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Abstract

Bayesian networks tend to be considered as transparent and interpretable, but for big and
dense networks they become harder to understand. This is the case of non-stationary, and
more generally time-varying dynamic Bayesian networks, as the relations change over time
and cannot be represented with a single template model. We introduce methods to explain
how the model evolves qualitatively over time, and quantify these changes. In addition,
we offer a functional implementation for time-varying dynamic Bayesian networks that
includes our explainability proposals and some extensions that are targeted to simplify the
networks in the specific field of climate sciences.
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1. Introduction

Explainable artificial intelligence (XAI) is an emerging field, due to the increasing number
of black-box models that are in our daily life, that aims towards making machine learning
models more comprehensible. This allows us to better understand how our model works and
even extract knowledge from it. In the literature, we can find works that point towards the
use of inherently transparent models for XAI (Rudin, 2019), which is the approach taken
in this work using Bayesian networks rather than trying to explain black-box models.

Specifically, we are interested in studying how can we make non-stationary Bayesian
networks interpretable, as they tend to have a great number of nodes and connections. We
believe that this has very promising directions, as most of the current XAI state of the art
focuses on static models. We also show its potential impact in the field of climate sciences,
which has been previously explored using (static) Bayesian networks. Some of our solutions
are implemented alongside a library for learning time-varying dynamic Bayesian networks.

In Section 2, we review the current state of the art on the topic. Next, in Section 3, we
present our methodological advances in non-stationary Bayesian network interpretability
and the implementation made, and in Section 4 some experiments are shown. Finally, in
Section 5, we draw conclusions about our work and discuss possible future lines of research.

2. Background

2.1 Bayesian Networks

A Bayesian network (Pearl, 1988; Koller and Friedman, 2009) B = (G,θ) is a probabilistic
graphical model that encodes a joint probability distribution (JPD) P (X1, ..., Xn) over a
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set of variables X = {X1, ..., Xn}. Qualitatively, a Bayesian network is a directed acyclic
graph G that represents the conditional (in)dependences between the variables X and,
quantitatively, Bayesian networks factorise the JPD using the vector of parameters θ =
(θ1, ...,θn), storing only local conditional probability distributions (CPDs) of each node Xi

given its parents in the graph, θi = P (Xi|PaXi), ∀Xi ∈ X.

We can model continuous distributions using continuous Bayesian networks. One of the
most well-known types are the Gaussian Bayesian networks (Lauritzen and Wermuth, 1989),
which factorize a multivariate Gaussian distribution N (µ;Σ) such that the conditional
density of each node is a Gaussian whose mean is a lineal combination of its parents.

2.2 Dynamic Bayesian Networks

Dynamic Bayesian networks (DBNs) (Dean and Kanazawa, 1989; Murphy, 2002) are an
extension of Bayesian networks that let us model time series and perform inference. In a
discrete-time dynamic Bayesian network, the time dimension is discretized into slices and
a time stamp is added to each variable Xi, having then Xt

i with t ∈ {0, 1, ..., T}, for a
time horizon T . Therefore, the JPD of the process encodes a set of variables over T + 1
different time instants X0:T = (X0,X1, ...,XT ), where Xt = {Xt

1, X
t
2, ..., X

t
n}. Each Xt

i is
represented by a node in the network.

Generally these networks are stationary, which allows for template-based representation,
as we have a prior network and T redundant transition networks. However, many real world
processes are difficult to represent using stationary networks, since the relations among
the variables may change significantly over time, and thus more complex models such as
non-stationary dynamic Bayesian networks (ns-DBNs) (Robinson and Hartemink, 2008)
are required. These models are DBNs in which the structure, the parameters or both
may change at a given time. Thus, we need to describe more than one transition model
Pi(X

t|X0:t−1), i ∈ {1, 2, ...,K}, where K is the number of transition models.

