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Euskal Herriko Unibertsitatea

University of the Basque Country

Advances on Supervised and Unsupervised

Learning of Bayesian Network Models.

Application to Population Genetics

by

Guzmán Santafé
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1

Introduction

Supervised classification and data clustering are two fundamental disciplines
of data mining and machine learning. Roughly speaking, supervised classifi-
cation can be seen as learning from experience. The supervised classification
task uses data where the class or the group structure is known in order to
learn a model which is able to classify unseen data samples where the class is
unknown. Conversely, data clustering directly aims to model the underlying
(and unknown) group structure of the data.

Probabilistic graphical models (Pearl, 1988; Whittaker, 1991; Lauritzen,
1996) and particularly Bayesian networks (Castillo et al., 1997; Jensen, 2001;
Neapolitan, 2003; Jensen and Nielsen, 2007) are powerful probabilistic tools
that have become very popular paradigms to represent uncertainty. These
Bayesian network models can be learned to solve both supervised classifica-
tion (Friedman et al., 1997; Larrañaga et al., 2005) and clustering problems
(Cheeseman and Stutz, 1996).

This dissertation aims to contribute to the state of the art of both super-
vised classification and data clustering disciplines by providing new algorithms
to learn Bayesian networks. In the following sections we clarify these contri-
butions, which are introduced throughout the dissertation.

1.1 Contributions of the Dissertation

The contributions introduced in this dissertation are presented in two main
parts. On the one hand, the contributions related to supervised classification
are focused on the discriminative learning of Bayesian network classifiers. On
the other hand, the part related to data clustering introduces new methods
to deal with Bayesian model averaging for clustering.
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1.1.1 Discriminative Learning of Bayesian Network Classifiers

Machine learning approaches for supervised classification problems have gen-
erally fallen into two major categories: generative and discriminative meth-
ods. Generative methods approach the classification problem by modeling the
joint probability distribution over the data samples. By contrast, discrimina-
tive methods are focused on learning the conditional relation of the class label
given the rest of the variables. Bearing Bayesian network classifiers in mind,
the generative learning of the classification model is obtained by maximizing
the likelihood of the dataset given the model. Conversely, in order to learn
a Bayesian network classifier from a discriminative approach, the learning
method should maximize the conditional likelihood of the class label given
the rest of the variables.

The factorization of the joint probability distribution given by Bayesian
network models allows the decomposition of the calculations for the likeli-
hood function leading to a simple and efficient computation. Unfortunately,
although a discriminative approach is apparently a more natural way to learn
classification models because it is oriented to classification, in the case of
Bayesian network classifiers, discriminative learning is much more inefficient
than generative learning. Nevertheless, several methods for an efficient dis-
criminative learning of Bayesian network classifiers have been proposed in the
literature (Huang et al., 2003; Grossman and Domingos, 2004; Huang et al.,
2005; Roos et al., 2005; Greiner et al., 2005; Guo and Greiner, 2005; Pernkopf
and Bilmes, 2005; Feelders and Ivanovs, 2006; Perez et al., 2006).

Chapter 5 motivates the use of a discriminative approach to learn Bayesian
network classifiers. However, the main contribution of this chapter is the adap-
tation of the TM algorithm (Edwards and Lauritzen, 2001) to learn the param-
eters of Bayesian network classifiers by maximizing the conditional likelihood
and also the extension of the TM algorithm to learn the structure of Bayesian
network classifiers. Additionally, we also present experimental results and em-
pirical evidence to show when the discriminative approach should be preferred
to the generative one.

1.1.2 Bayesian Model Averaging of Bayesian Network Models for
Clustering

Typical approaches to learn Bayesian networks usually attempt to maximize
some quantity, such as the likelihood, in order to obtain the best model de-
scribing the data. However, these approaches neglect the uncertainty in model
selection. By contrast, the Bayesian approach treats every uncertain quantity
as a random variable and uses the laws of probability to manipulate these un-
certain quantities. The Bayesian approach averages over the possible settings
of all uncertain quantities rather than selecting a single configuration for these
quantities. Although the Bayesian approach is a proper manner to deal with
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uncertainty, usually Bayesian model averaging calculations are computation-
ally intractable and only approximations are feasible.

The majority of the methods for the Bayesian model averaging of Bayesian
networks are proposed for supervised classification tasks, where the dataset
does not contain missing values (Dash and Cooper, 2002; Cerquides and
López de Mántaras, 2003a; Dash and Cooper, 2003; Cerquides and López
de Mántaras, 2003b, 2005; Dash and Cooper, 2004; Hwang and Zhang, 2005).
Conversely, in the data clustering problem, the presence of hidden variables
prevents the exact computation of Bayesian model averaging calculations. The
approximations to Bayesian model averaging of Bayesian network models in
the presence of hidden variables are usually based on the calculation of the
marginal likelihood by means of stochastic simulation or Laplace’s approxi-
mation (Chickering et al., 1995).

Chapter 7 overviews the Bayesian model averaging problem and intro-
duces the main contribution of the dissertation in the field of data clustering.
This contribution is given by the Expectation Model Averaging algorithm for
naive Bayes (EMA) and for TAN models (EMA-TAN). The EMA and EMA-
TAN algorithms presented in this dissertation allow to approximate, under
certain restrictions, the Bayesian model averaging of naive Bayes and TAN
models, respectively, for clustering in an efficient manner. In the same chapter
the characteristics of the proposed algorithms are empirically evaluated using
different datasets.

In addition to the theoretical development of the EMA and EMA-TAN al-
gorithms and their empirical evaluation, Chapter 8 presents an application of
the EMA algorithm to a real problem taken from population genetics. In this
chapter, the EMA algorithm is modified to take into account the special char-
acteristics of the problem and additionally, a method for unsupervised feature
selection based on the model learned by the EMA algorithm is proposed.

1.2 Overview of the Dissertation

This dissertation is divided into nine chapters, which are organized into five
parts. The first part consist of two chapters. This first chapter is an introduc-
tion to the dissertation where the reader can find a synthesis of the contribu-
tions and how the dissertation is structured. Chapter 2 introduces probabilistic
graphical models with special attention on Bayesian network models. In this
chapter, the basic notation used throughout the dissertation is presented and
some relevant concepts are reviewed.

Part II is devoted to the supervised classification problem. Chapter 3 is a
general introduction to the problem, paying special attention to the evaluation
of the classifiers and the comparison between different classifiers. In Chapter
4, some Bayesian network classifiers (naive Bayes, selective naive Bayes, tree
augmented naive Bayes, k-dependence Bayesian classifiers and Bayesian net-
work augmented naive Bayes) are exposed. These Bayesian network classifiers
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are used in the following chapters of the dissertation and in the derivation of
new learning algorithms. Chapter 5 presents the differences between genera-
tive and discriminative learning. In this chapter, novel methods to learn the
parameters and the structure of Bayesian network classifiers from a discrimi-
native point of view are introduced.

Part III is focused on data clustering. Chapter 6 presents the data clus-
tering problem and briefly reviews several clustering methods with special
attention on methods to learn Bayesian networks for clustering. Chapter 7
reviews the Bayesian model averaging to learn Bayesian network models and
introduces novel algorithms to approximate the Bayesian model averaging for
clustering.

Part IV, and consequently Chapter 8, presents an application of the EMA
algorithm, one of the Bayesian model averaging methods for clustering intro-
duced in Chapter 7. Finally, Part V (Chapter 9) summarizes the work in the
dissertation, the publications and the future work.



2

Probabilistic Graphical Models

Probabilistic graphical models (PGMs) (Pearl, 1988; Whittaker, 1991; Lau-
ritzen, 1996; Castillo et al., 1997) are powerful probabilistic tools that have
become a very popular paradigm to represent uncertain knowledge in expert
systems. PGMs are composed of two main parts: structure and parameters.
The structure of a PGM can be represented by a variety of frameworks in-
cluding undirected graphs, directed graphs and chain graphs among others
and it is related to the conditional (in)dependence relationships among the
variables. The presence of a link between two nodes represents the existence
of a conditional dependency relationship between the variables represented by
those nodes. By contrast, the absence of links can be related to conditional in-
dependence relationships between variables. The parameters of the PGMs are
usually represented by conditional and/or marginal probabilities and they, in
some way, characterize the strength of the dependencies defined in the graph
structure.

In this chapter, we introduce the general notation used throughout the
dissertation and some basic concepts about PGMs based on directed acyclic
graphs. Then, we focus on Bayesian networks, a well-known probabilistic
graphical model which is crucial for the development of this work.

2.1 Notation

A random variable is a function that associates a numerical value with every
outcome of a random experiment. Let X denotes a unidimensional random
variable and x a value of the random variable. X = (X1, . . . , Xn) represents a
n-dimensional random variable where each Xi with i = 1, . . . , n is a unidimen-
sional random variable. An instance of X is represented by x = (x1, . . . , xn)
and D = {x(1), . . . ,x(N)} denotes a dataset of N instances. In general, we use
upper-case letters to denote random variables, lower-case letters to denote the
values of the random variables and boldface letters to represent a vector of
random variables or instances.
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The generalized joint probability distribution of X over a point x is given
by ρ(X = x) or just by ρ(x). ρ(x) denotes the marginal generalized prob-
ability distribution of X and we use ρ(xi|xj) to represent the conditional
generalized distribution of Xi given Xj = xj .

When a random variable can have a numerable number of values, we
will refer to it as a discrete random variable otherwise, if it can have a
non-numerable number of values, we will refer to it as a continuous random
variable. If every unidimensional random variable in a n-dimensional set of
random variables is a discrete random variable, ρ(x) = p(x) is known as
the joint probability mass function of X. Similarly, p(x) and p(xi|xj) repre-
sent the marginal and the conditional probability mass functions respectively.
The term probability distribution is sometimes used in the literature to re-
fer to a probability mass function. Although, strictly speaking, the latter is
more correct than the former, both terms are used indistinctly throughout
this dissertation. By contrast, if the random variables in X are continuous,
ρ(x) = f(x) is the joint density function of X, and f(x) and f(xi|xj) denote
the marginal and conditional density functions respectively.

2.2 Probabilistic Graphical Models Based on Directed

Acyclic Graphs

A probabilistic graphical model based on a directed acyclic graph is a represen-
tation of the joint generalized probability distribution, ρ(x). In this case, the
structure of the PGM, S, is given by a directed acyclic graph which describes
a set of conditional independence relationships among the random variables
in X. The graph S defines, for each random variable Xi, the set of parents
PaS

i with i = 1, . . . , n. Thus, Xi and {X1, . . . , Xn} \ PaS
i are conditionally

independent given PaS
i . Throughout the dissertation, when it is clear from

the context that Pai is defined by a specific structure S we avoid the use of
the super-script S for a simpler notation.

The probabilistic graphical model represents a factorization of the gener-
alized probability which, due to the chain rule, can be written as:

ρ(x) =

n∏

i=1

ρ(xi|pai) (2.1)

Apart from the structure S, a probabilistic graphical model defines another
component, the set of parameters θ ∈ Θ. Therefore, Equation 2.1 can be re-
written as follows:

ρ(x|θ) =

n∏

i=1

ρ(xi|pai,θ) (2.2)



2.2 Probabilistic Graphical Models Based on Directed Acyclic Graphs 9

where θ = (θ1, . . . ,θn). Taking both components of the probabilistic graphical
model into account, it can be represented as a pair M = (S,θ).

In order to understand the semantics of a probabilistic graphical model,
the conditional independence criterion is essential.

Definition 1. Let Y , Z and W be three disjoint sets of variables. Y is con-
ditionally independent of Z given W if and only if

p(y|z,w) = p(y|w) (2.3)

for any possible configuration y, z and w.

When Y is conditionally independent of Z given W it is denoted by
CI(Y ,Z|W ). Informally, the fact that Y is conditionally independent of Z

given W means that the knowledge about the value of Z provides no infor-
mation about Y if the value of W is already known. In probabilistic graphical
models based on directed acyclic graphs, the conditional independence asser-
tion is related to the d-separation criterion.

Definition 2. Let Y , Z and W be three disjoint sets of variables. Y is con-
ditionally independent of Z given W in a probabilistic graphical structure, S,
if W d-separates Y and Z in S.

Although several definitions of d-separation exist, in this dissertation we
present the one given by Lauritzen et al. (1990) because, in our opinion,
it provides a more intuitive interpretation of the concept. This definition is
based on u-separation criterion and undirected graphs. For other definitions
of d-separation see Pearl (1988) and Lauritzen et al. (1990).

Definition 3. Let G be an undirected graph and let Y , Z and W be three
disjoint sets of variables. W u-separates Y and Z in G if every path in G
between a node belonging to Y and a node belonging to Z contains at least
one node belonging to W .

In order to introduce the definition of the d-separation criterion, the defi-
nitions of ancestral set of nodes and moral graph are needed:

Definition 4. Let G be a graph and Y be a set of variables. The ancestral
set of nodes containing Y in G is the set of nodes formed by Y and all the
ancestral nodes of the variables contained in Y .

Definition 5. Let G be a graph and Y and Z be two variables. Z is an an-
cestral node of Y in G if there is a directed path between Z and Y in G.

Definition 6. Let G be a directed acyclic graph, the moral graph associated
to G is the graph obtained by adding an arc between parents with a common
child and then making all arcs in G undirected, that is turning the arcs into
edges.
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Then, we are able to define the d-separation criterion on the basis of the
u-separation criterion.

Definition 7. Let S be a structure of a probabilistic graphical model repre-
sented by a directed acyclic graph and let Y , Z and W be three disjoint sets
of variables. W d-separates Y and Z in S if W u-separates Y and Z in the
moral graph of the smallest ancestral set of nodes which contains Y , Z and
W .

2.3 Bayesian Networks

Bayesian networks are probabilistic graphical models based on directed acyclic
graphs where the nodes are discrete random variables. Over the last years,
Bayesian networks have received considerable attention from the machine
learning community. As a result of this interest, many theoretical publica-
tions have appeared. Pearl (1988) is a well-known reference, but there are
other relevant tutorials such as Castillo et al. (1997), Jordan (1998), Neapoli-
tan (2003), Korb and Nicholson (2004) and Jensen and Nielsen (2007), or
Lauritzen (1996) which provides a mathematical analysis of graphical models.
Additionally, Bayesian networks have been used for probabilistic inference in
different domains such as expert system (Dawid, 1992; Lauritzen and Spiegel-
halter, 1988), classification problems (Friedman et al., 1997; Larrañaga et al.,
2005), optimization (Mühlenbein and Mahning, 2001; Larrañaga and Lozano,
2002) or bioinformatics (Friedman and Pe’er, 2000; Larrañaga et al., 2006).

2.3.1 Notation

In a Bayesian network, each variable Xi ∈ X represents a unidimensional
discrete random variable with ri possible states, {x1

i , . . . , x
ri

i }, and the local

distribution p(xi|pa
j
i ,θi) is a unrestricted discrete distribution:

p(xk
i |pa

j
i ,θi) = θxk

i |paj
i

= θijk (2.4)

where pa1
i , . . . ,pa

j
i , . . . ,pa

qi

i denote the qi possible configurations that the
set of parents Pai can take, with qi =

∏

Xg∈Pai rg. A Bayesian network is

denoted by a pair B = (S,θ), where S is the structure of the model encoded
by a directed acyclic graph and θ = (θ1, . . . ,θn) is the set of parameters.
The parameters of the local probability distribution for every Xi is given
by θi = ((θijk)ri

k=1)
qi

j=1 and θijk represents the conditional probability of Xi

taking its k-th state given that Pai takes its j-th configuration. Therefore,
θijk > 0 and

∑ri

k=1 θijk = 1.
Figure 2.1 shows an example of a Bayesian network model with four vari-

ables. The figure describes the structure and the parameters of the model as
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X1 X2

X3

X4

Local probabilities:

θ1 = (θ1−1, θ1−2) p(x1
1), p(x2

1)

θ2 = (θ2−1, θ2−2, θ2−3) p(x1
2), p(x2

2), p(x3
2)

θ3 = (θ311, θ321, θ331, p(x1
3|x

1
1, x1

2), p(x1
3|x

1
1, x2

2), p(x1
3|x

1
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2),
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3|x

2
1, x1

2), p(x1
3|x

2
1, x2

2), p(x1
3|x

2
1, x3

2),

θ312, θ322, θ332, p(x2
3|x

1
1, x1

2), p(x2
3|x

1
1, x2

2), p(x2
3|x

1
1, x3

2),

θ342, θ352, θ362) p(x2
3|x

2
1, x1

2), p(x2
3|x

2
1, x2

2), p(x2
3|x

2
1, x3

2),

θ4 = (θ411, θ421, θ412, θ422) p(x1
4|x

1
3), p(x1

4|x
2
3), p(x2

4|x
1
3), p(x2

4|x
2
3)

Factorization of the joint mass probability function:

p(x1, x2, x3, x4) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)

Fig. 2.1. Structure, local probabilities and factorization of the joint mass probability
function for a Bayesian network with 4 variables, where X1,X3 and X4 can take two
values and X2 three.

Xi ri P ai qi

X1 2 ∅ 0
X2 3 ∅ 0
X3 2 {X1, X2} 6
X4 2 {X3} 2

Table 2.1. Description of the variables and the parent set for each variable of the
Bayesian network model from Figure 2.1.

well as the factorization of the mass probability function derived from the
given Bayesian network. Note that, while the joint probability distribution
needs twenty-three parameters to encode the local conditional probabilities,
the Bayesian network model shown in Figure 2.1 needs only eleven parame-
ters. This reduction in the number of parameters is due to the factorization
derived from the graphical structure of the model. Additionally, Table 2.1
shows the parent set for each variable and the number of possible configura-
tions for each parent set. The current example, introduces a new notation,
θi−k, which is used to denote the probability of Xi = xk

i given that Xi has no
parents. This notation is also used throughout the dissertation.

2.3.2 Model Learning

In order to induce or learn a Bayesian network model it is necessary to set:

• A structure for the model by means of a directed acyclic graph which
encodes the conditional (in)dependencies among the variables.

• A set of parameters which represents:
– The unconditional local probabilities for the variables with no parents,

θi−k.
– The conditional local probabilities for all the variables with parents

given all the possible configurations of the parents, θijk.
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The structure and the parameters needed to characterize a Bayesian net-
work model can be provided externally by experts or they can be learned
from data. Building a Bayesian network from expert knowledge is a very
high consuming task and it is subject to mistakes. By contrast, learning a
Bayesian network from data would be a more accurate and objective process
since it attempts to obtain the (in)dependence relationships and conditional
probabilities underlying the data. In the literature there are several good re-
views of methods to learn Bayesian networks, for instance Heckerman (1995),
Heckerman et al. (1995) and Neapolitan (2003) provide in-depth tutorials on
learning Bayesian networks, Buntine (1996) presents a literature survey and
Jordan (1998) collects several introductory surveys as well as papers discussing
advances on learning Bayesian networks.

The learning process of a Bayesian network is usually divided into struc-
ture learning and parameter learning. One of the aspects that influences the
complexity of a Bayesian network is the connectivity of the model structure.
According to this complexity, a number of particular Bayesian network struc-
tures can be defined.

Definition 8. A tree is a Bayesian network where each variable has only one
parent, except for the root variable which has no parents.

Definition 9. A forest is a Bayesian network where each variable can have
not more than one parent. This is a generalization of tree structures since it
allows the Bayesian network to be formed by several unconnected trees.

Definition 10. A polytree is a Bayesian network that does not allow cycles
in the associated undirected graph. That is, there is only one undirected path
connecting any two nodes in the graph.

Definition 11. A multiple connected Bayesian network is a network structure
where any two variables in the directed acyclic graph can be connected by more
than one undirected path.

In this section, we present a short overview of learning methods for
Bayesian networks. First, we introduce some aspects of parameter learning.
Although it is necessary to set a structure before learning the parameters of
the Bayesian network, some aspects of parameter learning introduced in the
following section are used for the learning of the structure. Therefore, we de-
cide to present the parameter learning before the structure learning. Finally,
we present the algorithms to learn the structure of a Bayesian network in
two main groups: algorithms based on detecting conditional (in)dependencies
and algorithms based on optimization or score+search methods. Additionally,
some scores used in the learning of Bayesian networks are presented.

2.3.2.1 Parameter Learning

From a purely Bayesian approach, the correct manner to make predictions is
by averaging over all the parameter configurations:
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p(x|D,S) =

∫

p(x|D,S,θ)p(θ|D,S)dθ

=

∫

p(x|D,S,θ)
p(D|θ, S)p(θ|S)

p(D|S)
dθ (2.5)

where D is the dataset. This approach is known as Bayesian model averag-
ing. In the case of Bayesian network models, the Bayesian model averaging
calculations can be efficiently obtained in closed form under three assump-
tions. The first assumption is that there is no missing data in the dataset D.
The second assumption is that the parameter vectors θij are mutually inde-
pendent. This assumption is known as parameter independence (Spiegelhalter
and Lauritzen, 1990):

p(θ|S) =
n∏

i=1

qi∏

j=1

p(θij |S) (2.6)

Finally, the last assumption states Dirichlet priors over the parameters:

p(θij |S) ∼ Dir(θij |αij1, . . . , αijri
) =

Γ (αij)
∏ri

k=1 Γ (αijk)

ri∏

k=1

θ
αijk−1
ijk (2.7)

where Γ (.) is the gamma function, (αij1, . . . , αijri
) are the hyperparameters

of the Dirichlet distribution and αij =
∑ri

k=1 αijk for all i, j and k. Given
these three assumptions, the Bayesian averaging over all the values of the
parameters is equivalent to a single parameters set, θ̆:

p(x|D,S) =
n∏

i=1

p(xk
i |pa

j
i , D) =

n∏

i=1

θ̆ijk (2.8)

with

θ̆ijk =
Nijk + αijk

Nij + αij
(2.9)

where Nijk is the number of data samples in D where Xi takes its k-th value
and Pai takes its j-th configuration, and Nij =

∑ri

k=1Nijk for all i,j and k.
By contrast to the Bayesian model averaging, other approaches select a

single parameter configuration instead of averaging over all the possible config-
urations. The selected parameter configuration is then given as an estimator of
the true probability distribution that generated the dataset. Two well-known
approaches are the maximum likelihood (ML) estimation and the maximum a
posteriori (MAP) estimation:
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• Maximum likelihood estimation selects the parameter configuration for a
Bayesian network model, θ̂, that maximizes the probability of the dataset
given the model:

θ̂ = argmax
θ

p(D|S,θ) (2.10)

with p(D|S,θ) being the likelihood function

p(D|S,θ) =

N∏

d=1

p(x(d)|S,θ) (2.11)

x(d) being the value of X given by the d-th sample in the dataset D. Then,
by maximizing the likelihood function we obtain the ML parameters as
follows:

θ̂ijk =
Nijk

Nij
(2.12)

• Maximum a posteriori estimation selects the parameter configuration for
a Bayesian network model, θ̃, that maximizes the posterior probability of
the parameters:

θ̃ = argmax
θ

p(θ|D,S) (2.13)

In the case of Bayesian networks, under the three assumptions introduced
before, the MAP parameter calculation is equivalent to the Bayesian model
averaging calculation given in Equation 2.9. However, both learning meth-
ods are fundamentally different approaches to learn the parameters from
data.

A more detailed derivation of the parameters can be consulted in Hecker-
man (1995), Bernardo and Smith (2000) and MacKay (2003).

2.3.2.2 Structure Learning Algorithms Based on Detecting
Conditional (In)Dependencies

A good review of structure learning algorithms based on detecting conditional
(in)dependencies is provided by Spirtes et al. (1993) or de Campos (1998).
This type of algorithm usually starts from a set of conditional independence
relationships between subsets of variables and uses independence tests in order
to learn a directed acyclic graph that represents a large percentage (and even
all of them if possible) of the relationships captured in the data.

Two examples of learning algorithms based on detecting conditional (in)-
dependencies are, for instance, the PC algorithm (Spirtes et al., 1991), which
is probably the best known algorithm to learn Bayesian network structures
by detecting conditional independencies, and the algorithm to learn polytrees
presented in Acid and de Campos (1995).
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2.3.2.3 Structure Learning Algorithms Based on Score+Search
Methods

The score+search approach deals with structure learning as an optimization
problem. This structure learning of a Bayesian network requires, as does any
other optimization problem, a score to measure the goodness of a candidate
solution in the search space and a search strategy to explore this space. Any
search strategy can be adapted to learn the structure of a Bayesian network.
Therefore, some of the most relevant and most used heuristic searching meth-
ods have been applied to the structure learning of Bayesian networks. Greedy
search (Buntine, 1991; Cooper and Herskovits, 1992), simulated annealing
(Chickering et al., 1995), tabu search (Bouckaert, 1995), genetic algorithms
(Larrañaga et al., 1996; Etxeberria et al., 1998), estimation of distribution
algorithms (Blanco et al., 2003), Markov chain Monte Carlo (Myers et al.,
1999), variable neighborhood search (de Campos and Puerta, 2001) or ant
colony optimization (de Campos et al., 2002) are examples of searching meth-
ods used to learn the structure of Bayesian networks. By contrast, the scores
used to guide the learning process must be tailored to the particularities of
this optimization problem. In the following paragraphs we review some of the
most used scores.

A. Marginal Likelihood

Marginal likelihood is a well-known score to measure the quality of a Bayesian
network structure. The marginal likelihood is defined as the probability of a
dataset D given a structure S. It is considered a Bayesian score because the
calculation of the probability value averages over all the possible parameter
configurations for the given structure S.

p(D|S) =

∫

p(D|S,θ)p(θ|S)dθ (2.14)

Under the following assumptions:

1. All the variables in the dataset D are multinomial variables.
2. The samples in the dataset D are independent and identically distributed.
3. The dataset D is complete (there are no missing values).
4. Parameter independent assumption (see Equation 2.6).
5. The prior probability distribution over the parameters of the Bayesian

network model given the structure S is a uniform distribution.

the marginal likelihood of the dataset D given the Bayesian network structure
S can be calculated in closed form (Cooper and Herskovits, 1992):

p(D|S) =
n∏

i=1

qi∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏

k=1

Nijk! (2.15)
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where Nijk is the number of data samples in D so that Xi takes its k-th value
and Pai takes its j-th configuration, and Nij =

∑ri

k=1Nijk for every i,j and
k.

The closed form for the marginal likelihood defined in Equation 2.15 is
known as K2 score. Moreover, the greedy algorithm that uses this score to
learn the structure of a Bayesian network is also known as K2 algorithm
(Cooper and Herskovits, 1992). The K2 algorithm assumes that an ancestral
order among the variables is known and that every structure for the Bayesian
network model is equally likely a priori. Additionally, the complexity of the
resultant Bayesian network structure can be restricted by setting the maxi-
mum number of parents that every variable can have. The algorithm starts
with a directed acyclic graph with no arcs. Then, for every variable Xi, the
algorithm updates, at each time, the set of parents of Xi by adding the node
that increases the score the most from those that appear before Xi in the
provided ancestral ordering. The process finishes when no addition of a single
parents improves the score. Obviously, this approach does not guarantee that
the final structure is globally optimal with respect to the score.

The K2 metric could be criticized for assuming a prior uniform distri-
bution over the Bayesian network parameters. The parameters of a Bayesian
network represent multinomial probability distributions, and the conjugate
prior of the multinomial distribution is the Dirichlet distribution (Raiffa and
Schalaifer, 1961; Bernardo and Smith, 2000). This leads Heckerman et al.
(1995) to derive the Bayesian Dirichlet metric. This metric is a generalization
of the K2 metric that considers a prior Dirichlet distribution over the pa-
rameters of the Bayesian network model. For the derivation of the Bayesian
Dirichlet metric we make the same assumptions as in the derivation of the K2
metric except for the uniform prior probability distribution over the parame-
ters. Instead of a uniform distribution, we assume that the prior probability
distribution over the parameters of the Bayesian network model given the
structure S is a Dirichlet distribution with hyperparameters (αij1, . . . , αijri

)

p(θij |αij1, . . . , αijri
) ∼ Dir(αij1, . . . , αijri

) (2.16)

Therefore, the Bayesian Dirichlet score can be calculated in closed form as:

p(D|S) =

n∏

i=1

qi∏

j=1

Γ (αij)

Γ (αij +Nij)

ri∏

k=1

Γ (αijk +Nijk)

Γ (αijk)
(2.17)

where Γ (.) is the gamma function and αij =
∑ri

k=1 αijk for all i,j and k. The
simplest approach to the Bayesian Dirichlet score is to set non-informative pri-
ors, that is, every parameter configuration is equally likely a priori (αijk = 1).
Note that this approach is equivalent to the K2 score defined by Cooper and
Herskovits (1992). In addition, Heckerman et al. (1995) introduce a special-
ization of the Bayesian Dirichlet score named likelihood-equivalent Bayesian
Dirichlet metric which is identical to the Bayesian Dirichlet score defined
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in Equation 2.17 but making another new assumption, likelihood equivalence,
which states that data should not help to discriminate between any two struc-
tures that represent the same conditionally independent statements.

B. Penalized log-Likelihood

Given a dataset D, one can calculate the maximum likelihood parameters θ̂

for any Bayesian network structure S. Then, the likelihood score measures the
probability of the dataset D given a Bayesian network model. For convenience
in the calculations, the logarithm of the likelihood score is usually taken:

log p(D|S,θ) = log
N∏

d=1

p(x(d)|S,θ)

= log

N∏

d=1

n∏

i=1

p(x
(d)
i |pa

(d)
i , S,θ)

=

n∑

i=1

qi∑

j=1

ri∑

k=1

log(θijk)Nijk (2.18)

where x(d), x
(d)
i and pa

(d)
i are the values of X, Xi and Pai given by the d-th

data sample in D respectively. Using the maximum likelihood estimation for
the parameters, θ̂, the formulation is as follows:

log p(D|S, θ̂) =
n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk log
Nijk

Nij
(2.19)

The use of the log-likelihood score in the searching process of the structure
for a Bayesian network model has two main problems:

• The log-likelihood is a monotonous increasing function with respect to the
complexity of the model structure. Therefore, the use of the log-likelihood
as a score to evaluate the quality of a structure in the searching process
usually leads the search towards complete Bayesian network structures.

• As the network complexity increases (the number of parents for each node
increases) the error in the parameter estimation also increases.

In order to overcome these difficulties, a common solution is the addition
of a penalty term to the log-likelihood calculation. A general formulation of
the penalized log-likelihood is given by:

n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk log
Nijk

Nij
− ϕ(N)dim(S) (2.20)



18 2 Probabilistic Graphical Models

where dim(S) is the dimension of the Bayesian network with structure S.
Usually, the number of parameters needed to totally specify the Bayesian
network is used to measure its dimension:

dim(S) =
n∑

i=1

qi(ri − 1) (2.21)

On the other hand, ϕ(N) is a non-negative penalty function. A very popu-
lar penalized log-likelihood score is the Bayesian Information Criterion (BIC)
(Schwarz, 1978) where ϕ(N) = 1

2 logN :

BIC =

n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk log
Nijk

Nij
− 1

2
logN

n∑

i=1

qi(ri − 1) (2.22)

Another example of penalized log-likelihood score is Akaike’s Information
Criterion (AIC) (Akaike, 1974), where ϕ(N) = 1.

C. Information Theory Scores

Scores that compare two joint probability distributions are called scoring rules.
Sc(p(x)||p′(x)) denotes the scoring rule that compares the true joint probabil-
ity distribution p(x) and the one approximated, in this case, by the Bayesian
network p′(x). A score is called a proper scoring rule if Sc(p(x)||p(x)) ≥
Sc(p(x)||p′(x)) for all p′(x). Although there is an infinite number of functions
that could be applied as a proper score (McCarthy, 1956), the logarithmic
score has received special attention in the literature:

Sc(p(x)||p′(x)) =
∑

x

p(x) log p′(x) (2.23)

The logarithmic scoring rule verifies the interesting property of being
equivalent to the Kullback-Leibler divergence (Kullback and Leibler, 1951):

DKL(p(x)||p′(x)) =
∑

x

p(x) log
p(x)

p′(x)
(2.24)

=
∑

x

p(x) log p(x) −
∑

x

p(x) log p′(x)

The Kullback-Leibler divergence measures the difference between the true
joint probability distribution, p(x), and the approximation given by p′(x).
Nonetheless, although it is often intuited as a distance metric, the Kullback-
Leibler divergence is not a true metric since it is not symmetric. Note that,
as the term

∑

x p(x) log p(x) from Equation 2.24 does not depend on the ap-
proximate probability distribution, p′(x), the Kullback-Leibler divergence is a
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linear transformation of the logarithmic scoring rule and then, maximizing the
logarithmic scoring rule involves minimizing the Kullback-Leibler divergence.

Another approach related to the logarithmic scoring rule and to the
Kullback-Leibler divergence is the minimum description length (MDL) princi-
ple (Rissanen, 1978). The MDL principle states that the best model structure
to represent a dataset is the one that minimizes the sum of encoding lengths
for the dataset and the model. The minimum description length can be seen
as a penalized log-likelihood score or as a marginal likelihood score (Lam and
Bacchus, 1994). However, it can be also obtained as a generalization of the
Kullback-Leibler divergence. When applying the MDL principle to structure
learning for Bayesian networks, the description length of the dataset can be
calculated as

∑n
i=1

∑qi

j=1

∑ri

k=1 −Nijk log
Nijk

Nij
and the length needed to store

the parameters of the model is given by 1
2 logNdim(S). On the other hand,

the encoding length for the structure is constant for all the Bayesian network
structures with n nodes and therefore it is not needed. Thus, the MDL score
is defined as follows:

MDL =
n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk log
Nijk

Nij
− 1

2
logNdim(S) (2.25)

Note that the MDL score is equivalent to the BIC score although their
derivation processes are totally unrelated.

The literature includes several works where scores based on information
theory such as the entropy (Herskovits and Cooper, 1990; Geiger, 1992) or
mutual information (Chow and Liu, 1968) are used to learn the structure of
Bayesian network models.

2.3.3 Inference and Simulation

Once a Bayesian network model is learned, it is considered a powerful mecha-
nism for reasoning under uncertainty. The Bayesian network model is able to
provide specific information about probability distributions of interest in the
presence of information about the values of some other variables (evidence).
In general, the computation of a probability of interest given a model is known
as probabilistic inference and it can be calculated by marginalization over the
rest of the variables, for instance, p(xn) can be computed as:

p(xn) =
∑

x1

. . .
∑

xn−1

p(x1, . . . , xn−1, xn) (2.26)

This approach is feasible for Bayesian network models with a small number
of variables. However, in models with many variables the direct approach is not
practical. Even when the conditional independencies encoded in the Bayesian
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network model can be exploited to make the computation more efficient, exact
probabilistic inference is NP-Hard (Cooper, 1990).

Many probabilistic algorithms for Bayesian network inference have been
proposed. These proposals include exact probabilistic algorithms in tree or
polytree structures (Pearl, 1986a; Lauritzen and Spiegelhalter, 1988; Jensen
et al., 1990b,a; Shachter, 1988; Dı́ez, 1996) in arbitrary Bayesian networks
(Lauritzen and Spiegelhalter, 1988; Jensen and Andersen, 1990; Dawid, 1992)
or sampling methods such as Markov sampling methods (Pearl, 1986b), sys-
tematic sampling methods (Bouckaert, 1994) or the methods proposed by
Chavez and Cooper (1990), Dagum and Luby (1993), Hryceij (1990), Kong
and Kjærulff (1993) and Salmerón et al. (2000). Nonetheless, one of the most
used methods for approximate probabilistic inference in Bayesian networks
by simulation is the probabilistic logic sampling (PLS) (Henrion, 1988). This
method takes an ancestral ordering among the variables according to the con-
ditional independence relationships defined by the Bayesian network and then
the values of the variables are sampled following the ancestral ordering. That
is, a variable is sampled after all its parents have been sampled.
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Supervised Classification
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Introduction to Supervised Classification

Supervised classification is a part of machine learning with many applications
in different fields such as bioinformatics, computer vision, speech recognition
or medical diagnosis to name a few. Informally, supervised classification can be
seen as learning from experience. It assumes the presence of a special variable
called class variable which describes the value of the phenomenon of interest,
for instance the diagnostic of the medical patient, the word representing a
sound or the object represented in an image. The supervised classification
task involves the use of data where the class variable is known in order to
infer a model (classifier) which allows to label new data where the class value
is unknown.

In this chapter we introduce the supervised classification problem as well
as some methods used to evaluate and to compare classifiers obtained by
means of different learning methods.

