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iv



Contents

List of Figures ix

List of Tables xi

Part I Introduction

1 Introduction 3

1.1 Overview of the Dissertation 4

2 Basic Mathematical Tools 7

2.1 Probability Theory 7
2.1.1 Basic Definitions 7

2.2 Order Statistics 12

2.3 Markov Chains 13
2.3.1 Limiting Probabilities 14
2.3.2 Absorption Times and Absorption Probabilities 16

2.4 Discrete Dynamical Systems 17

3 An Introduction to Estimation of Distribution Algorithms 19

3.1 Estimation of Distribution Algorithms: A novel class of Evolutionary Algorithms 19

3.2 Review of Estimation of Distribution Algorithms 22
3.2.1 EDA Approaches to Combinatorial Optimization 23
3.2.2 EDA Approaches in Continuous Domains 35
3.2.3 Recent Approaches for EDAs 43

v



vi Contributions on Theoretical Aspects of Estimation of Distribution Algorithms

Part II Convergence Results

4 General Convergence Results of Discrete EDAs 51

4.1 EDAs and Markov Chain Models 51
4.1.1 General Theorem for the Convergence of Discrete EDAs 53
4.1.2 Applying the General Theorem of Convergence to Some EDAs 54

4.2 Convergence for BEDA with Infinite Populations 57

4.3 Summary 58

5 Analysis of the PBIL algorithm 59

5.1 Modeling PBIL by Means of Markov Chains 60
5.1.1 A Markov Chain that Models PBIL 60

5.2 Modeling PBIL by Means of Discrete Dynamical systems 63
5.2.1 Assigning a Discrete Dynamical System to PBIL 64
5.2.2 Relationship Between τ t(p) and Gt(p) 65
5.2.3 The Discrete Dynamical System G 67

5.3 Other Works that Mathematically Analyze PBIL 71
5.3.1 Reinforcement Learning, PBIL, and Gradient Dynamical Systems 71
5.3.2 Limit Behavior of PBIL 72
5.3.3 How α Controls PBIL Performance 72

5.4 Summary 73

6 Analysis of the UMDA algorithm 75

6.1 Analysis of the UMDA Algorithm Modeled by Markov Chains 75
6.1.1 The Version of UMDA to be Analyzed and other General Considerations 76
6.1.2 A Markov Chain that Models UMDA 76
6.1.3 The Functions Used 79
6.1.4 Experimental Results 81
6.1.5 Summarizing the Results 82

6.2 UMDA and Dynamical Systems 83
6.2.1 A Dynamical System for UMDA 85
6.2.2 An Expression for the Discrete Dynamical System Associated with UMDA 86

6.3 Summary 87

7 Analysis of the UMDAc algorithm 89

7.1 The UMDAc Algorithm with Tournament Selection 90

7.2 Mathematical Modeling 91
7.2.1 Calculation of f t

(1:2)(x1, . . . , xn) 92

7.2.2 Calculation of µt+1
i and σt+1

i 94

7.3 Linear Functions 94
7.3.1 Calculation of µt+1

i 95
7.3.2 Calculation of σt+1

i 99
7.3.3 Analyzing the Algorithm’s Behavior 100

7.4 Quadratic Function 103
7.4.1 Calculation of µt+1

i 103
7.4.2 Calculation of µt+1 and σt+1 104
7.4.3 Analyzing the Algorithm’s Behavior 107

7.5 Summary 109



Contents vii

Part III Results concerning Time Complexity

8 Results concerning Time Complexity 113

8.1 Introduction 113

8.2 Worst-case First Hitting Time Analysis for EDAs 114
8.2.1 Modeling EDAs by Means of an Absorbing Markov Chain 114
8.2.2 Worst Case Analysis for Some EDAs 117
8.2.3 The Average-case Analysis 123

8.3 Average Time Complexity of EDAs 124
8.3.1 The Functions Used 125
8.3.2 Experimental Results 125

8.4 Summary 128

Part IV Conclusions

9 Conclusions 133

9.1 Contributions 133

9.2 Future Work 134

Appendices 136

Spherical Change of Variable in Dimension n 137

One possible final structure after n− 1 steps of Algorithm B 139

References 145





List of Figures

2.1 Fixed points with three different types of stability. The fixed point on the left

is stable. The fixed point in the center is marginally stable. The fixed point

on the right is unstable. 17

3.1 Pseudocode for a general EA. 20

3.2 Pseudocode of the generic EDA. 22

3.3 Pseudocode for a general UMDA algorithm. 24

3.4 Pseudocode for the PBIL algorithm. 25

3.5 Pseudocode for the cGA. 26

3.6 Graphical representation of the probability model of the proposed EDAs in

combinatorial optimization without interdependencies (UMDA, PBIL, cGA). 26

3.7 The MIMIC approach to estimation of the joint probability distribution at
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Chapter 1

Introduction

The desire for optimality (perfection) is inherent in humans. The search for extremes inspires

mountaineers, scientists, mathematicians, and all the rest of the humanity. The theory of optimiza-

tion, a prominent research topic for the last decades, refers to the quantitative study of optima and

the methods for finding them.

There are optimization problems that are characterized as “hard”, in the sense that any optimal

solution process for them takes practically infinite time (NP-hard problems). These are often com-

binatorial optimization problems, like cutting and packing, routing, network design, assignment,

scheduling, or time-tabling problems. There are two extremes for solving NP-hard problems. The

first extreme uses exact methods such as Branch and Bound, which requires exponential computing

time. In practice, for large-sized problems, exact methods are generally unable to produce any

results in reasonable time. In the second extreme are non-exact methods, called metaheuristics.

Metaheuristics are general frameworks for heuristics in solving hard optimization problems. These

algorithms do not guarantee optimality of the solutions found, but in practice, they usually manage

to obtain good results within reasonable computing time.

Evolutionary Algorithms (EAs) are metaheuristic techniques that have grown into one of the

most successful tools for solving optimization problems. EAs are search methods that take their

inspiration from natural selection and survival of the fittest in the biological world. EAs differ

from more traditional optimization techniques in that they involve a search from a population of

solutions, not from a single point. Each iteration of an EA involves a competitive selection that

weeds out poor solutions. The solutions with high fitness are recombined with other solutions by

swapping parts of one solution with those of another. Solutions are also mutated by making a small

change to a single element of the solution. Recombination and mutation are used to generate new

solutions that are biased towards regions of the space for which good solutions have already been

seen.

This dissertation is devoted to theoretically analyzing a new class of EAs: Estimation of Distri-

bution Algorithms (EDAs). EDAs have recently been recognized as a new computing paradigm in

evolutionary computation. Unlike other EAs, EDAs do not use crossover or mutation. Instead, they

explicitly extract global statistical information from the selected solutions and subsequently build

a probability model of promising solutions, based on the extracted information. New solutions are

sampled from the model thus built. According to the statistical information they exploit, EDAs can

be easily classified into three categories: (i) EDAs using only first-order statistics, which employ

3
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probability models in which all the variables are independent and hence only need to estimate the

marginal probability of each variable in the selected solutions at each generation; (ii) EDAs which

consider second-order statistics, taking into account dependencies between pairs of variables. Here

not just the learning of the parameters is necessary but also they need a learning of the depen-

dency structure; (iii) EDAs that require higher-order statistics. They use a conditional dependence

network to model the probability distributions.

Research on EDAs has been focused on proposals of new algorithms and on their applications.

However, little attention has been given to their theoretical aspects. Therefore, one of the aims of

this thesis is to reduce the gap between the sparse theoretical results and the magnitude of empirical

observations.

Here with reference to EDAs we tackle two important issues that measure the performance of

any optimization algorithm: convergence and time complexity. On the one hand it is important to

know whether or “under what assumptions” it can be guaranteed that the algorithm reaches a (n

optimal) solution, which is analyzed with the study of the convergence of the algorithm. Obviously,

no unconditional ‘yes’ can be expected, so the question is mostly reformulated as “under what

assumptions can it be guaranteed that the algorithm reaches a (n optimal) solution”. Immediately

related to this question is the issue of the type of guarantee. In particular, the stochastic nature of

EDAs impedes crisp guarantees, turning the question into a probabilistic one. Technically speaking,

almost sure convergence, convergence in probability or convergence in mean are some options. From

a purely theoretical point of view, guaranteeing, for instance, convergence with probability one is

satisfactory. Practically, however, the speed of convergence is just as important. The number of

expected search steps needed to reach a (n optimal) solution – known as computation time – is

an important implementation independent measure of an algorithm’s efficiency. A related concept

studied here is the relationship between computation time and problem size, which is called time

complexity is studied.

Basically there are two mathematical tools used in this dissertation to analyze EDAs: Markov

chain models and discrete dynamical systems, which are two commonly-used approaches for studying

EAs.

Since the population of an EDA only depends on the state of previous population in a probabilistic

manner, it is clear that Markov chains are appropriate to model and analyze EDAs, enabling the

study of convergence in the sense of probability. Such an approach exactly models the behavior

of an EDA, but due to the combinatorial explosion of the populations, the transition probability

matrix is very difficult to obtain and analyze, nor is it easy to come up with a simple derivation of

detailed answers to particular questions (like the expected time of visiting the optimum for the first

time).

The dynamical systems approach often assumes that the size of population is infinite. As a result

the iterative process of an EA is represented by deterministic dynamical systems and therefore the

mathematical analysis becomes easier. However, an upper bound of the error between the actual

EA and its model is not easily estimated.

1.1 Overview of the Dissertation

This dissertation is divided into four parts and is comprised of nine chapters.

Part I consists of three chapters. The present chapter is devoted to generally introducing and

explaining the motivation behind the dissertation. Chapter 2 introduces the necessary notation and

mathematical tools used in the thesis for the modeling and study of EDAs. In Chapter 3 the reasons

for the birth of EDAs are explained and a review is made of the EDAs proposed for the solution of
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combinatorial optimization problems and optimization in continuous domains, ordered according to

the complexity of the interrelations that they are able to express.

Part II consists of four chapters and presents the convergence results obtained for some EDAs. In

Chapter 4 Markov chains are used to give a general convergence theorem for EDAs. The most com-

mon discrete EDAs are analyzed using this theorem, resulting in convergence and non-convergence

algorithms. For those algorithms that do not converge, some conditions have been imposed on the

parameters of their probability distributions to guarantee convergence. The aim of Chapter 5 is to

offer a mathematical analysis of convergence properties of the PBIL algorithm. This analysis is car-

ried out under two analytic frameworks: Markov chains and discrete dynamical systems. Although

the Markov chain used here is neither irreducible nor aperiodic – which implies a very complex

analysis of the chain – a strong dependence of convergence behavior of PBIL on parameter α and

on initial probability distributions is proven. Moreover the dynamical systems framework enables

us to carry out a more general analysis. Chapter 6 is devoted to the UMDA algorithm. Under

the Markov chains framework an empirical analysis of the convergence behavior of the algorithm is

described. This chapter also shows how UMDA with infinite population and proportionate selection

is modeled using discrete dynamical systems. This part finalizes with Chapter 7, which presents the

only analysis made for a continuous EDA in this dissertation: the theoretical study of the behavior

of the Univariate Marginal Distribution Algorithm for continuous domains (UMDAc) in dimension

n. To this end the application of this algorithm to the minimization of two kinds of functions

is mathematically modeled. First n-dimensional linear functions are used to model the algorithm

when far from the optimum. Next quadratic function is used to analyze the algorithm when near

the optimum.

Part III consists of one chapter, which deals with the analysis of time complexity of EDAs. First,

it offers a result concerning worst-case first hitting time for EDAs based on Markov chains and

discusses how this result influences the calculus of bounds of average-case hitting times for EDAs.

Next a study based on empirical results of the average first hitting time of EDAs is presented,

the algorithms are applied to one example of linear, pseudo-modular, and unimax functions. The

average first hitting time is analyzed and compared. Part III also addresses recent issues in EDAs:

(i) the relationship between the complexity of the probabilistic model used by the algorithm and

its efficiency, and (ii) the matching between this model and the relationship among the variables of

the objective function.

Finally, Part IV, which consists of Chapter 9, lists the main contributions of this dissertation and

points out some lines of further research.





Chapter 2

Basic Mathematical Tools

This chapter introduces the necessary notation and mathematical tools used in this dissertation

for the modeling and study of EDAs. The idea is not to make an exhaustive review of each topic, but

to summarize the definitions, basic concepts and theorems used in our research. However, readers

who want to go more deeply into a subject are encouraged to consult the references contained in

each Section.

In Section 2.1 of this chapter, some preliminary concepts related to probability theory are in-

troduced. Then order statistics are briefly presented in Section 2.2. Section 2.3 gives necessary

information about Markov chains for the reading of this dissertation, and finally, in Section 2.4,

dynamical systems are introduced.

2.1 Probability Theory
The mathematical modeling of EDAs involves dealing with uncertainty, and probability theory

provides us with a suitable formal framework for doing so. Therefore this section presents the basic

set of definitions and theorems of probability theory that will be used throughout the disserta-

tion. The reader may be interested in consulting Billingsley (1986) and DeGroot (1987) for further

information about probability theory.

2.1.1 Basic Definitions

In order to use mathematics to describe an experimental phenomenon it is necessary to build a

mathematical model to describe the phenomenon. One of the first steps in this modeling process is

to define the set of all possible outcomes.

Definition 2.1. The exhaustive set of mutually exclusive possible outcomes of a random experiment

is called the sample space of the experiment. The sample space will be denoted by Ω, and an

arbitrary element of Ω will be denoted by ω. Ω is referred to as a discrete sample space when

there is a countable number (finite or infinite) of distinct outcomes; otherwise Ω is referred to as a

continuous sample space.

Definition 2.2. The subsets of the sample space Ω of a given random experiment are referred to

as events.

7
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Thus, an event is a collection of outcomes of a random experiment. The sample space Ω of the

random experiment in question is itself the event that, by definition, always occurs. At the other

extreme, the empty set ∅ is the event that, by definition, never occurs.