To study the problem of gene regulation, Song et al. (2009) introduce time-varying
dynamic Bayesian networks (TV-DBN), which can be defined as ns-DBNs in which we
have a different transition model for every time instant. These networks are assumed to
have a first Markovian order, no intra-slice arcs are allowed and the density of each node
given its parents is also assumed to be Gaussian. To train a certain instant t, the rest of
instants are used as well, giving more weight to the closer instances using a Gaussian kernel
function. A wider kernel bandwidth results in more equalized weights and vice versa.

2.3 Bayesian Network Comparison

Given two Bayesian networks, we might be interested in measuring the differences between
them, attending to their structures and their probability distributions.

De Jongh and Druzdzel (2009) offer an excellent review on the topic of comparing
Bayesian network structures. Two of the most interesting measures reviewed are the global
distance (Colace et al., 2004), that measures the numbers of arcs that are directed in the
same direction in both network structures G1 and G2, and the Hamming distance, which in
the context of Bayesian networks measures the number of changes that have to be done to a
Bayesian network structure to get the other one. Note that the global distance, although its
naming, is actually a similarity measure. The distances are formally presented in Equations
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(1) and (2).

Global(G1,G2) =

∑
arcs oriented equally∑

shared arcs+
∑

different arcs
(1)

Hamming(G1,G2) =
∑

arcs oriented oppositely +
∑

different arcs (2)

A way to compare probability distributions (and Bayesian networks, by extension) are
the f-divergences (Rényi, 1961), functions that measure the distance between two probabil-
ity distributions P and Q over the same set of variables X. Some popular instantiations
of f-divergence are the Hellinger distance (Hellinger, 1909), the Kullback-Leibler divergence
(Kullback and Leibler, 1951) and the Jensen-Shannon divergence (Lin, 1991). We are inter-
ested in the latter, as it is a symmetrization of the widely used Kullback-Leibler divergence
(Equation (3)) that is actually a distance. Its formula can be seen in Equation (4).

KL(P ||Q) =
∑
x

P (x)log
P (x)

Q(x)
(3)

JSD(P ||Q) =
1

2
KL(P ||M) +

1

2
KL(Q||M) (4)

where M is the arithmetic mean between P and Q, M = 1
2(P +Q).

For two Gaussian distributions, the Jensen-Shannon divergence yields a closed formula
if we take as the density m the geometric mean (instead of the arithmetic) of f and g,
MG(f, g) (Nielsen, 2019). The probability density function of m is therefore:

m(x) =
MG(f(x), g(x))∫∞

−∞MG(f(x), g(x))dx
=

f(x)0.5g(x)0.5∫∞
−∞ f(x)0.5g(x)0.5dx

.

3. Explainable TV-DBNs

In this section, we aim to provide model explanations that show how a ns-DBN changes
over time, giving a simplified, visual and interactive explanation of the concept drift in the
data. First, we present our theoretical proposal on how to explain the changes in both the
structure and parameters and, next, we describe the library developed to test our methods.

3.1 Changes in the Network Structure

We can measure the changes in the structure using the global and Hamming distances
discussed in Section 2.3 by comparing pairs of transition networks. We can then find and
plot the points in which the concept drift is more pronounced and verify if the changes
between transition networks are smooth. This allows us to understand where the changes
are happening (explainability at a more macro level). We can also study visually how the
transition networks change, i.e., interpretability at a more micro level. In order to achieve
the latter goal, we will provide a visual explanation of the previously defined distances.

To visualize the global distance we can draw a transition network only with the arcs
that are oriented equally in both transition networks, i.e., the logical AND between the arcs
of the networks. This lets us visualize the persistent arcs of the network. We refer to the
resulting graph as global graph (see an example in Figure 1).
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Figure 1: DBN global graph

The Hamming distance, intuitively, counts the number of errors, i.e., arcs missing in
any of the two networks in relation with the other and arcs that are present, but incorrectly
oriented. Similarly, we can plot an output transition network with just the arcs that are
wrong when comparing both networks, visualizing then the contingent arcs in the transition
networks. The graph obtained is referred to as the Hamming graph, and can be formally
obtained by applying the XOR operator to the set of arcs of both transition networks.

