

80 75 70 65 60 55 50 45 40 35
(0, 0 : x) for x train

Figure 6.2: Box plot of the log-likelihood of each sample from Xtrain in the model represented
as (G0,Θ0), where mean and median are approximately -46 and -42, respectively.

6.3.3 Truncation
The truncation process is performed in each iteration of the algorithm. Most of multi-objective
approaches use the hypervolume metric to select the top solutions that best approximate the
Pareto frontier. However, in our approach we rank to solutions using the different frontiers as
shown in Figure 6.3, where solutions from different frontiers (from the first one onwards) are
selected to train the probabilistic model of the respective generation. This way, we expect to
avoid local convergence by including more diversity in the truncation set. Moreover, this would
reduce the computation time by preventing to compute multi-objective quality indicators in
each iteration.

6.3.4 Initial data generation
Although some historical data was provided for the problem we are addressing in this paper,
we propose a methodology based on Latin hypercube sampling (LHS) to generate the initial

First Pareto frontier Second Pareto frontier Third Pareto frontier

Figure 6.3: First, second and third Pareto frontiers represented as blue, red and yellow circles,
respectively, are identified for maximizing g1(x) and g2(x) objectives, and ranked for the
truncation process. An example for N = 16 and τ = 0.6 is shown.

76

CHAPTER 6. A MULTI-OBJECTIVE FRAMEWORK FOR DATA-DRIVEN
EXPERIMENTAL DESIGN

0 5 10 15 20 25
iteration

100

50

0

50

100
f 1

(x
)

0 5 10 15 20 25
iteration

2700

2750

2800

2850

2900

2950

f 2
(x

)

0 5 10 15 20 25
iteration

550

600

650

700

750

f 3
(x

)

= 100
= 250
= 400

= 550
= 700

Figure 6.4: f
or different values of exploratory parameter αConvergence plot of the three objectives

(g1(x), g2(x)), g3(x) for different values of exploratory parameter α. Each line represents the
mean objective value in each iteration after executing the EDA approach 25 times for each α

configuration.

set of experiments (Figure 6.1, step 1.b). LHS has traditionally been used in a wide range of
sampling designs [Fang et al., 2005].

The overall performance of the optimization process heavily depends on the quality of the
samplings of the initial data. A set of samplings that efficiently explores the landscape of
solutions, will facilitate, and most probably, ensure the discovery of good feasible solutions.
However, a poor set of samplings may lead the optimizer to converge to local optima.

LHS is a statistical technique that efficiently explores a multi-dimensional parameter space
while ensuring a representative sample of the input variables. LHS divides each variable
range into equally likely intervals (number of samplings) and selects a single value from each
interval, creating a stratified, non-repetitive sample that maximizes the coverage of the entire
parameter space. A permutation between the samplings of each dimension is then run. We
add a post-processing hill-climbing method to ensure equally spaced samples using Lloyd-Max
algorithm [Lloyd, 1982].

Although this intelligent sampling process ensures that all areas of the landscape are sampled,
it is desired to execute in the laboratory those that are most promising for promoting the
next generations of the algorithm. Thus, in Figure 6.1, the initial data process collaborates
with our approach. The initial sampling is used to initialize the EDA, and the best solutions
found are taken to the laboratory. The exploratory parameter α will be tuned by the user in
such a way that the solutions are as exploratory as possible.

6.3.5 Performance analysis
Figure 6.4 shows a comparison of the three objectives for different values of exploratory
parameter α after running the EDA approach 25 independent times for each configuration.

Firstly, it can be observed that along the iteration process (x-axis) the objectives are maximized

77

Vicente Pérez Soloviev

until they reach a constant value, and the algorithm is considered to have converged.

Secondly, depending on the values that the parameter takes, the algorithm reaches different
optima. In the case of W 1

lab the best result is reached for almost all the values of the parameter.
Parameters of α = 400 and α = 580 seem to be the best configurations, reaching the best
values for the three objectives. Finally, α = 700 returns the worst results for the three
objectives.

To analyze the best parameter configuration we will use the HV quality indicator (Equation 3.7).
In this case, the experts fix the reference ideal point to gref = (102 + RMSE(Ŵ 1

lab), 2980, 780)
for the HV computation, where RMSE(Ŵ 1

lab) is the root mean squared error obtained by the
regression model, computed in Table 6.1.

100 200 300 400 500 600 700
Exploration parameter ()

150

200

250

300

350

400

450

500

M
ea

n
hy

pe
rv

ol
um

e
(H

V)
 b

es
t s

ol
ut

io
ns

Poly 3d
Poly 7d

Figure 6.5: Mean HV after running the EDA approach 25 independent times for different
values of exploratory parameter α. Blue dots represent the HV mean values, and orange and
green dashed lines represent a function approximation using a polynomial with degree three
and seven, respectively.

Figure 6.5 shows the mean HV achieved after 25 independent executions for each parameter
configuration. It can be observed that there are no signs of increasing or decreasing monotony.
In fact, we observe a non monotonic line for each function approximation with a valley around
values of α = 400 and α = 580. Note that the results obtained for low values of α, that is, low
exploration and high exploitation with solutions similar to the ones provided by the experts in
the historical data, achieve a HV of approximately 250 while the best results are obtained for
α = 400 with a mean HV of approximately 150. For greater values of parameter α, the mean
HV is worse, but still better than the one achieved by the historical data. When α → ∞,
an increasing tendency of the HV has been observed, which agrees with the results shown in
Figure 6.4.

We conjecture that although the historical data contains good performing fuel formulas, if we
move to another area of the search space within the landscape of solutions, we will find a fuel

78

CHAPTER 6. A MULTI-OBJECTIVE FRAMEWORK FOR DATA-DRIVEN
EXPERIMENTAL DESIGN

formula with better performance and objective values. Therefore, the experts were using a
formulation corresponding to a local optimum. An overly exploratory approach can lead to
very poor solutions, as can be seen for α = 700 in Figure 6.4 and Figure 6.5.

0 5 10 15 20 25
iteration

4000

3000

2000

1000

0
m

ea
n

lo
g_

lik
el

ih
oo

d

= 100
= 250
= 325
= 550
= 700

Figure 6.6: Mean log-likelihood of the set of solutions in each iteration along the optimization
process for different values of α parameter.

Figure 6.6 shows the mean log-likelihood of the solutions in generation Gt along the optimiza-
tion process. In general, a decreasing trend can be observed independently of the values of α,
always respecting the threshold imposed by the exploration parameter.

Note that a common behavior among the different α values is that in the first iterations the
log-likelihood decreases more sharply than in the following iterations. We conjecture that
this behavior is justified by the fact that the EDA approach in the first iterations becomes
more exploratory, but as the optimization advances it becomes more exploitative (within the
range allowed by the α parameter), converging to already explored areas of the landscape.

Figure 6.7 shows an example of the new optimal proposals provided by the EDA approach
for different values of exploration parameter α, analyzed in two dimensions of the landscape
(Table B.1). Orange circles represent the traditional fuel formulas found in the historical data
presented by the experts, while blue symbols represent the best EDA solutions for different
values of the exploration parameter.

The left panel illustrates a comparison between D4 and D3 ingredients, which belong to the
same category of ingredients. Traditionally, the experts use either one of the two ingredients,
however, EDA proposes new formulas in which both ingredients are combined.

The right panel shows a comparison between F2 and C2, which do not belong to the same
category of ingredients. Typically, experts tend to maximize the first ingredient while
minimizing the second one. It is observed that some of the EDA solutions try to imitate this
knowledge learned from the historical data, but other solutions adopt a different perspective,

79

Vicente Pérez Soloviev

0 5 10 15 20 25D3

0

5

10

15

20

D4
EDA (= 100)
EDA (= 250)
EDA (= 400)

EDA (= 550)
Historical data

0 10 20 30 40
C2

0

5

10

15

20

25

30

35

F
2

Figure 6.7: Comparison of two dimensions of the problem landscape where orange circles
represent traditional formulas found in the historical data, and the rest of symbols represent
the new optimal formulas found by the our approach. The left panel compares D4 and D3
ingredients and the right panel compares F2 and C2 ingredients.

maximizing the second ingredient while minimizing the other. This reflects the exploratory
power of our approach.

6.3.6 Knowledge discovery
In this section, we analyze the set of variables that are strongly related to g1(x) in order to
identify the dependencies between the fuel ingredients and the optimization objective, as this
information is not known a priori.

It is worth mentioning that the Gaussian BN analyzed has been learned from the solutions
found when the exploration parameter has been tuned to α = 400 (where best results have
been found). Thus, the strongly related variables found for different values of the parameter
may vary.

Figure 6.8 represents the structure of the Gaussian BN learned with the best solutions found
in the last 5 iterations of the EDA approach with α = 400, where only the arcs contained in
the Markov blanket of g1(x) are shown, i.e. MB(g1(x)).

The Markov blanket of g1(x) includes ingredients from the categories
{C,D,E, F} and the objective g3(x). Remarkably, all the variables included in MB(g1(x))
are the parents of g1(x) in the graph (Figure 6.8), and the conditional probability density
(Equation 2.4) is expressed as:

f(g1(x)|P ag1(x)) = N (142.01− 0.239D4− 0.158 C2− 0.105 F3+
− 0.123D3− 0.166 F2− 0.065 g3(x) (6.1)
− 0.073 E2; σ2),

80

CHAPTER 6. A MULTI-OBJECTIVE FRAMEWORK FOR DATA-DRIVEN
EXPERIMENTAL DESIGN

A4 E1 F2 D5 C2

B2 A2 F3 C1 E3

A3 D3 A1 D7 F1

E2 D4 E4 C3 f1(x)

f2(x) f3(x) W2
lab W3

lab W4
lab

Figure 6.8: Gaussian BN structure learned from the best solutions found in the last 5 iterations
of the EDA approach with α = 400, where only the arcs contained in the Markov blanket
of g1(x) are shown. Red, green and yellow nodes represent the ingredients, optimization
objectives and W 2

lab, W 3
lab, W 4

lab, respectively.

where numbers represent the weights (β1, . . . , β7) of how the value of each variable influences
the mean objective g1(x) in the conditional probability density; β0 = 142.01 is the intercept
coefficient; and σ2 is the variance.

It is observed that the two variables with the highest weight associated, and thus, with more
influence on the final objective are D4 and C2. Although the weight associated to g3(x) is
low, the range of values of this objective is more than one magnitude higher than the values
of the ingredients. Thus, we find a strong relation between both g1(x) and g3(x) objectives.

Figure 6.9 shows Pearson correlations computed over the set of best solutions found in the
last iterations of the algorithm. Those variables more correlated with the objective g1(x) will
denote a big influence between both variables. It can be observed that C2 and F2 are the
two variables most correlated with g1(x).

Note that g2(x) and g3(x) heavily depend on the analytical descriptors, and thus the depen-
dence between the ingredients and these objectives is already known.

6.3.7 Comparison
To perform a fair analysis of our approach (MO_EDA) it is compared to others, such as NSGA-
II [Deb et al., 2002] and MOEAD [Zhang and Li, 2007]. The algorithms hyperparameters

81

Vicente Pérez Soloviev

f1(x) D4 C2 F3 D3 F2 f3(x) E2

f 1
(x

)
D4

C2
F3

D3
F2

f 3
(x

)
E2

1 -0.29 -0.63 0.094 0.22 0.32 -0.24 0.014

-0.29 1 0.25 0.26 -0.92 0.027 -0.23 0.26

-0.63 0.25 1 0.11 -0.32 -0.68 0.38 -0.21

0.094 0.26 0.11 1 -0.24 -0.28 -0.21 0.031

0.22 -0.92 -0.32 -0.24 1 -0.079 0.29 -0.23

0.32 0.027 -0.68 -0.28 -0.079 1 -0.79 -0.038

-0.24 -0.23 0.38 -0.21 0.29 -0.79 1 0.18

0.014 0.26 -0.21 0.031 -0.23 -0.038 0.18 1 0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.9: Heatmap that represents the Pearson correlation found between the variables in
MB(g1(x)) and g1(x) in the set of best solutions obtained in the last 5 iterations of the EDA
approach.

MO_EDA NSGA-II MOEAD
HV 124.63± 74.99 535.13± 265.8 260.7± 38.13
DM 7.27± 7.57 213.82± 304.0 4.38± 4.46

Table 6.2: Mean and standard deviation of hypervolume (Equation 3.7) and diversity (Equa-
tion 3.9) indicators for the best solutions obtained by MO_EDA, NSGA-II and MOEAD
approaches.

tuning can be found in Appendix C.2. HV (Equation 3.7) and DM (Equation 3.9) are used
for the evaluation of the algorithms.

Figure 6.10 represents the best results found by NSGA-II, MOEAD and MO_EDA approaches,
plotted with blue, orange and green markers, respectively. Note that, in the case of our
approach, the two first Pareto frontiers are shown as two separate groups in the landscape of
objective values.

Figure 6.10 shows that, while MOEAD seems to find an area of the search space in which
all the solutions have a similar result (in terms of the three analyzed objectives), NSGA-
II returns solutions with very varied results. With focus on the reference point (gref =
(102 + RMSE(Ŵ 1

lab), 2980, 780)), the solutions found by our approach seem to outperform the
ones found by its competitors.

Results observed in Figure 6.10 are contrasted to the results of hypervolume and diversity
metrics found in Table 6.2. Note that to compute those metrics, just the first frontier of
solutions from EDA approach was considered. The large variance among the results of

82

CHAPTER 6. A MULTI-OBJECTIVE FRAMEWORK FOR DATA-DRIVEN
EXPERIMENTAL DESIGN

f1(x)

99.5100.0100.5101.0101.5102.0102.5
103.0

f 2(x
)

29
50

29
60

29
70

29
80

f 3
(x

)

750

755

760

765

770

775

780

MO_EDA
NSGA2

MOEAD
Fref

Figure 6.10: Blue, orange and green markers represent the MO_EDA, NSGA-II and MOEAD
best solutions, respectively in the landscape of the three objectives to be optimized. Black
square represents the reference point (gref) used to compute HV indicator. More than one
frontier of solutions for MO_EDA were included. X, Y and Z axis represent g1(x), g2(x) and
g3(x), respectively.

NSGA-II is reflected in DM indicator compared to the computed metric for MO_EDA and
MOEAD approaches. Also, Figure 6.10 places the solutions far from the reference point (gref),
and the hypervolume computed for this algorithm is the worst one with a large standard
deviation. Although MO_EDA and MOEAD approaches achieve a similar diversity indicator,
our approach outperforms its competitors in terms of hypervolume minimization.

ANOVA test [Kaufmann and Schering, 2007] has been computed to reject the null hypothesis of
equal means for hypervolume and diversity indicators, where statistical significant differences
have been found (p-value = 3.07e− 8 and p-value = 3.82e− 28, respectively).

6.4 Conclusions
In this chapter we have proposed a new methodology to be applied in formulation laboratories
for the experimental design of fuels. We expect to change the paradigm of traditional methods,
to a data-driven approach in which the number of real experiments is reduced leading to
cost-cutting and time-saving.

The experimental design has been approached as an optimization problem where three
properties of the fuel mixture have been maximized as a multi-objective task. Comparing
our approach to some state-of-the-art algorithms, experimental results have found that the

83

Vicente Pérez Soloviev

EDA-based optimizer outperforms its competitors.

Our approach includes an α parameter which controls the level of exploration and exploitation.
Experimental results have shown that accurately tuning this parameter will lead to discovering
better results than those already known by the experts. Moreover, the probabilistic model
embedded by the EDA approach is able to learn patterns between fuel ingredients that were
not considered by the experts in their experimental designs, thus enriching the interpretability
of the solution.

We are aware that this is a first step towards the adoption of a new paradigm in the design of
fuels, and there exist several ways of improvement for this approach. Among future steps, the
following are included.

• The proposed approach samples f(Z|Y = y) in each iteration, where Z and Y are
the decision and environment variables of the problem, respectively, and uses Ŵ 1

lab to
compute the multi-objective cost function. An improvement of the probabilistic model
could happen if W 1

lab was introduced in the probabilistic model as an additional node,
and the sampling of W 1

lab from the model was considered to compute the multi-objective
cost function. The uncertainty of this sampling could also be analyzed.

• Exploration parameter (α) was tuned empirically, so finding a way to automatically
tune it would mean a more autonomous approach.

• Although the control of exploration/exploitation of the algorithm is tuned through the
log-likelihood, the use of geometric metrics in the landscape would better explore the
optimization surface.

• Although in this optimization problem the historical data fits Gaussian distributions,
most of the industrial data does not fit normal distributions. Improving this approach
with a semiparametric perspective [Soloviev et al., 2023a] where the algorithm can
decide itself the distribution to be used would enlarge the area of application of the
data-driven approach.

84

Chapter 7

Semiparametric EDA for Continuous
Optimization

7.1 Introduction
Chapter 5 assesses the performance of an EGNA approach for a real application in the Industry
4.0. Future work included overcoming the limitation of the Gaussian assumption over data. In
this chapter, we propose a novel methodology (SPEDA) in which this limitation is overcome
by allowing the coexistence of Gaussian and KDE-based probability distributions in the
probabilistic model. Moreover, the proposed methodology considers information retrieved
from more than one past generation, implementing an archive-based approach, which also
satisfies another future work proposal.

In recent years, the automation of processes in industry has increased the need to optimize
certain tasks that involve continuous variables, either given some data generated by sensors or
cost functions. In the literature, we can find different probabilistic models embedded in EDAs
being used to approach continuous optimization problems, such as the EGNA [Larrañaga
et al., 2000], due to their simplicity and speed.

However, such models have certain disadvantages due to the use of parametric probability
distributions. First, assuming Gaussianity when the search space of the optimization problem
is a continuous environment that does not fit a Gaussian distribution, may result in poor
solutions. Second, the use of Gaussian distributions during the runtime of the algorithm
tends to shrink the search space represented by the standard deviation or the covariance
matrix as the iterations of the algorithm progress, which can result in premature convergence,
or genetic drifts [Neumann and Cairns, 2012]. Third, some algorithms, such as EGNA, use
probabilistic models that consider dependencies between the variables; assuming Gaussianity
in this type of model also implies assuming linear dependencies between variables, which has
consequences for the way in which the algorithm navigates the landscape.

To try to address these shortcomings, some works use non-parametric models to avoid assuming
a specific probability distribution over the search space, such as u_KEDA [Luo and Qian,
2009] (Section 3.3), in which a univariate KDE is used for modelling each variable as the

85

Vicente Pérez Soloviev

probabilistic model of the EDA. Despite improving the results over some state-of-the-art
EDAs, this approach does not consider KDE multivariate probability models, or models in
which only some of the variables fit a parametric probability distribution.

The premature convergence of EGNA approach has been widely studied in the literature.
Some approaches involve modifying the variances of the variables manually so that they are
not drastically reduced, such as Yuan and Gallagher [2005] which does not allow the variance
of any variable to be reduced by more than one during the runtime of the algorithm, and
Pošík [2008], which multiplies the variance of each variable by a constant value lower than
one. The strategy of variance reduction when no better solutions are found after a certain
number of iterations and increasing it when a new better solution is found to avoid falling
into a local optimum was proposed in Grahl et al. [2006]. Other more complex approaches
include setting a search direction based on information gathered during the execution of
the algorithm. In this research line, it is worth mentioning the algorithm covariance matrix
adaptation (CMA-ES) [Hansen, 2006], similar to EGNA, that is able to detect and establish a
correct search direction when updating the covariance matrix and the vector of means. Other
strategies include shifting the mean vector while keeping the covariance matrix [Fang et al.,
2016].

However, some works [Chow and Yuen, 2011] have determined that these approaches could be
improved, if instead of using only the information of the previous generation, the information
of many previous generations were also used. Having a set of solutions of the entire history
visited by the EDA, similar to a tabu list, is proposed. This strategy behaviour similar to
some differential evolution approaches, such as the JADE algorithm [Zhang and Sanderson,
2009], which instead of using information from good solutions, uses information from bad
solutions to generate new ones. Finally, in the area of EDAs, it was proposed to update the
GBN considering the best individuals of several previous generations [Liang et al., 2018][Gao
and Wood, 2012]. These approaches are the archive-based algorithms, where the archive
length is the number of previous generations considered in the probabilistic model update.

In this chapter, we propose a new variant of EDAs for optimizing problems in continuous
multivariate environments, in which we take advantage of the benefits provided by GBNs, and
the accuracy of KDE-based models to find a trade-off between accuracy and computational
cost. Our approach embeds a semiparametric Bayesian network [Atienza et al., 2022b] in
which KDE variables coexist with Gaussian variables in the same probabilistic graphical
model, where it is the algorithm itself that decides in each generation which variables take
which type of probability distribution throughout the runtime. During the runtime, if the
algorithm detects that all the variables are Gaussian in some iteration (extreme case), the
proposed approach will use a GBN. Thus, we believe that our algorithm is able to identify
the promising areas of the search space due to the use of semiparametric Bayesian networks
but is a less heavy computational approach than using only KDEs. Furthermore, in order to
reduce the probability of premature convergence occurrence [Ceberio et al., 2022b], we have
designed an archive-based approach in which the probabilistic model is updated not only with
the best individuals of the previous generation, but also with the best individuals of several
previous generations.

This chapter includes the developed methodology and results included in Soloviev et al.

86

CHAPTER 7. SEMIPARAMETRIC EDA FOR CONTINUOUS OPTIMIZATION

[2023a]. The implemented methodology is available in a GitHub repository1, and the code of
SPEDA, m_KEDA, EMNA, EGNA and benchmark suites are publicly available in EDAspy 2.

Chapter outline
The outline of this chapter is organized as follows. Section 7.2 introduces the new semipara-
metric EDA we propose. Section 7.3 reports the experimental results after comparing our
approach to some state-of-the-art optimizers and analyses their CPU time and complexity.
Section 7.4 ends the chapter with some conclusions and further work.

7.2 Semiparametric estimation of distribution algorithm
This section describes the proposed approach. First, the main drawbacks of the traditional
EGNA algorithm are analyzed, and then we introduce SPEDA. Note that EMNA has similar
drawbacks to EGNA due to the Gaussianity assumption, but in this section we will focus on
EGNA since SPEDA aims to improve the results found by EGNA by using a more complex
type of BN than GBNs.

7.2.1 EGNA
EGNA is one of the most extended multivariate EDAs among the state of the art methods of
solving optimization problems in continuous spaces. In this algorithm, a GBN is learned in
each iteration using the best individuals of the previous iteration. This GBN is sampled to
obtain the new individuals of the present generation. This loop is iterated until a stopping
criterion is met following the scheme of Algorithm 4. Thus, the mean µ at each iteration t is
estimated by the mean vector,

µt = 1
|GS

t−1|

|GS
t−1|∑

i=1
xt−1

i ,

and the covariance matrix estimated by

Σt = 1
|GS

t−1|

|GS
t−1|∑

i=1
(xt−1

i − µt)(xt−1
i − µt)T ,

where GS
t−1 is the set of solutions selected from the previous generation, µt is a vector that

contains the mean of each of the n variables, xt−1
i denotes the i-th selected individual in

generation t− 1, and | · | refers to the cardinality of the set.

In this chapter, to perform a fair comparison with the proposed algorithm, EGNA has
been designed to learn the parameters of the model by maximizing the log-likelihood (Equa-
tion 2.7), and to learn the structure of the GBN using the HC algorithm [Gámez et al., 2011]
(Algorithm 1) to optimize the BIC score [Schwarz, 1978] (Section 2.10).

1https://github.com/VicentePerezSoloviev/SPEDA
2https://pypi.org/project/EDAspy/

87

https://github.com/VicentePerezSoloviev/SPEDA
https://pypi.org/project/EDAspy/

Vicente Pérez Soloviev

(a) (b)

local optimum

global optimum solutions

 solutions

 solutions

 solutions of

 of

 of

 of

Figure 7.1: A search space that is iteratively approximated by an EGNA in two (a) and one
(b) dimensions, where a single global optimum (black star) and some local optima (red stars)
exist. The means and the search space area defined by the solutions of each generation Gt

are represented by squares, and ellipses, respectively, in the two dimensional landscape and
by squares and a Gaussian density function in the one dimensional landscape.

The EDA literature describes the search process of EGNA as a procedure in which the area
of the space explored by each successive generation becomes increasingly small, until the
algorithm converges to a small area in the landscape. This is represented in two dimensions
in Figure 7.1(a) where the space explored by each iteration and µt are represented as ellipses
in the landscape and different coloured squares, respectively, and it is represented in one
dimension in Figure 7.1(b). The sizes of these ellipses are defined by the covariance matrices
Σt, which play a key role in the explored search space of each generation, and the search
direction is influenced by the positions of the means of consecutive generations µt and µt−1.

Figure 7.2(a) shows how the Euclidean distance between the covariance matrix of each
generation and the identity matrix becomes increasingly small as the iterations of the algorithm
progress. Represented geometrically, the set of solutions selected from the previous generation
GS

t−1 tends to lie in the semi-ellipse with a smaller distance to the global optimum being
sought. By estimating a probabilistic model ft−1(·) of this search subspace, the area defined
by the new solutions Gt sampled from ft−1 is not only smaller than that defined by Gt−1
but also assumes an already visited area during the algorithm runtime. This is shown in
Figure 7.2(a), where each space defined by Gt is a subspace of the search area represented by
the solutions of Gt−1. This process can cause different runs of the same EGNA configuration
to converge to different areas of the search space and can thus result in premature convergence
or high variance in the results found between the different runs.

The high generalization power of Gaussian probability distributions, which is generally

88

CHAPTER 7. SEMIPARAMETRIC EDA FOR CONTINUOUS OPTIMIZATION

optimum

improvement

direction

optimum

improvement

direction

(a) (b)

 solutions
 solutions

 solutions
 solutions of

 of
 of

 of

Figure 7.2: Two search processes are shown in which each generation Gt is obtained by
sampling a probabilistic model estimated (a) from the best individuals of the previous
generation or (b) from the best individuals of the previous l generations. The means and the
search area defined by the solutions of each generation Gt are represented by squares and
ellipses, respectively, on the two dimensional landscape.

advantageous, may cause EGNA to converge to local optima, which is a disadvantage.
[Neumann and Cairns, 2012]. Figure 7.1 shows an example in which there are some local
optima and a global optimum, and the EGNA tends to converge to one of the local optima
due to the location of the initially sampled solutions in the early generations.

Furthermore, restricting the dependencies between variables linearly may imply a restriction
in the way the search space is explored, since it will not be possible to consider more complex
relationships either in the learning of the relationships or in the sampling of new solutions.

Therefore, the use of more complex models that do not assume a Gaussian density and do not
assume linear dependencies between variables may allow the exploration of subspaces of the
landscape without forcing the algorithm to choose one of the two areas of the space and thus
avoid falling into local optima solutions. This idea of independently exploring different areas
of the landscape was previously developed by Pelikan and Goldberg [Pelikan and Goldberg,
2000] by restricting the search space in subareas using K-means clustering and exploring them
with EDAs, as well as by Peña, Lozano and Larrañaga [Peña et al., 2002], who used mixtures
of Gaussians to model the population in each iteration. In this chapter, we present SPEDA
as a generalization of the previous approaches where the use of mixtures is extended to the
use of KDEs, but only in those variables that do not fit a Gaussian.

89

Vicente Pérez Soloviev

(a) (b)

local optimum

global optimum solutions
 solutions

 solutions
 solutions

Figure 7.3: A search space iteratively approximated by SPEDA in two (a) and one (b)
dimensions is shown, where a single global optimum (black star) and some local optima
(red stars) exist. The search space area defined by the solutions of each generation Gt are
represented by ellipses and a density function on the two and one dimensional landscapes,
respectively.

7.2.2 SPEDA

In this section we present our approach to address the limitations of the traditional EGNA
introduced in Section 7.2.1, thus improving the state of the art of EDAs for continuous
optimization. Algorithm 7 shows the outline of SPEDA, where SPBNs are used as a more
complex probabilistic model (Lines 14-16) and the new generations are sampled (Line 17)
considering information learned from more than one past iteration (Lines 8-12).

The state of the art of EDAs present different ways of initializing the algorithm, such as using
a dataset as the initial generation [Soloviev et al., 2022b] or, more commonly, initializing the
algorithm from a set of solutions sampled from different possible probability distributions,
such as a uniform distribution or a Gaussian distribution. In the case of SPEDA, it is not
desired to bias the decisions to be made by the algorithm by defining a probability distribution
over the solutions from which the algorithm is initialised. If the algorithm is initialized from
a population that is randomly sampled from Gaussian distributions, successive generations of
the algorithm will most likely also fit Gaussians, as will the relationships between the variables.
For this reason, the algorithm is initialized from a set of uniformly sampled solutions in the
search space defined by the problem to be optimized (Algorithm 7, Line 1). Each variable is
independently sampled from a uniform distribution, Xi ∼ U(ai, bi), where ai and bi are the
minimum and maximum bounds of Xi in the optimization landscape.

Section 7.2.1 explains some of EGNA’s limitations as a result of the Gaussianity assumption
in GBNs during runtime. SPEDA overcomes this deficiency by using a semiparametric

90

CHAPTER 7. SEMIPARAMETRIC EDA FOR CONTINUOUS OPTIMIZATION

Algorithm 7 SPEDA
Input: Population size N , selection ratio α, archive length l, cost function g
Output: Best solution x∗ and cost g(x∗) found

1: G0 ← N individuals randomly sampled
2: i← 0
3: At = ∅
4: for t = 1, 2, ... until stopping criterion is met do
5: Evaluate Gt−1 according to cost function g
6: Update best solution x∗ obtained and compute g(x∗)
7: GS

t−1 ← Select top ⌊αN⌋ individuals from Gt−1
8: if i < l then
9: At−1 ← At−1 ∪GS

t−1
10: i← i+ 1
11: else
12: At−1 ← At−1 ∪GS

t−1\GS
t−l−1

13: end if
14: Gt−1 ← Structure learning using HC (Algorithm 2)
15: Θt−1 ← Estimate parameters of model (Section 2.3)
16: ft−1(·)← (Gt−1,Θt−1) Build probabilistic model
17: Gt ← Sample N individuals from ft−1(·)
18: end for
19: return Best solution x∗ obtained and g(x∗)

Bayesian network. As a consequence, SPBNs allow the existence of nonlinear dependencies
between variables. The key benefit is that SPEDA determines when nodes or dependencies
between variables must be estimated by a KDE. If all variables and the CPDs that define the
relationships found between the variables fit a Gaussian distribution, SPEDA will learn a
GBN, which will make the algorithm procedure easier. Otherwise, an SPBN with some KDE
variables will be learned. SPBN learning (Algorithm 7, Lines 14-15) involves the estimation of
the parameters and structure learning. For parameter estimation, the relationships between
variables that are linearly Gaussian are estimated using log-likelihood maximization, while
those that are CKDEs are estimated using the normal reference rule, as detailed in Section 2.3.
For structure learning, a modified version of the HC is executed in each iteration, which is
detailed in Atienza et al. [2022b]. After learning the SPBN, the joint probability distribution
represented by the probabilistic model is sampled to generate new solutions (Line 15). The
sampling process (Line 17) is implemented using the probabilistic logic sampling method
[Henrion, 1988], where the nodes are sampled in a forward direction following an ancestral
order (from the parents to the children of the graph) using the evidence of the already sampled
parents of the nodes.

The use of KDEs allows the parallel exploration of different areas of the search space that have
a high probability density, which is unfeasible with the use of GBNs due to the assumption of
(unimodal) Gaussianity. This implies that future generations may be explored and sampled in
subspaces with high probability and may change during runtime. The expected behaviour of

91

Vicente Pérez Soloviev

both approaches are shown in Figure 7.1 and Figure 7.3, where a situation with several local
optima is illustrated. While EGNA decides to exploit the search space area of a local optimum
in Figure 7.1, SPEDA is able to simultaneously explore all local optima, and converge to
the global optimum in Figure 7.3. Note that SPEDA in the second generation in the two
dimensional landscape generalizes two of the local optima into a Gaussian, but in future
generations, it decides to independently explore each of the local optima.

Several studies regarding premature convergence in EDAs for continuous optimization have
been mentioned in this chapter. In the case of SPEDA, we propose that the SPBN used as
the main engine of the algorithm is updated by considering the best ⌊αN⌋ solutions from
each of the previous l generations (Algorithm 7, Line 12). Thus, in each iteration, SPEDA
estimates the SPBN from At−1 (Lines 8-12):

At−1 = GS
t−1 ∪GS

t−2 ∪ · · · ∪GS
t−l

where Gt has been truncated to a size of ⌊αN⌋ by selecting the best solutions according to a
cost function (Line 7). Figure 7.2 shows a comparison of the performance of the traditional
EGNA approach (a) and the performance when considering more than the very last generation
(b). Note that a search direction is established considering the best individuals of the previous
l generations. With this approach, it is expected that the new solutions sampled from the
learned probabilistic model ft−1(x) will be located in a landscape that is not in a previously
explored area, but in the desired search direction determined by the information gained in
earlier iterations.

Finding a balance between exploration and exploitation in the landscape is required to
design an algorithm that does not converge to local optimal solutions [Črepinšek et al., 2013].
Figure 7.2 illustrates how the behaviour of the standard EGNA favour an algorithm that
exploits the search zones more than it explores the search space, creating an imbalance
between these two characteristics. Nevertheless, the combination of SPBNs and the use of
information gained from previous generations gives SPEDA a trade-off between both traits,
since KDEs allow several zones of the space to be explored simultaneously and to be found
by determining a search direction during the process, allowing each zone to be exploited
independently.

7.3 Experimental results
In this section, we show the results of comparing our approach with some state-of-the-art
optimizers in continuous environments on some well-known benchmarks, and in a real world
portfolio optimization problem. We also report on the complexity and time analysis of our
approach.

Eight different algorithms are used in the experimental comparison: EMNA, EGNA, SPEDA,
m_KEDA, CMA-ES [Hansen, 2006], JADE [Zhang and Sanderson, 2009], SHADE [Tanabe
and Fukunaga, 2013] and L-SHADE [Tanabe and Fukunaga, 2014]. EMNA and EGNA were
chosen as continuous multivariate EDAs so that the results can be compared to those obtained
with SPEDA. The pseudocode used for EGNA is fairly similar to that proposed for SPEDA
where the probabilistic model, an SPBN for the case of SPEDA and a GBN for the case

92

CHAPTER 7. SEMIPARAMETRIC EDA FOR CONTINUOUS OPTIMIZATION

of EGNA, is updated with the best solutions obtained in the previous l generations. Note
that the traditional EGNA does not consider this archive-based approach, but it has been
adapted to perform a fair comparison with SPEDA. The pseudocode of EMNA has been
implemented traditionally, where in each iteration a multivariate Gaussian is estimated from
the best individuals of the last generation. It is interesting to determine whether SPEDA
significantly improves the results of EGNA and EMNA as another optimization strategy
for continuous environments. The comparison also includes a multivariate version of KEDA
(m_KEDA), where all the nodes and dependencies are restricted to be estimated using KDE.
The algorithm shares the archive characteristic proposed for SPEDA and EGNA, so m_KEDA
can be considered a particular case of SPEDA, where Gaussian variables are forbidden. The
number of folds during the SPBN learning (K in Equation (2.12)) for the SPEDA and
m_KEDA approaches has been set to k = 10, as proposed in the original work [Atienza et al.,
2022b]. Because CMA-ES is a common comparison tool for this class of algorithms, its results
are also included. The JADE, SHADE and L-SHADE algorithms were selected as members
of the family of evolutionary algorithms in the area of differential evolution. Indeed, it has
been widely used in recent years for real optimization tasks.

EMNA EGNA SPEDA m_KEDA CMA-ES JADE SHADE L-SHADE
N 300 300 300 300 4log(D) 300 300 300
α 0.4 0.6 0.4 0.4 - - - -
l - 10 15 15 - - - -
c - - - - - 0.1 - -

p (%) - - - - - 10 - -

Table 7.1: Best parameter configuration found for the algorithms after parameter tuning. The
parameters include the population size N , the ratio of solutions selected from each generation
α ∈ [0, 1], the archive length l, and the adaptation rates of the self-adaptive parameters (c)
and the greediness of the mutation strategy (p) of the JADE algorithm.

The test benchmarks are listed and characterized in the Appendix A, and were obtained from
IEEE CEC2014 [Liang et al., 2013] and IEEE CEC2017 [Wu et al., 2017]. All tests are single-
objective optimization problems with different difficulties grouped into unimodal-multimodal,
separable-nonseparable3 functions.

Table 7.1 shows the best parameter configuration found for the algorithms compared in this
section for this set of experiments. Note that the maximum number of fitness evaluations has
been set to 10000d, where d is the dimension of the benchmark optimization problem. In this
chapter, we analyze the cases of d = 30 and d = 50. Each algorithm was independently run
25 times for each benchmark and dimension. The results analyzed in this section show the
mean and standard deviation of the function error value (FEV) of the 25 independent runs,
where the FEV is defined as the difference between the costs of the (known) optimal solution
x′′ and the best achieved solution x∗: FEV (x′) = g(x′)− g(x′′). Note that a difference lower
than 1e− 8 is reported as zero in the experimental results, and the objective is to minimize
the FEV .

3A function is said to be separable if it can be expressed as a mathematical operation between functions of
smaller dimension.

93

Vicente Pérez Soloviev

All the experiments and algorithms were implemented in Python. The code of SPEDA,
m_KEDA and benchmark implementations will be merged in the near future into the EDAspy
Python package that is publicly available in a GitHub repository4.

All the experiments and code are already available in a GitHub repository5. The experiments
were conducted on an Ubuntu 20 machine with an Intel Core i7-6700K processor, 32 GB of
RAM, and an AMD Radeon RX 460 graphic card.

