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Abstract

Learning the structure of continuous-time Bayesian networks directly from data has tra-
ditionally been performed using score-based structure learning algorithms. Only recently
has a constraint-based method been proposed, proving to be more suitable under specific
settings, as in modelling systems with variables having more than two states. As a result,
studying diverse structure learning algorithms is essential to learn the most appropriate
models according to data characteristics and task-related priorities, such as learning speed
or accuracy. This article proposes several alternatives of such algorithms for learning mul-
tidimensional continuous-time Bayesian network classifiers, introducing for the first time
constraint-based and hybrid algorithms for these models. Nevertheless, these contributions
also apply to the simpler one-dimensional classification problem for which only score-based
solutions exist in the literature. More specifically, the aforementioned constraint-based
structure learning algorithm is first adapted to the supervised classification setting. Then,
a novel algorithm of this kind, specifically tailored for the multidimensional classification
problem, is presented to improve the learning times for the induction of multidimensional
classifiers. Finally, a hybrid algorithm is introduced, attempting to combine the strengths
of the score- and constraint-based approaches. Experiments with synthetic data are per-
formed not only to validate the capabilities of the proposed algorithms but also to conduct
a comparative study of the available structure learning algorithms.

Keywords: Continuous-time Bayesian networks; structure learning algorithms; Bayesian
network classifiers; multidimensional classification; learning from data.

1. Introduction

Automated analysis and processing of time series data are present in practically any field of
study, such as engineering, medicine, economics or signal processing, and they are essential
to understand and automatise many of their processes. These data are characterised by
their large size and high dimensionality (Fu, 2011), which are expected to keep growing
as they become easier to collect and at higher granularity. Therefore, studying algorithms
capable of modelling these data more accurately and efficiently is becoming more necessary.
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In this article, we focus on learning continuous-time Bayesian network (CTBN) struc-
tures from data and, more specifically, structures of CTBNs that can be applied to the mul-
tidimensional classification of time series. CTBN classifiers have been successfully employed
for problems such as post-stroke rehabilitation (Codecasa and Stella, 2014) or detecting en-
ergy consumption states (Villa-Blanco et al., 2021). Nevertheless, the study of structure
learning algorithms for these classifiers remains largely unexplored in the literature.

The main contributions of this study are the following:

(i) the development of the first constraint-based structure learning algorithm for CTBN
classifiers, which is conceived to learn multidimensional continuous-time Bayesian
network classifiers (Multi-CTBNCs);

(ii) the introduction of the first hybrid structure learning algorithm for Multi-CTBNCs;
(iii) a comprehensive comparative study to evaluate the strengths and weaknesses of the

state-of-the-art algorithms and those proposed in this work;
(iv) the development and integration of the presented algorithms into a software tool

introduced in Villa-Blanco et al. (2021).

The remainder of this article is as follows. Section 2 reviews fundamental concepts.
Sections 3 and 4 introduce novel constraint-based and hybrid algorithms for Multi-CTBNCs,
respectively. Section 5 presents experiments and discusses the results of multiple structure
learning algorithms. Section 6 concludes the article and discusses future research lines.

2. Fundamentals

A Bayesian network (BN) is a probabilistic graphical model (PGM) designed for reasoning
about static processes (Pearl, 1988). Thus, such a model is unsuitable when a system
exhibits temporal behaviour. For this reason, the CTBN has been proposed to represent the
dynamics of continuous-time and discrete-state stochastic processes (Nodelman et al., 2002),
which are described by finite state, continuous-time homogeneous Markov processes through
intensity matrices. A factored representation, known as conditional Markov process, is used
to be able to model more extensive networks.

Definition 1 (Conditional Markov process). A conditional Markov process is a type of
inhomogeneous Markov process whose intensity matrix changes over time as a function of
some conditioning variables’ state. Given a random variable Xi with sample space ΩXi =

{x1, . . . , xk}, a conditional intensity matrix (CIM)QPa(Xi)
Xi

describes its temporal dynamics.