Like most other mathematical theories, probability theory does not necessarily apply to absolutely

all the collections of subsets of Ω, i.e. it is usual to restrict attention to collections of admissible

subsets of Ω that are closed under a certain set of operations. Specifically we usually impose the

condition that any subset of Ω that can be constructed from a countable number of subsets of Ω

using a certain set of operations should itself be admissible. This leads to the following definition

which plays an important role in probability theory.

Definition 2.3. Let Ω be the sample space of a random experiment. A class F of subsets of Ω, i.e.

events, is called σ − algebra if it contains Ω itself and is closed under the formation of complements

and countable unions, that is:

(i) Ω ∈ F .

(ii) A ∈ F ⇒ Ac ∈ F .

(iii)
⊔∞

n=1(An) ∈ F for each sequence (An)n∈IN with An ∈ F for all n ∈ IN ,

where Ac = Ω \A denotes the complement of set A.

In any random experiment with sample space Ω, we assume that the collection of interesting

or admissible events F forms a σ-algebra. F is usually known as the event space of the random

experiment.

Definition 2.4. Let F be a σ-algebra relative to Ω and E ⊂ F with E 6= ∅. If F ⊂ F ′ for each σ-

algebra relative to Ω with E ⊂ F ′ then F is called the σ − algebra generated by E or a minimal

σ − algebra and is denoted by σ(E).

The following σ-algebra(s) will be of special interest: Let Ω = IR(IRn). The σ-algebra B(Bn)

generated by the sets of the form [a, b) = {x ∈ IR : a ≤ x ≤ b; a, b ∈ IR}({x ∈ IRn : a ≤ x ≤ b; a, b ∈
IRn}) is called the (n-dimensional) Borel σ-algebra. An element B ∈ B(Bn) is termed a Borel

set.

Each time a random experiment is performed, exactly one of the possible events will occur.

Usually it is not known which of the possible events will occur. The investigator may feel that

each event has “as good a chance” of occurring as any other, or he may feel that some events

have a “better” chance of occurring than others. In order to translate these “feelings” into precise

mathematical terms, he can define a probability measure, which will measure how likely an event is

to occur when the random experiment is run.

Definition 2.5. Let Ω and F be the sample space and the event space, respectively of a random

experiment. A real-valued function on F , P : F → IR is called a probability measure if it satisfies

the following conditions:

(i) P(A) ≥ 0 for all A ∈ F .

(ii) P(Ω) = 1.

(iii) Given a sequence of pairwise disjoint events (An)n∈IN , P(
⊔∞

n=1(An)) =
∑∞

n=1 P(An).



Basic Mathematical Tools 9

Definition 2.6. Let Ω and F be the sample space and the event space respectively, of a random

experiment. Let P be a probability measure on F . The triplet (Ω,F , P) is called a probability

space.

The probability space (Ω,F , P) contains the information necessary to study the probabilistic

properties of the random experiment. However, the analysis might be complicated by the fact that

the outcome of the experiment may not be a number. In order to alleviate this problem the points in

Ω are often mapped into real numbers. In this way a number can be used to represent an outcome of

the random experiment. A unidimensional random variable is a function that associates a numerical

value with every outcome of a random experiment. We denote, as usual, the unidimensional random

variables by uppercase letter or letters and their values by the same letter or letters in lowercase.

Definition 2.7. Let (Ω,F , P) be an arbitrary probability space and B the Borel σ-algebra. A real-

valued function on Ω, X : Ω → IR such that:

∀B ∈ B X−1(B) = {X ∈ B} ∈ F

is called a unidimensional random variable.

Clearly, a random variable is neither “random” nor a “variable”. The variable is “random” in

the sense that its value may vary from trial to trial as the random experiment is repeated.

Definition 2.8. Let X be a unidimensional random variable. X is said to be a unidimensional

discrete random variable if there is a countable number (finite or infinite) of distinct values that

X can take, otherwise X is said to be a unidimensional continuous random variable.

Definition 2.9. Let X be a unidimensional discrete random variable. p(x) = P(X = x) =

P ({ω ∈ Ω|X(ω) = x}) is called a probability mass function for X if it satisfies the following

conditions:

(i) p(x) ≥ 0 for all x ∈ IR.

(ii)
∑

x p(x) = 1.

It is common to use the term probability distribution as synonym of probability mass function.

Although strictly speaking the latter term is more accurate, in this dissertation we will use the

former. Note also that p(x) denotes the probability that X = x as well as a probability distribution

for X . Whether p(x) refers to a probability or a probability distribution should be clear from the

context.

Definition 2.10. Let X be a unidimensional continuous random variable. f(x) is called a proba-

bility density function for X if it satisfies the following conditions:

(i) f(x) ≥ 0 for all x ∈ IR.

(ii)
∫

IR
f(x)dx = 1.

(iii) P(α ≤ X ≤ β) = P ({ω ∈ Ω|α ≤ X(ω) ≤ β}) =
∫ β

α
f(x)dx for all α and β such that α ≤ β.

Definition 2.11. Let (Ω,F , P) be an arbitrary probability space and Bn the n-dimensional Borel

σ-algebra. A real-valued function on Ω, X = (X1, . . . , Xn) : Ω → IRn such that:

∀B ∈ Bn X−1(B) = {X ∈ B} ∈ F
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is called an n-dimensional random variable.

Note that we use a letter or letters in boldface to designate a multidimensional random vari-

able and the same boldface lowercase letter or letters to denote an assignment of a value to the

multidimensional random variable.

Definition 2.12. Let X = (X1, . . . , Xn) be an n-dimensional random variable. If there is a count-

able number (finite or infinite) of distinct values that X can take, i.e., every Xi is a unidimensional

discrete random variable, then X is said to be an n-dimensional discrete random variable. On

the other hand, if every Xi is a unidimensional continuous random variable, then X is said to be

an n-dimensional continuous random variable.

Since unidimensional random variables are a particular case of multidimensional random vari-

ables, in the remainder of this section we will discuss only the latter.

Definition 2.13. Let X = (X1, . . . , Xn) be an n-dimensional discrete random variable. p(x) =

p(x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn) = P(X = x) = P ({ω ∈ Ω|X(ω) = x}) is called a joint

probability mass function for X if it satisfies the following conditions:

(i) p(x) ≥ 0 for all values x of X.

(ii)
∑

x p(x) = 1.

It is common to use the term joint probability distribution as a synonym of joint probability

mass function. Although strictly speaking the latter term is more accurate, in this dissertation we

will use the former. Note also that p(x) denotes the probability that X = x as well as a probability

distribution for X. Whether p(x) refers to a probability or a joint probability distribution should

be clear from the context.

Definition 2.14. Let X = (X1, . . . , Xn) be an n-dimensional continuous random variable. f(x) =

f(x1, . . . , xn) is called a joint probability density function for X if it satisfies the following

conditions:

(i) f(x) ≥ 0 for all x ∈ IRn.

(ii)
∫

IR
· · ·
∫

IR
f(x1, . . . , xn)dx1 · · · dxn = 1.

(iii) P(α<X≤β)=P(α1 < X1≤β1, . . . , αn <Xn≤βn)

= P ({ω ∈ Ω|αi < Xi(ω) ≤ βi for all i})
=
∫ β1

α1
· · ·
∫ βn

αn
f(x1, . . . , xn)dx1 · · · dxn for all α = (α1, . . . , αn) and β = (β1, . . . , βn) such that

αi ≤ βi for all i.

Definition 2.15. Let p(x) be a joint probability mass function for an n-dimensional discrete random

variable X. Then:

F (x) = P(X ≤ x) =
∑

x′1≤x1

· · ·
∑

x′n≤xn

p(x′1, . . . , x
′
n)

is called the cumulative distribution function for the n-dimensional discrete random variable

X.

Definition 2.16. Let f(x) be a joint probability density function for an n-dimensional continuous

random variable X. Then:

F (x) = P(X ≤ x) =

∫ x1

−∞
· · ·
∫ xn

−∞
f(x′1, . . . , x

′
n)dx′1 · · · dx′n
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is called the cumulative distribution function for the n-dimensional continuous random variable

X.

Definition 2.17. Let X = (X1, . . . , Xn) be an n-dimensional discrete random variable. Then

pXi
(xi) =

∑

x′1

· · ·
∑

x′n

P(X1 = x′1, . . . , Xi = xi, . . . Xn = x′n) , for i = 1, . . . , n

are said to be the univariate marginal probability mass functions.

Definition 2.18. Let X = (X1, . . . , Xn) be an n-dimensional continuous random variable. Then

fXi
(xi) =

∫ ∞

−∞
. . .

∫ ∞

−∞
f(x1, . . . , xn)dx1 . . . dxi−1dxi+1 . . . dxn , for i = 1, . . . , n

are said to be the univariate marginal probability density functions.

Definition 2.19. Let X be a discrete random variable having a probability mass function p(x).

Then

E[X ] =
∑

x∈Ω

xp(x)

is called the expectation of the discrete random variable X.

In cases where more than one probability mass function is being used, we write Ep[X ] to distinguish

among them.

If g(·) is a real-valued measurable function, and
∑

x∈Ω |g(x)|p(x) < ∞, then

E[g(X)] =
∑

x∈Ω

g(x)p(x)

is called the expectation of the discrete random variable g(X).

Definition 2.20. Let X be a continuous random variable having a probability density function f(x).

Then

E[X ] =

∫ ∞

−∞
xf(x)dx

is called the expectation of the continuous random variable X.

If g(·) is a real-valued measurable function, and
∫∞
−∞ |g(x)|f(x)dx < ∞, then

E[g(X)] =

∫ ∞

−∞
g(x)f(x)dx

is called the expectation of the continuous random variable g(X).

Definition 2.21. Let X = (X1, . . . , Xn) be a random vector, then the expectation vector of X

is given by:

E[X] = (E[X1], . . . , E[Xn]).

2.1.1.1 Modes of Stochastic Convergence

Since random sequences are defined on probability spaces, the main difference between all modes

of stochastic convergence and the convergence concept of classical analysis relies on the fact that the

definition of the stochastic version must take into account the existence of a probability measure.
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These various modes of stochastic convergence are distinguished by the way in which the probability

measure enters the definition. Here, only the most popular concepts will be considered.

Definition 2.22. Let X be a random variable and (Xn) a sequence of random variables defined on

a probability space (Ω,F , P). Then (Xn) is said

(a) to converge completely to X, denoted as Xn
c→ X, if for any ε > 0

lim
n→∞

n∑

i=1

P{|Xi −X | > ε} < ∞

(b) to converge almost surely to X, denoted as Xn
a.s.→ X, if

P{ lim
n→∞

|Xn −X | = 0} = 1

(c) to converge in probability to X, denoted as Xn
P→ X, if for any ε > 0

lim
n→∞

P{ |Xn −X | < ε } = 1

(d) to converge in mean to X, denoted as Xn
m→ X, if

lim
n→∞

E[ |Xn −X | ] = 0.

There are two chains of implications that relate the above concepts:

Theorem 2.1. Let X be a random variable and (Xn) a sequence of random variables defined on a

probability space (Ω,F , P). Then

(i) Xn
c→ X ⇒ Xn

a.s.→ X ⇒ Xn
P→ X.

(ii) Xn
m→ X ⇒ Xn

P→ X.

The converse is not true in general.

2.2 Order Statistics
The subject of order statistics deals with the properties and applications of ordered random

variables and functions involving them. This theory represents a substantial “building block” in

analyzing selection procedures and convergence rates of Evolutionary Algorithms in continuous

spaces. Here we only introduce briefly a few concepts that will help to understand the analysis of

UMDA in continuous spaces carried out in this dissertation. An excellent summary of theory on

order statistics can be found in David (1970).

Definition 2.23. Let X1, . . . , Xn be random variables. If they are rearranged in ascending order of

magnitude, written as:

X1:n ≤ X2:n ≤ . . . ≤ Xn:n

then Xi:n (i = 1, . . . , n) is called the ith order statistic.
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Ordered random variables Xi:n are necessarily dependent whereas unordered random variables Xi

may be statistically independent or dependent. Moreover, variables can be identically distributed

(all the variables have the same probability distribution function) or not. Here, only the independent

identical distributed case will be presented. We also consider that Xi variables are continuous.

Theorem 2.2. Let X1, . . . , Xn be independent identically distributed continuous random variables

with probability density function f(x) and cumulative density function F (x). Then the probability

density function of the ith order statistic Xi:n is:

fi:n(x) =
1

B(i, n− i + 1)
f(x)F i−1(x)[1− F (x)]n−i

where B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt , a > 0, b > 0 denotes the complete Beta function.

Theorem 2.3. Let X1, . . . , Xn be a collection of n independent identically distributed continuous

random variables with density f(x) and cumulative distribution function F (x) for all i = 1, . . . , n.

Then the joint density of the ith and jth order statistic , Xi:n and Xj:n, for 1 ≤ i < j ≤ n is:

fi,j:n(xi, xj) =
n!

(i− 1)!(j − i− 1)!(n− j)!
F (xi)

i−1 (F (xj)− F (xi))
j−i−1

(1− F (xj))
n−j

f(xi)f(xj)

with −∞ < xi < xj < ∞.

In many cases the expectations E[Xi:n] of order statistics are of special interest, but unfortunately

analytic expressions for E[Xi:n] are rarely obtainable (because the calculations are often complex)

except in a few particular cases.

2.3 Markov Chains
As we will see later, one of the most powerful mathematical tools for modeling EDAs is a particular

case of stochastic processes: Markov chains. Markov chains constitute a widely studied topic on

probability theory and this section is not intended as an introduction or review of them. Here only

the fundamental concepts of Markov chains that are basic for later purposes are presented. For

further information see Isaacson and Madsen (1985), which deals entirely with the topic, or Ross

(1997) and Taylor and Karlin (1994) which are good introductions to stochastic processes.