3.1 Supervised Classification Problem

Supervised classification can be structured in two main tasks. First, it is
needed to learn the classification model (or classifier) from a dataset of N
labeled instances D = {(c(1),x(1)), . . . , (c(N),x(N))}, where each instance is
characterized by n predictive variables, X = (X1, . . . , Xn), and the class, C,
to which it belongs. Then, the learned classifier can be used to assess the class
value c ∈ {1 . . . , rC} of new instances characterized only by the predictive
variables. Formally, a classifier can be seen as a function:

γ : (x1, . . . , xn) → {1, . . . , rC} (3.1)

Each classification problem has an associated misclassification cost func-
tion, cost(ce, cr) with ce, cr = 1, . . . , rC and where cr is the real class label
and ce is the class label estimated by the classifier. The misclassification cost
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function provides the cost associated to classify a data sample of class cr in a
class ce. The simplest, but widely used, misclassification cost function is the
0/1 loss function which is defined as:

cost(cr, ce) =

{
0 if cr = ce
1 otherwise

(3.2)

The goal of a good classifier is to minimize the total misclassification cost.
Several classification paradigms have been developed in the past years includ-
ing decision trees, decision rules, instance based classifiers, neural networks
or support vector machines among many others. However, in this part of
the dissertation we focus on Bayesian network classifiers, which are Bayesian
network models used for supervised classification purposes. Bayesian network
classifiers are a probabilistic approach to the supervised classification problem.
They assume the existence of a joint probability distribution which generated
the dataset:

p(c, x1, . . . , xn) = p(c|x1, . . . , xn)p(x1, . . . , xn) (3.3)

Given the joint probability distribution and the misclassification cost func-
tion cost(cr, ce), the Bayesian network classifier that minimizes the total mis-
classification error can be obtained (Duda and Hart, 1973) by using the fol-
lowing assignment:

γ(x) = argmin
k

rC∑

c=1

cost(k, c)p(c|x1, . . . , xn) (3.4)

In the specific case of the 0/1 loss function, the classifier labels a given data
instance with the maximum a posteriori class value, that is:

γ(x) = arg max
c
p(c|x1, . . . , xn) = arg max

c
p(c, x1, . . . , xn) (3.5)

In real problems, usually, the joint probability distribution is unknown,
and it has to be estimated from the dataset.

The supervised classification paradigms can be structured in two different
approaches: generative (or informative) and discriminative (Dawid, 1976; Ru-
binstein and Hastie, 1997). Generative classifiers model the joint probability
distribution over all the variables including the class variable. That is, gener-
ative classifiers aim to model the probability distribution that generated the
data. Then, the class conditional probability needed to classify new instances
can be obtained by using the Bayes rule:
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p(c|x1, . . . , xn) =
p(c, x1, . . . , xn)

∑

c′ p(c
′, x1, . . . , xn)

(3.6)

The parameters of the classification model are obtained by maximizing the
log-likelihood (LL).

LL =

N∑

d=1

log p(c(d),x(d)) (3.7)

Examples of generative classifiers are, for instance, gaussian mixture models
(McLachlan and Peel, 2000) and Bayesian network classifiers (Duda and Hart,
1973; Friedman et al., 1997).

By contrast, discriminative classifiers directly model the posterior distri-
bution of the class or just the class boundaries. Jebara (2003) introduces
the term conditional learning in order to distinguish between discriminative
classifiers based on probability distributions that model p(c|x1, . . . , xn), such
as logistic regression (Hosmer and Lemeshow, 1989) or generalized additive
models (Hastie and Tibshirani, 1990), and discriminative classifiers that only
consider an input-output mapping, such as neural networks (Bishop, 1996) or
support vector machines (Vapnik, 1998). In this dissertation, since we only
consider probability-based models, with the term discriminative classifiers we
will refer to the classifiers modeling the posterior distribution of the class.
In this case, the parameters of the model are obtained by maximizing the
logarithm of the conditional likelihood (CLL):

CLL =

N∑

d=1

log p(c(d)|x(d)) (3.8)

3.2 Evaluation of Classifiers

A fundamental aspect of learning classification models is the evaluation of the
resultant classifier (Mitchell, 1997). This evaluation or validation process aims
to measure how the model behaves when classifying unseen data samples. A
widely used metric to measure the goodness of a classifier is the accuracy or
classification rate which is defined as the probability of classifying a random
selected instance correctly (Kohavi, 1995). Therefore, an accurate estimation
of the classification rate is crucial. This estimation is relatively straightforward
when the data are plentiful. Nevertheless, accuracy estimation is normally
performed with a limited number of cases. Therefore, two main difficulties
arise: bias and variance.

• Bias in the accuracy estimation. The bias in the accuracy estimation
can be seen as the error between the true accuracy of the learned classifier
and the accuracy estimated by a specific accuracy estimation method.
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The observed accuracy of the learned classifier over the training set is
usually a poor estimation of the accuracy for future unseen data. This
is specially likely when the rich space over the learning models enables
the classifier to overfit the training data. In order to obtain an unbiased
accuracy estimation, the classifier has to be evaluated in a set of data
samples independent of the data samples used to learn the classifier.

• Variance in the accuracy estimation. Even when the accuracy is esti-
mated from data samples that differ from the data samples used to learn
the classifier, the estimated accuracy may vary from the true classification
accuracy. This is specially critical when the number of test samples used to
estimate the accuracy is small. In these situations the estimated accuracy
tends to have a large variance.

There are several classical methods to estimate the accuracy of a classifier:

• The resubstitution error estimates the accuracy from the same dataset
used to learn the classifier. Although the variance of the accuracy estima-
tion is zero, this is not a desirable estimation method because of the high
bias; it provides accuracy estimations which are too optimistic.

• The hold-out estimation randomly splits the dataset into two parts:
training and test sets. Usually, 2/3 of the original dataset are used to
learn the classification model (training set) and the remaining 1/3 is used
to validate the classifier (test set) and then obtain the accuracy. This
accuracy measured in the test set is used as the estimated accuracy for the
classifier learned using the whole dataset. An improvement of the hold-out
estimation is the random subsampling. This method repeats the hold-out
estimation k times and obtains the estimated accuracy as an average over
the k runs.

• The k-fold cross-validation (Stone, 1974) randomly splits the data set
into k mutually exclusive folds with approximately the same number of
data samples. The process is repeated k times and, at each iteration, k−1
folds of the dataset are used to learn the model and the remaining fold
is used to calculate the accuracy. The estimated accuracy of the classifier
learned from the whole dataset is given by the mean over the k itera-
tions. Additionally, the standard deviation of the averaged value is usually
reported. Although the number of folds may vary, a usual choice is k = 10.
As well as in the hold-out estimation, an improvement for the k-fold cross-
validation can be obtained by repeating the cross-validation process several
times (Kohavi, 1995). This leads to a lower bias and variance estimations.
For instance, Dietterich (1998) propose a 5 times 2-fold cross-validation.
Another possible improvement is the stratified cross-validation (Breiman
et al., 1984) where folds obtained by splitting the dataset contain the same
proportions of classes as the original dataset.
A particular case of the k-fold cross-validation is the leaving-one-out es-
timation (Lachenbruch and Michey, 1968). In this method, a k = N is
selected and then the cross-validation process is repeated as many times
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as samples are in the dataset. Therefore, at each iteration of the cross-
validation process the classifier is learned from a dataset of N − 1 samples
and it is evaluated on a single sample. The leaving-one-out method obtains
almost unbiased accuracy estimations (Lachenbruch and Michey, 1968).

Although the above exposed methods are, in general, accepted and widely
used in the machine learning community, they have also been criticized (Ng,
1997; Provost et al., 1998; Nadeau and Bengio, 2003). Alternatively, other
methods that improve the bias and variance of the accuracy estimation, such
as jackknife (Rao and Shao, 1992), bootstrap (Efron and Tibshirani, 1993) or
bolstered (Braga-Neto and Dougherty, 2004) have been proposed.

3.3 Comparing Learning Algorithms

In a k-fold cross-validation or in other resampling estimation methods, the
estimation of the accuracy is given as an average over several accuracy values.
When comparing two different learning algorithms, it may happen that even
when one algorithm is, with respect to the average of the estimated accuracy,
better than the other, there are no real differences between them because of
the variance. Several tests have been proposed to measure if the difference
between two learning algorithms is statistically significant.

One of the most used tests is the k-fold cross-validation paired t-test (Di-
etterich, 1998). Let say that A and B are two different algorithms to learn
classification models. The data set is split into k disjoint folds of equal size.
At the i-th iteration of the cross-validation process, the i-th fold is used as
the test set, and the estimated accuracy for the learning algorithms in the
i-th fold is represented by random variables Ai and Bi respectively. The test
assumes that the random variables Ai and Bi, with i = 1, . . . , k, are normally
distributed and the null hypothesis states equal means for the estimated ac-
curacies in both algorithms, a = 1

k

∑k
i=1 ai and b = 1

k

∑k
i=1 bi. If we denote

as pi the difference in the estimated accuracy between algorithms A and B
for the i-th fold (pi = ai − bi, and p =

∑k
i=1 pi) then, the null hypothesis can

be tested by using the statistic

t =
p
√
k

√
P

k
i=1(pi−p)2

k−1

(3.9)

which follows a Student’s t distribution with k − 1 degrees of freedom.
Two main problems arise from the use of this t-test. A minor problem

is related to the fact that the estimated accuracy values for A and B have
to be paired, that is, the same partition into k-folds has to be used in the
cross-validation process of both A and B algorithms so that Ai and Bi are
estimated from the same fold. This restriction can be easily overcome by using
the following (unpaired) statistic:
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tunpaired =
(a− b)

√
k

√
P

k
i=1(ai−a)2+

P

k
i=1(bi−b)2

k−1

(3.10)

The other problem is the normality assumption which, quite often, is not
really fulfilled. In these cases, where normally distribution can not be ensured,
non-parametric tests such as Wilcoxon signed-rank test (Wilcoxon, 1945) or
Mann-Whitney U test (Mann and Whitney, 1947) can be used.

The Wilcoxon signed-rank test is a non-parametric alternative to the
paired Student’s t-test for two related samples (paired test). The estimation
of the accuracy for algorithms A and B is identical to the above described one
for the t-test. The null hypothesis also states equal means for the probability
distributions of the estimated accuracies in both algorithms A and B. The
Wilcoxon signed-rank test computes the difference between the observations
pi = ai−bi for i = 1, . . . , k and then obtains the rank of each pi, Ri, by order-
ing the absolute value of the differences, |pi|. The Wilcoxon’s test statistics
are given by:

W+ =

k∑

i=1

(

φ(pi > 0)Ri +
1

2
φ(pi = 0)Ri

)

(3.11)

W− =

k∑

i=1

(

φ(pi < 0)Ri +
1

2
φ(pi = 0)Ri

)

(3.12)

W = min(W+,W−) (3.13)

where φ(X) is an indicator function which is equal to 1 if X is true and
0 otherwise. When k is small, the critical values for the statistic, W , are
tabulated but as k increases, the statistic tends, under the null hypothesis,

towards a normal distribution with µW = k(k+1)
4 and σW =

√
k(k+1)(2k+1)

24 .

The Mann-Whitney is also a non-parametric test for assessing whether or
not two samples of observations come from the same distribution, but it does
not assume matched-pair data. Therefore, the cross-validation process of both
algorithms A and B can be performed independently and without maintaining
the data partition. The null hypothesis states that the two samples,A1, . . . , Ak

and B1, . . . , Bk, are drawn from probability distributions with equal means.
The Mann-Whitney test arranges all the accuracy estimations into a single
ranked series. That is, it ranks all the accuracy estimations without regard
from which algorithm they are obtained. If we define by RA the sum of the
ranks for the accuracy estimations obtained by algorithm A then, the Mann-
Whitney statistic is calculated as follows:

U = k2 +
k(k + 1)

2
−RA (3.14)
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As well as in the Wilcoxon signed-rank test, when k is small, the critical
values for the statistic U are tabulated, but as k increases, the statistic tends,

under the null hypothesis, towards the normal distribution with µU = k2

2 and

σU =
√

k2(2k+1)
12 . In practice, with k > 25, the normal distribution is often

used to calculate the p-value of the test.
Throughout this dissertation we perform statistical tests to compare two

different algorithms on the same dataset using non-parametric statistical tests.
There are other more complicated and restrictive comparisons between classi-
fication algorithms such as the ones presented in Demšar (2006) where meth-
ods to compare two classifiers over several datasets or multiple classifiers over
one or several datasets are proposed. Although the comparison method be-
tween classification algorithms adopted in this dissertation is simpler than
the ones introduced in Demšar (2006), we follow the recommendation given
in the paper about the fact that non-parametric statistical tests are preferred
to parametric ones because they avoid the normality assumption.
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Bayesian Network Classifiers

Bayesian network classifiers arise from the use of Bayesian network models for
classification purposes. Depending on the restrictions imposed on the struc-
ture of the Bayesian network, several classifiers have been proposed. However,
if no restrictions are assumed, the classification model is given by a general
Bayesian network used for classification purposes and it is denoted as unre-
stricted Bayesian network classifier. Nevertheless, unrestricted Bayesian net-
work classifiers do not necessarily lead to a classifier with better performance.
For example, Friedman et al. (1997) observed that unrestricted Bayesian net-
work classifiers do not outperform other simpler models.

Bayesian network classifiers are considered generative classifiers because
they encode the joint probability distribution of the class and predictive vari-
ables. In this case, the maximum likelihood estimation of the parameters
is straightforward and it is normally used to learn the parameters of the
model. However, several discriminative learning approaches for Bayesian net-
work classifiers have been proposed (Greiner et al., 2005; Roos et al., 2005;
Santafé et al., 2005b; Feelders and Ivanovs, 2006). This issue is addressed in
the next chapter where the work proposed in Santafé et al. (2005b) is pre-
sented in deep.

In this chapter, we introduce several restricted Bayesian network classifiers
such as naive Bayes, selective naive Bayes, tree augmented naive Bayes, k-
dependence Bayesian classifier and Bayesian network augmented naive Bayes.

4.1 Naive Bayes

The naive Bayes (Minsky, 1961) is the simplest Bayesian network classifier.
It is based on Bayes’ theorem and on the assumption that the predictive
variables are conditionally independent given the class variable. Although the
naive Bayes model was previously used in statistics and pattern recognition
(Duda and Hart, 1973), the first time it appears in supervised classification
is in Cestnik et al. (1987). In the literature, the naive Bayes paradigm is
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C

X1 X2 X3 X4 X5

Fig. 4.1. Structure of a naive Bayes model with five predictive variables.

designated with several names: idiot Bayes (Ohmann et al., 1988; Hand and
You, 2001), naive Bayes (Kononenko, 1990), simple Bayes (Gammerman and
Thatcher, 1991; Domingos and Pazzani, 1997) or independent Bayes (Todd
and Stamper, 1994). Figure 4.1 shows the graphical representation of naive
Bayes structure with five predictive variables. Additionally, the factorization
of the joint probability distribution under the naive Bayes assumption is given
by:

p(c,x) = p(c)

n∏

i=1

p(xi|c) (4.1)

In spite of its simplicity, the naive Bayes has been widely used in machine
learning applications and, even when naive Bayes assumption is hardly ever
fulfilled in real domains, in many cases naive Bayes obtains promising re-
sults and is competitive with other more sophisticated methods. For instance,
there are successful applications of naive Bayes classifiers in medical domains
(Kononenko, 1990; Ohmann et al., 1996; Mani et al., 1997; Movellan et al.,
2002) in web site classification according to user interest (Pazzani et al., 1996),
in collaborative filter approaches (Miyahara and Pazzani, 2000), text classifi-
cation (McCallum and Nigam, 1998) or failure detection (Hamerly and Elkan,
2001). For more details about naive Bayes, the reader may be interested on
the historical review and improvements of the naive Bayes classifier presented
in Larrañaga (2004) and Blanco (2005).

4.2 Selective Naive Bayes

Despite the good performance of naive Bayes classifiers even when the as-
sumption of conditional independence of the variables is not fulfilled, naive
Bayes is very sensitive to highly correlated features. The selective naive Bayes
(Langley and Sage, 1994) is a variant of the naive Bayes classifier that uses
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only a subset of the variables to make predictions (see Figure 4.2 for a graph-
ical example of a selective naive Bayes structure with five predictive variables
where only three are selected to make predictions). In fact, the selective naive
Bayes classifier can be seen as a naive Bayes classifier for which a feature sub-
set selection process has been performed. This feature subset selection process
selects those features or variables which are relevant for classification purposes
and these are the variables included in the naive Bayes model.

In general, any feature subset selection method can be used to obtain the
subset of relevant and non-redundant variables for classification purposes and
thus obtain the selective naive Bayes model. In the literature of feature subset
selection two main tendencies appear. On the one hand, filter methods use
optimization criteria which are independent of the classification model such
as entropy, mutual information, Euclidean distance or Kullback-Leibler diver-
gence (Ben-Bassat, 1982; Doak, 1992; Inza et al., 2004; Blanco et al., 2005).
On the other hand, wrapper methods use model-based scores such as accu-
racy to find the set of relevant variables for classification. These latter methods
usually use optimization techniques such as hill-climbing (Langley and Sage,
1994; Inza et al., 2002), simulated annealing (Vinciotti et al., 2006), genetic al-
gorithms (Inza et al., 2001b,c) or estimation of distribution algorithms (Inza
et al., 2000, 2001a; Blanco et al., 2004) among others. By contrast, Dash
and Cooper (2002), Cerquides and López de Mántaras (2003a) and Dash and
Cooper (2004) propose a Bayesian approach by averaging over all the selec-
tive naive Bayes models in order to obtain a single naive Bayes model which,
despite including all the predictive variables in the model, is able to capture
the relevance of the variables for classification purposes.

Langley and Sage (1994) propose a wrapper feature selection process where
a greedy forward algorithm is used. The process starts with an empty set of
variables and, at each step, the variable which most increases the accuracy
measured in a leaving-one-out cross-validation is added to the model. Figure
4.3 shows the pseudo-code of the algorithm proposed in Langley and Sage
(1994).

Therefore, the factorization of the joint probability distribution for a se-
lective naive Bayes is given as follows:

p(c,x) = p(c)
∏

Xi /∈XF

p(xi)
∏

Xj∈XF

p(xj |c) (4.2)

where XF is the set of selected features to make predictions. Therefore, in the
case of selective naive Bayes models, the conditional probability of the class
given the predictive variables is given by:

p(c|x) = p(c|xF ) ∝ p(c,xF ) = p(c)
∏

Xj∈XF

p(xj |c) (4.3)



34 4 Bayesian Network Classifiers

C

X1 X2 X3 X4 X5

Fig. 4.2. Structure of a selective naive Bayes with five predictive variables where
only three are selected to make predictions.

Let the set of selected variables, XF , be empty

While some improvement is reached do

Select the most accurate predictive variable not in XF

Add the selected variable to XF

end while

Fig. 4.3. General pseudo-code for wrapper approach to selective naive Bayes learn-
ing (Langley and Sage, 1994).

4.3 Tree Augmented Naive Bayes

Neither the naive Bayes nor the selective naive Bayes can notice dependen-
cies between predictive variables. The tree augmented naive Bayes (TAN)
takes into account relationships between predictive variables by extending
the naive Bayes structure with a tree structure among the predictive vari-
ables (see Figure 4.4 for a graphical example of a TAN structure with five
predictive variables).

The algorithm to learn TAN models was proposed in Friedman et al.
(1997). In this work Friedman et al. adapt the Chow-Liu algorithm (Chow
and Liu, 1968) in order to take into account the special role of the class
variable. The construct-TAN algorithm calculates the conditional mutual in-
formation between each pair of predictive variables Xi and Xj given the class,
with i, j = 1, . . . , n and i 6= j. The conditional mutual information between
Xi and Xj given the class variable is defined as:

I(Xi, Xj|C) =
∑

xi

∑

xj

∑

c

p(xi, xj , c) log
p(xi, xj |c)

p(xi|c)p(xj |c)
(4.4)
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X1 X2 X3 X4 X5

Fig. 4.4. Structure of a TAN classifier with five predictive variables.

Compute I(Xi, Xj |C) for i < j and i, j = 1, . . . , n

Let G be a complete undirected graph where I(Xi, Xj |C) is the weight of
edge Xi − Xj

Use Kruskal algorithm to obtain the maximum spanning tree from G

Select randomly a node as the root to set the direction of the edges

Add the class variable as parent of each predictive variable

Fig. 4.5. General pseudo-code for TAN classifier (Friedman et al., 1997).

The algorithm needs the calculation of n(n−1)/2 mutual information val-
ues. Each conditional mutual information value I(Xi, Xj |C) is used to weight
the edge between Xi and Xj . Then, the Kruskal algorithm is used to obtain
the maximum weighted spanning tree. Figure 4.5 shows the pseudo-code for
the construct-TAN algorithm and Figure 4.6 shows the pseudo-code for the
Kruskal algorithm.

The construct-TAN algorithm builds a TAN model that maximizes the
likelihood and, as well as the Chow-Liu algorithm, it is asymptotically correct
if the data have been generated from a TAN structure. That is, if the dataset
is large enough, the construct-TAN algorithm is able to learn the original
TAN structure.

Keogh and Pazzani (1999) propose a wrapper greedy alternative approach
to obtain a TAN structure where, starting with a naive Bayes, the arcs that
maximize the proposed score are successively added if they agree with TAN
structural restrictions. By contrast, Lucas (2004) introduces the forest aug-
mented naive Bayes (FAN) which relaxes the TAN restrictions by allowing
the predictive variables to form up to a tree. That is, a k < n − 1 number
must be fixed in order to obtain the forest with the minimum cost and with
exactly k edges (Figure 4.7 shows a graphical example of a FAN structure).
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Let T be an empty graph with n variables

Add to T the two edges with the highest weight

while number of edges in T is less than n − 1 do

Add the edge with the highest weight which does not create a cycle in T

end while

Fig. 4.6. General pseudo-code for Kruskal algorithm.

C

X1 X2 X3 X4 X5

Fig. 4.7. Structure of a FAN classifier with five predictive variables.

Another alternative to TAN construction is proposed in Pernkopf and
Bilmes (2005), and Perez et al. (2006) where Friedman et al.’s algorithm is
modified in order to perform a discriminative learning of TAN structures by
maximizing the conditional likelihood instead of the joint likelihood.

Moreover, there are some Bayesian approaches for TAN induction. Dash
and Cooper (2003), Cerquides and López de Mántaras (2003a), Dash and
Cooper (2004), and Cerquides and López de Mántaras (2005) introduce dif-
ferent tractable approaches to average over all the possible TAN structures
given an ancestral order over the predictive variables. However, although the
Bayesian model averaging process is performed over TAN models, the resul-
tant model is a complete Bayesian network. Nevertheless, Dash and Cooper
(2004) propose some restrictions to make the calculations more efficient.

4.4 k Dependence Bayesian Classifier

TAN models restrict the number of parents for a predictive variable to a
maximum of two: the class variable and another predictive variable. The k
dependence Bayesian classifier (kDB) (Sahami, 1996) relax TAN restrictions
by allowing each predictive variable to have up to k predictive variables as
parents besides the class variable, k being a parameter of the model which
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Fig. 4.8. Structure of a kDB classifier with five predictive variables.

Compute I(Xi, C) for i = 1, . . . , n

Compute I(Xi, Xj |C) for i < j and i, j = 1, . . . , n

Let S a structure with only the class variable C

while |S| 6= n + 1 do

Select the variable, Xmax, which is not in S and has the highest I(Xmax|C)

Add Xmax and the arc C → Xmax to S

for m = 1 to min(|S|, k) do

Select the variable Xj in S with the highest I(Xmax, Xj |C)

Add to S the arc Xj → Xmax

end for

end while

Fig. 4.9. General pseudo-code for kDB classifier (Sahami, 1996).

may be fixed in advance. The kDB classifier can be seen as a generalization of
other simpler models such as naive Bayes (k = 0) or TAN (k = 1). Figure 4.8
shows a graphical example of kDB structure with five predictive variables.

However, as kDB classifiers force each predictive variable (except for the
first k variables introduced in the model) to have exactly k predictive variables
as parents and the value of k is fixed by hand, the classifier may not be
optimum. Figure 4.9 shows the pseudo-code for kDB algorithm.
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4.5 Bayesian Network Augmented Naive Bayes

The Bayesian network augmented naive Bayes (BAN) is a generalization of the
kDB classifier which allows the predictive variables to form any unrestricted
Bayesian network and where the class variable is added as parent of each
predictive variable. Figure 4.10 shows a graphical representation of a BAN
classifier with five predictive variables.

C

X1 X2 X3 X4 X5

Fig. 4.10. Structure of a BAN classifier with five predictive variables.

Although the term Bayesian network augmented naive Bayes is introduced
in Cheng and Greiner (2001), this classifier was previously used and referred
with the general term of augmented naive Bayes. In fact, Friedman et al.
(1997) propose the use of a MDL score metric and a local search algorithm
to learn an unrestricted augmented naive Bayes classifier; in Ezawa et al.
(1996) the model is learned using the K2 algorithm (Cooper and Herskovits,
1992) and in Zhang and Ling (2001) a complexity measure function to learn
augmented naive Bayes models is introduced. Additionally, Acid et al. (2005)
propose a local method to explore the search space of C-RPDAGs (class-
focused restricted partial directed acyclic graphs) structures in order to learn
the structure of BAN and other unrestricted Bayesian network classifiers.



5

New Approaches for the Discriminative

Learning of Bayesian Network Classifiers

The learning of probabilistic classification models can be approached from ei-
ther a generative or a discriminative point of view. Generative classifiers, also
called informative classifiers, obtain the parameters of the model by learn-
ing the joint probability distribution, p(c,x). These models are obtained by
maximizing the joint log-likelihood function. Thus, the classification of a new
instance can be performed by selecting the most likely class from p(c|x), which
can be indirectly obtained by using the Bayes rule. On the other hand, dis-
criminative classifiers obtain the parameters of the model by directly learning
the posterior distribution of the class given the predictive variables, p(c|x). In
this case, the classification model is obtained by maximizing the conditional
log-likelihood function.

In this chapter we motivate the use of discriminative learning for Bayesian
network classifiers and overview some approaches presented in the literature.
The main contribution of this chapter is a novel approach for the discrimina-
tive learning of the parameters for Bayesian network classifiers by means of
an adaptation of the TM algorithm. Moreover, we also propose two new algo-
rithms (structural TM and construct-discriminative-TAN) which can be used
to learn the structure of Bayesian network classifiers from a discriminative
point of view.

5.1 Motivation

There is a strong belief in the scientific community that discriminative learning
has to be preferred in reasoning tasks. In fact, the selection of a generative
or discriminative classifier can be argued in different terms. Vapnik (1998)
says, “... one should solve the (classification) problem directly and never solve
a more general problem as an intermediate step (such as modeling p(c,x))”.
Indeed, generative learning preforms a more general approach by modeling
the joint probability distribution, p(c,x), and then transforming the joint
probability distribution into the conditional model, p(c|x), in order to make



40 5 New Approaches for the Discriminative Learning of BNCs

predictions. This approach is against the widely applied Occam’s razor prin-
ciple: “It is futile to do with more what can be done with fewer” (William of
Ockham, 1280-1349). However, the generative approach is widely used to learn
some classification models such as Bayesian network classifiers because the de-
composability of the log-likelihood (LL) score leads to a simple and efficient
estimation of the parameters. By contrast, although discriminative learning
seems a more natural approach for classification purposes, the estimation of
the parameters is much more inefficient than in generative learning.

Nevertheless, the maximization of the log-likelihood score does not neces-
sarily lead to improving the classification rate (Friedman et al., 1997). In fact,
log-likelihood not only depends on the conditional log-likelihood (CLL) but
also on the marginal log-likelihood:

LL =

N∑

d=1

log p(c(d),x(d)|B)

=

N∑

d=1

log p(c(d)|x(d),B) +

N∑

d=1

log p(x(d)|B) (5.1)

As can be seen in Equation 5.1, only the first term (CLL) is related to
classification since the second one, marginal likelihood, is only relevant to
model the relationship among predictive variables but not for classification
purposes. Moreover, as the number of predictive variables increases, the sec-
ond term in Equation 5.1 should become more relevant than the first one.
Therefore, a criteria related to the log-likelihood score might be adequate
to learn the (in)dependencies between variables captured in the dataset but
could be inadequate to learn a classification model, especially with a high num-
ber of predictive variables. By contrast, the conditional log-likelihood score
is directly related to the discrimination function p(c|x). The maximization
of conditional log-likelihood also involves minimizing the entropy of the class
given the predictive variables,H(C|X) (Perez et al., 2006; Cover and Thomas,
2006). MinimizingH(C|X) should be desirable for learning classification mod-
els because we minimize the uncertainty remaining in the class variable once
the value of X is known.

On the other hand, it is quite usual to restrict the model complexity when
learning Bayesian network classifiers. For instance, naive Bayes, TAN and
kDB models are Bayesian network classifiers with restricted network com-
plexity. However, the model underlying the dataset (or the model which gen-
erated the data) may be more complex than the classifier learned from the
dataset. Therefore, the estimation of both conditional log-likelihood (first term
in Equation 5.1) and marginal log-likelihood (second term in Equation 5.1) is
biased by the complexity restrictions that we set when learning the Bayesian
network classifier. Hence, if the assumptions (or the restrictions) in the model
that we learn are true, for instance, we learn a TAN classifier and the model
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that generated the data is also a TAN model, generative learning may present
a good performance since it is able to model the relations between variables.
Therefore, as generative learning is computationally more efficient, it may be
preferred. In fact, some generative approaches are asymptotically correct. For
example, Friedman et al.’s algorithm to learn the structure of a TAN classi-
fier, guarantees that if the model that generated the data is a TAN model, the
construct-TAN algorithm, having enough data samples, is able to induce the
original TAN structure. By contrast, when the learned model is different from
the true model, generative learning should perform worse than discriminative
learning (Rubinstein and Hastie, 1997) because the bias for the generative
model is higher. This can be seen in Theorem 3 presented in this dissertation,
but in order to enunciate this theorem, Theorems 1 and 2 are also needed.
Theorems 1 and 2 are adaptations of theorems presented in Chow and Liu
(1968) and Perez et al. (2007) respectively. However, we include the proofs of
the theorems for a better understanding.

Theorem 1. Given a dataset D with N instances and given a model B =
(S,θ), the maximum likelihood parameters are the ones that minimize the
Kullback-Leibler divergence between the model and the empirical distribution
of the data (p̂(c,x) = 1

N iff (c,x) ∈ D and 0 otherwise).

Proof.

LL = N

N
X

d=1

p̂(c(d)
, x

(d)) log p(c(d)
, x

(d)|B)

= −N

N
X

d=1

`

− p̂(c(d)
, x

(d)) log p(c(d)
, x

(d)|B) + p̂(c(d)
, x

(d)) log p̂(c(d)
, x

(d))

−p̂(c(d)
, x

(d)) log p̂(c(d)
, x

(d))
´

= N

N
X

d=1

p̂(c(d)
, x

(d)) log p̂(c(d)
, x

(d)) − N

N
X

d=1

p̂(c(d)
, x

(d)) log
p̂(c(d), x(d))

p(c(d), x(d)|B)

= N
X

c,x

p̂(c, x) log p̂(c, x) − N
X

c,x

p̂(c, x) log
p̂(c, x)

p(c, x|B)

= κ − NDKL

`

p̂(c, x)||p(c, x|B)
´

where κ is a constant. �

Theorem 2. Given a dataset D with N instances and given a model B =
(S,θ), the parameters of the model that maximize the conditional log-likelihood
are the ones that minimize the expected Kullback-Leibler divergence with re-
spect to p̂(x) between the conditional model and the empirical conditional dis-

tribution of the data (p̂(c|x) = p̂(c,x)
p̂(x) ).

Proof.
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CLL = N

N
X

d=1

p̂(c(d)
, x

(d)) log p(c(d)|x(d)
,B)

= −N

N
X

d=1

`

− p̂(c(d)
, x

(d)) log p(c(d)|x(d)
,B) + p̂(c(d)

, x
(d)) log p̂(c(d)|x(d))

−p̂(c(d)
, x

(d)) log p̂(c(d)|x(d))
´

= N

N
X

d=1

p̂(c(d)
, x

(d)) log p̂(c(d)|x(d)) − N

N
X

d=1

p̂(c(d)
, x

(d)) log
p̂(c(d)|x(d))

p(c(d)|x(d),B)

= N
X

c,x

p̂(c, x) log p̂(c|x) − N
X

c,x

p̂(c, x) log
p̂(c|x)

p(c|x,B)

= κ − NEp̂(x)

h

DKL

`

p̂(c|x)||p(c|x, θ)
´

i

where κ is a constant. �

Theorem 3. Given a dataset D with N instances and given a model B =
(S,θ), if the structure of the model, S, is able to capture all the conditional
independencies among the predictive variables in D, the generative learning
of the parameters is asymptotically equivalent to the discriminative learning.

Proof.

DKL

(
p̂(c,x)||p(c,x|B)

)
=
∑

c,x

p̂(c,x) log
p̂(c,x)

p(c,x|B)
(5.2)

=

N∑

d=1

p̂(c(d),x(d)) log
p̂(c(d),x(d))

p(c(d),x(d)|B)
(5.3)

=

N∑

d=1

p̂(c(d),x(d))

(

log
p̂(c(d)|x(d))

p(c(d)|x(d),B)
+ log

p̂(x(d))

p(x(d)|B)

)

(5.4)

=

N∑

d=1

p̂(c,x) log
p̂(c|x)

p(c|x,B)
+

N∑

d=1

p̂(c,x) log
p̂(x)

p(x|B)
(5.5)

From Theorem 1 we know that Equation 5.3 is related to the log-likelihood
score (generative learning), and from Theorem 2 we know that the first term in
Equation 5.5 is related to the conditional log-likelihood score (discriminative
learning). If the the structure S captures all the conditional independencies
represented in the empirical distribution p̂(x), given enough data samples, we
can find the set of parameters for B so that the second term in Equation 5.5 is
canceled out. Therefore, generative and discriminative learning of the param-
eters would be equivalent. However, if the structure of B and the structure
of the empirical model are different, the second term in Equation 5.5 will be
always greater than zero. Therefore, in that case, the bias of the generative
learning is higher. �
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As was mentioned before, Bayesian network classifiers are usually consid-
ered generative classifiers because they are learned by maximizing the joint
likelihood (or some function related to the joint likelihood). However, there
has been a considerable growth of interest in the discriminative learning of
Bayesian network classifiers. Although Minka (2005) states that the term dis-
criminative learning is a misnomer, most of the authors use it to refer to the
learning process of Bayesian network classifiers where the conditional likeli-
hood score is maximized. Minka (2005) justifies his statement with the fact
that the discriminative learning of a Bayesian network classifier is actually
learning a different model from the one obtained if a generative learning is
performed and then it can not be considered discriminative learning but the
learning of a discriminative model. Nonetheless, we use both terms, discrimi-
native learning and discriminative model, throughout the dissertation.

In following sections, we present the discriminative learning of both param-
eters and structure for Bayesian network classifiers. Although it is necessary
to set a structure before learning the parameters of a Bayesian network clas-
sifier, some aspects of the discriminative parameter learning are used for the
learning of structures. Therefore, the parameter learning is presented before
the structure learning.

5.2 Discriminative Learning of Parameters for Bayesian

Network Classifiers

In the literature there are several proposals for the discriminative learning
of the parameters for Bayesian network classifiers. Huang et al. (2003, 2005)
propose a discriminative approach to learn the parameters of naive Bayes and
TAN models by using an optimization function which includes a penalty term
describing the divergence between the classes. Roos et al. (2005) prove that
Bayesian networks satisfying certain graph-theoretic conditions have an equiv-
alent logistic regression model and therefore the conditional log-likelihood
has no local maximum for the parameters of those logistic regression models
(McLachlan and Krishnan, 1997). Hence, the parameters that maximize the
conditional log-likelihood can be, in principle, easily obtained by any sim-
ple local optimization method although it is computationally more demand-
ing than using the parameters that maximize the joint likelihood. Similarly,
Greiner et al. (2005) extend simple logistic regression models to represent
any arbitrary Bayesian network structure. However, learning the parameters
that maximize the conditional log-likelihood is NP -Hard. Therefore, they pro-
pose a gradient descent algorithm that attempts to maximize the conditional
log-likelihood by using the extended logistic regression model. Feelders and
Ivanovs (2006) propose an alternative mapping between Bayesian network
classifiers and logistic regression models similar to the one introduced by Roos
et al. (2005) but with less parameters in the corresponding logistic regression
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model. Finally, Santafé et al. (2005b) introduce a novel approach for the dis-
criminative learning of the parameters of Bayesian network classifiers based
on the TM algorithm. This work is presented in detail in following sections.