These solutions can be extended to compare more than two transition networks, thus
showing tendencies over time instead of just two given time points. It is specially interesting
to see which edges persist for a long time in the network. Nonetheless, it might happen that
if we try to compute the global graph for a large set of transition networks, we might find
out that there are no persistent arcs. To solve this issue, we might include some kind of
tolerance threshold. If set to δ ∈ [0, 1], it means that, if at least 100 ·δ% of the input graphs
contain a certain arc, that will be considered persistent. To have a visual clue of which
edges are more or less persistent we can set different thickness and/or colour saturations
to the arcs. Another interesting idea is to compute the global graph of every consecutive k
transition networks across the whole network, thus obtaining what we refer to as summary
network, that summarises the whole model into a reduced set of transition networks.

3.2 Changes in the Probability Distribution

To study the the changes in the JPD of a pair of transition networks we can use the
Jensen-Shannon divergence. We propose to decompose its computation into the sum of
the Jensen-Shannon divergence of each pair of nodes, one of each network, using the chain
rule. Since the Kullback-Leibler divergence can be decomposed using the chain rule and
the Jensen-Shannon divergence is defined as a sum of the former (see Equation (4)), we can
also decompose the latter using the chain rule.

In addition, we need to establish a common ancestral ordering in both networks to be
able to compare them using the chain rule with the Jensen-Shannon divergence. In some
cases, it can be impossible to find a common ancestral ordering for two transition networks,
but there will always be one if both networks have a certain structure defined in this work
and referred to as sequential k-partite graph with the same independent sets.

Definition 1 A sequential k-partite DAG is a directed k-partite graph in which the inde-
pendent sets of nodes are numbered from 1 to k and no arc is allowed from any node Xi in
the independent set i to any node Xj in the independent set j iff i > j.
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A transition network of Markovian order τ with only inter-slices arcs is a type of sequen-
tial k-partite DAG. If we are working with continuous variables (as with TV-DBNs), we also
need to compute the geometric mean of the two densities. To the best of our knowledge,
no simple formula is available in the literature, so we provide one in Theorem 2.

Theorem 2 Given two Gaussian densities N (µf , σg) and N (µf , σg) referred to as f(x)
and g(x), then the geometric mean of such density functions follows a normal distribution
N (µm, σm), where

µm =
µfσ

2
g + µgσ

2
f

σ2
f + σ2

g

and σm =

√√√√ 2σ2
fσ

2
g

σ2
f + σ2

g

.

Proof First, let us prove that the n-power of a Gaussian density function is also a Gaussian
and find its mean and variance. The full formula for such function to the n-power is:(

f(x)
)n

=

(
1√
2πσ

e
(x−µ)2

2σ2

)n

=

(
1√
2πσ

)n(
e

(x−µ)2

2σ2

)n

We can rewrite the right part of the product as follows:

(
e

(x−µ)2

2σ2

)n
= en

(x−µ)2

2σ2 = e

(x−µ)2

2σ2
n = e

(x−µ)2

2

(
σ√
(n)

)2

This proves that (f(x))n is a scaled Gaussian that represents the normal N (µ, σ√
n
).

Since Bromiley (2003) proved that the product of two Gaussian densities is another Gaus-
sian with known mean and variance, we can deduce the values of the mean and variance of
the geometric mean, which are stated in the theorem.

3.3 A Library for Learning TV-DBNs and Explaining Them

To the best of our knowledge, there is not any available library for learning, infere, nor
explain TV-DBNs. Therefore, we have implemented the library tvdbn in R (R Core Team,
2020), built on top of the already existing library bnlearn (Scutari, 2010).

