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Techno-Social Systems as Complex Systems

Complex Systems

@ It is made up of several interconnected components
@ Their interaction is capable of creating new emergent properties

@ These emergent properties are unobservable when the system is seen from a disaggregated
perspective

@ The human brain

Techno-Social Systems
@ Infrastructures made up of different technological layers that interoperate within society to
provide global public services of a technological nature
@ They are complex systems consisting of large-scale (or cyber-) physical infraestructures

@ The prediction of their behavior is based on the mathematical modeling of data collected
in the real world
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Complex networks: mathematical paradigm to model techno-social systems

@ Graph with non-trivial topological
properties

@ Nodes: elements of the system

@ Edges: relationships between pairs of
nodes




Examples of Complex Networks
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Complex Networks. Mathematical Foundations

Graph Theory Probability Theory

a

@ Euler and the seven bridge problem at

Kolmogorov axioms of probability (1933)

Kénigsberg (1735) @ P(A) >0 for any event A

@ How can you across all seven bridges @ P(Q2) =1, for the sample space Q
crossing only once for each one? @ P(AUB) = P(A) + P(B) for two

@ The answer is that it is no possible mutually exclusive events A and B )
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On random graphs 1. RANDOM GRAPHS
Dedicated to O. Varga, af the occasion of his 50% binhdoy. By E. N. Grusegr

By P. ERDOS ard A, RENVI (Budapest).

Publicationes Mathematicae (1959)

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey

‘Annals of Mathematical Statistics (1959)

Collective dynamics of Emergence of Scaling in The large-scale organization
‘small-world’ networks Random Networks of metabolic networks
K. Jeong", B. Tombor!, R. Albert", Z. N. Oftvai! & A.-L. Barabisi*
Duncan J. Watts* & Steven H. Strogatz Albert-Laszlé Barabasi* and Réka Albert
Department of Theoretical and Applied Mechanics, Kimball Hall, e 4 Notre Dams, budi
Cornell University, Ithaca, New York 14853, USA Science (1999) Chicago,
i

Nature (1998)
Nature (2000)



Complex Networks. Books
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Betweenness of node 3: Betweenness of node 4:
Hode A |Node B | Vakse Node A | Noge B | Vaue
4 1 1 1
4 2 [l 1
5 1 3 1
5 2 1 1
[] 1 1 1
-] 2 1 1] 1
i 1 1 7 1
T 2 1 ¥ 2 1
Betweenness centrality of node 3: 8 7 E] 1
Betweenness centrality of node 4: 9
Betweenness of node 5:
Mode A | Node B | Value
L] 1 1 B of node 1:0
2 1
3 1 Betweenness centrality of node 20
4 1
L 1 1 of node 6: 0
T 2 1
T 3 1 Betwienness centrality of node 7.0
T 4 1
Betweenness centrality of node 5: 8
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p=00 p=02 p=05

B The probability of generating a graph with n nodes and m edges is
pr(1 - p)(E)
B The average number of edges is (g)p

B The distribution of the degree of any particular node is binomial
n—1\ k 1— n—1—k
(M)P (1 —p)







3

The probability of a node in the network having k connections to other nodes follows a power
law distribution: P(k) ~ k=7 with 2 <~ < 3
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@ Directed acyclic graph

@ Conditional independence: W and T are conditionally
independent given Z < p(W|T, Z) = p(W|Z)

@ p(X1,.... X)) =[] p(X: | Pa(X}))
i=1

P(A, N, S, D, P) = p(A)p(N|A)p(S|A)p(DIN, S)p(P|S)



Directed acyclic graph

Conditional independence: W and T are conditionally
independent given Z < p(W|T, Z) = p(W|Z)

p(X1, - Xa) = [T p(X; | Pa(X;))

i=1

P(A, N, S, D, P) = p(A)p(N|A)p(S|A)p(DIN, S)p(P|S)

@ Exact: variable elimination, message passing...

@ Approximate: sequential simulation, MCMC...
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Conditional Independence

= Age

= Age
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B Detecting conditional independencies among triples of variables by means of
statistical hypothesis testing

B Methods based on score + search

B Maximum likelihood estimation

B Bayesian estimation







Conditional independencies
Arc thickness




p(efect|cause)




p(causelefect)
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c* = arg max. p(cle)
Find € ~ e such that
¢’ = arg max. p(cle’) # ¢*
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h* = argmax, p(H = hle)




r* = arg max, Pp

elr
e[-r)’

RCH
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p(dle). Find h (H no observed)

such that p(d|e,h) > & (same decision)

Quantify Y p(hle)
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Single parameter
Several parameters at the same time
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Bayesian Networks in Neuroscience

Neuron 3/3
[r———

Nature Reviews Neuroscience (2014) Nature Neuroscience (2020)

Symptoms of Parkinson's Disease

PLOS ONE (2014) Scientific Reports (2021)
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Bayesian Networks in Industry

Journal of Combinatorial Optimization (2022) Submitted
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Conclusions

Complex Networks
@ Complex networks as mathematical paradigms to model techno-social systems

@ Complex networks with undirected graphs
@ Centrality measures: node degree, betweenness centrality, closeness centrality
@ Community detection by means of clustering algorithms
@ Complex network models: Erdos-Rényi-Gilbert model, Watts-Strogatz model,
Barabasi-Albert model

@ Complex networks with directed acyclic graphs: Bayesian networks
@ Inference: exact and approximate
@ Learning Bayesian networks from data: by testing conditional independencies or by
score + search
@ Interpretability: model, reasoning, evidence, decision
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