A CIM is a set of homogeneous intensity matrices Q
pa(Xi)
Xi

, each encoding the dynamics of
Xi given a state pa(Xi) of its parents Pa(Xi) in a directed graph G:

Q
pa(Xi)
Xi

=


−qpa(Xi)

x1 q
pa(Xi)
x1x2 · · · q

pa(Xi)
x1xk

q
pa(Xi)
x2x1 −qpa(Xi)

x2 · · · q
pa(Xi)
x2xk

... · · · . . .
...

q
pa(Xi)
xkx1 q

pa(Xi)
xkx2 · · · q

pa(Xi)
xkxk

 ,

where q
pa(Xi)
xaxb is the intensity of leaving state xa for xb and q

pa(Xi)
xa =

∑
b̸=a q

pa(Xi)
xaxb .

Definition 2 (Continuous-time Bayesian network). A CTBN N = (G,Q, P 0
X ) over a

set of discrete random variables X = {X1, . . . , Xm} consists of: (1) a continuous transition
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model specified by a directed (possible cyclic) graph G and a CIM QPa(Xi)
Xi

for each variable

Xi, and (2) an initial distribution P 0
X , specified as a BN over X .

As with BNs, learning CTBNs is not only motivated by knowledge discovery but also
to perform classification tasks. Continuous-time Bayesian network classifiers (CTBNCs)

extend CTBNs to classify discrete-state temporal sequences Sl = {xt1
l , . . . ,x

tTl
l , cl}(l =

1, . . . , N)1, which describe transitions of, time-dependent, feature variables X and the state
of a, time-independent, class variable C (Stella and Amer, 2012). Nevertheless, some clas-
sification problems require predicting the state of multiple class variables C = {C1, . . . , Cd}
simultaneously, i.e., Sl = {xt1

l , . . . ,x
tTl
l , cl}, where cl = (cl1, . . . , cld). The Multi-CTBNC

models such a more complex setting, potentially introducing information relevant to classi-
fication by capturing probabilistic relationships of class variables (Villa-Blanco et al., 2021).

Definition 3 (Multidimensional continuous-time Bayesian network classifier). A Multi-
CTBNC M = (G,B,Q, P 0

V) over a set of discrete variables V = {X1, . . . , Xm, C1, . . . , Cd}
is formed by:

• A directed (possibly cyclic) graph G = (V,A). Vertices V are divided into those for
feature and class variables, while arcs between class variables (class subgraph), feature
variables (feature subgraph) and from class to feature variables (bridge subgraph).

• Class variable parameters B, which form conditional probability tables (CPTs).
• A set of CIMs Q, one for each feature variable Xi.
• An initial distribution P 0

V , specified as a multidimensional BN classifier over V.

2.1 Structure Learning Algorithms for CTBNs

Structure learning for CTBNs has been traditionally addressed as an optimisation problem
(Nodelman et al., 2003), where a structure is selected from a candidate space by maximising
a score (score-based algorithms). Only recently has a constraint-based algorithm been
proposed, which reconstructs their structures by performing conditional independence tests.
The continuous-time PC (CTPC) algorithm, introduced by Bregoli et al. (2021), is the first
proposal of this kind, which adapts the classical PC algorithm, described in Algorithm 1, to
CTBNs. As CIMs describe temporal dynamics, classical statistical tests cannot be applied.
Thus, CTPC introduces a novel definition of conditional independence in CTBNs.

Definition 4 (Conditional independence in CTBNs). Given a CTBN over a set of
discrete random variables X = {X1, . . . , Xm}, a variable Xi is conditionally independent
from Xj given a separating set SXiXj ⊆ X \ {Xi, Xj} iff:

Qx,s
Xi

= Qs
Xi

∀x ∈ ΩXj ,∀s ∈ ΩSXiXj
.

The CTPC algorithm is easily adapted to learn the bridge and feature subgraphs of
Multi-CTBNCs since only the parent sets of nodes with CIMs are learned. The algorithm
only has to meet the topology constraints of the model. Algorithm 2 shows the pseudocode
of the CTPC algorithm used in this work, where V = X ∪ C. As for learning the class
subgraph, traditional constraint-based solutions for discrete BNs can be used. We call this
adaption naive since it tests all possible dependencies between feature variables, even those
irrelevant for the classification task. This considerably increases the learning time, a problem
aggravated in CTBNs since dependencies between feature variables are non-symmetric.