Benchmark EMNA EGNA SPEDA m_KEDA CMA-ES JADE SHADE L-SHADE
cec14_1 7.6e6 ± 7.7e5 1.5e5 ± 3.3e4 0.000 ± 0.000 2.4e4 ± 2.0e4 1.4e3 ± 1.4e3 6.6e5 ± 5.8e4 4.1e4 ± 1.1e4 0.000 ± 0.000
cec14_2 3.8e7 ± 4.5e6 1.1e7 ± 3.5e6 0.000 ± 0.000 1.7e5 ± 1.0e5 0.000 ± 0.000 1.961 ± 5.732 0.000 ± 0.000 0.000 ± 0.000
cec14_3 3.1e4 ± 1.9e3 4.741 ± 14.86 0.000 ± 0.000 0.960 ± 1.310 0.000 ± 0.000 1.813 ± 3.123 0.000 ± 0.000 2.4e3 ± 0.000
cec14_4 29.25 ± 1.232 60.48 ± 15.99 27.83 ± 0.643 28.12 ± 0.090 10.82 ± 14.28 30.38 ± 19.91 28.35 ± 32.10 6.770 ± 32.10
cec14_5 20.96 ± 0.071 20.97 ± 0.043 20.18 ± 0.024 321.2 ± 0.060 32.58 ± 0.741 20.83 ± 0.113 320.4 ± 0.060 320.6 ± 0.060
cec14_6 0.034 ± 0.012 0.011 ± 0.031 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec14_7 11.23 ± 12.28 0.353 ± 0.032 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec14_8 158.7 ± 6.490 7.862 ± 6.742 4.671 ± 1.455 225.8 ± 0.920 65.61 ± 4.991 57.07 ± 7.601 146.4 ± 16.27 36.07 ± 16.27
cec14_9 157.2 ± 9.191 126.2 ± 7.841 163.2 ± 8.161 248.3 ± 10.54 187.2 ± 4.751 186.1 ± 3.091 184.8 ± 1.940 182.7 ± 1.940
cec14_10 4.1e3 ± 360.9 4.9e3 ± 276.9 1.3e3 ± 128.6 8.8e3 ± 40.85 7.5e3 ± 484.2 6.1e3 ± 1.1e3 7.1e3 ± 758.4 3.6e3 ± 758.4
cec14_11 6.2e3 ± 846.4 5.3e3 ± 263.3 5.0e3 ± 167.2 9.2e3 ± 798.2 1.1e4 ± 697.3 9.4e3 ± 1.6e3 9.6e3 ± 1.9e3 1.7e3 ± 1.9e3
cec14_12 2.541 ± 0.232 2.521 ± 0.334 2.273 ± 0.212 3.860 ± 0.230 0.040 ± 0.031 0.071 ± 0.033 0.040 ± 0.010 0.310 ± 0.010
cec14_13 0.481 ± 0.032 0.283 ± 0.031 0.242 ± 0.010 0.530 ± 0.000 0.291 ± 0.080 0.840 ± 0.161 0.380 ± 0.070 0.190 ± 0.070
cec14_14 0.322 ± 0.011 0.672 ± 0.874 0.284 ± 0.014 0.410 ± 0.010 0.481 ± 0.184 0.694 ± 0.331 0.284 ± 0.020 0.320 ± 0.020
cec14_15 6.4e5 ± 1.5e5 9.7e9 ± 1.1e6 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec14_16 15.00 ± 0.001 12.34 ± 0.290 12.24 ± 0.151 25.50 ± 17.68 13.68 ± 0.291 13.73 ± 0.022 12.87 ± 0.780 12.80 ± 0.780
cec14_17 2.5e4 ± 7.4e3 5.4e8 ± 5.9e8 5.470 ± 1.420 66.50 ± 75.66 181.4 ± 178.5 3.000 ± 1.540 0.010 ± 0.010 0.000 ± 0.000
cec14_18 1.5e6 ± 3.5e5 7.8e9 ± 3.8e9 14.69 ± 2.110 111.0 ± 124.4 128.4 ± 78.19 81.30 ± 1.970 1.720 ± 0.200 0.270 ± 0.200
cec14_19 211.9 ± 37.9 1.0e9 ± 8.9e8 71.43 ± 1.510 100.0 ± 1.410 69.31 ± 2.080 66.75 ± 0.950 67.47 ± 0.520 66.87 ± 0.520
cec14_20 4.5e8 ± 2.2e8 9.9e9 ± 0.000 6.560 ± 1.310 50.50 ± 70.00 85.45 ± 59.54 33.40 ± 1.560 0.460 ± 0.080 0.350 ± 0.080
cec14_21 1.4e4 ± 5.7e3 1.3e9 ± 1.1e7 1.580 ± 0.510 61.50 ± 54.45 3.790 ± 2.040 0.740 ± 0.210 0.540 ± 0.110 0.520 ± 0.110
cec14_22 2.1e7 ± 1.5e7 9.9e9 ± 0.000 24.41 ± 0.400 75.50 ± 88.39 11.42 ± 3.750 1.480 ± 0.520 0.320 ± 0.040 0.200 ± 0.040
cec14_23 1.0e4 ± 594.2 9.5e3 ± 1.260 9.5e3 ± 3.390 41.50 ± 153.4 9.5e3 ± 5.630 9.5e3 ± 5.870 9.5e3 ± 4.560 9.5e3 ± 4.560
cec14_24 6.3e3 ± 25.49 6.3e3 ± 177.8 6.1e3 ± 13.81 96.00 ± 74.95 6.1e3 ± 14.94 6.2e3 ± 39.61 6.1e3 ± 32.98 6.1e3 ± 32.98
cec14_25 5.2e3 ± 0.240 5.3e3 ± 163.7 5.2e3 ± 0.060 110.0 ± 57.98 5.2e3 ± 0.030 5.2e3 ± 0.230 5.2e3 ± 0.670 5.2e3 ± 0.670
cec14_26 1.1e4 ± 0.190 1.1e4 ± 907.9 1.1e4 ± 0.570 1.1e4 ± 13.44 1.1e4 ± 0.000 1.1e4 ± 0.320 1.1e4 ± 0.020 1.1e4 ± 0.020
cec14_27 1.1e4 ± 0.990 1.4e4 ± 1.3e3 1.1e4 ± 0.830 1.1e4 ± 28.99 1.1e4 ± 0.040 1.1e4 ± 1.700 1.1e4 ± 0.010 1.1e4 ± 0.010
cec14_28 1.2e4 ± 451.4 1.5e4 ± 8.2e2 1.1e4 ± 3.150 1.1e4 ± 64.35 1.1e4 ± 0.010 1.2e4 ± 21.63 1.1e4 ± 2.200 1.2e4 ± 2.200
cec14_29 4.5e5 ± 1.1e5 8.5e8 ± 6.5e8 7.9e3 ± 1.510 7.9e3 ± 50.20 7.9e3 ± 36.64 7.9e3 ± 1.290 7.9e3 ± 0.580 7.9e3 ± 0.580
cec14_30 3.5e7 ± 2.3e6 1.0e8 ± 0.000 8.4e3 ± 1.620 8.4e3 ± 126.5 8.4e3 ± 4.290 8.4e3 ± 7.150 8.4e3 ± 5.580 8.4e3 ± 5.580
cec17_1 3.8e7 ± 4.3e6 8.2e9 ± 3.1e9 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec17_2 42.19 ± 6.050 8.2e4 ± 9.6e3 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 1.2e4 ± 0.000
cec17_3 124.9 ± 0.260 1.2e4 ± 7.8e3 24.97 ± 0.310 101.0 ± 2.830 6.100 ± 1.830 15.72 ± 1.650 18.18 ± 0.840 15.24 ± 0.840
cec17_4 244.1 ± 10.40 8.8e4 ± 3.4e4 60.06 ± 9.250 78.01 ± 15.56 52.90 ± 11.70 184.6 ± 27.93 94.03 ± 7.660 9.910 ± 7.660
cec17_5 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 51.06 ± 67.88 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec17_6 1.8e3 ± 141.4 3.2e3 ± 90.44 166.2 ± 4.270 60.03 ± 12.73 51.40 ± 13.41 172.5 ± 17.55 98.23 ± 9.810 112.6 ± 9.810
cec17_7 1.2e3 ± 340.5 452.3 ± 45.42 78.90 ± 0.560 79.02 ± 28.28 91.23 ± 3.455 101.2 ± 4.455 89.45 ± 4.455 79.00 ± 0.000
cec17_8 2.840 ± 0.560 118.9 ± 3.340 0.000 ± 0.000 99.50 ± 13.44 5.100 ± 1.160 6.070 ± 1.210 7.180 ± 0.380 101.0 ± 0.380
cec17_9 7.0e3 ± 463.2 9.4e3 ± 3.0e3 6.2e3 ± 483.4 200.0 ± 141.4 1.1e3 ± 3.3e3 1.1e4 ± 4.1e3 1.1e4 ± 3.5e3 2.7e3 ± 3.5e2
cec17_10 978.7 ± 172.2 203.4 ± 203.2 5.835 ± 0.310 59.50 ± 55.86 47.33 ± 25.08 10.96 ± 1.890 10.12 ± 0.290 5.930 ± 0.490
cec17_11 5.4e6 ± 8.9e5 9.6e3 ± 5.7e3 0.000 ± 0.000 120.0 ± 141.4 3.580 ± 2.740 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec17_12 1.7e6 ± 4.3e5 7.7e3 ± 3.1e3 120.4 ± 5.122 139.5 ± 71.42 124.4 ± 58.86 26.84 ± 6.980 11.69 ± 1.220 4.390 ± 1.220
cec17_13 1.5e3 ± 718.5 1.3e3 ± 424.8 0.000 ± 0.000 105.5 ± 92.63 279.4 ± 196.4 10.59 ± 3.070 2.800 ± 0.720 0.000 ± 0.000
cec17_14 5.1e5 ± 1.9e5 2.2e3 ± 211.3 83.23 ± 4.556 95.59 ± 7.780 132.2 ± 167.1 13.25 ± 3.590 7.070 ± 0.230 2.370 ± 0.230
cec17_15 313.9 ± 78.40 234.1 ± 21.33 65.78 ± 34.34 84.33 ± 19.80 0.730 ± 0.190 2.030 ± 0.860 1.110 ± 1.190 0.530 ± 1.190
cec17_16 2.5e7 ± 1.2e7 1.2e3 ± 334.9 0.000 ± 0.000 77.06 ± 8.490 134.7 ± 80.60 9.680 ± 4.700 2.170 ± 0.380 0.010 ± 0.000
cec17_17 8.8e3 ± 5.2e3 982.2 ± 332.5 83.45 ± 3.450 90.51 ± 10.61 103.2 ± 65.50 1.980 ± 1.520 0.480 ± 0.020 0.500 ± 0.020
cec17_18 1.7e8 ± 5.7e7 1.2e4 ± 3.1e3 18.94 ± 2.344 20.62 ± 14.14 134.3 ± 51.24 67.84 ± 2.780 62.73 ± 0.290 60.90 ± 0.290
cec17_19 43.00 ± 5.420 23.45 ± 3.344 13.45 ± 3.344 20.71 ± 14.14 16.23 ± 4.450 4.510 ± 1.190 1.250 ± 0.180 0.250 ± 0.180

Table 7.2: Mean and standard deviation of FEV after 25 executions of all benchmark functions
with 30 variables (d = 30) obtained from EMNA, EGNA, SPEDA, m_KEDA, CMA-ES,
JADE, SHADE and L-SHADE algorithms. The best result for each benchmark is highlighted
in blue.

4https://github.com/VicentePerezSoloviev/EDAspy
5https://github.com/VicentePerezSoloviev/SPEDA

94

https://github.com/VicentePerezSoloviev/EDAspy
https://github.com/VicentePerezSoloviev/SPEDA

CHAPTER 7. SEMIPARAMETRIC EDA FOR CONTINUOUS OPTIMIZATION

7.3.1 Experimental results on 30-d benchmarks
Table 7.2 shows the mean and standard deviation of FEV found by each algorithm after 25
independent runs for each of the benchmarks with d = 30, where the best results found are
highlighted in blue.

On the one hand, it is important to stress the improvement found by SPEDA compared
to the other EDAs versions. In almost all functions, SPEDA finds a better solution than
EMNA and EGNA with a lower standard deviation. Note that EGNA improves the results
found by EMNA in nearly all the functions, and that the exclusive use of CKDEs (m_KEDA)
in contrast to our approach has only improved the results in the case of the composition
functions (cec14_23 - cec14_30).

0 250 500 750 1000 1250 1500
0.0

0.5

1.0

%
 C

KD
E

no
de

s

cec1

0 250 500 750 1000 1250 1500
0.0

0.5

1.0
cec2

0 250 500 750 1000 1250 1500
0.0

0.5

1.0

%
 C

KD
E

no
de

s

cec3

0 250 500 750 1000 1250 1500
0.0

0.5

1.0
cec4

0 250 500 750 1000 1250 15000.0

0.5

1.0

%
 C

KD
E

no
de

s

cec5

0 250 500 750 1000 1250 15000.0

0.5

1.0
cec6

0 250 500 750 1000 1250 1500
0.0

0.5

1.0

%
 C

KD
E

no
de

s

cec7

0 250 500 750 1000 1250 1500
0.0

0.5

1.0
cec8

0 250 500 750 1000 1250 1500
iterations

0.0

0.5

1.0

%
 C

KD
E

no
de

s

cec9

0 250 500 750 1000 1250 1500
iterations

0.0

0.5

1.0
cec10

Figure 7.4: Percentage of CKDE nodes during runtime, mean and standard deviation of 25
independent executions. The experimental results for the first 10 benchmarks are shown with
d = 30.

95

Vicente Pérez Soloviev

On the other hand, the clear competitor for SPEDA in this comparison is L-SHADE, which
reaches the same solutions in some of the benchmarks and outperforms SPEDA in 19 out of 49
functions. The SHADE and JADE approaches also achieve competitive results compared to
SPEDA, improving those found by SPEDA in 14 and 11 functions, respectively. CMA-ES and
m_KEDA algorithms beat our approach in 5 and 9 benchmarks, respectively. Additionally,
SPEDA achieves the lowest FEV standard deviation in most of the experiments.

In terms of the type of optimized functions, SPEDA is able to find the optimum in all runs
for unimodal functions (cec14_1, cec14_2, cec14_3, cec17_1, cec17_2), while its competitors
are not able to do so. For the cec14_4 benchmark, since there is a very narrow valley between
the local and global optima, SPEDA seems not to have sufficiently exploited the search space,
thus preventing it from beating CMA-ES and L-SHADE. It is worth mentioning the pair of
benchmarks cec14_8 and cec14_9, as they are the same function, with the difference that
one is separable (cec14_8) and the other is not (cec14_9). In this case, using a GBN instead
of an SPBN improves the results for the nonseparable function. The pair cec14_10 and
cec14_11 has the same feature, and for the nonseparable function (cec14_11), a similar result
is obtained for both EGNA and SPEDA. The standard deviation for these two problems
is high for all algorithms, but again the best result is that of SPEDA. However, in both
pairs of benchmarks (cec14_8-cec14_9 and cec14_10-cec14_11), SPEDA improves the other
algorithms for separable functions (cec14_8 and cec14_10). The cec14_12 benchmark is
also nonseparable, and the algorithm that provides the best results is SHADE. As for hybrid
functions (cec14_17 to cec14_22, and cec17_10 to cec17_19), the best results are found
by SPEDA and L-SHADE approaches. In the case of composition functions (cec14_23 to
cec14_30), which are multi-modal, SPEDA, CMA-ES and SHADE achieve the best results
in most of the benchmarks, only beaten by m_KEDA. Finally, regarding the optimization
of functions where the number of local optima is large (cec14_8 to cec14_11, cec17_3 to
cec17_5 and cec17_7 to cec17_9), SPEDA is the best performing algorithm. Indeed, it is
able to find the best solutions in 5 out of the 10 functions with this feature, followed by
L-SHADE (3 out of 10) and CMA-ES (2 out of 10). This suggests that SPEDA is able to
avoid local optima better than its competitors. Thus, SPEDA and L-SHADE seem to ensure
better results in most of the benchmarks compared to the rest of the algorithms, finding the
best results both in 26 out of the 49 benchmarks.

To conclude this comparison for the 30−dimensional experiments, in the case of the family of
EDAs, using a more complex probabilistic model such as SPBN improves the results compared
to those of the multivariate Gaussian and the GBNs. SPEDA is a competitive approximation
compared to other state-of-the-art EDAs, CMA-ES and differential evolution approaches.
Moreover it is able to provide results with a low variance after different independent executions.
In addition, the experiments have shown that SPEDA always improves the results for at least
unimodal and separable functions.

The results shown in Table 7.2 have been statistically analyzed. Figure 7.5 shows the credibility
intervals (5% and 95%) and expected probabilities of each algorithm being the winner under
the posterior distribution calculated in the Bayesian analysis using the Plackett-Luce model
[Calvo et al., 2019]. The plot shows that L-SHADE and SPEDA are the most probable
winners where the former shows a lower associated uncertainty. EMNA and EGNA are

96

CHAPTER 7. SEMIPARAMETRIC EDA FOR CONTINUOUS OPTIMIZATION

L-SHADE SPEDA SHADE JADE CMA-ES m_KEDA EMNA EGNA
0.0

0.1

0.2

0.3
Pr

ob
ab

ilit
y

of
 w

in
ni

ng

Figure 7.5: Credible intervals (5% and 95% quantiles) and expected probability of winning
(green dots) for results shown in Table 7.2.

the less likely approaches to be the winners achieving a similar expected probability and
associated uncertainty; thus we conjecture that both approaches perform similar. m_KEDA
is the approach with higher uncertainty, but with less chances to be the winner. The plot
corroborates the results shown in Table 7.2 where JADE and CMA-ES achieve a very similar
performance, being the latter the one with less uncertainty. SHADE chases SPEDA in the
ranking of expected probabilities to be the winner approach.

Analyzing the behaviour of SPEDA during runtime, it is observed that the initialization of
the algorithm has a significant impact on the predominant probabilistic model used during
runtime. When starting from Gaussian distributions, SPEDA behaves in a way that favours
Gaussians over CKDEs from the outset. However, when starting from a uniform probability
distribution, as detailed in Section 7.2.2, SPEDA chooses the probabilistic model to use. The
number of nodes that are fitted by CKDE increases as the algorithm’s evolve, as shown in
Figure 7.4, where the mean and standard deviation of the percentage of CKDE-estimated
nodes in each iteration are shown for the first 10 benchmarks. In most cases, SPEDA tends to
adjust all the nodes by CKDE. Note that in the iterations where 0% of the nodes are estimated
by CKDE, the learned probabilistic model is a GBN, where the optimization process is the
same as in EGNA but conditioned to the previous iterations, where an SPBN was learned.
Figure 7.4 shows that atypically, for the cec14_3 and cec14_9 benchmarks, nearly all nodes
are Gaussian from the beginning of the algorithm execution, and this directly affects the
results found. In cec14_3, the fact that an SPBN rather than a GBN was used in the first
iterations of SPEDA suggests that SPEDA and EGNA are positioned in different areas of the
search space, with the area explored by SPEDA being the area of the global optimum. A
similar situation occurred for cec14_9, in this case in favour of EGNA. Similar results were
obtained for the rest of the benchmarks, but were not included in Figure 7.4 for aesthetic
reasons. In the experiments we have seen a tendency for all functions to converge to 100% of
CKDE-estimated nodes. This can be explained because individuals sampled from Gaussians
and then selected according to the objective function are more likely to be fitted by a KDE
than vice versa.

For deeper insights in SPEDA performance, we aim to analyse the potential ability of the
approach to avoid the local optima in the landscape. If the variance of the solutions in the

97

Vicente Pérez Soloviev

0 20 40 60 80 100
iteration

0

20

40

60
St

an
da

rd
 d

ev
ia

tio
n

(
)

EGNA SPEDA m_KEDA

Figure 7.6: Mean standard deviation (Y -axis) between the best solutions in the same iteration
during runtime (X-axis) after executing EGNA, SPEDA and m_KEDA approaches 25
independent times, for the cec14_4 benchmark (d = 30). Note that this plot represents one
variable out of d.

same iteration of the algorithm tends to decrease over the runtime, then it may suggest that
the algorithm is converging to a smaller area, which is probably contained in the area of the
previous generation. However, if the variance increases and decreases over the runtime, it can
be said that the algorithm is seeking a balance between exploration and exploitation of the
search space, and most likely will be able to avoid local optima. This reduction of variance
between individuals is related to genetic drift [Doerr and Zheng, 2020], which is present in
EDAs.

0 50 100 150 200 250
iteration

50k
100k
150k
200k
250k

FE
V

l = 3
l = 6

l = 9
l = 12

l = 15
l = 18

Figure 7.7: Mean best cost found (FEV) by SPEDA for the cec14_3 for different archive
lengths (l) during runtime after executing each experiment 25 independent times.

Figure 7.6 shows a univariate analysis of the variance reduction of the best solutions along
the runtime for the EGNA, SPEDA and m_KEDA approaches, for the cec14_4 benchmark
(d = 30). It is observed that EGNA early reduces the variance to zero, leading to a nearly
monotonic decreasing shape. This might reveal convergence to a local optima solution.
Nevertheless, SPEDA and m_KEDA suggest a decreasing tendency, but much slower than
EGNA. Several ups and downs during the runtime can be appreciated, which might suggest
that our approach is able to avoid local optima by using CKDE nodes (Figure 7.4) and

98

CHAPTER 7. SEMIPARAMETRIC EDA FOR CONTINUOUS OPTIMIZATION

exploring more than one area at the same time. Table 7.2 shows that both approaches
converge to better solutions than EGNA approach for this benchmark. Note that, although
Figure 7.6 shows the performance of a single variable, the rest of features have similar
performance (not shown).

Figure 7.7 analyses the convergence speed compared to the archive length (l) for the cec14_3
benchmark. The higher the l value, the slower the speed of convergence. Although for this
case SPEDA reaches the global optimum regardless of l, after the hyper-parameter tuning we
have decided to use l = 15 as the general optimum parameter for all benchmarks in CEC2014
and CEC2017 for both d = 30 and d = 50.

7.3.2 Experimental results on 50-d benchmarks
Table 7.3 shows the mean and standard deviation of the FEV of each algorithm after 25
independent runs for each of the benchmarks with d = 50, where the best results for each
function are highlighted in blue.

As in the 30-dimensional case, SPEDA improves the results found by EMNA, EGNA and
m_KEDA, although m_KEDA provides competitive results compared to our approach.
Although it is not as remarkable as in the case of d = 30, SPEDA provides the lowest variance
among the results found in almost all benchmarks, since the use of the CKDEs reduces it.
This is the case in m_KEDA, which also shows a low standard deviation, compared to the
other EDAs. The results show that SPEDA is able to converge to the best solutions in 30
out of the 49 functions. The main competitor for the SPEDA approach in this comparison
is L-SHADE, reaching the best solution in 22 out of the 49 functions. Moreover, L-SHADE
outperforms the results found by SPEDA in 17 functions, and SPEDA outperforms L-SHADE
in 18 functions.

SPEDA achieves the best results for all the unimodal functions except for the cec14_2, in
which CMA-ES, SHADE and L-SHADE win it. Regarding the separable functions (cec14_8
and cec14_10), SPEDA converges to the best solution in all runs for both cases. Regarding
the hybrid functions, L-SHADE approach is the best in this characteristic, followed by our
proposal. SPEDA is the only approach able to find the best results in composition functions,
as in the 30−dimensions case. Note that, in the case of d = 30, m_KEDA achieved good
results for these functions, while no such results are shown in the case of d = 50. This
may suggest that the combination of Gaussian and CKDE nodes scales better from the
optimization point of view, compared to the exclusive use of CKDEs. Finally, regarding
the optimization of functions where the number of local optima is large, SPEDA is the best
performing algorithm (6 out of 10), as in the 30−dimensions case, followed by CMA-ES (5
out of 10).

The results shown in Table 7.3 have been statistically analyzed. Figure 7.8 shows the credibility
intervals (5% and 95%) and expected probabilities of each algorithm being the winner under
the posterior distribution calculated in the Bayesian analysis using the Plackett-Luce model
[Calvo et al., 2019]. It is shown that SPEDA is the best approach, where its lower bound is
higher than the upper one of its competitors. SPEDA is followed by L-SHADE and SHADE,
where the latter is the one with highest uncertainty. JADE and CMA-ES imitate the results

99

Vicente Pérez Soloviev

analyzed for 30 dimensions. The approaches that have the least chances of being the winners
are again m_KEDA, EMNA and EGNA, where in this analysis m_KEDA achieves very low
uncertainty.

Benchmark EMNA EGNA SPEDA m_KEDA CMA-ES JADE SHADE L-SHADE
cec14_1 1.1e7 ± 1.0e6 2.7e7 ± 3.e06 6.2e3 ± 1.5e4 3.6e9 ± 1.5e8 4.1e5 ± 1.4e5 6.2e6 ± 2.7e6 5.1e6 ± 1.9e6 4.8e8 ± 1.9e6
cec14_2 1.1e7 ± 3.1e6 2.3e3 ± 1.1e3 7.000 ± 14.78 2.8e7 ± 2.8e6 0.000 ± 0.000 1.6e4 ± 1.2e4 0.000 ± 0.000 0.000 ± 0.000
cec14_3 3.9e4 ± 1.5e3 0.440 ± 1.670 0.000 ± 0.000 3.5e5 ± 2.3e5 1.1e3 ± 558.6 8.2e3 ± 4.5e3 477.7 ± 409.1 3.8e4 ± 409.1
cec14_4 210.7 ± 3.340 171.2 ± 14.23 151.2 ± 15.08 76.16 ± 4.000 43.40 ± 17.65 77.91 ± 38.00 158.3 ± 54.14 96.32 ± 54.14
cec14_5 21.16 ± 0.030 21.17 ± 0.030 21.13 ± 0.060 321.2 ± 0.040 32.15 ± 0.640 21.01 ± 0.120 320.9 ± 0.050 320.8 ± 0.050
cec14_6 0.030 ± 0.000 0.010 ± 0.010 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec14_7 0.960 ± 0.090 2.100 ± 5.330 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec14_8 114.5 ± 9.080 339.6 ± 11.82 180.6 ± 10.52 473.5 ± 10.33 302.1 ± 7.802 188.3 ± 13.52 260.3 ± 13.03 195.9 ± 13.03
cec14_9 335.3 ± 17.65 338.6 ± 11.03 247.5 ± 16.05 494.9 ± 29.73 425.8 ± 11.14 416.1 ± 21.13 388.3 ± 54.55 88.18 ± 54.55
cec14_10 8.6e3 ± 911.3 1.0e4 ± 410.0 6.1e3 ± 288.1 1.7e4 ± 468.9 1.8e4 ± 2.3e3 1.1e4 ± 4.1e3 1.5e4 ± 3.6e3 1.8e4 ± 3.6e3
cec14_11 1.7e4 ± 782.1 1.0e4 ± 375.1 1.2e4 ± 73.73 1.6e4 ± 469.5 5.9e3 ± 847.0 1.1e4 ± 1.8e3 8.8e3 ± 1.2e3 8.3e3 ± 1.2e3
cec14_12 3.610 ± 0.290 3.460 ± 0.260 3.430 ± 0.590 4.470 ± 0.570 0.020 ± 0.010 0.130 ± 0.080 0.020 ± 0.020 0.530 ± 0.020
cec14_13 0.780 ± 0.020 0.520 ± 0.050 0.400 ± 0.020 0.770 ± 0.070 0.600 ± 0.090 1.080 ± 0.120 0.680 ± 0.090 0.580 ± 0.090
cec14_14 0.720 ± 0.040 0.540 ± 0.110 0.440 ± 0.020 0.920 ± 0.250 0.620 ± 0.280 0.990 ± 0.330 0.450 ± 0.140 0.480 ± 0.140
cec14_15 2.3e6 ± 4.6e5 9.3e7 ± 1.4e6 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec14_16 25.00 ± 0.010 22.33 ± 0.670 22.23 ± 0.260 23.59 ± 0.030 22.46 ± 0.460 22.36 ± 0.020 24.45 ± 1.231 23.23 ± 0.012
cec14_17 1.4e5 ± 3.4e4 960.5 ± 80.99 34.90 ± 3.320 5.6e3 ± 191.9 181.4 ± 178.5 10.15 ± 3.680 15.28 ± 2.270 0.000 ± 0.000
cec14_18 7.4e6 ± 8.3e5 810.4 ± 40.94 68.72 ± 6.880 5.0e3 ± 2.5e3 128.4 ± 78.19 12.83 ± 6.440 35.79 ± 3.620 1.130 ± 3.620
cec14_19 1.1e3 ± 217.5 337.7 ± 80.03 209.2 ± 0.820 263.4 ± 69.36 69.31 ± 2.080 192.2 ± 1.890 198.8 ± 0.710 194.8 ± 0.710
cec14_20 195.0 ± 20.31 99.50 ± 0.000 34.97 ± 5.800 64.32 ± 1.345 85.45 ± 59.54 6.220 ± 2.990 14.08 ± 1.560 0.480 ± 1.560
cec14_21 8.5e4 ± 1.6e4 200.3 ± 12.34 8.150 ± 0.600 12.10 ± 0.812 3.790 ± 2.040 7.280 ± 0.900 4.690 ± 0.770 1.840 ± 0.770
cec14_22 6.2e8 ± 4.3e8 1.1e3 ± 12.12 25.62 ± 0.200 17.32 ± 0.412 11.42 ± 3.750 2.750 ± 0.750 1.690 ± 0.130 0.430 ± 0.130
cec14_23 9.5e3 ± 1.141 1.0e4 ± 525.2 9.4e3 ± 0.130 1.1e4 ± 683.4 9.5e3 ± 5.630 9.6e3 ± 10.65 9.5e3 ± 6.240 9.6e3 ± 6.240
cec14_24 6.7e3 ± 31.31 6.6e3 ± 238.9 6.6e3 ± 0.520 6.6e3 ± 2.410 6.6e3 ± 14.94 6.6e3 ± 27.86 6.6e3 ± 65.65 6.6e3 ± 65.65
cec14_25 5.2e3 ± 1.040 5.2e3 ± 72.15 5.2e3 ± 0.090 5.7e3 ± 41.11 5.2e3 ± 0.030 5.2e3 ± 1.600 5.2e3 ± 1.340 5.2e3 ± 1.340
cec14_26 1.1e4 ± 0.101 1.1e4 ± 0.211 1.0e4 ± 0.090 1.1e4 ± 51.29 1.0e4 ± 0.000 1.104 ± 1.220 1.0e4 ± 0.430 1.1e4 ± 0.430
cec14_27 1.1e4 ± 1.170 1.1e4 ± 4.801 1.1e4 ± 0.190 2.1e4 ± 885.4 1.1e4 ± 0.040 1.1e4 ± 11.61 1.1e4 ± 3.600 1.1e4 ± 3.840
cec14_28 1.1e4 ± 35.14 1.2e4 ± 35.14 1.1e4 ± 10.77 1.2e3 ± 182.7 1.2e4 ± 0.010 1.1e4 ± 24.67 1.2e4 ± 9.440 1.3e4 ± 9.440
cec14_29 1.7e6 ± 2.3e5 6.9e4 ± 1.2e3 7.9e3 ± 1.670 8.1e3 ± 0.400 7.9e3 ± 36.64 7.9e3 ± 2.670 7.9e3 ± 0.470 7.9e3 ± 0.000
cec14_30 5.0e8 ± 3.0e6 5.6e4 ± 237.1 8.4e3 ± 139.9 8.4e3 ± 79.91 8.4e3 ± 4.290 8.4e3 ± 2.540 8.4e3 ± 0.100 8.4e3 ± 0.100
cec17_1 9.8e7 ± 7.2e5 1.0e6 ± 2.1e5 0.000 ± 0.000 2.9e7 ± 4.7e4 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec17_2 213.98 ± 3.51 9.5e4 ± 3.0e4 0.000 ± 0.000 3.1e5 ± 6.5e3 0.000 ± 0.000 302.6 ± 256.1 0.000 ± 0.000 101.1 ± 0.010
cec17_3 156.57 ± 0.74 8.3e4 ± 9.4e4 120.4 ± 7.860 85.40 ± 2.640 6.040 ± 1.830 92.10 ± 34.02 107.3 ± 39.84 2.5e3 ± 39.84
cec17_4 480.6 ± 2.620 8.5e4 ± 1.6e4 348.2 ± 1.250 496.5 ± 14.93 52.93 ± 11.69 389.1 ± 32.90 334.0 ± 6.920 89.80 ± 6.920
cec17_5 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec17_6 5.4e7 ± 1.2e3 3.6e6 ± 1.6e4 329.9 ± 22.70 1.5e3 ± 188.1 51.40 ± 13.41 423.3 ± 29.72 325.7 ± 21.03 103.6 ± 21.03
cec17_7 136.7 ± 20.54 80.10 ± 5.330 77.92 ± 1.233 81.21 ± 3.212 101.1 ± 21.11 93.34 ± 12.12 82.23 ± 22.22 79.99 ± 1.211
cec17_8 114.5 ± 0.950 145.3 ± 1.150 0.000 ± 0.000 8.840 ± 9.650 5.130 ± 1.160 27.30 ± 2.660 25.17 ± 2.590 0.200 ± 2.590
cec17_9 1.3e4 ± 823.3 1.3e4 ± 364.3 1.1e4 ± 259.2 1.6e4 ± 348.2 1.1e4 ± 3.4e3 1.1e4 ± 1.8e3 9.2e4 ± 236.3 7.6e4 ± 236.3
cec17_10 3.3e3 ± 606.5 9.5e4 ± 360.0 91.73 ± 9.210 7.1e6 ± 1.2e3 47.33 ± 25.08 17.62 ± 2.780 44.52 ± 3.960 15.74 ± 3.960
cec17_11 1.5e7 ± 2.5e6 1.1e8 ± 1.1e3 0.000 ± 0.000 2.6e3 ± 400.6 3.580 ± 2.740 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec17_12 8.5e7 ± 5.5e6 1.1e5 ± 3.1e4 92.48 ± 2.160 320.1 ± 20.23 124.4 ± 58.86 124.4 ± 8.920 95.58 ± 7.080 101.6 ± 7.080
cec17_13 1.3e4 ± 2.3e3 4.3e8 ± 5.8e7 0.000 ± 0.000 0.000 ± 0.000 279.4 ± 196.4 34.77 ± 8.660 34.00 ± 0.730 0.000 ± 0.000
cec17_14 2.6e6 ± 2.8e5 3.2e9 ± 5.5e6 4.552 ± 0.122 181.3 ± 21.11 132.2 ± 167.2 21.46 ± 2.780 30.74 ± 2.890 10.67 ± 2.890
cec17_15 1.3e3 ± 201.4 1.4e4 ± 760.1 8.348 ± 1.222 12.12 ± 1.223 0.730 ± 0.190 11.47 ± 0.920 9.070 ± 0.320 6.550 ± 0.320
cec17_16 9.2e8 ± 8.4e7 9.9e5 ± 0.000 15.67 ± 4.455 83.33 ± 3.222 134.7 ± 80.60 21.95 ± 6.650 25.44 ± 2.340 1.530 ± 2.340
cec17_17 4.1e4 ± 1.5e4 5.9e5 ± 7.4e3 12.34 ± 5.334 17.56 ± 2.112 103.2 ± 65.50 15.71 ± 5.900 7.180 ± 0.260 0.510 ± 0.260
cec17_18 9.1e8 ± 1.8e8 9.9e6 ± 0.000 20.36 ± 0.944 123.1 ± 34.33 34.30 ± 51.24 87.02 ± 3.940 101.7 ± 0.430 81.03 ± 0.430
cec17_19 76.48 ± 6.470 4.2e3 ± 943.5 13.87 ± 2.153 54.45 ± 0.122 16.23 ± 4.450 12.35 ± 3.230 11.52 ± 0.460 1.270 ± 0.460

Table 7.3: Mean and standard deviation of FEV after 25 executions on all benchmark
functions with 50 variables (d = 50) obtained from the EMNA, EGNA, SPEDA, m_KEDA,
CMA-ES, JADE, SHADE and L-SHADE algorithms. The best result for each benchmark is
highlighted in blue.

Based on the results of the experiments for d = 30 and d = 50, we conclude that SPEDA
can be a competitive tool for continuous optimization compared to some state-of-the-art
population-based approaches. Indeed, it is able to converge to solutions with low variance in
independent algorithm executions. Furthermore, the optimal landscapes for our approach

100

CHAPTER 7. SEMIPARAMETRIC EDA FOR CONTINUOUS OPTIMIZATION

L-SHADE SPEDA SHADE JADE CMA-ES m_KEDA EMNA EGNA
0.0

0.1

0.2

0.3
Pr

ob
ab

ilit
y

of
 w

in
ni

ng

Figure 7.8: Credible intervals (5% and 95% quantiles) and expected probability of winning
(green dots) for results shown in Table 7.3.

seem to be functions that are unimodal separable, although it still outperforms its competitors
in most of the nonseparable and multimodal functions. A good performance has also been
identified in the composition functions and landscapes with a large number of local optima,
regardless of the dimension.

7.3.3 Portfolio optimization
In this section, we compare the previously tested algorithms in a real-world portfolio opti-
mization problem.

The portfolio optimization problem is based on the diversification aspect of the investment,
where investors diversify their investments into different types of assets. The objective of
this optimization task is to maximize the return of the investment but also to minimize its
risk. This bi-objective problem is reduced to a single-objective task by using the Sharpe-ratio
metric [Sharpe, 1994], combining both aspects as follows,

Sharpe_ratio = Rp −Rf

σp

, (7.1)

where Rp, Rf and σp are the return of the portfolio, the risk of the investment and the
standard deviation of the portfolio’s excess return for a series of time intervals, respectively.

The cost functions computations were made using PyPortfolioOpt Python package [Martin,
2021] including historical daily stock prices of 20 different assets (d = 20) from 12/29/1989 to
04/11/2018, also available in PyPortfolioOpt6.

Figure 7.9 shows the Sharpe-ratio boxplot of the best solutions achieved for different algorithms.
The maximum number of iterations has been limited to 300. It is observed that SPEDA,
CMA-ES and JADE are the approaches that achieve the best solutions in terms of Sharpe-ratio
maximization compared to its competitors. Good results are also found by m_KEDA. In this
case, the results found by EMNA improve those found by EGNA, which have a large dispersion
between the solutions. Note that the median of the EGNA solutions gives us a hint about the

6https://raw.githubusercontent.com/robertmartin8/PyPortfolioOpt/master/tests/resources/
stock_prices.csv

101

https://raw.githubusercontent.com/robertmartin8/PyPortfolioOpt/master/tests/resources/stock_prices.csv
https://raw.githubusercontent.com/robertmartin8/PyPortfolioOpt/master/tests/resources/stock_prices.csv

Vicente Pérez Soloviev

EMNA EGNA SPEDA m_KEDA CMA-ES JADE SHADE L-SHADE0.50
0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50

Sh
ar

pe
-ra

tio

Figure 7.9: Boxplot with the best results found by each algorithm after 25 independent
executions for the specific portfolio optimization problem.

presence of extreme data in the lower bound of the boxplot. CMA-ES and JADE approaches
seem to converge to a unique solution in all the executions. While the SHADE and L-SHADE
approaches offer good solutions for the benchmarks studied, they do perform well on this real
problem. However, our approach maintains good performance on both types of optimisation
problems. The results shown in Figure 7.9 have been analyzed using statistical tests to reject
the null hypothesis of equal means between the different methods, and obtained a p-value
of 1.75e-16. Thus, a statistically significant difference was found between the performance
of the optimizers. However, analyzing the statistical tests by pairs, there is no statistically
significant difference between the results obtained by EMNA and EGNA.