The term stochastic process has been reserved for the study of families of random variables and

the relationships between those variables.

Definition 2.24. A stochastic process is a family of random variables defined on some sam-

ple space Ω. If there are countably many members of the family, the process will be denoted by

X0, X1, X2, . . .. In this case the process is called a discrete-time process. If there are uncount-

ably many members of the family, the process will be denoted by {Xt|t ≥ 0} and it is called a

continuous-time process.

Definition 2.25. The set of distinct values assumed by a stochastic process is called the state

space and denoted by E. If the state space of a stochastic process is countable, or finite, the process

will be called a chain.

Definition 2.26. A stochastic process {Xk}, k = 0, 1, 2 . . . with state space E = {0, 1, 2 . . .} is said

to satisfy the Markov property if for every n and all states i0, . . . , in−1, i, j it is true that:

P{Xn+1 = j|X0 = i0, . . . , Xn−1 = in−1, Xn = i} = P{Xn+1 = j|Xn = i}



14 Contributions on Theoretical Aspects of Estimation of Distribution Algorithms

Placing restrictions on the process to be considered, we can define a discrete-time Markov chain

(in the remainder of this section we only deal with this kind of stochastic process).

Definition 2.27. A discrete-time Markov chain is a discrete-time process with a countable or

finite state space whose (time) index set is T = 0, 1, 2, . . . and which satisfies the Markov property.

It is frequently convenient to label the state space of the Markov chain by the nonnegative integers

{0, 1, 2, . . .}, which we will do unless otherwise explicitly stated, and it is customary to speak of Xn

as being in state i if Xn = i.

Definition 2.28. The probability of Xn+1 being in state j given that Xn is in state i is called the

one-step transition probability and is denoted by P n,n+1
ij . That is

P n,n+1
ij = P{Xn+1 = j|Xn = i}.

The notation emphasizes that in general the transition probabilities are a function not only of

the initial and final states, but also of the time of transition as well. We will limit our discussion

to cases where in which the one-step transition probabilities are independent of the time variable

n. These chains are known as stationary or homogeneous Markov chains. Then P n,n+1
ij = Pij is

independent of n, and Pij is the conditional probability that the state value undergoes a transition

from i to j in one trial. It is customary to arrange these numbers Pij in a matrix, in the infinite

square array

P =




P00 P01 P02 P03 · · ·
P10 P11 P12 P13 · · ·
P20 P21 P22 P23 · · ·
...

...
...

... · · ·
Pi0 Pi1 Pi2 Pi3 · · ·
...

...
...

... · · ·




and to refer to P = (Pij) as the transition probability matrix of the Markov chain. If the

number of states is finite, then P is a finite square matrix whose number of rows is equal to the

number of states. Note that every transition matrix has the following properties:

(i) all the entries are nonnegative,

(ii) the sum of the entries in each row is one.

This matrix contains all the relevant information regarding the movement of the process among

the states in E. In fact the study of the Markov chain can be reduced to a study of the corresponding

transition probability matrix P. The chain is completely defined once its initial state X0 (or more

generally the probability distribution of X0) is specified.

2.3.1 Limiting Probabilities

Analysis of a Markov chain mainly involves calculating the probabilities of the possible realizations

of the process. Crucial to these calculations are the n-step transition probability matrices P(n) =

(P
(n)
ij ). Here P

(n)
ij denotes the probability that the process will go from state i to state j in n

transitions. Formally:

P
(n)
ij = P{Xm+n = j|Xm = i}.
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The n-step transition matrix may be obtained by multiplying the matrix P by itself n times:

P(n) = Pn.

Let (Xt) be a finite Markov chain with probability matrix P. For chains with many states the

problem of calculating Pn becomes quite tedious, especially for large n. In some cases the n-step

transition matrix converges to a fixed vector π, which is independent of the initial state X0 of the

chain. The limit vector π is called the “long run distribution”. Below we present the terminology

necessary to give the theorem that establishes when this “long run distribution” exists.

Definition 2.29. A subset, C, of the state space E is called closed if Pij = 0 for all i ∈ C and

j /∈ C. If a closed set consists of a single state it is called an absorbing state.

Definition 2.30. A Markov chain is called irreducible if there exists no nonempty closed set other

than E itself. If E has proper closed subsets, it is called reducible.

Definition 2.31. Two states, i and j, are said to intercommunicate if for some n ≥ 0, P
(n)
ij > 0,

and for some m ≥ 0, P
(m)
ji > 0.

This definition says that it is possible for the chain to go from i to j in n steps, and it is possible

to go from j to i in m steps. The integers n and m need not be the same.

Theorem 2.4. A Markov chain is irreducible if and only if all pairs of states intercommunicate.

The period of state i is concerned with the times at which the chain might return to state i.

Definition 2.32. Let i be a state of a Markov chain; i is said to have period d if d is the greatest

common divisor of those values of n for which P
(n)
ii > 0.

Definition 2.33. Let fn
ij denote the probability that the first visit to state j from state i occurs at

time n. That is

fn
ij = P{Xn = j, Xv 6= j, v = 1, 2, . . . , n− 1|X0 = i}.

If i = j we refer to fn
ii as the probability that the first return to state i occurs at time n. By definition

we say f0
ij = f0

ii = 0.

Definition 2.34. For fixed states i and j, let f ∗ij =
∑∞

n=1 fn
ij . The symbol f∗ij represents the

probability of ever visiting state j from state i. If i = j, we let f ∗ii =
∑∞

n=1 fn
ii denote the

probability of ultimately returning to state i.

Definition 2.35. A state i is said to be recurrent if f ∗ii = 1. If f∗ii < 1, then i is called transient.

Definition 2.36. If f∗ii = 1, define the expected return time to state i as µi =
∑∞

n=1 nfn
ii .

Definition 2.37. A recurrent state with an infinite expected return time is called null recurrent.

If the expected return time is finite, the state is called positive recurrent.

We have introduced all the necessary definitions for the following important theorem.

Theorem 2.5. For an irreducible, positive recurrent aperiodic Markov chain limn→∞ P
(n)
ij exists

and is independent of i. Furthermore, letting

πj = lim
n→∞

P
(n)
ij , j ≥ 0
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then πj is the only nonnegative solution of

πj =

∞∑

i=0

πiPij j ≥ 0

∞∑

j=0

πj = 1.

2.3.2 Absorption Times and Absorption Probabilities

Consider a Markov chain whose states are labeled 0, 1, . . . , N . States 0, 1, . . . , r−1 are absorbing,

and here Pii = 1 for 0 ≤ i ≤ r − 1, while states r, . . . , N are transient in that P
(n)
ij → 0 as n → ∞

for r ≤ i, j ≤ N . Therefore the transition matrix associated with the Markov chain is:

P =

[
Ir 0

Q R

]
,

where Ir is the identity matrix of dimension r. Matrix Q has dimension (N − r + 1) × r and its

entries represent the probability of going from a transient state to an absorbing state. Finally we

describe matrix R, which is a matrix of dimension (N − r + 1) × (N − r + 1) and contains the

probabilities of going from one transient state to another transient state. The set of transient states

is denoted by R and H = E −R denotes the set of absorbing states.

Definition 2.38. Let 0, . . . , r − 1 be the set of absorbing states of a Markov chain. Then the

absorption time starting from the ith transient state or the first hitting time to the set of

absorbing states starting from the ith transient state is given by the random variable

τi = min{n; n ≥ 0, 0 ≤ Xn ≤ r − 1|X0 = i}.

We are interested in the expectation of the random variable τi. Since it always holds that τi = 0

for any i ∈ H , we only need to concentrate on the states outside set H .

Definition 2.39. The expected absorption time starting from the ith transient state or the

expected first hitting time to the set of absorbing states starting from the ith transient

state is

mi = E[τi; τi < ∞] .

The vector whose components represent the expected first hitting time depending on the initial

transient state i, is m = [mi]i∈R. It is proven (see Theorem 3.2 in Iosifescu (1980)) that this vector

can be calculated as follows:

m = (I|R| −R)−11 ,

where 1 denotes the |R|-dimensional vector (1, . . . , 1)t.

If we denote W = (I|R| −R)−1, based on the above comments we can state that the expected

absorption time mi starting from the ith state is given by the expression:

mi =
∑

j

wij . (2.1)
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Figure 2.1. Fixed points with three different types of stability. The fixed point on the left is stable. The
fixed point in the center is marginally stable. The fixed point on the right is unstable.

Definition 2.40. Let 0, . . . , r − 1 be the set of absorbing states of a Markov chain. Then the

absorption probability to an absorbing state j, 0 ≤ j ≤ r − 1 starting from the ith state is

uij = lim
n→∞

P{τi ≤ n, Xτi
= j|X0 = i}.

The absorption probabilities, uij , to an absorbing state j starting from the ith state, are given

by the elements of the matrix U = (uij):

U = WQ. (2.2)

2.4 Discrete Dynamical Systems
Finally we present the last mathematical tool used in this dissertation for the theoretical study

of EDAs: discrete dynamical systems. A good reference for beginners in dynamical systems is

Sheinerman (1996).

Definition 2.41. Let f : IRn → IRn be a function. An equation of the form:

x(k + 1) = f(x(k))

is a discrete dynamical system.

A discrete dynamical system is a recurrence relation, with the index k playing the role of a

discrete “time”. The vector x is the state of the dynamical system, and the function f tells us how

the system moves. In special circumstances, however, the system does not move. The system can

be fixed in a special state; we call these states fixed points.

Definition 2.42. A fixed point of a dynamical system is a state vector x̃ with the property that

if the system is ever in the state x̃, it will remain in that state for all time.

To find fixed points of the discrete dynamical system x(k + 1) = f(x(k)) we need to find the

solutions x̃ of the equation x = f(x).

Not all fixed points are the same. Let us describe three types of fixed points a system may

possess.
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Definition 2.43. Let x(k + 1) = f(x(k)) be a discrete dynamical system. A fixed point x̃ of the

discrete dynamical system is called stable provided that:

(i) For every positive number ε there exists δ > 0 such that if |x̃−x(0)| < δ, then |x̃−x(k)| < ε for

all k ≥ 0.

(ii) There exists δ > 0 so that for any x(0) such that |x̃ − x(0)| < δ, then for every ε > 0 there is

K > 0 so that if k ≥ K, then |x̃− x(k)| < ε.

Part (i) of definition 2.43 means that for all starting values x(0) near x̃, the system stays near

x̃, while part (ii) says that for all starting values x(0) near x̃, x(k) → x̃ as k →∞, i.e. the system

converges to x̃.

Definition 2.44. Let x(k + 1) = f(x(k)) be a discrete dynamical system. A fixed point x̃ of the

discrete dynamical system is called marginally stable or neutral provided that:

(i) For every positive number ε there exists δ > 0 such that if |x̃−x(0)| < δ, then |x̃−x(k)| < ε for

all k ≥ 0.

(ii) There exists δ > 0 so that for any x(0) such that |x̃ − x(0)| < δ, then there exists ε > 0 and

K > 0 so that if k ≥ K, then |x̃− x(k)| > ε.

In other words, a fixed point x̃ is marginally stable if (i) for all starting values x(0) near x̃, the

system stays near x̃, but (ii) for all starting values x(0) near x̃, the system does not converge to x̃.

Definition 2.45. Let x(k + 1) = f(x(k)) be a discrete dynamical system. A fixed point x̃ of the

discrete dynamical system is called unstable if it is neither stable nor marginally stable.

A fixed point can also be said to be unstable if there are starting values x0 very near x̃ so that

the system moves far away from x̃.

Figure 2.1 illustrates each of these possibilities. The fixed point on the left of the figure is stable;

all trajectories which begin near x̃ remain near, and converge to x̃. The fixed point in the center

of the figure is marginally stable (neutral); trajectories which begin near x̃ stay nearby but never

converge to x̃. Finally, the fixed point on the right of the figure is unstable. There are trajectories

which start near x̃ and move far away from x̃.

The following proposition gives us a test to classify the stable or unstable fixed points of a discrete

multidimensional nonlinear dynamical system (see Sheinerman (1996), pp. 126).

Proposition 2.1. Let x̃ be a fixed point of the discrete dynamical system x(k + 1) = f(x(k)), and

Df(x̃) the Jacobian evaluated at x̃. It follows that:

(i) If the eigenvalues λ of the Jacobian all are such that |λ| < 1, then x̃ is a stable fixed point.

(ii) If some eigenvalue λ of the Jacobian is such that |λ| > 1, then x̃ is an unstable fixed point.



Chapter 3

An Introduction to Estimation of Distribution Algorithms

This chapter provides an introduction to Estimation of Distribution Algorithms.

Section 3.1 offers a brief review of Evolutionary Algorithms, where the appearance of Estimation

of Distribution Algorithms is motivated. In Section 3.2 Estimation of Distribution Algorithms

proposed for the solution of combinatorial optimization problems and optimization in continuous

domains are reviewed, ordered according to the complexity of the interrelations that they are able

to express. In addition, in Section 3.2, recent approaches in this field are reviewed and briefly

summarized.

3.1 Estimation of Distribution Algorithms: A novel class of
Evolutionary Algorithms

Evolutionary Algorithm (EAs) is an umbrella term used to describe computer-based problem

solving systems which use computational models of some of the known mechanisms of natural

evolution (established by Darwin (1859)) as key elements in their design and implementation. They

all share a common conceptual base of simulating the evolution of individual structures via processes

of selection and random changes. These robust heuristic approaches have been successfully applied

in several different fields such as all kinds of optimization problems, searching, classification and

machine learning. Here we focus on the field of optimization.

A formal description of an optimization problem (in case of minimization) is given by:

min
x∈Ω

f(x).

The set Ω, called the search space, can be finite or infinite and can be defined by a set of

constraints. The optimization problem can have many levels of difficulty, for instance multimodality,

non-linearity, nondifferentiability or complicated restrictions. The function to be optimized is termed

the objective function.