1. Sequences may have different timestamps; superscript l is omitted from t for simplicity.
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Algorithm 1 PC(V)
1: Build the complete undirected graph G on node set V
2: Find the skeleton and separating sets of G. For each pair of adjacent nodes Vi, Vj ∈ V,

remove edge Vi −− Vj from G iff there is a separating set SViVj ⊆ V \ {Vi, Vj} such that
Vi ⊥⊥ Vj |SViVj

3: Orient the colliders using the separating sets. For any path Vi −− Vj −− Vk in G, such
that Vi −̸− Vk, orient the edges as Vi → Vj ← Vk iff Vi ⊥⊥ Vk|SViVk

and Vj ̸∈ SViVk

4: Orient all possible undirected edges:
4.1: Given that Vi → Vj −− Vk and Vi −̸− Vk, then orient the undirected edge into

Vj → Vk to avoid introducing a new v-structure
4.2: Given that Vi −− Vk and Vi → Vj → Vk, then orient Vi −− Vk into Vi → Vk to

avoid introducing a cycle
4.3: Given that Vi −− Vk, Vi −− Vj → Vk, Vi − Vw → Vk and Vi −̸− Vw, then orient

Vi −− Vk into Vi → Vk to avoid introducing a new v-structure or a cycle
5: return partially directed acyclic graph G

Algorithm 2 CTPC(X , V)
1: for each feature variable Xi ∈ X do
2: Set U = {Vj ∈ V|Vj → Xi}
3: for increasing values s = 0, . . . , |V|, until s = |U| − 1 do
4: for each variable Vj ∈ U and subset SXiVj ⊆ U \ {Vj}, where |SXiVj | = s do
5: if Xi ⊥⊥ Vj |SXiVj then
6: Remove arc Vj → Xi from G and Vj from U
7: end if
8: end for
9: end for

10: end for
11: return directed graph G

3. Markov Blanket-based Continuous-Time PC Algorithm

This section introduces a novel constraint-based structure learning algorithm called Markov
blanket-based continuous-time PC (MB-CTPC), specially designed to learn Multi-CTBNCs.
This algorithm aims to evaluate only those relevant dependencies for the Markov blanket
(parents, children and spouses) of class variables. To this end, MB-CTPC defines a set of
rules to ignore irrelevant dependencies based on ancestor class variables of feature variables.

Algorithm 3 describes the pseudocode of MB-CTPC. The first step finds the probabilistic
relationships between class variables using a traditional constraint-based algorithm, such
as PC. Step 2 forms the complete bridge and feature subgraphs of G. Then, Step 3 defines
the descendants of the class variables via conditional independence tests between feature
and class variables without considering other feature variables in the separating set. Thus,
a dependency of a feature on a class variable might exist because it is its child or there is
a flow of information through intermediate feature nodes. This step defines a preliminary
bridge subgraph that provides valuable information to reduce the statistical tests for the
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Algorithm 3 MB-CTPC algorithm

1: G ← PC(C)
2: Build the complete bridge and feature subgraphs of G on node set X ∪ C
3: G ← CTPC(X , C)
4: for each feature variable Xi ∈ X do
5: for each feature variable Xj ∈ X , where Xj ̸= Xi do
6: if PaC(Xi) = ∅ then
7: Remove arc Xj → Xi from G
8: else if PaC(Xi) ∩PaC(Xj) = ∅ AND PaC(Xj) ̸= ∅ then
9: Remove arcs Xi → Xj and Xj → Xi from G

10: else if PaC(Xi) \PaC(Xj) ̸= ∅ AND PaC(Xj) ̸= ∅ then
11: Remove arc Xi → Xj from G
12: end if
13: end for
14: end for
15: G ← CTPC(X , C ∪ X )
16: return directed graph G

feature subgraph. If a pair of feature variables do not share the same parent class variables,
information is not flowing in at least one direction, and at least one dependency can be
removed. Steps 4 to 14 use three rules to reduce the conditional independence tests:

Rule 1 (Steps 6 and 7). Given adjacent feature variables Xi and Xj , arc Xj → Xi is
removed iff PaC(Xi) = ∅, where PaC(Xi) denotes the parent class variables of Xi.