5.2.1 The TM Algorithm

The TM algorithm is a general iterative process that allows the maximiza-
tion of the conditional log-likelihood in models where the (joint) log-likelihood
function is easier to maximize. The algorithm was originally proposed in Ed-
wards and Lauritzen (2001) and the convergence properties were studied in
Sundberg (2002). The TM algorithm resembles the well-known EM algorithm
(Dempster et al., 1977) by alternating between two steps. The M step maxi-
mizes a function related to the conditional log-likelihood function and the T
step computes the conditional expectation to identify this function. However,
it differs from the EM algorithm and its variants by being applied to the com-
plete dataset and by augmenting the parameters rather than the data. In the
following sections we firstly introduce the TM algorithm in the same way as
in Edwards and Lauritzen (2001) but bearing in mind the classification pur-
pose of the model that we want to learn. Thus, we expect to give the reader
a general and intuitive idea about how the TM algorithm works. Then, we
introduce the adaptation of the TM algorithm for learning the parameters of
Bayesian network classifiers (Santafé et al., 2004, 2005b).

5.2.1.1 General Structure of the TM Algorithm

For the sake of clarity, let us re-name the joint, marginal and conditional
log-likelihood functions as follows:

l(θ) = log f(c,x|θ)

lx(θ) = log f(x|θ) (5.6)

lx(θ) = log f(c|x,θ)

where θ is the parameter set of the joint probability distribution for the vari-
able (C,X).

The foundations of the TM algorithm are based on the tilted joint log-
likelihood function, q(θ|θ(t)). This function is an approximation to lx(θ),

which we want to maximize, at a point θ(t). Note that lx(θ) can be expressed
in terms of the joint and the marginal log-likelihood:

lx(θ) = l(θ) − lx(θ) (5.7)

Therefore, if we expand lx(θ) in a first order Taylor series about the point

θ(t), and then omit the terms which are constant with respect to θ, we can
approximate lx(θ) by q(θ|θ(t)) as follows:
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lx(θ) ≈ q(θ|θ(t)) = l(θ) − θT l̇x(θ(t)) (5.8)

where l̇x(θ(t)) is the derivative of lx(θ) at point θ(t).
The tilted joint log-likelihood and the conditional log-likelihood functions

have the same gradient at θ(t). Thus, we can maximize lx(θ) by maximizing

q(θ|θ(t)).

Since the approximation of lx(θ) given by q(θ|θ(t)) is at point a θ
(t), an

iterative process is needed in order to maximize the conditional log-likelihood
function. This process alternates between two steps, T and M. In the T step,
the above described tilted joint log-likelihood is obtained. The second step of
the algorithm, the M step, consists of maximizing the tilted joint log-likelihood
function:

θ
(t+1) = argmax

θ
q(θ|θ(t)) (5.9)

Under regularity conditions of the usual type and due to the fact that the
expected score statistic for the conditional model is equal to 0, l̇x(θ) can be
calculated as the expectation of the score statistic for the joint model:

l̇x(θ) = Eθ{l̇x(θ)|x} = Eθ{l̇(θ) − l̇x(θ)|x} = Eθ{l̇(θ)|x} (5.10)

Therefore, the M step involves the solution of the following equation:

E
θ(t){l̇(θ(t))|x} = l̇(θ) (5.11)

In summary, the relevance of the TM algorithm is that it allows to obtain a
model that maximizes the conditional log-likelihood, lx(θ), by using the joint
log-likelihood, l(θ). This is very useful for models such as Bayesian network
classifiers, where the obtention of the joint (generative) model is much easier
than the obtention of the conditional (discriminative) one.

The TM algorithm begins by making its initial parameters the ones which
maximize the joint log-likelihood given the dataset. Then, both the T and the
M steps are repeated until the value of the conditional log-likelihood converges.
Convergence properties for the TM algorithm are given in Sundberg (2002).

5.2.1.2 The TM Algorithm for the Exponential Family

The TM algorithm can be easily particularized for probability distributions
belonging to the exponential family. In this case, the joint and conditional
log-likelihood are given by the following expressions:

l(θ) = αTu(c,x) + βT v(x) − ψ(α,β) (5.12)

lx(θ) = αTu(c,x) − ψx(α) (5.13)
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with

ψ(α,β) = log

∫

exp{αTu(c,x) + βT v(x)}µ(dc|x)µ(dx)

ψx(α) = log

∫

exp{αTu(c,x)}µ(dc|x) (5.14)

where α denotes the parameters of the conditional model and θ = (α,β) rep-
resent the parameters of the joint model. Let us introduce a new parametriza-
tion for θ = (α,η), with:

η =
∂

∂β
ψ(α,β) (5.15)

Moreover, if we define two new random variables, U = u(C,X) and V =
v(X), it can be demonstrated that the maximum likelihood parameters are
θ̂ = (u,v) with u = Eθ{U} and v = η = Eθ{V}.

Following the general structure of the TM algorithm, Equation 5.11 has
to be solved in order to maximize the approximation to the conditional log-
likelihood given by q(θ|θ(t)). Thus, we have:

Eθ

{
∂

∂θ
l(θ)

∣
∣
∣
∣
x

}

= Eθ

{

U − ∂

∂α
ψ(α,β),VT ∂β

∂η
− ∂

∂β
ψ(α,β)

∂β

∂η

∣
∣
∣
∣
x

}

=

(

Eθ{U |x} − Eθ{U}, (Eθ{V} − η)T ∂β

∂η

)

(5.16)

= (Eθ{U |x} − Eθ{U}, 0)

and also:

l̇(θ) =

(

U − ∂

∂α
ψ(α,η),VT ∂β

∂η
− ∂

∂β
ψ(α,β)

∂β

∂η

)

= (U − Eθ{U}, 0) (5.17)

Finally, the solution of Equation 5.11 gives the value of the sufficient statis-
tics at the t+ 1-th iteration of the TM algorithm:

u(r+1) = u(t) + u(0) − E
θ(t){U |x}

θ(t+1) = θ̂(u(t+1),v) (5.18)

where the initial sufficient statistics, u(0) and v, are given by the maximum
likelihood estimators obtained from the data set. Moreover, θ̂(u(t+1),v) de-
notes the maximum likelihood estimations of θ obtained from sufficient statis-
tics u(t+1) and v.
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Generally, it may happen that an iteration of the TM algorithm yields
an illegal set of parameters θ or that the conditional log-likelihood decreases
from one iteration to another. These situations must be corrected by applying
a linear search. Thus, the sufficient statistics at iteration t+ 1 are calculated
as:

u(t+1) = u(t) + λ(u(0) − E
θ(t){U |x}), with λ ∈ (0, 1) (5.19)

being λ the one that maximizes the conditional log-likelihood.

5.2.2 The TM Algorithm for Bayesian Classifiers

In this section we present the work introduced in Santafé et al. (2004) and
Santafé et al. (2005b) where the TM algorithm is adapted to Bayesian net-
work classifiers such as naive Bayes, FAN and BAN. Even when Bayesian
networks belong to the exponential family, the adaptation of the calculations
from Section 5.2.1.2 is not trivial. First, we introduce the TM algorithm for
the discriminative learning of naive Bayes, FAN and BAN models with di-
chotomic variables because the calculations are simpler and these derivations
may lead to a better understanding of the algorithm. Then, the TM algorithm
is adapted for the discriminative learning of naive Bayes and FAN classifiers
with multinomial variables. Since TAN can be seen as a special case of FAN
models, the derivation for TAN models can be straightforward obtained from
the TM algorithm for FAN models and therefore, these calculations are not
presented in the dissertation.

5.2.2.1 The TM Algorithm for Naive Bayes Models with
Dichotomic Variables

We assume that each predictive variable, Xi, and C can take binary values,
and we represent the values of C as c and c respectively.

The general algorithm for probability distributions of the exponential fam-
ily requires the expression of the joint log-likelihood via Equation 5.12. This
can be achieved by using the naive Bayes conditional model:

p(c|x) =
p(c,x)

p(x)
=
p(c)

∏n
i=1 p(xi|c)
p(x)

=
p(c)

∏n
i=1 p(xi|c)

p(c)
∏n

i=1 p(xi|c) + p(c)
∏n

i=1 p(xi|c)
(5.20)

Plugging the conditional model into the joint model, we obtain the following
expression:
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p(c,x) =
1

(p(c))n−1

n∏

i=1

p(xi, c) (5.21)

If only one data sample is taken into account, the joint likelihood can be
written as:

p(c,x) = (p(C = 0)(1−c)(1 − p(C = 0))c)−(n−1)

n∏

i=1

[

p(C = 0, Xi = 0)(1−c)(1−xi)p(C = 0, Xi = 1)(1−c)xi

p(C = 1, Xi = 0)c(1−xi)p(C = 1, Xi = 1)cxi

]

= exp
{

log
(

(p(C = 0)(1−c)(1 − p(C = 0))c)−(n−1)

n∏

i=1

[

p(C = 0, Xi = 0)(1−c)(1−xi)p(C = 0, Xi = 1)(1−c)xi

p(C = 1, Xi = 0)c(1−xi)p(C = 1, Xi = 1)cxi

])}

(5.22)

Then, we can rewrite Equation 5.22 as Equation 5.12 by sorting the terms in
the equation:

p(c,x) = exp {c ((n− 1)(log(p(C = 0)) − log(1 − p(C = 0))))

+

n∑

i=1

cxi (log(p(C = 0, Xi = 0)) log(p(C = 1, Xi = 1))

− log(p(C = 0, Xi = 1)) − log(p(C = 1, Xi = 0)))

+

n∑

i=1

xi (log(p(C = 0, Xi = 1)) − log(p(C = 0, Xi = 0)))

+ c

n∑

i=1

log p(C = 1, Xi = 0) − log p(C = 0, Xi = 1)

+

n∑

i=1

log(p(C = 0, Xi = 0)) − (n− 1) log(p(C = 0))} (5.23)

If we have a dataset with N samples then, the joint log-likelihood of the
data given the parameters θ is given by:
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l(θ) =

N∑

d=1

c(d) ((n− 1)(log(p(C = 0)) − log(1 − p(C = 0))))

+

N∑

d=1

n∑

i=1

c(d)x
(d)
i (log(p(C = 0, Xi = 0)) log(p(C = 1, Xi = 1))

− log(p(C = 0, Xi = 1)) − log(p(C = 1, Xi = 0)))

+

N∑

d=1

n∑

i=1

x
(d)
i (log(p(C = 0, Xi = 1)) − log(p(C = 0, Xi = 0)))

+ Nc

n∑

i=1

log p(C = 1, Xi = 0) − log p(C = 0, Xi = 1)

+ N(

n∑

i=1

log(p(C = 0, Xi = 0)) − (n− 1) log(p(C = 0))) (5.24)

where c(d) and x
(d)
i are the values of C and Xi given by the d-th data sample

respectively.
A few transformations in Equation 5.24 can match its terms with those

from Equation 5.12. Thus, we obtain:

U = u(C,X) =

(
N∑

d=1

c(d),

N∑

d=1

c(d)x
(d)
1 , . . . ,

N∑

d=1

c(d)x(d)
n

)

(5.25)

V = v(x) =

(
N∑

d=1

x
(d)
1 , . . . ,

N∑

d=1

x(d)
n

)

(5.26)

and therefore, the sufficient statistics are given by:

U = (N0, N01, . . . , N0i, . . . , N0n) (5.27)

V = (N1, . . . , Ni, . . . , Nn) (5.28)

where

N0 = #{C = 1} =

N∑

d=1

c(d) (5.29)

N0i = #{C = 1, Xi = 1} =

N∑

d=1

c(d)x
(d)
i i = 1, . . . , n (5.30)

Ni = #{Xi = 1} =
N∑

d=1

x
(d)
i i = 1, . . . , n (5.31)
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Note that the subindex 0 refers to the class variable.
The choice of the above described sufficient statistics makes the calcula-

tions of the TM algorithm simpler. For instance, at t + 1-th iteration, the
calculation of E[U|x] is given by:

E
θ(t) [N0|x] =

N∑

d=1

p(C = 1|X = x(d),θ(t)) (5.32)

E
θ(t) [N0i|x] =

N∑

d=1

p(C = 1|X = x(d),θ(t))x
(d)
i i = 1, . . . , n (5.33)

The obtention of p(C = 1|X = x(d),θ(t)), taking into account Equation
5.20, requires the calculation of p(C = 1) and p(Xi = 1|C = c). These can be
computed, at each iteration of the algorithm, by using the sufficient statistics:

p(C = 1) =
N

(t)
0

N
(5.34)

p(Xi = 1|C = 1) =
N

(t)
0i

N
(t)
0

(5.35)

p(Xi = 1|C = 0) =
Ni −N

(t)
0i

N −N
(t)
0

(5.36)

where N
(t)
0 and N

(t)
0i denote the values of the sufficient statistics N0 and N0i

at the t-th iteration of the algorithm, respectively.
Finally, the t-th iteration of the algorithm involves the following calcula-

tions:

• T step:

– Use N
(t)
0 and N

(t)
0i to calculate p(C = 1) y p(Xi = 1|C = c) with

i = 1, . . . , n.
– Obtain the expected values of the sufficient statistics: E

θ(t) [N0|x] and

E
θ(t) [N0i|x] with i = 1, . . . , n.

• M step:
– Compute the new values for the sufficient statistics by using:

u(t+1) = u(t) + u(0) − E
θ(t) [U |x] (5.37)

where u(0) are the maximum likelihood values for sufficient statistics
computed from the dataset and u(t) = (N

(t)
0 , N

(t)
01 , . . . , N

(t)
0n )

– Calculate the values for the parameters of the model, θ(t+1), by using
the sufficient statistics u(t+1).
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Obtain u(0) from the dataset

while stopping criterion is not met do

Calculate E
θ(t){U |x}

Update u:

u(t+1) = u(t) + u(0) - E
θ(t){U |x}

Calculate θ(t+1) from u(t+1)

if illegal θ(t+1) or conditional log-likelihood decreases then

Find the best legal θ(t+1) via linear search

end if

end while

Fig. 5.1. General pseudo-code for the discriminative learning of Bayesian classifiers
with dichotomic variables.

Note that, if the M step results in an illegal set of parameters, we should
apply the local search pointed out in Equation 5.19. Figure 5.1 shows a general
pseudo-code of the TM algorithm for the discriminative learning of Bayesian
network models with dichotomic variables.

5.2.2.2 The TM Algorithm for FAN Models with Dichotomic
Variables

In the case of FAN models, we need to differentiate between two kinds of
predictive variables: the roots of the trees formed by the predictive variables
(these root variables have only one parent, the class variable) and rest of the
predictive variables which have two parents, the class and another predictive
variable.
We assume, without lost of generality, that the first s variables have only
the class variable as parent and the parent set for the reminder n − s
variables contains two variables: the class and another predictive variable,
Pai = {C,Xj(i)} with i = s+ 1, . . . , n.

As well as in the TM algorithm for naive Bayes models with dichotomic
variables, we should define the conditional model for FAN structures, and
use this conditional model into the joint model in order to re-write the log-
likelihood in the terms expressed in Equation 5.12. The conditional FAN
model is given by:
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p(c|x) =
p(c,x)

p(x)
=
p(c)

∏s
i=1 p(xi|c)

∏n
i=s+1 p(xi|xj(i), c)

p(x)
(5.38)

=
p(c)

∏s
i=1 p(xi|c)

∏n
i=s+1 p(xi|xj(i), c)

p(c)
∏s

i=1 p(xi|c)
∏n

i=s+1 p(xi|xj(i), c) + p(c)
∏s

i=1 p(xi|c)
∏n

i=s+1 p(xi|xj(i), c)

The joint model where we have plugged the conditional model into is:

p(c,x) =

∏s
i=1 p(xi, c)

∏n
i=s+1 p(xi, xj(i), c)

p(c)s−1
∏n

i=s+1 p(xj(i), c)
(5.39)

By a mathematical transformation of the log-likelihood for a dataset with
N samples we can obtain the following expression:
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l(θ) =
N
X

d=1

(1 − s)(c(d) log(p(C = 1)) + (1 − c
(d)) log(p(C = 0)))

+

N
X

d=1

s
X

i=1

(1 − x
(d)
i )(1 − c

(d)) log(p(Xi = 0, C = 0))

+
N
X

d=1

s
X

i=1

x
(d)
i (1 − c

(d)) log(p(Xi = 1, C = 0))

+

N
X

d=1

s
X

i=1

(1 − x
(d)
i )c(d) log(p(Xi = 0, C = 1))

+
N
X

d=1

s
X

i=1

x
(d)
i c

(d) log(p(Xi = 1, C = 1))

−
N
X

d=1

n
X

i=s+1

(1 − x
(d)
j(i))(1 − c

(d)) log(p(Xj(i) = 0, C = 0))

−
N
X

d=1

n
X

i=s+1

x
(d)
j(i)(1 − c

(d)) log(p(Xj(i) = 1, C = 0))

−
N
X

d=1

n
X

i=s+1

(1 − x
(d)
j(i))c

(d) log(p(Xj(i) = 0, C = 1))

−
N
X

d=1

n
X

i=s+1

x
(d)

j(i)c
(d) log(p(Xj(i) = 1, C = 1))

+

N
X

d=1

n
X

i=s+1

(1 − x
(d)
i )(1 − x

(d)

j(i))(1 − c
(d)) log(p(Xi = 0, Xj(i) = 0, C = 0))

+
N
X

d=1

n
X

i=s+1

(1 − x
(d)
i )(1 − x

(d)

j(i)
)c(d) log(p(Xi = 0, Xj(i) = 0, C = 1))

+
N
X

d=1

n
X

i=s+1

(1 − x
(d)
i )x

(d)

j(i)
(1 − c

(d)) log(p(Xi = 0, Xj(i) = 1, C = 0))

+
N
X

d=1

n
X

i=s+1

(1 − x
(d)
i )x

(d)

j(i)
c
(d) log(p(Xi = 0, Xj(i) = 1, C = 1))

+
N
X

d=1

n
X

i=s+1

x
(d)
i (1 − x

(d)
j(i))(1 − c

(d)) log(p(Xi = 1, Xj(i) = 0, C = 0))

+
N
X

d=1

n
X

i=s+1

x
(d)
i (1 − x

(d)
j(i))c

(d) log(p(Xi = 1, Xj(i) = 0, C = 1))

+
N
X

d=1

n
X

i=s+1

x
(d)
i x

(d)
j(i)(1 − c

(d)) log(p(Xi = 1, Xj(i) = 1, C = 0))

+
N
X

d=1

n
X

i=s+1

x
(d)
i x

(d)
j(i)c

(d) log(p(Xi = 1, Xj(i) = 1, C = 1))
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Matching the latter expression with the terms in Equation 5.12 yields:

U = u(C,X) =

(
N∑

d=1

c(d),

N∑

d=1

c(d)x
(d)
1 , . . . ,

N∑

d=1

c(d)x(d)
n ,

N∑

d=1

c(d)x
(d)
s+1x

(d)
j(s+1), . . . ,

N∑

d=1

c(d)x(d)
n x

(d)
j(n)

)

V = v(X) =

(
N∑

d=1

x
(d)
1 , . . . ,

N∑

d=1

x(d)
n ,

N∑

d=1

x
(d)
s+1x

(d)
j(s+1), . . . ,

N∑

d=1

x(d)
n x

(d)
j(n)

)

and then, the sufficient statistics are given by:

U = (N0, N01, . . . , N0i, . . . , N0n, N0(s+1)j(s+1), . . . , N0nj(n))

V = (N1, . . . , Ni, . . . , Nn, N(s+1)j(s+1), . . . , Nnj(n))

with:

N0 = #{C = 1} =

N∑

d=1

c(d)

N0i = #{C = 1, Xi = 1} =

N∑

d=1

cdx
(d)
i i = 1, . . . , n

N0ij(i) = #{C = 1, Xi = 1, Xj(i) = 1} =

N∑

d=1

cdx
(d)
i x

(d)
j(i) i = s+ 1, . . . , n

Ni = #{Xi = 1} =

N∑

d=1

x
(d)
i i = 1, . . . , n

Nij(i) = #{Xi = 1, Xj(i) = 1} =
N∑

d=1

x
(d)
i x

(d)
j(i) i = s+ 1, . . . , n

E[U |x], at the t+ 1-th iteration of the algorithm, is calculated as:



5.2 Discriminative Learning of Parameters for Bayesian Network Classifiers 55

E
θ(t) [N0|x] =

N∑

d=1

p(C = 1|X(d) = x(d),θ(t)) (5.40)

E
θ(t) [N0i|x] =

N∑

d=1

p(C = 1|X(d) = x(d),θ(t))x
(d)
i i = 1, 2, . . . , n

E
θ(t) [N0ij(i)|x] =

N∑

d=1

p(C = 1|X(d) = x(d),θ(t))x
(d)
i x

(d)
j(i) i = s+ 1, . . . , n

As well as in the TM algorithm for naive Bayes with dichotomic variables,
in order to compute the expected sufficient statistics (Equation 5.40) it is
needed to calculate the conditional probability of the class variable given
the predictive variables. Bearing in mind the conditional model defined in
Equation 5.38, the following conditional probabilities are needed:

p(C = 1) =
N

(t)
0

N

p(Xi = 1|C = 1) =
N

(t)
0i

N
(t)
0

p(Xi = 1|C = 0) =
Ni −N

(t)
0i

N −N
(t)
0

p(Xi = 1|Xj(i) = 1, C = 1) =
N

(t)
0ij(i)

N
(t)
0j(i)

p(Xi = 1|Xj(i) = 1, C = 0) =
Nij(i) −N

(t)
0ij(i)

Nj(i) −N
(t)
0j(i)

p(Xi = 1|Xj(i) = 0, C = 1) =
N

(t)
0i −N

(t)
0ij(i)

N
(t)
0 −N

(t)
0j(i)

p(Xi = 1|Xj(i) = 0, C = 0) =
Ni −N

(t)
ij(i) − (N

(t)
0i −N

(t)
0ij(i))

N −Nj(i) − (N
(t)
0 −N

(t)
0j(i))

Finally, the sufficient statistics and the parameters of the FAN model are
calculated, at iteration t+ 1, in the same way as described in Section 5.2.2.1.

5.2.2.3 The TM Algorithm for BAN Models with Dichotomic
Variables

In this section, we present the adaptation of the TM algorithm for BAN
models. In the case of BAN models, a predictive variable can have, at most, n−
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1 parents besides the class variable. Hence, in order to simplify the notation,
we represent this set of variables as Pai = {Zi1, . . . , Zij , . . . , Zihi

}, where Zij

is the j-th parent of Xi, with i = 1, . . . , n and hi = |Pai| the number of
parents of Xi.

The conditional BAN model can be written as follows:

p(c|x) =

p(c)

n∏

i=1

p(xi|c, zi1, . . . , zihi
)

p(x)
(5.41)

and the joint model is given by:

p(c,x) = p(c)

n∏

i=1

p(c, xi, zi1, . . . , zihi
)

p(c, zi1, . . . , zihi
)

(5.42)

After a transformation in the log-likelihood function similar to the one
exposed in Sections 5.2.2.1 and 5.2.2.2, it is possible to obtain the expression
of U and V functions:

U =

 

N
X

d=1

c
(d)

,

N
X

d=1

c
(d)

z
(d)
ij1

. . . , z
(d)
ijnj

,

N
X

d=1

c
(d)

x
(d)
i z

(d)
ij1

. . . , z
(d)
ijnj

|i = 1, . . . , n

, {j1, . . . , jnj } ∈ P{1, 2, . . . , hi} \ ∅
´

V =

 

N
X

d=1

z
(d)
ij1

. . . , z
(d)
ijnj

,

N
X

d=1

x
(d)
i z

(d)
ij1

. . . , z
(d)
ijnj

|i = 1, . . . , n

, {j1, . . . , jnj } ∈ P{1, 2, . . . , hi} \ ∅
´

where P{1, 2, . . . , hi}\∅ is the power set of {1, 2, . . . , hi} excluding the empty
set. That is, the set of all subsets in {1, 2, . . . , hi} excluding the empty set.
Moreover, the sufficient statistics related to U are:

N0 = #{C = 1} =
N∑

d=1

c(d)

N0zij1 ...zijnj
= #{C = 1, Zij1 = 1 . . . , Zijnj

= 1} =

N∑

d=1

c(d)z
(d)
ij1

· · · z(d)
ijnj

N0xizij1 ...zijnj
= #{C = 1, Xi = 1, Zij1 = 1 . . . , Zijnj

= 1}

=

N∑

d=1

c(d)x
(d)
i z

(d)
ij1

· · · z(d)
ijnj
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where {j1, . . . , jnj
} ∈ P{1, 2, . . . , hi} \ ∅ with i = 1, 2, . . . , n.

Additionally, the sufficient statistics related to V are:

Nzij1 ...zijnj
= #{Zij1 = 1 . . . , Zijnj

= 1} =

N∑

d=1

z
(d)
ij1

· · · z(d)
ijnj

Nxizij1 ...zijnj
= #{Xi = 1, Zij1 = 1 . . . , Zijnj

= 1} =

N∑

d=1

x
(d)
i z

(d)
ij1

· · · z(d)
ijnj

where also {j1, . . . , jnj
} ∈ P{1, 2, . . . , hi} \ ∅ with i = 1, 2, . . . , n.

The calculation of E[U |x] is similar to the one for naive Bayes and FAN
models:

E
θ(t) [N0|x] =

N∑

d=1

p(C = 1|X = x(d),θ(t))

E
θ(t) [N0zij1 ...zijnj

|x] =

N∑

d=1

p(C = 1|X = x(d),θ(t))z
(d)
ij1
. . . z

(d)
ijnj

E
θ(t) [N0xizij1 ...zijnj

|x] =

N∑

d=1

p(C = 1|X = x(d),θ(t))x
(d)
i z

(d)
ij1
. . . z

(d)
ijnj

In order to obtain the expected sufficient statistics, the calculation of sev-
eral conditional probabilities are needed. However, although the computation
of p(C) is simple,

p(C = 1) =
N

(t)
0

N
=

#{C = 1}
N

(5.43)

the computation of the conditional probabilities p(xi|c, zi1, . . . , zihi
) becomes

more complex due to the number of parents that a predictive variable can
have.

In order to illustrate the calculation of p(xi|c, zi1, . . . , zihi
), we show how

the first values are obtained. Hence, the calculation of the remainder con-
ditional probabilities can be performed in a similar manner. However, it is
important to perform the calculations in a proper order, thus we are able
to re-use previous calculations when computing new ones. For instance, the
conditional probabilities for the variable Xi where all its parents but one take
the value 1 can be computed as follows:
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p(Xi = 1|C = 1, Zi1 = 1, . . . , Zihi
= 1)

=
N

(t)
0xizi1...zihi

N0zi1...zihi

=
#{Xi=1,C=1,Zi1=1,...,Zihi

=1}

#{C=1,Zi1=1,...,Zihi
=1}

p(Xi = 1|C = 1, Zi1 = 0, Zi2 = 1, . . . , Zihi
= 1)

=
N

(t)
0xizi2...zihi

−N
(t)
0xizi1...zihi

N0,zi2...zihi
−N0zi1...zihi

=
#{Xi=1,C=1,Zi1=0,Zi2=1...,Zihi

=1}

#{C=1,Zi1=0,Zi2=1,...,Zihi
=1}

...

p(Xi = 1|C = 1, Zi1 = 1, . . . , Zihi−1 = 1, Zihi
= 0)

=
N

(t)
0xizi1...zihi−1

−N
(t)
0xizi1...zihi

N0zi1...zihi−1
−N0zi1...zihi

=
#{Xi=1,C=1,Zi1=1,...,Zihi−1=1,Zihi

=0}

#{Zi1=1,...,Zihi−1=1,Zihi
=0}

Now, p(Xi = 1|C = 1, Zi1 = 0, Zi2 = 0, Zi3 = 1, . . . , Zihi
= 1) can be

computed by using previous calculations. Thus, the numerator to calculate
p(Xi = 1|C = 1, Zi1 = 0, Zi2 = 0, Zi3 = 1, . . . , Zihi

= 1) can be obtained as
follows:

#{Xi = 1, C = 1, Zi1 = 0, Zi2 = 0, Zi3 = 1, . . . , Zihi−1 = 1, Zihi
= 1}

= #{Xi = 1, C = 1, Zi3 = 1, . . . , Zihi
= 1}

−#{Xi = 1, C = 1, Zi1 = 1, Zi2 = 0, Zi3 = 1, . . . , Zihi
= 1}

−#{Xi = 1, C = 1, Zi1 = 0, Zi2 = 1, Zi3 = 1, . . . , Zihi
= 1}

−#{Xi = 1, C = 1, Zi1 = 1, Zi2 = 1, Zi3 = 1, . . . , Zihi0 = 1} (5.44)

where the first term in Equation 5.44 is the sufficient statistic N
(t)
0xizi3...zihi

.

On the other hand, the second and third terms in Equation 5.44 have been
previously calculated. Finally, the fourth term in Equation 5.44 is the sufficient

statistic N
(t)
0xizi1...zihi

. Similarly, the denominator in p(Xi = 1|C = 1, Zi1 =

0, Zi2 = 0, Zi3 = 1, . . . , Zihi
= 1) can be obtained from sufficient statistics

and previously calculated values:
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#{C = 1, Zi1 = 0, Zi2 = 0, Zi3 = 1, . . . , Zihi−1 = 1, Zihi
= 1}

= #{C = 1, Zi3 = 1, . . . , Zihi
= 1}

−#{Zi1 = 1, Zi2 = 0, Zi3 = 1, . . . , Zihi
= 1}

−#{Zi1 = 0, Zi2 = 1, Zi3 = 1, . . . , Zihi
= 1}

−#{Zi1 = 1, Zi2 = 1, Zi3 = 1, . . . , Zihi
= 1} (5.45)

In general, let’s assume, without loss of generality that, at iteration t,

p(Xi = 1|C = 1, Zi1 = 0, Zi2 = 0, . . . , Zis = 0, Zis+1 = 1, Zis+2 = 1, . . . , Zihi
= 1)
(5.46)

is calculated. The numerator can be obtained by the following equation:

#{Xi = 1, C = 1, Zi1 = 0, Zi2 = 0, . . . , Zis = 0, Zis+1 = 1, Zis+2 = 1, . . . , Zihi
= 1} =

#{Xi = 1, C = 1, Zis+1 = 1, Zis+2 = 1, . . . , Zihi
= 1} −

X

zi1,zi2,...,zis=0,1|
Ps

j=1
zij 6=0

#{Xi = 1, C = 1, Zi1 = zi1, Zi2 = zi2, . . . , Zis = zis, Zis+1 = 1, Zis+2 = 1, . . . , Zihi
= 1}

where the summation includes all the possible combinations for the values
zi1, zi2, . . . , zis except for the case where zi1 = zi2 = . . . = zis = 0. Again,
the quantities needed in the calculations have been previously computed and
they correspond with sufficient statistics.

Analogously, the denominator in Equation 5.46 can be obtained as follows:

#{C = 1, Zi1 = 0, Zi2 = 0, . . . , Zis = 0, Zis+1 = 1, Zis+2 = 1, . . . , Zihi
= 1}

= #{C = 1, Zis+1 = 1, Zis+2 = 1, . . . , Zihi
= 1} −

X

zi1,zi2,...,zis=0,1|
P

s
j=1 zij 6=0

#{C = 1, Zi1 = zi1, Zi2 = zi2, . . . , Zis = zis, Zis+1 = 1, Zis+2 = 1, . . . , Zihi
= 1}

Note that, all the calculations shown is this section are related to C = 1.
However, the calculations where C = 0 can be obtained is a similar manner.

Once all the calculations introduced in this section have been obtained,
the t-th iteration of the TM algorithm for a BAN model with dichotomic
variables is identical to the one described in Section 5.2.2.1.

5.2.2.4 The TM Algorithm for Naive Bayes Models with
Multinomial Variables

In the case of multinomial variables, each variable can take multiple states.
Therefore, in order to simplify the notation we assume C ∈ {0, . . . , r0} and
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Xi ∈ {0, . . . , ri} with r0 + 1 and ri + 1 as the number of possible states for
variables C and Xi, respectively. Note, that in other parts of this dissertation
we refer to the class variable with a C subindex (for example rC) but here we
simplify this notation by using 0 as the index of the class variable.

The general TM algorithm for probability distributions in the exponential
family requires the expression of the joint log-likelihood via Equation 5.12.
This can be achieved by writing the naive Bayes joint model as follows:

p(c,x) =
1

(p(c))n−1

n∏

i=1

p(xi, c) (5.47)

In order to identify the sufficient statistics for the TM algorithm, we can
rewrite the joint model as:

p(c,x) =





r0∏

j=0

(p(C = j))
wj

Qj−1
l=0 (c−l)

Qr0
l=j+1(l−c)





−(n−1)

·

n∏

i=1

r0∏

j=0

ri∏

k=0

(p(C = j,Xi = k))
wi

jk

Qj−1
l=0 (c−l)

Qr0
l=j+1(l−c)

Qk−1
l=0 (xi−l)

Qri
l=k+1(l−xi)

where wj and wi
jk are the following constants:

wj =
1

∏j−1
l=0 (j − l)

∏r0

l=j+1(l − j)

wi
jk =

1
∏j−1

l=0 (j − l)
∏r0

l=j+1(l − j)
∏k−1

l=0 (k − l)
∏ri

l=k+1(l − k)

Note that the values of wj and wi
jk have no influence on the selection of

the sufficient statistics for the TM algorithm.
If we have a dataset with N samples, the log-likelihood can be written

using the previous equation in the following manner:

l(θ) =

N∑

d=1

{

− (n− 1)

r0∑

j=0

[
wj

j−1
∏

l=0

(c(d) − l)

r0∏

l=j+1

(l − c(d)) log(p(C = j))
]
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[
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r0∏
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(l − c(d))
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l=0

(c
(d)
i − l) ·

ri∏

l=k+1

(l − c
(d)
i ) log(p(C = j,Xi = k))

]
}

(5.48)
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where c(d) and x
(d)
i are the values of variables C and Xi in the d-th sample of

the dataset, respectively.
A few transformations in Equation 5.48 can match its terms with those

from Equation 5.12. We thus obtain the sufficient statistics U = (U1,U2) and
V:

U1 = (M s
0 |s = 1, . . . , r0)

U2 = (M sm
0xi

|s = 1, . . . , r0 , m = 1, . . . , ri , i = 1, . . . , n)

V = (Mm
xi
|m = 1, . . . , ri , i = 1, . . . , n)

where M s
0 , M sm

0xi
and Mm

xi
terms from the former equation are defined as:

M s
0 =

N∑

d=1

(c(d))s

M sm
0xi

=
N∑

d=1

(c(d))s(x
(d)
i )m

M (d)
xi

=

N∑

r=1

(x
(d)
i )m (5.49)

It was shown in Section 5.2.1.2 that, at each iteration, the calculation of
Eθ{U |x} is needed in order to update the sufficient statistics U . This requires
the following calculations:

E
θ(t) [M s

0 |x] =

N∑

d=1

r0∑

c=0

p(C = c|X = x(d),θ(t))cs (5.50)

E
θ(t) [M sm

0xi
|x] =

N∑

d=1

r0∑

c=0

p(C = c|X = x(d),θ(t))cs(x
(d)
i )m

where s = 1, . . . , r0; m = 1, . . . , ri and i = 1, . . . , n.
Since we assume that the structure of the model is a naive Bayes, we need

to obtain p(C = c) and p(Xi = l|C = c) to calculate p(C = c|X = x(d)), where
c = 0, . . . , r0; i = 1, . . . , n and l = 0, . . . , ri. In order to obtain these proba-
bilities, let us define a new set of sufficient statistics N = (N c

0 , N
l
i , N

cl
0i|c =

0, . . . , r0; i = 1, . . . , n; l = 0, . . . , ri). On the one hand, N c
0 counts the num-

ber of cases in which C = c, and N l
i the number of cases in which Xi = l.

On the other hand, N cl
0i denotes the number of cases where both C = c and

Xi = l happen.
The sufficient statistics in N are related to the sufficient statistics from

the TM algorithm, (U ,V). In the special case where all the variables are
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dichotomic, both sets of sufficient statistics, N and U , are the same. However,
when the variables are multinomial, this relationship is given by linear systems
of equations which can be obtained by means of Equation 5.49. Therefore,
using these systems of equations we are able to obtain the values of N from
U and vice versa.