7.3.4 CPU time and complexity analysis
In this section, we analyze the average CPU time spent during the execution of the algorithms,
and the asymptotic time complexity of SPEDA.

Figure 7.10 shows a CPU time comparison between all the approaches used for the benchmarks.
It is observed that m_KEDA is the most expensive and CMA-ES the fastest. Analyzing
the four EDA, the higher the complexity of the algorithm is, the longer the execution time.
Thus, m_KEDA has a longer execution time than SPEDA, which in turn takes longer than
EGNA, which takes longer than EMNA. The three differential evolution variants have a
similar average CPU time to that found for EMNA, where JADE is the most expensive.

The increase in SPEDA complexity compared to that of EGNA is caused by the cross-validated
cost function that evaluates CKDE and Gaussian nodes. Considering this, the complexity of
SPEDA is simplified as O(tOiλKT), where t is the number of iterations of SPEDA. Figure 7.10
shows that, in general, m_KEDA is more complex than SPEDA due to the cross-validated
function over all the CKDE nodes, which is d in each iteration, in contrast to SPEDA, which
is d at most. The cross-validated function used by SPEDA, increases the CPU time but
also yields the best results, as shown in Table 7.2 and Table 7.3. Note that tuning the
hyper-parameter K (number of folds) might reduce the computation time, but also may lead

102

CHAPTER 7. SEMIPARAMETRIC EDA FOR CONTINUOUS OPTIMIZATION

EMNA EGNA SPEDA m_KEDA CMA-ES JADE SHADE LSHADE
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000

CP
U

tim
e

(s
)

37
9.

66
6

90
8.

93
9 35

06
.2

4

77
59

.0
6

38
.5

73
6

57
6.

07
2

38
6.

87
9

38
3.

67

92
6.

42
4

16
16

.9
6

49
90

.1
2

97
59

.0
6

46
.6

47
7

13
87

.6
5

59
9.

41
1

58
3.

14
4

D = 30
D = 50

Figure 7.10: Comparison of the average CPU time (in seconds) after 25 independent executions
on each of the benchmarks in CEC2014 and CEC2017, for EMNA, EGNA, m_KEDA, SPEDA,
CMA-ES, JADE, SHADE and LSHADE. The results for 30 and 50 dimensions are shown in
blue and red, respectively.

to poorest solutions.

7.4 Conclusions
Traditional EDAs typically use Gaussian distributions to optimize continuous functions, such
as EGNA or EMNA, which use GBNs and multivariate Gaussian probability distributions,
respectively. Nevertheless, using these types of probabilistic models implies assuming Gaussian
distributions that only consider linear relationships between variables. In this chapter, we
have propose semiparametric estimation of distribution algorithms (SPEDAs), which learn a
semiparametric Bayesian network at each iteration, with the coexistence of nodes that are
fitted by CKDE and nodes that assume Gaussianity. SPEDA decides iteratively whether
Gaussians or CKDEs are fit at each node.

Moreover, the traditional EGNA usually learns a GBN in each iteration by considering only
the best solutions of the last iteration, which may lead to a high variance between the solutions
in independent runs of the algorithm, or convergence to local optimal solutions. SPEDA has
been designed to overcome this limitation by learning a probabilistic model in each iteration
considering the best solutions of previous iterations. This is intended to establish a search
direction in the landscape based on the learned information.

The empirical results showed a comparison of SPEDA with some of the most widely used
EDAs for continuous function optimization, like EMNA and EGNA. We conclude that using
a more complex probabilistic model, such as an SPBN, improves the results compared to
those of EGNA and EMNA. SPEDA was also compared to CMA-ES; to JADE, SHADE, and
L-SHADE as members of differential evolution algorithms family; and to the multivariate

103

Vicente Pérez Soloviev

KDE EDA, the extreme case of SPEDA where the Gaussian nodes are forbidden. The
experiments were run on 49 benchmarks in 30- and 50-dimensional spaces, and it was found
that SPEDA provided the best results in most of the benchmarks that considered landscapes
of different characteristics. The results found were analyzed using a Bayesian performance
analysis with the Plackett-Luce model to estimate the probability of each algorithm to be the
winner approach. L-SHADE was the most accurate algorithm for the case of 30 dimensions
followed by SPEDA with similar performances. A similar behaviour was observed for the case
of 50 dimensions where SPEDA is the most probable approach. The experimental results also
include a real world optimization problem, where statistical significant differences were found,
being SPEDA one of the best performing approaches, together with CMA-ES and JADE.

The following research lines are proposed as future work:

• SPEDA is a tool that can be of great benefit for optimization tasks in complex continuous
environments where the variance between the solutions proposed by our approach in
different executions is low, without sacrificing the quality of the solutions. Future work
include exploring real applications in the industry and quantum machine learning tasks.

• The experiments showed that learning SPBNs in each iteration can be slower than
learning GBNs, so future research would include shortening this learning time.

• The structure learning of SPBN models have been shown to be complex. Future work
include reducing the number of learnings during runtime.

104

Chapter 8

Quantum-inspired EDA to Solve the
Traveling Salesman Problem

8.1 Introduction
Chapters 5-6 presented different methodologies and applications of EDAs. In this chapter we
focus on adding a QC perspective to EDAs, corresponding to CQ in Figure 1.1. Specifically,
we present a quantum-inspired approach in which new solutions are sampled from a quantum
system to solve the traveling salesman problem (TSP).

TSP is a combinatorial optimization problem widely studied in the literature in different
research areas. Regarding QC, several techniques such as adiabatic QC [Kieu, 2019], and
QAOA [Ruan et al., 2020] are used to solve it. Regarding classical computation EAs [Robles
et al., 2002, Larrañaga et al., 1999], deep learning [Miki et al., 2018] and reinforcement learning
[Zhang et al., 2020] have been applied to approach the problem.

The TSP is a well known NP-hard problem [Applegate et al., 2006]. The problem corresponds
to finding the shortest Hamiltonian cycle in a graph of n cities represented as vertices in the
graph and edges between the nodes to represent the interconnections. Each edge between
vertices i and j is associated with a given cost denoted by dij. Thus, the TSP consists of
finding a permutation π of n cities that minimizes the function of the total cost of visiting
the n cities and going back to the starting point:

C(π) =
n−1∑
i=1

(
dπ(i),π(i+1)

)
+ dπ(n),π(1) (8.1)

Previous studies on quantum machine learning [Schuld, 2018, Lau et al., 2017, Wiebe et al.,
2012] have focused on exploiting the benefits of the QC to improve the performance of the
optimization algorithms. With respect to EAs, quantum machine learning revolves around
three main research areas [Zhang, 2011]: (i) quantum-inspired evolutionary algorithms (QIEA),
which take advantage of the concepts and principles of quantum mechanics to improve the
classic EAs; (ii) evolutionary-designed quantum algorithms, which develop new quantum

105

Vicente Pérez Soloviev

algorithms implemented by genetic programming; and (iii) quantum evolutionary algorithms,
which develop new evolutionary algorithms to be executed in quantum devices.

In this chapter, we will focus on QIEA. Since the seminal paper [Han and Kim, 2002] where
principles of QC were used in the reproduction step of the EA, other works have applied
different modifications to improve the results, or accommodate the algorithm to specific
optimization problems. A matrix quantum individual representation is used in Silveira et al.
[2012], da Silveira et al. [2017] to solve ordering optimization problems. A novel quantum-
inspired algorithm is proposed by Montiel et al. [2019] motivated by the colony behavior of
the leafcutter ants. Other works propose different modifications to these algorithms in order
to improve the smoothing and efficiency of the exploration [Platel et al., 2008], and compare
them to the EDAs behaviour [Platel et al., 2007]. However, these works cannot be executed
in a real circuit model-based quantum computer without being adapted, as mentioned in
Ross [2019]. Implementing a QIEA in a quantum computer requires a hybrid implementation
between quantum programming, for the reproduction step, and the classical programming,
for the rest of the EA steps. Running these algorithms in a quantum computer also includes
considering the quantum noise present in the quantum computers.

Here, we present a new quantum-inspired approach for solving the TSP. The Quantum-Inspired
Estimation of Distribution Algorithm (QIEDA) is a population-based algorithm based on
QC for the reproduction of new solutions during runtime. The solutions obtained by the
QIEDA are competitive with other state-of-the-art population-based approaches in terms
of convergence and quality of solutions found. Also, we measure the impact of running the
QIEDA in different quantum computers with non-identical topologies, and analyze which
would be the ideal quantum topology to solve the TSP. The novelty of this algorithm is that
it can be executed without adaptations in a real quantum computer based on the circuit
model programming. A parameterized quantum circuit is used during the reproduction step
in order to sample new solutions. The experiments were executed simulating the real IBM
quantum computers.

This chapter contains the developed methodology and results included in Soloviev et al. [2021].
The implemented methodology is available in a GitHub repository1.

Chapter outline
The chapter outline is organized as follows. Section 8.2 explains the implementation of the
QIEDA approach. Section 8.3 presents an empirical comparison of the QIEDA with other
optimization algorithms and a benchmarking of the computational cost for the TSP. Finally,
Section 8.4 concludes the chapter and proposes future research lines.

8.2 QIEDA
QIEDA is a multivariate EDA which uses probabilistic logic sampling (PLS) [Henrion, 1988]
to generate new solutions from a BN. The algorithm samples new solutions taking advantage

1https://github.com/VicentePerezSoloviev/QIEDA

106

https://github.com/VicentePerezSoloviev/QIEDA

CHAPTER 8. QUANTUM-INSPIRED EDA TO SOLVE THE TRAVELING SALESMAN
PROBLEM

from the QC principles. The QIEDA implementation is a hybrid implementation between
classic and quantum computations. Qiskit (0.16.0) and IBM platforms [Qiskit contributors,
2023] have been used to implement the quantum part.

8.2.1 Representation

In each iteration of the EA, QIEDA performs a sampling process to obtain a set of solutions.

There are a lot of ways to encode the TSP solutions [Larrañaga et al., 1999]. In this chapter,
a matrix representation is used. Assume a set of cities U = {1, 2, . . . , n} of the TSP. The
vector x = (x1, x2, . . . , xn) is a solution for the problem where xi ∈ U , and i denotes the city
ordering. Every xi assumes one of the elements of U with a certain probability. The sum of
probabilities of the elements in U must be equal to one. For example, for a TSP problem of
size n = 5, assume for the first city to be visited (x1) a vector of probabilities for the elements
of U being observed (0.1, 0.2, 0.1, 0.5, 0.1). Thus, the element x1 takes the fourth city in U
with 0.5 probability as it is the city with the highest probability, and once it is fixed, this city
cannot be selected again by the rest of the elements of x.

When adapting this codification to quantum individuals, each of the elements of U is translated
as a pure state of an n-qubit. Then, every xi assumes a different pure state with a certain
probability. Each of the pure states that form the n-qubit have only one qubit in the |1⟩ state.
The position of the |1⟩ state will be the city that represents that specific state. For example,
in an n-qubit of size n = 5, the only desired pure states are 10000, 01000, 00100, 00010, 00001
which represent the cities 1, 2, 3, 4, 5 respectively. Thus, a universe of size n is represented by
an n-qubit with n different states.

The n-qubit that represents the desired states to our problem codification is,

|ψ⟩ = δ1 |10 . . . 00⟩+ δ2 |01 . . . 00⟩+ · · ·+ δn−1 |00 . . . 10⟩+ δn |00 . . . 01⟩ , (8.2)

where |δi|2 are the probabilities of each of the desired states and ∑n
i=1|δi|2= 1. Note that the

rest of 2n−n states, which are not desired to be observed, are set to amplitudes equal to zero.

Therefore, using the matrix quantum codification, each solution of the TSP is represented as,

X =


x11 . . . x1n
...
xn1 . . . xnn

 , xij ∈ {0, 1},

where rows accounts for city ordering while columns correspond to the position in U , and xij

is equal to 1 whenever a city j is visited in the ordering i position. Thus,

n∑
j=1

xij = 1,∀i ∈ 1, . . . , n. (8.3)

107

Vicente Pérez Soloviev

An example of a valid solution for a TSP of size n = 5 is,

x1 =


0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0


which corresponds to the following ordered city path [5, 3, 4, 1, 2].

8.2.2 Algorithm
Algorithm 8 describes the QIEDA algorithm.

Algorithm 8 QIEDA pseudocode
1: p(X)← Initialize matrix of statistics
2: G0 ← Generate N individuals from p(X)
3: for t = 1, 2, ... until a stopping criterion is met do
4: Gt−1 ← Evaluate the individuals with cost function C
5: GS

t−1 ← Select S < N individuals from Gt−1
6: p(X)← Update the matrix of statistics from GS

t−1
7: Gt ← Generate new generation from p(X)
8: end for

The QIEDA is initialized with a matrix of statistics (step 1) which specifies the relative
frequency of appearance of each city in each ordering position, among the best solutions
selected from the previous generation. In each iteration, the algorithm generates some new
individuals from the matrix of statistics (step 2). Then the individuals are evaluated according
to the cost function in Equation 8.1 we desire to optimize (step 4), and the best individuals of
the generation are selected (step 5) in order to improve the next generation cost. The matrix
of statistics is updated (step 6) in each iteration with the selected individuals.

8.2.2.1 Initialization

The algorithm must be initialized with a matrix of statistics which specifies the probability of
each position to take the value 1 when sampled,

p(X) =


p(X1)

...
p(Xn)

 =


δ11 . . . δ1n
...
δn1 . . . δnn

 (8.4)

The probabilities of each row verify the restriction of Equation 8.3, and correspond to the
probabilities of each of the pure states described in Equation 8.2. This matrix is initialized so
that no solution is favored beforehand and it is updated during the algorithm runtime until

108

CHAPTER 8. QUANTUM-INSPIRED EDA TO SOLVE THE TRAVELING SALESMAN
PROBLEM

Figure 8.1: Example of the quantum individuals sampling of size n = 3. An initial matrix
of statistics p(X) is updated in each node depending on its parents samplings. In the leaf
nodes, the final individuals are obtained. The algorithm samples N individuals. Each node
distributes its number of samples among its child nodes.

convergence is reached,

p(X) =


1
n

. . . 1
n...

1
n

. . . 1
n


When the QIEDA converges, the matrix of statistics should be a matrix of 1s and 0s
(Equation 8.3), which is the optimum solution found by the algorithm for the proposed TSP.

8.2.2.2 Individuals Generation

As described in Section 8.2.1, the individuals are coded as matrix of ones and zeros where each
row i specifies the city visited in the i position of the city ordering. When a city is visited,
the following rows must update the probabilities to do not allow visiting this city again. The
sampling process can be seen as a sequence of dependent steps in which each step means to
sample a row i, and update rows i+ 1, i+ 2, · · · , n according to the i sampling outcome.

Consider a row i of an individual to be sampled in the QIEDA sampling method, expressed as
[xi1, . . . , xin]. The row sampling consists of a random selection among the pure states defined
by Equation 8.2 with probabilities to be selected p(xi) = [δi1, . . . , δin] defined in the row i of
the matrix of statistics (Equation 8.4) of the corresponding algorithm iteration. Assume that
the pure state c has been selected. Then, the following rows of the matrix of statistics are

109

Vicente Pérez Soloviev

Algorithm 9 PLS pseudocode
Input Matrix of statistics p(X), population size N
Output Set of individuals

struct {
stats Statistics to sample W state circuit
size Number of shots from the quantum circuit
level Level in the tree structure
wstate W state circuit with stats probabilities

} Node;

1: root← Node(stats[0], size = N, level = 0)
2: leaf ← [root]
3: for node in leaf do
4: sols← Sample node.wstate node.size times
5: for sol in unique(sols) do
6: levelsol ← node.level + 1
7: sizesol ← Count samplings of sol in sols
8: nodesol ← Node(stats[levelsol], levelsol, sizesol)
9: nodesol.stats← Update statistics for row levelsol given nodesol

10: leaf.add(nodesol)← Add node to leaf nodes list
11: end for
12: leaf.remove(node)← Remove node from leaf nodes list
13: end for

updated with zero probability for state c (δ′
hc = 0, for h > i), as the city cannot be visited

more than once. Also, the remaining probabilities are updated as,

δ′
hj = δhj

1− δic

(8.5)

for h > i, j ̸= c, where δic is the previous probability value of row i and column j = c, that is
replaced by zero. For example, assume a row which takes the values [0.2, 0.3, 0.4, 0.1], and the
last probability must be replaced by zero. Then, the row would result in (0.2

1−0.1 ,
0.3

1−0.1 ,
0.4

1−0.1 , 0).

The generation reproduction is arranged as a tree. An example of the tree building is shown
in Figure 8.1. Starting from the root node, we sample the first individual row from p(x1).
As a generation consists of N individuals, the algorithm performs N samplings that will be
distributed among the possible pure states according to p(x1). For example, in Figure 8.1, N
is distributed by approximately 33% for each node. This is the first level of the tree, whose
maximum width is the number of pure states defined by p(x1). It might occur that N is
distributed in such a way that a node is not sampled, and thus, the first level width would be
lower than expected. After updating the following rows, probabilities of rows 2 to n, the next
level of the tree is built. Each node of level 1 unfolds its possible solutions to level 2 depending
on the updated p(x2). If a node is not sampled, it is not unfolded in the next level. Each
node has an independent matrix of statistics depending on the parent node. The samplings

110

CHAPTER 8. QUANTUM-INSPIRED EDA TO SOLVE THE TRAVELING SALESMAN
PROBLEM

Algorithm 10 W state modified building
Input Vector of statistics
Output W state quantum circuit

1: stats← [δ1, . . . , δn]
2: rot1 = 2cos−1(

√
δ1)

3: wstate← Quantum circuit with n qubits (x1, . . . , xn)
4: wstate← RY in x1 of rot1 rad.
5: for i = 2 . . . n do
6: amp =

√
1−∑i

j=1 δi

7: roti = 2cos−1((δi)1/2

amp
)

8: wstate← CRY (roti rad.) target xi and control xi−1
9: end for

10: for i = n, . . . , 1 do
11: wstate← CX with target i and control i− 1
12: end for
13: wstate← X gate x1

of each node for the same level are independent, and thus, can be sampled in parallel. This
process continues until reaching the leaf nodes (level n), where the sampled individuals are
obtained. Total tree width varies depending on how N is distributed along the tree nodes.
The maximum tree width is N !.

If we consider the tree as a directed acyclic graph in which each level nodes depend on the
previous level nodes, the tree is a BN. There are a great amount of methods for sampling BNs
[Koller and Friedman, 2009]. In this paper, the process followed is similar to the probabilistic
logic sampling (PLS), in which each node depends on its parents. PLS defines an ancestral
ordering of nodes, which in this case is the city (row) ordering.

Algorithm 9 shows the adapted PLS for reproduction. We define a node as a structure with:
(i) updated statistics depending on its parents, (ii) number of samplings (quantum circuit
shots) to distribute among child nodes, (iii) level of the node, and (iv) the W state quantum
circuit used for sampling.

To sample the individuals rows, the W state quantum circuits have been implemented [Cruz
et al., 2019]. The W state is an entangled quantum state [Nielsen and Chuang, 2002] of n
qubits, in which all possible pure states have one of the qubits in the |1⟩ state, while all other
ones are in the |0⟩ state,

|Wn⟩ = 1√
n

(|10 . . . 00⟩+ |01 . . . 00⟩++ |00 . . . 10⟩+ |00 . . . 01⟩) (8.6)

The general W state of Equation 8.6 has been modified in order to be able to set different
probabilities to the different qubits. Thus, we can apply this approach to sample solutions
according to Equation 8.2. The circuit building is described in Algorithm 10. The process is
divided into two main parts: (i) probability redistribution, in which, the desired probabilities

111

Vicente Pérez Soloviev

of the pure states that constitute the W state are translated to rotations in the qubit Y axis
with RY gates and controlled-RY gates (CRY), and (ii) state reshuffling, to ensure that the
number of qubits in the |1⟩ state is only one, with CNOT and X gates (see Section 4.2.3 for
quantum gates details).

An example of a circuit of size n = 5 in which all pure states have the same probabilities is
shown in Figure 8.2.

Figure 8.2: Example of a W state circuit for n = 5. The probabilities are set to [1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5].

Purple gates are RY and CRY gates, blue ones are CX gates, green one is X gate, and black
ones are the measurement gates.

The influence of noise in the W state circuit samplings is shown in Figure 8.3. Panel (a) shows
the histogram of the results obtained executing the quantum circuit in a quantum simulator
without noise, while panel (b) shows the results obtained executing the circuit in a real
quantum computer. Both experiments were run 1000 times with probabilities [1

5 ,
1
5 ,

1
5 ,

1
5 ,

1
5].

Note that in Figure 8.3(b) some not desired solutions are sampled with a small probability due
to the quantum computer noise. Solutions must be filtered and the probability distribution
among the valid solutions normalized. Valid solutions are the pure states defined following
Equation 8.2.

8.3 Results
In Section 8.3.1 the QIEDA performance is compared with other optimization algorithms,
and in Section 8.3.2 the QIEDA is executed for different quantum computing topologies to
analyze the computational cost. The ideal simulator and some real devices simulators such as
Johannesburg or Tokyo were used to run the experiments.

8.3.1 Algorithm Performance
The performance of the QIEDA has been compared to other well known state-of-the-art
population-based algorithms: GA, a binary adaptation of the particle swarm optimization
(PSO) [Hadia et al., 2012], ant colony optimization (ACO) [Yu, 2014], and a non-quantum
estimation of distribution algorithm (EDA). The non-quantum EDA is a modification of
the QIEDA approach in which, the solutions are not sampled from a quantum circuit. New

112

CHAPTER 8. QUANTUM-INSPIRED EDA TO SOLVE THE TRAVELING SALESMAN
PROBLEM

Figure 8.3: Probability distribution of the W state circuit sampling for n = 5 without (a) and
with (b) noise. The quantum circuit was run 1000 times for each scenario.

solutions are sampled from a categorical distribution using a binary random number generator.
Its pseudocode is similar to that described in the quantum-inspired evolutionary algorithms
[Zhang, 2011], in which the number of qubits is not a limitation.

The hyper-parameters of the population-based algorithms are shown in Table 8.1. Despite the
fact their tunning is out of the scope of this chapter, a previous analysis was done to achieve
good solutions for the experiments, and compare them fairly with the QIEDA. For ACO, α is
the relative importance of the pheromone and β is the relative importance of the trigger factor.
As observed in [Yu, 2014], α < β achieves better results. rho is the evaporation rate of global
pheromone which is equal to the evaporation rate of the local pheromone. For PSO, α is the
cognitive parameter to control the exploitation component and β is the social parameter to
control the exploration component of the algorithm. For GA, α is the population percentage
considered as elite selection, and the mutation rate mr is the parameter which influences
how the individuals are modified in the mutation phase of the algorithm. For EDA, α is the
population percentage considered as elite selection. N and Gen are the population size and
the number of iterations, respectively.

N Gen α β mr rho
ACO 50 40 0.4 0.6 - 0.5
PSO 50 40 0.55 0.45 - -
GA 50 40 0.5 - 0.04 -

EDA 50 40 0.5 - - -

Table 8.1: Algorithms configuration.

The QIEDA is executed with the ideal simulator without quantum noise and in a quantum
simulator with the Johannesburg quantum computer noise. The latter is the most realistic
simulation as it is executed simulating the behaviour of a real quantum device. Johannesburg

113

Vicente Pérez Soloviev

Figure 8.4: Mean best cost for the TSP for different number of cities and different algorithms:
QIEDA executed in the Johannesburg quantum simulator with noise, QIEDA executed in
a quantum simulator without quantum noise, the non-quantum estimation of distribution
algorithm (EDA), particle swarm optimization (PSO), GA, and the ant colony optimization
(ACO).

quantum device was chosen as the case study since it was observed that the quantum device
selection does not influence the results obtained by the QIEDA.

Different datasets2 have been used to simulate different TSP sizes. The experiments have
been carried out for sizes n = [5, 7, 10, 12, 15, 17, 20]. The Qiskit simulators only allow to
simulate up to 25 qubits. Thus, the aim of this analysis is to study the trend of the results in
order to determine the performance of the algorithm.

Figure 8.4 shows an analysis of the optimum solutions obtained by the QIEDA compared
to other population-based algorithms. The algorithms were run 100 times and the figure
plots the mean and the deviations of the executions. Note that the QIEDA executed in the
Johannesburg quantum computer achieves competitive results compared to other optimization
algorithms. In nearly all the experiments, QIEDA achieves the best results on average
compared to others, with a small deviation. In order to verify if the results are statistically
significant some tests were run. After checking that the data fit a normal distribution, we
calculated the p-value with an analysis of variance (ANOVA) [Kaufmann and Schering, 2007],
and the Student’s t-test [Kalpić et al., 2011] of the QIEDA results compared to the other
algorithms for each of the experiments. A significance level of 0.05 was set. ANOVA p-values

2http://www.math.uwaterloo.ca/tsp/world/countries.html

114

http://www.math.uwaterloo.ca/tsp/world/countries.html

CHAPTER 8. QUANTUM-INSPIRED EDA TO SOLVE THE TRAVELING SALESMAN
PROBLEM

are shown in Table 8.2, and all t-tests yielded p-values lower than 0.05, so we can reject
the null hypothesis of equal means. The QIEDA executed in the ideal simulator does not
reproduce any noise, so the performance of the algorithm is similar to the non-quantum EDA.
Note that the results obtained by both algorithms are very similar.

n=5 n=7 n=10 n=12 n=15 n=17 n=20
6.1e-56 1.9e-23 0.021 8.8e-09 3.7e-18 1.4e-21 2e-23

Table 8.2: ANOVA test p-values

It is also noteworthy that when increasing the TSP size, the QIEDA performance improves
compared to the other algorithms. The trend shows that, for larger (and therefore more
complex) TSPs, the QIEDA will find much better solutions than the other population-based
optimizers.

Figure 8.5 shows an analysis of the convergence of the QIEDA. The figure shows the mean
and the deviation of 100 executions of the algorithm. The algorithm is compared to the same
population-based algorithms in the same conditions as before. The EDA approaches have
better convergence compared to other algorithms. Note that, regardless of the problem size,
the QIEDA convergence remains approximately constant and with a small value compared to
the other algorithms.

Despite the fact that the QIEDA approach was not able to be executed for larger TSP sizes,
we can observe the trend of the results. As far as this behavior is concerned, the QIEDA
approach achieves competitive results compared to the other algorithms. Moreover, the
convergence of the algorithm remains constant independently of the size of the problem. Our
results suggest that intrinsic quantum noise has the ability to enhance the convergence and
the cost of the TSP as noise modifies the search space in such a way that it prevents the
algorithm from falling into local optimal solutions.

8.3.2 Analysis of computing topologies
There exists a large variety of quantum computers among which the main differences are the
quantum topology (Figure 8.6) which distributes the qubits and their relations. Two qubits
A and B can only operate with each other only if there is a connection between both qubits.
Otherwise, the system needs to swap with other qubits until A and B are connected.

To run a quantum circuit in a specific quantum computer some aspects must be analyzed:

• Available quantum gates. The circuit might have some quantum gates not available in
the desired computer, so it must be adapted to execute it.

• Available number of qubits.

• Topology. The qubits of each quantum computer are distributed following different
topologies. The circuit must adapt so the number of SWAP operations is minimized.

Executing a circuit without optimizing the number of SWAP operations increases the com-
putational cost. Minimizing the number of quantum gates in the circuit decreases the

115

Vicente Pérez Soloviev

Figure 8.5: Mean convergence for the TSP for different number of cities and different
algorithms: QIEDA executed in the Johannesburg quantum simulator with noise, QIEDA
executed in a quantum simulator without quantum noise, the non-quantum estimation of
distribution algorithm (EDA), particle swarm optimization (PSO), GA, and the ant colony
optimization (ACO).

computational cost. The aim of this benchmark is to find the ideal topology to execute
the designed approach. Finding the topology which minimizes the computational cost of
each executed W state circuit, would mean to reduce the computational cost of the QIEDA
approach. To that end, we study the circuit depth that refers to the number of time steps
(time complexity) required for the quantum operations making up the circuit to run on the
quantum hardware [Gyongyosi, 2020].

The analysis and adaptation of the circuit to the specific quantum computer is named
transpilation. During the transpilation, the circuit can be optimized to minimize the SWAP
operation. Table 8.3 shows an analysis of the circuit depth with and without optimization for
different topologies (Figure 8.6). All the selected quantum computers have the same available
quantum gates, so the differences between the adapted circuits for each quantum computer
are the number of SWAP operations added to be able to execute the circuit. The larger the
depth, the larger the computational cost to execute the circuit in a quantum topology. Each
SWAP operation is a combination of three sequential controlled-x gates between the two
qubits to be swapped.

Note in Table 8.3 that for any topology, optimization improves the circuit depth as expected
due to the minimization of the SWAP operations.

When, due to the quantum computer topology and the characteristics of the problem, SWAP

116

CHAPTER 8. QUANTUM-INSPIRED EDA TO SOLVE THE TRAVELING SALESMAN
PROBLEM

Figure 8.6: Quantum computers topologies.

Simulator n_qubits Without optimization With optimization
10 15 20 50 10 15 20 50 60

Rueschlikon 16 62 98 - - 56 98 - - -
Tokyo 20 57 90 145 - 36 56 122 - -
Almaden 20 48 90 126 - 36 56 170 - -
Johannesburg 20 60 102 139 - 36 56 76 - -
Cambridge 28 72 104 184 - 36 56 76 - -
Manhattan 65 36 116 145 449 36 56 76 196 581
Montreal 27 78 134 196 - 36 56 76 - -
Rochester 53 69 104 181 481 36 56 76 667 -
chain_backend - 36 56 76 196 36 56 76 196 236

Table 8.3: Benchmark. Depth analysis of the W State circuit for different topologies.

operations must be carried out to use all the qubits of the quantum computer, the depth
increases considerably in comparison with other topologies, as for example for Almaden,
Singapore and Boebligen for n = 20 (depth of 170). For the same problem size, in a topology
which does not imply doing SWAP operations, such as Johannesburg or Poughkeepsie, the
depth decreases to less than a half. For larger problems than the executed in the experiments
(for example N = 50), the best option would be to use the Manhattan topology due to the
number of qubits, 65, and the multiple qubits distributions available without using SWAP
operations. However, using such a large quantum computer for considerably smaller problems
is a brute solution.

The topology of some computers limits the number of used qubits in order to do not increase
considerably the depth of the circuit. As a solution, we have designed an ideal topology
for the problem we are solving. In the W state circuit we are using the qubits interaction:
x0 − x1, x1 − x2, . . . , xn−1 − xn, xn − xn−1, xn−1 − xn−2, . . . , x1 − x0. Thus, the ideal topology

117

Vicente Pérez Soloviev

Figure 8.7: Chain topology designed as the ideal topology for the QIEDA approach for n = 15.

is a chain qubits distribution, named as chain_backend in Table 8.3. An example is shown
in Figure 8.7. In the benchmark, for the problem of size 60, the chain topology improves
Manhattan topology by a factor of 2.5.

Note that in Table 8.3, the modified version of the W state circuits depth grows linearly with
the size of the problem for the chain_backend topology, so the implemented metaheuristic is
considered to be efficient [Ross, 2019].

8.4 Conclusions
This chapter have presented a new quantum-inspired EDA approach to solve the TSP problem.
The QIEDA uses a modified version of the W state quantum circuits to adapt the PLS process
to sample new solutions during the algorithm runtime.

The results obtained by the QIEDA were analysed in terms of convergence and optimum
solution found. The algorithm behaviour was compared to other state-of-the-art population-
based algorithms. The QIEDA number of iterations until convergence remains constant with
increasing number of cities of the TSP, and is smaller than in other algorithms. The solutions
obtained by the QIEDA are competitive with the other algorithms, and the observed trend
justifies the use of quantum computers to solve the TSP. The presence of quantum noise in
the reproduction step of the algorithm improves its performance compared to others without
noise. The QIEDA computational cost is also analysed by a benchmark. We have shown that
the algorithm results are independent of the topology of the quantum computer chosen to
be executed on. However, the topology is critical for the execution time due to the SWAP
operations carried out by the quantum computers. We have proposed an ideal quantum
computer topology to solve the TSP although other technologies as IonQ 3 uses all-to-all
connected qubits configurations that may be as faster as the one proposed here. However,
this technology does not allow all the quantum gates that the W state circuit involves and
further studies should be carried out to adapt our approach.

Future work should include:

• The implementation of a W state quantum circuit able to sample the full individual
matrix instead of executing a W state circuit per matrix row.

• Generalizing QIEDA approach for a general purpose would enforce the usability of the
algorithm.

3https://ionq.com/

118

https://ionq.com/

Chapter 9

QAOA for BN Structure Learning

9.1 Introduction

Chapter 8 focuses on adding a quantum perspective to EDAs by implementing a quantum-
inspired approach, corresponding to CQ in Figure 1.1. On the other way around we find
quantum approaches in which a classical contribution is needed (QC in Figure 1.1); that is,
the VQAs (Section 4.3). In this chapter we present the use of this type of approach to face
the Bayesian network structure learning (BNSL) problem, and an extensive analysis on the
noise resilience for this problem. Although this chapter focuses on the application of VQAs,
part of it shows relevant results applying quantum-inspired technologies (CQ in Figure 1.1)
to the BNSL problem.

Regarding the high computational demands associated with BNs, two main problems have
been studied in the literature: inference, which involves calculating a posterior probability
distribution for some variables when observing the values of some other variables; and structure
learning, which involves finding the optimal BN graph that best fits some given data. This
chapter is focused on the latter type of problem.

Finding the structure of a BN giving some data is an NP-hard problem [Chickering, 1996], in
which the number of possible structures grows more than exponentially (Equation 2.11).

More recently, the capabilities of quantum computers to reduce the required execution time
when facing different optimization tasks and to solve very complex problems that may not be
approachable with classic computing methods have attracted much interest. QC is based on
quantum mechanics principles such as quantum entanglement and quantum superposition,
which allow quantum algorithms to explore areas of the search spaces of optimization problems
in a parallel and more efficient way.

Quantum annealing [Hauke et al., 2020] is a quantum heuristic that can solve certain
optimization problems exponentially faster than classic approaches. The BNSL problem
has been mapped to a quadratic unconstrained optimization problem (QUBO) to be solved
by using quantum annealing [O’Gorman et al., 2015, Shikuri, 2020]. The company Fujitsu
has recently proposed a new technology in which the performance of quantum annealing is

119

Vicente Pérez Soloviev

emulated classically. This quantum-inspired technology is digital annealing (DA) [Aramon
et al., 2019].

Some studies [Streif and Leib, 2019] have proven that some types of optimization problems
have landscape dispositions that make the quantum and simulated annealing methods converge
to local optimal solutions, while the QAOA is able to overcome this limitation and provide
better solutions. Quantum and simulated annealing have already been applied to BNSL;
however, to the best of our knowledge, the use of the QAOA has not been found in the
literature. In this chapter, we address the BNSL problem with the QAOA, and analyze the
performance of different variants of the algorithm.

VQAs, and QAOAs in particular, are some of the most promising algorithms in the NISQ
era, as their implementations optimize the number of utilized qubits, and moreover, the
variational ansatzs are expected to offer resilience to quantum noise such as amplitude and
phase damping errors [Xue et al., 2021, Sharma et al., 2020]. We also analyze the resilience of
the algorithm to the presence of different types of quantum noise, in the particular case of
the BNSL problem.

This chapter includes the developed methodology and results included in Soloviev et al.
[2022a]. The implemented methodology is available in a GitHub repository1.

Chapter outline
The outline of this chapter is organized as follows. Section 9.2 details the QUBO formulation
in which this chapter is inspired. Section 9.3 describes how the QAOA ansatz is built and
the characteristics integrated in our approach. Section 9.4 analyzes the performance of the
QAOA approach, the resilience of the algorithm to quantum noise, and a real application of
the algorithm for solving the BNSL problem. Section 9.4.4 shows further results of BNSL for
large BNs using DA technologies. Section 9.5 rounds the paper off with the conclusions of
our work.

9.2 QUBO formulation of BNSL
In this section, we describe the original QUBO formulation introduced in [O’Gorman et al.,
2015], on which we base our approach. The formulation is based on four different Hamiltonians:
Hscore, which optimizes the likelihood of a structure given the input data; Hmax, which ensures
the maximum in-degree of each node to limit the Hamiltonian complexity; and Htrans and
Hconsist which guarantee that the adjacency matrix that represents the BN is acyclic. The
computed QUBO expression is,

H(A,R,Y) = Hscore(A) +Hmax(A,Y) +Htrans(R) +Hconsist(A,R),

where A,R and Y are the quantum bits associated to the adjacency matrix, topological order,
and the maximum in-degree restriction variables, respectively, for variables X1, X2, . . . , Xn.

1https://github.com/VicentePerezSoloviev/QAOA_BNSL_IBM

120

https://github.com/VicentePerezSoloviev/QAOA_BNSL_IBM

CHAPTER 9. QAOA FOR BN STRUCTURE LEARNING

The QUBO problem formulation for solving a BNSL problem with n nodes requires

vsize = n(n− 1) + n(n− 1)
2 + 2n, (9.1)

quantum bits, where n(n − 1), n(n−1)
2 , and 2n are the number of bits associated with the

adjacency matrix, the topological order, and the number of variables needed to restrict the
maximum in-degree, respectively.

Each of the four different Hamiltonians that compose H(A,R,Y) are deeply explained in
this section.

9.2.1 H (score)
For Hscore we need to introduce the concept of an adjacency matrix (A):

A =


a11 · · · a1n
...
an1 · · · ann

 , (9.2)

where aij = 1 if there exists an arc from Xi to Xj and aij = 0 otherwise.

In this case, as BNs are represented as DAGs, the diagonal of this matrix is equal to zero,
and thus, the bits of the diagonal are not required for the QUBO formulation. Then, n(n− 1)
qubits are needed for the Hscore Hamiltonian to learn a BN of n nodes, and

Hscore(A) =
n∑

i=1
H i

score(ai), (9.3)

H i
score(ai) =

∑
J⊂{1,...,n}\{i}

|J |≤m

(wi(J)
∏
j∈J

aji), (9.4)

where ai = (a1i, . . . , ani), is the i-th column of A, wi(J) = ∑|J |
l=0(−1)|J |−l ∑

K⊂J
|K|=l

si(K), in which

si(K) is the score of node i given the parent set K, and m is the maximum in-degree allowed.