Rule 2 (Steps 8 and 9). Given adjacent feature variables Xi and Xj , arcs Xi → Xj

and Xj → Xi are removed iff PaC(Xi) ∩PaC(Xj) = ∅, PaC(Xi) ̸= ∅ and PaC(Xj) ̸= ∅.
Rule 3 (Steps 10 and 11). Given adjacent feature variables Xi and Xj , an arc

Xi → Xj is removed iff PaC(Xi) \PaC(Xj) ̸= ∅, PaC(Xi) ̸= ∅ and PaC(Xj) ̸= ∅.
Finally, Step 15 further identifies conditional independence relationships that the pre-

vious rules could not discard.

Example 1. Given some data sampled from the Multi-CTBNC of Figure 1a, Figures
1b to 1f show the steps of MB-CTPC to learn the Markov blankets of class variables. First,
conditional independence tests, which consider only class variables in the separating sets,
find the descendant feature variables of the class variables. Figure 1b shows an arc from
C4 to X6, as a direct path exists through X7 in the original structure. Afterwards, Rule 1
removes incoming arcs of X2 and X5 in Figure 1c since they have no dependencies on class
variables. Then, Rule 2 discards dependencies between feature variables not sharing parent
class variables. That is the case for pairs like X3 and X6 or X1 and X7 in Figure 1d. In
Figure 1e, Rule 3 removes a dependency from one feature variable to another if the former
has parent class variables that the latter does not, such as X3 on X1 or X7 on X6. These
rules discard 27 out of 42 arcs of the feature subgraph without performing any conditional
independence test. Finally, tests are performed on the remaining arcs in Figure 1f. The
resulting structure shows that arcs from the original structure providing no information
about the Markov blankets of class variables (those between X2 and X5) are discarded. ■
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(a) Original structure.
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(b) Find class variable descendants.
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(c) Apply Rule 1.
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(d) Apply Rule 2.
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(e) Apply Rule 3.
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X1

X6

C2 C3

X3

X4

C4
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X5

(f) Test remaining dependencies.

Figure 1: Steps of the MB-CTPC algorithm. Dash lines represent removed arcs.

4. Hybrid Structure Learning Algorithm

Score- and constraint-based algorithms have their own strengths and weaknesses, making
them more or less useful in different classification contexts. Therefore, as has already been
done for other PGMs (Liu et al., 2017; Trabelsi et al., 2013), we study hybrid algorithms
for Multi-CTBNCs. These methods aim to combine the advantages of both approaches,
such as faster learning speed of constraint-based algorithms and higher accuracy of score-
based solutions (see Section 5.1.2). This section presents the first hybrid algorithm for
learning both one-dimensional and multidimensional CTBNCs. The algorithm is divided
into a restriction phase where conditional independence tests find an initial structure and
a maximisation phase that refines it. Two variants are used depending on the subgraph:

• Class subgraph: the PC algorithm is used to reconstruct the skeleton of the class
subgraph. Then, hill climbing searches for a solution, starting from the empty sub-
graph, but only allowing arcs that were included in the skeleton.

• Bridge and feature subgraphs: the CTPC algorithm defines an initial structure
during the restriction phase, which serves as the initial solution for hill climbing in the
maximisation phase. Two measures balance the influence of both algorithms. First, a
maximum separating set size is established for conditional independence tests. Second,
hill climbing only removes or adds arcs the restriction phase has not discarded. The
separating set maximum size dictates each algorithm’s influence and range of action.

Although the scope of this article is learning classifiers, this hybrid algorithm can be
applied to learn CTBNs, making it their first hybrid proposal to the best of our knowledge.

5. Experiments

This section empirically compares the performance of Multi-CTBNCs learned with five
different structure learning algorithms in a variety of contexts. Score-based algorithms
are represented by hill climbing and tabu search (tabu list of size 5), whose scores (BIC
or BDe) are indicated in square brackets, e.g., hill climbing [BDe]. Regarding constraint-
based algorithms, CTPC and the presented MB-CTPC are evaluated. Significance levels of
0.05 (class subgraph) and 1e−5 (bridge and feature subgraphs) are used to test conditional
independence. Finally, the proposed hybrid algorithm is studied using the BIC score and
separating sets of zero (hybrid [|SViVj | = 0]) and one (hybrid [|SViVj | = 1]) maximum size.
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Parameter Studied values

Number of feature variables 5, 10, 20
Cardinality of feature variables 2, 3, 4, 8
Number of class variables 4
Cardinality of class variables 2, 3

Parameter Studied values

Density class subgraph 30%
Density bridge subgraph 5%, 10%, 20%
Density feature subgraph 5%, 10%, 20%

Table 1: Parameters used to generate the datasets for the experiments.