It is common practice to use biological terms to describe the algorithms: An admissible solution

x ∈ Ω (and possibly some other information) is encoded into a data structure called an individual .

A collection of such individuals forms a population. So-called evolutionary operators like mutation

and crossover are used to modify individuals (the parents) at random yielding the offspring . Then

the selection operator determines which offspring will serve as the new parents of the next iteration

according to the objective function value of the solution encoded in each individual. For maxi-

mization problems the objective function value may be interpreted as a measure of fitness of the

19
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individuals in the environment. The larger the objective function value, the higher the fitness of the

individual. In case of minimization problems this metaphor does not carry over because the fitness

of the individual is to be minimized. In order to avoid confusion the term “fitness” will be used

here as a synonym of the term “objective function value”. Since

−
{

min
x∈Ω

f(x)

}
= max

x∈Ω
{−f(x)}

this convention does not cause any problems. The algorithmic frame of EAs is sketched in Figure

3.1.

EA
choose an initial population
determine the fitness of each individual

repeat

perform random variation
determine the fitness of each individual
perform selection

until some stopping criterion is satisfied

Figure 3.1. Pseudocode for a general EA.

A number of major schools of evolutionary algorithms have evolved over the last 30 years:

Genetic Algorithms: mainly developed in the USA by Holland (1975), a set of earlier related

works can be seen in Fogel (1998), and further developments are described in Goldberg (1989).

Although Genetic Algorithms were initially applied in problems of combinatorial optimization,

their development also reached the numerical field.

Evolution Strategies: developed in Germany by Rechenberg (1973) and Schwefel (1981), they

are applied to problems in continuous domains.

Evolutionary Programming: has its roots in the work carried out by Fogel (1962, 1964) in the

USA. It was initially applied to discrete optimization, but later its applications also spread to

the numerical field.

Readers interested in reviews of these and other EAs are encouraged to peruse the literature:

Goldberg (1989), Fogel (1994), Bäck (1996), Rudolph (1997), and Larrañaga and Lozano (2002).

If EAs are compared with standard methods of mathematical optimization, EAs have the follow-

ing advantages. First, the field of application of EAs is vaster, they can deal with multimodalities,

discontinuities and constraints, with noisy functions, multiple criteria decision-making processes or

with problems given by a simulation model. Second, they do not make any assumptions about the

search space. Third, EAs can be relatively easily adapted to a new problem. Finally, the parameters

of EAs can be changed during execution.

Of course EAs also have drawbacks, including the following. First, optimal solutions are not

guaranteed to be found, and there are no reliable stopping criteria. Second, even extremely simplified
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algorithms are difficult to analyze theoretically. This difficulty implies a deficiency in theoretical

foundations. Third, EAs are computationally expensive and it is very difficult to carry out a

comparison between different EA approaches except experimentally. Fourth, it is not possible to

know how far the solution obtained by the algorithm is from the global optimum of the optimization

problem in hand, predicting the movements of the populations in the search space is extremely

difficult. Fifth, some optimization problems may require the design of specific random operators.

However, the worst characteristic probably resides in their strong dependence on a set of parameters

(e.g., size of the population, number of generations, probabilities of applying the random operators,

rate of generational reproduction, etc.) which have to be tuned experimentally for the particular

problem in hand. Consequently, unless the user has experience resolving the concrete optimization

problem in hand by means of a particular EA, choosing the suitable values for all the parameters

itself becomes an optimization problem (Grefenstette, 1986). Evolution strategies are the most

common EAs that we have mentioned that do not suffer from this drawback, as the parameter

tuning process is done using a self-adaptation technique. As a result, it is important to understand

that EAs are not a set of techniques that are ready to be applied, but a set of mechanisms that have

to be modified and tailored to the optimization problem in hand. Nevertheless, the good results

obtained in practical optimization problems justify the exponential growth of research about EAs.

Estimation of Distribution Algorithms (EDAs) (Larrañaga and Lozano, 2002; Mühlenbein and

Paaβ, 1996) constitute a new and promising paradigm for EAs. EDAs have been proposed in a wide

variety of scenarios with the purpose of overcoming some of the drawbacks that classical EAs present.

Concretely, the most appealing advantage of EDAs over classical EAs is the reduction in the number

of parameters to be tuned or assessed by the user. This reduction in the number of parameters stems

from the non-existence of random operators needed to generate the next population from the current

one at each iteration. This also avoids the sometimes necessary design of random operators tailored

to some particular optimization problems. EDAs replace the application of random operators at each

iteration by learning and subsequent simulation of a joint probability distribution for a database

made up of some individuals that are selected from the current population. This results in a

further advantage of EDAs over classical EAs: The relationships between the random variables that

represent the genes of every individual selected from the current population are explicitly expressed

through the joint probability distribution learnt from them, instead of being implicitly kept by

the individuals of the successive populations as building blocks of an efficient and effective search.

In fact, Holland (1975) already recognized that detecting interacting genes would be beneficial to

GAs. This source of knowledge was called linkage information. This idea has been exploited by

many researchers for the last few years in order to enhance the performance of GAs. The reader

is referred to Goldberg (1989), Goldberg et al. (1993), Kargupta (1996), Kargupta and Goldberg

(1996), Bandyopadhyay et al. (1998), Lobo et al. (1998), van Kemenade (1998), and Bosman and

Thierens (1999) for further details.

Another advantage of EDAs over classical EAs such as GAs is concerned with their performance

in what are known as deceptive optimization problems. It is well known that GAs exhibit poor

performance in this class of optimization problems as application of the random operators does

not guarantee that the combination of good solutions results in better solutions. According to the

experimental results that many works report (e.g., Larrañaga and Lozano (2002)), EDAs naturally

overcome the difficulties that are derived from deceptive optimization problems and provide the user

with effective final solutions.

Before explaining the main steps of an EDA it is necessary to introduce some notation. Let

X = (X1, . . . , Xn) denotes an n-dimensional random variable where each unidimensional random
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EDA

D0 ← Generate M individuals (the initial population) at random

Repeat for t = 1, 2, . . . until the stopping criterion is met

DSe
t−1 ← Select N ≤M individuals from Dt−1 according to the

selection method

ρt(x) = ρ(x|DSe
t−1) ← Estimate the joint probability distribution

of an individual being among the selected individuals

Dt ← Sample M individuals (the new population) from ρt(x)

Figure 3.2. Pseudocode of the generic EDA.

variable Xi is associated with one of the n genes of an individual. Consequently, X is an n-

dimensional discrete random variable and ρ(x) = p(x) is a joint probability mass function for X

when dealing with discrete optimization problems. On the other hand, X is an n-dimensional

continuous random variable and ρ(x) = f(x) is a joint probability density function for X when

dealing with continuous optimization problems.

Figure 3.2 shows a schematic of the generic EDA. The algorithm consists of the iteration of

three main steps, after the individuals of the initial population D0 have been generated, usually at

random, and evaluated. These three steps are as follows for the tth iteration of the generic EDA

for all t. First, N of the M individuals of the current population Dt−1 are selected according to

the selection method (usually based on the objective function values of the individuals). Then, the

population of selected individuals, denoted by DSe
t−1, is used to induce a joint probability distribution

for X, ρt(x). Finally, M individuals are sampled from ρt(x) and evaluated in order to create

the new population Dt. These three steps (i.e., selection of promising individuals, induction of a

joint probability distribution over the selected individuals, and subsequent simulation of the joint

probability distribution in order to construct the new population) are repeated until the stopping

criterion is met. Examples of stopping criteria are: Performance of a fixed number of generations,

performance of a fixed number of evaluations of the objective function, uniformity in the current

population, or no improvement over the best individual obtained in the previous generation. The

final solution that is returned at the end of the problem optimization process is usually the best

solution found in the whole process. Note that this solution may not be in the population of the

last generation of the generic EDA when the selection method takes a non-elitist approach.

3.2 Review of Estimation of Distribution Algorithms
The bottleneck of this new heuristic lies in estimating the joint probability distribution associated

with the database containing the selected individuals. Obviously, computing all the parameters that

are needed to completely specify this joint probability distribution in the standard representation

is often impractical. To avoid this problem, several authors have proposed different algorithms

where simplified assumptions concerning the conditional (in)dependencies between the variables

of the joint probability distribution are made. Therefore, classification of the algorithms can be
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carried out taking the complexity of the probabilistic model used into account: from those that

suppose that all the variables are independent, followed by those that consider order-two statistics,

and finally those that, by means of probabilistic graphical models, do not consider any constraints

on the relationship between the variables of the problem. A review of the different approaches in

the combinatorial and numerical fields can be found in Larrañaga et al. (1999), Larrañaga et al.

(2000a), Larrañaga et al. (2000b), Pelikan et al. (1999b).

Next, we offer a review of the EDAs proposed for the solution of combinatorial optimization

problems and optimization in continuous domains, and also we review the latest approaches in this

field. The work by Larrañaga and Lozano (2002) is an excellent, sound review of EDAs. The authors

also present a considerable number of optimization problems, ranging from classical ones to those

that appear in the machine learning field, which are solved with the help of a wide selection of the

EDAs mentioned above.

3.2.1 EDA Approaches to Combinatorial Optimization

The different approaches presented are ordered according to the complexity of the probabilistic

model used to learn the interdependencies between the variables from the database of selected

individuals.

3.2.1.1 Without Dependencies

In all the algorithms belonging to this category it is assumed that the n-dimensional joint proba-

bility distribution factorizes as a product of n univariate and independent probability distributions.

That is pt(x) =
∏n

i=1 pt(xi) – see Figure 3.6 for a graphical representation. Obviously this assump-

tion is very far from what happens in a difficult optimization problem, where the interdependencies

among the variables usually exist.

UMDA

The Univariate Marginal Distribution Algorithm (UMDA) was proposed by Mühlenbein (1998).

UMDA uses the simplest model to estimate the joint probability distribution of the selected indi-

viduals at each generation, pt(x). This joint probability distribution is factorized as a product of

independent univariate marginal distributions:

pt(x) = p(x|DSe
t−1) =

n∏

i=1

pt(xi)

A pseudocode for the UMDA algorithm can be seen in Figure 3.3.

Usually each univariate marginal distribution is estimated from marginal frequencies as follows:

pt(xi) =

∑N
j=1 δj(Xi = xi|DSe

t−1)

N

where

δj(Xi = xi|DSe
t−1) =

{
1 if in the jth case of DSe

t−1, Xi = xi

0 otherwise

PBIL

The Population Based Incremental Learning Algorithm (PBIL) was introduced by Baluja (1994)
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UMDA

D0 ← Generate M individuals (the initial population)

Repeat for t = 1, 2, . . . until the stopping criterion is met

DSe
t−1 ← Select N ≤M individuals from Dt−1 according to the

selection method

pt(x) = p(x|DSe
t−1) =

Qn
i=1

PN
j=1 δj (Xi=xi|D

Se
t−1)

N
←

Estimate the joint probability distribution

Dt ← Sample M individuals (the new population) from pt(x)

Figure 3.3. Pseudocode for a general UMDA algorithm.

and further improved by Baluja and Caruana (1995). The objective of this algorithm is to obtain

the optimum of a function defined in the binary space Ω = {0, 1}n. PBIL is based on the idea

of substituting the individuals of a population by a set of their statistics. In each generation, the

population of individuals is represented by a vector of probabilities:

pt = (p
(t)
1 , . . . , p

(t)
i , . . . , p(t)

n ) (3.1)

where p
(t)
i refers to the probability of obtaining a value of 1 in the ith component of Dt, the

population of individuals in the tth generation.

The algorithm works as follows. At each step t, drawing the probability vector pt(x), λ individuals

are obtained and the µ best of them (µ ≤ λ), x
(t)
1:λ,x

(t)
2:λ, . . . ,x

(t)
µ:λ, are selected. These selected

individuals will be used to modify the probability vector. A Hebbian-inspired rule is used to update

the probability vector:

pt+1 = (1− α)pt + α
1

µ

µ∑

k=1

x
(t)
k:λ

where α ∈ (0, 1] is an algorithm’s parameter. Figure 3.4 shows a pseudocode for the PBIL algorithm.

cGA

Harik et al. (1998) present an algorithm called compact Genetic Algorithm (cGA) that also be-

longs to this family. The algorithm (for binary representations) begins by initializing a vector of

probabilities where each component follows a Bernouilli distribution with parameter 0.5. Next,

two individuals are generated randomly from this vector of probabilities. After the individuals are

evaluated, a competition between them is carried out. The competition is held at the level of each

of the unidimensional variables, in such a way that if for the ith position the conquering individual

takes a value different from the loser, then the ith component of the vector of probabilities increases

or diminishes by a constant amount which depends on whether the ith position of the conquering

individual was a one or a zero. This process of adaptation of the vector of probabilities towards
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PBIL

Obtain an initial probability vector p0

while no convergence do
begin

Using pt obtain λ individuals x
(t)
1 ,x

(t)
2 , . . . ,x

(t)
λ

Evaluate and rank x
(t)
1 ,x

(t)
2 , . . . ,x

(t)
λ

Select the µ ≤ λ best individuals x
(t)
1:λ,x

(t)
2:λ, . . . ,x

(t)
µ:λ

pt+1 = (1 − α)pt + α 1
µ

Pµ
k=1 x

(t)
k:λ

end

Figure 3.4. Pseudocode for the PBIL algorithm.

the winning individual continues until the vector of probabilities has converged. Figure 3.5 shows a

pseudocode for the cGA.

Figure 3.6 is a graphical representation of the probability model of EDAs without interdepen-

dencies.

3.2.1.2 Bivariate Dependencies

Estimation of the joint probability distribution can be done quickly without assuming indepen-

dence between the variables – which is very far from reality in some problems – by taking depen-

dencies between pairs of variables into account. In this case, it is enough to consider second-order

statistics. While in the algorithms of the previous section, learning of just the parameters was

carried out – the structure of the model remained fixed – in this subsection, parametric learning is

extended to structural learning too.