As an example, we show how one of the linear systems of equations can be
obtained from Equation 5.49. M s

0 , with s = 1, . . . , r0, are sufficient statistics

from U and, as it was written in Equation 5.49, M s
0 =

∑N
d=1(C

(d))s. Since
∑N

d=1(C
(d)) = 0 ·N0

0 + . . .+ r0 ·N r0
0 , the system of equation that relates both

U and N for the variable C can be written in matrix form as follows:








1 2 . . . r0

1 22 . . . r20
...

...
...

...
1 2r0 . . . rr0

0








︸ ︷︷ ︸

COEFFS∗








N1
0

N2
0
...

N r0
0








︸ ︷︷ ︸

N ∗

=








M1
0

M2
0

...
M r0

0








︸ ︷︷ ︸

U∗

(5.51)

Once we have obtained the values of the statistics in N , we are able to
calculate p(C = c) and p(Xi = l|C = c) by:

p(C = c) =
N c

0

N

p(Xi = l|C = c) =
N cl

0i

N c
0

and then calculate the value of Eθ{U |x}. Finally, we are able to iterate the
algorithm and thus obtain the new values for the statistics in U (see Equation
5.18). These p(C = c) and p(Xi = l|C = c) are also the parameters θ of the
naive Bayes classifier that we are learning. Hence, we have to calculate N

in order to obtain θ. A general algorithm for the discriminative learning of
Bayesian classifiers with multinomial variables is given in Figure 5.2.

The process of maximizing the conditional log-likelihood with the TM
algorithm looks computationally hard because we have to solve several linear
systems of equations at each iteration. However, from one iteration of the
algorithm to another one, in the systems of equations, only the values in U∗

change (see Equation 5.51). Therefore, we can obtain the LU transformation of
COEFFS∗, which is constant throughout the algorithm. Thus, the solution
of the system of equations at each iteration is quite simple. Moreover, the
LU transformation is also the same for every problem with the same number
of variables and the same number of states per variable. Hence, it may be
feasible to calculate these transformations and store the solutions for future
use.
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Obtain n(0) from the dataset

Calculate u(0) from n(0)

while stopping criterion is not met do

Calculate E
θ(t){U |x}

Update u:

u(t+1) = u(t) + u(0) - E
θ(t){U |x}

Calculate n(t+1) from u(t+1)

Calculate θ(t+1) from n(t+1)

if illegal θ(t+1) or conditional log-likelihood decreases then

Find the best legal θ(t+1) via linear search

end if

end while

Fig. 5.2. General pseudo-code for the discriminative learning of Bayesian classifiers
with multinomial variables. Note that n(t) and u(t) are the values of the statistics
in N and U at iteration t, respectively

5.2.2.5 The TM algorithm for FAN models with multinomial
variables

In this section we introduce the adaptation of the TM algorithm for FAN
models where the variables are assumed to be multinomial. The development
of the TM algorithm for FAN models assumes that the structure of the model
is already known. Therefore, before performing the discriminative learning of
a FAN model, we need to set its structure.

The adaptation of the TM algorithm introduced here is similar to the
adaptation for a naive Bayes model shown in the previous section. As well as
in the TM algorithm for FAN models with dichotomic variables, we assume,
without lost of generality, that the first s variables have only one parent (the
class variable) and the parent set for the reminder n−s variables is composed
of the class and another predictive variable. Therefore, the conditional and
joint FAN model expressions are identical to the ones introduced in Section
5.2.2.2 (see Equations 5.38 and 5.39).

If we develop the l(θ) function for a FAN model with multinomial variables
in a similar way to Equation 5.12, we can identify the following set of sufficient
statistics U = (U1,U2,U3) and V = (V1,V2):
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U1 = (Mw
0 |w = 1, 2, . . . , r0)
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The calculation of the expected sufficient statistics are obtained by:

V1 = (Mm
xi
|m = 1, . . . , ri, i = 1, . . . , n)

V2 = (Mmz
xixj(i)

|m = 0, 1, . . . , ri , z = 0, 1, . . . , rj(i) , i = s+ 1 . . . , n)

In order to calculate the expected sufficient statistics, we need to compute
p(c), p(xi|c) and p(xi|c, xj(i)). p(c) and p(xi|c) can be computed as in Sec-
tion 5.2.2.4 but for the computation of p(xi|c, xj(i)), we must define, for each

variable Xi, a new set of sufficient statistics denoted as N clq
0ij(i). Then, N clq

0ij(i)

represents the number of samples where variable C takes the value c (with
c = 0, . . . , r0), Xi takes the value l (with l = 0, . . . , ri), and Xj(i) takes the
value q (with q = 0, . . . , rj(i)). Thus, p(xi|c, xj(i)) can be calculated as:

p(Xi = l|C = c,Xj(i) = q) =
#{C = c,Xi = l, Xj(i) = q}

#{C = c,Xj(i) = q} (5.52)

where the numerator is the sufficient statistic N clq
0ij(i) and the denominator

has been previously obtained in the calculation of p(xj(i)|c). Additionally, the
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sufficient statistics N clq
0ij(i) can be obtained from U by solving the following

system of equations:
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... =
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cr0 lriqrj(i)N clq
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with i = s+ 1, . . . , n.
Note that in the previous system of equations the sufficient statistics where

c = 0 and/or q = 0 is not calculated but they can be obtained in the same
manner as the sufficient statistics for a naive Bayes model with multino-
mial variables (see Section 5.2.2.4). Finally, the rest of the TM algorithm for
FAN models with multinomial variables performs as described in the general
pseudo-code from Figure 5.2.

5.2.3 Experimental Results for the Discriminative Learning of
Parameters

In previous sections, the theoretical development of the TM algorithm for
naive Bayes, FAN and BAN models with dichotomic variables and for naive
Bayes and FAN models with multinomial variables has been introduced. In
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this section we aim to provide an empirical evaluation which attempts to illus-
trate the performance of the TM algorithm applied to Bayesian classification
models. We firstly evaluate the TM algorithm in datasets with dichotomic
variables and then in datasets with multinomial variables. The datasets with
dichotomic variables are simpler and therefore they allow a more exhaus-
tive evaluation by means of a leaving-one-out cross-validation. By contrast,
the evaluation of the TM algorithm in datasets with multinomial variables is
computationally more expensive. Hence, we use a five-fold cross-validation in
order to evaluate the accuracy of the classifiers. This five-fold cross-validation
scheme has been previously used in the literature to evaluate the generative
(Friedman et al., 1997) and discriminative (Greiner et al., 2005) learning of
Bayesian network classifiers.

The TM algorithm iteratively maximizes the conditional log-likelihood. In
the experiments, the algorithm stops when the difference between the condi-
tional log-likelihood value in two consecutive steps is less than 0.001. On the
other hand, as pointed out in Section 5.2.1.2, the TM calculations may lead
the parameters of the model to illegal values. These situations are solved by
applying a local search with λ = 0.01 (Equation 5.19).

In the case of naive Bayes models, the structure does not depend on the
data, that is, a naive Bayes model may differ from another one only in the
predictive variables included in the model. However, the structure of both
TAN and BAN models is learned from the dataset with different criteria. The
TAN structure is learned by using the algorithm proposed in Friedman et al.
(1997), which takes into account the conditional mutual information of two
variables given the class. On the other hand, the structure of the BAN classi-
fier, in principle, can be learned by using any structural learning algorithm for
Bayesian networks but we have used the K2 algorithm introduced in Chapter
2. In the experiments, the order over the predictive variables for the K2 algo-
rithm is taken at random and the maximum number of parents has been set
to four. Note that the K2 algorithm learns the structure of the model only
with the predictive variables. Afterwards, the class variable is set as a parent
of all of them. Hence, although BAN is a classification model, the learning of
the BAN structure is not oriented to classification problems.

We are aware that the K2 is a greedy algorithm and that the order over
the predictive variables influences the final result to a large extent (Larrañaga
et al., 1996). Therefore, the proposed learning method may not find the best
model structure for the classifier. However, the goal of these experiments is not
to find the best classifier but to compare the performance of a classifier whose
parameters are learned with the TM algorithm with the one with maximum
likelihood parameters.

5.2.3.1 Experimental Results with Dichotomic Variables

For the experiments with dichotomic variables, we have used four different
datasets obtained from MLC++ repository at http://www.sgi.com/tech/mlc/.
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Fig. 5.3. Conditional log-likelihood values for the experiments with naive Bayes,
TAN and BAN models

These datasets are Corral, M-of-n-3-7-10, Monk1-bin and Monk2-bin. Some
of them, such as Monk1-bin and Monk2-bin, are adaptations from the original
UCI datasets (Blake and Merz, 1998).

As it was said before, a leaving-one-out cross-validation is used to measure
the estimated accuracy of both classifiers learned with the TM algorithm
and classifiers with maximum likelihood parameters. On the other hand, the
structure learning for TAN and BAN models depends on some decisions which
are taken at random: the selection of the root for the tree in the case of TAN,
and the order over the predictive variables in the case of BAN. Therefore,
the resulting structure may change among different learnings. Hence, in order
to compare the classifiers, the structures of these models are learned only
once for each dataset and using all the instances. Then, these structures are
maintained for the generative and discriminative learning of the parameters.

Figure 5.3 shows how the conditional log-likelihood value for models
learned using the whole dataset converges throughout the iterations of the al-
gorithm for each data set. In the plots we see that the stopping criterion used
in the experiments seems appropriate because the conditional log-likelihood
does not seem to improve much more even if we ran more iterations of the
algorithm. On the other hand, although, as expected, the evolution of the
conditional log-likelihood value throughout each experiment is monotonously
increasing in all of them, the TAN model for Corral, M-of-n-3-7-10 and
Monk1-bin, and the BAN model for Corral present some irregular increas-
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NB NB–TM TAN TAN–TM BAN BAN–TM

Corral -33.25 -25.10 -10.05 -0.005 -39.03 -22.33

M-of-n-3-7-10 -269.32 -2.88 -232.03 -27.93 -269.31 -0.16

Monk1-bin -318.26 -316.79 -161.32 -128.97 -317.79 -316.80

Monk2-bin -393.77 -378.84 -352.27 -351.63 -378.62 -378.58

Table 5.1. Conditional log-likelihood values for the experiments with naive Bayes,
TAN and BAN models.

NB NB–TM TAN TAN–TM BAN BAN–TM

Corral 84.37±3.21 90.62±2.58 100.00±0.00 100.00±0.0 56.25±0.50 56.25±0.50

M-of-n-3-7-10 84.21±1.00 100.00±0.00 89.20±0.31 100.00±0.00 77.95±0.41 77.95±0.41

Monk1-bin 60.79±0.49 63.67±0.48 82.01±0.38 78.78±0.41 49.64±0.50 51.44±0.50

Monk2-bin 61.57±2.34 67.13±2.26 63.06±0.48 63.89±0.48 65.72±0.47 65.72±0.47

Table 5.2. Estimated accuracy obtained in the experiments with naive Bayes and
TAN models.

ing which may be caused by the local search method (Equation 5.19). Ad-
ditionally, for each final model, the conditional log-likelihood value for the
discriminative and generative models is also shown in Table 5.1.

In Table 5.2 the accuracy for naive Bayes, TAN, and BAN classifiers
learned from Corral, M-of-n-3-7-10, Monk1-bin, and Monk2-bin datasets
are shown. Additionally, for each model we compare the results of the dis-
criminative and generative learning by using a Mann-Whitney test. We write
the results in Table 5.2 in bold if the test is surpassed with a p-value < 0.05
and in a gray color box if the test is surpassed with a p-value < 0.01. The
TM algorithm improves the estimated accuracy for naive Bayes in all the
datasets. This may be because naive Bayes is a very simple classifier and it
does not perfectly model the data. Therefore, discriminative learning by the
TM algorithm is more efficient than generative learning. Thus, it improves the
accuracy of the classifier. When the structure of the model is more complex,
such as the case of TAN models, the difference between the estimated accuracy
for the generative and the discriminative model decreases. Even the genera-
tive model beats the discriminative one in the case of Monk1-bin dataset.
On the other hand, both generative and discriminative BAN classifiers (Ta-
ble 5.2) obtain the same accuracy results in all data sets except Monk1-bin,
where the discriminative learning is significantly better. Moreover, the BAN
classifiers obtain less expected accuracy than TAN and naive Bayes models.
This may be caused by the learning process used for the BAN structure. The
reader may remember that the order among the predictive variables is taken
at random and that the class variable is not taken into account in the learning
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process of the structure. This may also explain the bad performance of the
BAN classifiers with respect to naive Bayes and TAN.

5.2.3.2 Experimental Results with Multinomial Variables

In this section we present some experiments which attempt to illustrate the
performance of the TM algorithm used to learn Bayesian classification models
such as naive Bayes and TAN from datasets with multinomial variables.

We have evaluated the TM algorithm for the discriminative learning of
Bayesian classifiers using sixteen datasets obtained from the UCI repository
(Blake and Merz, 1998). Moreover, we use the Corral and M-of-n-3-7-10

datasets, which were developed by Kohavi and John (1997) to evaluate meth-
ods for subset selection, and the Tips dataset (Inza et al., 2001c). Tips is
a medical dataset to identify the subgroup of patients surviving within the
first six months after the transjugular intrahepatic portosystemic shunt (TIPS)
placement, a non-surgical method to avoid portal hypertension.

Note that Corral and M-of-n-3-7-10 datasets only contain dichotomic
variables and they were used in the experiments with dichotomic variables.
However, we decided to include these datasets in the current experiments to
evaluate how the cross-validation method used in the experiments affects the
obtained results.

The discriminative learning of Bayesian network classifiers by means of
the TM algorithm does not deal with missing data or continuous variables.
Therefore, a pre-processing step was needed before using the datasets. On
the one hand, every data sample which contained missing data was removed.
On the other hand, variables with continuous values were discretized using
Fayyad and Irani’s (Fayyad and Irani, 1993) discretization method. The accu-
racy of the classifiers is measured by five-fold cross-validation and it is based
on the percentage of successful predictions. The same pre-processing and val-
idation methodology has been used before in the literature for the generative
(Friedman et al., 1997) and discriminative (Greiner et al., 2005) learning of
Bayesian network classifiers using all the datasets that have been used in this
section, except for Tips.

Similarly to the experiments with dichotomic variables, the algorithm stops
when the difference between the conditional log-likelihood value in two con-
secutive steps is less than 0.001. On the other hand, as pointed out in Section
5.2.1.2, the TM calculations may lead the parameters of the model to illegal
values. These situations are solved by applying a linear search where we look
for λ in interval (0, 1) with a 0.01 increment (Equation 5.19).

Table 5.3 shows the estimated accuracy for the naive Bayes (NB) and TAN
classifiers learned using both generative and discriminative approaches. The
generative approach that we use in the experiments is the maximum likeli-
hood estimation of the parameters. In contrast, the discriminative learning
is carried out using the TM algorithm presented in this chapter. In order to
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NB NB–TM TAN TAN-TM

Australian 85.65±2.61 88.41±2.67 86.08±2.88 88.98±3.53

Breast 97.37±1.64 98.98±0.74 97.37±1.64 95.46±1.41

Chess 87.77±0.91 95.15±0.41 92.40±1.73 96.81±0.49

Cleve 83.14±4.89 87.53±4.72 82.77±1.61 87.85±3.24

Corral 86.77±9.27 90.61±6.27 100.00±0.00 99.20±1.60

Crx 86.68±4.70 88.52±1.59 86.06±1.33 89.59±1.56

Flare 92.12±2.16 95.12±1.21 95.78±2.79 96.72±1.23

German 75.40±3.50 78.90±4.00 72.80±2.22 84.00±0.89

Glass 74.31±7.32 76.18±6.92 72.90±2.74 81.75±3.88

Heart 83.33±6.73 86.67±4.44 72.90±2.74 81.75±3.87

Hepatitis 85.00±10.15 93.75±5.56 87.50±6.84 100.00±0.00

Iris 94.67±3.40 95.33±3.40 93.33±2.11 96.00±2.49

Lymphography 83.77±4.97 91.22±3.49 79.08±2.28 98.98±1.65

M-of-n-3-7-10 86.63±2.53 100.00±0.00 90.86±1.79 100.00±0.00

Pima 77.96±1.31 79.95±1.47 79.17±3.72 79.82±3.72

Soybean-large 96.26±1.64 97.51±1.42 98.58±0.71 99.29±0.66

Tips 88.78±4.65 100.00±0.00 89.87±6.20 100.00±0.00

Vehicle 61.94±1.58 78.61±1.51 71.63±4.19 83.46±3.72

Vote 89.88±2.45 98.39±1.17 93.56±1.55 99.08±0.86

Table 5.3. Estimated accuracy obtained in the experiments with naive Bayes and
TAN models.

compare the estimated accuracy for both discriminative and generative mod-
els we perform a Mann-Whitney test, whose results are also shown in Table
5.3. We write in bold those values that surpass the test with a p-value < 0.1
and in a gray color box those values that surpass the test with a p-value
< 0.05. The TM algorithm improves the estimated accuracy for naive Bayes
and TAN models in all the datasets but two. In fact, in Breast and Corral

datasets the generative learning of TAN models obtains a higher estimated
accuracy, although only for Breast the difference between TAN and TAN-TM
is statistically significant. This may be caused by the fact that the TAN model
is complex enough to model the relationship among the variables which are
present in the Breast dataset, and therefore, the generative learning can out-
perform the discriminative learning. Nevertheless, even when the estimated
accuracy is usually higher in discriminative models, the difference with respect
to generative models is not always significant. In most of the cases the fact
that the improvement obtained by the discriminative method is not significant
with a p-value < 0.05 is caused by the high standard deviation. A cause of
this high standard deviation may be the small number of folds used in the
cross-validation process. Indeed we can compare the results for Corral and
M-of-n-3-7-10 with those obtained from a leaving-one-out cross-validation
(Section 5.2.3.1). In the case of M-of-n-3-7-10 the results with five-fold cross-
validation and leaving-one-out cross-validation are identical for discriminative
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NB NB–TM TAN TAN-TM

Australian -291.71 -190.38 -195.97 -195.97
Breast -136.74 -22.71 -22.13 -10.41
Chess -917.76 -478.22 -591.46 -307.04
Cleve -124.65 -93.24 -96.36 -82.27
Corral -37.58 -25.17 -10.19 -3.28
Crx -251.71 -177.90 -173.71 -173.71
Flare -287.91 -216.18 -152.76 -137.43
German -488.91 -456.81 -409.05 -378.12
Glass -141.86 -141.86 -117.60 -116.96
Heart -112.91 -86.11 -88.21 -73.66
Hepatitis -23.29 -9.27 -9.12 -2.61
Iris -21.52 -13.85 -17.90 -16.57
Lymphography -46.94 -28.06 -25.90 -13.17
M-of-n-3-7-10 -269.32 -3.75 -232.03 -44.74
Pima -361.36 -340.55 -333.24 -331.22
Soybean-large -108.15 -43.27 -22.14 -22.14
Tips -45.66 -0.12 -2.77 -0.03
Vehicle -1487.18 -355.30 -360.27 -297.16
Vote -257.63 -13.66 -49.55 -13.88

Table 5.4. Conditional log-likelihood values for the experiments with naive Bayes
and TAN models.

learning. By contrast, the leaving-one-out cross-validation always leads, for
Corral and generative models learned from M-of-n-3-7-10, to an important
decrease in the standard deviation while the estimated accuracy does not
change so much. Nevertheless, although a more expensive validation method
such as a ten-fold cross-validation may be computationally feasible for these
experiments, we decided to maintain the cross-validation schema used in the
literature (Friedman et al., 1997; Greiner et al., 2005; Santafé et al., 2005b)
in order to have a point of reference for the results obtained in our exper-
iments. Nonetheless, it is difficult to compare the results obtained in these
experiments with those from Greiner et al. (2005) because the data needed
to perform a statistical test is not provided in the paper but the TM learning
seems to obtain slightly better results than Greiner et al.’s method in most
of these datasets.

On the other hand, the aim of the TM algorithm is to maximize the con-
ditional log-likelihood. In Table 5.4, the improvement of the conditional log-
likelihood score for the discriminative model with respect to the generative
one is shown. As described in Section 5.2.1.1, the TM algorithm begins with
the same parameters obtained by the generative model (that is the maxi-
mum likelihood parameters) and, following an iterative process, it modifies
these parameters to maximize the conditional log-likelihood. Note that the
TM algorithm is able to obtain a model with higher value for the conditional
log-likelihood score in all datasets except for the TAN model learned from
Australian, Crx and Soybean-large. This is because, in these three cases,
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the parameters that maximize the joint log-likelihood also represent a maxi-
mum for the conditional log-likelihood score. This maximum is not necessarily
a global maximum but may be a local one. The case of Crx dataset is a clear
example of bias in the cross-validation process because even when generative
and discriminative TAN are the same models, the difference between the es-
timated accuracies is significant with a p-value < 0.1. This can be possible
because the conditional log-likelihood value reported in Table 5.4 is obtained
from a classifier which has been learned using the whole dataset. On the other
hand, for the cross-validation process, whose results are shown in Table 5.3,
the classifiers are learned using only part of the dataset. Therefore, for each
fold, generative and discriminative classifiers may differ one from each other.

5.3 Discriminative Learning of Structures for Bayesian

Network Classifiers

The discriminative learning of structures for Bayesian network classifiers is a
topic that has been recently addressed by a few publications. Probably, the
first approach to structural discriminative learning for Bayesian network clas-
sifiers is presented in Grossman and Domingos (2004) where the structure of
the classifier is learned by a wrapper greedy approach and using a discrimi-
native score. This score is the conditional BIC (cBIC) metric (see Equation
5.53), which is a modification of the BIC score by using the conditional log-
likelihood instead of the log-likelihood.

cBIC =

N∑

d=1

log p(c(d)|x(d),B) − 1

2
logNdim(S) (5.53)

where B = (S,θ) and dim(S) is the number of parameters needed to totally
specify the joint model p(c,x) given the factorization encoded by the Bayesian
network structure S.

However, the parameters of the model are determined by their maximum
likelihood estimation, which is a generative parameter learning approach.
Guo and Greiner (2005) compare generative scores to learn the structure of
Bayesian network classifiers such as BIC and marginal likelihood with other
discriminative scores such as cBIC, classification error on training data and
(bias)2 + variance decomposition of the expected mean-square error of the
classifier (Ripley, 1996). Additionally, the parameter learning of the models
is not only performed by using the maximum likelihood approximation, but
also by using the discriminative method proposed in Greiner et al. (2005).

Narasimhan and Bilmes (2005) propose an algorithm to minimize the
difference between two submodular functions using a variational framework
based on the concave-convex procedure (Yuille and Rangarajan, 2002). This
algorithm is used to maximize the explaining away residual (EAR)
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EAR(Xi, Xj, C) = I(Xi, Xj |C) − I(Xi, Xj) = −I(Xi, Xj, C) (5.54)

which approximates the conditional log-likelihood score, in order to discrimi-
natively learn tree structures. Additionally, they propose the use of a greedy
algorithm to optimize the EAR score when learning TAN or general Bayesian
networks for classification. Moreover, the discriminative parameter learning is
performed in a similar manner to Greiner et al. (2005).

In following sections two algorithms for the discriminative learning of
Bayesian network classifiers are presented. On the one hand, we present a
modification of Friedman et al.’s algorithm that allows to maximize the EAR
score to learn TAN structures (Pernkopf and Bilmes, 2005; Perez et al., 2006).
On the other hand, we present the structural TM algorithm (Santafé et al.,
2005a, 2006a) which extends the TM algorithm to learn the structure of a
Bayesian network classifier.

5.3.1 Learning Conditional TAN Models

The construct-discriminative-TAN algorithm (Pernkopf and Bilmes, 2005;
Perez et al., 2006) is a recently proposed algorithm to learn the structure
of TAN models from a discriminative point of view. This algorithm is a mod-
ification of Friedman et al’s algorithm (Friedman et al., 1997) in order to
maximize the EAR score (McGill, 1954; Watanabe, 1960)(see Equation 5.54).
For TAN structures, maximizing the EAR measure is equivalent to maximiz-
ing the conditional log-likelihood. This can be seen in the following theorem
borrowed from (Perez et al., 2007):

Theorem 4. Given a dataset D with N instances and given an estimator of
p(.) for the data (maximum likelihood estimation), the maximization of the
conditional likelihood is equivalent to maximizing I(C,X).

Proof. Using the empirical distribution p̂(c,x) = 1
N iff (c,x) ∈ D and 0

otherwise, we can rewrite the CLL (see Equation 3.8) in terms of entropy
(Jebara, 2003; Cover and Thomas, 2006):

CLL = NEp̂(c,x)

(
log p(c|x)

)
= −N(Hp̂(c,x)(C|X))

∝ −Hp̂(c,x)(C) + Ip̂(c,x)(C,X) (5.55)

The term Hp̂(c,x)(C) is constant for each specific problem and then, the con-
ditional log-likelihood is proportional to Ip̂(c,x)(C,X). Therefore, the maxi-
mization of Ip̂(c,x)(C,X) implies maximizing the conditional log-likelihood.
Using the chain rule for the mutual information (Cover and Thomas, 2006),
it can be written as follows:
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Compute −I(Xi, Xj , C) for i < j and i, j = 1, . . . , n

Let G be a complete undirected graph where −I(Xi, Xj , C) is the weight
of edge Xi − Xj

Use Kruskal algorithm to obtain the maximum spanning tree from G

Select a random root to set the direction of the edges

Add the class variable as parent of each predictive variable

Fig. 5.4. General pseudo-code for construct-discriminative-TAN algorithm.

I(X, C) =

n∑

i=1

I(Xi, C|Pai) (5.56)

Taking into consideration the structural restrictions for TAN models, Equa-
tion 5.56 can be re-written as:

I(X, C) =

n∑

i=1

I(Xi, C|Pai) =

n∑

i=1

I(Xi, C) −
n∑

i=1

I(Xi, Xj(i), C) (5.57)

where Xj(i) is the predictive variable parent of Xi and I(Xi, Xj(i), C) equals
zero when Xi is the root of the tree, that is, Xi has no predictive variables as
parents. Note that, the first term in Equation 5.57 is constant. Therefore, to
maximizing the conditional log-likelihood is equivalent to minimize the term
∑n

i=1 I(Xi, Xj(i), C). �

Therefore, as the conditional log-likelihood can be maximized by maxi-
mizing the joint mutual information of the predictive and the class variables,
a simple filter greedy algorithm can be obtained by adapting Friedman et
al.’s construct-TAN to maximize I(X, C) instead of I(X |C). This construct-
discriminative-TAN algorithm is given in Figure 5.4.

Note that, the construct-discriminative-TAN algorithm (Figure 5.4) ob-
tains a TAN structure that maximizes the conditional log-likelihood. How-
ever, the algorithm uses the mutual information I(Xi, Xj, C) which differs
from I(Xi, Xj) and I(Xi, Xj |C) in the fact that it can take either positive or
negative values. Therefore, as we force a tree structure in the algorithm, some
of the included links may contribute to decrease the conditional log-likelihood
score. That is, in contrast to log-likelihood score where the more complex the
model structure is, the higher the log-likelihood score becomes, conditional
log-likelihood may decrease as the complexity of the model increases. This
can be easily avoided by forbidding arcs with −I(Xi, Xj , C) < 0 (Pernkopf
and Bilmes, 2005; Perez et al., 2006). Nevertheless, this process may yield a
FAN structure instead of a TAN structure. Hence, we prefer to maintain the
TAN restrictions and learn tree-like structures for a fair comparison between
TAN and cTAN models.
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5.3.2 Structural TM Algorithm

In this section we extend the algorithm TM to learn the structure of a Bayesian
network classifier. The structural TM (Santafé et al., 2005a, 2006a) is a greedy
wrapper algorithm which starts with an empty structure. At each step of the
algorithm, there is a set of candidate arcs which can be added to the network.
This set is formed by all the arcs which are not in the network structure
and whose addition to the network structure does not violate the structural
restrictions of the model, for instance the addition of the arc does not create
a cycle in the network. Thus, the parameters for each proposed structure are
learned by using the TM algorithm and the model is scored by using cBIC
metric (Equation 5.53). The structural TM algorithm is described in Figure
5.5. Note that, the proposed approximation differs from the one introduced in
Grossman and Domingos (2004) in two main concepts. On the one hand, we
use the TM algorithm to learn the parameter of each candidate solution, that
is, we perform a discriminative learning of both structure and parameters of
the classifier. By contrast, although in Grossman and Domingos (2004) the
structure is learned by using a discriminative approach, the parameters are
learned from a generative approach. On the other hand, as the proposed TM
algorithm learns the parameters for the conditional model p(C|X), we use
the dimension of the conditional model for the penalty term in cBIC score
(Equation 5.53). Other discriminative approaches (Greiner et al., 2005; Roos
et al., 2005) do not allow to identify the parameters of the conditional model.
Therefore, Grossman and Domingos (2004) use the dimension of the joint
model for the penalty of the cBIC score. By contrast, the formulation of the
TM algorithm allows to identify the parameters of the conditional model (see
Equation 5.12) and then, we use the number of parameters in the conditional
model as penalty term for the cBIC score.

5.3.3 Experimental Results for Discriminative Learning of
Structures

In this section we present some experiments to evaluate the performance of
the proposed discriminative structure learning approaches.

On the one hand, we use the algorithm described in Section 5.3.1 in order
to learn conditional TAN structures using UCI datasets.

On the other hand, we show how the structural TM algorithm introduced
in Section 5.3.2 performs on some UCI dataset. Note that for these experi-
ments we only use Cleve, Iris, German, Lymphography, Hepatitis, Vote and
Heart datasets from UCI as well as Corral dataset from Kohavi and John
(1997). Due to the wrapper nature of the structural TM algorithm, the com-
putational cost of learning models with many variables is very high. Therefore,
we select the datasets taking into account the moderate number of variables
that they present. Additionally, as the TM algorithm implementation is able
to learn the parameters of Bayesian network classifiers up to TAN models,
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Let S be an empty structure with n variables and no arcs

Obtain the list L of candidate arcs that can be added to S

while not stop do

. for each arc A in L do

Add A to S

Learn the parameters using the TM algorithm

Evaluate the addition of A to S by cBIC

Remove A from S

end for

Let Amax be the arc from L which addition to S maximizes cBIC

if the inclusion of Amax in S increases cBIC from previous iteration do

Add A to S

else

stop

end if

end while

Fig. 5.5. General pseudo-code for structural TM.

the structural search is also limited by TAN complexity. Another constraint
imposed by the implementation of the TM algorithm is that it can not deal
with either continuous variables or missing values. Therefore, following the
same methodology as in the empirical evaluation of the TM algorithm to
learn the parameters for Bayesian network classifiers, every data sample con-
taining missing data is removed and continuous variables are discretized using
Fayyad and Irani’s discretization method (Fayyad and Irani, 1993).

The structural TM algorithm learns the parameters of each candidate
model in the searching process by using the TM algorithm. Similarly, the
parameter for the TAN structure obtained with the construct-discriminative-
TAN algorithm are learned with the TM algorithm. Therefore, the parameters
of the TM algorithm must be set. In the experiments, the stopping criterion
for the TM algorithm is met when the difference between the conditional log-
likelihood value in two consecutive steps is less than 0.001. Additionally, the
use of the TM algorithm may involve the use of a linear search method to
correct illegal parameter sets or the decrease of the conditional log-likelihood
score (Section 5.2.1.2). This linear search looks for λ in interval (0, 1) with a
0.01 increment (see Equation 5.19). The models are evaluated by means of a
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five-fold cross-validation process. This validation process has also been used
in this dissertation to evaluate the TM algorithm. Table 5.5 shows the accu-
racy values obtained by the models whose structure has been learned with the
structural TM and construct-discriminative-TAN algorithms and the param-
eters with the TM algorithm (structural-TM and cTAN-TM respectively).
Moreover, the accuracy values for other models such as NB-TM, TAN-TM
are also shown for comparison. We can see from Table 5.5 that, in general,
the TAN-TM model obtain better results than the rest of the models. Even
when the discriminative parameter learning of TAN models (TAN-TM) is
better than the generative parameter learning (TAN) (see Table 5.3) the dis-
criminative learning of structure and parameters (cTAN-TM) usually obtain
worse estimated accuracy values. This may be caused by the fact that the
discriminative-construct-TAN algorithm includes arcs in the model to form a
TAN model even when some of these arcs can penalize the conditional log-
likelihood value. As said in Section 5.3.1, we include these arcs in order to
obtain a TAN instead of a FAN structure. With respect to the structural TM
algorithm, it obtains similar results to the cTAN-TM models. It obtains a
higher estimated accuracy for Iris, Corral, Vote and Heart and worse re-
sults than the cTAN-TM model for the rest of datasets. However, the models
obtained by the structural TM algorithm are simpler than the other models
because they do not include all the predictive variables (Figure 5.6 shows the
structures learned by the structural TM algorithm using all the data sam-
ples in the dataset). Therefore, the models learned by the structural TM are
sometimes even simpler than NB-TM models1. Then, they may contribute to
an easier interpretation of the model and the problem. See Table 5.6 for a
comparison between the number of variables in each dataset and the number
of variables selected by structural TM models.

Structural-TM cTAN-TM NB-TM TAN-TM

Cleve 82.42±4.89 83.44±5.18 87.53±4.72 87.85±3.24

Iris 95.33±3.40 94.00±4.35 95.33±3.40 96.00±2.49

German 73.30±3.75 74.80±2.97 78.90±4.00 84.00±0.89

Corral 98.46±3.08 91.42±8.47 90.61±6.27 99.20±1.60

Lymphography 71.61±10.92 85.15±5.15 91.22±3.49 98.98±1.65

Hepatitis 87.50±7.90 85.75±7.13 93.75±5.56 100.00±0.00

Vote 95.63±2.45 92.41±1.74 98.39±1.17 99.08±0.86

Heart 85.56±2.46 84.94±7.00 86.67±4.44 81.75±3.87

Table 5.5. Accuracy values for the experiments with structural-TM, cTAN-TM,
NB-TM and TAN-TM models.

1 The obtained models for Cleve, Iris, German, Lymphography, Hepatitis, Vote
and Heart can be seen as selective naive Bayes models
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Variables
Variables Structural-TM

Dataset Model

Cleve 13 + Class 5 + Class
Iris 4 + Class 1 + Class
German 20 + Class 4 + Class
Corral 6 + Class 5 + Class
Lymphography 18 + Class 4 + Class
Hepatitis 19 + Class 2 + Class
Vote 16 + Class 3 + Class
Heart 13 + Class 4 + Class

Table 5.6. Number of predictive variables for each dataset and number of predictive
variables selected by the structural TM algorithm.

Fig. 5.6. Graphical structures of the classifiers learned with structural TM algo-
rithm using all the samples in the dataset.

The reader may note that in these experiments we have not performed any
statistical test to compare the results obtained by the different algorithms.
This is because, in every experiment, both structural TM and cTAN-TM
models obtain worse results than NB-TM or TAN-TM models. Hence, even
when these differences may not always be statistically significant, algorithms
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such as structural TM are computationally much more expensive than ob-
taining a naive Bayes structure or than generatively learning of the structure
by means of the construct-TAN algorithm (Friedman et al., 1997). Therefore,
these learning methods for the structures may be preferred.

5.4 Generative vs. Discriminative Learning

In this section we present several experiments with both synthetic and real
dataset from UCI (Blake and Merz, 1998). These experiments attempt to
illustrate some of the ideas about generative and discriminative learning in-
troduced in Section 5.1.

5.4.1 Synthetic Datasets

As was pointed out before, it is thought that if the modeling assumptions
(or restrictions) set when learning a Bayesian network classifier from data
are incorrect, a discriminative approach should be preferred because the bias
is smaller. In this section we attempt to illustrate this behavior by learning
classification models from datasets which have been sampled from random
models with different structural complexity (NB, TAN and p(c,x) models).
The number of predictive variables varies in {8,12,16}, each predictive variable
takes up to three states and the number of classes vary in {2,3}. For each
configuration, we generate 10 random models and each one of these models
is simulated 50 times to obtain 50 different datasets with 40, 80, 120, 200,
300, 400 and 500 samples. This process yields 500 different datasets for each
model configuration and dataset size. A five-fold cross-validation schema is
used to estimate the classification rate of NB, TAN and cTAN classifiers on
each dataset with both generative (maximum likelihood) and discriminative
(TM algorithm) approaches to learn the parameters. The models used in these
experiments may seem quite simple to the reader since the number of variables
is not very high. The computational resources required to deal with the joint
probability model prevent us from using more variables. Nevertheless, we think
that these models are able to illustrate the performance of both generative
and discriminative learning approaches.