Synthetic datasets are sampled via probabilistic logic sampling from Multi-CTBNCs
whose structures and parameters are randomly generated. Five datasets have been sampled
from each combination of parameters’ values shown in Table 1 (1080 datasets), each with
5000 sequences that last 20 time units. The generated structures have at least one arc in the
bridge subgraph, and feature variables are restricted to a maximum of three children to avoid
memory problems. In order to guarantee an honest and fair comparison, the learned models
are evaluated using several performance evaluation metrics and a 5-fold cross-validation
scheme. The metrics in consideration are: global and mean accuracy, global Brier score,
macro-averaged F1 score and learning time. The Wilcoxon signed-rank test is used with
a significance level of 0.05 to verify that the results are significant. Regarding parameter
learning, Bayesian estimation is used with hyperparameters for their prior distributions
λcj = 1, αxa,xb

= 1 and τxj = 0.001 (see Villa-Blanco et al. (2021) for more details).

The experiments were run on a 4.20GHz Intel Core i7-7700K with 32 GB of RAM using
Windows 10. The structure learning algorithms were developed in Java, and the software
and datasets are freely available at https://github.com/carlvilla/Multi-CTBNCs.

5.1 Experiment Results

Table 2 presents the results for all the datasets of certain structure learning algorithm com-
parisons that we found most relevant. In the following sections, we discuss some conclusions
extracted from this table and perform a more exhaustive analysis.

5.1.1 Hill Climbing and Tabu Search

Table 2 shows that hill climbing optimising the BIC score obtains better results in all eval-
uation metrics, except learning time, for more datasets than the BDe score, improvements
that were found statistically significant. As a result, subsequent comparisons will mainly
consider the BIC score. Meanwhile, learning time differences between hill climbing [BIC]
and tabu search [BIC] were significant, with the latter being faster in 66% of the datasets.
However, these differences may not be very substantial, as tabu search achieves a sub-second
improvement in 71% of the datasets where it outperforms hill climbing.

5.1.2 CTPC and Hill Climbing

The CTPC algorithm performs significantly worse than hill climbing, optimising the BIC
and BDe scores, for all evaluation metrics, except learning time, when considering all
datasets. Nevertheless, this is the case only when feature variables’ cardinality is rela-
tively low. Significant improvements with CTPC have been validated for all evaluation
metrics when feature variables have eight possible states. To further study the influence
of feature variables’ cardinalities, we have analysed the global accuracy results when the

7
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Evaluation metric Results of ... are Better Worse Same Same or better Than

Global accuracy

Hill climbing [BIC] 10.09% 5.74% 84.17 % 94.26 % Hill climbing [BDe]
Hill climbing [BIC] 0.93% 0.93% 98.15 % 99.07 % Tabu search [BIC]
CTPC 17.41% 42.31 % 40.28% 57.69 % Hill climbing [BIC]
MB-CTPC 1.48% 40.28% 58.24 % 59.72 % CTPC
Hybrid [|SViVj | = 0] 1.67% 0.09% 98.24 % 99.91 % Hybrid [|SViVj | = 1]
Hybrid [|SViVj | = 0] 7.96% 46.39 % 45.65% 53.61 % Hill climbing [BIC]
Hybrid [|SViVj | = 0] 28.15% 37.69 % 34.17% 62.31 % CTPC