While R is not an object-oriented programming language, we offer a UML-like class
diagram (Figure 2) to illustrate the organization of our library. We define the classes
Tvdbn and Tvdbn.fit, that extend the bnlearn classes Bn and Bn.fit respectively, and
represent the structure of a TV-DBN and a fitted TV-DBN respectively. Both classes add
two attributes that represent the number of time points and the names of the variables.
We also separated the functionality in different modules in order to modularize our library.
The main ones are the learning, visualization, inference and explainability modules.

Regarding the explainability, we can highlight the following functionality:

• Computing the Hamming distance of a pair of transition networks,

• Finding the persistent arcs of a TV-DBN or of a set of transition networks.
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Figure 2: tvdbn library class diagram

• Computing the summary network of a TV-DBN.

• Display only the nodes in which we are interested and, optionally their parents and
children. This is referred as trimmed network.

We also add an option to learn from data that is gridded to apply these methodologies to
the database NCEP/DOE. We introduce a penalty in the learning process that increases
with the Euclidean distance between two coordinates, similar to how we give more weights
to the instances that are closer in time to the instant that we are learning.

This idea is modelled as follows. Let cXi be a bi-variate vector that denotes the coor-
dinates in the space of variable Xi. When learning Xt

i , we will introduce a penalty in the
l1-regularization process for the coefficient Xt

j be given by the inverse value of a bivariate
Gaussian function with mean µ = cXi and a user-specified covariance matrix Σ at the point
cXj . A higher variance will result in a more even spatial penalty across the variables.

4. Experimental Results

4.1 Initial hypotheses

In our experiments, we aim to validate our proposals related to TV-DBN explainability
from an empirical and practical point of view. We focus on the explanations of the changes
in the structure, as the graph can provide much visual and simpler explanations, which is
usually desired by the end-user. We formulate the following initial hypotheses that can be
clustered into three different groups, depending on their variable of study.

• Directly related to explainability:
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1. The Hamming distance can be used to study where the biggest changes in the
network are produced and, as such, indirectly study the concept drift.

2. The global and Hamming graphs and the summary network help us identify the
relations that persist across time and study the concept drift at the micro level.

• Related to how the parameters affect the characteristics of the network which, in turn,
can help us to quantify how interpretable a network is (a simple and smooth network
is will be easier to interpret):

3. In TV-DBNs, when the changes are smooth in the data, the smaller the Hamming
distance is, the larger the percentage of persistent arcs will be, as we expect the
consecutive transition networks to be very similar to each other.

4. The less uniform the spatial regularization is (low Gaussian variance), the smaller
the Hamming distance will be and the number of persistent arcs will be higher.

• Related to performance of the network. Although this is not one of the main contri-
butions of the paper, we decided to briefly evaluate how the newly introduce spatial
penalty might improve the performance of the network:

5. We expect the spatial penalty to increase the accuracy for the test data, as we are
introducing meaningful aprioris in our model that may help to better generalize.

6. A larger spatial regularization bandwidth will result in a shorter execution time,
as we will guide the model towards learning more meaningful relations.

4.2 Datasets

An example of time series can be found in the field of climate and, as such, we decide
to illustrate our proposal using two datasets obtained from the NCEP/DOE Reanalysis II
database (Kanamitsu et al., 2002), which contains observations every 6 hours from January
1979 to May 2022 from different variables (temperature, humidity,...) both at a range of
pressure levels and at the surface of the Earth.

We will focus only on the temperature at 850hPa and limit the latitude range from 30◦N
to 80◦N and longitudes that range from 30◦W to 60◦E (Europe) and the observation time
to twenty years, from 2001 to 2020. To reduce the great number of features, we subsample
the points of the grid, using a total of 45 coordinates distributed in a 9× 5 grid.

For the first dataset, we will consider as time slice each of the 12 months of the year
and for the second one the time slices will be each of the 31 days of March. We aggregate
observations using the mean. The difference in smoothness between the transition networks
of both TV-DBNs will allow us to get more meaningful results.