Note that the constant term is wi(∅) = si(∅), which refers to the score of node Xi without its
parents. If Xi has a single parent Xj, then the above equation simplifies to

H i
score(A) = wi(∅) + wi({j}) = si(∅) + si({Xj})− si(∅) = si({Xj}).

Similarly, if Xi has two parents Xj and Xk,

H i
score(A) = wi(∅) + wi({j}) + wi({k}) + wi({j, k})

= si(∅) + (si({Xj})− si(∅)) + (si({Xj})− si(∅)) + wi({j, k})
= si({Xj}) + si({Xk})− si(∅) + wi({j, k})
= si({Xj}) + si({Xk})− si(∅) + si({Xj, Xk})− si({Xj})−
− si({Xk}) + si(∅)) = si({Xj, Xk}).

121

Vicente Pérez Soloviev

9.2.2 H (max)
To ensure that the quantum algorithm only considers the maximum in-degree m = 2 to restrict
the search space, the Hmax Hamiltonian is implemented in a way such that 2n quantum bits
are needed. These quantum bits are represented as a matrix:

Y =


y11 y12
... ...
yn1 yn2

 ,
where yij ∈ {0, 1} are random binary variables. Y represents a slack variable used to reduce
the inequality constraint of the maximum in-degree to an equality constraint.

The corresponding Hamiltonian results in Hmax(A,Y) = 0 if the restriction is met, and
Hmax(A,Y) > 0 otherwise. Thus,

Hmax(A,Y) =
n∑

i=1
H i

max(ai, yi),

H i
max(ai, yi) = δmax(m−

n∑
j=1

aij − yi)2 =

=

0, di ≤ m

δmax(di −m)2, di > m

where yi = ∑2
l=1 2l−1yil, i = (1, . . . , n), and δmax ∈ R+ is a prefixed penalization term.

9.2.3 H (trans) and H (consist)
To ensure the acyclicity of the adjacency matrix we need to implement two different Hamil-
tonians, Htrans(R) and Hconsist(A,R). The former uses the topological order to check the
transitivity of the graph, and the latter checks the consistency between the topological order
and the adjacency matrix.

A topological ordering of a directed graph is a linear ordering of its vertices such that for
every arc i → j from vertex i to vertex j, i comes before j in the ordering (i < j). The
topological order is represented as

Rtop =


r11 · · · r1n
...
rn1 · · · rnn

 ,
where rij can be equal to 1, only if i ≤ j and rij = 0 if i > j for the given QUBO formulation.
The lower triangular portion of Rtop provides no additional information to the upper triangular
portion of Rtop. Moreover, if a matrix is acyclic, then the trace of Rtop is equal to zero.
Considering this, the variables used for the QUBO formulation are represented as part of
the matrix Rtop, where the diagonal of the matrix and all the elements below it have been

122

CHAPTER 9. QAOA FOR BN STRUCTURE LEARNING

removed

R =


r12 r13 · · · r1n

. . . r23 · · · r2n
... . . . · · · ...
· · · · · · . . . rn(n−1)

 . (9.5)

Then Htrans(R) is zero if the relation encoded in the R matrix is transitive and δtrans otherwise:

Htrans(R) =
∑

1≤i<j<k≤n

H ijk
trans(rij, rik, rjk),

H ijk
trans(rij, rik, rjk) = δtrans(rik + rijrjk − rijrik − rjkrik) =

=

δtrans, [(i ≤ j ≤ k ≤ i) ∨ (i ≥ j ≥ k ≥ i)]
0, otherwise

Hconsist(A,R) is zero if the order encoded in the R matrix is consistent with the structure
encoded in A, and δconsist otherwise.

Hconsist(A,R) =
∑

1≤i<j≤n

H ij
consist(aij, aji, rij),

H ij
consist(aij, aji, rij) = δconsist(ajirij + aij(1− rij)) =

=

δconsist, (aji = rij = 1) ∨ (aij = 1 ∧ rij = 0)
0, otherwise

where δtrans ∈ R+ and δconsist ∈ R+ are prefixed penalization terms.

9.3 Method
This section explains how the variables are deployed in the QAOA approach and how the
Hamiltonian is transformed to quantum circuits. All the implemented software is codified by
using Qiskit-0.18.1 [Qiskit contributors, 2023] and myQLM-1.5.1 [ATOS, 2021].

9.3.1 QAOA variables
To make the QAOA able to manage the QUBO variables (A,R,Y), it is necessary to arrange
them in such a way that they are represented as a vector. Thus, the previous QUBO variables
are disposed as a vector of qubits with a size of vsize (Equation 9.1).

As explained in Section 4.4, the QAOA is a hybrid approach in which the classic part of the
algorithm computes the cost function of the obtained solutions and the expectation value of
all the solutions of the corresponding iteration. Our proposal also computes the maximum
in-degree (m = 2) of the solutions and penalizes those that do not meet the restriction in a
classic manner. Upon doing so, vsize reduces to

vsize−QAOA = n(n− 1) + n(n− 1)
2 = 3n(n− 1)

2 , (9.6)

123

Vicente Pérez Soloviev

H

H

H

H

H

H

H

H

H

RZ
wi(j)

RZ
wi(j)

RZ
wi(j)

RZ
wi(j)

RZ
wi(j)

RZ
wi(j)

RZ
wi(j, k)

RZ
wi(j, k)

RZ
wi(j, k)

RZ

RZ

RZ

RZ

RZ

RZ

RZ

RZ

RZ

RZ

RZ

RZ

RZ

RX

RX

RX

RX

RX

RX

RX

RX

RX

q10 |0>

q11 |0>

q12 |0>

q13 |0>

q14 |0>

q15 |0>

q16 |0>

q17 |0>

q18 |0>

q10 |0>

q11 |0>

q12 |0>

q13 |0>

q14 |0>

q15 |0>

q16 |0>

q17 |0>

q18 |0>

Figure 9.1: A QAOA circuit example for a BNSL problem with 3 nodes and 1 layer. This
variational ansatz has γ and β parameters as the parameters of the first layer of the circuit.

where vsize−QAOA < vsize ∀ n, because the Y variables in the Hamiltonian are not considered.

Thus, the vector q needed to solve the BNSL problem for a BN of n nodes by using the
QAOA is an array of size vsize−QAOA,

q = (q1, q2, . . . , qn∗(n−1), . . . , qvsize−QAOA
)

= (a12, a13, a1n, . . . , an(n−1), r12, r13, r1n, r23, . . . , r(n−1)n),

where aij and rij are defined in Equation 9.2 and Equation 9.5, respectively.

9.3.2 QAOA circuit
In Section 4.4, we have seen that the process of preparing the quantum state during the
operation of the QAOA is composed of three elements:

1. Preparing an initial state of superposition.

2. Applying the cost operator U(HC , γ) (Equation 4.16).

3. Applying the mixed operator U(HB, β) (Equation 4.17).

124

CHAPTER 9. QAOA FOR BN STRUCTURE LEARNING

9.3.2.1 Initial state

The initial state used during the QAOA is usually the superposition of all the basis states,
which is defined as:

|ψ0⟩ =
(

1√
2
(
|0⟩+ |1⟩

))⊗vsize−QAOA

,

where ⊗vsize−QAOA refers to the number of qubits used in the quantum state (Equation 9.6).

To reach the superposition state of all the possible basis states, we apply Hadamard gates to
each qubit.

9.3.2.2 Applying the cost operator

As the maximum in-degree verification is implemented in the classic part of the VQA, the
Hamiltonian to be implemented is reduced to

H(D,R) = Hscore(D) +Htrans(R) +Hconsist(D,R). (9.7)

The Hamiltonian described in Equation 9.7 involves binary variables, and the QAOA needs
the Hamiltonian to be transformed into a spin Hamiltonian where all the variables are spins
in {−1, 1}. Thus, each binary variable Xi in the QUBO formulation must be transformed as
Xi → 1−Zi

2 , where Zi is the Pauli-Z operator (Table 4.1).

Thus, the QUBO formulation is transformed into a formula in which all the variables involved
are q. The QAOA is a circuit model-based approach, and thus, each Pauli operator Zi is
a quantum gate in the QAOA circuit. Each operator is a rotation-Z gate of qubit i, and
each multiplication of two Pauli operators ZiZj is a sequence of three gates in qubits i and j
(CNOT - RZ - CNOT), as shown in Figure 9.2.

Figure 9.2: A multiplication of two Pauli operators ZiZj is represented in the quantum circuit
as a combination of two CNOT gates between qubits i and j and a rotation-Z gate in one of
them.

Each Zi gate has a rotation angle that is parameterized by γ and influenced by the structure
evaluation scores (Equation 9.4).

9.3.2.3 Applying the mixed operator

The last step of the QAOA circuit is the mixed operator. This operator consists of applying a
rotation-X gate in all the qubits of the circuit with parameter β.

An example of the resultant circuit is shown in Figure 9.1. For each extra layer, a cost and
mixed operators U(HC ,γ) and U(HB,β) should be added sequentially with their respective
parameters to the actual circuit to increase p.

125

Vicente Pérez Soloviev

states
0.00

0.05

0.10

0.15
fre

qu
en

cy
p = 2

states
0.00

0.05

0.10

0.15

fre
qu

en
cy

p = 4

states
0.00

0.05

0.10

0.15

fre
qu

en
cy

p = 6

states
0.00

0.05

0.10

0.15

fre
qu

en
cy

p = 8

Figure 9.3: Histograms for different numbers of layers p for the same BNSL problem. The
Y and X axes represent the frequency, and the solutions, respectively. The names of the
solutions have been removed from the X-axis for aesthetics, but how they are sorted is the
same for each subplot.

9.4 Results
In this section, some results are shown for the BNSL problem after applying the proposed
QAOA using CVaR(α) (Equation 4.11). Some plots are first given to show how the QAOA
performs in terms of cost function minimization (Section 9.4.1). Then, a performance evalua-
tion of the QAOA considering different types of simulated noise is analyzed (Section 9.4.2).

126

CHAPTER 9. QAOA FOR BN STRUCTURE LEARNING

Finally, a real example of BNSL is shown (Section 9.4.3).

1 2 3 4 5 6 7
p

75

50

25

0

25

50
= 0.1

1 2 3 4 5 6 7
p

75

50

25

0

25

50
= 0.2

1 2 3 4 5 6 7
p

75

50

25

0

25

50
= 0.3

1 2 3 4 5 6 7
p

75

50

25

0

25

50
= 0.4

1 2 3 4 5 6 7
p

75

50

25

0

25

50
= 0.5

1 2 3 4 5 6 7
p

75

50

25

0

25

50
= 0.6

1 2 3 4 5 6 7
p

75

50

25

0

25

50
= 0.7

1 2 3 4 5 6 7
p

75

50

25

0

25

50
= 0.8

1 2 3 4 5 6 7
p

75

50

25

0

25

50
= 1.0

co
st

Figure 9.4: Minimization of the CVaR(α) (Equation 4.11) for different numbers of layers p
(X-axis) in the QAOA circuit and different values of the parameter α. Blue dots and error bars
correspond to the means and standard deviations of the best results found after executing the
QAOA 50 times, respectively, and red denotes the minimum costs found in those executions.
Dashed trend lines are plotted to guide the human eye.

Note that the real limitation of this algorithm has been the number of available qubits in the
available architectures. In our experiments, the QAOA looks for the optimal BN structure in
a search space containing 543 possible structures for n = 4 and 29281 structures for n = 5
(see Equation 2.11). This architecture restriction is imposed due to the number of qubits that

127

Vicente Pérez Soloviev

we can access at the moment in Qiskit and myQLM. Despite the fact that these problem
sizes are far from those examined by the classic BNSL approaches, the number of qubits that
companies such as IBM and Google are offering is increasing rapidly, and thus, the use of
VQAs is increasingly justified.

The optimizer used in the implementation is the constrained optimization by linear ap-
proximation algorithm [Powell, 1994], which is widely used in the state-of-the-art VQAs
[Bonet-Monroig et al., 2021].

9.4.1 QAOA performance

The QAOA approach aims at minimizing the uncertainty among the solutions obtained after
completing the QAOA circuit measurement process, which is optimized by the minimization
of the expectation value; see Equation 4.9. It is expected that by increasing the number of
layers p of the circuit, the expectation value among the solutions must decrease. The task
of the optimizer is to iteratively search the optimal parameters (γopt, βopt) of the QAOA
circuit to minimize the expectation value. When the optimizer converges to a solution, the
parameters (γopt, βopt) are set to those of the quantum circuit. Figure 9.3 shows an example
histogram of the obtained solutions. This experiment is performed with different numbers of
layers (p = 2, 4, 6, 8) to show the differences between the resultant histograms.

Figure 9.3 shows that increasing the number of layers, clearly minimizes the uncertainty.
Note the existence of two clear optima with similar costs for p = 8; this is not as clear for
p = 2. Moreover, a reduction in the number of solutions that are represented by the X-axis
for increasing p is clearly visible. The solutions obtained with p = 2 have a density close
to 0; for p = 8, they tend to have a density equal to 0 and thus become insignificant in the
corresponding subplot.

As shown before, the QAOA approach is able to reduce the uncertainty among the solutions
for the implemented Hamiltonian. However, the proposed approach heavily depends on the
random pair of (γ, β) parameters from which the optimizer is initialized. Thus, depending on
the initialization, different solutions might be proposed in different executions for the same
Hamiltonian problem.

The minimization of the CVaR(α) (Equation 4.11) is analyzed next by using a random dataset
of 4 variables. In Figure 9.4, a comparison of the performances achieved by the QAOA for
different values of the parameter α and the number of layers p in the QAOA circuit is shown.
Note that increasing the number of layers decreases the mean best cost although it increases
the depth of the circuit and the computing time.

In Figure 9.4, we observe an improvement as p increases and α takes intermediate values. The
best solutions are found for intermediate values of α in the range [0.3, 0.5] and p = 7. Note
that this improvement with increasing p is not as noticeable for large values of α (α→ 1.0) as
it is for the lowest values (α→ 0). Despite these results, we claim that it is not necessary to
increase the number of layers in the QAOA circuit to find the best results. Figure 9.4 shows
cases in which the same results are obtained, with fewer layers but different values of α.

128

CHAPTER 9. QAOA FOR BN STRUCTURE LEARNING

Figure 9.5: Means and standard deviations of the number of iterations until convergence after
executing the QAOA 50 times for different values of p (X-axis) and α (colours).

Note that optimizing CVaR(α) considering α parameters, the implemented approach shares
characteristics with EDAs. This type of algorithm tends to converge to local optima when the
percentage of solutions selected to update the probability distribution is too low. However, as
shown in Figure 9.4, the QAOA does converge to the same solution for any value of α. This is
analyzed in Figure 9.5, where the mean numbers of iterations required until convergence are
shown for different executions of the QAOA approach and different values of p. Independently
of the value of α, the number of iterations remains approximately constant for the same value
of p, whereas it increases with p.

9.4.2 Noise resilience
Two main disadvantages of NISQ computers are their limited numbers of qubits and the
presence of quantum noise. Thus, there is a need to implement approaches that offer resilience
to quantum noise and to optimize the number of qubits used to solve the given problem. It
has been shown that VQAs can compensate for quantum errors such as over-/under-rotations
[McClean et al., 2016]. However, a wide range of studies have analyzed the QAOA in different
applications to determine the hard limit of its resilience to quantum noise [Shaydulin and
Alexeev, 2019, Fontana et al., 2021, Urbanek et al., 2021, Kandala et al., 2019, Sun et al.,
2021, Vovrosh et al., 2021]. In other words, we analyze how much noise the QAOA can bear
without worsening its optimization behaviour.

To perform this analysis, different noise channels ε have been constructed to try to simulate
the different decoherence quantum noises. The quantum channels which define the quantum
noises are described in Section 4.6 using Kraus operators formalism.

Here, we parameterize the quantum channels as ω ∈ [0, 1], where ω = 0 represents no quantum
noise, and ω = 1 is the maximal noise. For this analysis, amplitude damping (εAD), phase
damping (εP) and depolarizing channels (εD) are considered.

129

Vicente Pérez Soloviev

Other types of quantum noises exist and are studied in the literature, such as the cross
talk error, which is neglected in this study, as the main focus is to analyze the effects of
decoherent noise channels. Similarly, the readout error is not considered as this type of noise
is independent from the ansatz design.

For this study the amplitude and phase damping noises are only applied to the one-qubit
gates, while the depolarization noise is applied to the two-qubit gates, such as CNOT gates.

Figure 9.6: A quantum parametric circuit with p layers and 2p parameters. The initial state
is a superposition of all the possible computational states, and after applying the p layers, a
measurement along the Z axis of all the qubits is performed. Each layer is composed by the
noise channel and both the cost and mixed operators.

To carry out these simulations, a quantum circuit has been designed alternating the QAOA
operators (Equation 4.16 and Equation 4.17) with each noise channel operators parameterized
by ω. By this way, each layer of the QAOA is accompanied by a noise operator, trying to
replicate the behavior of the processes in real quantum computers. Three different quantum
circuits are used in order to analyze each quantum channel separately. The quantum parametric
state is defined as

ε(|ψ(γ,β)⟩) = Λp(ω)U(HB, βp)U(HC , γp) . . .Λ1U(HB, β1)U(HC , γ1) |s⟩ ,

where p ≥ 1, γ = (γ1, . . . , γp), β = (β1, . . . , βp), |s⟩ is the uniform superposition state over
all possible computational states, and (Λ1, . . . , Λp) are the noisy operators that simulate
each quantum channel. An example of a quantum circuit with p layers is shown in Figure 9.6
where the orange operators represent the quantum channels.

The operators used in the circuit construction represent the same quantum channel and affect
to all the qubits in the quantum system. Their application is defined onto a quantum state as:

ε(ψ) = Λ(ω)ψ = (
vsize−QAOA⊗

i=1
Λ(1)

i)ψ,

where ε(ψ) is the resultant state after applying the quantum channel over the state ψ, ω is
the parameter of the quantum channel and Λ(1) is the application of the one-qubit quantum
channel in each qubit of the QAOA ansatz.

130

CHAPTER 9. QAOA FOR BN STRUCTURE LEARNING

5.0
0

4.7
5

4.5
0

4.2
5

4.0
0

3.7
5

3.5
0

3.2
5

3.0
0

2.7
5

2.5
0

2.2
5

2.0
0

1.7
5

1.5
0

1.2
5

1.0
0

0.7
5

0.5
0

0.2
5

0.0
0

log10

15

10

5

0

5

10

15

20

co
st

(a)

amplitude damping error
phase damping error
depolarizing error

5.0
0

4.7
5

4.5
0

4.2
5

4.0
0

3.7
5

3.5
0

3.2
5

3.0
0

2.7
5

2.5
0

2.2
5

2.0
0

1.7
5

1.5
0

1.2
5

1.0
0

0.7
5

0.5
0

0.2
5

0.0
0

log10

40

45

50

55

60

65

70

ite
ra

tio
ns

(b)

Ideal simulator
amplitude damping error
phase damping error
depolarizing error

Figure 9.7: Mean best costs (a) and mean numbers of iterations until convergence (b) as
a function of the noise amplitude ω. Blue, red and green lines represent the simulated
amplitude, phase damping and depolarizing noise models, respectively. For the detailed mean
and standard deviation values of these experiments, see Table 9.1. Fifty different executions
of the QAOA algorithm were run for the 4 node BNSL problem, and p = 3.

Figure 9.7(a) shows the resilience of the algorithm to the three types of previously explained
noise channels. The figure shows the mean best costs for different values of ω. Table 9.1 show
mean and standard deviations of the numerical results.

To analyze the resilience of the simulated noises, we are interested in, fixing a range of mean
cost values, knowing which is the value of ω that makes the mean best cost found to be out
of this range. Since in Figure 9.7(a) for the different noises when there is nearly no noise
(ω → 0), the cost values are within the range [−15,−5], we are interested in the values of ω
at which the different noise channels make the found costs to leave this range. Thus, we set
the values of ω = 10−2, ω = 10−1.5, ω = 10−0.75 for the depolarized, amplitude damping and
phase damping noise channels, respectively.

The number of iterations needed by the algorithm to converge are shown in Figure 9.7(b)

131

Vicente Pérez Soloviev

cost convergence
AD PD DE AD PD DE

log10ω µ σ µ σ µ σ µ σ µ σ µ σ
-5.00 -12.25 10.80 -7.20 15.61 -12.45 8.96 69.80 4.70 66.50 6.73 68.40 6.64
-4.75 -9.00 10.53 -10.95 10.80 -12.00 7.94 66.70 6.34 66.95 5.13 67.65 6.04
-4.50 -9.50 10.69 -4.90 11.49 -9.30 9.65 69.90 7.79 66.45 8.11 68.15 7.80
-4.25 -10.65 8.97 -11.45 10.95 -7.65 11.34 69.90 7.83 66.15 5.95 66.45 5.36
-4.00 -15.10 7.75 -5.95 9.58 -11.25 11.50 68.05 5.48 67.30 5.53 69.65 4.36
-3.75 -10.75 10.97 -10.25 11.54 -8.00 12.53 71.00 9.00 66.90 5.18 69.00 5.52
-3.50 -12.35 9.17 -14.00 8.47 -13.45 7.47 71.05 8.01 66.65 5.65 65.70 6.06
-3.25 -10.20 13.78 -15.20 8.79 -10.85 10.98 69.90 8.47 71.95 7.16 65.55 6.07
-3.00 -14.55 7.55 -12.70 8.86 -10.65 8.64 68.25 7.35 70.05 9.41 69.30 5.92
-2.75 -16.00 8.07 -8.15 13.69 -8.70 11.72 66.30 5.20 69.40 7.61 69.00 6.28
-2.50 -12.05 8.84 -8.75 13.18 -12.10 10.34 66.95 5.52 64.60 6.94 69.45 7.94
-2.25 -10.05 9.40 -6.55 12.15 -10.90 8.23 66.65 4.69 68.45 6.63 66.45 6.37
-2.00 -9.45 11.91 -11.70 9.59 -9.60 12.33 69.85 6.18 68.45 6.10 66.55 5.07
-1.75 -7.80 12.76 -5.85 12.78 -3.40 9.33 64.50 5.84 65.35 5.29 68.80 7.70
-1.50 -6.40 7.16 -8.80 11.62 6.25 15.34 68.20 5.52 68.20 6.96 62.50 4.88
-1.25 0.40 9.30 -7.15 10.16 9.85 16.68 67.50 6.06 67.75 6.22 63.65 5.58
-1.00 -1.95 5.67 -8.50 10.04 18.25 13.26 65.00 6.05 65.30 6.39 60.70 4.66
-0.75 -0.50 2.24 -2.50 7.25 13.20 12.89 66.95 6.48 65.55 5.86 58.10 4.59
-0.50 0.00 0.00 7.80 12.88 21.05 11.81 66.75 5.76 62.60 3.76 58.50 4.57
-0.25 0.00 0.00 22.15 14.53 20.01 10.30 64.05 6.73 58.75 4.02 59.10 4.59
0.00 0.00 0.00 11.65 13.35 21.50 11.20 37.00 0.00 60.60 5.86 58.60 4.80

Table 9.1: Mean best costs (µ) and standard deviations (σ) found for different values of the ω
parameter over 50 executions of the QAOA approach for the BNSL problem, and the mean
number of iterations (µ) and standard deviations (σ) until convergence for 50 executions. AD,
PD and DE represent amplitude damping, phase damping, and depolarizing simulated errors,
respectively.

(supplementary numerical results are at Table 9.1). In the figure we can generally observe a
decreasing trend in the number of average iterations correlated with the growth of ω. The
orange line shows the average number of iterations required to run the algorithm with the
ideal simulator without quantum noise. Analyzing the values of ω identified in Figure 9.7(a),
we can see how approximately at the same values, in Figure 9.7(b), there is a noticeable
decrease tendency in the number of average iterations. Considering the worsening of the
mean best cost found and the decrease in the number of iterations we can conclude that the
algorithm is falling into local optima solutions when ω → 1.

Considering the previous analysis, we can present the following conjectures which will be
extended below: (i) the approach is less resilient to the depolarization noise channel than
to the other channels; (ii) the amplitude damping noise channel makes the mean best cost
to converge to solutions with costs close or equal to zero for values of ω ≥ 10−1.25; (iii) the
approach is resilient to the phase damping noise channel up to values of ω ≥ 10−1.

Firstly, despite the fact that the depolarized noise channel has only been applied on the
two-qubit gates, the design of the variational ansatz from the QUBO makes the number of

132

CHAPTER 9. QAOA FOR BN STRUCTURE LEARNING

-7 -6 -5 -4 -3 -2 -1 0
log10

12
10

8
6
4
2
0
2

co
st

p = 2
p = 4
p = 6
p = 7

Figure 9.8: Mean best cost obtained for different values of the parameters ω and p for 50
executions of the QAOA algorithm for the BNSL problem considering the amplitude damping
error.

CNOT gates high and therefore the depolarized noise channel has a high impact on the results
shown in Figure 9.7(a). Consequently, we can say that the algorithm is resilient to this noise
channel up to values of ω = 10−2. Higher values of ω rise noticeably the mean best cost found
increasing also the standard deviation between solutions (Table 9.1).

Secondly, it is worth noting that amplitude damping is the only noise channel that converges
to mean best costs of zero with no standard deviation, while the others reach mean best cost
values above 15 with a high standard deviation among the best results found when ω → 1
(Table 9.1). Due to the effects that the amplitude damping noise channel has on the quantum
states, we can affirm that the algorithm is converging to a partial solution, in which only
some arcs are equal to those in the real BN, but all other values in the adjacency matrix are
zero. The QUBO contemplates that those solutions such as |00 · · · 0⟩ should be penalized,
and so it does not converge to them. Rather, in this case it is converging to a solution in
which a large majority of the values in the adjacency matrix are zeros, except for the correctly
pointed arcs. Therefore, for maximum values of ω, the mean best cost of the solutions found
is better than what we find for maximum values of ω with other noise channels.

Thirdly, the phase damping error channel is the most resilient if only the value of ω that causes
the mean best cost to fall out of the range of values fixed in the analysis of Figure 9.7(a) is
taken as a reference. However, when ω ≥ 10−0.75 the standard deviations among the solutions
are increased (Table 9.1).

After analysing Figure 9.7, we conclude that our approach has better resilience to the amplitude
damping error and phase damping error than to depolarizing error. However, we believe that
it is of interest to analyze the convergence noted for the case of the amplitude damping noise
channel.

In Figure 9.8, a deeper analysis of the amplitude damping channel is shown for different values
of p. The figure shows the influence of the quantum noise on the results based on the number
of layers p of the QAOA circuit. As p increases, the depth of the circuit also increases, and

133

Vicente Pérez Soloviev

thus, a greater part of the qubit lifespan will be executed outside the coherence times defined
by T1 and T2. The results obtained by the QAOA for higher values of p are much worse than
those obtained with low values of the parameter, and in most cases a worsening of the mean
best cost is observed as ω increases. From this analysis we conjecture that as the number of
layers p increases, the QAOA becomes less resilient to the amplitude damping error.

9.4.3 BNSL from real-world data
In this section, the QAOA approach is applied to a real BNSL problem by using the Cancer2

benchmark. The Cancer BN (Figure 9.9) has 5 discrete variables, from which we sampled
3 different datasets using probabilistic logic sampling [Henrion, 1988] with 500, 1000 and
10000 instances. The structures provided by the QAOA are compared to the original BN
structure through the structural Hamming distance metric, where a value of zero means that
the QAOA approach fully recovers all the arcs of the original BN. We consider two different
structure evaluation scores: the BIC and BDeu scores. This experiment is limited to 5 nodes
due to the limit of qubits we can access with Qiskit and myQLM, for which the search space
is composed of 29281 possible BN structures.

Pollution Smoker

Cancer

XRay Dyspnoea

Figure 9.9: Original Cancer BN structure composed of 5 nodes that represent 5 discrete
variables and 4 arcs.

We compare the results obtained by the QAOA approach with those of two score-based
algorithms: the hill climbing (HC) [Gámez et al., 2011] and tabu search [Ji et al., 2011]
algorithms; with that of a hybrid algorithm: max-min hill climbing (MMHC) [Tsamardinos
et al., 2006]; and with that of the simulated quantum annealing (SQA), which is a version of
quantum annealing executed in the quantum learning machine [ATOS, 2021]. The QAOA
results are shown in Table 9.2 for different values of α, where the number of layers p is
optimized for each case. The parameters of the algorithms are optimized, and the best results
are shown in Table 9.2.

2https://www.bnlearn.com/bnrepository/discrete-small.html#cancer

134

https://www.bnlearn.com/bnrepository/discrete-small.html#cancer

CHAPTER 9. QAOA FOR BN STRUCTURE LEARNING

500 1000 10000
α BIC BDeu BIC BDeu BIC BDeu

HC - 4 4 4 4 0 0
Tabu - 4 4 4 5 0 0

MMHC - 4 4 4 4 0 0
SQA - 5 5 4 5 3 2

QAOA 0.9 0 0 1 0 0 1
QAOA 0.7 1 1 1 0 0 0
QAOA 0.5 1 1 0 1 1 1
QAOA 0.3 0 0 1 0 0 1

Table 9.2: Comparison of the QAOA approach with three different classic approaches and
simulated quantum annealing. The experiment is executed 10 times for each of the non-
deterministic (SQA and QAOA) approaches (the best results are shown), and three different
dataset sizes are simulated with 500, 1000 and 10000 instances. BIC and BDeu scores are
used for the local BN structure evaluation. The structural Hamming distance metric is shown
for each experiment.

The QAOA approach obtains better results than those of classic approaches regardless of
the α parameter for a low number of instances. As the number of instances increases, the
α parameter seems to have a larger influence on the obtained results. The QAOA improves
upon the results of the SQA in all the experiments.

9.4.4 Large BNs learning
Previous results in this chapter showed the BNSL using QAOA. However, to learn larger BNs,
a bigger quantum device would be necessary. As we are restricted to the characteristics of
nowadays’s devices, here we shown some practical results using a quantum-inspired technology
provided by Fujitsu [Aramon et al., 2019]; aka, Digital Annealing (DA). This technology
allows to simulate a large number of qubits. Figure D.1 shows the relation between the
number of needed (simulated) qubits and the size of the problem.

The performance of this technology is hereby compared to HC, Tabu and MMHC for BNSL
of 20 and 50 nodes. The former experiment uses Child dataset3 while the latter uses a BN
random generator which firstly proposes a BN and then uses sampling methods for generating
a new dataset. Dataset with 1000, 5000, 10000 and 50000 instances were sampled. SHD is
used to compare the results found by the approaches compared to the original BN structure.
Note that QAOA and SQA are not benchmarked due to device restrictions. Results are shown
in Appendix D.

Figure D.2 shows the results of BNSL for 20 nodes. It is observed an improving performance
with decreasing size of the dataset. For 1000 instances, DA outperforms the rest of approaches,
and, for 5000 instances, only MMHC outperforms DA.

Figure D.3 shows the results of BNSL for 50 nodes. DA approach is still outperforming Tabu
3https://www.bnlearn.com/bnrepository/

135

https://www.bnlearn.com/bnrepository/

Vicente Pérez Soloviev

and HC approaches, independently of the size of the dataset. However, MMHC outperforms
DA for all the cases.

9.5 Conclusions
In this chapter the BNSL problem was approached by using the QAOA variational quantum
algorithm. The problem was transformed into a Hamiltonian energy function, and then
translated into a QAOA parametric circuit to be optimized into a classic loop.

A remarkable uncertainty reduction across all the possible solutions was shown for increasing
number of QAOA circuit layers. We introduced the concept of the CVaR(α) to reduce the
number of solutions selected for computing the expectation value of each iteration. Considering
this new parameter, we could observe that it was not necessary to increase the number of
circuit layers to obtain the best results since the QAOA was able to converge to similar
solutions by tuning the α parameter.

The NISQ-era quantum computers are characterized by the quantum noise embedded in these
systems. We analyzed the performance of our approach while simulating different types of
quantum noise, and our results show that the QAOA is resilient to quantum noise over a
range of noise amplitudes. More specifically, our approach offers good performance when
considering the amplitude damping error, which was more deeply analyzed.

Our approach was applied to the Cancer benchmark and a comparison with other optimizers
was shown with different structure evaluation scores and dataset sizes. The QAOA found
the global optimum for every size-score combination and seemed to outperform classic and
quantum approaches on any dataset.

Considering the results obtained in this chapter, we believe that the use of VQAs to solve the
BNSL problem is justified.

Future research lines are listed below:

• Considering the warm starting scenario [Egger et al., 2021].

• Considering other types of classical optimizers.

• Facing the BNSL with other types of quantum approaches.

• Facing larger BNSL problems.

136

Chapter 10

VQAs Parameter Tuning with EDAs

10.1 Introduction

Chapter 9 presented a hybrid approach (QC in Figure 1.1) between classical and quantum
computations for facing the BNSL problem in which a classical optimizer was used to tune
the parameters of a quantum system ansatz. In this chapter, we propose to use EDAs to
approach the ansatz parameter optimization. Moreover, we compare the use of different EDAs
to face the VQAs ansatz parameter tuning. The results show UMDA, EGNA and SPEDA
compared to the state-of-the-art classical optimizers used for this task, in two different VQAs,
analyzing the quality of the solutions found and their computational runtime. EDAs have
demonstrated to achieve very good results in continuous space optimization for a wide range
of problems [Dasgupta and Michalewicz, 2014], and thus, we believe that these algorithms
can provide competitive results to approach this problem and overcome limitations such as
the Barren plateau problem [McClean et al., 2018].

This chapter includes the developed methodology and results included in Soloviev et al. [2022c,
2023b]. The implemented methodology is available in a GitHub repository1, and was added
as a new functionality to Qiskit [Qiskit contributors, 2023] library as a new optimizer2.

Chapter outline

The outline of this chapter is organized as follows. Section 10.2 introduces the different variants
done over the EDAs to compare their performance. Section 10.2.1 and Section 10.2.2 shows
numerical results for QAOA and VQE ansatz parameter optimization. Section 10.2.3 simulates
a molecule with different intensities of quantum noises where the EDA variants are compared.
Section 10.2.4 shows the hyper-parameter dependence in EDA variants. Section 10.3 rounds
the chapter off with further conclusions and future work.

1https://github.com/VicentePerezSoloviev/EDA_QAOA
2https://docs.quantum.ibm.com/api/qiskit/qiskit.algorithms.optimizers.UMDA

137

https://github.com/VicentePerezSoloviev/EDA_QAOA
https://docs.quantum.ibm.com/api/qiskit/qiskit.algorithms.optimizers.UMDA

Vicente Pérez Soloviev

-2 -3 /2 - - /2 0 /2 3 /2 2

-2

-3 /2

-

- /2

0

/2

3 /2

2

Figure 10.1: Optimization landscape where Y - and X-axis represent, respectively, β and γ
QAOA ansatz parameters for p = 1 layer, and the lighted regions over the purple background
represent the optimum parameters that minimize the expectation value (Equation 4.9).
Although the parameter tuning has been restricted to θ ∈ [0, 2π]n, the landscape of θ ∈
[−2π, 2π]n is displayed to show that −2π is equivalent to 2π.

10.2 Experimental results
In this section we show some numerical results when comparing different EDA complexities
to some state-of-the-art gradient-free and -based algorithms. Note that all the implemented
experiments for this study have been coded in Python using Qiskit-0.21.2 [Qiskit contributors,
2023] and EDAspy-1.0.234 Python packages. Different optimizers have been executed to
tune the parameters of the QAOA ansatz and the VQE TwoLocal ansatz, both to optimize
the same benchmark, an instance of the well-known MaxCut benchmark for 10 variables
and 10 qubits (n = 10). Moreover, Section 10.2.3 shows some experimental results using
different optimizers for tuning the parameters of an VQE ansatz used to simulate a molecule.
Section 10.2.4 analyzes the hyper-parameter tuning of the EDA approach.

All the algorithms have been configured to a maximum of 100 iterations and the number of

3https://github.com/VicentePerezSoloviev/EDAspy
4https://pypi.org/project/EDAspy/

138

https://github.com/VicentePerezSoloviev/EDAspy
https://pypi.org/project/EDAspy/

CHAPTER 10. VQAS PARAMETER TUNING WITH EDAS

(a) (b)

Figure 10.2: GBN structures designed for QAOA (a) and VQE TwoLocal (b) ansatz parameter
tuning embedded by EGNA. Each node represents a parameter in the ansatz, and an arc
between two nodes represents a linear Gaussian dependency between both variables.

shots for the ansatz is t = 1000. In the case of the EDAs, the selection ratio has been set
to δ = 0.5 for all the variants, the population size is N = 60, and the EDA is considered
to have converged if after 20 generations, the algorithm has not improved the best solution
found. Note that all the EDAs have been implemented as elitist approaches, where the best
individuals of each iteration remain in the future, so that the algorithm never worsens the
best results found in previous iterations, and also SPEDA’s archive-based feature has been
omitted to perform a fair comparison with the other EDAs (l = 1, where l is the archive
length).

Different works in the literature [Brandao et al., 2018, Akshay et al., 2021] have shown that the
QAOA ansatz parameters in the same layer are dependent, and there exist different optimum
configurations for γi and βi for which the expectation value (Equation 4.9) is minimum.
Figure 10.1 shows an example for the MaxCut problem instance, with p = 1, where the
optimization landscape is shown. Lighted areas over the purple background represent the
optimum parameters for the QAOA ansatz, which our EDA approach should find.

Due to this dependency between γi and βi in the same layer, in the following experiments
the GBN structure embedded by the EGNA approach has been fixed. An example of the
embedded GBN in the EGNA approach to tune QAOA ansatz parameters with p layers is
shown in Figure 10.2(a), where each node represents a parameter in the QAOA ansatz, and γi

and βi are connected for each layer. Thus, the runtime of EGNA is expected to be reduced,
as the structure of the GBN is not learned, and only the parameters of the model are updated
according to the provided data.

Following the same strategy, a fixed structure has been proposed for the VQE ansatz parameter
tuning using EGNA. In this case, as in each layer a quantum parametric gate is implemented

139

Vicente Pérez Soloviev

1 2 3 4 5 6 7 8
p

0

500

1000

1500

2000

2500

3000

se
co

nd
s (

s)
Execution time

ADAM
CG
COBYLA
GradientDescent
L_BFGS_B

SLSQP
SPSA
UMDA
EGNA_fs
SPEDA

1 2 3 4 5 6 7 8
p

8

6

4

2

0

2

en
er

gy

Energy minimization

Figure 10.3: Comparison of the different EDA variants with the other state-of-the-art opti-
mizers for the QAOA ansatz parameter tuning. The top panel shows the mean computation
time and standard deviation after running each algorithm 25 independent times for different
number of layers p ∈ {1, . . . , 8}. The bottom panel shows the mean best expectation value
achieved (Equation 4.9) and standard deviation after running each algorithm 25 independent
times for different number of layers p ∈ {1, . . . , 8}.

for each qubit, we have designed a structure in which each parameter θi is connected to
parameter θi+1 in the same layer, justified by the subsequent entanglement of the qubits
following the same sequence, between each layer of the ansatz, as shown in Figure 4.6. In
addition, the parameters of the quantum parametric gates in each qubit are sequentially
connected. An example is shown in Figure 10.2(b), where each node represents a parameter
in the ansatz with p layers, n qubits and pn parameters.