Mean accuracy

Hill climbing [BIC] 9.81% 7.22% 82.96 % 92.78 % Hill climbing [BDe]
Hill climbing [BIC] 1.11% 0.93% 97.96 % 99.07 % Tabu search [BIC]
CTPC 21.94% 39.35 % 38.70% 60.65 % Hill climbing [BIC]
MB-CTPC 1.39% 40.93% 57.69 % 59.07 % CTPC
Hybrid [|SViVj | = 0] 1.76% 0.09% 98.15 % 99.91 % Hybrid [|SViVj | = 1]
Hybrid [|SViVj | = 0] 10.09% 45.74 % 44.17% 54.26 % Hill climbing [BIC]
Hybrid [|SViVj | = 0] 25.65% 42.50 % 31.85% 57.50 % CTPC

Macro-averaged F1 score

Hill climbing [BIC] 11.39% 7.22% 81.39 % 92.78 % Hill climbing [BDe]
Hill climbing [BIC] 0.93% 1.20% 97.87 % 98.80 % Tabu search [BIC]
CTPC 21.57% 41.76 % 36.67% 58.24 % Hill climbing [BIC]
MB-CTPC 2.50% 40.37% 57.13 % 59.63 % CTPC
Hybrid [|SViVj | = 0] 1.76% 0.09% 98.15 % 99.91 % Hybrid [|SViVj | = 1]
Hybrid [|SViVj | = 0] 20.09% 37.78% 42.13 % 62.22 % Hill climbing [BIC]
Hybrid [|SViVj | = 0] 36.11 % 33.33% 30.56% 66.67 % CTPC

Global Brier score

Hill climbing [BIC] 24.72% 18.70% 56.57 % 81.30 % Hill climbing [BDe]
Hill climbing [BIC] 4.72% 4.91% 90.37 % 95.09 % Tabu search [BIC]
CTPC 20.93% 60.09 % 18.98% 39.91 % Hill climbing [BIC]
MB-CTPC 19.07% 61.02 % 19.91% 38.98 % CTPC
Hybrid [|SViVj | = 0] 3.06% 2.59% 94.35 % 97.41 % Hybrid [|SViVj | = 1]
Hybrid [|SViVj | = 0] 8.98% 67.13 % 23.89% 32.87 % Hill climbing [BIC]
Hybrid [|SViVj | = 0] 32.04% 50.19 % 17.78% 49.81 % CTPC

Learning time

Hill climbing [BIC] 32.78% 67.13 % 0.09% 32.87 % Hill climbing [BDe]
Hill climbing [BIC] 33.89% 65.93 % 0.19% 34.07 % Tabu search [BIC]
CTPC 99.44 % 0.56% 0.00% 99.44 % Hill climbing [BIC]
MB-CTPC 98.52 % 1.48% 0.00% 98.52 % CTPC
Hybrid [|SViVj | = 0] 36.67% 63.24 % 0.09% 36.76 % Hybrid [|SViVj | = 1]
Hybrid [|SViVj | = 0] 88.24 % 11.76% 0.00% 88.24 % Hill climbing [BIC]
Hybrid [|SViVj | = 0] 3.80% 96.20 % 0.00% 3.80 % CTPC

Table 2: Percentage of datasets where compared structure learning algorithms obtain better,
worse or identical results.
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(a) Datasets with sequences of 10 time units.
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(b) Datasets with sequences of 20 time units.

Figure 2: Evolution of global accuracy as the cardinality of feature variables varies.

cardinality is increased from two to 30. Five datasets have been sampled for each possi-
ble cardinality (145 datasets) from a single randomly generated structure with 10 feature
variables, four class variables, and bridge and feature subgraph densities of 10%. Figure 2a
shows that classifiers learned with constraint-based algorithms (CTPC and MB-CTPC) are
more robust than score-based and hybrid solutions as the cardinality is further increased.

The number of examples for each possible state transition declines as the cardinality of
feature variables increases, making models learned with score-based algorithms less accurate.
Figure 2b shows the results of the last experiment but using sequences with twice the
duration. Increasing the sequence duration enables score-based algorithms to achieve better
results with feature variables of a higher cardinality. Nevertheless, they still show worse
robustness than constraint-based solutions, not only for global accuracy but also for mean
accuracy, F1 score and global Brier score. At first glance, we thought BIC penalisation
negatively influenced the models’ accuracies. However, this behaviour is even more severe
for the BDe score. We can then conclude that for problems where feature variables have
high cardinality and the sequence duration is relatively small, constraint-based algorithms
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Figure 3: Average increase in learning time and global and mean accuracy of CTPC over
MB-CTPC.

might be more convenient due to their robustness. This is consistent with the findings of
Scutari et al. (2019) and Bregoli et al. (2021) for BNs and CTBNs, respectively.