4.3 Experiments

We aim to study how the size of the kernel bandwidth (and the spatial penalty if introduced)
affects a set of metrics of the obtained networks in order to validate hypotheses 3 to 4.

To carry out the experiments, we start selecting a kernel bandwidth that is approxi-

mately T
7

2
, where T is the length of the series. This value is used in the original TV-DBN

article in the experiments (Song et al., 2009). We will select also higher and lower values.
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We will use 5-fold cross-validation to study our proposal, training with 80% of the data
and validating with 20% at each fold, for every value of the kernel bandwidth and spatial
penalty. The measures that are subject of our study are the following:

1. Mean squared error (MSE) of the forecast starting from the first time instant to the
last one (sliding window), considering the error of every variable at every time step.

2. Time: The time that it takes to learn the TV-DBN.

3. Arcs: The average number of arcs per transition network.

4. Hamming: The average Hamming distance between two adjacent transition networks.

5. Avg. pers. arcs: The average percentage of persistent arcs in each transition network.

6. Total pers. arcs: The average percentage of arcs that persist from the set of all arcs
between two transition networks of the TV-DBN.

Tables 1 and 2 show these average values and their standard deviation for the networks
learned with no spatial regularization. Regarding the MSE, we find that higher kernel band-
widths lead to a better performance in March daily climate dataset, whereas the network
trained with the monthly climate dataset performs better with lower kernel bandwidths.

Kernel
bandwidth

MSE Time (sec.) Arcs Hamming
Avg. pers.
arcs (%)

Total pers.
arcs (%)

0.05 0.11± 0.03 15.87± 0.63 15.18± 12.38 27.71± 16.60 0.00± 0.00 0.00± 0.00
5 0.18± 0.06 68.40± 3.60 294.68± 79.72 189.33± 45.25 2.71± 2.12 0.34± 0.09
50 0.55± 0.17 49.74± 3.60 466.67± 75.73 61.44± 17.21 47.31± 6.69 10.71± 1.17
500 0.88± 0.49 49.15± 3.94 525.00± 79.36 11.09± 4.66 91.80± 1.88 23.77± 3.78
50000 0.91± 0.52 49.43± 4.31 531.85± 83.97 0.36± 0.93 99.59± 0.59 26.17± 4.69

Table 1: Monthly climate dataset measures

Kernel
bandwidth

MSE Time (sec.) Arcs Hamming
Avg. pers.
arcs (%)

Total pers.
arcs (%)

0.02 1.01± 0.33 45.16± 1.04 98.71± 23.57 138.42± 23.33 0.00± 0.00 0.00± 0.00
2 0.98± 0.32 133.20± 3.00 236.14± 44.08 182.23± 42.08 18.45± 3.51 2.08± 0.19
20 0.95± 0.31 121.22± 3.00 235.04± 27.46 56.55± 15.44 36.39± 4.38 4.17± 0.14
200 0.94± 0.30 97.80± 3.00 257.81± 18.91 14.74± 4.84 57.86± 4.83 7.33± 0.37

20000 0.94± 0.30 94.20± 3.00 272.71± 22.33 0.36± 0.68 98.35± 0.74 13.24± 1.20

Table 2: March daily climate dataset measures

As formulated in hypothesis 3, the Hamming distance decreases with a larger kernel
bandwidth, since we are giving a more uniform weight to the instances and thus each
adjacent transition network will be more similar. Nonetheless, the monthly climate network
presents some spurious behaviour regarding the Hamming distance. Parallel to this, we can
observe that the average number of persistent arcs also increases with the kernel bandwidth,
for the same reason as before.