In the case of SPEDA, we have decided not to restrict the topology, since the BN structure
learning algorithm embedded by SPEDA also learns the node types (Gaussian or KDE).

10.2.1 QAOA ansatz parameter tuning
Figure 10.3 shows a comparison of the computation time and expectation value minimization for
different optimizers and the three EDAs: UMDA, EGNA with the fixed structure (EGNA_fs)
and SPEDA, for the QAOA parameter tuning.

Figure 10.3 (top) shows how EGNA_fs reduces the computation time notably. Note that,
when p < 6 the UMDA takes a notably larger computation time to converge compared to
SPEDA and EGNA_fs, which is probably due to the number of iterations needed during
runtime. SPEDA and EGNA_fs take a similar computation time up to p < 5. For larger p,
EGNA_fs improves runtime.

140

CHAPTER 10. VQAS PARAMETER TUNING WITH EDAS

123

SPEDA
EGNA_fs

UMDA

Figure 10.4: Critical difference diagram using Friedman tests to reject the null hypothesis
of equal expected value, and a post-hoc analysis based on the Wilcoxon-Holm method. The
horizontal black line connects the EDA variants that do not have a significant difference in
the QAOA ansatz parameter tuning in terms of expectation value minimization using the
three EDA variants.

No statistical significant differences have been found between the three EDA approaches in
terms of expectation value minimization, as shown in the critical difference diagram [Demšar,
2006] in Figure 10.4. Comparing the EDA variants against the other algorithms, it is shown
how the EDAs are the algorithms which achieve the smallest expectation values when p < 5.
For more layers, the EDAs provide competitive results compared to their competitors, being
only beaten by some gradient-based algorithms (CG, L_BFGS_B and SLSQP), see Fig 10.3
(bottom).

Analyzing the computation time, when p > 5, the EDA variants offer a computation time
advantage compared to most of their competitors. Nevertheless, when p < 6, the computation
time is slightly larger or equal than the rest of their competitors. It is worth noting that the
computation time of CG is no longer competitive when p > 3.

12345678910

ADAM
GradientDescent

COBYLA
SPSA

L_BFGS_B SPEDA
CG
EGNA_fs
SLSQP
UMDA

Figure 10.5: Critical difference diagram for the QAOA ansatz parameter tuning in terms
of expectation value minimization comparing the different optimizers including the EDA
variants.

Figure 10.5 shows a critical difference diagram where the statistical significant differences are
identified in terms of expectation value minimization. The three EDA variants are grouped
with other three gradient-based approaches (CG, L_BFGS_B and SLSQP) as the best
optimizers for the QAOA ansatz parameter tuning for p ∈ {1, 2, . . . , 8}, and UMDA improves
the performance over the other gradient-free optimizers.

From this analysis we conjecture that EGNA_fs improves the expectation value minimization
compared to its competitors, achieving a competitive computation time, when p ≤ 5. When

141

Vicente Pérez Soloviev

Figure 10.6: BN structure where the common arcs found in the BNs of the last iterations of
10 different SPEDA runs for the QAOA ansatz parameter tuning with p = 4 are represented.
White and grey nodes represent the Gaussian and KDE nodes, respectively.

p > 5, EGNA_fs reaches similar results compared to its competitors but offering one of the
best computation times.

One of the advantages of EDAs is the interpretability of the algorithm. Due to the use of
BNs, it is possible to infer dependencies between variables, which may be of interest when
analyzing the problem to be solved. It is expected that the EDA, in the last iterations of the
runtime, will find the optimal structure that represents the landscape of the cost function.
Figure 10.6 shows a BN structure presenting the common arcs found in the BNs of the last
iterations of 10 different SPEDA runs for the QAOA ansatz parameter tuning with p = 4,
where white and grey nodes represent the Gaussian and KDE nodes, respectively. Comparing
the BN structure with the one fixed for the EGNA_fs approach in Figure 10.2, it can be
observed the common arcs between nodes βi and γi in each layer, although some arcs have
been reversed, which verifies that the structure fixed for the EGNA_fs approach is consistent
with the findings. Some spurious arcs have also been identified, such as β1 → β2 and β3 → β2.

10.2.2 VQE ansatz parameter tuning
Figure 10.7 shows a comparison of the computation time and expectation value minimization for
different optimizers and the three EDAs: UMDA, EGNA with the fixed structure (EGNA_fs)
and SPEDA for the VQE ansatz parameter tuning.

No significant differences were found between EGNA_fs and SPEDA; however, a significant
improvement is found for the case of UMDA for p ∈ {1, . . . , 9}, as shown in the critical
difference diagram in Figure 10.8. Analyzing the computation time, it can be observed that
UMDA, for all p, needs a larger runtime than the other EDA variants, and as p increases,
a greater difference is found. For p ≥ 6 the difference of computation time compared to
EGNA_fs and SPEDA is noticeably larger, while the minimization of the expectation value
no longer has a statistically significant advantage, as shown in Figure 10.9, where all the
EDA variants are grouped together. From this analysis we conjecture that UMDA is a
competitive optimizer for TwoLocal ansatz parameter tuning for low values of p. For larger
values, EGNA_fs and SPEDA outperform UMDA, if a trade-off between computation time
and expectation value minimization is desired. Moreover, it is worth mentioning the low

142

CHAPTER 10. VQAS PARAMETER TUNING WITH EDAS

1 2 3 4 5 6 7 8 9
p

0

100

200

300

400

500

600
se

co
nd

s (
s)

Execution time

ADAM
CG
COBYLA
GradientDescent
L_BFGS_B

SLSQP
SPSA
UMDA
EGNA_fs
SPEDA

1 2 3 4 5 6 7 8 9
p

10
8
6
4
2
0
2
4

en
er

gy

Energy minimization

Figure 10.7: Comparison of the different EDA variants with the other state-of-the-art op-
timizers for the VQE TwoLocal ansatz parameter tuning. The top panel shows the mean
computation time and standard deviation after running each algorithm 25 independent times
for different number of layers p ∈ {1, . . . , 9}. The bottom panel shows the mean best expecta-
tion value achieved (Equation 4.9) and standard deviation after running each algorithm 25
independent times for different number of layers p ∈ {1, . . . , 9}.

standard deviation of the expectation value achieved with EGNA_fs and SPEDA compared
to its competitors.

The computation time difference of UMDA compared to the other EDA variants has been
identified in both the QAOA and VQE ansatz parameter tuning. Figure 10.10 shows the
number of cost function evaluations of the three EDA variants, for different values of p in
the VQE TwoLocal ansatz case. Note that each cost function evaluation involves an ansatz
parameter configuration and measuring the quantum circuit N times. The figure shows how
SPEDA is the EDA variant which needs fewer evaluations to converge to a solution that
has no significant difference with EGNA_fs and UMDA, for p ≥ 6. Note that UMDA is
the algorithm which needs more evaluations for convergence, and the difference compared
to EGNA_fs and SPEDA increases with p. Although the number of evaluations of SPEDA
is lower than those of EGNA, the computation time has shown to be slightly higher in
Figure 10.3 due to the probabilistic model complexity embedded by SPEDA and its structure
learning, which was omitted in the case of EGNA_fs. SPEDA estimates some variables using
KDE, exploring several areas of the search space in parallel [Soloviev et al., 2023a], so the
cost function evaluations is likely to be reduced, which seems to be happening in this case
resulting in a competitive computation time compared to EGNA_fs and UMDA.

Figure 10.11 shows a critical difference diagram to identify the significant differences in the
results shown in Figure 10.7 for the expectation value minimization and p ∈ {1, . . . , 9}. The

143

Vicente Pérez Soloviev

123

EGNA_fs
SPEDA

UMDA

Figure 10.8: Critical difference diagram for the VQE TwoLocal ansatz parameter tuning in
terms of expectation value minimization using three EDA variants.

123

EGNA_fs
SPEDA

UMDA

Figure 10.9: Critical difference diagram for the VQE TwoLocal ansatz parameter tuning
(p ≥ 6) in terms of expectation value minimization using the three EDA variants.

EDA variants are beaten by three gradient-based approaches: CG, L_BFGS_B and SLSQP,
which also had a good performance in the case of QAOA. However, it is worth highlighting
the computation time demand of CG for p ≥ 1 and SLSQP for p ≥ 6, which is improved
by EGNA_fs and SPEDA for p ≥ 6. For a large number of layers (p ≥ 8) the expectation
value minimization of L_BFGS_B is slightly better compared to the EDA variants, and its
computation time is one of the best in the overall comparison. Despite the fact that the
gradient-free optimizers achieve a low computation time compared to their competitors, the
mean expectation value is always worse than that found by the different EDA variants.

From this analysis we conjecture that EGNA_fs and SPEDA are competitive optimizers for
large number of layers (p ≥ 5) if a trade-off between computation time and expectation value
minimization is desired, where its principal competitor is L_BFGS_B. SPEDA is a better
approach to minimize the resources demand, as it needs less quantum circuit measurements
compared to EGNA_fs. For lower values (p < 6), UMDA improves the expectation values
achieved by SPEDA and EGNA_fs, being one of the best optimizers in the overall comparison,
although its computation time is worse in general.

10.2.3 Molecule simulation with parametric quantum noise
Simulating molecules behaviour in the area of quantum chemistry has gained a lot of attention
in the last years due to its advantage compared to the classical computation [Peruzzo et al.,
2014]. In this section, the VQE TwoLocal ansatz is used to simulate the hydrogen molecule
(H2), where the objective is to find the ground state of the Hamiltonian that defines the
molecule. Furthermore, this simulation has been carried out considering different intensities
of a simulated quantum noise channel. The depolarized noise [Nielsen and Chuang, 2002],
parameterised by ω ∈ [0, 1] has been used, where ω = 0 implies no quantum noise and ω = 1

144

CHAPTER 10. VQAS PARAMETER TUNING WITH EDAS

1 2 3 4 5 6 7 8 9
p

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f f
un

ct
io

n
ev

al
ua

tio
ns

SPEDA
EGNA_fs
UMDA

Figure 10.10: Comparison of the mean number of cost function evaluations for the VQE
TwoLocal ansatz parameter tuning after executing each EDA variant 25 independent times.
Each cost function evaluation involves a new ansatz parameter configuration and measuring
the quantum circuit N times.

implies the maximum noise.

Table 10.1 shows the mean expectation value (Equation 4.9) achieved by the different optimizers
for different values of ω. Note that the COBYLA and EDA variants are the optimizers which
more resilience offer to quantum noise, being both able to outperform the results of their
competitors. AQGD is the worst performing optimizer in general. Note that, for high noise
intensities (ω ≥ 0.7), all the algorithms tend to converge to the same solutions, but for small
ones (ω → 0), a greater difference is noted between the results of the EDA variants and the
rest of competitors.

12345678910

ADAM
COBYLA

SPSA
GradientDescent

EGNA_fs SPEDA
UMDA
L_BFGS_B
CG
SLSQP

Figure 10.11: Critical difference diagram for the VQE TwoLocal ansatz parameter tuning
in terms of expectation value minimization comparing the different optimizers including the
EDA variants.

145

Vicente Pérez Soloviev

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ADAM -1.12 -1.06 -1.09 -1.07 -1.09 -1.09 -1.08 -1.09 -1.09
AQGD -1.43 -1.23 -1.16 -1.10 -1.09 -1.08 -1.08 -1.08 -1.08
CG -1.03 -1.06 -1.10 -1.09 -1.08 -1.09 -1.09 -1.09 -1.09
COBYLA -1.42 -1.27 -1.18 -1.13 -1.11 -1.09 -1.09 -1.09 -1.09
EGNA_fs -1.44 -1.26 -1.17 -1.13 -1.11 -1.10 -1.09 -1.09 -1.09
GradientDescent -1.22 -1.08 -1.08 -1.09 -1.09 -1.08 -1.09 -1.09 -1.09
L_BFGS_B -1.11 -1.07 -1.08 -1.09 -1.09 -1.09 -1.08 -1.09 -1.09
SLSQP -1.08 -1.06 -1.08 -1.07 -1.09 -1.09 -1.09 -1.09 -1.09
SPEDA -1.45 -1.26 -1.18 -1.13 -1.11 -1.10 -1.09 -1.09 -1.09
SPSA -1.42 -1.25 -1.17 -1.12 -1.10 -1.09 -1.09 -1.09 -1.09
UMDA -1.43 -1.26 -1.17 -1.13 -1.11 -1.10 -1.09 -1.09 -1.09

Table 10.1: Mean expectation value (Equation 4.9) achieved by different optimizers for
different values of ω ∈ [0, 1], where best values are highlighted in blue.

10.2.4 EDA hyper-parameter tuning
The results shown in Section 10.2.1 and Section 10.2.2 show that the higher the number
of layers (p), the higher the expectation value E(·) is obtained being not able to reach the
values found in the cases of lower number of layers. This factor is directly correlated to
the population size (N) defined for the algorithm. In this section, we will comment on the
relationship between the hyper-parameters p and N for the specific case of SPEDA for QAOA,
since UMDA and EGNA have an equivalent behaviour in this aspect for both ansatz.

Figure 10.12 (left) shows that regardless of the number of layers (p) the expectation value is
reduced by increasing the population size (N). Identifying the sweet spot between minimizing
E(·) but also N , will lead to find the optimum value of N . The higher the N values, the
more evaluations are needed, and thus, a higher computation time is required. Following
a similar procedure as in the elbow method for clustering, we identify the most interesting
population sizes for each p in Figure 10.12 (right). A linear dependency is observed between
both parameters although this is an approximation.

10.3 Conclusions
In this chapter, a deep study on the use of different variants of EDAs for the VQA ansatz
parameter tuning has been performed, where the algorithms have been compared to other
state-of-the-art gradient-based and gradient-free alternatives widely used. The UMDA, EGNA
with a fixed structure (EGNA_fs) and SPEDA algorithms were tested to tune the parameters
of the QAOA and VQE ansatz.

In the case of QAOA, the three EDA alternatives offer similar solutions in terms of expectation
value minimization, but EGNA_fs is the one which needs the shortest computation time for
convergence. The results have been validated to test the null hypothesis of equal mean results
versus different means among the algorithms.

146

CHAPTER 10. VQAS PARAMETER TUNING WITH EDAS

0 500 1000 1500 2000
8

7

6

5

4
E(

)
p=1
p=2
p=3

p=4
p=5
p=6

p=7
p=8

0 200 400 600 800 1000 1200

0

2

4

6

8

p

Figure 10.12: Left panel shows the mean expectation value tendency for different values of
p and N . Right panel shows the linear dependency between the number of layers and the
optimum values of N found. Both panels analyze the QAOA and SPEDA case.

In the case of VQE, UMDA offers a statistically significant advantage regardless of the number
of layers, but requires a longer computational time. However, for large values of p, this
advantage is not statistically significant, and SPEDA achieves a notable improvement in
computation time compared to the other algorithms, offering competitive expectation value
results and needing the fewest cost function evaluations, compared to EGNA_fs and UMDA.

While it is not the objective of this study to find the best EDA variant for the VQAs
ansatz parameter tuning, we have found that all three EDA variants perform better than
other gradient-free algorithms, and achieve competitive solutions with gradient-based ones.
UMDA stands out for the quality of the solutions found. EGNA_fs is the fastest in terms of
computation time, but SPEDA uses the fewest number of cost function evaluations. Moreover,
the three EDA variants, together with COBYLA, have shown a better quantum noise resilience
compared to the other competitors for the case of molecule simulation.

As future steps in this research line we propose the following:

• To study the performance of these EDA variants for further types of quantum noises.

• To study the performance of EDAs when Barren plateaus are present.

• To study the BN structure learned for larger number of parameters.

• To go one step forward by exploring not only the parameter space of the ansatz but
also the circuit architecture (gates and number of parameters).

147

Vicente Pérez Soloviev

148

Chapter 11

Trainability Maximization for
Quantum Architecture Search

11.1 Introduction

Chapter 10 proposes the use of EDAs to optimize the parameters of a given ansatz. In this
chapter we propose optimizing one step forward, not only finding the optimal parameters
of the ansatz but also its architecture using EDAs (QC in Figure 1.1). That is, the gates
composition of the quantum parametric circuit. Similarly, in the area of classical machine
learning there exists the neural networks architecture search (NAS) research line [Elsken et al.,
2019], in which a similar problem is proposed for building neural networks and optimizing its
weights together.

When choosing an ansatz for a problem and optimizing its parameters, we assume that the
ansatz is expressive enough to converge to the ground state of our Hamiltonian. Finding
the ideal ansatz for a given H but also the parameters θ becomes a multi-level optimization
problem [Mejía-de Dios et al., 2023] in which each proposed ansatz also involves a new
optimization task regarding the parameters of the specific architecture. Some approaches are
presented in the literature using heuristics, where most of them involve too many measurements,
and therefore lead to an increase of the computational resources and time. This is crucial
for the feasibility of the algorithm in NISQ devices as the number of available measurements
is limited before the device is re-configured. Overcoming these limitations leads us to the
quantum architecture search (QAS) research topic, where some authors have proposed different
ideas.

The training/optimization of the variational parameters is known to be a non-trivial task for
deep circuits, since we might face quite a few challenging trainability issues, e.g., BPs and traps
[Anschuetz and Kiani, 2022]. BPs are typically described as vanishing gradients close to zero
in the landscape, where the classical optimization becomes challenging, i.e., non-trainable or
hard-to-train ansatz. Several works are found in the state of the art where this phenomenon is
studied in order to analyze the trainability of the ansatz [Cerezo et al., 2021b, McClean et al.,
2018]. However, computing these gradients involves the parameter optimization of the ansatz,

149

Vicente Pérez Soloviev

and thus increasing the number of quantum simulations, as we need to estimate the variance
of the partial derivatives over the entire parameter space (exponential complexity). These
tasks become more difficult with the number of qubits. Recently, Pérez-Salinas et al. [2023]
have shown that the information content (IC) metric can reliably estimate the average (over
the parameter space) norm of the gradient with a small number of evaluations of parameters
of the ansatz.

In this chapter we propose a domain-agnostic approach based on EAs in which, given a set
of ansatzes, for which a good performance is expected, we seek to find a new set of ansatzes
similar to the initial one, but which are easier to train, and therefore are more likely to
avoid the presence of BPs. The number of quantum simulations are drastically reduced by
implementing a surrogate model which predicts the performance of the ansatz, and the IC is
used to maximize the trainability of the proposed architectures avoiding the presence of BPs.
Experimental results are shown in noisy environments for different problems. Thus, the main
contributions of the chapter are:

• The use of surrogate models to rank the ansatzes proposed by the EDA without any
measurements.

• The maximization of the trainability during the optimization process by using the IC.

• The use of multi-objective optimization to optimize the IC and the score provided by
the surrogate model.

To the best of our knowledge this is the first work in which IC is optimized for quantum
ansatz design, and we conjecture this approach can pave the way to bridging the gap towards
an ideal training-free approach.

This chapter includes the developed methodology and results included in Soloviev et al.
[2024a]. Implementation is based on EDAspy1 Python package, and the experimental scripts
and data are stored in a GitHub repository2. The dataset used for the ansatz comparison is
published [Nakayama et al., 2023] and freely available in GitHub3.

Chapter outline
The outline of this chapter is organized as follows. Section 11.2 reviews the QAS literature. The
proposed methodology is presented in Section 11.3 and Section 11.4 shows some experimental
results. Section 11.5 rounds the paper off with some further conclusions and future open
research lines.

11.2 Related work
This section reviews some of the existing works regarding QAS in the literature.

Regarding reinforcement learning (RL), [Pirhooshyaran and Terlaky, 2021] uses a bi-level
1https://github.com/VicentePerezSoloviev/EDAspy
2https://github.com/VicentePerezSoloviev/QAS_EDA
3https://github.com/Qulacs-Osaka/VQE-generated-dataset

150

https://github.com/VicentePerezSoloviev/QAS_EDA
https://github.com/Qulacs-Osaka/VQE-generated-dataset

CHAPTER 11. TRAINABILITY MAXIMIZATION FOR QUANTUM ARCHITECTURE
SEARCH

optimization process in which the agent proposes new architectures while a classical secondary
optimizer tunes the parameters of the ansatz. In [Fösel et al., 2021], a RL approach is proposed
with a different purpose: given an ansatz, return an optimized structure in terms of circuit
depth and used gates. A RL approach is proposed [Ostaszewski et al., 2021b] where an agent
systematically modifies the ansatz and achieves shallow circuits for chemical domains.

Regarding EAs, [Chivilikhin et al., 2020] proposes a bi-level genetic algorithm where a multi-
objective approach is used to minimize the energy of the VQE while minimizing the number
of CNOT gates, and the parameter optimization is performed by CMA-ES optimizer. In
[Rattew et al., 2019] the authors use a genetic algorithm to optimize a weighted single-
objective cost function combining the energy of the proposed ansatz, its depth, and number
of two-qubit gates. Recently, GA4QCO framework [Sünkel et al., 2023] is proposed in which
a single-objective optimization is performed by a genetic algorithm, and compared to random
instances.

Regarding chemistry simulation, AdaptiveVQE [Grimsley et al., 2019] is a methodology
that systematically grows an ansatz for chemical simulation; and RotoSelect and RotoSolve
methods [Ostaszewski et al., 2021a] are two efficient methods for jointly optimizing ansatz
structure and parameters.

Several works are found in the literature in which neural architecture search methodologies
are applied to QAS. QuantumDARTS [Wu et al., 2023] is an adaptation of classical DARTS
[Liu et al., 2018b] for neural network architecture search to QAS, in which two methods are
proposed: one for whole architecture search, and another for promising sub-architectures.
Another example is [Zhang et al., 2022] in which new architectures are sampled from a
probabilistic model, and gradients between the best energies found are computed.

Additionally, SuperNet structure [Du et al., 2020], samples several architectures and its
parameters are classically optimized. Based on the performance, the ansatz are ranked and
a new architecture is constructed based on the knowledge gained from them. SuperNet
has also been used to enhance VQAs on an 8-qubit superconducting quantum processor for
classification tasks [Linghu et al., 2022].

11.3 Method

This section explains the proposed approach and describes each of the modules in the following
subsections. Figure 11.1 summarizes the flowchart of the approach where the main steps of
the proposed algorithm are stated.

151

Vicente Pérez Soloviev

Probabilistic
model

Generation

Merge

Parameter
optimization

Generate initial data
Train

Surrogate
model

Sample

Codify

Evaluations

Compute IC

Compute for each pairTruncateLearn

Update surrogate mode
 with best solution

Codify
Predict

Best solution Parameter
optimization

Post-processing

Terminate?

Compute Score

yes

no

Figure 11.1: Flowchart of the proposed approach, starting from the white spot and finishing
in the black spot one the convergence criteria is met. Dashed lines regard the train and
update of the surrogate model.

11.3.1 Codification
For an ansatz of n qubits and maximally depth m, we propose the following integer-valued
matrix representation:

X =


X11 · · · X1m

...
Xn1 · · · Xnm

 (11.1)

→ [X11, · · · , X1m, · · · , Xn1, · · · , Xnm],

where each entry Xij ∈ {0, 1, . . . , ngates} represents the choice of the quantum logic gate at
position (i, j) of the matrix. Given a predetermined number of qubits n and maximal depth
m, the architecture representation has a fixed dimension d = nm. This way, each column
represents all the operators executed in parallel along the total depth, and each row represents
a qubit.

Note that regarding two-qubit gates such as CNOT, applying a CNOT with the same control
qubit, but different target qubits, are considered as different gates. This allows to restrict
the evolutionary search according to hardware constraints by restricting the search space,
although in this work an all-to-all connectivity is considered. In our case, ngates = (n− 1) + 5,
as we consider the following universal operators: {Rx(·), Ry(·), Rz(·), H, I} and the CNOT
gate with different target qubits. Note that CNOT(i, j) denotes that i and j are the control
and target qubits, respectively. Therefore, we establish the following rules for the codification
of Xij:

152

CHAPTER 11. TRAINABILITY MAXIMIZATION FOR QUANTUM ARCHITECTURE
SEARCH

(a) A1 (b) A2 (c) A3 (d) A4

Figure 11.2: Four examples of the ansatz codifications (A1, A2, A3, A4) defined in Equa-
tion 11.2

• 0 ≤ Xij < n and Xij ̸= i corresponds to the CNOT gate configurations from qubit i to
the possible target qubits.

• Xij = i corresponds to Ry(·).

• Xij = n corresponds to Rz(·).

• Xij = n+ 1 corresponds to H.

• Xij = n+ 2 corresponds to I gate.

• Xij = n+ 3 corresponds to Rx(·).

The initial state of all the proposed architectures is set to the |0⟩ state, i.e., |00 · · · 0⟩⊗n state.

Figure 11.2 shows four examples where the following codifications are represented as ansatzes,

A1 =

4 0 1 3
4 4 5 2
2 2 5 5

 ,A2 =

4 0 5 3
4 4 0 5
2 2 5 1

 ,A3 =

4 1 5 5
5 5 2 5
5 5 5 5

 ,A4 =

1 5 5 2
5 2 5 5
5 5 0 5

 , (11.2)

where n = 3 and m = 4.

11.3.2 Probabilistic model
The joint probability distribution factorizes in a univariate EDA approach according to
Equation 3.4, where p(Xij) is the marginal probability distribution of variable Xij. In this
approach, d = nm, and p(Xij) follows a multinomial distribution,

Xij ∼ Mult(nm = ⌊αN⌋, km = (ngates + 1)), (11.3)

where nm and km are the number of trials and mutually exclusive events that define the
multinomial probability distribution, respectively.

Note that the marginal probabilities over the set of solutions are computed after the truncation
process (Algorithm 4 Line 4), where the top ⌊αN⌋ solutions are selected according to the
cost function to be optimized. The sampling process generates N new solutions as detailed in
Algorithm 4, and duplicate ansatz are rejected in order to reduce redundancy. Each solution
represents an ansatz, and the algorithm is expected to learn itself the best gates configuration
during runtime.

153

Vicente Pérez Soloviev

q0

q1

q2

H

H

2

RY

H

1

RY

3

RY

4

RY

(a) Original ansatz

q0

q1

q2

H

2

RY

1

RY
3

RY

(b) Post-processed ansatz

Figure 11.3: Post-processing of an ansatz where hard rules (Section 11.3.3) have been applied
to the architecture represented in Equation 11.2 with n = 3 and m = 4.

11.3.3 Post-processing
In order to restrict the search space of the QAS problem, we establish a series of hard rules
to remove redundancy and simplify the ansatz architectures proposed in the sampling process
of the EDA.

• Two consecutive H gates are removed, as they are equivalent to an I gate.

• Consecutive application of Rx(·) gates, are simplified as one single Rx(·) gate, to remove
redundancy.

• Consecutive application of Ry(·) gates, are simplified as one single Ry(·) gate, to remove
redundancy.

• Consecutive application of Rz(·) gates, are simplified as one single Rz(·) gate, to remove
redundancy.

Once the algorithm samples a new set of architectures (Algorithm 4 Line 6), the post-processing
step is applied to each of them. Figure 11.3 shows an example of the application of these
hard rules, where (i) in the second qubit, both consecutive H gates were suppressed, and (ii)
in the third qubit the two Ry(·) gates are simplified as a single gate.

11.3.4 Surrogate model
A characteristic of traditional EDAs is that once the solutions of the same population are
ranked according to g(·), no matter how much better a solution is compared to others, as all
solutions included in the top ⌊αN⌋ will contribute equally to the probabilistic model learning
[Larrañaga and Bielza, 2024] (see Algorithm 4, Line 4). The surrogate model used in this
approach surrogates the minimal thing needed for the EDA, that is, the ranking of solutions
(line 4 Algorithm 4). This is introduced by a metric Score(A) (inspired in [Shi et al., 2021])
which measures the quality of a solution A within the rest of solutions of the population,

Score(A) =
∑

B∈X

(h(A,B) + 1− h(B,A)), (11.4)

154

CHAPTER 11. TRAINABILITY MAXIMIZATION FOR QUANTUM ARCHITECTURE
SEARCH

where the higher Score(A), the better the quality of A, and h(A,B) compares ansatz A to
ansatz B as,

h(A,B) =


0, if PB ≥ PA + ϵ

1, if PA ≥ PB + ϵ

2, otherwise
(11.5)

where PA, and PB are the minimum expectation values (Equation 4.9) found by a classical
optimizer for architectures A and B, respectively and ϵ is a tolerance error configured by the
user. Note that h(A,B) = h(B,A) = 2 means that two ansatz A and B are non comparable
or very similar performance is expected.

Computing Score(A) involves ⌊αN⌋ − 1 comparisons, and thus, this is clearly the main
bottleneck of the task. In order to overcome this, we propose the use of support vector
machines (SVMs) to approximate h(A,B). We take the following input feature to the
surrogate model:

Flatten(A+B,A−B) (11.6)

where A and B are the two ansatz architectures to be compared, and the resultant vector
size is d = 2nm. Thus, h(A,B) ∈ {0, 1, 2} is approximated by h′(Flatten(A,B)) ∈ {0, 1, 2}
using SVM.

Several classification methods have been tested over some initial data randomly generated
for different values of n, where SVM achieved better accuracy metrics. Results using cross-
validation can be found in Appendix E.2.

The implementation has been obtained from LibSVM library [Chang and Lin, 2011].

The surrogate model is re-fitted after each iteration with the top 5 solutions in the ranking of
the best solutions computed by the EDA (Section 11.3.5). Thus, in each iteration 5 classical
parameter optimizations are carried out, and the number of parameter tuning processes
executed during runtime is N + 5t, where t is the total number of iterations. Without the
usage of the surrogate model approach, this number would have been N(1 + t).

11.3.5 Evaluation
This approach aims to find the optimal ansatz for a given problem H in terms of trainability
and expected energy. Here we define the following metrics to be computed for each proposed
architecture.

First, IC (Equation 4.15) maximization has been proved to be able to avoid BP in the ansatz
parameter tuning [Pérez-Salinas et al., 2023]. Those architectures with low associated IC are
less trainable/optimizable, compared to those with high IC. Our approach maximizes this
metric through the optimization process. Here, the IC of an ansatz A is denoted as,

IC(A) = ϵM

√
M, (11.7)

where ϵM is the ϵ associated to the norm of the gradient computed after a random walk over
the parameters (Section 4.15), and M is the number of parameters of ansatz A.

155

Vicente Pérez Soloviev

Second, Score(·) (Equation 11.4) evaluates the quality of a solution compared to a subset
of solutions. Our approach implements an elite approach, in which the best solution of
generation Gi also appears in generation Gi+1. Then finding a different best solution in Gi+1
will lead to a best global solution in the whole optimization process. Thus, Score(·) is also
desired to be maximized.

Maximizing both metrics becomes a multi-objective optimization problem, in which the Pareto
frontier between both objectives is explored. During the optimization process defined in
Algorithm 4 and Figure 11.1, the truncation process ranks the solutions according to g(·),
which is here defined as,

g(A) = HV((Score(A), IC(A)), r), (11.8)

where HV(·) is the hypervolume contribution [Beume et al., 2009] between the surrogate model
output (Score(A)) and the information content computed (IC(A)), and r is the reference
point. The ⌊αN⌋ best solutions in terms of HV(·) minimization are the ones that better
approximate the Pareto frontier, and are the ones that promote to the next EDA iteration.

The reference point can be estimated based on the bounds of Score(A) and IC(A). In the
former, the lower bound is set to zero (the worst solution within the population) and the
upper bound to 2N (the best solution within the population). In the latter, the lower bound
is set to zero (the least trainable scenario) and the upper bound to 2, based on previous
experience. Then, Score(A) ∈ {0, 1, . . . , 2N} and IC(A) ∈ [0, 2] ∈ R, so the reference point is
set to r = (2N, 2).

Finally, the optimization problem is formalized as,

min
X

g(X)

subject to X ∈ {0, 1, . . . , ngates},
(11.9)

where X denotes a codified ansatz (Equation 11.1), and g()̇ is defined at Equation 11.8.

11.4 Results
TThis section shows some numerical results on solving different HamiltoniansH ∈ {H1, H2, H3, H4}
(Appendix E.1), already studied in [Nakayama et al., 2023] for n ∈ {4, 8, 12}. The following
sections compare the results found by the EDA approach with those presented in the dataset
from [Nakayama et al., 2023]. In the original paper, the authors present several architectures
which find similar state vectors in the search space of VQE ansatz, for each Hi. Henceforth,
Dn

i denotes the set of architectures proposed in the dataset to solve the Hamiltonian Hi with
n qubits.

Two experiments have been carried out in which, (i) the initial population of the EDA
approach is initialized randomly to test if the algorithm is able to converge to similar solutions
to those proposed in the dataset (Section 11.4.1), and (ii) the initial population is initialized
from the ansatzes proposed in the dataset [Nakayama et al., 2023] to test if the algorithm is
able to improve the given architectures (Section 11.4.2).

156

CHAPTER 11. TRAINABILITY MAXIMIZATION FOR QUANTUM ARCHITECTURE
SEARCH

Figure 11.4: Visualization of the ansatzes found in the dataset (Dn
i) using t-SNE [Van der

Maaten and Hinton, 2008] , which are colored depending on the Hamiltonian to be solved
(Hi, where i ∈ {1, 2, 3, 4}). Additionally, the best architectures found by the EDA approach
(EDAn

i) are represented using different colored and shaped points. Note that EDAn
i regards

the solutions found for Hamiltonian Hi. All the results shown correspond to n = 4.

The size of the population, and maximum number of iterations of the EDA have been set to
N = 150 and t = 50, respectively, for all the experiments. Regarding the quantum circuit
simulation, we simulate the measurement noise.

11.4.1 Random initialization
To randomly generate the initial population (G0), a predefined probabilistic model is set to the
algorithm, from which the set of solutions are sampled. Thus, some of the outcomes for each
variable can be restricted, or boosted, decreasing or increasing the associated probabilities,
respectively, as demanded by the user.

In this experiment, initially, all the possible outcomes have been set to equal probability for
all the variables:

p(Xi = j) = 1
ngates + 1 , (11.10)

for all i = 1, . . . , d and j = 0, 1, . . . , ngates.

The initial population samples a set of N solutions, according to Equation 11.10. Each sample
corresponds to a different architecture following the codification in Equation 11.1 and is
post-processed (Section 11.3.3). The expectation value (Equation 4.9) of each architecture is

157

Vicente Pérez Soloviev

0 1 2 3
Predicted label

0

1

2

3

Tr
ue

 la
be

l

5 0 0 0

0 4 1 0

0 0 5 0

0 0 0 5

0

1

2

3

4

5

(a) n = 4

0 1 2 3
Predicted label

0

1

2

3

Tr
ue

 la
be

l

5 0 0 0

0 5 0 0

0 2 3 0

0 0 3 2

0

1

2

3

4

5

(b) n = 8

0 1 2 3
Predicted label

0

1

2

3

Tr
ue

 la
be

l

0 2 1 2

1 2 1 1

0 2 3 0

0 1 2 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(c) n = 12

Figure 11.5: Confusion matrices for n ∈ {4, 8, 12}.

computed, where its parameters are classically optimized using an external optimizer. In this
experiment we use COBYLA optimizer, as it has been shown to achieve good results in terms
of CPU time and energy minimization [Powell, 1998]. Considering the set of solutions and
associated expectation values, a surrogate model is trained (Section 11.3.4) and each solution
is evaluated (Section 11.3.5).

The original dataset [Nakayama et al., 2023] proposes using dimensionality reduction to
demonstrate that the minimal energy states achieved within Dn

i are very similar. Figure 11.4
shows the dimensional reduction using t-SNE [Van der Maaten and Hinton, 2008] for the
Hamiltonians approached, represented as clusters in two dimensions. The solutions found by
the EDA approach (EDAn

i , where i denotes the index of the faced Hamiltonian and n the
number of qubits) are also represented by stars and different colors. Note that our approach
is able to reach very similar solutions to the ones presented in the dataset.

In the following analysis the fidelity of the lowest energy state found by the EDA approach is
compared to those obtained by the ansatzes provided in the dataset for different problems
{H1, H2, H3, H4} and number of qubits (n), that is, by Dn

i .

The distance from each proposed ansatz (A) in EDAn
i to each cluster of architectures Dn

i is
computed by the arithmetic mean distance to each of the ansatzes belonging to Dn

i as,

dist(A,Dn
i) = 1

|Dn
i |

(
∑

B∈Dn
i

1− F (|ΨA⟩ , |ΨB⟩)), (11.11)

where Dn
i is the subset of ansatzes (with size |Di|) in the dataset proposed to solve Hi with n

qubits and meet m±
√
m restriction, F (·) is the fidelity between two quantum states, and

|ΨA⟩ and |ΨB⟩ are the lowest energy states achieved by ansatzes A and B, respectively, after
classical parameter optimization.

Table 11.1 shows the p-values computed using the ANOVA test4 to reject the null hypothesis
of equal means between each ansatz in EDAn

i and the different clusters Dn
i , where highlighted

results are rejected. Appendix E.3 details the distance computations statistically analyzed
in this table. An increasing number of non-rejected hypotheses is observed for increasing
number of qubits (n), which suggests that the EDA is proposing architectures much different
to the ones available at the dataset for n = 12. Increasing the number of qubits (n) also

4All the data used for the ANOVA tests fit Gaussian distributions.

158

CHAPTER 11. TRAINABILITY MAXIMIZATION FOR QUANTUM ARCHITECTURE
SEARCH

Hi n = 4 n = 8 n = 12
H1 3.0e-34 3.0e-2 6.0e-1
H2 1.3e-4 1.1e-2 1.5e-1
H3 1.0e-15 3.0e-1 1.1e-1
H4 2.0e-8 5.1e-2 2.1e-1

Table 11.1: ANOVA one-way test to reject the null hypothesis of equal means between the
mean distances (Equation 11.11), from the proposed by [Nakayama et al., 2023] ansatzes found
by EDAs and {Dn

1 , D
n
2 , D

n
3 , D

n
4} proposed for {H1, H2, H3, H4}, respectively. A threshold of

5e-2 has been set to reject the null hypothesis, highlighting in bold those results below this
value.

involves increasing the number of variables of the EDA optimizer. According to the results
found, the population size set is not enough to generate a large number of samples which
covers the increasing cardinality of the problem. Also, larger number of qubits should also
involve a larger ansatz depth, so m should also be increased to allow more expressive quantum
circuits. This suggests that the chosen configuration is valid to problems up to n < 8. For
bigger instances, a different configuration of the hyper-parameters m and N should be chosen,
although this would involve a drastic increase of the CPU time.