Figure 5.7 shows how naive Bayes, TAN and cTAN models learned with
both discriminative and generative parameter learning approaches perform,
on average, in datasets sampled from random naive Bayes models. We can see
in the plots that a naive Bayes model learned with a generative parameter
learning approach performs better than the rest of the models. This is because
a naive Bayes is enough to capture all the relationships between variables. By
contrast, TAN and cTAN models are overestimating the relationships between
variables, they create artificial relationships that are not really represented in
the dataset and that may lead them to obtain a worse classification rate than
the naive Bayes model. Additionally, discriminative learning of the parameters
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for TAN models seems to perform slightly better than generative learning
because the relationships between variables assumed by the TAN model are
not true in this case. However, we can not appreciate relevant differences
between discriminative and generative structural learning.

Similarly, Figure 5.8 shows the results for datasets sampled from random
TAN models. In this case, naive Bayes can not capture the relations between
predictive variables. Hence, naive Bayes models obtain a worse classification
rate than TAN and cTAN models. The performance of TAN and cTAN mod-
els is, again, very similar when the parameters are learned by a generative
method, but a discriminative learning of the parameters for cTAN models
(that is, discriminative learning of both structure and parameters) obtains, in
this experiment, a worse classification rate. This behavior of the cTAN-TM
models is surprising because the obtained results are much worse than those
obtained with cTAN models with generative parameter learning. This behav-
ior may be caused by the fact that the conditional log-likelihood for cTAN
models, when the structure is learned from datasets sampled from TAN mod-
els, may present many local maxima. Thus, the TM algorithm can be trapped
in one of these local maxima and therefore the algorithm is not able to prop-
erly maximize the conditional log-likelihood in this particular case which may
lead the model to obtain poor accuracy results.

In general, we can see that, as was expected, the generative learning per-
forms better (or very similar) than the discriminative approach when the
restrictions in the model that we are learning agree with the model used to
generate the dataset.

On the other hand, we would also like to test how naive Bayes, TAN
and cTAN classifiers behave when the datasets are generated by using more
complex models such as joint probability distributions, p(c,x) (see Figure
5.9). In this experiment, the structural restrictions of the models that we
are learning from the datasets (naive Bayes, TAN and cTAN) do not agree
with the model that generates the data. Therefore, discriminative learning
performs better, in terms of classification rate, than generative learning, at
least for the parameter learning. However, the discriminative learning of TAN
structures (cTAN models) performs very similar to the generative learning of
the structure (TAN models).

5.4.2 UCI Repository

In this section, we develop a simple experiment that illustrates the use of the
log-likelihood (LL) and conditional log-likelihood (CLL) to guide the learn-
ing process of the parameters for a naive Bayes, TAN and cTAN models in
problems obtained from UCI repository.

Once the structure of the model is learned with the corresponding method,
we obtain ten thousand different parameter sets at random and evaluate the
log-likelihood, conditional log-likelihood and the classification rate of each
classifier in the datasets. Then, we plot log-likelihood vs. classification rate
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Fig. 5.7. Experiments with datasets sampled from random NB models. Solid lines
represent generative learning while dotted lines discriminative learning. � denotes
NB models; △ TAN models and ◦ cTAN models. Each point in the plot represents
the classification rate on average over 500 different datasets.

and conditional log-likelihood vs. classification rate to evaluate the tendency
of both log-likelihood and conditional log-likelihood scores with respect to
the classification rate (Figures 5.10, 5.11, 5.12, 5.13, 5.14, 5.15 and 5.16). The
results shown in this section represent the general behavior that we have ob-
served among different UCI datasets and they give the reader some intuition
about the relation between generative learning, discriminative learning and
the classification rate. Additionally, Table 5.7 shows the Spearman’s correla-
tion coefficient between the log-likelihood and the classification rate for each
model (NB gen., TAN gen. and cTAN gen.) and between the conditional log-
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Fig. 5.8. Experiments with datasets sampled from random TAN models. Solid lines
represent generative learning while dotted lines discriminative learning. � denotes
NB models; △ TAN models and ◦ cTAN models. Each point in the plot represents
the classification rate on average over the 500 different datasets.

likelihood and the classification rate for each model (NB disc., TAN disc. and
cTAN disc). In order to measure the correlation between the log-likelihood,
conditional log-likelihood and the classification rate we split the results from
the ten thousand models with random parameters into smaller subsets with
one hundred models. Thus, the figures reported in Table 5.7 are the values
of the Spearman’s correlation coefficient on average over all the subsets for
each model (naive Bayes, TAN and cTAN) so that the correlation coefficient
is measured between the log-likelihood and the classification rate (generative
models -denoted in Table 5.7 as gen.-) and between conditional log-likelihood
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Fig. 5.9. Experiments with datasets sampled from random joint probability distri-
butions. Solid lines represent generative learning while dotted lines discriminative
learning. � denotes NB models; △ TAN models and ◦ cTAN models. Each point in
the plot represents the classification rate on average over the 500 different datasets.

and the classification rate (discriminative models -denoted in Table 5.7 as
disc.-). This methodology allows to perform a Wilcoxon test in order to see
whether or not the differences between the Spearman’s correlation coefficient
for the generative (NB gen., TAN gen. and cTAN gen.) and discriminative
models (NB disc., TAN disc. and cTAN disc.) are statistically significant.
The results from the test are not reported in Table 5.7 because the differences
between the Spearman’s correlation coefficient for the generative and discrim-
inative models are always, in these experiments, statistically significant at the
1% level.
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Fig. 5.10. Plot of the relation between LL, CLL and classification rate for
Australian dataset.
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Fig. 5.11. Plot of the relation between LL, CLL and classification rate for Chess

dataset.

In the experiments with UCI datasets we can observe three different
tendencies in the relationship between the log-likelihood, conditional log-
likelihood and classification rate. In Figures 5.10 (Australian dataset), 5.11
(Chess dataset) and 5.12 (German dataset) it can be seen that the log-
likelihood score is not very related to the classification rate. In fact, the val-
ues of the Spearman’s correlation coefficient (see Table 5.7) for the generative
models in Australian, Chess and German datasets are very low. By contrast,
although the values of Spearman’s correlation coefficient for the discrimina-
tive models in Australian, Chess and German datasets are also low, the
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Fig. 5.12. Plot of the relation between LL, CLL and classification rate for German

dataset.
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Fig. 5.13. Plot of the relation between LL, CLL and classification rate for Breast

dataset.

correlation between the conditional log-likelihood and the classification rate
is stronger than the correlation between the log-likelihood and the classifica-
tion rate. On the other hand, there are some datasets such as Breast (Figure
5.13), Hepatitis (Figure 5.14) and Lymphography (Figure 5.15) where we
can observe some correlation between the log-likelihood and the classifica-
tion rate . Nevertheless, the correlation between the conditional log-likelihood
and classification rate, in these datasets, is clearly stronger than the corre-
lation between the log-likelihood and classification rate (see also Table 5.7).
Finally, in Flare dataset (Figure 5.16) we can observe a strong relationship
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Fig. 5.14. Plot of the relation between LL, CLL and classification rate for Hepatitis
dataset.

−15000 −10000 −5000 0
0

20

40

60

80
NB

C
la

ss
ifi

ca
tio

n 
R

at
e

LL
−12000 −10000 −8000 −6000 −4000

0

20

40

60

80
TAN

C
la

ss
ifi

ca
tio

n 
R

at
e

LL

−1.5 −1 −0.5

x 10
4

0

20

40

60

80
cTAN

C
la

ss
ifi

ca
tio

n 
R

at
e

LL

−8000 −6000 −4000 −2000 0
0

20

40

60

80
NB

C
la

ss
ifi

ca
tio

n 
R

at
e

CLL
−6000 −4000 −2000 0

0

20

40

60

80
TAN

C
la

ss
ifi

ca
tio

n 
R

at
e

CLL
−8000 −6000 −4000 −2000 0

0

20

40

60

80
cTAN

C
la

ss
ifi

ca
tio

n 
R

at
e

CLL

Fig. 5.15. Plot of the relation between LL, CLL and classification rate for
Lymphography dataset.

between the log-likelihood and the classification rate. However, in this dataset
there is an even stronger relationship between the conditional log-likelihood
and the classification rate. Hence, we can conclude that, although it depends
on each specific dataset, in general the conditional log-likelihood and there-
fore discriminative learning seems a better approach to learn the parameters
of Bayesian network classifiers when we want to maximize the classification
rate. Nevertheless, the approach to the discriminative learning of the struc-
ture of TAN models (cTAN) proposed in this dissertation does not seem to
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Fig. 5.16. Plot of the relation between LL, CLL and classification rate for Flare

dataset.

NB gen. NB disc. TAN gen. TAN disc. cTAN gen. cTAN disc.

Australian 0.3394 0.6690 0.3743 0.7291 0.3732 0.7193
Chess 0.1061 0.3117 0.1377 0.4008 0.1446 0.3828
German 0.3802 0.6908 0.4313 0.8015 0.4111 0.7861
Breast 0.5734 0.8780 0.6162 0.9047 0.6288 0.9048
Hepatitis 0.5819 0.8690 0.5913 0.8802 0.6059 0.8897
Lymphography 0.5916 0.7447 0.6428 0.8009 0.6236 0.7712
Flare 0.8024 0.8733 0.7955 0.8515 0.7988 0.8554

Table 5.7. Spearman’s correlation coefficient between LL and classification rate
and between CLL and classification rate for the experiment with UCI datasets.

contribute to obtain a better classification rate than the generative leaning
(TAN models).

5.5 Conclusions and Future Work

Bayesian network classifiers are usually considered generative classifiers be-
cause the learning process for these classifiers usually attempts to maximize
the log-likelihood function. However, there is a growing interest in the dis-
criminative learning of Bayesian network classifiers. In this chapter we have
overviewed some approaches for the discriminative learning for both struc-
ture and parameters for Bayesian network classifiers. Additionally, we have
presented the TM algorithm to learn the parameters and the discriminative-
construct-TAN and structural TM algorithms to learn the structure by max-
imizing the conditional log-likelihood. The experiments carried out in this
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chapter show that the discriminative learning of parameters is usually a good
choice to learn Bayesian network classifiers, especially when the structure of
the model is not able to capture all the relationships among variables which
are present in the dataset. This is a usual situation, for instance, when simple
models such as naive Bayes or TAN are used in real problems. Nevertheless,
the generative learning is much more efficient than discriminative learning
and because of this efficiency, generative learning is sometimes preferred.

In the case of discriminative learning of structures, in the experiments, the
proposed methods do not perform as well as the discriminative learning of the
parameters. In general, a model with a generative structure and discrimina-
tive parameters perform better than the model whose structure is learned by
a discriminative method. The discriminative-construct-TAN algorithm used
in the experiments presents two main disadvantages. First, we have decided
to maintain the TAN structure, this can lead to include arcs that decrease the
conditional log-likelihood score in the model. Second, the algorithm is a greedy
approach, and therefore the obtained structure may not be the best one. This
can be corrected by using heuristic search methods to obtain the discrimina-
tive structure. On the other hand, the structural TM algorithm relies on the
conditional BIC (cBIC) metric. It is known that the use of cBIC (and also
BIC) metric tends to select simple models because of the penalization term,
especially in the case of cBIC score, this penalization term may dominate
the conditional log-likelihood. It is interesting to investigate other metrics to
guide the searching process. Moreover, the TM algorithm only learns the pa-
rameters for Bayesian network classifiers up to TAN complexity (when the
variables are multinomial). This algorithm can be extended to more complex
models in order to allow a more complex structural search with the structural
TM algorithm. More future work may include the application of the discrim-
inative learning to real problems. In order to use the discriminative learning
of Bayesian network classifiers in real problems, it should be very interesting
to study the characteristics of the problems where the discriminative learning
performs better than generative learning. Recently, Long et al. (2006) present
a problem which can be solved by a discriminative approach but not by a gen-
erative approach. It is very interesting to extend this idea to a more general
context in order to analyze the limitations of discriminative and generative
learning to solve specific problems from a theoretical approach.



Part III

Clustering





6

Data Clustering

Data clustering can be defined as the process of partitioning a dataset into
subgroups or clusters so that elements in the same partition share, ideally,
some common characteristics. That is, the clustering process aims for obtain-
ing the unknown underlying group-structure of the data.

In this chapter we introduce the data clustering problem and we classify
clustering algorithms into crisp or fuzzy algorithms. We briefly overview both
clustering approaches by presenting a representative algorithm for each ap-
proach. Finally, we focus our attention on probabilistic clustering which can
be seen as a special type of fuzzy clustering and more specifically we focus on
Bayesian network models for data clustering.

6.1 Clustering Data

A clustering algorithm aims to retrieve a group structure from a dataset of N
unlabeled instances D = {x(1), . . . ,x(N)} where each data instance is charac-
terized by n predictive variables. We say that the dataset D is composed
of unlabeled instances because the presence of an additional hidden ran-
dom variable C is assumed, named class or cluster variable, which defines
the cluster membership. Therefore, the dataset D can also be denoted as
D = {(c(1),x(1)), . . . , (c(N),x(N))} where the values of C are unknown. Be-
cause of the existence of this hidden random variable, the clustering problem
can be seen as learning from incomplete or missing data. However, these terms
are more general as they only mean that some of the instances of the dataset
are not fully specified, but they do not refer to the presence of the hidden
clustering variable. A more correct term to denote data clustering is learning
from unlabeled data or simply unsupervised learning.

Usually, the number of clusters underlying the dataset, denoted in this
dissertation as rC , is not known and the clustering process may involve the
identification of the number of groups. This is a difficult task since normally
there is not a single solution for the number of clusters underlying the dataset.
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Fig. 6.1. Plot of the elements in a dataset using two different scales.

Even for the same dataset, there can be several answers depending on the scale
or granularity of interest. For instance, Figure 6.1 shows a graphical example
where one would assert that there are two clusters in the figure on the left and
four clusters in the figure on the right, but both figures actually correspond
to the same dataset plotted in different scales.

In the case where the number of clusters is unknown, there are many pro-
posals to overcome the problem. One approach involves the use of a data pre-
processing step to determine the most likely rC for the current data (Climescu-
Haulica, 2006). On the other hand, another approach to identify the number
of clusters uses different values of rC to induce clustering models for the given
dataset. Then the clustering partitions or clustering models with different
number of clusters are compared in order to determine the most convenient
rC value a posteriori. Some methods to determine the most convenient num-
ber of clusters are, for instance, likelihood-ratios (Binder, 1978; Everitt, 1980;
Binder, 1981), Bayes factors (Dasgupta and Raftery, 1998; Fraley and Raftery,
1998; Gangnon and Clayton, 2007) or evolutionary algorithms (Bandyopad-
hyay, 2005; Wei and Traore, 2005). Another well-used method to determine
the number of clusters is the elbow criterion which is a subjective method
that can be based on any particular clustering quality measure. This method
aims to identify when the use of more clusters does not yield a relevant im-
provement in the quality of the obtained clustering partition.

As one may expect, not all the partitions of D into rC clusters are equally
desirable. While some are plausible representations of the underlying group
structure of the dataset D, other partitions inform us poorly about this struc-
ture. Therefore, data clustering can be redefined as finding the best description
of rC clusters for a dataset D according to some metric, score or criterion,
known as the clustering criterion. Hence, data clustering is equivalent to an
optimization problem where the function to be optimized is the clustering
criterion and the best solution is searched in the space of all the possible data
partitions with rC clusters.

According to the characteristics of the different clustering methods, they
can be classified in different categories (Jain et al., 1999). In this dissertation,
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we make a distinction between hard, fuzzy and probabilistic clustering. In the
following sections we briefly overview these clustering approaches as well as
some clustering methods belonging to each approach.

6.1.1 Hard Clustering

Hard clustering algorithms, also named as crisp clustering algorithms, ob-
tain a clustering partition where each data is assigned to exactly one cluster.
Therefore, the clustering process is reduced to complete each data instance
in D with the label of the cluster which it belongs to. However, this is not
an easy task because of the high number of possible partitions of D into rC
clusters, which is given by the Stirling number of the second kind:

1

rC !

rC∑

j=1

(−1)rC−j

(
rC
j

)

jN (6.1)

This quantity grows exponentially with N and rC . In fact, the partition of
a dataset into rC clusters is known to be an NP-hard problem (Garey and
Johnson, 1979). Therefore, heuristic methods should be used to solve the data
clustering problem.

Hard clustering algorithms can also be divided in two different categories:
hierarchical and partitional algorithms. Hierarchical methods do not produce
a single data partition but they obtain a dendrogram which represents nested
clusters and the similarity level of the nested clusters (see Figure 6.2). The sim-
ilarity between elements and how the linkage between elements is performed
in order to form the clusters are parameters that differ among hierarchical
clustering approaches. For instance, the single-link approach using Euclidean
distance is a very popular choice (Sneath and Sokal, 1973; Jain and Dubes,
1988). Hierarquical clustering algorithms obtain the nested clustering in N it-
erations. In the first iteration, each data instance is representative or centroid
of a cluster. Then, the two nearest clusters, according to the selected distance,
are grouped together so that they act as a single cluster for the next iteration.
Finally, the last iteration of the algorithm obtains a cluster that groups all
the other clusters obtained throughout the iterations. Note that, although the
dendrogram represents nested clusters, we can obtain crisp partitions with a
different number of clusters (from N to 2) by cutting the tree on a specific
level.

On the other hand, partitional methods describe each cluster by means of
a subset of instances from D so that each instance can only belong to a single
cluster. Therefore, the partitional clustering obtains a single data partition.
A well-known heuristic algorithm to deal with partitional clustering problems
is the K-means algorithm (Forgy, 1965; MacQueen, 1967; Andenberg, 1973;
Hartigan, 1975; Jain and Dubes, 1988; Fukunaga, 1990). The K-means al-
gorithm finds a locally optimal partition of the dataset D into K clusters
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Fig. 6.2. Hierarchical clustering. Plot of the elements in the dataset (on the left)
and dendrogram obtained by a hierarchical clustering algorithm (on the right).

according to the square-error criterion1. Note that K, in the K-means algo-
rithm represents the number of clusters but in this dissertation we denote it
as rC . The K-means is an iterative algorithm. Initially, a clustering partition
of the dataset is obtained, for instance, at random and the centroids of the
clusters are calculated. At each iteration, the K-means algorithm reallocates
the data instances by assigning them to the closest cluster in terms of the dis-
tance between the data sample and the cluster centroid. Then, the centroids of
the clusters are re-calculated. The algorithm converges when the centroids of
the clusters do not vary in two consecutive iterations. Although the K-means
algorithm has a good performance, specially in large dataset, the algorithm is
very sensitive to the initial partition (Milligan, 1980; Meila and Heckerman,
1998; Peña et al., 1999a).

6.1.2 Fuzzy and Probabilistic Clustering

Hard clustering approaches generate partitions so that each data instance
belongs to one and only one cluster. Therefore, the obtained clusters are dis-
joint. Fuzzy clustering extends clustering methodology by associating each
data instance with every cluster using a membership function (Zadeh, 1965).
Therefore, these algorithms yield a clustering but not exactly a data parti-
tion. One of the well-known fuzzy clustering methods is the fuzzy c-means
(Bezdek, 1981) which is an extension of the K-means method to deal with
fuzzy clusters.

Probabilistic clustering is another type of non-crisp clustering. Probabilis-
tic clustering is a model-based approach where it is aimed to describe the
physic mechanism that generated the dataset by means of probability distri-
butions (Figure 6.3). The most used approach for probabilistic clustering is
based on the theory of finite mixture models (Duda and Hart, 1973; Demp-

1 The sum of the distance between each instance of D and its closest cluster cen-
troid.
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Fig. 6.3. Probabilistic clustering. In this graphical example, each clustering is rep-
resented by a probability density function.

ster et al., 1977; McLachlan and Basford, 1989; Banfield and Raftery, 1993;
McLachlan and Peel, 2000). Thus, the clustering model is written as:

ρ(x) =

rC∑

j=1

p(cj)ρ(x|cj) (6.2)

where p(cj) is the probability of selecting the physical process associated to
the j-th cluster and ρ(x|cj) is the joint generalized density function which
describes the physical process associated to the j-th cluster. Therefore, proba-
bilistic clustering aims to find the best parameter set for the model in Equation
6.2 according to some clustering criterion. Usually, this clustering criterion is
a measure of how distant the learned model and the true2 probability distri-
butions are. Unfortunately, the true probability distributions are not usually
known. Then, the dataset D is normally used to measure how well the learned
model describes it. That is, the data clustering criterion is the likelihood of
the datasetD given the model parameters θ = (θC−1, . . . , θC−rC

,θ1, . . . ,θrC ).
This likelihood function can be expressed in its logarithmic form as:

LL =

N∑

d=1

log

rC∑

j=1

p(cj |θC−j)ρ(x
(d)|cj,θj) (6.3)

Given the log-likelihood as clustering criterion, the probabilistic cluster-
ing problem reduces to obtaining the parameters of the finite mixture model,

2 The true probability distributions are the probability distributions that model
the physical mechanism which generated the dataset D.
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θ = (θC−1, . . . , θC−rC
,θ1, . . . ,θrC ), that maximize Equation 6.3. However,

this is not an easy task because of the high number of parameters in the model
and the large search space. Hence, heuristic search strategies to learn the set
of parameters for the clustering model are usually needed. One of the most
popular heuristic searching methods is the expectation-maximization (EM)
algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). This algo-
rithm is used in the data clustering experiments performed in this dissertation
and is introduced in following sections.

In spite of the computational complexity of learning probabilistic cluster-
ing models, they are very popular because they are statistically well founded
in contrast to partitional clustering methods which sometimes suffer from a
lack of theoretical basis. In fact, there are several authors who claim that
probability clustering is the only completely satisfactory due its well-defined
theoretical foundations (Duda and Hart, 1973; Aitkin et al., 1981; McLachlan
and Peel, 2000).

The part of this dissertation devoted to data clustering is concerned with
probabilistic data clustering. Specifically, the clustering model, which is given
by the joint probability distribution of the random variable (C,X), is induced
fromD by means of unsupervised learning of Bayesian networks. The following
section briefly present Bayesian network models used for clustering purposes.

6.2 Bayesian Networks for Clustering

Due to the high number of parameters needed to define a joint probability
distribution, probabilistic clustering may sometimes be inefficient. However,
these probability distributions can be represented by probabilistic graphical
models in general and by Bayesian networks in particular (see Chapter 2).
Then, the representation of the joint probability distribution can take advan-
tage of the factorization given by the probabilistic graphical models which
is derived from the conditional (in)dependence relationships among the vari-
ables. Although, depending on the type of graph used to represent the rela-
tionships among variables and the parametric form of the generalized joint
probability distribution, different probabilistic graphical models can be used
for data clustering, in this dissertation we are concerned only with Bayesian
networks models.

Bayesian network models for clustering are identical to the Bayesian net-
works used for supervised classification (see Chapter 4) except for the fact that
they take into account the presence of the hidden cluster variable. Therefore,
data clustering using Bayesian network is a specific case of learning Bayesian
network from incomplete or missing data. In the case of complete dataset,
the structure is learned by maximizing a score metric usually related to the
log-likelihood function such as MDL metric. Even when the complete dataset
allows an efficient calculation of the log-likelihood function, the learning of the
Bayesian network structure is an NP-Hard problem (Chickering et al., 1994)
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because of the huge number of structures. This situation is aggravated in the
case of data clustering because the presence of a hidden variable prevents the
decomposition of the log-likelihood function making the evaluation of the score
much more inefficient. Therefore, several methods to learn Bayesian networks
for clustering neglect the structural search by requiring a fixed network struc-
ture. This fixed network structure can be provided by an expert or simply by
using a simple Bayesian network model for clustering such as a naive Bayes
or a selective naive Bayes (see Chapter 4). On the other hand, other methods
propose a search in the joint space of parameters and structures in order to
learn the best Bayesian network model for clustering. In following the sections
we present these two approaches. The EM (Dempster et al., 1977) is an algo-
rithm that can be used to learn the parameter of a Bayesian network model
assuming that the structure of the model is already known. By contrast, the
structural EM (Friedman, 1997) learn both the structure and the parameters
of a Bayesian network model for clustering. Note that, as well as in Chapter 2,
we firstly introduce the parameter learning because some aspects of the EM
algorithm are used for learning the structure of the model with the structural
EM algorithm.

6.2.1 Parameter Learning: EM Algorithm

The Expectation Maximization (EM) algorithm is a general framework to
learn the parameters of a model by maximizing the likelihood function in the
presence of missing data. It is essentially an iterative optimization algorithm
which, at least under certain conditions, converges to parameter values at a
local maximum of the likelihood function. One of the earliest works related to
the EM algorithm is Hartley (1958), but the work where the EM algorithm is
proposed and its convergence properties are studied is presented in Dempster
et al. (1977). Other popular and useful references for the EM algorithm are
Tanner (1996) and McLachlan and Krishnan (1997).

In this section, we present the EM algorithm as a method to learn the
parameters of Bayesian network models for clustering. Hence, the EM algo-
rithm only learns the parameter set of the model and the structure is assumed
to be already known. The idea behind the EM algorithm is simple: at each
step t, the algorithm alternates between estimating the parameters of the
model, θ(t), and the values of the hidden variable, C. However, instead of
finding the best values of C given the current estimation of the parameters,
the algorithm computes the probability distribution of C, p(c|x,θ(t)). These
calculations are performed in the two steps of the algorithm: Expectation (E
step) and Maximization (M step).

• E Step: Intuitively, we can see this step as a completion of the values for
the cluster variable, which are missing. This step obtains the expected
log-likelihood function (Equation 6.4) which is maximized in the M step.
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Q(θ; θ(t)) = E
θ(t) [log p(D|S,θ)|D]

=

N∑

d=1

log
∑

c

p(c|x(d), S,θ(t))p(c,x(d)|S,θ) (6.4)

In the case of Bayesian network models, the E step involves the calculation
of the expected sufficient statistics of the dataset, E(Nijk|θ(t), S) for each
predictive variable Xi and parent set Pai with i = 1, . . . , n; j = 1, . . . , qi;
and k = 1, . . . , ri.

• M Step: The M step obtains a new set of parameters for the model by
maximizing the expected log-likelihood function obtained in the E step:

θ(t+1) = argmax
θ

Q(θ; θ(t)) (6.5)

In the case of Bayesian network models, the new parameters of the model
can be calculated by using the expected sufficient statistics previously
obtained in the E step as if they were actual sufficient statistics from a
complete dataset:

θijk =
E(Nijk |θ(t), S)

E(Nij |θ(t), S)
(6.6)

where E(Nij |θ(t), S) =
∑ri

k=1 E(Nijk|θ(t), S)

Alternatively, the EM algorithm can be used to learn the maximum a
posteriori parameters instead of the maximum likelihood ones. Thus, we are
able to include prior knowledge about the parameters in the learning process.
Nevertheless, even if no prior information about the parameters is known,
the EM algorithm can be used to obtain maximum a posteriori parameters by
using non-informative priors. Thus, the MAP parameters should be calculated
in the M step as:

θijk =
E(Nijk|θ(t), S) + αijk

E(Nij |θ(t), S) + αij

(6.7)

where (αij1, . . . , αijri
) are the hyperparameters for the prior probability dis-

tribution of the parameters of the model, which is normally a Dirichlet prob-
ability distribution (θij1, . . . , θijri

) ∽ D(θij1, . . . , θijri
|αij1, . . . , αijri

), and be-
ing αij =

∑ri

k=1 αijk.
Both expectation and maximization steps of the EM algorithm are succes-

sively repeated until the algorithm converges to a local maximum. That is, the
algorithm obtains the same value of the log-likelihood function in two consec-
utive iterations of the algorithm. However, in practice, it is usually said that
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the algorithm has converged when the difference between the log-likelihood
values obtained in two consecutive iterations of the algorithm is smaller than
certain threshold fixed in advance.

Due to the popularity of the EM algorithm to learn probabilistic models
from data with missing values, there are many proposals to improve the al-
gorithm, for example, by accelerating the convergence to a local maximum.
Although there are many others, some of these proposals are reviewed, for
instance, in McLachlan and Krishnan (1997).

6.2.2 Learning Structure and Parameters: Structural EM
Algorithm

The structure of the Bayesian network model for clustering can be learned
by combining the EM algorithm with a structural search. This method re-
quires the EM algorithm to learn the parameters of each candidate structure
in order to evaluate the goodness of the candidate model. This process is ex-
tremely inefficient and it can only be used in problems where there are only
a few choices in the network structure. For instance, Cheeseman and Stutz
(1996) and Chickering and Heckerman (1997) select the number of values for
a single hidden variable in networks with a fixed structure, and Heckerman
(1995) describes an experiment with a single missing value and five observable
variables.

A more efficient method to learn Bayesian network models for clustering
is the structural EM. The structural EM algorithm extends the EM algo-
rithm in order to search the maximum a posteriori model in the joint space
of parameters and structures (Friedman, 1997). Although in the original pa-
per (Friedman, 1997) the author named the algorithm model selection EM,
another more recent work by the same author (Friedman, 1998) refers to the
algorithm as structural EM. At each iteration, the structural EM can either
find better parameters for the current structure, or select a new structure.
The former case follows the standard approach performed by the EM algo-
rithm (Section 6.2.1), while the latter case is a structural search. This struc-
tural search obtains the structure which maximizes the expected MDL score
given the model from the previous iteration of the algorithm. Therefore, if a
Bayesian network model is represented as B = (S,θ) and B(t) represents the
model obtained in the t-th iteration of the algorithm, the function maximized
by the structural EM algorithm is:

Q(B;B(t)) = EB(t)

[

log p(D|B) − 1

2
logNdim(S)|D

]

(6.8)

=
N∑

d=1

∑

c

p(c|x(t),B(t))

(

log p(c,x(t)|B) − 1

2
logNdim(S)

)
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Choose S(0) and θ(0) at random

for t = 0, 1 . . . until convergence do

Run EM to learn θ(t) for a fix structure S(t)

– Search for the best structure –

Find the structure S(t+1) that maximizes Q(B;B(t))

– Obtain the parameters for S(t+1) –

θ(t+1) = arg maxθ = Q(S(t+1), θ; S(t), θ(t))

end for

Fig. 6.4. General pseudo-code for the structural EM algorithm (Friedman, 1997).

where dim(S) is the dimension of the structure S which is usually given by the
number of parameters. Figure 6.4 shows the pseudo-code for the structural
EM algorithm.

The structural EM algorithm learns the Bayesian network model by using
the MDL as a score for the search of the model structure which can be seen
as an approximation to the marginal log-likelihood function. Friedman (1998)
proposes the Bayesian structural EM algorithm which, instead of using the
MDL score, directly maximizes the marginal log-likelihood when learning the
structure of the model. The use of the marginal log-likelihood instead of the
MDL score is, from a Bayesian point of view, a better criterion to guide the
structural search. Alternatively, Peña et al. (2000) propose a modification of
the Bayesian structural EM by using an improved EM algorithm, the BC+EM
(Peña et al., 1999b).
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Bayesian Model Averaging

Standard approaches in machine learning and statistical analysis often ignore
uncertainty about model selection. It is a common praxis to select a single
model and proceed as if the selected model had generated the data. However,
this approach neglects the uncertainty in model selection and leads to over-
confident decisions, that is, the decisions based on that model are more risky
than one thinks they are. In this chapter we review Bayesian model averaging,
which is a technique that accounts for the uncertainty inherent in the model
selection process by averaging over many different competing models. More-
over, we present novel approaches to deal with Bayesian model averaging for
data clustering problems.

7.1 Introduction to Bayesian Model Averaging

From a data-driven approach, the information about a problem is obtained
from a dataset and this information is used to learn a model. Then, the model
is used to make predictions (in the case of supervised classification problems)
or to obtain a description of the underlying group-structure of the data (in
the case of data clustering problems). Unfortunately, information about the
model that generated the data is not usually available. Hence, even when the
model is learned from the dataset and it fits the data reasonably well (or even
it is the best model fitting the data), there is no guarantee that the learned
model is the true model, that is, the model that had generated the dataset.

Let assume that we are somehow provided with a dataset D and we use
a leaning algorithm to obtain a model M from D. This model fits the data
reasonably well. However, let suppose that there exists an alternative model
M′ which also provides a good fitting to the dataset. Why should we choose
M instead of M′? The uncertainty associated to the finite dataset may result
in the fact that M fits the dataset better than M′ even when M′ is closer
to the true model that generated the data. Moreover, the fewer samples the
dataset has, the higher the uncertainty in model selection is. Therefore, basing
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inferences only on M is risky (Dijkstra, 1988). Bayesian model averaging
(Leamer, 1978; Madigan and Raftery, 1994; Chatfield, 1995; Hoeting et al.,
1999) provides a methodology to deal with this problem. This methodology
describes the dataset by means of the posterior probability distribution, which
is obtained by averaging over the posterior distributions of the considered
models:

p(c,x|D) =
∑

M∈M

p(c,x|M, D)p(M|D) (7.1)

where M is the class of models considered for the averaging.
Taking into account Bayesian network models, Bayesian model averaging

has to deal with uncertainty in the selection of the structure and the param-
eters:

p(c,x|D) =
∑

S

∫

p(c,x|S,θ)p(θ|S,D)dθ p(S|D) (7.2)

where the posterior probability of the structure S is given by:

p(S|D) =
p(D|S)p(S)

∑

S′ p(D|S′)p(S′)
(7.3)

and the marginal likelihood given S is:

p(D|S) =

∫

p(D|M,θ)p(θ|S)dθ (7.4)

Unfortunately, although Bayesian model averaging is an attractive solution
that can deal with uncertainty in both parameters and structure selection, it
presents several difficulties. On the one hand, the huge number of terms in the
summation over the structures (see Equation 7.2) makes Bayesian model av-
eraging unfeasible. This problem can be overcome by averaging over a reduced
class of models. However, this solution includes uncertainty in the Bayesian
model averaging process and then, the selection of a proper class of models
may be a crucial task. On the other hand, the integrals over the parameters
(see Equations 7.2 and 7.4) are sometimes very hard to compute. Due to these
drawbacks, it is usually unfeasible an exact Bayesian model averaging calcu-
lation and therefore, several approximations are proposed. In the following
section we present some methods to approximate Bayesian model averaging
of Bayesian network models. Finally, we present a new algorithm to approxi-
mate Bayesian model averaging of naive Bayes and TAN models for clustering
problems.
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Note that, as the work presented in this dissertation is focused on super-
vised classification and clustering, the formulas for Bayesian model averaging
presented here are adapted to these problems by distinguishing between the
predictive variables X and the class or cluster variable C. Nonetheless, al-
though in this chapter we review some proposals for the Bayesian model av-
eraging of Bayesian networks for supervised classification problems, we focus
the development of new algorithms on data clustering problems.

7.2 Bayesian Model Averaging of Bayesian Networks

Probabilistic graphical models in general and Bayesian networks in particular
have received the attention of Bayesian model averaging community. However,
the majority of the approximated methods for Bayesian model averaging are
proposed for supervised classification tasks, where the dataset does not con-
tain missing values. For instance, Madigan and Raftery (1994) propose the
Occam’s window method which simplifies model averaging problem by aver-
aging over a set of parsimonious data-supported models. This set of models is
selected so that models which predict the data much worse than the best model
are not taken into account. Additionally, those complex models which receive
less support from the data than their simpler counterpart are also excluded
from the set of selected models. An alternative approach is presented by Madi-
gan et al. (1994) and Madigan and York (1995) where Markov chain Monte
Carlo simulation (Metropolis and Ulam, 1949; Gilks et al., 1998) is used to
approximate Bayesian model averaging calculations. Related approaches have
also been adopted by other researchers such as Giudici and Green (1999) who
propose a Markov chain Monte Carlo approach over the class of junction trees
undirected graphical models that are decomposable.