To test the spatial penalty, we decided to fix the kernel bandwidth to 50 and 250 for
the monthly climate dataset and to 20 and 200 for the daily climate dataset. Those are
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not necessarily the values that yield better performance, but they will allow to observe
how the spatial penalty can improve (or worsen) the network performance, as with these
kernel values there is a lot of space for improvement. Tables 3 and 4 show the results for
the networks learned using the spatial penalty. The spatial penalty column represents the
standard deviations of the bivariate Gaussian that determine the penalty for each feature
based on the distance. A standard deviation of “Infinite” (Inf) means that the penalization
is uniform (which is the default case presented in the previous experiments).

Kernel
bandwidth

Spatial
penalty
deviation

MSE Time (sec.) Arcs Hamming
Avg. pers.
arcs (%)

Total pers.
arcs (%)

50

5 0.54± 0.18 40.38± 1.19 573.87± 68.12 77.22± 19.55 45.82± 5.03 12.84± 0.82
10 0.57± 0.19 46.09± 1.85 630.00± 83.33 90.64± 20.65 43.65± 5.45 13.39± 1.07
20 0.50± 0.18 50.01± 1.46 548.40± 61.89 71.89± 15.60 44.74± 5.41 11.98± 0.89
50 0.50± 0.19 52.83± 1.62 491.57± 59.34 63.00± 13.17 46.79± 6.00 11.23± 1.17
Inf 0.50± 0.22 54.28± 1.70 460.37± 55.66 56.16± 12.55 50.59± 6.69 11.35± 0.93

250

5 0.61± 0.25 37.74± 1.48 621.35± 51.22 21.78± 5.31 85.16± 1.39 26.13± 2.45
10 0.62± 0.23 43.01± 2.29 687.72± 53.00 24.87± 6.69 84.81± 2.19 28.80± 2.59
20 0.58± 0.25 47.97± 1.53 589.97± 36.18 19.96± 5.03 86.78± 2.09 25.28± 1.88
50 0.62± 0.26 50.75± 1.52 540.33± 36.01 18.75± 4.63 85.72± 2.36 22.87± 1.87
Inf 0.62± 0.28 51.54± 2.03 503.95± 37.22 17.05± 4.99 86.03± 2.68 21.40± 1.81

Table 3: Monthly climate dataset measures (spatial network)

Kernel
bandwidth

Spatial
penalty
deviation

MSE Time (sec.) Arcs Hamming
Avg. pers.
arcs (%)

Total pers.
arcs (%)

20

1 0.94± 0.30 53.19± 3.10 149.95± 19.93 25.96± 11.26 54.65± 7.26 3.98± 0.18
5 0.95± 0.30 81.00± 1.80 180.39± 28.02 35.56± 14.47 49.17± 7.75 4.28± 0.13
10 0.95± 0.30 101.40± 4.80 192.57± 28.92 40.06± 14.73 45.13± 6.98 4.20± 0.20
20 0.95± 0.30 108.60± 10.20 203.63± 32.11 43.77± 14.31 42.85± 6.69 4.21± 0.17
Inf 0.95± 0.31 121.20± 3.00 235.04± 27.46 56.55± 15.44 36.39± 4.38 4.17± 0.14

200

1 0.94± 0.29 57.39± 1.67 175.40± 10.84 7.73± 4.29 69.96± 3.80 6.04± 0.27
5 0.94± 0.29 78.00± 1.80 201.23± 14.12 9.97± 4.56 66.78± 4.83 6.61± 0.26
10 0.94± 0.29 88.20± 3.60 207.52± 13.78 10.44± 4.82 65.80± 4.57 6.72± 0.24
20 0.94± 0.29 99.00± 2.40 217.20± 15.88 11.08± 4.43 63.56± 4.67 6.79± 0.25
Inf 0.94± 0.30 97.80± 3.00 257.81± 18.91 14.74± 4.84 57.86± 4.83 7.33± 0.37

Table 4: March daily climate dataset measures (spatial network)

Some medium values for the spatial penalty (around 20 for this dataset) actually show
a small decrease in MSE, partially confirming hypothesis 5. We can see how a more pro-
nounced spatial regularization results in a shorter learning time for both networks, learning
up to twice as fast compared with learning without penalty, confirming hypothesis 6.