Assuming that a truly classified ansatz (A) is the case in which the closest cluster Dn
i represents

Hi, and A ∈ EDAn
i was optimized for Hamiltonian Hi as well, Figure 11.5 shows the confusion

matrices. The percentage of correctly classified ansatzes is 95%, 75% and 35% for n = 4, 8, 12,
respectively, where a decreasing tendency is observed for increasing n; however, for n = 12
the EDA was not able to found any statistical significant result.

Figure 11.6 shows the IC convergence plot during the optimization process of the EDA
approach. The associated shade shows a mean aggregation of the optimization processes
regarding different {H1, H2, H3, H4}, where a maximizing monotonic tendency is observed.
Regardless of the results encountered, the three scenarios show that the algorithm has
converged. Note that, the mean IC found by the optimizer denotes an exponential decay with
the number of qubits (n), as expected according to [Cerezo et al., 2021b, Pérez-Salinas et al.,
2023].

Because Score(A) returns a metric comparing ansatz A with the rest of the architectures
within the population to which A belongs, the trend throughout the optimization process is
not an interesting fact to analyze.

Appendix E.4 shows the Pareto frontier approximation (non-dominated solutions highlighted
as orange spots) for each Hi we are facing (in columns) and different values of n (in rows).
It is observed how both objectives are conflicting, and maximizing one of the objectives
worsens the second, and vice-versa. Thus, a trade-off between both objectives through the
Pareto frontier approximation is desired. Note that the scale of the Y-axis (IC) is different
for different number of qubits, as explained before.

Considering the best solutions found by the EDA, i.e., those that better approximate the
Pareto frontier, we now compare the characteristics of the ansatzes proposals with those

159

Vicente Pérez Soloviev

0 2000 4000 6000 8000
Function evaluations

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

M
M

n = 4 n = 8 n = 12

Figure 11.6: Mean and standard deviation of IC maximization aggregating the optimization
process of different Hi for different numbers of qubits (n).

available in the dataset [Nakayama et al., 2023] with depth in the range m±
√
m (for a fair

comparison and ensure a minimum number of instances from the original dataset). A drastic
increase in the number of certain quantum gates might improve the performance of the ansatz,
however, this may lead to a poor trainability. Thus, the ratio among the gates set used, and
the number of gates is further analyzed.

Figure 11.7 shows the ratio of the different available universal gates in the set of initial
randomly generated data (G0), the solutions found by EDA approach (EDAn

i) and the best
solutions from the original dataset (Dn

i), for different values of n. A strong correlation is
observed between the initial data and the proposed solutions, independently of n, where
the EDAn

i has a slightly higher ratio of CNOT gates compared to G0. However, comparing
to Dn

i , our proposals achieve a much lower ratio of parametric gates, compensating it with
superposition and two-qubit gates. Although the ratios for Dn

i seem to remain constant along
n, our approach increases the number of CNOT gates with n.

Figure 11.8 plots the number of parameters as a function of n, in the set of initial randomly
generated data (G0), the solutions found by the EDA approach (EDAn

i) and the original
dataset (Dn

i). Although the number of gates increases linearly in the three cases, comparing
the slopes found in the linear approximations of the three cases, the green function (Dn

i)
denotes a coefficient approximately 6 times bigger than the other two functions. We show that
our EDA is able to learn that a bigger number of parameters is needed, however, it does not
increase this number drastically, as it is able to converge to simpler ansatz. Shallower ansatzes
(low values in the Y-axis) are more convenient to be executed in real quantum devices due to
quantum coherence and other issues of the NISQ devices.

In this experiment we tested whether our approach initialized from a random set of ansatzes
is able to converge and find similar solutions to the ones proposed in the dataset, assumed to
be optimal. Figure 11.4 and Table 11.1 show that our algorithm finds solutions with similar
state fidelity as the ones in the dataset.

160

CHAPTER 11. TRAINABILITY MAXIMIZATION FOR QUANTUM ARCHITECTURE
SEARCH

Ini
tia

l

da
ta
Pro

po
sed

sol
uti

on
s
Data

set
Ini

tia
l

da
ta
Pro

po
sed

sol
uti

on
s
Data

set
Ini

tia
l

da
ta
Pro

po
sed

sol
uti

on
s
Data

set
0.0

0.2

0.4

0.6

0.8

1.0
Ra

tio

cx
ry
rz
h

n = 4 n = 8 n = 12

Figure 11.7: Ratio of {CNOT,RY,RZ,H} gates in the ansatz design of the randomly
generated initial data (G0), best EDA solutions found (EDAn

i), and dataset (Dn
i) [Nakayama

et al., 2023], for n ∈ {4, 8, 12}, respectively.

11.4.2 Initialization with the dataset

The previous results have shown that the EDA approach is able to provide trainable and well
performing architectures. In this section we initialize the EDA optimizer from the ansatzes
provided in the dataset (Dn

i) to test whether it is able to converge to better solutions. Thus,
the EDA execution used to face the Hamiltonian Hi will be initialized using G0 = Dn

i . In
this case, Dn

i will consist of all those architectures that meet the depth constraint imposed
by the EDA. Note that, in case an architecture has a depth smaller than that imposed, the
coding in binary (Equation 11.1) would be equivalent to fill with identity gates (I) until the
desired depth is reached.

The purpose of this experiment is that, given a set of ansatzes, which are known to have good
performance, we try to improve their trainability while maintaining a similar behavior. In
order to compare the results found by the EDA, the energy (Equation 4.9) using a second
level classical optimizer and the IC (Equation 4.15) are computed for all the ansatzes in all
Dn

i . Results are shown in Table E.5.

Figure E.2 (Appendix) shows the Pareto frontier approximations for each Hi we are facing
and different numbers of n. Note that, with increasing number of qubits, the conflict between
both objectives becomes more drastic. However, the EDA approach is able to identify the
promising solutions in the Pareto frontier. Note that the initial generation G0 = Dn

i has
been also represented to establish a reference in terms of IC. However, Score(A) for the first
generation should not be taken into account, as Dn

i represents similar minimal energy state
vectors (Figure 11.4), and thus, are not comparable.

Table E.6 (Appendix) shows the best E and IC found by the EDA approach where COBYLA
optimizer is used, for the ansatz parameter optimization. Note that the solutions shown in

161

Vicente Pérez Soloviev

4 6 8 10 12
Number of qubits (n)

50

100

150

200

250

300
Nu

m
be

r o
f p

ar
am

et
er

s
Initial
Result
Dataset

Figure 11.8: Mean and standard deviation of the number of parameters (Y-axis) as a function
of the number of qubits (X-axis), in the ansatzes found in the randomly generated initial data
(G0), best EDA solutions found (EDAn

i), and dataset (Dn
i) [Nakayama et al., 2023]. Note

that the values for n = 6, 10 have been approximated through a linear regression.

the tables are the ones that maximize HV in the Pareto frontier approximation, that is, a
trade-off between both objectives in the non-dominated solutions set is found. Although in
this case it is important to show the solution that optimizes the HV, it is possible to analyze
each of the non-dominated solutions from the Pareto front in order to maximize any of the
two metrics.

Regarding the results shown in Table E.6, it is observed a good performance in terms of
expectation value minimization for n = 4. Moreover, the IC achieved is noticeable better,
which also happens in the case of n = 8. However, the expectation value obtained for H3 and
H4 for n = 8 is worse than that described in the original dataset, which suggests that the
EDA approach is not able to improve the metrics in Table E.5.

In this experiment we tested whether our approach is able to improve the quality of the ansatz
provided in the dataset, from which the EDA is initialized. Our results show that the EDA
approach is able to improve them in some of the cases, and suggest that a hyper-parameter
tuning should be carried out for increasing number of qubits.

11.5 Conclusions
In this chapter we present a novel method for architecture search, in which the complexity
of the multi-level optimization problem has been drastically reduced by using surrogate

162

CHAPTER 11. TRAINABILITY MAXIMIZATION FOR QUANTUM ARCHITECTURE
SEARCH

modelling. The EDA approach optimizes the energy estimated by the surrogate modelling by
performing comparisons by pairs, and reduces the possibility of barren plateaus issues.

The experimental results showcase two different situations for optimizing different Hamil-
tonians: (i) the EDA is initialized from a random subset of solutions, and (ii) the EDA is
initialized from the best solutions presented in the dataset. In the former case, the results
show that the optimizer is able to converge to the same solutions presented in the dataset
when the number of qubits is lower than n = 8, and the hyper-parameters should be tuned
for higher values of n. In the latter case, the EDA is able to improve the state of the art
in some of the cases. Our approach is able to find solutions that keep a good performance
regarding energy minimization, but also improve the trainability of the ansatzes encountered.

The following research lines are proposed as future work:

• The numerical results analyzed suggest that the performance of our approach worsens
with the number of qubits, unless the population size (N) and the number of iterations
(t) are increased. However, in order to implement a useful approach for NISQ and
fault tolerant devices, the algorithm runtime for the optimization process is limited, in
contrast to neural network architecture search, where the coherence of the devices does
not change during time. Future work in this field would include the scalability of the
algorithm to higher number of qubits (n).

• The EDA internally uses HV for ranking the architectures to be selected. Although the
IC upper bound has been set based on previous experience, future work would include
a dynamic definition of the reference point for the HV computation, during runtime.

• Given that this research is at an early stage, our primary focus is on showing underpin-
nings and initial feasibility rather than conducting exhaustive empirical comparisons
with state-of-the-art methods. Comprehensive benchmarking and detailed empirical
evaluations are planned for future studies.

163

Vicente Pérez Soloviev

164

Chapter 12

EDAspy: An Extensible Python Package
for EDAs

12.1 Introduction
During the development of this thesis, a needness has been detected to establish a reference
library for the implementation of different versions of EDAs, as very few implementations
have been found publicly available. This was also commented and agreed by some attendees
at the EDAs Dagsthul meeting [Ceberio et al., 2022a]. All the methodologies used during this
thesis have been included into EDAspy open-access library, and new functionalities have also
been added.

In this chapter we present a python package in which several EDA implementations are
efficiently designed. The different optimizers are easily called and can be tuned in a user
friendly mode. Each EDA variant is built using different available modules, which can be
customly selected to build a new implementation. These variants can be easily extended and
interoperate with new components.

This chapter includes the materials presented in Soloviev et al. [2024b]. The implemented
methodology is available in a GitHub repository1 and available to be downloaded from Python
repositories2. The documentation is available at ReadTheDocs platform3.

Chapter outline
The chapter outline is organized as follows. Section 12.2 introduces the general organization of
the library. Section 12.3 reviews other libraries in which similar approaches are implemented.
Section 12.4 shows a CPU time comparison for continuous domain optimization. Section 12.5
explains several examples available at the library documentation. Section 12.6 rounds the
chapter off with some further conclusions and future work.

1https://github.com/VicentePerezSoloviev/EDAspy
2https://pypi.org/project/EDAspy/
3https://edaspy.readthedocs.io/en/latest/

165

https://github.com/VicentePerezSoloviev/EDAspy
https://pypi.org/project/EDAspy/
https://edaspy.readthedocs.io/en/latest/

Vicente Pérez Soloviev

EDA Cost function EDA Result

Univariate EDA

Multivariate EDA

Custom EDA

Probabilistic model

Initialization model

1 1

Extends EDAspy Benchmark

Custom cost functionExtends

Extends

Extends

Extends

Self-implemented modules1

Tools

 Plots

Figure 12.1: High order organization of the EDAspy library.

12.2 Software framework

Figure 12.1 represents the high order representation of the previously mentioned modules in
EDAspy. In general, an EDA implementation is applied to a cost function to be minimized,
and some results are found. There are several EDA implementations available in the library
organized in univariate and multivariate modules, but it is also possible to build a customiz-
able implementation by integrating the already available components with other modules
(optionally) in the EDA object. Regarding the cost function, there are several benchmarks
implemented. In addition, a custom cost function can be used. Once the optimizer has
converged, several information and plots can be extracted from the execution.

Moreover, although the library has been built modular in order to allow the integration with
new custom implementations, the EDA optimizer can be easily extended and built from
scratch by the user without using Custom EDA module facilities.

EDAspy is organized in different modules:

• Benchmarks. Different test functions for benchmarking and comparing the different
optimizers are included. Toy discrete functions such as OneMax [Krejca and Witt, 2017]
and benchmark suites such as IEEE CEC 2014 [Liang et al., 2013] are included.

• Univariate. The following univariate approaches in which no dependencies between
variables are considered: univariate marginal distribution algorithm (UMDA) for (i)
binary [Mühlenbein and Paass, 1996] (UMDAB), (ii) categorical (UMDAD), and (iii)

166

CHAPTER 12. EDASPY: AN EXTENSIBLE PYTHON PACKAGE FOR EDAS

continuous optimization [Mühlenbein et al., 1996] (UMDAC); (iv) kernel EDA [Luo
and Qian, 2009] (u_KEDA); and (v) population-based incremental learning algorithm
[Baluja, 1994] (PBIL).

• Multivariate. The following multivariate approaches in which dependencies between
variables are considered: (i) estimation of Bayesian network algorithm [Larrañaga and
Lozano, 2001] (EBNA), (ii) estimation of multivariate normal algorithm [Larrañaga
and Lozano, 2001] (EMNA), (iii) estimation of Gaussian network algorithm [Larrañaga
et al., 2000] (EGNA), (iv) semiparametric EDA [Soloviev et al., 2023a] (SPEDA),
and (v) multivariate kernel density EDA [Soloviev et al., 2023a] (m_KEDA), (vi)
Bayesian optimization algorithm (BOA) [Pelikan et al., 1999] in which a discrete BN,
a multivariate Gaussian distribution, a Gaussian BN, a semiparametric BN, a kernel
density estimated BN, and a discrete BN are iteratively learned, respectively.

• Custom: this module includes the different components to build a custom EDA variant
and is divided into probabilistic and initialization models.

– Probabilistic model. The following components are implemented for learning and
sampling. Regarding univariate probabilistic models, (i) binary, (ii) discrete, (iii)
Gaussian, and (iv) KDE models are considered. Regarding Bayesian networks, (v)
Gaussian, (vi) semiparametric, (vii) KDE, and (viii) discrete models are available.
Other models include (ix) multivariate Gaussian.

– Initialization model. Uniform sampling meeting landscape user defined bounds,
Latin hypercube sampling [McKay et al., 2000] and initialization from a given
dataset are available to build the first population of the EDA.

– Self-implemented modules. This includes modules implemented by users that
can be integrated into the library.

• Plotting tools. The tools for graphically representing the probabilistic model embedded
by the EDA are included in this module. Figure 12.2 shows an example of two different
probabilistic models. Panel (a) represents a Gaussian BN, in which dependencies
between variables are considered, while panel (b) represent a univariate model, in which
no dependencies are considered.

Regarding the multivariate EDA implementations, some of the probabilistic models are
interfaced to PyBNesian library [Atienza et al., 2022a], which uses C++ to speed up the
back-end computations. All the algebraic computations in EDAspy are computed using numpy
library [Harris et al., 2020], employing C to speed up the back-end computations. Moreover,
the parallelization of the optimizer is available by using multiprocessing library [McKerns
et al., 2012, McKerns and Aivazis, 2010], and can be optionally activated in all the EDA
implementations.

12.3 Related work
Although there are several libraries in which different evolutionary algorithms are available,
to the best of our knowledge we have not found comparable published libraries with different

167

Vicente Pérez Soloviev

X0 X1

X2 X3

X4 X5

(a) Gaussian BN structure

X0 X1

X2 X3

X4 X5

(b) Univariate Gaussian structure

Figure 12.2: Probabilistic models graphical representations.

EDA implementations in python. However, here we list some libraries in which some EDA
implementations are available.

• mateda [Santana et al., 2010] is a matlab library which allows building multivariate
EDAs based on undirected probabilistic models and Bayesian networks. The purpose
of the library is different from EDAspy. It offers a framework to build a multivariate
EDA algorithm by modules, in which different components can be integrated. mateda
implements categorical and Gaussian Bayesian networks, multivariate Gaussian dis-
tributions, Markov networks and mixtures of Gaussian distributions as probabilistic
models. However, semiparametric and KDE Bayesian networks are missed, and the
implementations for univariate approaches are omitted. Moreover, the last released
version of mateda was in 2020.

• inspyred [Tonda, 2020] is a python library which implements general evolutionary
algorithms such as genetic algorithms, evolutionary strategies, differential evolution
and multi-objective genetic algorithms, among others. UMDAC is the only EDA
implemented.

• LEAP [Coletti et al., 2020] is a python library built for evolutionary computation and
incorporates useful visualization modules. Regarding EDAs, the population-based incre-
mental learning algorithm (PBIL) [Baluja, 1994] and Bayesian optimization algorithm
(BOA) [Pelikan et al., 1999] are expected to be available in future releases.

Table 12.1 summarizes the main differences between the listed libraries. Regarding univariate
approaches, inspyred implements UMDAC and LEAP plans to integrate PBIL approache in
the near future, compared to the five implemented variants in EDAspy. Regarding multivariate
approaches, LEAP will incorporate BOA approach, which is also implemented in EDAspy. The
most competitive library is mateda, which overlaps with some of the implemented multivariate
approaches. It also allows for building a custom EDA version with some additional probabilistic
models. However, mateda is implemented in matlab and seems to be no longer updated.

168

CHAPTER 12. EDASPY: AN EXTENSIBLE PYTHON PACKAGE FOR EDAS

EDAspy mateda inspyred LEAP
Language python matlab python python
UMDAC X X
UMDAD X
UMDAB X
u_KEDA X
PBIL X Xx

BOA X Xx

EMNA X X
EGNA X X
SPEDA X
m_KEDA X
EBNA X X
Custom X X

Table 12.1: Summary of functionalities implemented in each library. Note that Xx denotes
that the implementation is expected to be released in the near future.

12.4 Performance analysis
In this section we compare the performance of different continuous domain optimizers im-
plemented in EDAspy. For the evaluation three different cost functions (to be minimized)
have been selected from the benchmark suite in EDAspy: CEC14_3, CEC14_4 and CEC14_8,
where the former is unimodal and the rest are multimodal functions.

Section 12.3 reviewed some existing software for EDAs in different programming languages.
In this section we also compare the result found by the UMDAC approach implemented in
inspyred. Although mateda and LEAP were also reviewed, the former is implemented in a
different programming language, and thus it is not fair to be compared in terms of CPU time,
and the latter does not currently include any of the implemented approaches.

All the optimizers have been configured equally in order to perform a fair comparison.
Hyper-parameters and a more extended tutorial can be found in the original documentation4.

Since a statistical study is out of the scope of the paper (see Soloviev et al. [2023a] for a more
complete analysis), we show a runtime and final solutions analysis of the different variants for
continuous optimization in EDAspy.

Figure 12.3 shows the mean best cost found after 5 independent executions. It is generally
observed how in the three functions the best approaches are SPEDA, m_KEDA and EGNA,
which find the minimal costs in the benchmarks. Previous analyses have shown that m_KEDA,
SPEDA and EGNA approaches are able to achieve statistically significant improvements in
terms of quality of solutions [Soloviev et al., 2023a]. In the case of the UMDAC implementation
from inspyred library, a slightly worse result is found in all the three benchmarks compared

4https://github.com/VicentePerezSoloviev/EDAspy/blob/master/notebooks/CPU%20time%
20analysis.ipynb

169

https://github.com/VicentePerezSoloviev/EDAspy/blob/master/notebooks/CPU%20time%20analysis.ipynb
https://github.com/VicentePerezSoloviev/EDAspy/blob/master/notebooks/CPU%20time%20analysis.ipynb

Vicente Pérez Soloviev

UMDAc
EM

NA
EG

NA
SP

ED
A

u_K
ED

A

m_KE
DA

PB
IL

0

1000

2000

3000

4000

5000
f(x

)
CEC14_3

EDAspy inspyred

UMDAc
EM

NA
EG

NA
SP

ED
A

u_K
ED

A

m_KE
DA

PB
IL

0

20

40

60

CEC14_4

UMDAc
EM

NA
EG

NA
SP

ED
A

u_K
ED

A

m_KE
DA

PB
IL

0

10

20

30

CEC14_8

Figure 12.3: Best cost found analysis of some EDA variants for continuous optimiza-
tion. UMDAC , EMNA, EGNA, SPEDA, univariate KEDA (u_KEDA), multivariate KEDA
(m_KEDA) and PBIL are shown.

to the implementation provided in EDAspy.

Figure 12.4 shows the mean CPU times of all the tested algorithms after 5 independent
executions. Note that all the tested approaches have been configured in the same environment,
that is, the number of function evaluations and hardware. It is observed that generally the
higher the complexity of the probabilistic model embedded, the longer the CPU time required.
However, PBIL is one of the slowest approaches in the comparison for CEC14_3. In this case,
the multivariate version of KEDA is the most expensive algorithm in terms of CPU time,
followed by SPEDA and EGNA. In the case of the UMDAC implementation from inspyred
library, our implementation seems to be more efficient implemented in terms of CPU time
consumption, keeping a good performance in terms of results found (Figure 12.3).

UMDAc
EM

NA
EG

NA
SP

ED
A

u_K
ED

A

m_KE
DA

PB
IL

0

10

20

30

CP
U

tim
e

(s
)

CEC14_3
EDAspy
inspyred

UMDAc
EM

NA
EG

NA
SP

ED
A

u_K
ED

A

m_KE
DA

PB
IL

0

10

20

30

40

50

CEC14_4

UMDAc
EM

NA
EG

NA
SP

ED
A

u_K
ED

A

m_KE
DA

PB
IL

0

5

10

15

20

25

CEC14_8

Figure 12.4: CPU runtime analysis of some EDA variants for continuous optimization.
UMDAC , EMNA, EGNA, SPEDA, univariate KEDA (u_KEDA), multivariate KEDA
(m_KEDA) and PBIL are shown.

12.5 Illustrative examples
The following examples are available in the original documentation1, where different EDAs
are applied to different tasks:

170

CHAPTER 12. EDASPY: AN EXTENSIBLE PYTHON PACKAGE FOR EDAS

• Using UMDAC for continuous optimization. UMDAC is tested on a IEEE CEC 2014
benchmark.

• Using SPEDA for continuous optimization. SPEDA is tested on a provided benchmark
and several convergence plots are shown.

• Using EGNA for continuous optimization. SPEDA is tested on a provided benchmark
and the plotting tools module is used to graphically show the probabilistic model
embedded into the EDA approach.

• Using EMNA for continuous optimization. EMNA is tested on a IEEE CEC 2014
benchmark.

• Using UMDAD for feature selection in a toy example. Given a dataset and a forecasting
model, UMDAD is used to select the best subset of variables that optimizes the accuracy
of the prediction.

• Categorical optimization using EBNA and UMDAD. A categorical cost function is
designed and optimized by EBNA and UMDAD approaches.

• Building my own EDA implementation. A tutorial on how to customize an EDA
implementation is provided.

• CPU time analysis. All the continuous domain EDA variants are tested against the
same IEEE CEC 2014 benchmark.

12.6 Conclusions
In this chapter we presented the first python library entirely dedicated to EDA implementa-
tions. EDAspy has been shown to be easy to use, and to integrate with custom implementations.
Therefore, we hope that EDAspy can speed up the development of research on EDAs and their
applications.

In addition to maintaining the code and solving bugs found by EDAspy users, future work
would include the following lines:

• Visualization tools to analyze EDAs convergence.

171

Vicente Pérez Soloviev

172

Part IV

CONCLUSIONS

173

Chapter 13

Conclusions and Future Work

In this chapter, we list the main contributions achieved in this thesis and discuss possible
future research lines. The publications and submissions are also listed in this chapter.

Chapter outline
In Section 13.1 we review the main contributions of this work. Section 13.2 provides a
list of works published or submitted during this PhD thesis. Section 13.3 describes the
software implemented in this research for the methodologies implementation and its respective
experimentation. To sum up, Section 13.4 rounds the document off with future open research
lines.

13.1 Summary of contributions
The main contributions achieved in this thesis are listed below:

• Chapter 5 studies the behavior the EGNA approach facing an optimization problem
from the industry 4.0. The proposed approach introduces the concept of the environment
variables, which restricts the search space in which the EDA is sampling the GBN.
Moreover an additional configurable parameter is added in the algorithm to regulate the
level of exploration vs. exploitation of the algorithm. Our results show that the proposed
approach is able to imitate the proposals delivered by the experts in the industry when
the level of exploitation is high. On the other hand, increasing the level of exploration
allows our approach to find economically cheaper solutions to the optimization problem
and outperform other state-of-the-art algorithms. This contribution satisfies objective
O7.

• Chapter 6 extends the concept of environment variables with the EGNA approach to a
multi-objective optimization problem in the industry 4.0. Our approach is used for the
experimental design of a chemical laboratory which produces fuel. The EDA approach
allows to reduce the number of experiments carried out in the laboratory by learning
the dependencies and behavior of the chemical components and their relations in the

175

Vicente Pérez Soloviev

main formulas proposed. A regression model assists the optimizer by predicting some of
the characteristics of the fuel formula that cannot be computed analytically and have to
be evaluated in the laboratory. Our results show that the proposed approach is able to
provide a set of optimal solutions that outperform the ones found by other optimizers.
Moreover, the probabilistic model used finds dependencies between the variables which
were unknown by the experts in the field. This contribution satisfies objective O8.

• Chapter 7 introduces a new methodology (SPEDA) in which the EDA is not restricted
to assume a given probability distribution. SPEDA decides itself during the algorithm
runtime whether to use Gaussians or KDE to each of the nodes in the embedded BN,
and allows to combine different types of nodes within the same model. Moreover, the
algorithm uses the concept of archive in which the probabilistic model is learned not
only from the best solutions in the last iteration but also from those found in the last l
iterations, where l is defined by the user. Numerical results show that our approach is
able to outperform the state-of-the-art EDA approaches and overcome the premature
convergence found in traditional EDA variants in different benchmark suites and a
portfolio optimization problem. This contribution satisfies objective O1.

• Chapter 8 combines the EDA approach and QC technology by proposing an EDA variant
in which the probabilistic model is replaced by a quantum circuit. The approach was
applied to the TSP problem and the results simulating quantum noise outperform the
results found by the approach without noise and other optimizers. We also analyze the
quantum circuit depth after transpilation for different quantum devices, and propose
the ideal quantum topology for our algorithm. This contribution satisfies objective O5.

• Chapter 9 applies the QAOA for learning the structure of a BN given some data by
reformulating a QUBO problem into a QAOA ansatz. Numerical results show competitive
results compared to other classical approach although the size of the learned models is
limited by the size of the NISQ era quantum devices. To complement these results, a
quantum-inspired technology has been applied to solve this problem facing much bigger
BNs and again providing competitive results compared to classical approaches and
outperforming them in some of the experiments. This contribution satisfies objective
O2.

• Chapter 10 proposes the use of EDA approaches to optimize the parameters of the
VQAs ansatz. We compare the performance of three different EDA variants for the
parameter optimization of a QAOA, a VQE and a VQE with quantum noise for different
optimization problems. The results show that the EDA variants are able to outperform
the state-of-the-art approaches in terms of CPU time and quality of solutions depending
on the hyper-parameter tuning of the EDA. This contribution satisfies objective O3.

• Chapter 11 goes one step forward by not only optimizing the parameters of a given
ansatz but also its architecture. The proposed methodology is assisted by a ML model
that ranks the proposed ansatzes skipping the parameter optimization step. Moreover,
the optimization procedure is formulated as a multi-objective problem in which the
possibility of BP existence in the proposed ansatz is reduced. Our results compare the
found solutions for some given Hamiltonians to the ones provided in a dataset, where

176

CHAPTER 13. CONCLUSIONS AND FUTURE WORK

competitive results were found. This contribution satisfies objective O4.

• Chapter 12 presents EDAspy python library, in which the state-of-the-art EDA variants
and new methodologies introduced during this document are included. To the best of
our knowledge, the identified libraries in which EDA implementations are available are
very limited, or outdated, so we present this library in order to facilitate future research
and applications on the topic. This contribution satisfies objective O6.

13.2 List of publications

Peer-reviewed JCR journals
• Soloviev, V. P., Larrañaga, P.,& Bielza, C. (2022). Estimation of distribution algorithms

using Gaussian Bayesian networks to solve industrial optimization problems constrained
by environment variables. Journal of Combinatorial Optimization, 44(2), 1077-1098.

• Soloviev, V. P., Bielza, C.,& Larrañaga, P. (2022). Quantum approximate optimization
algorithm for Bayesian network structure learning. Quantum Information Processing,
22(1), 19.

• Soloviev, V. P., Bielza, C.,& Larrañaga, P. (2023). Semiparametric estimation of
distribution algorithms for continuous optimization. IEEE Transactions on Evolutionary
Computation.

• Soloviev, V. P., Larrañaga, P.,& Bielza, C. (2024). EDAspy: An extensible python
package for estimation of distribution algorithms. Neurocomputing, 128043.

• Soloviev, V. P., Larrañaga, P., Bernabei, M., Chirita, M.A., Seoane, J.M., Fontán, P.,
& Bielza, C. (2024). A multi-objective framework based on estimation of distribution
algorithms for data-driven fuel experimental design. Submitted.

• Soloviev, V. P., Dunjko, V., Bielza, C., Larrañaga, P., & Wang, H. (2024). Trainability
maximization using estimation of distribution algorithms assisted by surrogate modelling
for quantum architecture search. EPJ Quantum Technology, 11(1), 69.

Peer-reviewed conferences
• Soloviev, V. P., Bielza, C.,& Larrañaga, P. (2021). Quantum-inspired estimation of

distribution algorithm to solve the travelling salesman problem. In IEEE Congress on
Evolutionary Computation (pp. 416-425). IEEE. Online

• Soloviev, V. P., Larrañaga, P.,& Bielza, C. (2022). Quantum parametric circuit opti-
mization with estimation of distribution algorithms. In Proceedings of the Genetic and
Evolutionary Computation Conference (pp. 2247-2250). Boston, USA.

• Soloviev, V. P., Larrañaga, P.,& Bielza, C. (2023). Variational quantum algorithm
parameter tuning with estimation of distribution algorithms. In IEEE Congress on
Evolutionary Computation (pp. 1-9). IEEE. Chicago, USA.

177

Vicente Pérez Soloviev

Technical reports
• Ceberio, J., Doerr, B., Witt, C., & Soloviev, V. P. (2022). Estimation-of-distribution

algorithms: Theory and applications (Dagstuhl Seminar 22182).

Poster sessions
• Soloviev, V. P. Bayesian network structure learning using quantum computing. Poster

presented at: ELLIS Doctoral Symposium. 2022. Alicante, Spain.

• Soloviev, V. P. A probabilistic perspective for optimizing the parameters of quantum
heuristics using evolutionary algorithms. Poster presented at Quantum Information in
Spain ICE-8. 2023 (Santiago de Compostela).

13.3 Software
All the code implemented for the experimentation of each contribution is publicly available
through the respective GitHub repository and all of them can be found in this GitHub
account1. However, two main contributions are worth to be mentioned:

• EDAspy library is the first python library dedicated to the EDAs research. It com-
piles most of the state-of-the-art EDA approaches and is extended with the proposed
methodologies presented in this document. Moreover, the library has been carefully
implemented in order to ease the future extensibility of the current implementations.
EDAspy is currently been used in several private companies and academic research
centers as well.

• Several contributions have been done to Qiskit library in which the EDAs have been
introduced, among other bugs solved.

13.4 Future work
In this section we provide a list of open research lines identified along the document.

• Automatic tuning of exploration vs. exploitation parameter. Chapter 5 and
Chapter 6 introduce a novel parameter which regulates the level of exploration versus
exploitation in a given landscape of solutions. During this document we have shown an
analysis of the parameter as a function of the quality of the solutions. An automatic
refinement of this hyper-parameter during runtime is still an open question in this
research. Configuring it a priori may restrict the algorithm from reaching optimal
solutions, however, some patterns should be identified in the sampled solutions in order
to configure it during runtime.

• Geometric metrics for regulating exploration vs. exploitation. Chapter 5
and Chapter 6 control the level of exploration and exploitation by computing the log-

1https://github.com/VicentePerezSoloviev/

178

CHAPTER 13. CONCLUSIONS AND FUTURE WORK

likelihood. Here we propose using different metrics to compute this, such as geometric
distances in the landscape. Although this computation may be much more expensive, it
may result in better results; however, this is still an open question.

• Reduce CPU time of SPEDA. SPEDA has shown to outperform the EDA state-
of-the-art variants, however, the CPU runtime does not easily scale with the size of
the problem. Reducing the CPU runtime is still an open question in this research. We
propose not learning the BN structure within a window of iterations in which only the
parameters of the BN are learned. Our intuition is that a big window will lead to local
convergence, and a small window will compensate the CPU savings with an increasing
number of needed function evaluations.

• Multi-objective SPEDA. Extending SPEDA to multi-objective optimization tasks is
still and open research line. Several options may apply here, such as: (i) adding the
cost functions as nodes in the BN, (ii) or transforming the multi-objective tasks into
single-objective optimization through metrics such as the hypervolume.

• Environment variables for SPEDA. SPEDA has shown to outperform the EDA
state-of-the-art variants for different benchmark suites. However, it would be very
interesting to showcase the value of this approach for real optimization problems in
which the data do not fit Gaussians. Problems in the industry 4.0. usually involve setting
specific values to some of the variables. Thus, introducing environmental variables to
SPEDA would allow to expand the usability of this approach in real problems. On
the other hand no exact formulas are proposed in the literature for computing the
conditional probability of the decision variables given the environmental variables in a
SPBN.

• QIEDA without PLS. Our quantum-inspired EDAs have shown to achieve good
results for the TSP problem, however, their CPU time remains slow. The sampling
process of the algorithm heavily depends on the number of cities present in the TSP,
which grows linearly with this number. Sampling each row of the codification depends
on the previous row sampling. Classical communication in between the quantum circuit
execution may allow to sample the full individual for the TSP, and thus saving a lot
of computational resources. However, this may reduce the effect of the quantum noise
that we have found to be beneficial to our approach. Analyzing this trade-off is still an
open research question.

• Extend QIEDA for other tasks. QIEDA has been explicitly designed for the TSP
problem in which the sampling procedure is valid for the matrix representation of the
problem. Extending this method for a general optimization purpose is still an open
research line.

• Dynamic environments. All the approaches proposed in this PhD Thesis are focused
on optimization tasks in which the cost function remains constant during all the runtime.
Dynamic optimization is a type of optimization problem where the objective is to
find the best possible solution over runtime, considering the changes and dynamics
of the problem. Unlike static optimization, where the parameters and constraints are
fixed, dynamic optimization deals with problems where the parameters, constraints,

179

Vicente Pérez Soloviev

or objectives can change over time [Nguyen et al., 2012]. Extending the proposed
methodologies in Chapters 5-7 is still an open research line.

• AutoEDA. We have found that combining different types of nodes (Gaussian and
KDE) outperforms the state of the art. Here we propose an approach in which in each
iteration the EDA itself decides whether to use different probabilistic models. By this
way, the EDA may initially use univariate approaches such as UMDA, and end the
execution exploiting the patterns found by the SPEDA approach, or viceversa. This is
still an open research line.

• Explicitly analyze EDAs with VQAs with BPs. We have proposed in Chapter 10
the use of EDAs for different VQA parameter optimization. The main issue encountered
in the parameter optimization is the existence of BPs in the landscape of solutions
[Ragone et al., 2023]. A deep understanding on how the EDA approaches avoid getting
stuck in BPs is still an open research line.

• Dynamic definition of HV reference point. Chapter 6 and Chapter 11 propose
different extensions of the EDA approaches for multi-objective tasks. The HV metric
has been used combining the objective functions. However, this involves defining a
reference point with which being compared during all runtime. Here we propose a
dynamic definition in which in each iteration the algorithm adjusts the reference point
according to the solutions sampled [Ishibuchi et al., 2018]. This adjustment also has to
be considered when comparing solutions from different iterations.

• Visualization tools. We have identified several research frameworks in which visu-
alization tools are proposed analyze the algorithm trajectory within the landscape of
solutions [Shine and Eick, 1997, De Lorenzo et al., 2019, Fyvie et al., 2023]. Adding a
visualization module to EDAspy would add value to the framework.

180

Part V

APPENDIX

181

Appendix A

Benchmarking Functions

This appendix describes the benchmark suites mentioned in both Chapter 7 and Chapter 12.
CEC2014 [Liang et al., 2013] and CEC2017 [Wu et al., 2017] benchmarks are usually used
for numerical experimentation. Note that all the rotational and shift matrices were obtained
from the original benchmarks.

A.1 CEC2014 benchmark
Table A.1 describes the CEC2014 functions tested. The functions are divided into unimodal,
multimodal, hybrid, and composition functions, in the first, second, third, and fourth groups
from top to bottom, respectively. Additionally, cec14_8 and cec14_10 are separable functions,
while the rest are not. Hybrid functions are built in a way in which the search space is divided
into different types of functions, and composition functions are similar to hybrid ones, but
adding more complex modifications and being able to combine hybrid functions with simpler
ones.

A.2 CEC2017 benchmark
Table A.2 describes the CEC2017 functions tested. The functions are divided in-between
unimodal, multimodal and hybrid functions, in the first, second, and third groups from top
to bottom, respectively. All of them are non-separable functions, and most of them have a
large number of local optima.

183

Vicente Pérez Soloviev

Table A.1: CEC2014 single objective minimization test benchmarks used in the experiments.
cec14_1 - cec14_3 benchmarks are uni-modal functions, cec14_4 - cec14_16 are multi-modal,
cec14_17 - cec14_22 are hybrid functions that combine previously defined functions, and
cec14_23 - cec14_30 are composition functions that combine previously defined functions
and additional modifications over them.