In Bayesian model averaging of Bayesian network models the theoretical
developments presented in Buntine (1991) and Friedman and Koller (2003)
are of special interest. In these works they propose a special decomposition
which allows to obtain the posterior probability of the arcs in a network.
This idea has been applied to learn Bayesian network models for classifica-
tion: Dash and Cooper (2002) and Cerquides and López de Mántaras (2003a)
present exact Bayesian model averaging calculations over the set of selective
naive Bayes models; Dash and Cooper (2003) and Cerquides and López de
Mántaras (2003b, 2005) perform exact model averaging over TAN models
given an ancestral ordering among the variables; Dash and Cooper (2004)
extend model averaging calculations to more complex Bayesian networks for
a given ordering among the variables; and Hwang and Zhang (2005) relax
the selection of a variable ordering by averaging over multiple node orders.
Alternatively, Meila and Jaakkola (2000, 2006) present a family of decom-
posable priors over structure and parameters of tree Bayesian networks for
which Bayesian model averaging calculations with complete observations are
tractable.
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Although Bayesian model averaging has shown to perform well on clas-
sification problems and is theoretically an optimal method to deal with un-
certainty in model selection, Domingos (2000) argues that Bayesian model
averaging can actually exacerbate the over-fitting problem in machine learn-
ing. Moreover, he shows how more ad hoc techniques for model combination
such as bagging can overcome Bayesian model averaging. This arguments are
questioned by Minka (2002) who shows that Bayesian model averaging is not
a technique for model combination but a technique for soft model selection.

Unfortunately, for clustering problems, the integrals from Equation 7.2 and
7.4 can not be solved in closed form. This makes the exact Bayesian model
averaging calculations for clustering models typically intractable and only ap-
proximations are feasible. Some attempts to approach the integrals involved in
Bayesian model averaging include the use of stochastic simulation or Laplace’s
approximation (Chickering et al., 1995). However, stochastic simulation meth-
ods tend to be computationally expensive and Laplace’s approximation may
be quite imprecise. Therefore, Bayesian model averaging for clustering is usu-
ally approximated by using only the maximum a posteriori (MAP) model,
which can be obtained by means of the EM algorithm (see Chapter 6). In fact,
this is an approximation to Bayesian model averaging because the posterior
probability function of the models is peaked at the MAP model. Consequently,
the MAP model is the one which contributes the most to the Bayesian model
averaging calculations. Nevertheless, the selection of a single model does not
take into account the uncertainty in model selection. Several proposals try
to overcome the selection of a single model by combining several Bayesian
network models in a mixture model of Bayesian networks (Meila and Jordan,
1998; Thiesson et al., 1998). However, mixtures of Bayesian network models
can be used to combine several Bayesian networks in a model but they do
not address the dependency on a single model as Bayesian model averaging
does. Additionally, the Bayesian structural EM algorithm (Chapter 6; Fried-
man (1998)) learn the structure of a Bayesian network model by maximizing
the marginal log-likelihood function. This function can not be solved in closed
form for clustering problems, but it can be maximized into the iterations of
the structural EM algorithm. Alternatively, Friedman (1998) points out the
idea of averaging over a set of models with the highest marginal log-likelihood
instead of searching for the best model.

In this dissertation we present a new algorithm named Expectation Model
Averaging (EMA) (Santafé et al., 2006b,c) which allows an efficient compu-
tation of Bayesian model averaging calculations for clustering problems. In
following sections, we present the EMA algorithm for naive Bayes and TAN
models as well as an empirical evaluation of the proposed methods.
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7.3 Expectation Model Averaging: EMA Algorithm

The expectation model averaging (EMA) is an algorithm to approximate the
Bayesian model averaging of Bayesian network models for clustering prob-
lems. Although the algorithm can be adapted to average over different classes
of Bayesian networks, in this dissertation we only introduce the EMA algo-
rithm for naive Bayes (Santafé et al., 2006b) and TAN models (Santafé et al.,
2006c). The EMA algorithm is a variant of the well-known EM algorithm
which allows to extend the model averaging calculations proposed by Fried-
man and Koller (2003), Dash and Cooper (2004) and Cerquides and López de
Mántaras (2005) to clustering problems. The EMA algorithm uses the E step
of the EM algorithm to deal with the unknown values for the cluster variable.
Then, it performs a model averaging step (MA) to obtain p(c,x|D) and thus,
the clustering model can be obtained by means of the Bayes rule:

p(ci|x, D) =
p(ci,x|D)

∑rC

j=1 p(c
j ,x|D)

(7.5)

The EMA, as well as the EM algorithm, is an iterative process where the
two steps of the algorithm are repeated successively until a stopping criterion

is met. At the t-th iteration of the algorithm, a set of parameters θ̆
(t)

is calcu-
lated. The algorithm stops when the difference between the sets of parameters

learned in two consecutive iterations, θ̆
(t)

and θ̆
(t+1)

, is less than threshold ǫ,
which is fixed in advance.

In order to use the EMA algorithm, we need to set an initial parameter

configuration, θ̆
(0)

, and the value of ǫ. The values for θ̆
(0)

are usually taken
at random and ǫ is set at a small positive value.

Note that, although the EMA algorithm can be seen as a general algorithm
for Bayesian model averaging over Bayesian network model, this term was
originally used to denote the expectation model averaging algorithm of naive
Bayes for clustering (Santafé et al., 2006b). Therefore, in order to be coherent
with the names given to the algorithms in the works where they were proposed
(Santafé et al., 2006b,c), we refer to the expectation model averaging of naive
Bayes models for clustering as EMA algorithm and we denote the expectation
model averaging of TAN models for clustering as EMA-TAN algorithm.

7.3.1 EMA Algorithm for Naive Bayes

The EMA algorithm for naive Bayes obtains a naive Bayes model for clus-
tering by averaging over all selective naive Bayes structures (see Figure 7.1)
where, for each structure, the averaging over parameters is approximated by
its MAP configuration. In other words, we obtain a unique naive Bayes model
for clustering which is equivalent to the average of the MAP configurations
for every selective naive Bayes structure weighted by its posterior probability.
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Note that, even though the obtained model is a single naive Bayes model,
B̆ = (θ̆, SnB) with SnB being a naive Bayes structure, its parameters, θ̆, are
learned taking into account the MAP parameter configuration for every selec-
tive naive Bayes structure. Thus, the resulting unsupervised naive Bayes will
incorporate into its parameters information about the independence between
variables described by the different selective naive Bayes models.

X1 X2

C

X1 X2

C

X1 X2

C

X1 X2

C

Fig. 7.1. All selective naive Bayes structures with two predictive variables: each
predictive variable can be dependent on or independent of C.

Before introducing the Bayesian model averaging calculations related to
the EMA algorithm, we need to clarify some notation. Using the classical
notation in Bayesian networks already introduced in Chapter 2, the set of
parents for variable Xi, with i = 1, . . . , n, is denoted as Pai. In this case,
for all selective naive Bayes models, Pai ∈ {∅, {C}}. θijk, with k = 1, . . . , ri
and ri being the number of states for variable Xi, represents the conditional
probability of variable Xi taking its k-th value given that Pai takes its j-th
value. The conditional probability mass function for Xi given the j-th con-
figuration of its parents is designated as θij , with j = 1, . . . , qi, where qi is
the number of different configurations of Pai. Finally, θi = (θi1, . . . ,θiqi

)
denotes the set of parameters for variable Xi, and θ = (θC ,θ1, . . . ,θn) rep-
resents the whole set of parameters for a selective naive Bayes model, where
θC = (θC−1, . . . , θC−rC

) is the set of parameters for the cluster variable, with
rC the number of clusters fixed in advance.

In order to distinguish between the parameters for different selective naive
Bayes models, we introduce the notation θijk and θi−k to denote the pa-
rameters when there is an arc between C and Xi, and when there is none
respectively. By extension to a general case, we take into consideration the
same notation (Qijk and Qi−k) with any quantity (Q) related to variable Xi.

Finally, we need to make the following five assumptions in order to perform
the approximation to Bayesian model averaging:

• Assumption 1 : Multinomial variables.
Each variable Xi, with i = 1, . . . , n, is discrete and can take ri states.
The cluster variable is also discrete and, as introduced before, it takes rC
possible states, with rC as the number of clusters fixed in advance.

• Assumption 2 : Complete dataset.
We assume that there are no missing values for the predictive variables
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in the dataset. However, the cluster variable is latent, therefore, its values
are always unknown.

• Assumption 3 : Dirichlet priors.
The parameters of the selective naive Bayes models are assumed to follow
a Dirichlet distribution. Thus, αijk is the Dirichlet hyperparameter for
parameter θijk from the network, and αC−j is the hyperparameter for
θC−j. Moreover, we have to take into consideration each possible selective
naive Bayes whose parameters can be θijk or θi−k. Hence, we assume the
existence of both sets of hyperparameters αijk and αi−k.

• Assumption 4 : Parameter independence.
For any possible structure S, the probability distributions θij are random
variables which are considered independent for any i and j. Thus, the
probability of having the set of parameters θ for a given structure S can
be factorized as follows:

p(θ|S) = p(θC)

n∏

i=1

qi∏

j=1

p(θij |S) (7.6)

• Assumption 5 : Structure modularity.
For any possible selective naive Bayes structure, S, we have a prior prob-
ability, p(S). The structure modularity assumption states that the prior
over structures, p(S), can be decomposed in terms of each variable and its
parents:

p(S) ∝ pS(C)

n∏

i=1

pS(Xi, Pai) (7.7)

where pS(Xi, Pai) is the information contributed by variable Xi to the
prior over structure S, p(S), and pS(C) is the information contributed by
the cluster variable.

7.3.1.1 E Step (Expectation)

Intuitively, we can see this step as a completion of the values for the cluster
variable, which are missing. Actually, this step computes the expected suffi-

cient statistics in the dataset given the current parameters of the model, θ̆
(t)

.
These expected sufficient statistics are used in the next step of the algorithm,
MA, as if they were actual sufficient statistics from a complete dataset. From
now on, D(t) denotes the dataset after the E step at the t-th iteration of
the algorithm. Note that although we denote as B̆(t) the naive Bayes model
(structure and parameters) at the t-th iteration of the algorithm, only the

parameters θ̆
(t)

vary from one iteration to another, being the structure SnB

constant throughout the iterations.
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The expected sufficient statistics which are used in the MA step to estimate
a new model can be obtained as follows:

E(Nijk|B̆(t)) =

N∑

d=1

p(cj , xk
i |x(d), B̆(t)) (7.8)

where cj is the j-th value for the class variable, xk
i is the k-th value for variable

Xi, and B̆(t) is the model that approximates the Bayesian model averaging,
that is, a naive Bayes model. The expected sufficient statistic E(Nijk|B̆(t))
denotes, at iteration t, the expected number of cases in the dataset D, where
variable Xi takes the value xk

i , and C takes cj .
Similarly, we can obtain the expected sufficient statistics for the variable

Xi in those selective naive Bayes models where Xi is independent of C and
for the cluster variable:

E(Ni−k|B̆(t)) =

N∑

d=1

p(xk
i |x(d), B̆(t))

E(NC−j|B̆(t)) =

N∑

d=1

p(cj |x(d), B̆(t)) (7.9)

Note that, in fact, E(Ni−k|B̆(t)) does not depend on the value of C. It denotes
the number of cases where the variable Xi takes its k-th value. Therefore,
these values are constant throughout the iterations of the algorithm and it is
necessary to calculate them only once.

7.3.1.2 MA Step (Model Averaging)

In the classical EM algorithm, the second step is called M (Maximization). In
this step the algorithm re-estimates the parameters of the model. Hence, the
new parameters approximate the ML or MAP parameter configuration, given
the expected sufficient statistics calculated in the previous E step. Instead, the
EMA algorithm performs the MA step which obtains a unique naive Bayes

model with parameters θ̆
(t+1)

. These parameters are obtained by calculating
p(c,x|D(t)) as an average over the MAP configurations for the 2n selective
naive Bayes structures.

In order to make the calculations clearer, we first show how we can obtain
p(c,x|S,D(t)) for a fixed structure S:

p(c,x|S,D(t)) =

∫

p(c,x|S,θ)p(θ|S,D(t))dθ (7.10)



7.3 Expectation Model Averaging: EMA Algorithm 109

The exact computation of the integral in Equation 7.10 is intractable,
therefore, an approximation is needed (Heckerman, 1995). However, assuming
parameter independence and Dirichlet priors, and given that the expected
sufficient statistics calculated in the previous E step can be used as an ap-
proximation to the actual sufficient statistics in the complete dataset, we can
approximate p(c,x|S,D(t)) by the MAP parameter configuration. This is the
parameter configuration that maximizes p(θ|S,D(t)) and can be described in
terms of E(Nijk|B̆(t)), and αijk (Heckerman, 1995; Cooper and Herskovits,
1992). Using the previous considerations, Equation 7.10 results:

p(c,x|S,D(t)) ≈ αC−j + E(NC−j |B̆(t))

αC + E(NC |B̆(t))
·

n∏

i=1

αijk + E(Nijk |B̆(t))

αij + E(Nij |B̆(t))

= θ̃S
C−j

n∏

i=1

θ̃S
ijk

where θ̃S
ijk is the MAP parameter configuration for S, αij =

∑ri

k=1 αijk ,

E(Nij |B̆(t)) =
∑ri

k=1 E(Nijk|B̆(t)) and similarly for the values related to C.
Note that S is a specific selective naive Bayes structure that represents the

dependence between variables. If Xi is independent of C, in Equation 7.11 we
should use E(Ni−k|B̆(t)) instead of E(Nijk |B̆(t)).

Considering that the structure is not fixed a priori, we should average over
all selective naive Bayes models in the following way:

p(c,x|D(t)) =
X

S

Z

p(c, x|S, θ) p(θ|S, D
(t))dθ p(S|D(t)) (7.11)

Therefore, the model averaging calculations require a summation over 2n

terms, which are the 2n selective naive Bayes structures with n predictive
variables.

Using the previous calculations for a fixed structure, Equation 7.11 can be
written as:

p(c,x|D(t)) ≈
∑

S

θ̃S
C−j

n∏

i=1

θ̃S
ijk p(S|D(t))

∝
∑

S

θ̃S
C−j

n∏

i=1

θ̃S
ijk p(D(t)|S) p(S) (7.12)

Given the assumption of Dirichlet priors and parameter independence,
we can approximate p(D(t)|S) efficiently. In order to do so, we adapt the
formula to calculate the marginal likelihood with complete data (Cooper and
Herskovits, 1992; Heckerman et al., 1995) to our problem with missing values
and naive Bayes model. Thus, we have an approximation to p(D(t)|S):
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p(D(t)|S)≈ Γ (αC)

Γ (αC + E(NC |B̆(t)))

rC∏

j=1

Γ (αC−j + E(NC−j |B̆(t)))

Γ (αC−j)
·

n∏

i=1

qi∏

j=1

Γ (αij)

Γ (αij + E(Nij |B̆(t)))

ri∏

k=1

Γ (αijk + E(Nijk|B̆(t)))

Γ (αijk)
(7.13)

At this point, given the structure modularity assumption, we are able to
approximate p(c,x|D(t)) with the following expression:

p(c,x|D(t)) ≈ κ
∑

S

ρS
C−j

n∏

i=1

ρS
ijk (7.14)

where κ is a constant and ρS
C−j and ρS

ijk are defined in Equations 7.15 and
7.16 respectively:

ρS
C−j = θ̃S

C−j pS(C)
Γ (αC)

Γ (αC + E(NC |B̆(t)))
·

rC∏

j=1

Γ (αC−j + E(NC−j|B̆(t)))

Γ (αC−j)
(7.15)

ρS
ijk = θ̃S

ijk pS(Xi, Pai)

qi∏

j=1

Γ (αij)

Γ (αij + E(Nij |B̆(t)))
·

ri∏

k=1

Γ (αijk + E(Nijk|B̆(t)))

Γ (αijk)
(7.16)

Since we are assuming parameter independence and structure modularity,
the calculations for ρS

ijk only depend on Xi and Pai. Therefore, if two different

structures S1 and S2 represent the same relationship between Xi and C, ρS1

ijk

will be the same as ρS2

ijk. Hence, for all the selective naive Bayes models,
we only need to calculate ρijk (if Xi is dependent on C) and ρi−k (if Xi is
independent of C). The value ρijk is calculated as shown in Equation 7.16 and

ρi−k is calculated as ρijk, but using E(Ni−k|B̆(t)) and αi−k. Thus, Equation
7.14 can be written in terms of ρi−k and ρijk as follows:

p(c,x|D(t)) ≈ κ
(
ρC−j ρ1−k ρ2−k . . . ρn−k

+ ρC−j ρ1jk ρ2−k . . . ρn−k

...
...

+ ρC−j ρ1jk ρ2jk . . . ρnjk

)

(7.17)
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We define the symbol Σjk
l to denote the sum of the product in Equation 7.17

up to the l-th variable.

Σjk
l = ρC−j ρ1−k ρ2−k . . . ρl−k

+ ρC−j ρ1jk ρ2−k . . . ρl−k

...
...

+ ρC−j ρ1jk ρ2jk . . . ρljk

(7.18)

Thus, Σjk
n can be written in terms of Σjk

n−1

Σjk
n = Σjk

n−1(ρn−k + ρnjk) (7.19)

Therefore, using the recursive formula in Equation 7.19, we can obtain
p(c,x|D(t)) as follows (Friedman and Koller, 2003; Dash and Cooper, 2004):

p(c,x|D(t)) ≈ κ ρC−j

n∏

i=1

(ρi−k + ρijk) (7.20)

Note that after the transformations described above and once ρijk, ρi−k

and ρC−j terms have been calculated, the expression p(c,x|D(t)) which re-
quired a O(2n) time, can now be evaluated in O(n) time.

In order to calculate the ρijk, ρi−k and ρC−j terms, we need to set Dirichlet
priors αC−j , αi−k, αijk and priors over structure pS(C), pS(Xi, Pai) for all
S and i = 1, . . . , n. The values for all these priors are assumed to be known.
Furthermore, we need the expected sufficient statistics E(NC−j |B̆(t)) and

E(Nijk|B̆(t)) which have been calculated in the previous E step in O(rC ·n ·N)
time.

Now, taking into account the factorization of the joint probability for a
naive Bayes model:

p(c,x|θ, SnB) = θC

n∏

i=1

θijk (7.21)

we can observe the similarity between the factorization for a naive Bayes
model (Equation 7.21) and the factorization for the Bayesian model averaging
of naive Bayes models given by Equation 7.20. Indeed we can calculate the

parameters, θ̆
(t+1)

, for a unique naive Bayes model which approximates a
Bayesian model averaging of selective naive Bayes for clustering as follows:

θ̆
(t+1)
ijk ∝ (ρi−k + ρijk)

θ̆
(t+1)
C−j ∝ ρC−j (7.22)
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for i = 1, . . . , n and j = 1, . . . , rC .
The parameters for the model that approximates the Bayesian model av-

eraging are calculated in O(n ·N · rmax · r2C) time, where rmax = max1≤i≤n ri.
Note that the increment in time complexity in relation to the time needed by
the EM algorithm to calculate the ML or MAP parameters, O(n ·N · rC), is
insignificant.

Remember that the EMA algorithm calculates the naive Bayes model for
clustering iteratively. Therefore, a new naive Bayes for clustering is estimated
at each iteration. Hence, the real time complexity of the algorithm is O(n ·
N · rmax · r2C · It) where It is the number of iterations of the EMA algorithm.
The EMA algorithm depends on the random initialization of the parameters
for the first naive Bayes model, therefore, the total number of iterations may
change each time the EMA algorithm is run.

7.3.2 EMA Algorithm for TAN Models

In this section we extend the EMA algorithm described in the previous section
in order to perform model averaging calculations over the class of TAN models.

Similarly to the EMA algorithm for naive Bayes models, the EMA-TAN
algorithm obtains a single Bayesian network model for clustering which ap-
proximates a Bayesian model averaging over the class of TAN models. This is
possible by setting an ancestral order among the predictive variables.

First of all, we must define what we mean by the class of TAN models.

Definition 12. Class of TAN models (Lπ
TAN ): given an ancestral order π, a

model B belongs to Lπ
TAN if each predictive variable has up to two parents

(the cluster variable and another predictive variable) and the arcs between
variables that are defined in the structure S are directed down levels in the
ancestral order π: Xj → Xi ∈ S ⇒ levelπ(Xi) < levelπ(Xj).

Note that, the classical conception of TAN model allows the predictive
variables to form a tree and then, the cluster variable is set as a parent of
each predictive variable. However, we do not restrict Lπ

TAN to only these tree
models, but we also allow the predictive variables to form a forest and also the
class variable may or may not be set as a parent of each predictive variable.
Therefore Lπ

TAN also includes, among others, naive Bayes and selective naive
Bayes models.

For a given ordering π and a particular variable Xi, we can enumerate
all the possible parent sets for Xi in the class of TAN models Lπ

TAN . In or-
der to clarify calculations, we superscript with v any quantity related to a
predictive variable Xi and thus, we are able to identify the parent set of vari-
able Xi that we are taking into consideration. For example, for a given order
π = 〈X1, X2, X3〉 the possible sets of parents for X3 in Lπ

TAN are: Pa1
3 =

{∅}, Pa2
3 = {X1}, Pa3

3 = {X2},Pa4
3 = {C,X1},Pa5

3 = {C,X2}, Pa6
3 = {C}
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with, in this case, v = 1, . . . , 6. In general, we consider, without loss of gener-
ality, π = 〈X1, . . . , Xn〉 and therefore, for a variable Xi, v = 1, . . . , 2i. More-
over, we use i to index any quantity related to the i-th predictive variable,
with i = 1, . . . , n.

Additionally, as well as in the EMA algorithm for naive Bayes models, we
need to make the following five assumptions to perform an efficient approxi-
mation of model averaging over Lπ

TAN :

• Assumption 1 : Multinomial variables.
Each variable Xi is discrete and can take ri states. The cluster variable
is also discrete and can take rC possible states, rC being the number of
clusters fixed in advance.

• Assumption 2 : Complete dataset.
We assume that there are no missing values for the predictive variables
in the dataset. However, the cluster variable is latent; therefore, its values
are always missing.

• Assumption 3 : Dirichlet priors.
The parameters of every model are assumed to follow a Dirichlet distribu-
tion. Thus, αijk is the Dirichlet hyperparameter for parameter θijk from
the network, and αC−j is the hyperparameter for θC−j . In fact, as we have
to take into consideration each possible model in Lπ

TAN , the parameters
of the models can be denoted as θv

ijk. Hence, we assume the existence of
hyperparameters αv

ijk.
• Assumption 4 : Parameter independence.

The probability of having the set of parameters θ for a given structure S
can be factorized as in Equation 7.6.

• Assumption 5 : Structure modularity.
The prior probability p(S) can be decomposed in terms of each variable
and its parents (see Equation 7.7).

Parameter independence assumes that the prior on parameters θijk for
a variable Xi depends only on local structures. This is known as parameter
modularity (Heckerman et al., 1995). Therefore, we can state that for any two
network structures S1 and S2, if Xi has the same parent set in both structures,
then p(θijk|S1) = p(θijk |S2). As a consequence, parameter calculations for a
variable Xi will be the same in every model whose structure defines that the
variable Xi has the same parent set.

Theorem 5 (Dash and Cooper, 2004). There exists, for supervised clas-

sification problems, a single model B̆ = 〈S̆, θ̆〉 which defines a joint probability
distribution p(c,x|B̆) equivalent to the joint probability distribution produced
by averaging over all TAN models. This model B̆ is a complete Bayesian
network where the structure S̆ defines the relationship between variables in
such a way that, for a variable Xi, the parent set of Xi in the model B̆ is
P̆ ai = ∪2i

v=1Pav
i .
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This theorem can be extended to clustering problems by means of the
EMA-TAN algorithm. However, the latent cluster variable prevents the exact
calculation of the model averaging and therefore the model B̆ obtained by
the EMA-TAN algorithm is not an exact model averaging over Lπ

TAN but
an approximation. Thus, the EMA-TAN algorithm provides a powerful tool
that allows to learn a single unsupervised Bayesian network model which
approximates Bayesian model averaging over Lπ

TAN .
The EMA-TAN, as well as the EMA algorithm for naive Bayes models,

is an iterative process where the two steps of the algorithm are repeated
successively until a stopping criterion is met. At the t-th iteration of the

algorithm, a set of parameters, θ̆
(t)

, for the Bayesian network model B̆(t) is
calculated. Note that, although we differentiate between the Bayesian network
models among the iterations of the EMA-TAN algorithm, the structure of the
model, S̆, is constant and only the parameter set changes. Nevertheless, even
though the obtained model is a single unsupervised Bayesian network, its
parameters are learned taking into account the MAP parameter configuration
for every model in Lπ

TAN . Thus, the resulting unsupervised Bayesian network
will incorporate into its parameters information about the (in)dependencies
between variables described by the different TAN models.

7.3.2.1 E Step (Expectation)

The E step for the EMA-TAN algorithm is identical to the E step for the
EMA algorithm except for the fact that the class of model structures for the
averaging is the class of TAN models, Lπ

TAN . Thus, this step computes the
expected sufficient statistics for each variable Xi and every model in Lπ

TAN

given the current model, B̆(t). These expected sufficient statistics are used in
the next step of the algorithm, MA, as if they were actual sufficient statistics
from a complete dataset.

Note that, due to parameter modularity, we do not actually need to cal-
culate the expected sufficient statistics for all the models in Lπ

TAN because
some of these models share the same value for the expected sufficient statis-
tics. Hence, it is only necessary to calculate the expected sufficient statistics
with different parent sets. They can be obtained as follows:

E(Nv
ijk|B̆(t)) =

N∑

d=1

p(xk
i ,Pav

i = j|x(d), B̆(t)) (7.23)

where xk
i represents the k-th value of the i-th variable. The expected sufficient

statistic E(Nv
ijk |B̆(t)) denotes, at iteration t, the expected number of cases in

the dataset D where variable Xi takes its k-th value, and the v-th parent set
of Xi takes its j-th configuration.

Similarly, we can obtain the expected sufficient statistics for the cluster
variable. This is a special case since for any model in Lπ

TAN the parent set for
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C is the same (the cluster variable does not have any parent). Therefore, we
refuse the use of super-index v in those quantities related only to C.

E(NC−j|B̆(t)) =

N∑

d=1

p(C = j|x(d), B̆(t)) (7.24)

Note that, some of the expected sufficient statistics E(Nv
ijk |B̆(t)) do not

depend on the value of C. Since we assume that there are no missing values for
the predictive variables, these values are constant throughout the iterations
of the algorithm and therefore, they are calculated only once.

7.3.2.2 MA Step (Model Averaging)

In this second step, the EMA algorithm performs the model averaging calcu-

lations which obtain a single Bayesian network model with parameters θ̆
(t+1)

.
These parameters are obtained by calculating p(c,x|D(t)) as an average over
the MAP configurations for the models in Lπ

TAN .

p(c,x|S,D(t)) ≈ αC−j + E(NC−j |B̆(t))

αC + E(NC |B̆(t))

n∏

i=1

αµi

ijk + E(Nµi

ijk|B̆(t))

αµi

ij + E(Nµi

ij |B̆(t))
(7.25)

= θ̃C−j

n∏

i=1

θ̃µi

ijk

where θ̃µi

ijk is the MAP parameter configuration for θµi

ijk (µi denotes the
parent index that corresponds to the parent set for Xi described by S),
αµi

ij =
∑ri

k=1 α
µi

ijk , E(Nij |B̆(t)) =
∑ri

k=1 E(Nijk|B̆(t)) and similarly for the
values related to C.

Considering that the structure is not fixed a priori, we should average over
all model structures in Lπ

TAN in the following way:

p(c,x|D(t)) =
∑

S

∫

p(c,x|S,θ)p(θ|S,D(t))dθ p(S|D(t)) (7.26)

Therefore, the model averaging calculations require a summation over 2nn!
terms, which are the models in Lπ

TAN .
Using the MAP approximation for the averaging over parameters given a

fixed structure, Equation 7.26 can be written as:

p(c,x|D(t)) ≈
∑

S

θ̃C−j

n∏

i=1

θ̃µi

ijk p(S|D(t))

∝
∑

S

θ̃C−j

n∏

i=1

θ̃µi

ijk p(D(t)|S) p(S) (7.27)
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As well as in the EMA algorithm for naive Bayes models, we can approx-
imate p(D(t)|S) efficiently by adapting the formula to calculate the marginal
likelihood with complete data (Cooper and Herskovits, 1992; Heckerman et al.,
1995) to our problem. Thus, we have an approximation to p(D(t)|S):

p(D(t)|S)≈ Γ (αC)

Γ (αC + E(NC |B̆(t)))

rC∏

j=1

Γ (αC−j + E(NC−j |B̆(t)))

Γ (αC−j)
·

n∏

i=1

qi∏

j=1

Γ (αµi

ij )

Γ (αµi

ij + E(Nµi

ij |B̆(t)))

ri∏

k=1

Γ (αµi

ijk + E(Nµi

ijk|B̆(t)))

Γ (αµi

ijk)

At this point, given structure modularity assumption, we are able to ap-
proximate p(c,x|D(t)) with the following expression:

p(c,x|D(t)) ≈ κ
∑

S

ρC−j

n∏

i=1

ρµi

ijk (7.28)

where κ is a constant and ρC−j and ρµi

ijk are defined in Equations 7.29 and
7.30.

ρC−j = θ̃C−j pS(C)
Γ (αC)

Γ (αC + E(NC |B(t)))

rC
Y

j=1

Γ (αC−j + E(NC−j |B
(t)))

Γ (αC−j)
(7.29)

ρ
µi
ijk = θ̃

µi
ijk pS(Xi, P a

µi
i )

qi
Y

j=1

Γ (αµi
ij )

Γ (αµi
ij + E(Nµi

ij |B(t)))
·

ri
Y

k=1

Γ (αµi
ijk + E(Nµi

ijk|B
(t)))

Γ (αµi
ijk)

(7.30)

Since we are assuming parameter independence, structure modularity and
parameter modularity, we can apply the dynamic programming solution de-
scribed in Friedman and Koller (2003), and Dash and Cooper (2004). This
process is similar to the one described in the MA step of the EMA algorithm
for naive Bayes models (see Section 7.3.1). Thus Equation 7.28 can be written
as follows:

p(c,x|D(t)) ≈ λ ρC−j

n∏

i=1

2i∑

v=1

ρv
ijk (7.31)

with λ being a constant.
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Note that the time complexity to calculate the averaging over Lπ
TAN is in

the same order complexity as the time needed to learn the MAP parameter
configuration for B̆.

We can see the similarity of the above-described Equation 7.31 with the
factorization of a Bayesian network model. Indeed the joint probability distri-
bution of the approximated Bayesian model averaging over Lπ

TAN for cluster-
ing is equivalent to a single Bayesian network model. Therefore, the parame-
ters of the model for the next iteration of the algorithm can be calculated as
follows:

θ̆
(t+1)
C−j ∝ ρC−j

θ̆
(t+1)
ijk ∝

2i∑

v=1

ρv
ijk (7.32)

7.4 Multi-start EMA and Multi-start EMA-TAN

Algorithms

The EMA algorithm for naive Bayes models and EMA-TAN algorithm are
greedy algorithms that are susceptible to be trapped in a local optimum.
The results obtained by the algorithm depend on the random initialization
of the parameters. Therefore, we propose the use of a multi-start scheme
where m different runs of the algorithm with different random initializations
are performed. Then, in order to obtain the final model from the multi-start
process we propose three different policies:

• Uniform Averaging: The resultant model of the multi-start process is ob-
tained by averaging over the m models obtained throughout the indepen-
dent runs of the EMA or EMA-TAN algorithm. Using a uniform averaging
policy, each one of the m models equally contribute to the final averaged
model.

• Averaging: The resultant model of the multi-start process is obtained by
averaging over the m models obtained throughout the independent runs of
the EMA or EMA-TAN algorithm. However, the contribution of each one
of the m models to the final model is proportional to its likelihood value.

• Best Choice: The resultant model of the multi-start process is obtained by
selecting the model with the highest likelihood value among the m models
in the multi-start process. This is not a pure Bayesian approach to the
model averaging process but it is easier to compute and in practice it may
work as well as other more complicated techniques.
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7.5 Evaluation of EMA Algorithm for Naive Bayes

Models

In this section we present experiments to evaluate several aspects of the EMA
algorithm for naive Bayes models. First, we aim to test the accuracy of the
approximation to Bayesian model averaging performed by the EMA algorithm
by comparing the results with another more accurate but more inefficient
method. Then, we evaluate the EMA algorithm as a method for soft model
selection; although the model obtained by the EMA algorithm is a naive
Bayes model, the parameters of this model should capture the (in)dependence
relationships which are present in the model that best fit the dataset. Finally,
we evaluate the performance of the EMA algorithm in clustering problems
with both synthetic and real data.

7.5.1 Testing EMA versus Brute Force

The EMA algorithm is an approximation to Bayesian model averaging of
selective naive Bayes because the existence of a latent cluster variable prevents
an exact resolution in closed form of both the averaging over parameters and
the marginal likelihood. Actually, only approximations are feasible.

The aim of this section is to demonstrate that the approximation to
Bayesian model averaging given by the EMA algorithm is comparable to
other more expensive and accurate techniques. Therefore, the EMA model
is compared to a model obtained by a brute force approach where the aver-
aging over parameters is also approximated by the MAP configuration but
the marginal likelihood is calculated by Gibbs sampling (Geman and Geman,
1984). This brute force method learns the 2n selective naive Bayes models
from the dataset and then averages them over weighted by their posterior
probabilities in order to obtain the final model. In order to compare both
EMA and brute force models, we propose a comparison test based on Monte
Carlo techniques (Shereider, 1964; Sobol, 1984).

Both models for unsupervised classification are estimated from the same
dataset. This dataset is sampled from a random selective naive Bayes model.

Since it is computationally very expensive to construct an unsupervised
model for clustering by means of a brute force approach, the comparison
between the EMA and brute force methods has only been performed for un-
supervised classification models with ten and twelve predictive dichotomic
variables. The cluster variable is also considered to take only two possible
values. On the other hand, the datasets used for the experiments contain 300
samples (N = 300). These are not very large datasets, but the number of data
samples is high enough to learn the models.

In order to learn the unsupervised model for clustering with both the EMA
algorithm and the brute force method, it is necessary to set the priors over
structures and the hyperparameters. Usually, there is no explicit information
about them. Therefore, for the experiment, we choose non-informative values
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for those parameters: αijk = 1, αi−k = 1, αC−j = 1 and pS(Xi, Pai) = 1,
pS(C) = 1 for all i, j, k.

Each one of the 2n models for the brute force approach is learned by
obtaining an approximation for its MAP parameters using the EM algorithm.
Since the EM is a greedy algorithm, we use a multi-start EM1. The more times
we run the EM algorithm, the more reliable the results are, but we have to find
an agreement between efficiency and reliability. In our experiments, the multi-
start EM runs the EM algorithm thirty times (m = 30) to learn each one of the
2n selective naive Bayes models. Finally, the brute force model is calculated as
an average over the 2n selective naive Bayes models weighted by the posterior
probability for the structure of that model, p(S|D) ∝ p(D|S)p(S).

The exact calculation for p(D|S), in a problem with missing values, is
also intractable (Cooper and Herskovits, 1992). Since we attempt to compute
a reference model to be compared with the model obtained by the EMA
algorithm, the approximation to p(D|S) must be as accurate as possible. The
most accurate approximations, but also the most time-consuming ones, are
obtained by Monte Carlo methods. In this experiment, the approximation
to p(D|S) is given by the Candidate method (Chickering and Heckerman,
1997) which is an approximation for the marginal likelihood based on Bayes’
theorem and Gibbs sampling (Geman and Geman, 1984).

The EMA, like the EM, is a greedy algorithm. Therefore, we also run
a multi-start EMA with m = 30. Since the EMA algorithm, in contrast to
the EM algorithm, does not maximize the log-likelihood score, we decide to
maintain a Bayesian methodology and obtain the final model of the multi-start
EMA algorithm by the Averaging policy described in Section 7.4.

Once the brute force and the EMA models are obtained, we measure how
different they are. This measure is given by the well-known Kullback-Leibler
divergence, which is denoted by the following formula (Kullback and Leibler,
1951; Cover and Thomas, 2006):

DKL(PBF ||PEMA) =
∑

c,x

pBF (c,x)log2
pBF (c,x)

pEMA(c,x)
(7.33)

where PBF is the probability mass function estimated with a brute force
approach and PEMA is the one estimated with the EMA algorithm. This
divergence indicates how similar PEMA is with respect to PBF .