MIMIC

De Bonet et al. (1997) developed an algorithm called Mutual Information Maximization for Input

Clustering (MIMIC). If we denote by π = (i1, i2, . . . , in) a permutation of the indexes 1, 2, . . . , n,

the probabilistic model used by MIMIC can be written as:

pπ
t (x) = pt(xi1 |xi2 ) · pt(xi2 |xi3) · . . . · pt(xin−1 |xin

) · pt(xin
)

To do the structural learning MIMIC uses a greedy algorithm that searches at each generation for

the best permutation π among the variables, in order to minimize the Kullback-Leibler divergence

between pπ
t (x) and the empirical distribution of the set of selected points. Figure 3.7 shows a

pseudocode for the estimation of the joint probability distribution carried out by MIMIC algorithm

where H(X) = −∑x P(X = x) log P(X = x) denotes the Shannon entropy of the variable X , and

H(X |Y ) =
∑

y P(Y = y)H(X |Y = y), where H(X |Y = y) = −∑x P(X = x, Y = y) log P(X =

x |Y = y), denotes the mean uncertainty in X given Y .

As in UMDA, the parameters are estimated by means of maximum likelihood estimators.
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cGA

Step 1. Initialize the probability vector p0(x)
p0(x) = (p0(x1), . . . , p0(xi), . . . , p0(xn)) =
(0.5, . . . , 0.5, . . . , 0.5)

Step 2. t = t + 1. Sampling pt(x) with t = 0, 1, 2, . . . obtain two

individuals: x
(t)
1 , x

(t)
2

Step 3. Evaluate and rank x
(t)
1 and x

(t)
2 obtaining:

x
(t)
1:2 (the best of both) and x

(t)
2:2 (the worst of both)

Step 4. Update the probability vector pt(x) towards x
(t)
1:2

for i = 1 to n

if x
(t)
i,1:2 6= x

(t)
i,2:2 then

if x
(t)
i,1:2 = 1 then pt(xi) = pt−1(xi) + 1

K

if x
(t)
i,1:2 = 0 then pt(xi) = pt−1(xi)− 1

K

Step 5. Check if the probability vector pt(x) has converged
for i = 1 to n do
if pt(xi) > 0 and pt(xi) < 1 then

return to Step 2

Step 6. pt(x) represents the final solution

Figure 3.5. Pseudocode for the cGA.

Figure 3.6. Graphical representation of the probability model of the proposed EDAs in combinatorial
optimization without interdependencies (UMDA, PBIL, cGA).

COMIT and TREE

Baluja and Davies (1997a, 1997b) proposed an algorithm called COMIT. This algorithm uses a

probabilistic model that considers second-order statistics. The dependency structure between the
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Step 1. Choose in = arg minj Ĥt(Xj)

Step 2. for k = n − 1, . . . , 1

Choose ik = arg minj Ĥt(Xj |Xik+1 )
j 6= ik+1 . . . , in

Step 3. pπ
t (x) = pt(xi1 |xi2) · pt(xi2 |xi3 )·. . .·pt(xin−1 |xin)·pt(xin)

Figure 3.7. The MIMIC approach to estimation of the joint probability distribution at generation t. The
symbols bHt(X) and bHt(X|Y ) denote the empirical entropy of X and the empirical entropy of X given Y
respectively. Both are estimated from DSe

t .

variables forms a tree. The factorization produced in the probability distribution can be written as:

pt(x) =

n∏

i=1

pt(xi|xj(i))

where Xj(i) is the variable (possibly empty) on which Xi depends.

Estimation of the tree structure of the probability distribution of the selected individuals at each

generation is done using the algorithm proposed by Chow and Liu (1968) (see Figure 3.8). The

parameters, given the structure, are calculated by maximum likelihood estimation.

Step 1. From the given (observed) distribution p(x) calculate I(Xi, Xj), the mutual
information for all variable pairs

Step 2. Consider the n(n − 1)/2 mutual information values as branch weights of a complete
graph and order them by magnitude

Step 3. Assign the two largest branches to the tree to be constructed

Step 4. Examine the next largest branch, and add it to the tree unless it forms a loop, in
which case discard it and examine the next largest branch

Step 5. Repeat Step 4 until n− 1 branches have been selected (at this point the spanning
tree has been constructed)

Step 6. pt(x) can be computed by selecting an arbitrary root node and forming the product:
pt(x) =

Qn
i=1 pt(xi|xj(i))

Figure 3.8. The Chow and Liu algorithm.

In the original work COMIT applied a local optimizer to each generated individual. The algorithm

in which this step is eliminated is called TREE (Larrañaga and Lozano, 2002).

BMDA

Pelikan and Mühlenbein (1999) propose a factorization of the joint probability distribution that only
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needs second-order statistics. Their approach, BMDA (Bivariate Marginal Distribution Algorithm),

is based on the construction of a dependency graph, which is always acyclic but does not necessarily

have to be a connected graph. In fact the dependency graph can be seen as a set of trees that are

not mutually connected.

The basic idea underlying the algorithm for construction of the dependency graph is simple. First,

an arbitrary variable is chosen and added as a node of the graph. This first variable is the one with

the greatest dependency – measured by Pearson’s χ2 statistic. Second, we need to add to the graph

the variable with the greatest dependency between any of the previously incorporated variables and

the set of not yet added variables. This last step is repeated until there is no dependency surpassing

a previously fixed threshold between already added variables and the rest. If this is the case, a

variable is chosen at random from the set of variables not yet used. The whole process is repeated

until all variables have been added to the dependency graph.

In each generation the factorization obtained with the BMDA is given by:

pt(x) =
∏

Xr∈Rt

pt(xr)
∏

Xi∈X\Rt

pt(xi | xj(i))

where X denotes the set of n variables, Rt denotes the set containing the root variable – in generation

t – for each of the connected components of the dependency graph, and Xj(i) returns the variable

connected to the variable Xi and added before Xi.

The probabilities for the root nodes, pt(xr), as well as the conditional probabilities, pt(xi | xj(i)),

are estimated from the database, DSe
t−1, containing the selected individuals.

Figure 3.9 is a graphical representation of EDAs with pairwise dependencies.

a) MIMIC structure

b) Tree structure c) BMDA

Figure 3.9. Graphical representation of the probability models for the proposed EDAs in combinatorial
optimization with pairwise dependencies (MIMIC, tree structure, BMDA).
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3.2.1.3 Multiple Dependencies

Several approaches to EDAs have been proposed in the literature where factorization of the joint

probability distribution requires statistics of order greater than two.

As far as we know, the first work in which the possibility of adapting the methods of model

induction developed by the scientific community working on probabilistic graphical models to EDAs

approaches is that of Baluja and Davies (1997a). This possibility is mentioned again in their later

work (Baluja and Davies, 1998), but unfortunately, they only mention it and do not show evidence

of implementation.

EcGA

Harik (1999) presents an algorithm – Extended compact Genetic Algorithm (EcGA) – whose basic

idea consists of using a marginal product model to estimate the joint probability distribution of the

selected individuals in each generation. This means that, in each generation, factorization of the

joint probability distribution is done as a product of marginal distributions of variable size. These

marginal distributions of variable size are related to the variables that are contained in the same

group and to the probability distributions associated with them. The grouping is carried out using a

greedy forward algorithm that obtains a partition between the n variables. Each group of variables

is assumed to be independent of the rest – as shown in Figure 3.13. In this way, factorization of the

joint probability on the n variables is of the form:

pt(x) =
∏

c∈Ct

pt(xc) (3.2)

where Ct denotes the set of groups in the tth generation, and pt(xc) represents the marginal distri-

bution of the variables Xc, i.e., the variables that belong to the cth group in the tth generation.

As the EcGA obtains a partition of the set of variables, it turns out that for all t and for all

c, k ∈ Ct:

⋃

c∈Ct

Xc = {X1, . . . , Xn}, Xc ∩Xk = ∅.

The greedy algorithm that carries out the grouping begins with a partition with n clusters (a

variable in each cluster). Then, the algorithm performs the union of the two variables that results

in the greatest reduction of a measure that conjugates the sum of the entropies of the marginal

distributions with a penalty for the complexity of the model based on the minimum description

length principle (MDL) (Rissanen, 1978).

More precisely, the measure that the EcGA tries to minimize in each generation has two compo-

nents:

The compressed population complexity defined using the entropy of the marginal distributions,

as follows:

N
∑

c∈Ct

H(Xc) = −N
∑

c∈Ct

∑

xc

p(Xc = xc) log p(Xc = xc)

and
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EcGA
D0 ← Generate M individuals (the initial population) at random

Repeat for t = 1, 2, . . . until the stopping criterion is met

DSe
t−1 ← Select N ≤M individuals from Dt−1 using the tournament

selection method

pt(x) = p(x|DSe
t−1) =

Q
c∈Ct

pt(xc|DSe
t−1) ← Estimate the probability

distribution of the selected individuals by means of a marginal
product model. Model search using steepest ascent search,
minimizing:
−N

P
c∈Ct

P
xc

p(Xc = xc) log p(Xc = xc) + log N
P

c∈Ct
dimXc

Dt ← Sample M individuals (the new population) from pt(x)

Figure 3.10. Pseudocode for the EcGA.

The model complexity that takes into account the dimension of the model in this way:

log N
∑

c∈Ct

dim Xc

where dim Xc represents the number of parameters needed to specify the marginal distribution

of Xc. If all the unidimensional variables belonging to the cth group were binary, then we would

obtain dim Xc = 2|Xc| − 1.

Taking into account both components, the measure that EcGA tries to minimize in each gener-

ation is:

−N
∑

c∈Ct

∑

xc

p(Xc = xc) log p(Xc = xc) + log N
∑

c∈Ct

dim Xc.

This measure is called combined complexity by Harik (1999).

The greedy search used by EcGA begins each generation by postulating that all the variables are

independent. It performs a steepest ascent search, where at each step, the algorithm attempts to

merge each pair of groups into a larger group. It judges the merit of these merges on their combined

complexity. If the best combination leads to a decrease in combined complexity, then that merger

is carried out. This process continues until no further pairs of groups can be merged. The resulting

marginal product model is then the one that is used for that generation.

As can be seen in Figure 3.10, tournament selection is also used in each generation to obtain the

set of selected individuals.
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FDA

In the work of Mühlenbein et al. (1999) the FDA (Factorized Distribution Algorithm) is introduced.

This algorithm applies to additively decomposed functions for which, using the running intersection

property (Lauritzen, 1996), a factorization of the mass-probability based on residuals, xbi
, and

separators, xci
, is obtained.

A function h(x) is additively decomposed if:

h(x) =
∑

si∈S

hi(xsi
)

where the set S = {s1, . . . sk} with si ⊂ {1, . . . , n} constitutes a covering of {1, . . . , n}, and the

following sets:

di = ∪i
j=1sj

bi = si\di−1

ci = si ∩ di−1

satisfy these three conditions:

bi 6= ∅ for all i = 1, . . . , k

dk = {1, 2, . . . , n}

∀ i ≥ 2 ∃ j < i such that ci ⊆ sj .

Then the joint probability distribution can be factorized in this way:

pt(x) =

k∏

i=1

pt(xbi
|xci

).

This factorization remains valid for all the iterations. Changes are only in the estimation of the

probabilities that in each iteration are done from the database containing the selected individuals.

In any case, the requirement of specifying the factorization of the joint probability distribution is

a drawback in applying the FDA approach to generic optimization problems. It is for this reason

that, besides parametric learning, structural learning is also desirable.

PADA

In Soto et al. (1999) factorization is done using a Bayesian network with polytree structure (no

more than one undirected path connecting every pair of variables). The proposed algorithm is called

PADA (Polytree Approximation of Distribution Algorithms) and can be considered a hybrid between

a method for detecting conditional (in)dependencies and a procedure based on score+search.

EBNA

The Estimation of Bayesian Networks Algorithm (EBNA) was introduced by Etxeberria and La-

rrañaga (1999) and Larrañaga et al. (2000a). A similar algorithm was independently proposed

by Pelikan y col. (Pelikan and Goldberg, 2000a; Pelikan and Goldberg, 2000b; Pelikan et al.,

1999; Pelikan et al., 2000c).

This algorithm allows statistics of unrestricted order in the factorization of the joint probability

distribution. This distribution is encoded by a Bayesian network that is learnt from the database

containing the selected individuals at each generation.
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Let us briefly introduce Bayesian networks. Formally a Bayesian network (Castillo et al., 1997) is

a pair (S, θ) representing a graphical factorization of a probability distribution. The structure S is

a directed acyclic graph which reflects the set of conditional (in)dependencies among the variables.

The factorization of the probability distribution is codified by S:

p(x) =
n∏

i=1

p(xi|pai)

where Pai is the parent set of Xi (variables from which there exists an arc to Xi in the graph S). On

the other hand θ is a set of parameters for the local probability distributions associated with each

variable. If the variable Xi has ri possible values, x1
i , . . . , x

ri

i , the local distribution p(xi|paj
i , θi) is

an unrestricted discrete distribution:

p(xk
i |paj

i , θi) ≡ θijk

where pa1
i , . . . ,paqi

i denote the values of Pai and the term qi denotes the number of possible different

instances of the parent variables of Xi. In other words, the parameter θijk represents the conditional

probability of variable Xi being in its kth value, knowing that the set of its parent variables is in

its jth value. Therefore, the local parameters are given by θi = (((θijk)ri

k=1)
qi

j=1). An example of a

Bayesian network can be seen in Figure 3.11.
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Figure 3.11. Example of a Bayesian network (X1, X2 and X4 can take two possible values and X3 three).