The number of arcs shows a different behaviour in each network. In the monthly cli-
mate network, a more pronounced penalty usually results in more arcs (except when the
penalty becomes too pronounced), whereas in the March daily climate network the number
of arcs actually decreases with a higher spatial penalty (lower variance value). The same
phenomenon occurs with the Hamming distance and the percentages of persistent arcs.

4.4 Practical demonstration

In order to prove the usefulness of our proposal and discuss hypotheses 1 and 2, we will
briefly show how it can be used to learn and understand time series.
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We can learn the networks tvdbn monthly and tvdbn daily with the function learn tvdbn,
and then study the Hamming distance between every pair of transition networks (red dots
and lines) and between the 15th and the rest (black dots and lines). This can be done with
the function hamming changes, and the results are shown in Figure 3.

(a) Hamming distances for the
March daily climate network

(b) Above, global graph of the March daily
climate network. Below, highlighting of a
persistent relationship

Figure 3: Some examples of functionality of the tvdbn library

Since the networks are too big to visualize, we will simplify the monthly network com-
puting its global graph (function global graph), which lets us find relationships present
between all the months (see Figure 3b). The nodes are plotted using graphviz respecting
the real spatial location of the coordinates that they represent. In future versions, we may
overlap a map to better visualize which node represents which region.

Another example of functionality is to compute the summary network of the March
daily network roughly aggregating by weeks and then computing the Hamming graph of
the first and last transition networks (code shown below).

1 graph_weekly = summary_network(tvdbn_daily , frequency = 8)

2 plot_spatial_tvdbn(hamming_graph_2g(transition_network_graph(graph_weekly , 1),

transition_network_graph(graph_weekly , 3)))

4.5 Discussion

We accept hypotheses 1 and 2 directly related to explainability, as we believe that the
proposals improve the understanding of the network and add useful exploratory features.
However, it would be interesting to have the opinion of a control group or of a climate
scientist in order to better validate our proposal, as explainability is inherently subjective.

Regarding the simplicity and characteristics of the network, the experiments confirm
with great confidence hypothesis 3, whereas hypothesis 4 is refuted, since the impact of the
spatial penalty in Hamming distance is primarily determined by the smoothness in the data
and it only holds in scenarios where the changes are smooth.

Concerning the performance, both hypotheses 5 and 6 are accepted, although we believe
that some more experimentation is needed to accept with greater confidence the former.

In addition, we have exposed an explainability trade-off present in the TV-DBNs: a
network that changes more smoothly across time usually tends to have more arcs and vice
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versa. We have also proven that we can build a TV-DBN that retains its accuracy but with
less arcs using the spatial penalty if the changes in the data are smooth enough.

The practical demonstration shows that our proposal allows to explore these types of
very large networks and potentially draw conclusions regarding climate sciences. However,
while we provided a new framework to understand these models, drawing conclusions about
the climate is out of the scope of this work due to our lack of expert knowledge.

5. Conclusions

Our contributions can be divided into methodological, technological and applications. First,
we presented methodological advances concerning model explanations for ns-DBNs and TV-
DBNs. They have validated using our implementation, the main technological advance of
this work, although other minor scripts have been developed as well. Finally, we showed
how our advances could be applied in the field of climate sciences.

In future works, we expect to expand our implementation to also compute differences in
the probability distributions and obtain more results. Additionally, many of our proposals,
while useful, are merely aesthetics, since we cannot perform inference over a global graph or
a summary network. We would like to build a functional version of the proposals to simplify
both the model and inference. Even though the original TV-DBN proposal ensures smooth
changes in the network, it would be interesting to further analyse whether these changes
are a result of an actual concept drift in the data or a byproduct of the multimodality in
the learning process. A promising technique is to use a multiple start approach.
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