In order to know if the difference between both models is significant, the
probability distribution of DKL is needed. This is simulated by sampling a
large number of random naive Bayes models and measuring their Kullback-
Leibler divergence with respect to PBF . In our case, we take 10, 000 naive
Bayes models with random parameters. We think this is a large enough num-
ber of models and it does not require excessive computational time. Thus, we

1 The EM algorithm is run m times and the best model among the m runs in terms
of log-likelihood is selected. This method is equivalent to the Best Choice policy
described in Section 7.4.
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can test if both probability distributions PEMA and PBF are close to each
other.

The experiment described above depends on the random initializations for
the EM and EMA algorithms. Therefore, ten independent tests (for models
with 10 and 12 predictive variables) have been performed. The results of these
tests are shown in Figures 7.2 and 7.3, respectively.

The results of the tests show that, in all of them but two, the EMA is
closer to the brute force model than 99% of the random generated models
(test with a p-value = 0.01, T99%). In fact, only in test 10 from Figure 7.2 and
test 1 from Figure 7.3, DKL(PBF ||PEMA) is greater than the test value T99%.
However, the DKL(PBF ||PEMA) value is very close to T99%, and in both tests
it is smaller than a test with a p-value = 0.05 and p-value = 0.1, respectively.

The result of the test for each model can be considered a random variable
which follows a binomial distribution B(10, 0.01). In the experiments, for each
model, we performed ten independent tests and in, at least, nine of them
the EMA model is closer to the brute force model than 99% of the random
generated models. The probability of these results is p(B(10, 0.01) ≥ 9) =
10−18. This is such a small probability that it would be very unlikely to
obtain the results shown before if the PEMA and PBF models were not close
to each other.

7.5.2 Test for Model Detection

The EMA algorithm is learned by averaging over the MAP parameter con-
figuration for all selective naive Bayes models. Thus, the higher p(S|D) is,
the more the model with structure S contributes to the model learned by
the EMA algorithm. Therefore, if we sample a dataset, D, from a selective
naive Bayes model with structure S, this is supposed to be the structure with
the highest p(S|D), that is, the MAP structure. Moreover, as the size of the
dataset increases, the peak of the posterior probability function of the struc-
tures becomes sharper at the MAP structure. Consequently, as the size of D
increases, the MAP model, which is supposed to produce the dataset, makes
a higher contribution to the EMA model and thus, the difference between this
model and the model used to generate D may decrease.

Following the idea given above, this section shows how a model learned
from a dataset by using the EMA algorithm is able to detect the independen-
cies between variables which are described by the model used to generate the
dataset. Thus, more empirical evidence about the good performance of the
algorithm is provided.

In order to perform the test, a dataset is sampled from a selective naive
Bayes model where some of the variables are independent of C. The model
learned by means of the EMA algorithm should capture these independencies
between predictive variables and C. However, as the independence between
variables is not explicitly given in the EMA model, a measure of independence
for the variables is needed. This measure of independence is obtained using the
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Fig. 7.2. Tests for models with ten predictive variables. The dashed line represents
the test with a p-value = 0.01, T99%, and the solid line represents the distance
between the EMA and brute force models, DKL(PBF ||PEMA). These same values
are given in the tables at the bottom of the figure.
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Fig. 7.3. Tests for models with twelve predictive variables. The dashed line repre-
sents the test with a p-value = 0.01, T99%, and the solid line represents the distance
between the EMA and brute force models, DKL(PBF ||PEMA). These same values
are given in the tables at the bottom of the figure.
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(a) Model with four predictive variables
where X4 is independent of C.
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(b) Model with six predictive variables where X4, and X6 are
independent of C.

Fig. 7.4. Models used in the model detection experiment.
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Fig. 7.5. Test for model detection.
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Kullback-Leibler divergence between p(Xi) and p(Xi|cj), and it is computed
as follows:

IP (Xi) =

∑rC

j=1DKL(p(Xi)||p(Xi|cj))
rC

(7.34)

This measure of independence can be used to rank the predictive variables
in terms of how independent of the cluster variable they are. Thus, it is pos-
sible to see which predictive variables are more likely to be independent of
C. Moreover, comparing the measures of independence for all the predictive
variables in the EMA model, the variables which are independent of C in the
model used to sample the dataset should obtain smaller values of IPEMA

(Xi).
In this test, two different models, which are shown in Figure 7.4, are used

to generate the datasets. The parameters for both models have been selected
in such a way that the probability distributions of p(c0, Xi) and p(c1, Xi), for
those Xi which are dependent on C, are not too closed to prevent the EMA
algorithm from detecting these dependencies in the dataset. Thus, the models
are sampled to generate datasets with different numbers of samples, and an
EMA model is learned from each one of the datasets.

The value of IPEMA
(Xi) in a model learned by the EMA is sometimes quite

noisy due to the random initialization of the parameters. Therefore, the mea-
sure of independence is given by the mean of IPEMA

(Xi) over a set of models
learned via the EMA algorithm. Specifically, we have run the EMA algorithm
thirty times in order to obtain thirty different models. Then, IPEMA

(Xi) is
given by the mean of the measures of independence of Xi over the thirty
models.

The results of the tests are shown in Figure 7.5. We can see in this figure
that, as the size of the dataset increases, the difference between IPEMA

(Xi)
for the variables dependent on and independent of C also increases. Con-
sequently, the EMA algorithm is able to detect the independencies between
variables revealed in the dataset, and the larger the dataset, the better the
EMA algorithm detects the model that generated the data.

7.5.3 Evaluation in Clustering Problems

It is not easy to validate clustering algorithms since clustering problems do
not normally provide information about the true grouping of data samples.
In general, it is quite common to use synthetic data because the true model
that generated the dataset as well as the underlying clustering structure of
the data are known. On the other hand, it is possible to use other datasets,
such as the ones coming from supervised learning problems, where the true
cluster label is also known. This way, the cluster labeling obtained with a
cluster algorithm can be compared with the real data partition. In this section,
both approaches are taken into consideration in order to evaluate the EMA
algorithm in clustering problems.
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7.5.3.1 Synthetic Data

In order to illustrate the behavior of the EMA algorithm compared to the
classical EM algorithm, we perform an exhaustive test of both algorithms
using datasets sampled from randomly generated models, which are obtained
by using a modification of the BNGenerator program (Ide et al., 2004).

For a first evaluation of the EMA algorithm in clustering problems, we
obtain random selective naive Bayes models where the number of predictive
variables vary in {4, 6, 8, 10, 20, 40}, the number of clusters in {2, 3}, and each
predictive variable can take up to five states. For each selective naive Bayes
configuration we generate 50 random models and each one of these models
is sampled to obtain different datasets of sizes 10, 20, 40, 80, 160, 320 and 640.
Multi-start EM and multi-start EMA algorithms with m = 30 are used to
learn the EM and EMA models from each dataset. These models are used
to cluster the dataset from which they have been learned. Afterwards, the
winner model is determined by comparing the data partition obtained by
the EM and EMA models with the true partition of the dataset. As the data
partitioning done by clustering methods is sensitive to aliasing (two partitions
can be the same but with different cluster labeling), we develop a comparison
method insensitive to cluster labeling. This method consists of, for each data
partition, obtaining its cluster matrix, that is, a N ×N matrix, A, where aij

with i = 1, . . . , N and j = 1, . . . , N is 1 if the i-th and j-th data samples are
classified in the same cluster and 0 otherwise. Thus, we can obtain the cluster
matrix for the true cluster labels, AReal, and for the cluster labeling obtained
by the EMA and EM models, AEMA and AEM respectively. Hence, we can
test which partition, EMA or EM, is closer to the real partition by comparing
the Hamming distance between AReal and AEMA −DH(AReal, AEMA)−, and
between AReal and AEM −DH(AReal, AEM )−.

In Table 7.1, the results from the experiments with synthetic datasets sam-
pled from random selective naive Bayes models are shown. For each model
configuration, the table describes the number of wins/draws/losses of the
EMA models with respect to the EM model in relation to the Hamming
distances between the models’ cluster matrix and AReal. We also provide in-
formation about a Wilcoxon signed-rank test used to evaluate whether the
Hamming distances DH(AReal, AEMA) and DH(AReal, AEM ) are different at
the 10% and 1% levels (we write the results in bold if the test is surpassed
with a p-value < 0.1 and inside a gray color box if the test is suprassed
with a p-value < 0.01). It can be seen that, in general, the EMA algorithm
behaves better than the EM algorithm and the differences between the Ham-
ming distances are, in most of the cases, statistically significant. However, in
the largest datasets, the differences between EMA and EM become smaller.
In fact, in some simple models, for example the model with 4 variables and
2 clusters, and the model with 6 variables and 2 clusters, the EM algorithm
beats the EMA algorithm when the datasets used to learn the models have
a high enough number of samples. We hypothesize that this is because, as
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the sample size of the dataset increases, the posterior distributions over struc-
tures and parameters become sharper, tending to a Kronecker delta function
at their MAP configuration. With enough data samples, the EM algorithm is
able to approximate this MAP model. In contrast, the EMA algorithm aver-
ages over all the possible models and, even when the MAP model contributes
the most to the final model, there are other less probable models with smaller
contributions that, all together, may add noise to the final model.

#Var #C 10 20 40 80 160 320 640
4 2 24/17/9 24/18/8 19/19/12 9/25/16 7/22/22 4/22/24 12/25/13
6 2 35/6/9 34/5/11 29/16/5 23/19/8 15/17/18 11/13/26 15/13/22
8 2 37/7/6 36/6/8 26/11/13 27/15/8 24/14/12 19/14/17 13/11/26
10 2 33/7/10 30/9/11 30/10/10 28/9/13 30/7/13 22/9/19 20/11/19
20 2 33/7/10 24/17/9 25/20/5 21/17/12 24/23/3 22/23/5 19/23/8
40 2 31/17/2 24/22/4 23/22/5 20/27/3 16/31/3 15/34/1 17/32/1
4 3 24/10/16 22/7/21 25/6/19 26/11/14 23/7/20 26/9/15 20/6/24
6 3 31/3/16 34/2/14 36/1/13 29/2/19 33/5/12 31/5/14 26/2/22
8 3 39/1/10 38/0/12 40/0/10 42/0/8 37/0/13 33/1/16 26/2/22
10 3 32/1/17 29/0/21 34/1/15 35/1/14 34/0/16 34/3/13 29/2/19
20 3 31/3/16 35/1/14 38/1/11 40/4/6 36/3/11 29/3/18 21/6/23
40 3 41/1/8 44/3/3 44/2/4 36/5/9 34/12/4 27/11/12 25/13/12

Table 7.1. Comparison of EMA and EM clustering methods in datasets generated
by selective naive Bayes models. Each position of the table indicates the number of
wins/draws/losses of the EMA models with respect to the EM models for a specific
model configuration and within a dataset size over 50 experiments. Additionally, we
write the results in bold if the test is surpassed at the 10% level and inside a gray
color box if the test is surpassed at the 1% level.

Note that the experiments described above only use selective naive Bayes
models since the EMA algorithm is based on these kinds of models. Naive
Bayes and similarly selective naive Bayes are quite simple models and the
restrictions that they present are not usually fulfilled in real problems. How-
ever, these models have been widely and successfully used in the literature
(Cheeseman and Stutz, 1996; Barash and Friedman, 2002; Domingos and Paz-
zani, 1997; Hand and You, 2001) applied to different problems even if the naive
Bayes conditions are not satisfied. Nevertheless, we would like to illustrate the
behavior of the EMA algorithm in more realistic problems. Therefore, we re-
peat the experiment using more complicated models to generate the datasets.
In this case, we do not restrict the models used to generate the datasets to
the selective naive Bayes family, but we use general Bayesian network classi-
fiers. That is, we randomly generate Bayesian networks varying the number
of variables in {4, 6, 8, 10, 20, 40}, and the maximum number of parents for
each variable in {2, 3}. Each variable can take up to five states. Then, we add
the cluster variable, which can take two or three states, and decide randomly
which predictive variables are dependent on it.

Table 7.2 shows the results for the experiments with synthetic dataset
sampled from random Bayesian network classifiers. It can be seen that, when
the Bayesian classifiers used to sample the dataset are quite complex, the
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#Var#C#Pa 10 20 40 80 160 320 640
4 2 2 35/11/4 25/22/3 13/29/8 13/27/10 12/26/12 18/18/14 17/19/14
6 2 2 31/11/8 23/21/6 14/23/13 17/23/10 12/21/17 17/15/18 10/21/19
8 2 2 30/11/9 21/22/7 12/26/12 14/21/15 15/16/19 13/16/21 19/16/15
10 2 2 27/18/5 14/19/17 20/23/7 18/19/13 13/18/19 18/20/12 20/15/15
20 2 2 19/22/9 14/21/15 19/13/18 27/11/12 24/14/12 20/8/22 21/9/20
40 2 2 16/19/15 16/15/19 20/17/13 17/13/20 20/5/25 22/10/18 26/7/17
4 2 3 31/12/7 20/24/6 18/26/6 15/24/11 12/20/18 16/22/12 13/26/12
6 2 3 36/9/5 22/17/11 15/21/14 16/24/10 18/18/14 23/18/9 21/12/17
8 2 3 34/12/4 19/21/10 11/26/13 13/23/14 17/23/10 17/16/17 12/13/25
10 2 3 24/13/13 18/18/14 21/20/9 16/15/19 16/15/19 24/6/20 22/11/17
20 2 3 13/26/11 24/13/13 20/16/14 20/12/18 20/10/20 17/11/22 10/13/27
40 2 3 17/20/13 21/9/20 18/6/26 23/9/18 20/6/24 23/7/20 18/6/26
4 3 2 27/7/16 30/4/16 28/5/17 35/1/14 25/3/23 22/2/26 22/3/26
6 3 2 36/1/13 34/3/13 31/1/18 30/8/12 29/6/15 32/5/13 27/6/17
8 3 2 33/4/13 32/0/18 39/1/10 28/3/19 24/5/21 32/0/18 27/2/21
10 3 2 30/3/17 27/3/20 29/3/18 27/4/19 27/4/19 28/4/18 26/3/21
20 3 2 32/0/18 35/2/13 36/2/12 32/2/16 29/2/19 30/0/20 32/1/17
40 3 2 26/8/16 23/2/25 26/2/22 26/2/22 26/0/24 32/2/16 29/1/20
4 3 3 30/8/12 35/3/12 29/5/16 23/8/19 24/3/23 29/3/18 23/4/23
6 3 3 38/3/9 35/3/12 31/2/17 17/9/24 24/9/17 27/8/15 21/5/24
8 3 3 30/1/19 28/4/18 27/5/18 22/4/24 25/3/22 23/3/24 21/1/28
10 3 3 35/2/13 33/3/14 29/3/18 32/4/14 30/2/18 30/3/17 28/0/22
20 3 3 31/5/14 36/4/10 29/1/20 31/5/14 31/2/17 23/2/25 26/1/23
40 3 3 21/7/22 22/7/21 24/1/25 28/0/22 24/2/24 24/0/26 22/0/28

Table 7.2. Comparison of EMA and EM clustering methods in datasets generated
by Bayesian network classifiers. Each position of the table indicates the number of
wins/draws/losses of the EMA models with respect to the EM models for a specific
model configuration and within a dataset size over 50 experiments. Additionally, we
write the results in bold if the test is surpassed at the 10% level and inside a gray
color box if the test is surpassed at the 1% level.

behavior of both the EMA and the EM algorithms is very similar. This may be
because what we learn with both EMA and EM is a naive Bayes model and the
dataset contains interrelations between variables which are too complex to be
modeled with the restrictions of a naive Bayes. Moreover, the dataset may not
have enough samples to capture the complexity of the model that generated
the data. On the other hand, except for the most complex models used in
the experiments, the EMA algorithm performs better than the EM algorithm.
Nevertheless, the differences in the Hamming distances of the cluster matrices
for both models are statistically significant in only some experiments.

7.5.3.2 DNA Microarray Data

Nowadays, it is very widespread to use DNA microarrays to monitorize the
expression level of thousands of genes at the same time. Although the popular-
ization of different microarray techniques has decreased the experimentation
cost, it is still quite expensive. Therefore, microarray datasets normally con-
tain thousands of variables (expression levels of genes) and only a few cases
(experiments). Since model averaging techniques account for model uncer-
tainty, they are preferable when only a few data samples are available, which
is precisely the case of DNA microarray data. Recently, some model averag-
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ing methods have been proposed to deal with both supervised classification
(Yeung et al., 2005) and clustering (Medvedovic and Guo, 2005; Vogl et al.,
2005) in DNA microarray problems.

The famous AML/ALL-leukemia dataset from the Whitehead Institute
(Golub et al., 1999) is one of the first problems that appears in the literature
where machine learning techniques are used to classify data from DNA mi-
croarrays. The original dataset consists of 72 samples from patients diagnosed
with acute lymphoblastic leukemia, ALL (47 samples), and acute myeloid
leukemia, AML (25 samples). Each one of these data samples contains the
expression value of 7, 129 probes, corresponding to 6, 817 human genes, which
were obtained by means of high-density oligonucleotide microarrays produced
by Affymetrix.

The use of all the 7, 129 variables to learn a clustering model seems, in
principle, nonsense because not all the variables in the original dataset are
relevant for clustering purposes and they may blur the real data aggregation.
Since the real class label of each data sample is known in this problem, Golub
et al. (Golub et al., 1999) propose to filter out variables by selecting only
the fifty most informative ones in relation to their correlation with the class
variable. This approximation is, in general, unfeasible for clustering problems
since the true class label is unknown. By contrast, the EMA algorithm provides
a powerful tool that integrates an implicit Bayesian variable selection in the
learning process of the clustering model. Thus, although all the variables are
included in the clustering model, only the relevant ones are taken into account
when clustering the data.

For the experiment, we use all the 7, 129 variables and learn clustering
models with both multi-start EM and multi-start EMA algorithms. In the
case of the EMA algorithm we use the three different policies of multi-start
introduced in Section 7.4.

Mean Standard Deviation

multi-start EM 58.86 6.53
multi-start EMA (UA) 79.31 7.13
multi-start EMA (Av) 85.28 10.6
multi-start EMA (BC) 82.50 3.01
SOM 89.47 - -

Table 7.3. Estimated accuracy for clustering methods with Leukemia dataset. The
three multi-start EMA policies are used: best choice (BC), uniform averaging (UA)
and averaging (Av).

Table 7.3 shows the estimated accuracy for the multi-start EM and multi-
start EMA algorithms using, in both cases, m = 100. This estimated accu-
racy value correspond to the percentage of correct classified samples that can
be calculated by comparing the cluster labeling obtained by the multi-start
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EM and multi-start EMA algorithms with the real cluster partition of the
leukemia dataset which, in this specific problem, is known. The table also
provides the accuracy value reported in Golub et al. (Golub et al., 1999),
where self-organizing maps (SOM) (Kohonen, 2001) are used to cluster the
leukemia dataset (the standard deviation value is not reported in the paper).
Note that the results obtained by the EMA algorithm can compete with the
ones obtained by Golub et al. even when the EMA algorithm uses all the
7, 129 variables, and the SOM only the fifty most informative variables with
respect to the class. That is, in this particular case, the EMA algorithm is
able to detect the irrelevant variables in the problem and obtain a reasonable
estimated accuracy value. In contrast, the multi-start EM algorithm does not
have enough data samples to estimate the MAP model and it may consider
all the variables equally important for clustering purposes. Thus, the EM al-
gorithm is influenced by irrelevant variables which leads it to obtain a low
value for estimated accuracy.

7.6 Evaluation of EMA-TAN Algorithm

In this section we present experiments to evaluate the performance of the
EMA-TAN algorithm with synthetic generated data by comparing it with the
classical EM algorithm and with the EMA algorithm for naive Bayes models
(Section 7.3.1). Similarly to the experiment presented in Section 7.5.3, for
EMA-TAN evaluation we obtain random TAN models where the number of
predictive variables vary in {2, 4, 8, 10, 12, 14}, each predictive variable can
take up to three states and the number of clusters is set to two. For each TAN
configuration we generate 100 random models and each one of these models
is sampled to obtain different datasets of sizes 40, 80, 160, 320 and 640. In the
experiments, we compare the multi-start EMA-TAN (called mEMA-TAN for
convenience) with three different algorithms:

• mEM-TAN: a multi-start EM that learns a TAN model by using, at each
step of the EM algorithm, the classical method proposed in Friedman et al.
(1997) adapted to be used within the EM algorithm.

• mEM-BNET: a multi-start EM algorithm used to learn the MAP param-
eters of a complete Bayesian network for a given order π.

• mEMA: the multi-start model averaging of naive Bayes for clustering.

Note that, for a given order π, both mEMA-TAN and mEM-BNET models
share the same network structure but their parameter sets are calculated in
a different way. The number of multi-start iterations for both multi-start EM
and multi-start EMA is m = 100.

Since the datasets are synthetically generated, we are able to know the
real ordering among variables. Nevertheless, we prefer to use a more general
approach and assume that this order is unknown. Therefore, we use a ran-
dom ordering among predictive variables for each mEMA-TAN model that
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we learn. As the mEM-BNET algorithm also needs an ancestral order among
predictive variables, in the experiments we use the same random ordering for
any pair of models (mEMA-TAN vs. mEM-BNET) that we compare.

Every model is used to cluster the dataset from which it has been learned.
In the experiments, we compare mEMA-TAN vs. mEM-TAN (Table 7.4),
mEMA-TAN vs. mEM-BNET (Table 7.5) and mEMA-TAN vs. mEMA (Ta-
ble 7.6). For each test, the winner model is obtained by comparing the data
partitions obtained by both models with the true partition of the dataset
using the method described in Section 7.5.3. Thus, the model with the best
estimated accuracy (percentage of correctly classified instances) is the win-
ner model. In Tables 7.4 7.5 and 7.6, the results from the experiments with
random TAN models are shown. For each model configuration, the tables
describes the number of wins/draws/losses of the mEMA-TAN models with
respect to mEM-TAN, mEM-BNET or mEMA models on basis of the esti-
mated accuracy of each model. We also provide information about a Wilcoxon
signed-rank test used to evaluate whether the accuracy estimated by two dif-
ferent models is different at the 10% and 1% significance level. We write the
results shown in Tables 7.4,7.5 and 7.6 in bold if the test is surpassed at the
10% significance level and inside a gray color box if the test is surpassed at
the significance 1% level. It can be seen that, in general, the mEMA-TAN
models behave better than the others and the differences between estimated
accuracy are, in most of the cases, statistically significant.

We can see that the compared models obtain very similar results when
they have a few predictive variables. This is because the set of models that
we are averaging over to obtain the mEMA-TAN model is very small. There-
fore, it is quite possible that other algorithms such as mEM-TAN select the
correct model. Hence, in some experiments with the simplest models (mod-
els with 2 predictive variables), mEMA-TAN algorithm significantly lost with
the other algorithms. However, when the number of predictive variables in the
model increases and the dataset size is relatively big (the smallest datasets are
not big enough for a reliable estimation of the parameters) the mEMA-TAN
considerably outperforms any other model in the test.

The experimental results from this section reinforce the idea that the re-
sults of the Bayesian model averaging outperform other methods when the
model that generated the data is included in the set of models that we are
averaging over.

7.7 Conclusions and Future Work

In this chapter we have reviewed Bayesian model averaging and the difficulties
of using this approach in clustering problems. Additionally, new algorithms
are proposed in order to deal with efficient calculations of Bayesian model
averaging under restricted class of Bayesian network models such as naive
Bayes and TAN. The EMA and EMA-TAN algorithm are efficient in the sense
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#Var 40 80 160 320 640

2 11/71/18 9/71/20 15/68/17 18/70/12 15/63/22
4 37/24/39 33/17/50 50/8/42 48/5/47 46/3/51
8 51/6/43 57/4/39 65/6/29 74/4/22 71/1/28
10 48/5/47 59/4/37 55/10/35 64/6/30 67/4/29
12 54/4/42 65/3/32 65/4/31 69/4/27 83/2/15
14 59/8/33 68/6/26 75/2/23 76/4/20 76/6/18

Table 7.4. Comparison between mEMA-TAN and mEM-TAN algorithm in datasets
generated by random TAN models. Each position of the table indicates the number
of wins/draws/losses of the mEMA-TAN models with respect to the mEM-TAN
models for a specific number of predictive variables and within a dataset size over
100 experiments. Additionally, we write the results in bold if the test is surpassed
at the 90% level and inside a gray color box if the test is surpassed at the 99% level.

#Var 40 80 160 320 640

2 24/51/25 29/35/36 33/34/33 28/35/37 41/29/30
4 54/11/35 51/8/41 59/8/33 49/6/45 57/1/42
8 59/8/33 64/5/31 81/1/18 83/0/17 91/0/9
10 67/7/26 76/0/24 82/2/16 84/0/16 94/0/6
12 66/5/29 86/1/13 80/0/20 91/0/9 89/0/11
14 74/2/24 83/1/16 92/1/7 92/0/8 96/0/4

Table 7.5. Comparison between mEMA-TAN and mEM-BNET algorithm in
datasets generated by random TAN models. Each position of the table indicates the
number of wins/draws/losses of the mEMA-TAN models with respect to the mEM-
BNET models for a specific number of predictive variables and within a dataset
size over 100 experiments. Additionally, we write the results in bold if the test is
surpassed at the 90% level and inside a gray color box if the test is surpassed at the
99% level.

#Var 40 80 160 320 640

2 21/53/26 24/41/35 24/48/28 23/45/32 25/45/30
4 47/14/39 49/6/45 49/10/41 50/5/45 56/3/41
8 52/10/38 58/4/38 80/4/16 90/0/10 89/0/11
10 48/13/39 55/8/37 69/6/25 81/1/18 88/1/11
12 55/8/37 78/6/16 79/1/20 88/2/10 88/0/12
14 55/11/34 68/7/25 81/3/16 84/3/13 92/0/8

Table 7.6. Comparison between mEMA-TAN and mEMA algorithm in datasets
generated by random TAN models. Each position of the table indicates the number
of wins/draws/losses of the mEMA-TAN models with respect to the mEMA models
for a specific number of predictive variables and within a dataset size over 100
experiments. Additionally, we write the results in bold if the test is surpassed at the
90% level and inside a gray color box if the test is surpassed at the 99% level.
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that the approximation to Bayesian model averaging is performed in the same
time complexity needed to obtain the ML or MAP parameters by means of the
EM algorithm. Moreover, we have shown that the proposed approximation to
Bayesian model averaging of naive Bayes models for clustering is equivalent
to a single naive Bayes model where the parameters of the model capture the
relationship between variables from the selective naive Bayes models used in
the averaging. By contrast, the proposed Bayesian model averaging of TAN
models for clustering does not result in a TAN model but in a complete
Bayesian network model.

With respect to the empirical evaluation of the algorithms, on the one
hand, we evaluate the EMA algorithm. We have provided empirical evidence
on the fact that the approximation to model averaging obtained by the EMA
algorithm is, actually, comparable to model averaging over MAP parameter
configurations for selective naive Bayes. Moreover, the EMA algorithm is able
to detect the structure of the model that has generated the data. Therefore,
the method proposed in this chapter can also be regarded as a Bayesian ap-
proach to unsupervised feature subset selection. Additionally, we performed
an exhaustive test to illustrate the behavior of the EMA algorithm in clus-
tering problems. We found that the EMA algorithm is a powerful learning
algorithm that may be very useful for clustering problems where there are
lots of variables (many of them probably irrelevant for clustering purposes)
and only a few data samples.

On the other hand, we present an empirical evaluation of the EMA-TAN
algorithm. This evaluation is not as exhaustive as the evaluation of the EMA
algorithm for naive Bayes: the experiments are based only on synthetic data
generated by TAN models. From them, we can conclude that, at least when
the model that generated the dataset is included in the set of models that we
average over, the averaging over TAN models outperforms other methods that
select a single model. However, a more exhaustive evaluation for the EMA-
TAN algorithm is interesting for future work in order to know the behavior of
the Bayesian model averaging of TAN models for clustering when the dataset
is generated from complex models. Nevertheless, the empirical evaluation of
the EMA-TAN algorithm is limited by the complexity of the learned model.
Note that the resultant model from the EMA-TAN algorithm is a complete
Bayesian network model and it is computationally very hard to learn that
model for problems with many predictive variables. In order to overcome this
situation, an approximation for the Bayesian model averaging of TAN models
for clustering can be obtained by restricting the final model to a maximum
of k possible parents for each predictive variable. Thus, the calculations will
be more efficient making feasible the use of the EMA-TAN algorithm in real
problems with a reasonable number of predictive variables.

The EMA-TAN algorithm needs an ordering among the predictive vari-
ables. The use of a random ordering is the simplest but, obviously, not the
best choice. For instance, Dash and Cooper (2004) adopted a kind of greedy
search for selecting a node order for model averaging. Another alternative



7.7 Conclusions and Future Work 133

is the use of heuristic search methods (Larrañaga et al., 1996). However, a
Bayesian approach can be obtained by averaging over several node orders
(Hwang and Zhang, 2005). This averaging over several node orders can be
extended to clustering problems in order to overcome the dependence on a
single node order.

Another major open question is the convergence properties of the EMA
and EMA-TAN algorithms. These algorithms attempt to iteratively approxi-
mate the Bayesian model averaging model. Hence, the distance between the
model learned by the algorithms and the Bayesian model averaging model
should decrease at each iteration. For future work, it would also be very in-
teresting to prove the monotonicity of the EMA and EMA-TAN in terms of
how this distance decreases throughout the iterations of the algorithms. Ad-
ditionally, another theoretical point of interest for future studies could be the
derivation of an upper bound for the approximation error of the model pro-
vided by the EMA and EMA-TAN algorithms in terms of the dataset size and
the number of parameters in the model.

Probably one of the limitations for the EMA and EMA-TAN algorithms
is that the number of clusters is assumed to be known. Although it is not
very usual to know in advance the number of clusters, there are a lot of
clustering algorithms (K-means, SOM, EM, etc) with the same limitations.
In the literature, we can find several proposals to overcome this problem.
For instance, we can learn models with a number of clusters from rCmin

to
rCmax

and select the best model according to a validity index (Milligan and
Cooper, 1985). Furthermore, there are some other techniques proposed to
learn the dimensionality of a hidden variable in a Bayesian network classifier.
For instance, Elidan and Friedman (2001) proposes a method based on the
EM algorithm where the model starts with a maximal number of clusters,
which are merged in a greedy manner to obtain the final model. Additionally,
Karciauskas et al. (2004) proposes another method also based on the EM
algorithm, where it is not only possible to merge two states of the cluster
variable but also to split a cluster into two new different states. It may be very
interesting to use these methods in conjunction with the EMA or EMA-TAN
algorithm to allow an automatic determination of the number of clusters.

Finally, the expectation model averaging method can be extended to av-
erage over more complex model structures in order to capture more complex
relationships in the data.





Part IV

Application in Population Genetics





8

Inference of Population Structure Using

Genetic Markers

DNA polymorphisms are variations in DNA sequence along individuals within
species. Polymorphisms between individuals can arise through several mecha-
nisms which include single nucleotide changes (SNPs), deletions and insertions
of nucleotides and variable numbers of short nucleotide sequence repeats (mi-
crosatellites). All these polymorphisms occurred during the history of species
and are inherited among generations.

Worldwide human population is usually defined in terms of subjective as-
pects such as language, culture, physical appearance or geographic location.
However, human populations also tend to be genetically distant. Genetic dif-
ferences are caused by a fairly independent evolution under population genetic
forces, such as mutation, recombination, random drift and selection. This vari-
ation within and between populations can be observed at genetic marker lo-
cations. Recent studies using a variety of genetic markers, have shown that
individuals sampled worldwide fall into clusters that roughly correspond to
continental lines as well as to self-identifying racial groups (Rosenberg et al.,
2002; Bamshad et al., 2003; Rosenberg et al., 2005; Corander and Marttinen,
2006).

The information about population structure, namely population stratifi-
cation and admixture, is useful not only in evolutionary studies or subspecies
classification (Pritchard et al., 2000b; Rosenberg et al., 2002) but also in as-
sociation studies of disease genes (Sillanpää et al., 2001; Patterson et al.,
2004; Riddle et al., 2006; Price1 et al., 2006). Association studies often use a
case-control design to identify genetic variants related to a specific disease by
comparing allele frequencies between unrelated individuals that are affected
and those unaffected. However, the presence of population stratification can
lead to spurious allelic association between candidate marker and a phenotype
(Pritchard et al., 2000a; Cardon and Palmer, 2003).

From a machine learning point of view, the inference of population struc-
ture can be seen as a clustering process where individuals are assigned to their
population of origin according to their DNA polymorphisms. In the literature,
two main clustering approaches to the inference of population structures can
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be found: distance-based methods and model-based methods. Distance-based
methods use pairwise distances between individuals to obtain a clustering
partition of the population (Bowcock et al., 1994). These methods are highly
dependent on the selected distance measure and therefore it is very difficult
to know if the obtained clustering partition is meaningful. On the other hand,
model-based clustering assumes that there is a generative probabilistic model
underlying the genetic information of the individuals. Another key modeling
assumption is linkage and Hardy-Weinberg disequilibrium. Since these models
are based on probability theory, a large amount of methods from statistical
learning, sampling theory and Bayesian statistics can be used. Bayesian sta-
tistical methods based on Markov chain Monte Carlo (MCMC) are commonly
used for the inference of population structure. Particularly, STRUCTURE
(Pritchard et al., 2000b; Falush et al., 2003) is one of the most widely used
algorithms based on MCMC. However, there are other proposals such as PAR-
TITION (Dawson and Belkhir, 2001), BAPS 2 (Corander et al., 2004; Coran-
der and Marttinen, 2006), a spatial statistical model for landscape genetics
proposed by Guillot et al. (2004), or the learning of mixtures of trees (Kollin
and Koivisto, 2006). Additionally, there are other algorithms, for instance
methods based on the EM algorithm such as PSMIX (Wu et al., 2006), or
based on information theory (O’Rourke et al., 2005).

Even when high-throughput technologies offer the possibility of measur-
ing a large number of polymorphisms simultaneously, it has sometimes been
observed, for certain ancestry inference procedures, that accuracy of infer-
ence does not necessarily increase as markers are accumulated. Indeed, in an
increasing number of species, the number of markers from which allele frequen-
cies are available exceeds those required for accurate assignments. That is, it
is possible to find robust clustering patterns by using a panel with only a part
of the markers which are available (Turakulov and Easteal, 2003; Rosenberg
et al., 2003; Rosenberg, 2005). Thus, not only may the accuracy and efficiency
of the population inference method be improved but also the genotyping cost
reduced. Nevertheless, there is not a clear criteria to select the set of markers
needed to obtain a robust clustering partition. Furthermore, the fact that not
all the markers available are needed, suggests that there is redundant informa-
tion and/or markers that are not relevant to cluster the individuals into their
population of origin. This redundant and irrelevant information may damage
the ability of the clustering methods to infer the population structure.

In this chapter, we adapt the multi-start Expectation Model Averaging
(multi-start EMA) algorithm from Section 7.3.1 to infer the structure of a
population. The Bayesian model averaging process performed by the EMA
algorithm incorporates a kind of implicit feature selection in the model. There-
fore, we can use the information contained in this model to filter out those
genetic markers which are considered irrelevant for obtaining the population
structure. The information about relevant markers may be useful in many
other genetic studies. Hence, we propose a two-step test based on mutual in-
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formation that can be used to retrieve this information from the clustering
model.

8.1 Notation in the Problem Context

The marker loci are denoted by X = {X1, . . . , Xn} and the cluster vari-
able, C, represents the population grouping of the N polyploid individu-
als D = {x(1), . . . ,x(N)}. Since we would like to use the proposed method
with human genetic data, from now on we assume diploid data. Therefore
the d-th individual of the population is characterized by n genetic markers,

x(d) =
(

x
(d)
1 , . . . , x

(d)
n

)

and each marker Xi, with i = 1, . . . , n, contains infor-

mation for two alleles x
(d)
i = {x(d),h1

i , x
(d),h2

i }. Capital letters, Xi, represent a
marker locus and small letters, xi, denote a specific allele value for the marker
locus.

The model underlying the population structure is assumed to be a naive
Bayes. However, the learning process performed by the multi-start EMA in-
cludes a kind of implicit selection of relevant marker loci in the model. We
say that it is an implicit selection because all the markers are included in the
naive Bayes model learned by the multi-start EMA, but the learning process
gives rise to the fact that not all the markers have the same significance when
obtaining the population structure.