Finally, it is worth noting that constraint-based algorithms achieve much shorter learning
times since estimated parameters can be cached and quickly retrieved for future statisti-
cal tests. The usefulness of a cache is more limited for scored-based algorithms as they
iteratively evaluate previously unseen parent set configurations.

5.1.3 MB-CTPC and CTPC

The MB-CTPC algorithm, compared to CTPC, achieves the same or, in a few cases, better
results in about 60% of the datasets for global and mean accuracy and F1 score. Simulta-
neously, it reduces the learning time on practically all datasets (99%), which was its main
objective. Figures 3a and 3b show that time differences between the algorithms are very
significant, as the mean time increase of CTPC reaches 133%. The differences become more
profound as the number of feature variables and feature subgraph density increase since
CTPC performs more tests irrelevant to the classification task. The bridge subgraph den-
sity also influences the results, as lower density implies more significant differences for higher
dimensionality data. This is due to a decrease in the number of feature variables with class
variables as ancestors, reducing the tests performed by MB-CTPC. Five datasets of higher
dimensionality were sampled from randomly generated structures with bridge and feature
subgraph densities of 10%. Due to memory limitations, 30 feature and five class variables
with six and three states, respectively, were used. Table 3 shows that MB-CTPC drastically
decreases learning time, being 2.3 times faster than CTPC, while other evaluation metrics,
such as the global accuracy or F1 score, suffer relatively small differences.

The CTPC algorithm obtains better results than MB-CTPC on multiple datasets, signif-
icantly improving all evaluation metrics except learning time. Nevertheless, these differences
may not be significant enough if our priority is to speed up the model learning. Figures 3c
and 3d show that the mean improvement of the global accuracy can go from as little as 1%
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Algorithm Global accuracy Mean accuracy Macro-averaged F1 score Global Brier score Learning time

CTPC 0.9874 ± 0.0149 0.9975 ± 0.0030 0.9597 ± 0.0851 0.0238 ± 0.0286 256.9574 ± 8.4186
MB-CTPC 0.9590 ± 0.0403 0.9917 ± 0.0081 0.9546 ± 0.0792 0.0675 ± 0.0665 112.4594 ± 14.1150

Table 3: Estimated evaluation metrics (mean ± std. deviation) over synthetic datasets
generated from Multi-CTBNCs with 30 and 5 feature and class variables, respectively.

to a maximum of 6% in the performed experiments. These differences are even lower for
the mean accuracy (see Figures 3e and 3f) or F1 score. As for the global Brier score, dif-
ferences in the percentages are more significant; however, they are less than 0.01 in 57% of
the datasets. The slightly lower accuracy of classifiers learned with MB-CTPC arises from
the incorrect definition of some class variable descendants (Step 3 of Algorithm 3). Possible
causes behind this may include weak relationships between variables, training datasets not
sufficiently representative of the underlying problem or the assumption that waiting times
of feature variables conditional on a non-parent ancestor follow an exponential distribution.

We can conclude that the MB-CTPC algorithm is a good choice when learning time
is a priority, especially when dealing with high dimensionality datasets. Nevertheless, we
should also consider that a trade-off exists between assuring a better accuracy or significantly
reducing the learning time, which has to be assessed depending on the particular problem.

5.1.4 Hybrid [|SViVj | = 0] and Hybrid [|SViVj | = 1]

Overall, varying the maximum separating set size of the hybrid algorithm from zero to one
results in no change in most experiments except for the learning time. For example, the
global accuracy improves in just 1.67% of the datasets when only testing for unconditional
independence. However, 94.44% of these latter datasets have in common the presence of
binary feature variables. As the maximum size increases, the constraint-based algorithm
has more influence on the solution, which is less accurate than score-based approaches
when feature variables are binary. For this reason, statistically significant improvements
were obtained for most evaluation metrics with the hybrid [|SViVj | = 0] algorithm. The
hybrid [|SViVj | = 1] solution only succeeded in reducing the learning time significantly.
Nevertheless, differences between using both parameter values are generally negligible.