Description Characteristics
cec14_1 Rotated High Conditioned Elliptic function Quadratic ill-conditioned and non-separable
cec14_2 Rotated Bent Cigar function Smooth but narrow ridge and non-separable
cec14_3 Rotated Discus function With one sensitive direction and non-separable
cec14_4 Shifted and rotated Rosenbrock’s function Very narrow valley from local to global optimum and non-separable
cec14_5 Shifted and rotated Ackley’s function Epistasis and non-separable
cec14_6 Shifted and rotated Weierstrass function Continuous but differentiable only on a set of points and non-separable
cec14_7 Shifted and rotated Griewank’s function Rotated and non-separable
cec14_8 Shifted Rastrigin’s function Local optima’s number is huge and separable
cec14_9 Shifted and rotated Rastrigin’s function Local optima’s number is huge and non-separable
cec14_10 Shifted Schwefel’s function Many local optimas far from the global optima and separable
cec14_11 Shifted and rotated Schwefel’s function Many local optimas far from the global optima and non-separable
cec14_12 Shifted and rotated Katsuura function Continuous everywhere yet differentiable nowhere and non-separable
cec14_13 Shifted and rotated HappyCat function Non-separable
cec14_14 Shifted and rotated HGBat function Non-separable
cec14_15 Shifted and rotated Expanded Griewank’s plus Rosenbrock’s function Non-separable
cec14_16 Shifted and rotated Expanded Scaffer’s F6 function Deceptive and non-separable
cec14_17 Hybrid function 1 Hybridization of 3 different functions
cec14_18 Hybrid function 2 Hybridization of 3 different functions
cec14_19 Hybrid function 3 Hybridization of 4 different functions
cec14_20 Hybrid function 4 Hybridization of 4 different functions
cec14_21 Hybrid function 5 Hybridization of 5 different functions
cec14_22 Hybrid function 6 Hybridization of 5 different functions
cec14_23 Composition function 1 Multi-modal, non-separable, asymmetric
cec14_24 Composition function 2 Multi-modal, non-separable
cec14_25 Composition function 3 Multi-modal, non-separable, asymmetric
cec14_26 Composition function 4 Multi-modal, non-separable, asymmetric
cec14_27 Composition function 5 Multi-modal, non-separable, asymmetric
cec14_28 Composition function 6 Multi-modal, non-separable, asymmetric
cec14_29 Composition function 7 Multi-modal, non-separable, asymmetric, different properties for different D
cec14_30 Composition function 8 Multi-modal, non-separable, asymmetric, different properties for different D

Table A.2: CEC2017 single objective minimization test benchmarks used in the experiments.
cec17_1 - cec17_2 benchmarks are uni-modal functions, cec17_3 - cec17_9 are multi-modal,
and cec17_10 - cec17_19 are hybrid functions that combine previously defined functions. All
the functions in this benchmark are non-separable.

Description Characteristics
cec17_1 Shifted and rotated Bent Cigar Function Non-separable, with a smooth but narrow ridge
cec17_2 Shifted and rotated Zakharov Function Non-separable
cec17_3 Shifted and rotated Rosenbrock’s Function Non-separable with huge number of local optima
cec17_4 Shifted and rotated Rastrigin’s Function Non-separable with huge number of local optima
cec17_5 Shifted and rotated Expanded Scaffer’s F6 Function Non-separable with huge number of local optima
cec17_6 Shifted and rotated Lunacek Bi_Rastrigin Function Non-separable, asymmetrical, continuous everywhere yet differentiable nowhere
cec17_7 Shifted and rotated Non-Continuous Rastrigin’s Function Non-separable with huge number of local optima
cec17_8 Shifted and rotated Levy Function Non-separable with huge number of local optima
cec17_9 Shifted and rotated Schwefel’s Function Non-separable with huge number of local optima
cec17_10 Hybrid function 1 Hybridization of 3 different functions
cec17_11 Hybrid function 2 Hybridization of 3 different functions
cec17_12 Hybrid function 3 Hybridization of 3 different functions
cec17_13 Hybrid function 4 Hybridization of 4 different functions
cec17_14 Hybrid function 5 Hybridization of 4 different functions
cec17_15 Hybrid function 6 Hybridization of 4 different functions
cec17_16 Hybrid function 7 Hybridization of 5 different functions
cec17_17 Hybrid function 8 Hybridization of 5 different functions
cec17_18 Hybrid function 9 Hybridization of 5 different functions
cec17_19 Hybrid function 10 Hybridization of 6 different functions

184

Appendix B

Exploration Data Analysis

This appendix describes the dataset used in Chapter 6. It was provided by the experts in the
industry and has been used for the EDA approach initialization.

B.1 Ingredients and properties description
Table B.1 shows the properties P1, . . . , P14 associated to each of the n = 24 ingredients for
the fuel fabrication. Note that the names of the ingredients are denoted referring to the
category to which they belong. For example, A1 is the first ingredient of category A and B2
the second one of category B.

Figure B.1 shows a histogram for each of the properties P1, . . . , P14.

B.2 Optimization constraints
Table B.2 shows the lower and upper bounds, respectively, for analytical functions W i

calc(i =
1, . . . , 7) and laboratory experimentation W i

lab(i = 1, . . . , 4).

185

Vicente Pérez Soloviev

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14
I1 A1 678.6 76.5 42.0 100.0 100.0 0.0 0.0 99.4 0.0 85.6 14.4 6.0 12.0 0.0
I2 A2 667.0 97.7 102.2 100.0 100.0 0.0 0.0 99.9 0.1 85.6 14.4 5.0 10.0 0.0
I3 A3 816.3 83.9 26.8 0.0 100.0 0.0 0.0 99.9 0.1 87.7 12.3 6.0 10.0 0.0
I4 A4 777.1 93.4 68.4 100.0 100.0 0.0 0.0 98.9 0.0 87.6 11.8 4.9 7.9 0.0
I5 B1 652.6 85.6 78.5 100.0 100.0 0.0 0.0 0.0 0.0 68.7 13.5 4.3 10.1 0.0
I6 B2 652.5 88.6 78.4 100.0 100.0 0.0 0.0 0.0 0.0 83.6 16.4 5.7 13.3 0.0
I7 C1 784.1 83.0 22.0 0.0 100.0 0.0 0.0 0.0 0.0 85.6 14.4 6.0 12.0 0.0
I8 C2 746.6 100.6 66.0 100.0 100.0 0.0 0.0 0.0 0.0 85.5 14.5 5.0 10.1 0.0
I9 C3 754.0 91.0 31.6 0.0 100.0 0.0 0.0 0.0 0.1 85.6 14.4 6.0 12.0 0.0
I10 D1 723.0 105.0 33.0 100.0 100.0 0.0 15.7 0.0 0.0 70.5 13.8 6.0 14.0 1.0
I11 D2 751.6 113.4 35.7 32.0 100.0 100.0 14.7 3.3 0.1 71.1 13.9 5.8 13.6 0.9
I12 D3 751.6 113.4 35.7 32.0 100.0 50.0 14.7 3.3 0.1 71.1 13.9 5.8 13.6 0.9
I13 D4 793.7 105.4 17.1 0.0 100.0 100.0 34.7 0.0 0.0 52.1 13.1 2.0 6.0 1.0
I14 D5 800.0 105.1 8.0 0.0 0.0 0.0 21.6 0.0 0.0 64.8 13.6 4.0 10.0 1.0
I15 D6 746.6 117.0 60.1 100.0 100.0 39.0 18.1 0.0 0.0 68.1 13.7 5.0 12.0 1.0
I16 D7 796.9 106.0 32.8 100.0 100.0 100.0 49.9 0.0 0.0 37.5 12.6 1.0 4.0 1.0
I17 D8 770.9 114.0 19.5 0.0 100.0 0.0 15.1 0.8 0.3 70.9 13.8 5.8 13.4 0.9
I18 E1 625.2 91.5 135.1 100.0 100.0 0.0 0.0 0.0 0.0 83.2 16.8 5.0 12.0 0.0
I19 E2 699.4 96.7 12.7 0.0 64.0 0.0 0.0 0.0 0.0 81.9 15.5 7.7 17.4 0.0
I20 E3 707.3 77.4 30.3 26.3 67.4 100.0 0.0 2.5 1.9 50.8 9.0 3.1 6.5 0.0
I21 E4 756.8 90.3 54.4 23.9 40.0 100.0 0.0 5.3 38.1 89.7 10.3 3.3 6.9 0.0
I22 F1 871.4 107.4 3.4 0.0 0.0 0.0 0.0 0.0 100.0 90.5 9.5 8.0 10.0 0.0
I23 F2 871.4 120.1 6.4 0.0 0.0 0.0 0.0 0.0 99.9 91.1 8.7 7.0 8.0 0.0
I24 F3 868.4 117.5 2.7 0.0 0.0 0.0 0.0 0.0 100.0 90.5 9.5 8.0 10.0 0.0

Table B.1: Properties P1, . . . , P14 associated to each of the ingredients I1, . . . , I24 used for
the fuel fabrication and its name denoting the category to which they belong.

186

APPENDIX B. EXPLORATION DATA ANALYSIS

650 700 750 800 850
0

2

4

P1

80 90 100 110 120
0

2

4
P2

0 20 40 60 80 100 120 140
0

2

4

6

P3

0 20 40 60 80 100
0

5

10
P4

0 20 40 60 80 100
0

5

10

15

P5

0 20 40 60 80 100
0

5

10

15

P6

0 10 20 30 40 50
0

5

10

15
P7

0 20 40 60 80 100
0

10

20
P8

0 20 40 60 80 100
0

10

20
P9

40 50 60 70 80 90
0.0

2.5

5.0

7.5
P10

10 12 14 16
0

2

4

6
P11

1 2 3 4 5 6 7 8
0

2

4

P12

4 6 8 10 12 14 16 18
0

2

4

6

P13

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15
P14

Figure B.1: Frequency of each property P1, . . . , P14.

187

Vicente Pérez Soloviev

Formula LB UB

W 1
calc(x) 100∑n

i=1(xi/P 1(Ii))
LB1

calc UB1
calc

W 2
calc(x) ∑n

i=1

(
xi

1000(32.8P 10(Ii)
100 +141.8(P 11(Ii)

100 − P 7(Ii)
800))− 2440∗9P 11(Ii)

100
P 12(Ii)+P 13(Ii)/4−P 14(Ii)/2

6.09/(12P 12(Ii)+P 13(Ii)+16P 14(Ii))

)
LB2

calc UB2
calc

W 3
calc(x)

∑n

i=1 xiP 8(Ii)/P 1(Ii)∑n

i=1 xi/P 1(Xi)
LB3

calc UB3
calc

W 4
calc(x) ∑n

i=1 xiP7(Ii) LB4
calc UB4

calc

W 5
calc(x)

∑n

i=1 xiP 9(Ii)/P 1(Ii)∑n

i=1 xi/P 1(Ii)
LB5

calc UB5
calc

W 6
calc(x) ∑n

i=1 xiP6(Ii) LB6
calc UB6

calc

W 7
calc(x) x16 LB7

calc UB7
calc

W 1
lab(x) - LB1

lab UB1
lab

W 2
lab(x) - LB2

lab UB2
lab

W 3
lab(x) - LB3

lab UB3
lab

W 4
lab(x) - LB4

lab UB4
lab

Table B.2: Formula, lower bound (LB) and upper bound (UB) associated to each analytical
descriptor W i

calc and each laboratory descriptor W i
lab; xi is the percentage of each ingredient

Ii in the total mixture x, and Pj(Ii) is the property j of ingredient Ii (see Table B.1).

188

Appendix C

Algorithms Configuration

This appendix shows the algorithms configuration used in Chapter 6.

C.1 Configuration of regression models
In this section, we detail the hyperparameter configurations applied to the regression models
tested to predict W 1

lab. Tables C.1-C.2 show the hyperparameters used in the experimental
results for Bayesian ridge, Lasso, Ridge and Kernel ridge models. Note that categorical
hyperparameters were used as default in scikit-learn-1.3.0 [Pedregosa et al., 2011]. Bayesian
ridge model was selected as the best regression model to predict W 1

lab values, so both the
default and after tuning hyperparameters are shown. Hyperparameter tuning was performed
by Bayesian optimization. All the experiments use the same maximum number of iterations
set as default.

tol α1 α2 λ1 λ2

default 1e-3 1e-6 1e-6 1e-6 1e-6
hyperopt 94.64 50.16 18.59 81.89 0.20

Table C.1: Bayesian ridge model hyperparameters by default and after hyperparameter tuning
(hyperopt), where tol is the tolerance error to consider convergence; α1 and α2 are the shape
parameter for the Gamma distribution and the inverse scale parameter for α, respectively; λ1
and λ2 are the shape parameter for the Gamma distribution and the inverse scale parameter
for λ, respectively.

C.2 Competitors configuration
In this section, we detail the hyperparameter configuration applied to the other optimizers
used in the comparison against the EDA approach presented in this article. NSGA-II and
MOEAD implementations have been obtained from PYMOO Python library [Blank and Deb,

189

Vicente Pérez Soloviev

α3 tol degree
Lasso 0.5 1e-4 -
Ridge 0.5 1e-4 -
Kernel ridge 10 - 3

Table C.2: Lasso, Ridge and Kernel ridge regression models hyperparameter configurations
used. Parameter α3 is the constant that multiplies L1, L2 terms in Lasso and Ridge regression
models, respectively, and tol represents the tolerance error to consider algorithm convergence.
In the case of Kernel ridge degree is the polynomial degree used.

2020] and both algorithms were initialized from the historical data. Tables C.3-C.4 show the
hyperparameter configurations used for both algorithms in experimental results.

Crossover Mutation
N offs P eta P eta

tested 200 10 0.9 15 1.0 20

Table C.3: Hyperparameters used for NSGAII algorithm [Deb et al., 2002], where N is the
population size, offs regards the number of offsprings performed; P is probability of crossover
and mutation occurrence; and eta parameter controls the shape of the distribution used for
both crossover and mutation operators.

n_neig P
tested 15 0.7

Table C.4: Hyperparameters used for MOEAD algorithm [Zhang and Li, 2007], where n_neig
is the number of neighbors considered and P is the probability of neighbor mating occurrence.

190

Appendix D

Large BNSL using Digital Annealing

D.1 Problem size fitted into device
See Figure D.1.

Figure D.1: In horizontal axis, the number of nodes, and in y axis, the number of quan-
tum/classical bits needed for the QUBO formulation.

D.2 20 nodes BNSL
See Figure D.2.

D.3 50 nodes BNSL
See Figure D.3.

191

Vicente Pérez Soloviev

Figure D.2: Experiment for 20 nodes. Each subplot is a different size of dataset: 50000,
10000, 5000 and 1000 instances. DA is compared with the Hill Climbing algorithm (HC),
Tabu search algorithm (Tabu), and Max-Min Hill Climbing algorithm (MMHC).

192

APPENDIX D. LARGE BNSL USING DIGITAL ANNEALING

Figure D.3: Experiment for 50 nodes. Each subplot is a different size of dataset: 50000,
10000, 5000 and 1000 instances. DA is compared with the Hill Climbing algorithm (HC),
Tabu search algorithm (Tabu), and Max-Min Hill Climbing algorithm (MMHC).

193

Vicente Pérez Soloviev

194

Appendix E

Complementary Materials for
Quantum Architecture Search

E.1 Hamiltonians
This section describes the Hamiltonians used for the experimental results. Note that the
following benchmarks and coefficients have been used in order to compare the results with
the ones found in Nakayama et al. [2023].

1D transverse-field Ising model:

H1 =
n−1∑
i=1

ZiZi+1 + 2
n∑

i=1
Xn

1D Heisenberg model:

H2 =
n−1∑
i=1

(XiXi+1 + YiYi+1 + ZiZi+1) + 2
n∑

i=1
Zn

Su-Schrieffer-Heeger model:

H3 =
n−1∑
i=1

(
1 + 3

2(−1)i−1
)

(XiXi+1 + YiYi+1 + ZiZi+1) + 2
n∑

i=1
Xn

J1 - J2 model:

H4 =
n−1∑
i=1

(XiXi+1 + YiYi+1 + ZiZi+1) + 3
n−2∑
i=1

(XiXi+2 + YiYi+2 + ZiZi+2)

E.2 Surrogate model prediction
Here we compare the performance of different surrogate models by comparing different ansatz
by pairs in a given initial data for different number of qubits.

195

Vicente Pérez Soloviev

Different architectures have been built for problems described in Appendix E.1 and different
values of n. The number of architectures have been set to N = 37.5n, and the circuit depth to
m = 60. Table E.1 shows the accuracy found for different models with different configurations.
Results show that support vector classifier (SVC) achieves the best metrics, and thus, is used
as surrogate model in our approach.

model n = 4 n = 8 n = 12
Random_forest_20 0.76 0.77 0.75
Random_forest_50 0.81 0.82 0.80
Random_forest_80 0.82 0.83 0.80

KNN_2 0.64 0.66 0.68
KNN_5 0.72 0.74 0.75
KNN_15 0.78 0.79 0.79

SVC 0.91 0.92 0.90
Decision tree 0.64 0.65 0.65
Naive Bayes 0.69 0.76 0.78

Table E.1: Accuracy found after evaluating each model in a set of initial architectures using
cross-validation with 15 folds. Independently of n, all the ansatz have been restricted to
m = 60, and N = 37.5n. Random forest with different numbers of estimators, k-nearest
neighbors (KNN) with different numbers of neighbors, support vector classifier (SVC), decision
tree, and naive Bayes have been tested.

E.3 Distance computation
Here we detail the distance comparison between all the proposed solutions within EDAn

i

and each of the clusters Dn
i by computing Equation 11.11. Note that index j denotes each

of the 5 best results found by the EDA. Table E.2-E.4 show the distance computations for
n ∈ [4, 8, 12], respectively.

E.4 Pareto frontier approximations
Figure E.1 shows the Pareto frontier approximation for different H and number of qubits.
The columns refer to the problem instances, while the rows refer to the number of qubits
(n). Each subplot shows all the evaluated ansatz (blue spots) from which the non-dominated
solutions are highlighted (orange spot).

E.5 IC and expectation values comparison
Table E.5 describes the mean expectation value (Equation 4.9) and IC (Equation 4.15) for
the ansatz available in the dataset (Dn

i) for different values of n.

196

APPENDIX E. COMPLEMENTARY MATERIALS FOR QUANTUM ARCHITECTURE
SEARCH

Figure E.1: Pareto frontier approximation (orange spots) over all the ansatz considered (blue
spots) during optimization process. Columns refer to problem instances, while rows refer to
number of qubits (n).

Table E.6 describes the best expectation value and IC found by the EDA approach for different
Hi and values of n, where the HV is maximized. That is, the solutions which maximize HV
within EDAn

i .

197

Vicente Pérez Soloviev

Figure E.2: Pareto frontier approximation (black stars) over all the ansatz considered (colored
spots) during the optimization process. Black triangles regard the ansatz included in the
dataset. Columns refer to problem instances, while rows refer to number of qubits (n).

198

APPENDIX E. COMPLEMENTARY MATERIALS FOR QUANTUM ARCHITECTURE
SEARCH

an
sa

tz
(E

D
A

4 i j
)

H
i

di
st

(E
D

A
4 1 j
,D

4 1)
di

st
(E

D
A

4 2 j
,D

4 2)
di

st
(E

D
A

4 3 j
,D

4 3)
di

st
(E

D
A

4 4 j
,D

4 4)
ED

A
4 1 1

H
1

0.
01

8
0.

99
8

0.
99

0
0.

99
9

ED
A

4 1 2
H

1
0.

01
1

0.
99

9
0.

99
5

0.
99

5
ED

A
4 1 3

H
1

0.
01

1
0.

99
9

0.
98

9
0.

99
9

ED
A

4 1 4
H

1
0.

02
7

0.
99

0
0.

99
1

0.
99

5
ED

A
4 1 5

H
1

0.
01

1
0.

99
9

0.
98

9
0.

99
9

ED
A

4 2 1
H

2
0.

99
9

0.
03

8
0.

98
2

0.
99

7
ED

A
4 2 2

H
2

0.
99

9
0.

04
9

0.
99

3
0.

99
9

ED
A

4 2 3
H

2
0.

99
3

0.
95

4
0.

23
3

0.
88

0
ED

A
4 2 4

H
2

0.
99

9
0.

03
5

0.
97

6
0.

99
0

ED
A

4 2 5
H

2
0.

97
0

0.
37

4
0.

79
4

0.
96

5
ED

A
4 3 1

H
3

0.
99

3
0.

99
9

0.
05

1
0.

66
0

ED
A

4 3 2
H

3
0.

99
2

0.
99

9
0.

05
8

0.
64

8
ED

A
4 3 3

H
3

0.
98

8
0.

99
8

0.
06

4
0.

64
6

ED
A

4 3 4
H

3
0.

99
5

0.
99

7
0.

06
9

0.
63

1
ED

A
4 3 5

H
3

0.
98

7
0.

99
9

0.
05

6
0.

63
7

ED
A

4 4 1
H

4
0.

99
1

0.
99

5
0.

69
1

0.
07

7
ED

A
4 4 2

H
4

0.
99

3
0.

99
2

0.
75

2
0.

06
1

ED
A

4 4 3
H

4
0.

99
8

0.
99

1
0.

81
1

0.
08

1
ED

A
4 4 4

H
4

0.
99

2
0.

99
7

0.
70

2
0.

09
9

ED
A

4 4 5
H

4
0.

99
0

0.
99

3
0.

32
9

0.
01

1

Ta
bl

e
E.

2:
D

ist
an

ce
(E

qu
at

io
n

11
.1

1)
be

tw
ee

n
ea

ch
an

sa
tz

in
ED

A
4 i j

an
d
D

4 i
,w

he
re
i

de
no

te
s

th
e

H
am

ilt
on

ia
n

in
de

x
an

d
n

=
4.

Bo
ld

va
lu

es
re

pr
es

en
t

th
os

e
in

st
an

ce
s

in
w

hi
ch

th
e

cl
os

es
t

cl
us

te
r

to
ED

A
4 i j

is
D

4 i
.

199

Vicente Pérez Soloviev

ansatz
(ED

A
8ij)

H
i

dist(ED
A

81
j ,D

81)
dist(ED

A
82

j ,D
82)

dist(ED
A

83
j ,D

83)
dist(ED

A
84

j ,D
84)

ED
A

81
1

H
1

0.973
0.995

0.995
0.997

ED
A

81
2

H
1

0.950
0.996

0.996
0.994

ED
A

81
3

H
1

0.830
0.998

0.998
0.998

ED
A

81
4

H
1

0.553
0.999

0.999
0.999

ED
A

81
5

H
1

0.942
0.995

0.990
0.997

ED
A

82
1

H
2

0.990
0.926

0.968
0.991

ED
A

82
2

H
2

0.998
0.906

0.998
0.999

ED
A

82
3

H
2

0.998
0.963

0.989
0.995

ED
A

82
4

H
2

0.996
0.992

0.998
0.998

ED
A

82
5

H
2

0.999
0.991

0.999
0.999

ED
A

83
1

H
3

0.999
0.999

0.957
0.995

ED
A

83
2

H
3

0.999
0.958

0.983
0.985

ED
A

83
3

H
3

0.999
0.999

0.522
0.949

ED
A

83
4

H
3

0.998
0.996

0.958
0.983

ED
A

83
5

H
3

0.999
0.922

0.999
0.996

ED
A

84
1

H
4

0.999
0.999

0.971
0.981

ED
A

84
2

H
4

0.999
0.998

0.992
0.945

ED
A

84
3

H
4

0.998
0.998

0.988
0.996

ED
A

84
4

H
4

0.999
0.999

0.982
0.994

ED
A

84
5

H
4

0.999
0.999

0.999
0.988

Table
E.3:

D
istance

(Equation
11.11)

between
each

ansatz
in

ED
A

8ij and
D

8i ,w
here

idenotes
the

H
am

iltonian
index

and
n

=
8.

Bold
values

represent
those

instances
in

w
hich

the
closest

cluster
to

ED
A

5ij is
D

8i .

200

APPENDIX E. COMPLEMENTARY MATERIALS FOR QUANTUM ARCHITECTURE
SEARCH

an
sa

tz
(E

D
A

12 i j
)

H
i

di
st

(E
D

A
12 1 j
,D

12 1
)

di
st

(E
D

A
12 2 j
,D

12 2
)

di
st

(E
D

A
12 3 j
,D

12 3
)

di
st

(E
D

A
12 4 j
,D

12 4
)

ED
A

12 1 1
H

1
0.

99
9

0.
99

9
0.

99
9

0.
99

9
ED

A
12 1 2

H
1

0.
99

9
0.

99
9

0.
99

9
0.

99
9

ED
A

12 1 3
H

1
0.

99
9

0.
99

9
0.

99
9

0.
99

9
ED

A
12 1 4

H
1

0.
99

9
0.

99
9

0.
99

9
0.

99
9

ED
A

12 1 5
H

1
0.

99
9

0.
99

9
0.

99
9

0.
99

9
ED

A
12 2 1

H
2

0.
99

9
0.

99
9

0.
99

9
0.

99
9

ED
A

12 2 2
H

2
0.

99
9

0.
99

9
0.

99
9

0.
99

9
ED

A
12 2 3

H
2

0.
99

9
0.

99
9

0.
99

9
0.

99
9

ED
A

12 2 4
H

2
0.

99
9

0.
99

9
0.

99
9

0.
99

9
ED

A
12 2 5

H
2

0.
99

9
0.

99
9

0.
99

9
0.

99
9

ED
A

12 3 1
H

3
0.

99
9

0.
99

8
0.

99
9

0.
99

9
ED

A
12 3 2

H
3

0.
99

9
0.

99
9

0.
99

9
0.

99
9

ED
A

12 3 3
H

3
0.

99
9

0.
99

9
0.

99
9

0.
99

9
ED

A
12 3 4

H
3

0.
99

9
0.

99
9

0.
99

8
0.

99
9

ED
A

12 3 5
H

3
0.

99
9

0.
99

9
0.

99
9

0.
99

9
ED

A
12 4 1

H
4

0.
99

9
0.

99
9

0.
99

9
0.

99
9

ED
A

12 4 2
H

4
0.

99
9

0.
99

9
0.

99
9

0.
99

9
ED

A
12 4 3

H
4

0.
99

9
0.

99
9

0.
99

9
0.

99
9

ED
A

12 4 4
H

4
0.

99
9

0.
99

9
0.

99
9

0.
99

9
ED

A
12 4 5

H
4

0.
99

9
0.

99
9

0.
99

9
0.

99
9

Ta
bl

e
E.

4:
D

ist
an

ce
(E

qu
at

io
n

11
.1

1)
be

tw
ee

n
ea

ch
an

sa
tz

in
ED

A
12 i j

an
d
D

12 i
,w

he
re
i

de
no

te
st

he
H

am
ilt

on
ia

n
in

de
x

an
d
n

=
12

.

201

Vicente Pérez Soloviev

n = 4 n = 8
E IC E IC

H1 -8.37 ± 0.01 0.47 ± 0.14 -16.89 ± 0.01 0.46 ± 0.16
H2 -7.83 ± 0.01 0.51 ± 0.16 -15.92 ± 0.02 0.45 ± 0.06
H3 -14.19 ± 1.87 0.63 ± 0.15 -30.07 ± 0.01 0.51 ± 0.07
H4 -17.18 ± 2.20 0.80 ± 0.09 -39.05 ± 0.04 0.82 ± 0.15

Table E.5: Mean and standard deviation of expectation value (E) (Equation 4.9) and
information content (IC) (Equation 4.15), respectively, found in the ansatz in the dataset
whose depth is in the range m±

√
m, for different number of qubits n and Hamiltonian Hi.

n = 4 n = 8
E IC E IC

H1 -7.81 0.97 -16.18 0.56
H2 -6.74 0.73 -13.58 0.45
H3 -14.03 1.00 -29.28 0.43
H4 -17.21 1.47 -26.87 1.57

Table E.6: Best expectation value (E) (Equation 4.9) and information content (IC) (Equa-
tion 4.15) found by the EDA approach (assisted by COBYLA) for different number of qubits
(n) and Hamiltonians (Hi), where HV is maximized in the best Pareto approximation.

202

Appendix F

Library Required Metadata

F.1 Current executable software version
See Table F.1.

N Software metadata description Software metadata information
S1 Current software version 1.1.4
S2 Permanent link to executables of this version https://github.com/VicentePerezSoloviev/EDAspy/releases/tag/1.1.3
S3 Legal Software License MIT License
S4 Computing platform/Operating System Linux, OS X, Windows
S5 Installation requirements & dependencies python 3.8–3.11, pybnesian, numpy, pandas, scikit_learn, scipy, pgmpy pyarrow, multiprocessing
S6 Link to user manual https://edaspy.readthedocs.io/en/latest/
S7 Support email for questions vicente.perez.soloviev@gmail.com

Table F.1: Software metadata.

F.2 Current code version
See Table F.2.

N Software metadata description Software metadata information
C1 Current code version 1.1.4
C2 Permanent link to code/repository used of this code version https://github.com/VicentePerezSoloviev/EDAspy
C3 Legal Software License MIT License
C4 Code versioning system used git
C5 Software code languages, tools, and services used python 3.8–3.11
C6 Compilation requirements, operating environments & dependencies Compatible python pybnesian, numpy, pandas, scikit_learn, scipy, pgmpy, pyarrow, multiprocessing
C7 Link to developer documentation/manual https://edaspy.readthedocs.io/en/latest/
C8 Support email for questions vicente.perez.soloviev@gmail.com

Table F.2: Code metadata.

203

https://github.com/VicentePerezSoloviev/EDAspy/releases/tag/1.1.3
https://edaspy.readthedocs.io/en/latest/
https://github.com/VicentePerezSoloviev/EDAspy
https://edaspy.readthedocs.io/en/latest/

Vicente Pérez Soloviev

204

Part VI

REFERENCES

205

Bibliography

C. W. Ahn and R. S. Ramakrishna. Multiobjective real-coded bayesian optimization al-
gorithmrevisited: diversity preservation. In Proceedings of the 9th annual conference on
Genetic and evolutionary computation, pages 593–600, 2007.

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic
Control, 19(6):716–723, 1974.

V. Akshay, D. Rabinovich, E. Campos, and J. Biamonte. Parameter concentrations in quantum
approximate optimization. Physical Review A, 104(1):L010401, 2021.

H. Alibrahim and S. A. Ludwig. Hyperparameter optimization: Comparing genetic algorithm
against grid search and bayesian optimization. In 2021 IEEE Congress on Evolutionary
Computation, pages 1551–1559. IEEE, 2021.

A. Anand, M. Degroote, and A. Aspuru-Guzik. Natural evolutionary strategies for variational
quantum computation. Machine Learning: Science and Technology, 2(4):045012, 2021.

E. R. Anschuetz and B. T. Kiani. Quantum variational algorithms are swamped with traps.
Nature Communications, 13(1):7760, 2022.

S. Aouay, S. Jamoussi, and Y. B. Ayed. Particle swarm optimization based method for Bayesian
network structure learning. In 5th International Conference on Modeling, Simulation and
Applied Optimization, pages 1–6. IEEE, 2013.

D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Traveling Salesman Problem:
A Computational Study. Princeton University Press, 2006.

M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura, and H. G. Katzgraber.
Physics-inspired optimization for quadratic unconstrained problems using a digital annealer.
Frontiers in Physics, 7:48, 2019.

D. Atienza, C. Bielza, and P. Larrañaga. PyBNesian: An extensible Python package for
Bayesian networks. Neurocomputing, 504:204–209, 2022a.

D. Atienza, C. Bielza, and P. Larrañaga. Semiparametric Bayesian networks. Information
Sciences, 584:564–582, 2022b.

ATOS. Quantum Learning Machine. https://atos.net/en/solutions/
quantum-learning-machine, 2021. [Online; accessed 26-January-2022].

S. Baluja. Population-based Incremental Learning: A Method for Integrating Genetic Search

207

https://atos.net/en/solutions/quantum-learning-machine
https://atos.net/en/solutions/quantum-learning-machine

Vicente Pérez Soloviev

based Function Optimization and Competitive Learning. School of Computer Science,
Carnegie Mellon University Pittsburgh, PA, 1994.

S. Baluja and S. Davies. Combining Multiple Optimization Runs with Optimal Dependency
Trees. Carnegie-Mellon University. Department of Computer Science, 1997.

P. K. Barkoutsos, G. Nannicini, A. Robert, I. Tavernelli, and S. Woerner. Improving variational
quantum optimization using CVaR. Quantum, 4:256, 2020.

J. Bergstra, D. Yamins, and D. Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In International Conference
on Machine Learning, pages 115–123, 2013.

N. Beume, C. M. Fonseca, M. Lopez-Ibanez, L. Paquete, and J. Vahrenhold. On the complexity
of computing the hypervolume indicator. IEEE Transactions on Evolutionary Computation,
13(5):1075–1082, 2009.

K. Bharti, A. Cervera-Lierta, T. H. Kyaw, et al. Noisy intermediate-scale quantum algorithms.
Reviews of Modern Physics, 94(1):015004, 2022.

C. Bielza and P. Larrañaga. Bayesian networks in neuroscience: A survey. Frontiers in
Computational Neuroscience, 8:131, 2014.

R. Blanco, I. Inza, and P. Larrañaga. Learning Bayesian networks in the space of structures
by estimation of distribution algorithms. International Journal of Intelligent Systems, 18
(2):205–220, 2003.

J. Blank and K. Deb. PYMOO: Multi-objective optimization in Python. IEEE Access, 8:
89497–89509, 2020.

P. T. Boggs and J. W. Tolle. Sequential quadratic programming. Acta Numerica, 4:1–51,
1995.

X. Bonet-Monroig, H. Wang, D. Vermetten, B. Senjean, C. Moussa, T. Bäck, V. Dunjko, and
T. E. O’Brien. Performance comparison of optimization methods on variational quantum
algorithms. arXiv:2111.13454, 2021.

P. A. Bosman and D. Thierens. Multi-objective optimization with diversity preserving
mixture-based iterated density estimation evolutionary algorithms. International Journal
of Approximate Reasoning, 31(3):259–289, 2002.

P. A. N. Bosman and D. Thierens. Expanding from Discrete to Continuous Estimation of
Distribution Algorithms: The IDEA. In Proceedings of the 6th International Conference on
Parallel Problem Solving from Nature, pages 767–776. Springer, 2000.

F. G. Brandao, M. Broughton, E. Farhi, S. Gutmann, and H. Neven. For fixed control
parameters the quantum approximate optimization algorithm’s objective function value
concentrates for typical instances. arXiv:1812.04170, 2018.

A. E. I. Brownlee. Multivariate Markov Networks for Fitness Modelling in an Estimation of
Distribution Algorithm. PhD thesis, University of Stirling, 2009.

208

BIBLIOGRAPHY

W. Buntine. Theory refinement on Bayesian networks. In Uncertainty Proceedings 1991,
pages 52–60. Elsevier, 1991.

R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained
optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208, 1995.

B. Calvo, O. M. Shir, J. Ceberio, C. Doerr, H. Wang, T. Bäck, and J. A. Lozano. Bayesian
performance analysis for black-box optimization benchmarking. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion, pages 1789–1797, 2019.

J. Ceberio, B. Doerr, C. Witt, and V. P. Soloviev. Estimation-of-Distribution Algorithms:
Theory and Applications (Dagstuhl Seminar 22182). In Dagstuhl Reports, volume 12. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2022a.

J. Ceberio, A. Mendiburu, and J. A. Lozano. A roadmap for solving optimization problems
with estimation of distribution algorithms. Natural Computing, pages 1–15, 2022b.

M. Cerezo, A. Arrasmith, R. Babbush, et al. Variational quantum algorithms. Nature Reviews
Physics, 3(9):625–644, 2021a.

M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles. Cost function dependent barren
plateaus in shallow parametrized quantum circuits. Nature Communications, 12(1):1791,
2021b.

C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2(3):1–27, 2011.

D. M. Chickering. Learning Bayesian networks is NP-complete. In Learning from Data, pages
121–130. Springer, 1996.

D. Chivilikhin, A. Samarin, V. Ulyantsev, I. Iorsh, A. Oganov, and O. Kyriienko. MoG-VQE:
Multiobjective genetic variational quantum eigensolver. arXiv:2007.04424, 2020.

C. K. Chow and S. Y. Yuen. An evolutionary algorithm that makes decision based on the
entire previous search history. IEEE Transactions on Evolutionary Computation, 15(6):
741–769, 2011.

M. A. Coletti, E. O. Scott, and J. K. Bassett. Library for evolutionary algorithms in
Python (LEAP). In Proceedings of the Genetic and Evolutionary Computation Conference
Companion, pages 1571–1579, 2020.

G. F. Cooper. The computational complexity of probabilistic inference using Bayesian belief
networks. Artificial Intelligence, 42(2-3):393–405, 1990.

G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks
from data. Machine Learning, 9(4):309–347, 1992.

M. Costa and E. Minisci. Moped: a multi-objective parzen-based estimation of distribution
algorithm for continuous problems. In International Conference on Evolutionary Multi-
Criterion Optimization, pages 282–294. Springer, 2003.

209

Vicente Pérez Soloviev

N. L. Cramer. A representation for the adaptive generation of simple sequential programs. In
Proceedings of an International Conference on Genetic Algorithms and the Applications,
pages 183–187, 1985.

M. Črepinšek, S.-H. Liu, and M. Mernik. Exploration and exploitation in evolutionary
algorithms: A survey. ACM Computing Surveys, 45(3):1–33, 2013.

D. Cruz, R. Fournier, F. Gremion, A. Jeannerot, K. Komagata, T. Tosic, J. Thiesbrummel,
C. L. Chan, N. Macris, M.-A. Dupertuis, et al. Efficient quantum algorithms for GHZ
and W states, and implementation on the IBM Quantum computer. Advanced Quantum
Technologies, 2(5-6):1970031, 2019.

L. R. da Silveira, R. Tanscheit, and M. M. Vellasco. Quantum inspired evolutionary algorithm
for ordering problems. Expert Systems with Applications, 67:71–83, 2017.

P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian belief networks is
NP-hard. Artificial Intelligence, 60(1):141–153, 1993.

D. Dasgupta and Z. Michalewicz. Evolutionary Algorithms in Engineering Applications.
Springer, 2014.

S. Dasgupta. Learning mixtures of Gaussians. In 40th Annual Symposium on Foundations of
Computer Science, pages 634–644. IEEE, 1999.

J. S. De Bonet, C. L. Isbell Jr, and P. A. Viola. MIMIC: Finding optima by estimating
probability densities. In Advances in Neural Information Processing Systems, pages 424–430,
1997.

A. De Lorenzo, E. Medvet, T. Tušar, and A. Bartoli. An analysis of dimensionality reduction
techniques for visualizing evolution. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion, pages 1864–1872, 2019.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

J. Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal of
Machine Learning Research, 7:1–30, 2006.

J. Deutch. Is net zero carbon 2050 possible? Joule, 4(11):2237–2240, 2020.

B. Doerr and W. Zheng. Sharp bounds for genetic drift in estimation of distribution algorithms.
IEEE Transactions on Evolutionary Computation, 24(6):1140–1149, 2020.