8.2 Modification of the EMA algorithm

The aim of the algorithm is to obtain a clustering model that provides a
posterior distribution over the dataset and thus, allows to infer the popu-
lation structure of the individuals under study. For this purpose, we adapt
the EMA algorithm introduced in Section 7.3.1 to deal with polyploid 1 and
missing data. Thus, we provide a useful and realistic tool for the inference of
population structure.

The parameters of the model θ̆
(t)

=
(

θ̆
(t)
ijk, θ̆

(t)
C−j

)

, in the context of the

inference of population structure, denote the frequency of every allele k at

marker Xi in a population j, θ̆
(t)
ijk , and the prior probability of each popula-

tion j, θ̆
(t)
C−j . In order to calculate these parameters, the algorithm takes into

account the possibility that each marker Xi can be relevant or irrelevant for
the inference of the population structure. In the calculations, the frequency at
markerXi of the allele k in population j when markerXi is considered relevant

1 Although diploid data are assumed in this work, the algorithm is parametrized
to be used with any ploidy. The ploidy being the number of homologous sets of
chromosomes in a biological cell.
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is represented as θijk . However, if it is considered irrelevant, we take into con-
sideration the overall frequency of allele k, represented as θi−k. Additionally,
all the assumptions from Section 7.3.1 but the complete dataset assumption
are needed to perform the model averaging calculations efficiently. In order to
relax the complete dataset assumption and in order to use the EMA algorithm
with polyploid data, the E step from the EMA algorithm must be modified.
Therefore, the E step is similar to the one described in Section 7.3.1 in the

sense that in this step we compute, given the current model parameters θ̆
(t)

,
the expected number of individuals from a population j that present allele
k at the i-th marker when the marker is considered relevant for clustering

purposes, E(Nijk|θ̆
(t)

), or irrelevant E(Ni−k|θ̆
(t)

), and the expected number

of individuals classified into population j, E(NC−j |θ̆
(t)

). However, expected
sufficient statistics are now computed as follows:

E(Nijk|θ̆
(t)

) =

N∑

d=1

p(cj , xk,h1

i |x(d), θ̆
(t)

) + p(cj , xk,h2

i |x(d), θ̆
(t)

)

E(Ni−k|θ̆
(t)

) =

N∑

d=1

p(xk,h1

i |x(d), θ̆
(t)

) + p(xk,h2

i |x(d), θ̆
(t)

)

E(NC−j|θ̆
(t)

) =
N∑

d=1

p(cj |x(d), θ̆
(t)

) (8.1)

Note that, as the structure of the model is constant throughout the itera-
tions of the algorithm, we neglect the structure in the notation and only the

parameters are used. Moreover, we abuse the notation by using cj and x
k,hg

i ,
with g = 1, 2, to denote the fact that the cluster variable C takes the j-th
value and marker Xi takes the k-th value for the genetic copy hg respectively.
Although we avoid the use of superscript d in order to clarify the notation, the

information contained in cj and x
k,hg

i is assumed to belong to the d-th individ-
ual. Moreover, for a simpler notation, when we write x, we assume that each
marker Xi takes its k-th allele value. Note that, both copies of the genetic in-
formation for each marker, xi = {xk,h1

i , xk,h2

i }, are taken into account for the

calculation of E(Nijk|θ̆
(t)

) and E(Ni−k|θ̆
(t)

). In the original EMA algorithm,

as missing values were not allowed, the values of E(Ni−k|θ̆
(t)

) were constant
throughout the iterations of the algorithm. However, the current modification
proposed in this chapter allows the presence of missing data and therefore not

only the value of E(Nijk|θ̆
(t)

) and E(NC−j|θ̆
(t)

) but also E(Ni−k|θ̆
(t)

) may
change at each iteration.

The calculations for the MA step of the EMA algorithm are exactly the
same as the ones described in the EMA algorithm from Section 7.3.1. Addi-
tionally, for the multi-start EMA algorithm we adopt the best choice policy,
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where the best model, in terms of likelihood, among the m models calculated
by the multi-start process, is selected to be the final model (see Section 7.4).

8.2.1 Selecting the Most Relevant Markers for Population
Inference

The model averaging process performed by the EMA algorithm can also be
perceived as an implicit unsupervised feature selection that is incorporated
in the final model. In fact, although the EMA algorithm, and consequently
the multi-start EMA, obtains a naive Bayes model where all the maker loci
are independent given population assignment, the parameters of the resultant
model are calculated by a model averaging over selective naive Bayes. Thus,
these parameters should reflect the significance of each marker for the inference
of population structure.

In this section we propose a two-step test that can be used to obtain
information about relevant markers that is implicitly contained in the final
naive Bayes model calculated by the multi-start EMA. This test is based on
mutual information. It is known (Pardo, 1997; Cover and Thomas, 2006) that
the statistic 2NI(Xi, C), where I(Xi, C) is the mutual information between
Xi and C, asymptotically follows, under the null hypothesis of independence
between Xi and C, a Chi-square probability distribution with (ri −1)(rC −1)
degrees of freedom. In our case, ri is the number of different alleles that a
marker Xi can present and rC the number of clusters.

The mutual information between a marker Xi and the cluster variable,
or the mutual information between two markers Xi and Xi′ with i 6= i′ can
be calculated using the naive Bayes model obtained by the multi-start EMA.
Thus, a Chi-square test can be performed to decide which marker loci are
relevant for the clustering process. In the first step, a test threshold prel is set
and a Chi-square test is used to filter out those markers which are considered
not relevant for clustering purposes. This first step selects the relevant markers
but the set of selected markers may contain redundant information. As a
consequence, we develop a second step to filter out redundant information by
again using a Chi-square test with a test threshold pred. In this second step
the pairwise mutual information of the markers selected in the first step is
calculated and it is used to decide whether or not two markers are redundant.
Figure 8.1 describes the two-step algorithm to obtain the set of markers, Xrel,
which are relevant to obtain the underlying population structure.

The thresholds prel and pred can be used to control the number of selected
markers. On the one hand, the higher the prel value is, the more markers are
selected as relevant for clustering. On the other hand, as pred decreases, the
number of markers considered redundant increases and therefore, the final
number of selected markers is smaller.
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Xrel = (X1, . . . , Xn)

– STEP 1 –

for i = 1 to n

if 2NI(Xi, C) < χ2
(ri−1)(rC−1);1−prel

remove Xi from Xrel

end if
end for

– STEP 2 –

for all Xi, Xi′ with Xi, Xi′ ∈ Xrel and i 6= i′

if 2NI(Xi, Xi′) < χ2
(ri−1)(ri′−1);1−pred

if I(Xi, C) < I(Xi′ , C)
remove Xi from Xrel

else
remove Xi′ from Xrel

end if
end if

end for

Fig. 8.1. Pseudo-code for Marker Selection Algorithm.

8.2.2 Number of Clusters and Genetic Distance

The multi-start EMA algorithm requires the specification of the number of
clusters underlying the population. Since the real number of groups is usually
unknown, we propose to investigate the number of subpopulations by evalu-
ating runs of the algorithms with a different number of clusters. The different
configurations for the number of clusters can be compared by using the ge-
netic distance FST . This genetic distance is a measure of the dissimilarity of
genetic material between different species or individuals of the same species
(Reynolds et al., 1983; Weir, 1996), and it can be interpreted as the propor-
tion of the total genetic variance contained in subpopulations relative to the
total genetic variance.

FST metric is computed as FST = −ln
(

1 −
P

i ai
P

i(ai+bi)

)

.The calculations

of ai and bi are taken from (Reynolds et al., 1983) and adapted to our specific
notation:

ai =
2
[
∑

j NθC−j

∑

k(θijk −∑j θijk)2 − bi(rC − 1)
]

2N(rC − 1)(1 −∑j θ
2
C−j)

bi =
2
∑

j

(

NθC−j(1 −∑k θ
2
ijk)
)

2N − rC
(8.2)
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The FST distance gives some intuition about how far the analyzed sub-
populations are. Certainly, the quantity can range from 0 to 1 and it increases
as the sample allele frequencies of individuals from different subpopulations
diverges. Since we aim to obtain clusters which represents well differentiated
populations, the FST may be a good metric to evaluate the quality of the
clustering partition from a biological point of view. Therefore, in order to
decide the number of clusters, we propose to compare the mean FST metric
over a set of ten independent runs among experiments with several numbers
of clusters. Additionally, it is possible to perform a Mann-Whitney test to
decide if the differences in the FST metric are statistically significant. Thus,
we may be able to decide the proper number of clusters in the dataset.

8.3 First Approach to the Inference of Population

Structure: A Toy Example

In order to show how the characteristics of the EMA algorithm can fit prop-
erly to the population substructure problem, we firstly use the toy example
introduced in (O’Rourke et al., 2005). The dataset for this toy example is
composed of individuals represented by 50-character bit-strings. We generate
three ancestral sequences with relative Hamming distances 2, 3 and 5. Each
ancestral sequence is used to generate a set of 19 new clone individuals in
which random mutations may happen at each position of the string with a
mutation rate 0.05. Thus, we obtain 60 individuals grouped into three differ-
ent populations with an expected Hamming distance of 2.5 between a mutant
and its ancestral sequence. The individuals from the three different popu-
lations are differentiated by 5 positions of the sequence and the rest of the
positions may only differ from one individual to another because of random
mutations. In fact, it is enough with only 2 of the 5 positions to differentiate
between individuals from the three populations because there is redundant
information.

We use a multi-start EMA algorithm with ǫ = 0.01 and m = 1000 runs in
the multi-start process to cluster the 60 individuals into 3 clusters. Since the
EMA algorithm is not deterministic, we perform 10 runs of the multi-start
algorithm that, on average, classify 95% of the sequences into their original
population with null standard deviation. Moreover, the naive Bayes model
obtained by the multi-start EMA at each run is used to obtain the set of
relevant positions to decide the clustering membership. The test described
in Section 8.2.1 with parameters prel = 0.01 and pred = 0.01 is used to
obtain these relevant positions. All the 10 runs yield the selection of only two
positions of the five positions that differentiate between the three populations.
Thus, the algorithm correctly selects the minimum number of positions to
differentiate between populations.

Moreover, the STRUCTURE software (Pritchard et al., 2000b) with de-
fault parameters and 10, 000 models for the burning period and also 10, 000
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iterations to learn the model is able to classify, on average over ten runs,
only 79.64% of the sequences into their population of origin with standard
deviation 9.91%.

The proposed toy example shows that the EMA algorithm presents a good
behavior for clustering sequences from different populations and where ran-
dom mutation across the sequence positions may happen. In the following
sections we apply the EMA algorithm to real datasets.

8.4 Inference of Population Structure using Single

Nucleotide Polymorphisms

For this experiment, we use the dataset of common SNPs reported in Hinds
et al. (2005). This dataset contains about 1.5 million SNPs uniformly dis-
tributed across the human genome and which are common to, at least, in-
dividuals from the three human populations under study: European, African
and Asian. The data came from the genotype of 71 unrelated individuals: 24
European-American, 23 African-American and 24 Han-Chinese from the Los
Angeles area. This data is publicly available from the NCBI’s SNP database
(dbSNP) build 123 ascension numbers ss23145044 to ss24731426.

Following the experimental description from (O’Rourke et al., 2005), and
in order to avoid linkage disequilibrium from proximity in the genome, we only
use every thousandth SNP, leaving a total of 1, 520 marker loci. Although the
EMA algorithm is able to deal with polyploid data, we follow the approach to
the problem presented in O’Rourke et al. (2005). Therefore, each individual is
split in two haploid sequences belonging to the same population. Hence, the
dataset is made up of 142 sequences with 1, 520 SNPs each. On the other hand,
this dataset with 1, 520 SNPs contains information about SNPs from all over
the human genome. However, in other real problems, not all this information
is always available. Sometimes only SNPs from one or several chromosomal
segments are provided and then, the population substructure is more difficult
to retrieve. In order to simulate these situations, we split the dataset into 19
datasets with only 80 SNPs. In the experiments we refer to the dataset that
contains all the 1, 520 SNPs as dsSNPs. The smaller datasets with 80 SNPs
are denoted as ds1, . . . , ds19.

Table 8.1 shows the percentage of individuals, on average over 10 indepen-
dent runs, correctly assigned to their population of origin using both multi-
start EMA and STRUCTURE algorithms for each dataset. The parameters
used for both algorithms are the same as those used in the toy example. A
Man-Withney test at 0.01 level is performed to check if the difference between
the two algorithms is statistically significant. Those values which are signif-
icantly better are written in bold in Table 8.1. We can see that the results
obtained by the multi-start EMA algorithm outperform the STRUCTURE
software, and the differences are statistically significant for all the datasets.
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STRUCTURE EMA
Dataset Mean Std Mean Std

ds1 87.28 0.55 95.07 0.47
ds2 88.27 1.35 93.24 0.36
ds3 88.48 0.48 93.38 1.49
ds4 91.27 0.34 95.77 0.00
ds5 83.75 7.67 93.94 0.36
ds6 84.53 0.51 86.13 0.48
ds7 92.20 0.25 96.48 0.00
ds8 74.79 2.66 82.75 2.11
ds9 81.86 0.62 86.06 1.78
ds10 85.28 0.74 89.08 1.11
ds11 87.25 0.38 90.14 0.00
ds12 89.59 0.35 91.55 0.00
ds13 90.72 0.38 94.37 0.00
ds14 89.41 0.26 95.99 0.48
ds15 86.08 0.30 90.07 0.52
ds16 84.96 0.84 93.45 0.48
ds17 88.34 0.17 93.52 0.30
ds18 81.16 0.53 86.55 2.92
ds19 82.65 0.86 86.62 0.00

Mean over ds1-ds19 86.20 — 91.27 —

dsSNPs 96.78 0.09 100 0.00

Table 8.1. Percentage of correctly assigned individuals to their population of origin
(mean and standard deviation over 10 runs) using both EMA and STRUCTURE
algorithms.

The SSCC method proposed in O’Rourke et al. (2005) also obtains 100% of
correct classications for dsSNPs dataset. In the case of the dataset with only
80 SNPs, only the mean value over the 19 datasets is reported in the paper.
The multi-start EMA algorithm obtains, on average over the 19 datasets,
91.27% of correct classified individuals. This figure is very close to the precision
obtained by the SSCC, 91.80%

Another important characteristic of the EMA algorithm is its ability to
select the set of relevant SNPs for clustering purposes. Using the dsSNPs
dataset and setting prel = pred = 0.01, the 10 runs of the multi-start EMA
algorithm give rise to 10 sets of selected relevant SNPs. These datasets contain,
on average, 277.1 relevant SNPs and 146 of them are common to the 10 sets.
Note that each set of relevant SNPs is selected on the basis of a different
naive Bayes model learned with the multi-start EMA algorithm. Therefore,
although two sets of relevant SNPs share many SNPs, some of them may be
different. The fact that two sets of relevant SNPs contain different SNPs does
not necessarily mean that one set is better than the other because they may
contain different subsets of non-redundant SNPs. In order to evaluate the sets
of relevant SNPs obtained by the multi-start EMA algorithm, we run the
STRUCTURE software with the same parameter configuration as before on
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these datasets. The percentage of correctly classified individuals is, on average
over the 10 different sets of relevant SNPs, 94.98% with standard deviation
4.66%. Note that the reduction in the number of SNPs in the dataset is very
big while the percentage of correctly classified individuals is similar.

8.5 Inference of Population Structure Using Different

DNA Polymorphisms

In this section we aim to evaluate the behavior of the EMA algorithm for the
inference of population structure in a more complex problem. The data for
this experiment were taken from the HGDP-CEPH human genome diversity
cell line panel. The diversity cell line panel is a large and widely-used col-
lection of DNA samples from individuals distributed around the world. The
properties of the sample of individuals were first reported by (Cann et al.,
2002). However, new genotypes have been reported since then. Specifically,
we employ a dataset included in the HGDP-CEPH which has been used in
recent studies of genetic structure of human populations (Rosenberg et al.,
2005). The dataset contains 993 markers, including 783 microsatellites and
210 insertion/deletion polymorphisms corresponding to 1048 individuals from
53 different human populations distributed around the world. Although the
individuals are classified into 53 human populations or ethnic groups, they cor-
respond to seven major regions: Africa, Europe, Middle East, Central/South
Asia, East Asia, Oceania and America.

The aim of the study is to group individuals into genetic clusters in such
a way that for each individual an estimated membership coefficient for each
cluster is given. This probability can be seen as an admixture coefficient since
each individual may have genetic information belonging to different popula-
tion sources.

The proposed algorithm is compared with the well known STRUCTURE
software (Pritchard et al., 2000b; Falush et al., 2003) version 2.1. Both the
multi-start EMA and STRUCTURE require a prespecified number of clusters,
therefore, we run experiments with two, three and four numbers of clusters.
Since the obtained clustering results depend on the random initialization of
the models, we run ten executions of each algorithm with each number of
clusters. For the multi-start EMA we use a ǫ = 0.01 and 500 iterations in the
multi-start process, m = 500. For STRUCTURE, we use the configuration
reported in (Rosenberg et al., 2005) where an allele frequency correlated model
is used. Additionally, the parameters are calculated using 1000 iterations after
a burn-in period of 5000.

Figure 8.2 shows the estimation of population structure obtained by the
multi-start EMA with two, three and four clusters (rC = 2, rC = 3 and
rC = 4). Similarly, Figure 8.3 shows the results obtained by STRUCTURE.
The plots were generated with DISTRUCT (Rosenberg, 2004), where each
individual is represented by a segment partitioned into rC colored parts that
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Fig. 8.2. Inferred population structure using the multi-start EMA.
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Fig. 8.3. Inferred population structure using STRUCTURE.



8.5 Inference of Population Structure: DNA Polymorphisms 149

represents the estimated membership of the individual to each one of the rC
clusters. For each number of clusters, only the best run of ten on the ba-
sis of the FST measure is shown. In these experiments, the multi-start EMA
tends to assign each individual to a cluster with a very high probability, be-
ing the membership probability for the rest of the clusters very small. Thus,
the admixture proportions detected by multi-start EMA are also very small.
By contrast, STRUCTURE detects a higher level of admixture among pop-
ulations. The results obtained by STRUCTURE may be biologically correct
since admixture is usual in population genetics. However, not always detected
admixture proportions represents genuine contributions from corresponding
ancestral sources since the uncertainty about the allele frequencies in two
particular source populations may cause the overestimation of the admixture
proportions (Corander and Marttinen, 2006). Moreover, although the admixed
ancestry detected by multi-start EMA is very small, the genetic distance given
by the FST metric2 is much higher (see Tables 8.2 and 8.3). This suggests that
the populations obtained by the multi-start EMA are genetically more distant
between themselves than the populations obtained by STRUCTURE.

FST values

rC = 2 rC = 3 rC = 4

Run 1 0.02714400 0.03193830 0.03100300
Run 2 0.02714400 0.03193830 0.02937500
Run 3 0.02714400 0.03193830 0.03463900
Run 4 0.02714400 0.03193830 0.02989200
Run 5 0.02715100 0.03156800 0.03100300
Run 6 0.02714400 0.03193830 0.03100300
Run 7 0.02714400 0.03193830 0.03100300
Run 8 0.02714400 0.03541020 0.03100300
Run 9 0.02714400 0.03193830 0.03100300
Run 10 0.02715200 0.03193830 0.03905100

Mean 0.02714550 0.03224446 0.03189750
Std 0.00000317 0.00111700 0.00286500

Table 8.2. FST values obtained on ten runs of the multi-start EMA with two, three
and four clusters (rC = 2, rC = 3 and rC = 4). The mean and standard deviation
values over the ten runs are also reported.

On the other hand, the population structure obtained by the multi-start
EMA mainly correspond to major geographical regions. Nevertheless, it is
surprising that most of the individuals from Uygur and Hazara ethnic group
are classified in the same cluster as ethnic groups from East Asia even when
they are located in Central/South Asia. Similarly, a few Mozabite individu-

2 Since the dataset includes two different types of polymorphisms, FST genetic
distance is calculated taking into account only genetic information regarding mi-
crosatellite markers and therefore, insertion/deletion polymorphisms are ignored.
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FST values

rC = 2 rC = 3 rC = 4

Run 1 0.00069648 0.00315150 0.00579690
Run 2 0.00069517 0.00315350 0.00579590
Run 3 0.00069517 0.00392830 0.00579690
Run 4 0.00069517 0.00311270 0.00579690
Run 5 0.00069517 0.00315350 0.00579690
Run 6 0.00069517 0.00316680 0.00579690
Run 7 0.00069517 0.00313840 0.00579690
Run 8 0.00067972 0.00315350 0.00579690
Run 9 0.00069517 0.00315350 0.00582990
Run 10 0.00069517 0.00315350 0.00579690

Mean 0.00069375 0.00322652 0.00580010
Std 0.00000000 0.00024699 0.00001047

Table 8.3. FST values obtained on ten runs of STRUCTURE with two, three and
four clusters (rC = 2, rC = 3 and rC = 4). The mean and standard deviation values
over the ten runs are also reported.

als are clustered into a group dominated by Africans. This situation may be
apparently strange. However, these results obtained by the multi-start EMA
agree with those obtained by STRUCTURE, where the membership coeffi-
cients of Hazara and Yaruba individuals are higher for the cluster dominated
by East Asia individuals than for the cluster dominated by Central/South
Asia individuals.

8.5.1 Number of Clusters in the Dataset

As it was stated before, the multi-start EMA and STRUCTURE assume that
the number of clusters, rC , is given. However, this is not usually true in real
problems. In order to select the best number of clusters, we evaluate the results
with two, three and four clusters. We have also extended the experiments to
more clusters but the multi-start EMA algorithm, in these experiments, con-
verges to different solutions in separate runs when the number of clusters is
higher than four. Actually, a few runs with five clusters yield similar results
than with four clusters but a new group is created with individuals of Amer-
ican origin (data not shown). These results are also similar to those obtained
by Rosenberg et al. (2002,2005) with five clusters. Nevertheless, most of the
runs with five and six clusters results in a partition with four clusters (similar
to the one shown in Figure 8.2 with rC = 4) and one or two empty clusters
respectively. Therefore, the multi-start EMA is detecting that there is no more
than four clear clusters.

In order to decide the number of clusters, we use the FST distance. Table
8.2 shows the FST values over ten independent runs of the multi-start EMA
for each number of clusters (two, three and four). The best mean FST value
corresponds to the experiments with three clusters. Clustering the data into
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four groups produces, except for run 10, slightly lower FST values than with
three clusters. However, the difference of the FST values with three and four
clusters is not statistically very significant (the p-value of the Mann-Whitney
test is 0.72). On the contrary, the difference between FST values with two and
three clusters is statistically significant (p-value=0.00). Therefore, we think
that according to the multi-start EMA and the proposed metric, there are
three or four clear clusters underlying the dataset. These results are compat-
ible with those presented in (Rosenberg et al., 2005) where the quality of the
clustering partition is given by the clusteredness3. Although Rosenberg et al.
also consider the presence of more than four clusters, and the best partition,
on the basis of the clusteredness, is obtained with only two clusters, the popu-
lations obtained with three and four clusters are considered as good partitions
too.

8.5.2 Selection of Relevant Markers

The use of the multi-start EMA algorithm allows to select the most relevant
markers needed to obtain the clustering partition. The number of selected
markers is controlled by two parameters, prel and pred, which represent the
thresholds for the statistical tests, being prel the threshold to control the se-
lection of relevant markers and pred the threshold to control the redundancy
between the selected markers. STRUCTURE software is not able to filter out
irrelevant or redundant markers and the presence of this irrelevant and/or
redundant information may damage its ability to obtain the clustering parti-
tion. In order to show how STRUCTURE software behaves in these situations
and how the information about irrelevant and redundant markers provided by
the multi-start EMA helps to obtain a better clustering partition, we proceed
as follows: first, we select, for each number of clusters, the best model on the
basis of the FST metric (these are the models used to obtain the population
partitions represented in Figure 8.2). Then, we perform a selection of the most
relevant markers by using the maker selection algorithm where the parameter
of the test prel varies in {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and
pred in {0, 0.01, 0.05, 0.1}. Each parameter configuration gives rise to a dif-
ferent set of selected markers (Figure 8.4). Finally, for each set of selected
markers we run ten independent executions of STRUCTURE and measure
the mean value over the ten runs of the FST metric.

Figure 8.5 shows the mean FST value for each one of the selected marker
sets. A clear trend can be observed in the plots: marker selection using small
values of prel and pred improves the FST values obtained by STRUCTURE.
Additionally, as the value of prel increases, the number of selected markers
also increases including more redundant information. Consequently, the mean
value of the FST metric decreases approaching the FST value obtained by

3 Clustering quality metric that measures the extent to which individuals were
estimated to belong to a single cluster rather than to a combination of clusters.
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Fig. 8.4. Number of selected markers as a function of prel and pred.

STRUCTURE with the whole set of markers. It should be noted that the
sets of selected markers are used only to obtain the clustering partition with
STRUCTURE, but the FST metric is always calculated taking into account
all the microsatellite markers.

According to the experimental results, we can say that the information
about relevant markers implicitly included in the model calculated by the
multi-start EMA helps to obtain the clustering partition. STRUCTURE, as
well as other algorithms for the inference of population structure, does not
take into account the existence of irrelevant and redundant information in
the dataset. Therefore, the presence of irrelevant and/or redundant informa-
tion damages their ability to retrieve the population structure underlying the
dataset.
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Fig. 8.5. Evolution of FST metric in the marker selection process.

8.6 Conclusions and Future Work

The inference of population structure is a very important and highly stud-
ied problem in population genetics. In this chapter we have described a new
approach to infer the structure of a population and assign individuals (proba-
bilistically) to populations. In order to approach the problem, we have tailored
the EMA algorithm (introduced in Section 7.3.1) to work with polyploid and
missing data. Thus, we provide a useful and realistic tool for the inference of
population structure.

One of the advantages of the EMA algorithm with respect to other cluster-
ing techniques is the capability of dealing with irrelevant data for clustering
purposes. This irrelevant information may damage the ability of other meth-
ods to obtain the underlying population structure. Moreover, we propose a
marker selection algorithm based on mutual information which is able to ob-
tain the most relevant markers needed to retrieve the population structure.

The performance of the multi-start EMA is evaluated in real problems and
compared with STRUCTURE, which is the most widely used software for the
inference of population structure. The results from the experiment with SNPs
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data show that the EMA algorithm outperforms STRUCTURE in terms of
accuracy. Additionally, the results from the experiment with microsatellites
and insertion/deletion polymorphisms show that the populations obtained by
the multi-start EMA have higher values for the FST metric than populations
obtained by STRUCTURE. This suggests that populations obtained by the
multi-start EMA are genetically more distant than populations obtained by
STRUCTURE. By contrast, in this experiment, the multi-start EMA is not
able to obtain population partitions with more than four clusters. It may sug-
gest that the multi-start EMA does not perform as well as STRUCTURE
when subpopulations of individuals in the dataset are genetically very close.
Nevertheless, the EMA algorithm provides useful information about the rel-
evant markers to infer the population structure. This information has been
shown to be useful to improve the behavior of other methods such as STRUC-
TURE. Nevertheless, the selection of an informative subset of genetic markers
that contains enough information to differentiate between populations under
study may be very useful not only to correct population stratification in asso-
ciation studies or in admixture-mapping studies (Patterson et al., 2004) but
also to reduce the economical cost of sequencing samples for these studies.

One of the main drawbacks of the multi-start EMA, as well as other pop-
ular algorithms for the inference of population structure, is the fact that the
number of clusters has to be fixed in advance. In order to overcome this
multi-start EMA restriction, we provide a method to investigate the number
of groups underlying the data. However, as was pointed out in Chapter 7, it
may be very interesting to investigate other methods to automatically detect
the number of clusters in the dataset.

On the other hand, the marker selection test proposed in this chapter only
takes into account relationships between variables in pairs. It may also be
interesting to investigate other methods to take into account more complex
relationships among variables. Finally, the inference of population structure is
not the only problem where the EMA algorithm can be applied. The special
characteristics of the EMA as a clustering method make the algorithm an
interesting tool to be applied to other bioinformatics problems such as the
analysis of gene expression data or the analysis of mutations in genes related
to specific diseases.
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Conclusions

This chapter presents the general conclusions of this dissertation. More specific
conclusions have been exposed at each corresponding chapter. Additionally,
we include a list of publications and some future work.

Throughout the dissertation, we have focused the research on supervised
classification and data clustering which are two fundamental fields of machine
learning.

The part of the dissertation related to supervised classification is devoted
to the discriminative learning of Bayesian network classifiers. We have shown
that, usually, the discriminative learning is a better choice to learn classifiers
because the learning process maximizes the conditional log-likelihood which
is more related to the accuracy than the joint log-likelihood. However, the
generative approach is much more efficient than the discriminative one and
due to this efficiency, generative approach is sometimes preferred, especially
when the model that we learn from data has the same structural restrictions
as the model that generated the data. Nonetheless, the model that generated
the data is usually unknown, therefore the discriminative approach may be
more appropriate. In this part of the dissertation we have also introduced
new algorithms to learn the parameters and structure of Bayesian network
classifiers from a discriminative approach. We present the adaptation of the
TM algorithm for the discriminative learning of the parameters as well as
the construct-discriminative-TAN and structural TM for the discriminative
learning of the structures.

On the other hand, the part related to data clustering is devoted to
Bayesian model averaging. Bayesian model averaging is a technique that al-
lows to deal with uncertainty in model selection. The presence of the hidden
cluster variable in clustering problems makes the Bayesian model averaging
calculations computationally intractable and only approximations are feasible.
In fact, the approximations to Bayesian model averaging for clustering prob-
lems are usually given by approximations to the marginal likelihood obtained
by means of Monte Carlo simulation or Laplace methods. In this dissertation
we propose a new method to approximate the Bayesian model averaging over
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restricted families of models such as naive Bayes and TAN models. These
calculations can be obtained efficiently by means of the proposed algorithms:
EMA and EMA-TAN. The empirical evaluation of the EMA algorithm shows
that it is a powerful tool to learn Bayesian network models for clustering in
situations where there is high uncertainty in model selection. This situation of
uncertainty is crucial, for instance, in clustering problems where the dataset
contains a lot of variables and only a few data samples. Another advantage
of the EMA algorithm is that it includes in the learned model implicit in-
formation about which variables are more relevant for clustering purposes.
Therefore, this information can be used to perform an unsupervised variable
selection. Additionally, we present an application of the EMA algorithm to
the inference of population structure. This is a problem taken from popu-
lation genetics where human DNA polymorphisms are used to discover the
DNA group structure in a pool of human individuals belonging to different
ethnic groups distributed around the world. The experimental results show
that the EMA algorithm can outperform other widely used methods to infer
the structure of a population. Moreover, the information about the relevant
variables for clustering purposes are useful to improve the results given by
other algorithms.

9.1 List of Publications

The work presented in this dissertation has produced the following publica-
tions:

• G. Santafé J. A. Lozano, P. Larrañaga. Inference of population structure
using genetic markers and a Bayesian model averaging approach for clus-
tering. Submitted to an international journal.

• G. Santafé J. A. Lozano, P. Larrañaga. Discriminative vs. generative learn-
ing of Bayesian network classifiers. Ninth European Conference on Sym-
bolic and Quantitative Approaches to Reasoning with Uncertainty (EC-
SQARU’2007), Hammamet, Tunisia, 2007. 453-464.

• G. Santafé J. A. Lozano, P. Larrañaga. Bayesian model averaging of naive
Bayes for clustering. IEEE Transactions on Systems, Man, and Cybernet-
ics - Part B, 36(5), 1149-1161, 2006.

• G. Santafé J. A. Lozano, P. Larrañaga. Aprendizaje discriminativo de
clasificadores Bayesianos. Revista Iberoamericana de Inteligencia Artifi-
cial, 29(10), 39-47, 2006.

• P. Larrañaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, J. A.
Lozano, R. Armañanzas, G. Santafé A. Pérez, V. Robles. Machine learning
in bioinformatics. Briefings in Bioinformatics, 7(1), 86-112, 2006.

• I. Inza, R. Armañanzas, G. Santafé Una aproximación al software WEKA.
Aprendizaje Automático: Conceptos Básicos y Avanzados. Editor B. Sierra,
caṕıtulo 23, 477-483. Pearson Educación, Madrid, 2006.
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• G. Santafé J. A. Lozano, P. Larrañaga. Bayesian model averaging of TAN
models for clustering. European Workshop on Probabilistic Graphical Mod-
els (PGM 2006). Praha, Czech Republic, 2006. 271-278.

• G. Santafé J. A. Lozano, P. Larrañaga. Population substructure determi-
nation by means of Bayesian model averaging for clustering. International
Workshop on Intelligent Data Analysis in bioMedicine And Pharmacology
(IDAMAP 2006). Verona, Italy, 2006. 51-56.

• G. Santafé J. A. Lozano, P. Larrañaga. Discriminative learning of Bayesian
network classifiers via the TM algorithm. Eighth European Conference
on Symbolic and Quantitative Approaches to Reasoning with Uncertainty
(ECSQARU 2005). Barcelona, Spain, 2005. 148-160.

• G. Santafé J. A. Lozano, P. Larrañaga. Aprendizaje discriminativo de clasi-
ficadores Bayesianos. III Taller Nacional de Mineŕıa de Datos y Apren-
dizaje (TAMIDA 2005), Granada, Spain, 2005. 115-123.

• G. Santafé J. A. Lozano, P. Larrañaga. Full Bayesian Model Averaging
of Naive Bayes for Clustering. Technical Report. EHU-KZAA-IK-3/04.
University of the Basque Country, 2004.

• G. Santafé J. A. Lozano, P. Larrañaga. El Algoritmo TM para Clasifi-
cadores Bayesianos. Technical Report. EHU-KZAA-IK-2/04. University
of the Basque Country, 2004.

9.2 Future Work

Undoubtedly, much research is to be undertaken in the areas of discrimina-
tive learning of Bayesian network classifiers and Bayes model averaging for
clustering. The future work has been previously presented with the conclu-
sions at the end of each corresponding chapter, but in this section we want to
summarize the main open lines of research.

The interest for future developments related to the discriminative learn-
ing of Bayesian networks can be focused on the learning of structures. The
performance of methods proposed in this dissertation is not as good as ex-
pected. The structural TM algorithm uses the conditional BIC score which
is known to be quite restrictive and tends to select simple models. Similarly,
the discriminative-construct-TAN algorithm maintains a TAN structure which
can lead to include arcs that decrease the conditional log-likelihood score in
the model. Moreover, both algorithms are greedy approaches to the discrim-
inative learning of structures. It is interesting to investigate other metrics
to guide the searching process of the structural TM as well as the use of a
heuristic search to avoid the local maxima in the greedy search performed
by both structural TM and construct-discriminative-TAN. Additionally, in
order to allow the evaluation of complex models, the TM algorithm to learn
the parameters should be extended to more complex structures and also can
be extended to deal with missing values. Another very interesting future re-
search could include the study, from a theoretical approach, of the limitations
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of generative and discriminative learning to solve specific problems in order
to decide which approach is better for a given problem.

Future work related to the Bayesian model averaging for clustering could
include the extension of the expectation model averaging to other more com-
plex models, the search for a good node ordering for the averaging over struc-
tures and the averaging over several node orders. Moreover, the EMA and
EMA-TAN algorithms are limited by the fact that the number of clusters
must be given in advance. Future modifications of the algorithms may avoid
this limitation. Additionally, the convergence properties of the EMA algorithm
has to be studied from a theoretical point of view. On the other hand, the
EMA algorithm provides a powerful tool for unsupervised feature selection. In
this dissertation we present an algorithm that uses the model learned by the
EMA algorithm in order to select the most relevant variables for the cluster-
ing process. However, other methods to obtain information about the relevant
variables from the model learned by the EMA algorithm can be developed.

Finally, in this dissertation, we present an application of the EMA algo-
rithm to a real problem taken from population genetics, but there are many
other real problems where the EMA algorithm can be applied such as the
clustering of gene expression data.
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parison of four initialization methods for the K-means algorithm. Pattern
Recognition Letters , 20(10), 1027–1230.



References 173

Peña, J. M., Lozano, J. A., and Larraaga, P. (1999b). Learning Bayesian
networks for clustering by means of constructive induction. Pattern Recog-
nition Letters , 20(11-13), 1219–1230.

Pearl, J. (1986a). A constraint-propagation approach to probabilistic reason-
ing. In Proceedings of the Second Conference in Uncertainty in Artificial
Intelligence, pages 357–369.

Pearl, J. (1986b). Fusion, propagation and structuring in belief networks.
Artificial Intelligence, 29, 241–288.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-
mann.
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