5.1.5 Hybrid [|SViVj | = 0] vs. Hill Climbing [BIC] and CTPC

The hybrid [|SViVj | = 0] algorithm performs significantly worse than CTPC and hill climbing
[BIC] for most evaluation metrics. The exceptions are significantly improved learning time
compared to hill climbing and no difference in F1 score against CTPC. Nevertheless, class
variables’ cardinalities significantly influence the differences between the hybrid and CTPC
algorithms. If class variables are binary, the hybrid solution performs significantly worse
for all evaluation metrics; however, if they are ternary, no statistically significant differences
are found in global accuracy, and the F1 score is significantly improved. As a result, we
decided to study further the influence of class variables’ cardinalities on the results of the
hybrid [|SViVj | = 0] algorithm to determine if it could improve the accuracy of CTPC for
specific contexts while still reducing the learning time of hill climbing.

The hybrid and CTPC algorithms were evaluated on 210 datasets evenly divided ac-
cording to whether four class variables were binary or had four to 10 states. As CTPC
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Global accuracy Mean accuracy Macro-averaged F1 score Global Brier score

Binary feature variables / Binary class variables
31.43% 25.71% 42.86% 40.0%

Binary feature variables / Four to 10 states class variables
80.0% 57.14% 74.29% 88.57%

Four states feature variables / Binary class variables
22.86% 17.14% 22.86% 17.14%

Global accuracy Mean accuracy Macro-averaged F1 score Global Brier score

Four states feature variables / Four to 10 states class variables
68.57% 68.57% 68.57% 77.14%

Six states feature variables / Binary class variables
11.43% 11.43% 14.29% 25.71%

Six states feature variables / Four to 10 states class variables
42.86% 40.0% 37.14% 51.43%

Table 4: Percentage of datasets where the hybrid [|SViVj | = 0] algorithm outperforms CTPC.

performance differs depending on the cardinality of feature variables (see Section 5.1.2),
datasets were further divided based on whether 10 of these variables had two, four or six
states. Table 4 shows a substantial improvement when class variables’ cardinalities are above
two, especially if feature variables are binary. In this latter case, the hybrid [|SViVj | = 0]
algorithm significantly outperforms CTPC in terms of global and mean accuracy, F1 score
and global Brier score while reducing the learning time of hill climbing [BIC] by an average
of 38%. Nevertheless, the results decline as the cardinality of feature variables increases.

6. Conclusions and Future Work

This article introduces for the first time constraint-based and hybrid structure learning
algorithms for continuous-time Bayesian network classifiers, which were specially designed
to learn Multi-CTBNCs. The novel constraint-based algorithm, named MB-CTPC, aims to
learn the structure of these classifiers by performing conditional independence tests only on
dependencies that could be relevant to the Markov blankets of class variables. Then, the
hybrid algorithm, a solution not even studied for CTBNs, combines the strengths of score-
and constraint-based methods.

Synthetic experiments show that MB-CTPC significantly improves the learning time of
Multi-CTBNCs compared to other structure learning algorithms. The MB-CTPC algorithm
is particularly convenient when learning with high dimensionality datasets. Nevertheless,
significant improvements were obtained regardless of the number of variables, their cardinal-
ity or structure density. Finally, the hybrid algorithm provides an intermediate solution that
significantly improves, in specific scenarios, the results of CTPC while drastically reducing
the learning time of hill climbing techniques.

Multiple areas of open research were found while conducting this work:

• MB-CTPC may struggle to identify descendants of class variables. Using a phase
distribution, such as Erlang, to model the transition times of feature variables condi-
tioned on ancestor class variables may improve this task and the model’s accuracy.

• Discerning between descendants and children of class variables may improve MB-
CTPC learning time, as arcs to feature nodes with no parent class variables are
irrelevant for the classification task.

• Adaptation of Hiton algorithm for CTBNs. A novel association function is needed as
there are two different data distributions and p-values for each state of the variables.

• A class-bridge decomposable Multi-CTBNC (Bielza et al., 2011) could improve clas-
sification times.

• Information from class variable relationships may be useful to improve the definition
of their descendants and, therefore, the accuracy of MB-CTPC.
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