In EBNA learning the probabilistic model at each generation of the algorithm means learning a

Bayesian network from the selected individuals. There are different strategies to learn the structure

of a Bayesian network: by detecting conditional (in)dependencies or with a method called “score

+ search”. Once the structure has been learnt, the conditional probability distributions required

to completely specify the model are estimated from the database – using some of the different

approaches to parameter learning – or are given by an expert.

Detecting conditional (in)dependencies Every algorithm that tries to recover the structure of

a Bayesian network by detecting (in)dependencies has some conditional (in)dependence relations
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between some subset of variables of the model as input, and a directed acyclic graph that

represents a large percentage (and even all of them if possible) of these relations as output. The

PC algorithm, introduced by Spirtes et al. (1991), starts by forming the complete undirected

graph, then “thins” that graph by removing edges with zero order conditional independence

relations, “thins” again with first order conditional independence relations, and so on. The set

of variables that are conditioned on need only to be a subset of the set of variables adjacent to

one of the variables being conditioned. Using the PC algorithm produces EBNAPC .

Score + search method In “score + search” method, given a database D and a Bayesian net-

work whose structure is denoted by S, a value which evaluates how well the Bayesian network

represents the probability distribution of the database D is assigned. Different EBNA algorithms

can be obtained by using different scores.

BIC score (based on penalized maximum likelihood)

BIC(S, D) =

n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk log
Nijk

Nij
− 1

2
log N

n∑

i=1

qi(ri − 1)

where Nij is the number of individuals in D in which variables PaS
i take their jth value and

Nijk is the number of individuals in D in which variable Xi takes its kth value and variables

PaS
i take their jth value (this produces EBNABIC).

K2+pen (based on a penalized Bayesian score)

K2 + pen(S, D) = log




n∏

i=1

qi∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏

k=1

Nijk !


− 1

2
log N

n∑

i=1

qi(ri − 1)

(this produces EBNAk2+pen).

Notice that in the second score the original K2 score (Cooper and Herskovits, 1992) has been

modified by adding a penalization term in order to favor simple structures.

Once we have defined a score to evaluate Bayesian networks we have to set a search process to

find the Bayesian network that maximizes the score given the set of selected individuals. As

we need to find an adequate model structure as quickly as possible, a simple algorithm which

returns a good structure, even if not optimal, is preferred. An interesting algorithm with these

characteristics is Algorithm B (Buntine, 1991). Algorithm B is a greedy search which starts

with an arc-less structure and, at each step, adds the arc with the maximum improvement in

the score. The algorithm finishes when there is no arc whose addition improves the score.

In an EBNA approach the simulation of the Bayesian network is done using the Probabilistic

Logic Sampling (PLS) method, proposed by Henrion (1998). Figure 3.12 represents a pseudocode

of the EBNA algorithm.

BOA

Pelikan et al. (1999a, 2000a, 2000b) and Pelikan and Goldberg (2000c) propose the BOA (Bayesian

Optimization Algorithm). BOA uses the BDe (Bayesian Dirichlet equivalence) metric to measure the

goodness of each structure. This Bayesian metric has the property that the score of two structures
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EBNAPC , EBNABIC and EBNAK2+pen

BN0 ← (S0, θ
0) where S0 is an arc-less DAG, and θ0 is uniform

p0(x) =
Qn

i=1 p(xi) =
Qn

i=1
1
ri

D0 ← Sample M individuals from p0(x)

for t = 1, 2, . . . until the stopping criterion is met

DSe
t−1 ← Select N individuals from Dt−1

S∗t ← Find the best structure according to a criterion:
conditional (in)dependencies tests → EBNAPC

penalized maximum likelihood+search → EBNABIC

penalized Bayesian score+search → EBNAK2+pen

θt ← Calculate θl
ijk using DSe

t−1 as the data set

BNt ← (S∗t , θt)

Dt ← Sample M individuals from BNt using PLS

Figure 3.12. Pseudocode for the EBNAPC , EBNABIC and EBNAK2+pen algorithms.

that reflect the same conditional (in)dependencies is the same. The search used is a greedy search

and it starts in each generation from scratch. In order to reduce the cardinality of the search space

the constraint that each node in the Bayesian network has at most k parents is assumed. In Schwarz

and Ocenasek (1999) some empirical comparisons between BOA and BMDA can be found.

LFDA, FDAL, FDA-BC, FDA-SC

Mühlenbein and Mahnig (1999) introduce the LFDA (Learning Factorized Distribution Algorithm),

which essentially follows the same approach as in EBNABIC . The main difference is that in the

LFDA the complexity of the learnt model is controlled by the BIC measure in conjunction with a

restriction on the maximum number of parents each variable can have in the Bayesian network.

Ochoa et al. (1999) propose an initial algorithm, FDAL, to learn – by means of conditional

(in)dependence tests – a junction tree – an undirected graph derived from the Bayesian network

structure – from a database. The underlying idea is to return the junction tree that best satisfies the

previous assertions once a list of dependencies and independencies between the variables is obtained.

Also in Ochoa et al. (2000a) a structure learning algorithm that takes into account questions of

reliability and computational cost is presented. The algorithm, called FDA-BC, studies the class of

Factorized Distribution Algorithm with Bayesian networks of bounded complexity.

Similar ideas are introduced by Ochoa et al. (2000b) in the FDA-SC. In this case factorization

of the joint probability distribution is done using simple structures, i.e. trees, forests or polytrees.
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FDA EBNA, BOA EcGA

Figure 3.13. Graphical representation of probability models for the proposed EDAs in combinatorial opti-
mization with multiple dependencies (FDA, EBNA, BOA, LFDA and EcGA).

3.2.2 EDA Approaches in Continuous Domains

In this section we review work on optimization in continuous domains with EDAs. The organi-

zation of the section is analogous to the previous one as the different approaches have again been

grouped by the complexity of the interdependencies between the variables that the learnt density

function is able to express. It reviews work where the density function is factorized as a product of

n univariate marginal densities, after which an approach that uses two order densities is presented.

Finally more general approaches that consider multiple dependencies are introduced.

3.2.2.1 Without Dependencies

In work that does not take into account dependencies between the variables it is usual to assume

that the joint density function follows an n-dimensional normal distribution, which is factorized by

a product of unidimensional and independent normal densities. Using the mathematical notation

X ≡ N (x; µ,
∑

), this is:

fN (x; µ,
∑

) =

n∏

i=1

fN (xi; µi, σ
2
i ) =

n∏

i=1

1√
2πσi

e
− 1

2 (
xi−µi

σi
)2

. (3.3)

UMDAc

The Univariate Marginal Distribution Algorithm for continuous domains (UMDAc) was introduced

by Larrañaga et al. (1999, 2000b). In every generation and for every variable the UMDAc carries

out some statistical tests in order to find the density function that best fits the variable. Note that

in this case, although the factorization of the joint density function is

ft(x; θt) =

n∏

i=1

ft(xi, θ
t
i)

the UMDAc is in fact a structure identification algorithm (something that does not happen with the

UMDA for the discrete case) in the sense that the density components of the model are identified via
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UMDAc

Repeat for t = 1, 2, . . . until the stopping criterion is met
for i := 1 to n do

(i) Select via hypothesis test the density function ft(xi; θ
t
i)

that best fits DSe,Xi
t−1 , the projection of the selected individuals over

the ith variable

(ii) Obtain the maximum likelihood estimates for θt
i = (θt,k1

i , . . . , θt,ki
i )

At each generation the learnt joint density function is expressed as:

ft(x; θt) =
Qn

i=1 ft(xi,
bθt
i)

Figure 3.14. Pseudocode for learning the joint density function in UMDAc.

hypothesis tests. The estimation of parameters is performed, once the densities have been identified,

by their maximum likelihood estimates.

If all the univariate distributions are normal, then the two parameters to be estimated at each

generation and for each variable are the mean, µt
i, and the standard deviation, σt

i . It is well known

that their respective maximum likelihood estimates are:

µ̂t
i = Xi

t
=

1

N

N∑

r=1

xt
i,r; σ̂t

i =

√√√√ 1

N

N∑

r=1

(xt
i,r −Xi

t
)2 .

This particular case of the UMDAc will be denoted UMDAG
c (Univariate Marginal Distribution

Algorithm for Gaussian models).

Figure 3.14 shows pseudocode for learning the joint density function in the UMDAc.

SHCLVND

Rudlof and Köppen (1996), in their SHCLVND (Stochastic Hill Climbing with Learning by Vectors

of Normal Distributions), estimate the joint density function as a product of unidimensional and

independent normal densities. The vector of means µ = (µ1, ..., µi, ..., µn) is adapted by means of

the Hebbian rule:

µ(t+1) = µ(t) + α · (b(t) − µ(t))

where µ(t+1) denotes the vector of means in the generation t + 1, α denotes the learning rate, and

b(t) denotes the baricenter of the B (an amount fixed at the beginning) best individuals in the tth

generation. Adaptation of the vector of variances σ is carried out using a reduction policy in the

following way:

σ(t+1) = σ(t) · β

where β denotes a previously fixed constant (0 < β < 1).

PBILc

Sebag and Ducoulombier (1998) propose an extension (PBILc) of the boolean PBIL algorithm

to continuous spaces. As with the previous authors, they assume a joint density function that

follows a Gaussian distribution factorizable as a product of unidimensional and independent marginal
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densities. The adaptation of each component of the vector of means is carried out using the following

formula:

µ
(t+1)
i = (1− α) · µ(t)

i + α · (xibest,1(t) + xibest,2(t)− xiworst(t))

where µ
(t+1)
i represents the ith component of the mean, µ(t+1), at generation (t + 1), xibest,1(t)

denotes the best individual of generation t, while xibest,2(t) and xiworst(t) denote respectively the

second best and the worst individual of the generation t, and α is a constant. For the adaptation of

the vector of variances, they propose four heuristics: (i) use a constant value for all the marginals

and all the generations; (ii) adjust it as in a (1, λ) evolution strategy; (iii) calculate the sample

variance of the K best individuals of each generation; (iv) by means of a Hebbian rule, similar to

the adaptation of the means.

Notice the similarity of this approach to the (1, λ)–ES (Schwefel, 1995).

Figure 3.15. Graphical representation of the probability models for the proposed EDAs for optimization
in continuous domains without dependencies between the variables (UMDAc, SHCLVND, PBILc).

Servet et al.

Servet et al. (1997) introduce a progressive approach to the problem. At each generation, and for

each dimension i, they store an interval (ai
t, bi

t) and a real number zi
t (i = 1, . . . , n). zi

t represents

the probability that the ith component of a solution is on the right half of the previous interval. In

every generation the probabilities, zi
t, for each dimension are calculated, and when zi

t is closer to

1(0) than a previously fixed quantity, the interval is reduced to its right (left) half.

3.2.2.2 Bivariate Dependencies

MIMICG
c

This approach was introduced by Larrañaga et al. (1999, 2000b) and constitutes an adaptation of

the MIMIC algorithm (de Bonet et al., 1997) to continuous domains where the underlying probability

model for every pair of variables is assumed to be a bivariate Gaussian.

The idea, as in MIMIC for combinatorial optimization, is to describe the true joint density

function by fitting the model as closely as possible to the empirical data by using only one univariate
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MIMICG
c

Step 1. Choose in = arg minj σ̂Xj

Step 2. for k = n − 1, n− 2, . . . , 1

Choose ik = arg minj σ̂Xj −
σ̂2

Xj Xik+1

σ̂2
Xik+1

j 6= ik+1, . . . , in

Figure 3.16. Adaptation of the MIMIC approach to a multivariate Gaussian density function.

marginal density and n− 1 pairwise conditional density functions. In order to do this, the following

result is used:

Theorem 3.1 (Whittaker, 1990; pp. 167). Let X be an n-dimensional normal density function,

X ≡ N (x; µ,
∑

), then the entropy of X is:

h(X) =
1

2
n(1 + log 2π) +

1

2
log |∑ | . (3.4)

Applying this result to univariate and bivariate normal density functions in order to define

MIMICG
c , we obtain:

h(X) =
1

2
(1 + log 2π) + log σX (3.5)

h(X | Y ) =
1

2

[
(1 + log 2π) + log(

σ2
Xσ2

Y − σ2
XY

σ2
Y

)

]
(3.6)

where σ2
X (σ2

Y ) denotes the variance of the univariate X(Y ) variable and σXY denotes the covariance

between the variables X and Y .

Structure learning in MIMICG
c – see Figure 3.16 – works as a straightforward greedy algorithm

with two steps. In the first step, the variable with the smallest sample variance is chosen. In the

second step, the variable X with the smallest estimation of
σ2

Xσ2
Y −σ2

XY

σ2
Y

with respect to the previous

chosen variable, Y , t is chosen and linked to Y .

3.2.2.3 Multiple Dependencies

In this section we introduce some approaches to EDAs for continuous domains in which the

density function learnt at each generation is not restricted. As a first approach we present a

model where the density function corresponds to a non restricted multivariate normal density that

is learnt from scratch at each generation. The following two models correspond to adaptation

and incremental versions of the former model respectively. We also present approaches based on

learning of Gaussian networks by edge exclusion tests, and also using two score+search approaches

to learn the appropriate Gaussian network at each generation. We finish the section with the IDEA

framework.

EMNAglobal

This is an approach based on the estimation of a multivariate normal density function at each

generation. As we can see in Figure 3.17, at each generation we estimate the vector of means,
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EMNAglobal

D0 ← Generate M individuals (the initial population) at random

Repeat for t = 1, 2, . . . until the stopping criterion is met

DSe
t−1 ← Select N ≤M individuals from Dt−1 according to the

selection method

ft(x) = f(x|DSe
t−1) = N (x; µt, Σt) ← Estimate

the multivariate normal density function from the selected individuals

Dt ← Sample M individuals (the new population) from ft(x), using
an adaptation of the PLS algorithm to continuous domains

Figure 3.17. Pseudocode for the EMNAglobal approach.