Y. Du, T. Huang, S. You, M.-H. Hsieh, and D. Tao. Quantum circuit architecture search: Error
mitigation and trainability enhancement for variational quantum solvers. arXiv:2010.10217,
2020.

D. J. Egger, J. Mareček, and S. Woerner. Warm-starting quantum optimization. Quantum, 5:
479, 2021.

T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey. Journal of
Machine Learning Research, 20(55):1–21, 2019.

210

BIBLIOGRAPHY

L. Eshelman. On crossover as an evolutionarily viable strategy. In Proceedings of the Fourth
International Conference on Genetic Algorithms, pages 61–68. Morgan Kaufmann Publishers
San Francisco, 1991.

R. Etxeberria and P. Larrañaga. Global optimization using Bayesian networks. In Proc. 2nd
Symposium on Artificial Intelligence (CIMAF-99), pages 332–339, 1999.

J. G. Falcón-Cardona, R. H. Gómez, C. A. C. Coello, and M. G. C. Tapia. Parallel multi-
objective evolutionary algorithms: A comprehensive survey. Swarm and Evolutionary
Computation, 67:100960, 2021.

H. Fang, A. Zhou, and G. Zhang. An estimation of distribution algorithm guided by mean
shift. In IEEE Congress on Evolutionary Computation, pages 3268–3275. IEEE, 2016.

K.-T. Fang, R. Li, and A. Sudjianto. Design and Modeling for Computer Experiments. CRC
Press, 2005.

E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization algorithm.
arXiv:1411.4028, 2014.

L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through Simulated Evolution.
Wiley, 1966.

E. Fontana, N. Fitzpatrick, D. M. Ramo, R. Duncan, and I. Rungger. Evaluating the noise
resilience of variational quantum algorithms. Physical Review A, 104(2):022403, 2021.

T. Fösel, M. Y. Niu, F. Marquardt, and L. Li. Quantum circuit optimization with deep
reinforcement learning. arXiv:2103.07585, 2021.

J. Fox. Applied Regression Analysis, Linear Models, and Related Methods. Sage Publications,
Inc, 1997.

N. Friedman and I. Nachman. Gaussian process networks. In Proceedings of the 16th
Conference on Uncertainty in Artificial Intelligence, page 211–219. Morgan Kaufmann
Publishers, 2000.

M. Fyvie, J. A. McCall, L. A. Christie, A. E. Brownlee, and M. Singh. Towards explainable
metaheuristics: Feature extraction from trajectory mining. Expert Systems, page e13494,
2023.

M. Gallagher, M. R. Frean, and T. Downs. Real-valued evolutionary optimization using a
flexible probability density estimator. In Proceedings of the conference on Genetic and
evolutionary computation, volume 99, pages 840–846, 1999.

J. A. Gámez, J. L. Mateo, and J. M. Puerta. Learning Bayesian networks by hill climbing:
Efficient methods based on progressive restriction of the neighborhood. Data Mining and
Knowledge Discovery, 22(1):106–148, 2011.

B. Gao and I. Wood. TAM-EDA: Multivariate t distribution, archive and mutation based
estimation of distribution algorithm. ANZIAM Journal, 54:C720–C746, 2012.

211

Vicente Pérez Soloviev

A. Garcia-Saez and J. Riu. Quantum observables for continuous control of the quantum
approximate optimization algorithm via reinforcement learning. arXiv:1911.09682, 2019.

J. Grahl, P. A. Bosman, and F. Rothlauf. The correlation-triggered adaptive variance
scaling IDEA. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation, pages 397–404, 2006.

S. Greenhill, S. Rana, S. Gupta, P. Vellanki, and S. Venkatesh. Bayesian optimization for
adaptive experimental design: A review. IEEE Access, 8:13937–13948, 2020.

H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall. An adaptive variational
algorithm for exact molecular simulations on a quantum computer. Nature Communications,
10(1):3007, 2019.

L. Gyongyosi. Quantum state optimization and computational pathway evaluation for gate-
model quantum computers. Scientific Reports, 10(1):1–12, 2020.

L. Gyongyosi and S. Imre. A survey on quantum computing technology. Computer Science
Review, 31:51–71, 2019.

J. A. Gámez, J. Mateo, and J. M. Puerta. Learning Bayesian networks by hill climbing:
Efficient methods based on progressive restriction of the neighborhood. Data Mining and
Knowledge Discovery, 22:106–148, 2011.

S. K. Hadia, A. H. Joshi, C. K. Patel, and Y. P. Kosta. Solving city routing issue with particle
swarm optimization. International Journal of Computer Applications, 47(15), 2012.

K.-H. Han and J.-H. Kim. Quantum-inspired evolutionary algorithm for a class of combinatorial
optimization. IEEE Transactions on Evolutionary Computation, 6(6):580–593, 2002.

K. Hanaoka. Bayesian optimization for goal-oriented multi-objective inverse material design.
iScience, 24(7):102781, 2021.

K. Hanaoka. Comparison of conceptually different multi-objective Bayesian optimization
methods for material design problems. Materials Today Communications, 31:103440, 2022.

N. Hansen. The CMA evolution strategy: A comparing review. Towards a New Evolutionary
Computation, pages 75–102, 2006.

G. Harik. Linkage learning via probabilistic modeling in the ECGA (IlliGAL Report No.
99010). Urbana, IL: University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms
Laboratory, 1999.

G. R. Harik, F. G. Lobo, and D. E. Goldberg. The Compact Genetic Algorithm. IEEE
Transactions of Evolutionary Computation, 3(4):287–297, 1999.

C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van
Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Array
programming with NumPy. Nature, 585(7825):357–362, 2020.

212

BIBLIOGRAPHY

P. Hauke, H. G. Katzgraber, W. Lechner, H. Nishimori, and W. D. Oliver. Perspectives of
quantum annealing: Methods and implementations. Reports on Progress in Physics, 83(5):
054401, 2020.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning, 20(3):197–243, 1995.

M. Henrion. Propagating uncertainty in Bayesian networks by probabilistic logic sampling.
In Uncertainty in Artificial Intelligence, volume 5, pages 149–163. Elsevier, 1988.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards, 49:409–435, 1952.

J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intelligence. University of Michigan Press,
1975.

W.-J. Hong, P. Yang, and K. Tang. Evolutionary computation for large-scale multi-objective
optimization: A decade of progresses. International Journal of Automation and Computing,
18(2):155–169, 2021.

K. Ickstadt, B. Bornkamp, M. Grzegorczyk, J. Wieczorek, M. R. Sheriff, H. E. Grecco, and
E. Zamir. Nonparametric Bayesian networks. Bayesian Statistics, 9:283–316, 2010.

H. Ishibuchi, R. Imada, N. Masuyama, and Y. Nojima. Dynamic specification of a reference
point for hypervolume calculation in SMS-EMOA. In IEEE Congress on Evolutionary
Computation, pages 1–8. IEEE, 2018.

A. Jankovic, G. Chaudhary, and F. Goia. Designing the design of experiments (DOE)–An
investigation on the influence of different factorial designs on the characterization of complex
systems. Energy and Buildings, 250:111298, 2021.

J.-Z. Ji, H.-X. Zhang, R.-B. Hu, and C.-N. Liu. A tabu-search based Bayesian network
structure learning algorithm. Journal of Beijing University of Technology, 37:1274–1280,
2011.

D. Kalpić, N. Hlupić, and M. Lovrić. Student’s t-tests. International Encyclopedia of Statistical
Science, 2011.

A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo, J. M. Chow, and J. M. Gambetta.
Error mitigation extends the computational reach of a noisy quantum processor. Nature,
567(7749):491–495, 2019.

H. Karshenas, R. Santana, C. Bielza, and P. Larrañaga. Multiobjective estimation of distribu-
tion algorithm based on joint modeling of objectives and variables. IEEE Transactions on
Evolutionary Computation, 18(4):519–542, 2013.

J. Kaufmann and A. Schering. Analysis of variance ANOVA. Wiley Encyclopedia of Clinical
Trials, 2007.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of the International
Conference on Neural Networks, volume 4, pages 1942–1948. IEEE, 1995.

213

Vicente Pérez Soloviev

N. Khan, D. E. Goldberg, and M. Pelikan. Multi-objective Bayesian optimization algorithm.
In Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation,
pages 684–684, 2002.

T. D. Kieu. The travelling salesman problem and adiabatic quantum computation: An
algorithm. Quantum Information Processing, 18(3):90, 2019.

D. P. Kingma and J. Ba. ADAM: A method for stochastic optimization. arXiv:1412.6980,
2014.

N. K. Kitson, A. C. Constantinou, Z. Guo, Y. Liu, and K. Chobtham. A survey of Bayesian
Network structure learning. Artificial Intelligence Review, 56(8):8721–8814, 2023.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. The
MIT press, 2009.

M. S. Krejca and C. Witt. Lower bounds on the run time of the univariate marginal distribution
algorithm on onemax. In Proceedings of the 14th ACM/SIGEVO Conference on Foundations
of Genetic Algorithms, pages 65–79, 2017.

H. Langseth, T. D. Nielsen, R. Rumı, and A. Salmerón. Mixtures of truncated basis functions.
International Journal of Approximate Reasoning, 53(2):212–227, 2012.

P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic. Genetic algorithms
for the travelling salesman problem: A review of representations and operators. Artificial
Intelligence Review, 13(2):129–170, 1999.

P. Larrañaga, H. Karshenas, C. Bielza, and R. Santana. A review on probabilistic graphical
models in evolutionary computation. Journal of Heuristics, 18(5):795–819, 2012.

P. Larrañaga and C. Bielza. Estimation of distribution algorithms in machine learning: A
survey. IEEE Transactions on Evolutionary Computation, 2024.

P. Larrañaga and J. A. Lozano. Estimation of Distribution Algorithms: A New Tool for
Evolutionary Computation. Kluwer Academic Publishers, 2001.

P. Larrañaga, R. Etxeberria, J. A. Lozano, and J. M. Peña. Optimization by learning and
simulation of Bayesian and Gaussian networks. Technical Report, Department of Computer
Science and Artificial Intelligence, University of the Basque Country, 1999.

P. Larrañaga, M. Poza, Y. Yurramendi, R. H. Murga, and C. M. H. Kuijpers. Structure
learning of Bayesian networks by genetic algorithms: A performance analysis of control
parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9):
912–926, 1996.

P. Larrañaga, R. Etxeberria, J. A. Lozano, and J. M. Peña. Optimization in continuous
domains by learning and simulation of Gaussian networks. Proceedings Genetic and
Evolutionary Computation Congress, 2000.

H.-K. Lau, R. Pooser, G. Siopsis, and C. Weedbrook. Quantum machine learning over infinite
dimensions. Physical Review Letters, 118(8):080501, 2017.

214

BIBLIOGRAPHY

M. Laumanns and J. Ocenasek. Bayesian optimization algorithms for multi-objective op-
timization. In International Conference on Parallel Problem Solving from Nature, pages
298–307. Springer, 2002.

S. Lee and S. B. Kim. Parallel simulated annealing with a greedy algorithm for Bayesian
network structure learning. IEEE Transactions on Knowledge and Data Engineering, 32(6):
1157–1166, 2019.

M. Li and X. Yao. Quality evaluation of solution sets in multiobjective optimisation: A survey.
ACM Computing Surveys, 52(2):1–38, 2019.

J. J. Liang, B. Y. Qu, and P. N. Suganthan. Problem definitions and evaluation criteria for
the CEC 2014 special session and competition on single objective real-parameter numerical
optimization. Technical Report, Nanyang Technological University, Singapore, 635:490–523,
2013.

Y. Liang, Z. Ren, X. Yao, Z. Feng, A. Chen, and W. Guo. Enhancing Gaussian estimation of
distribution algorithm by exploiting evolution direction with archive. IEEE Transactions
on Cybernetics, 50(1):140–152, 2018.

K. Linghu, Y. Qian, R. Wang, M.-J. Hu, Z. Li, X. Li, H. Xu, J. Zhang, T. Ma, P. Zhao, et al.
Quantum circuit architecture search on a superconducting processor. arXiv:2201.00934,
2022.

H. Liu, Y.-S. Ong, and J. Cai. A survey of adaptive sampling for global metamodeling in
support of simulation-based complex engineering design. Structural and Multidisciplinary
Optimization, 57:393–416, 2018a.

H. Liu, K. Simonyan, and Y. Yang. Darts: Diferentiable architecture search. arXiv:1806.09055,
2018b.

S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28
(2):129–137, 1982.

Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and W. Banzhaf. NSGA-NET:
neural architecture search using multi-objective genetic algorithm. In Proceedings of the
Genetic and Evolutionary Computation Conference, pages 419–427, 2019.

N. Luo and F. Qian. Evolutionary algorithm using kernel density estimation model in
continuous domain. In 7th Asian Control Conference, pages 1526–1531. IEEE, 2009.

L. Martí, J. García, A. Berlanga, and J. M. Molina. Multi-objective optimization with an adap-
tive resonance theory-based estimation of distribution algorithm. Annals of Mathematics
and Artificial Intelligence, 68:247–273, 2013.

L. Martí, J. García, A. Berlanga, and J. M. Molina. Moneda: scalable multi-objective
optimization with a neural network-based estimation of distribution algorithm. Journal of
Global Optimization, 66:729–768, 2016.

R. A. Martin. PyPortfolioOpt: Portfolio optimization in Python. Journal of Open Source
Software, 6(61):3066, 2021.

215

Vicente Pérez Soloviev

J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik. The theory of variational
hybrid quantum-classical algorithms. New Journal of Physics, 18(2):023023, 2016.

J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven. Barren plateaus in
quantum neural network training landscapes. Nature Communications, 9(1):1–6, 2018.

M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics,
pages 55–61, 2000.

M. McKerns and M. Aivazis. Pathos: A framework for heterogeneous computing. http://trac.
mystic. cacr. caltech. edu/project/pathos, 2010.

M. M. McKerns, L. Strand, T. Sullivan, A. Fang, and M. A. Aivazis. Building a framework
for predictive science. arXiv:1202.1056, 2012.

J.-A. Mejía-de Dios, A. Rodríguez-Molina, and E. Mezura-Montes. Multiobjective bilevel
optimization: A survey of the state-of-the-art. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 2023.

B. Mihaljević, C. Bielza, and P. Larrañaga. Bayesian networks for interpretable machine
learning and optimization. Neurocomputing, 456:648–665, 2021.

S. Miki, D. Yamamoto, and H. Ebara. Applying deep learning and reinforcement learning to
traveling salesman problem. In 2018 International Conference on Computing, Electronics
& Communications Engineering, pages 65–70. IEEE, 2018.

O. Montiel, Y. Rubio, C. Olvera, and A. Rivera. Quantum-inspired acromyrmex evolutionary
algorithm. Scientific Reports, 9(1):1–10, 2019.

S. Moral, R. Rumí, and A. Salmerón. Mixtures of truncated exponentials in hybrid Bayesian
networks. In European Conference on Symbolic and Quantitative Approaches to Reasoning
and Uncertainty, pages 156–167. Springer, 2001.

H. Mühlenbein and T. Mahnig. Fda-a scalable evolutionary algorithm for the optimization of
additively decomposed functions. Evolutionary computation, 7(4):353–376, 1999.

H. Mühlenbein and G. Paass. From recombination of genes to the estimation of distributions
I. Binary parameters. In International Conference on Parallel Problem Solving from Nature,
pages 178–187. Springer, 1996.

H. Mühlenbein, J. Bendisch, and H.-M. Voigt. From recombination of genes to the estimation
of distributions II. Continuous parameters. In International Conference on Parallel Problem
Solving from Nature, pages 188–197. Springer, 1996.

K. P. Murphy. Probabilistic machine learning: an introduction. MIT press, 2022.

R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook. Response Surface Methodology:
Process and Product Optimization Using Designed Experiments. John Wiley & Sons, 2016.

A. Nakayama, K. Mitarai, L. Placidi, T. Sugimoto, and K. Fujii. VQE-generated quantum
circuit dataset for machine learning, 2023.

216

BIBLIOGRAPHY

G. Neumann and D. Cairns. Introducing intervention targeting into estimation of distribution
algorithms. In Proceedings of the 27th Annual ACM Symposium on Applied Computing,
pages 220–225, 2012.

T. T. Nguyen, S. Yang, and J. Branke. Evolutionary dynamic optimization: A survey of the
state of the art. Swarm and Evolutionary Computation, 6:1–24, 2012.

M. A. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, 2002.

M. Ostaszewski, E. Grant, and M. Benedetti. Structure optimization for parameterized
quantum circuits. Quantum, 5:391, 2021a.

M. Ostaszewski, L. M. Trenkwalder, W. Masarczyk, E. Scerri, and V. Dunjko. Reinforcement
learning for optimization of variational quantum circuit architectures. Advances in Neural
Information Processing Systems, 34:18182–18194, 2021b.

B. O’Gorman, R. Babbush, A. Perdomo-Ortiz, A. Aspuru-Guzik, and V. Smelyanskiy. Bayesian
network structure learning using quantum annealing. The European Physical Journal Special
Topics, 224(1):163–188, 2015.

T. K. Paul and H. Iba. Reinforcement learning estimation of distribution algorithm. In
Genetic and Evolutionary Computation Conference, pages 1259–1270. Springer, 2003.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

M. Pelikan and D. E. Goldberg. Genetic algorithms, clustering, and the breaking of symmetry.
In International Conference on Parallel Problem Solving from Nature, pages 385–394.
Springer, 2000.

M. Pelikan and H. Mühlenbein. The bivariate marginal distribution algorithm. In Advances
in Soft Computing: Engineering Design and Manufacturing, pages 521–535. Springer, 1999.

M. Pelikan, D. E. Goldberg, E. Cantú-Paz, et al. BOA: The Bayesian optimization algorithm.
In Proceedings of the Genetic and Evolutionary Computation Conference, volume 1, pages
525–532, 1999.

M. Pelikan, K. Sastry, and D. E. Goldberg. Multiobjective hBOA, clustering, and scalability.
In Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation,
pages 663–670, 2005.

J. M. Peña, J. A. Lozano, and P. Larrañaga. Benefits of data clustering in multimodal function
optimization via EDAs. In Estimation of Distribution Algorithms, pages 101–127. Springer,
2002.

A. Pérez, P. Larrañaga, and I. Inza. Bayesian classifiers based on kernel density estimation:
Flexible classifiers. International Journal of Approximate Reasoning, 50(2):341–362, 2009.

217

Vicente Pérez Soloviev

A. Pérez-Salinas, H. Wang, and X. Bonet-Monroig. Analyzing variational quantum landscapes
with information content. arXiv:2303.16893, 2023.

A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik,
and J. L. O’Brien. A variational eigenvalue solver on a photonic quantum processor. Nature
Communications, 5(1):1–7, 2014.

M. Pirhooshyaran and T. Terlaky. Quantum circuit design search. Quantum Machine
Intelligence, 3:1–14, 2021.

M. D. Platel, S. Schliebs, and N. Kasabov. A versatile quantum-inspired evolutionary
algorithm. In IEEE Congress on Evolutionary Computation, pages 423–430. IEEE, 2007.

M. D. Platel, S. Schliebs, and N. Kasabov. Quantum-inspired evolutionary algorithm: A
multimodel EDA. IEEE Transactions on Evolutionary Computation, 13(6):1218–1232,
2008.

P. Pošík. Preventing premature convergence in a simple EDA via global step size setting. In
International Conference on Parallel Problem Solving from Nature, pages 549–558. Springer,
2008.

M. J. Powell. A direct search optimization method that models the objective and constraint
functions by linear interpolation. In Advances in Optimization and Numerical Analysis,
pages 51–67. Springer, 1994.

M. J. Powell. Direct search algorithms for optimization calculations. Acta Numerica, 7:
287–336, 1998.

M. Probst. Generative adversarial networks in estimation of distribution algorithms for
combinatorial optimization. arXiv:1509.09235, 2015.

M. Probst and F. Rothlauf. Harmless overfitting: Using denoising autoencoders in estimation
of distribution algorithms. Journal of Machine Learning Research, 21(78):1–31, 2020.

C. Puerto-Santana, P. Larrañaga, and C. Bielza. Autoregressive asymmetric linear Gaussian
hidden Markov models. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2021.

Qiskit contributors. Qiskit: An open-source framework for quantum computing, 2023.

D. Quesada, C. Bielza, and P. Larrañaga. Structure learning of high-order dynamic Bayesian
networks via particle swarm optimization with order invariant encoding. In International
Conference on Hybrid Artificial Intelligence Systems, pages 158–171. Springer, 2021.

M. Ragone, B. N. Bakalov, F. Sauvage, A. F. Kemper, C. O. Marrero, M. Larocca, and
M. Cerezo. A unified theory of barren plateaus for deep parametrized quantum circuits.
arXiv:2309.09342, 2023.

P. Rakshit, A. Konar, and S. Das. Noisy evolutionary optimization algorithms–a comprehensive
survey. Swarm and Evolutionary Computation, 33:18–45, 2017.

218

BIBLIOGRAPHY

A. G. Rattew, S. Hu, M. Pistoia, R. Chen, and S. Wood. A domain-agnostic, noise-resistant,
hardware-efficient evolutionary variational quantum eigensolver. arXiv:1910.09694, 2019.

I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution. PhD thesis, University of Cambridge, 1971.

R. W. Robinson. Counting unlabeled acyclic digraphs. In Combinatorial Mathematics V,
pages 28–43. Springer, 1977.

V. Robles, P. De Miguel, and P. Larrañaga. Solving the traveling salesman problem with
EDAs. In Estimation of Distribution Algorithms, pages 211–229. Springer, 2002.

O. H. M. Ross. A review of quantum-inspired metaheuristics: Going from classical computers
to real quantum computers. IEEE Access, 8:814–838, 2019.

Y. Ruan, S. Marsh, X. Xue, Z. Liu, and J. Wang. The quantum approximate algorithm for
solving traveling salesman problem. Computers, Materials and Continua, 63(3):1237–1247,
2020.

S. Ruder. An overview of gradient descent optimization algorithms. arXiv:1609.04747, 2016.

S. Rudlof and M. Koppen. Stochastic hill climbing by vectors of normal distributions.
Proceedings of the First Online Workshop on Soft Computing, 1996.

R. Santana, C. Bielza, P. Larranaga, J. A. Lozano, C. Echegoyen, A. Mendiburu, R. Armanan-
zas, and S. Shakya. Mateda-2.0: A MATLAB package for the implementation and analysis
of estimation of distribution algorithms. Journal of Statistical Software, 35:1–30, 2010.

M. Scanagatta, A. Salmerón, and F. Stella. A survey on Bayesian network structure learning
from data. Progress in Artificial Intelligence, 8(4):425–439, 2019.

M. Schuld. Supervised Learning with Quantum Computers. Springer, 2018.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, pages 461–464,
1978.

J. Schwarz and J. Ocenasek. Multiobjective bayesian optimization algorithm for combinatorial
problems: Theory and practice. Neural Network World, 11(5):423–442, 2001.

D. W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization. John
Wiley & Sons, 2015.

K. C. Seto, G. Churkina, A. Hsu, M. Keller, P. W. Newman, B. Qin, and A. Ramaswami.
From low-to net-zero carbon cities: The next global agenda. Annual Review of Environment
and Resources, 46:377–415, 2021.

K. Sharma, S. Khatri, M. Cerezo, and P. J. Coles. Noise resilience of variational quantum
compiling. New Journal of Physics, 22(4):043006, 2020.

W. F. Sharpe. The Sharpe ratio. The Journal of Portfolio Management, 21:49–58, 1994.

R. Shaydulin and Y. Alexeev. Evaluating quantum approximate optimization algorithm: A

219

Vicente Pérez Soloviev

case study. In Tenth International Green and Sustainable Computing Conference, pages
1–6. IEEE, 2019.

P. P. Shenoy and J. C. West. Inference in hybrid Bayesian networks using mixtures of
polynomials. International Journal of Approximate Reasoning, 52(5):641–657, 2011.

R. Shi, J. Luo, and Q. Liu. Fast evolutionary neural architecture search based on Bayesian
surrogate model. In IEEE Congress on Evolutionary Computation, pages 1217–1224. IEEE,
2021.

Y. Shikuri. Efficient conversion of Bayesian network learning into quadratic unconstrained
binary optimization. arXiv:2006.06926, 2020.

V. A. Shim, K. C. Tan, and K. K. Tan. A hybrid adaptive evolutionary algorithm in the
domination-based and decomposition-based frameworks of multi-objective optimization. In
2012 IEEE Congress on Evolutionary Computation, pages 1–8. IEEE, 2012.

V. A. Shim, K. C. Tan, C. Y. Cheong, and J. Y. Chia. Enhancing the scalability of multi-
objective optimization via restricted boltzmann machine-based estimation of distribution
algorithm. Information Sciences, 248:191–213, 2013.

W. B. Shine and C. F. Eick. Visualizing the evolution of genetic algorithm search processes.
In Proceedings of IEEE International Conference on Evolutionary Computation, pages
367–372. IEEE, 1997.

L. R. Silveira, R. Tanscheit, and M. Vellasco. Quantum-inspired genetic algorithms applied
to ordering combinatorial optimization problems. In 2012 IEEE Congress on Evolutionary
Computation, pages 1–7. IEEE, 2012.

B. W. Silverman. Density Estimation for Statistics and Data Analysis. Routledge, 2018.

H. Soh and M. Kirley. mopga: Towards a new generation of multi-objective genetic algorithms.
In 2006 IEEE International Conference on Evolutionary Computation, pages 1702–1709.
IEEE, 2006.

V. P. Soloviev, C. Bielza, and P. Larrañaga. Quantum-inspired estimation of distribution
algorithm to solve the travelling salesman problem. In IEEE Congress on Evolutionary
Computation, pages 416–425. IEEE, 2021.

V. P. Soloviev, C. Bielza, and P. Larrañaga. Quantum approximate optimization algorithm
for bayesian network structure learning. arXiv:2203.02400, 2022a.

V. P. Soloviev, P. Larrañaga, and C. Bielza. Estimation of distribution algorithms using
Gaussian Bayesian networks to solve industrial optimization problems constrained by
environment variables. Journal of Combinatorial Optimization, 44(2):1077–1098, 2022b.

V. P. Soloviev, P. Larrañaga, and C. Bielza. Quantum parametric circuit optimization with
estimation of distribution algorithms. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion, pages 2247–2250, 2022c.

V. P. Soloviev, C. Bielza, and P. Larrañaga. Semiparametric estimation of distribution

220

BIBLIOGRAPHY

algorithms for continuous optimization. IEEE Transactions on Evolutionary Computation,
2023a.

V. P. Soloviev, P. Larrañaga, and C. Bielza. Variational quantum algorithm parameter tuning
with estimation of distribution algorithms. In IEEE Congress on Evolutionary Computation,
pages 1–9. IEEE, 2023b.

V. P. Soloviev, V. Dunjko, C. Bielza, P. Larrañaga, and H. Wang. Trainability maximization
using estimation of distribution algorithms assisted by surrogate modelling for quantum
architecture search. EPJ Quantum Technology, 11(1):69, 2024a.

V. P. Soloviev, P. Larrañaga, and C. Bielza. EDAspy: An extensible Python package for
estimation of distribution algorithms. Neurocomputing, page 128043, 2024b.

V. P. Soloviev, P. Larrañaga, M. Bernabei, M. Bernabei, M. A. Chirita, J. M. Seoane,
P. Fontán, and C. Bielza. A multi-objective framework based on estimation of distribution
algorithms for data-driven fuel experimental design. (in review), 2024c.

M. Soto, Y. González-Fernández, and A. Ochoa. Modeling with copulas and vines in estimation
of distribution algorithms. arXiv:1210.5500, 2012.

J. C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE Transactions on Automatic Control, 37(3):332–341, 1992.

P. Spirtes, C. N. Glymour, and R. Scheines. Causation, Prediction, and Search. The MIT
Press, 2000.

R. Storn. Differential evolution-a simple and efficient adaptive scheme for global optimization
over continuous spaces. Technical Report, International Computer Science Institute, 11,
1995.

M. Streif and M. Leib. Comparison of QAOA with quantum and simulated annealing.
arXiv:1901.01903, 2019.

J. Sun, X. Yuan, T. Tsunoda, V. Vedral, S. C. Benjamin, and S. Endo. Mitigating realistic
noise in practical noisy intermediate-scale quantum devices. Physical Review Applied, 15
(3):034026, 2021.

X. Sun, Z. Shi, G. Lei, Y. Guo, and J. Zhu. Multi-objective design optimization of an IPMSM
based on multilevel strategy. IEEE Transactions on Industrial Electronics, 68(1):139–148,
2020.

L. Sünkel, D. Martyniuk, D. Mattern, J. Jung, and A. Paschke. GA4QCO: Genetic algorithm
for quantum circuit optimization. arXiv:2302.01303, 2023.

R. Tanabe and A. Fukunaga. Success-history based parameter adaptation for differential
evolution. In IEEE Congress on Evolutionary Computation, pages 71–78. IEEE, 2013.

R. Tanabe and A. S. Fukunaga. Improving the search performance of shade using linear
population size reduction. In 2014 IEEE Congress on Evolutionary Computation, pages
1658–1665. IEEE, 2014.

221

Vicente Pérez Soloviev

B. Thiesson, C. Meek, D. M. Chickering, and D. Heckerman. Learning mixtures of DAG
models. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence,
page 504–513. Morgan Kaufmann Publishers, 1998.

A. Tonda. Inspyred: Bio-inspired algorithms in Python. Genetic Programming and Evolvable
Machines, 21(1-2):269–272, 2020.

I. Tsamardinos and C. F. Aliferis. Towards principled feature selection: Relevancy, filters
and wrappers. In International Workshop on Artificial Intelligence and Statistics, pages
300–307, 2003.

I. Tsamardinos, C. F. Aliferis, and A. Statnikov. Time and sample efficient discovery of
Markov blankets and direct causal relations. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 673–678, 2003.

I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bayesian network
structure learning algorithm. Machine Learning, 65(1):31–78, 2006.

S. Tsutsui, M. Pelikan, D. E. Goldberg, et al. Evolutionary algorithm using marginal histogram
models in continuous domain. IlliGAL Report, 2001019(999):1050, 2001.

M. Urbanek, B. Nachman, V. R. Pascuzzi, A. He, C. W. Bauer, and W. A. de Jong. Mitigating
depolarizing noise on quantum computers with noise-estimation circuits. arXiv:2103.08591,
2021.

L. Van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine Learning
Research, 9(11), 2008.

F. A. Viana. Things you wanted to know about the Latin hypercube design and were afraid to
ask. In 10th World Congress on Structural and Multidisciplinary Optimization, volume 19,
pages 1–9, 2013.

H. Vieira Jr, S. M. Sanchez, K. H. Kienitz, and M. C. N. Belderrain. Efficient, nearly
orthogonal-and-balanced, mixed designs: An effective way to conduct trade-off analyses via
simulation. Journal of Simulation, 7(4):264–275, 2013.

J. Vovrosh, K. E. Khosla, S. Greenaway, C. Self, M. Kim, and J. Knolle. Simple mitigation of
global depolarizing errors in quantum simulations. Physical Review E, 104(3):035309, 2021.

S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio, and P. J. Coles. Noise-
induced barren plateaus in variational quantum algorithms. Nature Communications, 12
(1):6961, 2021.

S.-C. Wang, R. Gao, and L.-M. Wang. Bayesian network classifiers based on Gaussian kernel
density. Expert Systems with Applications, 51:207–217, 2016.

Z. Wang, M. Li, and J. Li. A multi-objective evolutionary algorithm for feature selection
based on mutual information with a new redundancy measure. Information Sciences, 307:
73–88, 2015.

N. Wiebe, D. Braun, and S. Lloyd. Quantum algorithm for data fitting. Physical Review
Letters, 109(5):050505, 2012.

222

BIBLIOGRAPHY

G. Wu, R. Mallipeddi, and P. N. Suganthan. Problem definitions and evaluation criteria for
the CEC 2017 competition on constrained real-parameter optimization. Technical Report,
Nanyang Technological University, Singapore, 2017.

W. Wu, G. Yan, X. Lu, K. Pan, and J. Yan. QuantumDARTS: Differentiable quantum
architecture search for variational quantum algorithms. pages 37745–37764, 2023.

C. Xue, Z.-Y. Chen, Y.-C. Wu, and G.-P. Guo. Effects of quantum noise on quantum
approximate optimization algorithm. Chinese Physics Letters, 38(3):030302, 2021.

H. Yu. Optimized ant colony algorithm by local pheromone update. TELKOMNIKA
Indonesian Journal of Electrical Engineering, 12, 2014.

B. Yuan and M. Gallagher. On the importance of diversity maintenance in estimation of
distribution algorithms. In Proceedings of the 7th Annual Conference on Genetic and
Evolutionary Computation, pages 719–726, 2005.

G. Zhang. Quantum-inspired evolutionary algorithms: A survey and empirical study. Journal
of Heuristics, 17(3):303–351, 2011.

J. Zhang and A. C. Sanderson. JADE: Adaptive differential evolution with optional external
archive. IEEE Transactions on Evolutionary Computation, 13(5):945–958, 2009.

Q. Zhang and H. Li. MOEA/D: A multiobjective evolutionary algorithm based on decompo-
sition. IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007.

Q. Zhang, W. Liu, E. Tsang, and B. Virginas. Expensive multiobjective optimization by
moea/d with gaussian process model. IEEE Transactions on Evolutionary Computation,
14(3):456–474, 2009.

R. Zhang, A. Prokhorchuk, and J. Dauwels. Deep reinforcement learning for traveling salesman
problem with time windows and rejections. In International Joint Conference on Neural
Networks, pages 1–8. IEEE, 2020.

S.-X. Zhang, C.-Y. Hsieh, S. Zhang, and H. Yao. Differentiable quantum architecture search.
Quantum Science and Technology, 7(4):045023, 2022.

W. Zheng and B. Doerr. From understanding genetic drift to a smart-restart mechanism for
estimation-of-distribution algorithms. Journal of Machine Learning Research, 24(292):1–40,
2023.

X. Zhong and W. Li. A decision-tree-based multi-objective estimation of distribution algorithm.
In 2007 International Conference on Computational Intelligence and Security (CIS 2007),
pages 114–11. IEEE, 2007.

223

	Acknowledgement
	Abstract
	Resumen
	List of Figures
	List of Tables
	Abbreviations and acronyms
	Notation
	I INTRODUCTION
	Introduction
	Hypotheses and objectives
	Document organization

	II BACKGROUND
	Bayesian Networks
	Introduction
	Representation
	Discrete BNs
	Continuous BNs
	Parametric BNs
	Non-parametric BNs
	Semiparametric BNs

	Hybrid BNs

	Learning
	Parameter learning
	Structure learning
	Score-based approaches
	Constraint-based approaches
	Hybrid approaches

	Inference
	Gaussian distributions

	Estimation of Distribution Algorithms
	Introduction
	Evolutionary algorithms
	Estimation of distribution algorithms
	Toy example

	State of the art
	Univariate approaches
	Discrete EDAs
	Continuous EDAs

	Bivariate approaches
	Discrete EDAs
	Continuous EDAs

	Multivariate approaches
	Discrete EDAs
	Continuous EDAs

	Multi-objective approaches
	Problem formulation
	State of the art

	Quantum Computing
	Introduction
	Foundations of quantum computing
	Qubits
	Multiple qubits
	Quantum gates
	One-qubit gates
	Multi-qubit gates

	Quantum measurement
	Quantum circuits

	Variational quantum algorithms
	Objective cost function
	Quantum parametric circuit
	Parameter optimization
	Barren Plateaus

	Quantum approximate optimization algorithm
	Variational quantum eigensolver
	Quantum noise
	Amplitude damping error
	Phase damping channel
	Depolarizing channel
	Multi-qubit quantum error
	Measurement error

	III CONTRIBUTIONS
	Industrial Problems Constrained by Environment Variables
	Introduction
	Proposed solution
	Initialization
	Truncation
	Problem formulation
	Estimation of the density function
	Sampling

	Results
	Conclusions

	A Multi-objective Framework for Data-Driven Experimental Design
	Introduction
	Optimizing the design of fuel
	Problem formulation

	Methods and results
	Prediction of descriptors
	Probabilistic model
	Truncation
	Initial data generation
	Performance analysis
	Knowledge discovery
	Comparison

	Conclusions

	Semiparametric EDA for Continuous Optimization
	Introduction
	Semiparametric estimation of distribution algorithm
	EGNA
	SPEDA

	Experimental results
	Experimental results on 30-d benchmarks
	Experimental results on 50-d benchmarks
	Portfolio optimization
	CPU time and complexity analysis

	Conclusions

	Quantum-inspired EDA to Solve the Traveling Salesman Problem
	Introduction
	QIEDA
	Representation
	Algorithm
	Initialization
	Individuals Generation

	Results
	Algorithm Performance
	Analysis of computing topologies

	Conclusions

	QAOA for BN Structure Learning
	Introduction
	QUBO formulation of BNSL
	H (score)
	H (max)
	H (trans) and H (consist)

	Method
	QAOA variables
	QAOA circuit
	Initial state
	Applying the cost operator
	Applying the mixed operator

	Results
	QAOA performance
	Noise resilience
	BNSL from real-world data
	Large BNs learning

	Conclusions

	VQAs Parameter Tuning with EDAs
	Introduction
	Experimental results
	QAOA ansatz parameter tuning
	VQE ansatz parameter tuning
	Molecule simulation with parametric quantum noise
	EDA hyper-parameter tuning

	Conclusions

	Trainability Maximization for Quantum Architecture Search
	Introduction
	Related work
	Method
	Codification
	Probabilistic model
	Post-processing
	Surrogate model
	Evaluation

	Results
	Random initialization
	Initialization with the dataset

	Conclusions

	EDAspy: An Extensible Python Package for EDAs
	Introduction
	Software framework
	Related work
	Performance analysis
	Illustrative examples
	Conclusions

	IV CONCLUSIONS
	Conclusions and Future Work
	Summary of contributions
	List of publications
	Software
	Future work

	V APPENDIX
	Benchmarking Functions
	CEC2014 benchmark
	CEC2017 benchmark

	Exploration Data Analysis
	Ingredients and properties description
	Optimization constraints

	Algorithms Configuration
	Configuration of regression models
	Competitors configuration

	Large BNSL using Digital Annealing
	Problem size fitted into device
	20 nodes BNSL
	50 nodes BNSL

	Complementary Materials for Quantum Architecture Search
	Hamiltonians
	Surrogate model prediction
	Distance computation
	Pareto frontier approximations
	IC and expectation values comparison

	Library Required Metadata
	Current executable software version
	Current code version

	VI REFERENCES