µt = (µ1,t, . . . , µn,t), and the variance–covariance matrix, Σt, whose elements are denoted by σ2
ij,t

with i, j = 1, . . . , n. This means that we need to estimate 2n +

(
n− 1

2

)
parameters at each

generation: n means, n variances and

(
n− 1

2

)
covariances. These parameter estimations use

their maximum likelihood estimates in the following way:

µ̂i,t = X
t

i =
1

N

N∑

r=1

xt
i,r i = 1, . . . , n

σ̂2
i,t =

1

N

N∑

r=1

(xt
i,r −X

t

i)
2 i = 1, . . . , n

σ̂2
ij,t =

1

N

N∑

r=1

(xt
i,r −X

t

i)(x
t
j,r −X

t

j) i, j = 1, . . . , n i 6= j.

Although the number of parameters that this approach needs to estimate at each generation is

greater than in the case where the joint density function is estimated by means of Gaussian networks,

the mathematics needed to develop this approach are very simple. Note also that in the approach

based on Gaussian networks where edge exclusion tests are used it is necessary to calculate the

same number of parameters as in this approach and then carry out a hypothesis test on them. On

the other hand in the approach where score+search is used in order to obtain the best Gaussian

network it is mandatory to do a search over the space of possible models.

EMNAa

We present in this section an adaptive version of the approach introduced in the previous one.

Pseudocode for EMNAa (Estimation of Multivariate Normal Algorithm adaptive) is shown in Fig-

ure 3.18.

Once we obtain the first model, N (x; µ1,Σ1), whose parameters are estimated from the indi-

viduals selected from the initial population, the flow of EMNAa is similar to a steady–state genetic

algorithm.
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EMNAa

D0 ← Generate M individuals (the initial population) at random
Select N ≤M individuals from D0 according to the selection
method

Obtain the first multivariate normal density N (x; µ1,Σ1)

Repeat for t = 1, 2, . . . until the stopping criterion is met

Generate an individual xt
ge from N (x; µt,Σt)

if xt
ge is better than the worst individual, xt,N , then
add xt

ge to the population and drop xt,N from it
Obtain N (x; µt+1,Σt+1)

Figure 3.18. Pseudocode for the EMNAa approach.

First, we simulate one individual from the current multivariate normal density model. Next,

we compare the goodness of this simulated individual with the worst individual maintained in the

population. If the fitness of the simulated individual is better than the worst individual we have in

the population, then we replace this worst individual with the simulated individual. Once a new

individual replaces an existing one, it is necessary to update the parameters of the multivariate

normal density function.

This update will be done using the following formulae which can be obtained by simple algebraic

manipulations:

µt+1 = µt +
1

N
(xt

ge − xt,N )

σ2
ij,t+1 = σ2

ij,t −
1

N2
(xt

ge,i − xt,N
i ) ·

N∑

r=1

(xt,r
j − µt

j)−
1

N2
(xt

ge,j − xt,N
j ) ·

N∑

r=1

(xt,r
i − µt

i)+

1

N2
(xt

ge,i − xt,N
i )(xt

ge,j − xt,N
j )− 1

N
(xt,N

i − µt+1
i )(xt,N

j − µt+1
j )+

1

N
(xt

ge,i − µt+1
i )(xt

ge,j − µt+1
j ).

Note that with this EMNAa approach, the size of the population of individuals is kept fixed in

every generation.

EMNAi

In this section we describe the EMNAi (Estimation of Multivariate Normal Algorithm incremental)

approach. The similarity of this approach to the previous one is that both approaches only generate

one individual from each model. The difference is that in EMNAi each of the generated individuals

is added – as can be seen in Figure 3.19 – to the population.

This procedure uses the following updating rules:
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EMNAi

D0 ← Generate M individuals (the initial population) at random
Select N ≤M individuals from D0 according to the selection
method

Obtain the first multivariate normal density N (x; µ1,Σ1)

Repeat for t = 1, 2, . . . until the stopping criterion is met

Generate an individual xt
ge from N (x; µt,Σt)

Add xt
ge to the population

Obtain N (x; µt+1,Σt+1)

Figure 3.19. Pseudocode for the EMNAi approach.

µt+1 =
Nt

Nt + 1
µt +

1

Nt + 1
xt

ge

σ2
ij,t+1 =

Nt

Nt + 1
σ2

ij,t +
1

Nt + 1
(xt

ge,i − µt
i)(x

t
ge,j − µt

j).

Notice that in EMNAi the number of individuals in the population increases as the algorithm

evolves.

EGNAee, EGNABGe, EGNABIC

One proposal for optimization in continuous domains based on the learning and simulation of

Gaussian networks is illustrated in Figure 3.21.

Here we introduce one example of the probabilistic graphical model paradigm where it is assumed

that the joint density function is a multivariate Gaussian density (Whittaker, 1990). This paradigm

is known as the Gaussian network paradigm (Shachter and Kenley, 1989) in which the number of

parameters needed to specify a multivariate Gaussian density is reduced. In this graphical model

case, each variable Xi ∈ X is continuous and each local density function is the linear-regression

model:

f(xi | paS
i , θi) ≡ N (xi; mi +

∑

xj∈pa
i

bji(xj −mj), vi) (3.7)

where N (x; µ, σ2) is a univariate normal distribution with mean µ and variance σ2. Given this form,

a missing arc from Xj to Xi implies that bji = 0 in the former linear-regression model. The local

parameters are given by θi = (mi, bi, vi), where bi = (b1i, . . . , bi−1i)
t is a column vector.

Interpretation of the components of the local parameters is as follows: mi is the unconditional

mean of Xi, vi is the conditional variance of Xi given Pai, and bji is a linear coefficient reflecting the

strength of the relationship between Xj and Xi. Figure 3.20 is an example of a Gaussian network

in a 4–dimensional space.

The basic steps of each iteration of EGNA algorithms are:
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Figure 3.20. Structure, local densities and resulting factorization for a Gaussian network with four variables.

EGNAee, EGNABGe, EGNABIC

For t = 1, 2, . . . until the stopping criterion is met
DSe

t−1 ← Select Se individuals from Dt−1

(i) Ŝt ← Structural learning via:
edge exclusion tests → EGNAee

Bayesian score+search → EGNABGe

penalized maximum likelihood+search → EGNABIC

(ii) θ̂t ← Calculate the estimates for the

parameters of Ŝt

(iii) Mt ← (Ŝt, θ̂
t)

(iv) Dt ← Sample M individuals from Mt using the
continuous version of the PLS algorithm

Figure 3.21. Pseudocode for the EGNAee, EGNABGe, and EGNABIC algorithms.

Learning the Gaussian network structure by using one of the different methods: edge–exclusion

tests (Smith and Whittaker, 1998), Bayesian score+search, penalized maximum likelihood+search.

Computation of estimates for the parameters of the learnt Gaussian network structure.

Creation of the Gaussian network model.

Simulation of the joint probability distribution function encoded by the Gaussian network learnt

in the previous steps. For this last step, we use an adaptation of the PLS algorithm to continuous

domains.

While in the EGNAee the Gaussian network is induced at each generation by means of edge

exclusion tests, the model induction in the EGNABGe and EGNABIC is carried out by score+search
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approaches. In the EGNABGe a Bayesian score that gives the same value for Gaussian networks

reflecting the same conditional (in)dependencies is used.

IDEA

Bosman and Thierens (1999, 2000) introduce the IDEA (Iterated Density Evolutionary Algorithms)

approach to EDAs. Although IDEA is a general framework that can be used in discrete and

continuous optimization, the proposed new approaches belong to continuous domains.

There are two main characteristics of IDEA. The first one is that in each generation individuals are

sampled from a truncated distribution, where the truncation point is given by the worst individual

found in the previous generation. The second characteristic is that only part of the population is

replaced in each generation.

3.2.3 Recent Approaches for EDAs

EDAs have aroused the interest of a number of researchers as can be seen by the high number of

works recently published in conferences and journals in this field. This section briefly summarizes

and revises the latest main conferences on this topic – i.e., PPSN, CEC and GECCO conferences.

We also include other works published in EC-related journals. The works have been classified into

three sets: those devoted to a theoretical analysis of EDAs; those creating new EDAs; and works in

which EDAs are applied. In addition, the work by Lozano et al. (2005) is an excellent reference for

bringing oneself up to date on the latest approaches to EDAs.

3.2.3.1 Theoretical Analysis

In the work by Zlochin and Dorigo (2002) similarities and distinctive features between Ant Colony

Optimization, Stochastic Gradient Ascent, Cross-Entropy and Estimation of Distribution Algo-

rithms are discussed.

Toussaint (2003) presents a theoretical study of the structure of the offspring probability distrib-

ution, or exploration distribution, for a GA with mutation only, a GA with crossover, and an EDA.

The results afford a precise characterization of the structure of the crossover exploration distribu-

tion. Essentially, the crossover operator destroys mutual information between loci by transforming

it into entropy; it does the inverse of correlated exploration. In contrast, the objective of EDAs is to

model the mutual information between loci in the fitness distribution, thereby inducing correlated

exploration.

Zhang (2004) studies the advantages of using higher order statistics in EDAs. The author analyzes

two EDAs with two-tournament selection for discrete optimization problems, UMDA, which uses

only first-order statistics and FDA, which uses higher order statistics. The heuristic functions

and the limit models of these two algorithms are introduced and stability of these limit models is

analyzed. It is shown that the limit model of UMDA can be trapped at any local optimal solution

for some initial probability models. However, degenerate probability density functions at some local

optimal solutions are unstable in the limit model of FDA. In particular, the degenerate probability

density function at the global optimal solution is the unique asymptotically stable point in the limit

model of FDA for the optimization of an additively decomposable function. The results suggest

that using higher order statistics could improve the chance of finding the global optimal solution.

The global convergence of EDAs in continuous domains is investigated in Zhang and Mühlenbein

(2004) , proving that: i) if the distribution of the new elements matches that of the parent set exactly,

the algorithms will converge to the global optimum under three widely used selection schemes and,

ii) a factorized distribution algorithm converges globally under proportional selection.
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Shapiro (2005) analyzes the drift phenomenon in EDAs. The author deals with this effect when

the estimation of the parameters of the probability model in the EDA is not carried out by means of a

soft estimator. Some ideas to avoid this phenomenon involve scaling of the algorithm’s parameters in

a strongly problem-dependent way. The author exemplifies the result using the size of the population

as a parameter for several common algorithms and objective functions.

Gao and Culberson (2005) investigate the complexity issues related to the representation of

sampling distributions in EDAs. Particularly, they pay attention to additive decomposable functions

and the graph produced by these functions. Since the probability models of some EDAs are based

on these graphs, they analyze the complexity of these kinds of graphs. Their results provide insight

into how to design efficient EDAs and what the limitations of the algorithms are.

3.2.3.2 New Algorithms

We have classified the works that deal with the development of new EDAs in three groups.

The first one contains works that propose new probability models for learning the independencies

between the variables from the data base of selected individuals. The second one contains works

on how new EDAs are used to efficiently solve particular problems. Finally, the third one contains

works that combine EDAs and other techniques.

New Probability Models

Bosman and Thierens (2002) give a new tool for finding and using structure of permutation

problems in evolutionary computation by estimating marginal product factorized probability dis-

tributions in the space of permutations. This new algorithm is called ICEE (Induced Chromosome

Elements Exchanger).

Focusing mainly on the effective construction of Bayesian Networks with decision trees in the

distributed environment, Oceanesek et al. (2003) suggest and simulate a new algorithm called

Multithreaded Mixed Bayesian Optimization Algorithm (MMBOA).

The Gaussian-model based PBIL is improved in Yuan and Gallager (2003), proposing a new

continuous PBIL employing a histogram probabilistic model.

With the aim of keeping the diversities in an EDAs population, Handa (2004) incorporates a

mutation operator into conventional EDAs, creating new EDAs.

In Wright et al. (2004), a new framework for EDAs based on the principle of maximum entropy

and conservation of schema frequencies is proposed.

Tsuji et al. (2004) combine linkage identification methods and EDAs to detect dependency

between loci.

Cho and Zhang (2004) suggest a new continuous EDA with the variational Bayesian independent

component analyzers mixture model for allowing any distribution to be modeled.

In Posik (2004) a new model of probability density function (the distribution tree) and its use in

EDAs is described.

A new algorithm based on the learning and later simulation of a Bayesian classifier in every

generation is introduced in Miquélez et al. (2004). In the method they propose, at each iteration

the selected group of individuals of the population is divided into different classes depending on their

respective fitness values. Afterwards, a Bayesian classifier is learned to model the corresponding

supervised classification problem. The simulation of the latter Bayesian classifier provides the

individuals that form the next generation.

Lu and Yao (2005) propose two new EDAs for continuous optimization. Both of them incorporate

clustering techniques into the estimation process to break the single Gaussian distribution assump-

tion when building the probabilistic models (which would normally mislead the search when dealing
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with multimodal functions). These new algorithms also overcome the restriction of demanding prior

knowledge needed before applying clustering (which is unreasonable in real life).

Gallager and Frean (2005) deal with continuous EDAs. The authors develop a new algorithm

based on a stochastic gradient descent on the Kullback-Leibler divergence between a probability

density and a model of the objective function. They associate the designed algorithm with a con-

tinuous version of the population-based incremental learning algorithm and the generalized means

shift clustering framework.

Peña et al. (2005) suggest that EDAs can be used in globally multimodal problems. These

problems characteristically present several global optima. As these kinds of problems are difficult

for most common EDAs, the authors propose a new probabilistic graphical model which consists of

‘multinets’. This kind of Bayesian network efficiently and elegantly solves the multimodal problem.

New EDAs for Solving Particular Problems

Shan et al. (2003) give a new approach of EDAs for program synthesis, which is named Program

Evolution with Explicit Learning (PEEL).

In Yanai and Iba (2003) Estimation of Distribution Programming algorithm (EDP), is proposed.

This algorithm is based on a probability distribution expression using a Bayesian network, and it is

a search method that uses an EDA-like approach to solve Genetic Programming problems.

When applied to constrained optimization problems, most EDAs (as well EAs) use special tech-

niques for handling invalid solutions. Grahl and Rothlauf (2004) present PolyEDA, a new EDA

approach that is able to directly consider linear inequality constraints by using Gibbs sampling.

Pelikan and Lin (2004) describe, implement and test the Parameter-less Hierarchical BOA algo-

rithm, which is a black-box optimization algorithm that can be applied to hierarchical and nearly

decomposable problems without setting any parameters whatsoever.

Ahn et al. (2004) present a continuous EDA for solving decomposable, real-valued optimization

problems, named real-coded Bayesian optimization algorithm (rBOA).

Bosman and de Jong (2004) propose a probability distribution over trees to be used in an EDA

for GP.

Santana (2005) describes a new probability model to be used in EDAs. After analyzing the

limitations of the most common probability models used in EDAs, the author proposes a new

probability model based on what in statistical physics is known as the Kikuchi approximation. The

author studies problems where this kind of model is superior to the ones previously used.

EDAs Combined with Other Techniques

Tsutsui (2002) presents new EDAs in permutation representation domain using edge histogram

based sampling algorithms, and tests them in TSP problems.

Handa (2003) proposes a hybrid method of EDAs with a repair method for solving Constraints

Satisfaction Problems.

Paul and Iba (2003) propose an algorithm for combinatorial optimization that uses reinforcement

learning and EDA estimation of joint probability distributions of promising solutions to generate a

new population of solutions named Reinforcement Learning Estimation of Distribution Algorithm

(RELEDA).

The Distributed Probabilistic Model Building GA (DPMBGA) is proposed in the work by Hi-

royasu et al. (2003). In the DPMBGA, correlation among the design variables is considered by

principal component analysis when the offsprings are generated.

A new algorithm which combine the ideas that inspire EDAs and inductive machine learning,

called SI3E is presented in Llorà and Goldberg (2003) .

De la Ossa et al. (2004) apply island models to EDAs in the field of combinatorial optimization.
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Oceanesek et al. (2004) present a hybrid evolutionary strategy – called Adaptive Mixed Bayesian

Optimization Algorithm (MBOA )– combining the Mixed Bayesian Optimization Algorithm (MBOA)

with the variance adaptation as implemented in Evolution Strategies.

Mühlenbein and Höns (2005) relate EDAs to algorithms previously developed in statistics, arti-

ficial intelligence and statistical physics. The authors view all of these algorithms as minimizers of

the Kullback-Leibler divergence between an unknown distribution p(x) and a class of distributions.

After that, the authors concentrate on the problems that must be faced in order to learn appropriate

distributions for three particular algorithms.

3.2.3.3 Applications

Laummans and Ocenasek (2002), investigate the usefulness of EDAs in multi-objective opti-

mization, integrating the model building and sampling techniques of BOA into an evolutionary

multi-objective optimizer using a special selection scheme.

In Bengoetxea et al. (2002) EDAs are proposed as an approach for inexact graph matching. Also

the performance of EDAs for inexact graph matching is compared with that of GAs.

UMDA and PBIL are used to learn a Bayesian network structure from a database of cases in a

score + search framework in Blanco et al. (2003). A comparison with a GA approach is made using

three different scores: penalized maximum likelihood, marginal likelihood, and information-theory-

based entropy.

Cantú-Paz (2003) describes the application of four EAs (a simple GA, cGA, EcGA and BOA) to

the pruning of neural networks used in classification problems.

Pelikan and Goldberg (2003) apply the Hierarchical BOA (hBOA) to two classes of real-world

problems: Ising spin-glass systems and Maximum Satisfiability (MAXSAT).

The Distributed probabilistic Model Building Genetic Algorithm (DPMBGA) with the penalty

and pulling back methods is applied in Shimosaka et al. (2003) to truss structural optimization

problems.

Tsutsui et al. (2003) explore the effect of introducing a tag node in string representation for

solving flow shop scheduling problems with the algorithms proposed in Tsutsui (2002).

A method for optimization of composite video processing systems based on a genetic algorithm

with Hill-Climbing, Simplex and EDAs, is proposed in Ali and Topchy (2004).

Sastry and Goldberg (2004) present a selectomutative GA in which EcGA is used to automatically

identify key building blocks of the search problem.

Munetomo et al. (2004) present empirical results on parallelization of the linkage identification

compared to that of parallel BOA.

Li et al. (2004) apply the Bayesian optimization and classifier systems to nurse scheduling.

A new EDA for the identification of informative genes for molecular classification is given in Paul

and Iba (2004).

UMDA and PBIL are used in Romero et al. (2004) as a search engine in the Bayesian net-

work structure learning problem, to obtain the optimal ordering of variables for the K2 algorithm.

The authors also check whether the individual representation and its relation to the corresponding

ordering play important roles, and whether MIMIC outperforms the results of UMDA.

A method for segmentation and recognition of image structures based on graph homomorphisms is

presented in Cesar et al. (2005). The search for the best homomorphism is carried out by optimizing

an objective function based on similarities between object and relational attributes defined on the

graphs. The authors compare and discuss the following optimization procedures: deterministic tree

search, for which new algorithms are detailed, GAs and EDAs.
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Mendiburu et al. (2005) propose new parallel versions of some EDAs. In discrete domains, the

authors explain the parallelization of EBNABIC and EBNAPC , while in continuous domains, the

selected algorithms are EGNABIC and EGNAee.





Part II

Convergence Results





Chapter 4

General Convergence Results of Discrete EDAs

The standard measures of performance for optimization algorithms involve convergence properties

(whether or “under what assumptions” can it be guaranteed that the algorithm reaches a (n optimal)

solution) as well as time complexity (how quickly they are found). This chapter discusses results

obtained concerning convergence properties of EDAs.

In spite of successful applications of EDAs in combinatorial optimization, little attention has

been given to the theoretical aspects of this class of algorithms, and it is still unclear in theory when

EDAs work. In fact, as far as we know, there is only one other work (here we include a summary

of it) which deals with convergence properties of this class of algorithms in discrete spaces. A

study of global convergence of EDAs in continuous spaces can be found in Zhang and Mühlenbein

(2004), where the convergence of FDA under proportional selection is also analyzed.

This chapter builds the first general analytic framework given in this dissertation for analyzing

convergence of EDAs: the Markov chain model. In this approach an EDA is characterized as a

Markov chain and then its convergence is studied obtaining a “general” convergence result (a result

valid for the class of all EDAs, not only for a particular instance of them). The most common discrete

EDAs are analyzed using this theorem, resulting in convergence and non-convergence algorithms.

For those algorithms that do not converge, some conditions have been imposed on estimating their

probability distribution parameters to guarantee convergence. This chapter summarizes a study

that published earlier in González et al. (2002a).

The chapter is organized as follows: in Section 4.1, we model EDAs with Markov chains, and

introduce a new general theorem about the limit behavior of these algorithms. Section 4.2 deals

with the other general result found in the literature. The chapter ends with a brief summary.

4.1 EDAs and Markov Chain Models

Due to the stochastic nature of EDAs (Figure 3.2 shows a general pseudocode), random process

theory would seem to provide an appropriate set of tools for describing their behavior. In particular

Markov chains constitute a proper and natural mathematical tool for this purpose. This section

explains how we model EDAs by using Markov chains. First, we give a general theorem about the

limit behavior of EDAs and apply it to some of these algorithms.

Without lack of generality we consider that the optimization problem to solve is:

51
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min
x∈Ω

f(x) (4.1)

where f : Ω → IR is the objective function and Ω denotes the search space.

Definition 4.1. Let x∗ ∈ Ω be an individual such that f(x∗) ≤ f(x) for all x ∈ Ω. This individual

is said to be a global optimum (minimum in our case) of equation (4.1).

The search space is represented by:

Ω = Ω1 × Ω2 × . . .× Ωn

where Ωi = {1, 2, . . . , ri} for all i = 1, 2, . . . , n and n ∈ IN denotes the length or dimension of each

individual x ∈ Ω. The cardinality of the search space is |Ω| = r1 · r2 · . . . · rn = m. Suppose that

Ω = {x1,x2, . . . ,xm}, xi is called the ith individual of Ω, with i = 1, 2, . . . , m. A list of the different

individuals x ∈ Ω can be obtained as follows:

x1 = (x1,1, x1,2, . . . , x1,n)

x2 = (x2,1, x2,2, . . . , x2,n)

...

xm = (xm,1, xm,2, . . . , xm,n)

A population D in Ω is a subset of size M of individuals of Ω. Note that a population can have

repeated elements. The set D of all the populations of the algorithm can be represented as follows:

D = {D = (d1, d2, . . . , dm) | di = number of copies of the i-th individual in population D}

Of course,
∑m

i=1 dit = M . The number of different populations, v, is equal to the number of

different ways to place m− 1 balls into M + m− 1 boxes, i.e.:

v =

(
M + m− 1

m− 1

)
.

If we denote the population at step t by Dt, it is clear that, in a general EDA the resulting

new population, Dt only depends on the state of the previous population, Dt−1 in a probabilistic

manner. This fact, known as the Markov property, reveals that Markov processes are appropriate

models for modeling the probabilistic behavior of EDAs. Different Markov models can be used. The

three most natural are those in which the state space E is given by:

Markov model I: The different populations that the algorithm can take.

Markov model II: All the possible probability distributions, ρt(x), that can be formed from a

population of selected individuals of size N .

Markov model III: All the possible selected populations (of size N) that the algorithm can take.

In this case we have chosen the first possibility. We model a general EDA using a finite Markov

chain whose state space is formed from the different populations that the algorithm can take:
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E = {D1, D2, . . . , Dv} .

So, at each step t there exists an l ∈ {1, 2, . . . , v} such that Dt = Dl. Moreover, no operation used

for the calculation of the transition probabilities depends on the step parameter t, so the Markov

chain is homogeneous.

4.1.1 General Theorem for the Convergence of Discrete EDAs

In principle, the question whether an EDA will visit a global optimum and if so, whether it will

converge in some mode to the optimum or not, may be answered by modeling the EDAs under

consideration like the previous Markov chain, so that the existing powerful results from Markov

chain theory can be exploited.

The following theorem is a new general result about the limit behavior of discrete EDAs. We

find a sufficient condition for the convergence of these algorithms. Notice that the deterministic

concept of convergence to the optimum is not appropriate here because the state transitions of an

EDA are of a stochastic nature. Since there are a number of possible definitions of convergence, it

is important to clarify what we understand by convergence in this section. The idea of convergence

is formalized using the set of populations D∗ that contain a global optimum:

D∗ = {D | ∃ x ∈ D such that f(x) = f(x∗)} .

Definition 4.2. Let A be a discrete EDA. We say that A converges to a population that

contains a global optimum, when :

∃t0 such that ∀t ≥ t0 Dt ∈ D∗.

Therefore if A converges to a population that contains a global optimum, this means that once

a population of D∗ is reached the chain will never visit another population such that D /∈ D∗, i.e.

the algorithm never loses this global optimum.

Theorem 4.1. Let A be a discrete EDA such that:

pt(x) ≥ δ > 0, for all x ∈ Ω, and for all step t = 1, . . . (4.2)

Then A visits populations of D∗ infinitely often with probability one. If additionally the selection

is elitist, then A converges to a population that contains a global optimum.

Proof. Suppose that algorithm A is non elitist. In this case we show that the Markov chain has a

probability transition matrix Q = [qrs]r,s=1,2,...,v whose entries are all positive.

The probability of going from population Dr to population Ds at step t of the algorithm is given

by:

qrs = P (Ds|Dr) =
∑

DSe
r

psel(D
Se
r )

M !

d1s!d2s! . . . dms!

m∏

i=1

pDSe
r

(xi)
dis

︸ ︷︷ ︸
>0

> 0
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where psel(D
Se
r ) is the probability of selecting DSe

r from Dr, and pDSe
r

(x) is the estimated joint

probability distribution from DSe
r . pt(x) coincides with some pDSe

r
(x) at step t of the algorithm.

Hence the Markov chain is irreducible (all the states are intercommunicated), and the chain is

aperiodic. Since the chain is finite and irreducible, it is positive persistent. This results in the

existence of a limit distribution:

lim
k→∞

q(k)
rs = πs

where q
(k)
rs is the probability of going from population Dr to population Ds in k steps and the πs

are positive for all s = 1, 2 . . . , v. Therefore the chain will visit D∗ infinitely often with probability

one. In fact it visits all the states infinitely often. This proves the first part of the theorem.

For the second part, if the selection is elitist, when a global optimum is found it will never be

lost, and therefore the algorithm converges to a population that contains a global optimum. To

describe the transition probability matrix in this case, suppose that all the possible populations are

grouped and ordered by the number of optima that contain:

D∗M = {D ∈ D|D contains M optima }
D∗M−1 = {D ∈ D|D contains M − 1 optima }

...

D∗2 = {D ∈ D|D contains 2 optima }
D∗1 = {D ∈ D|D contains 1 optima }
D∗0 = {D ∈ D|D contains 0 optima }

Taking this grouping into account the transition probability matrix of the chain can be written

as the following lower triangular matrix:




RM,M 0 0 · · · 0 0

RM−1,M RM−1,M−1 0 · · · 0 0
...

...
. . .

. . .
...

...

R2,M R2,M−1 · · · R2,2 0 0

R1,M R1,M−1 · · · R1,2 R1,1 0

R0,M R0,M−1 · · · R0,2 R0,1 R0,0




where the entries of each sub-matrix Ri,j represent the probabilities of going from each population

that contains i optima to each population that contains j optima, and each Ri,j has dimension

|D∗i | × |D∗j |.

4.1.2 Applying the General Theorem of Convergence to Some EDAs

Theorem 4.1 offers an easy way to argue that some instances of EDAs converge to a global

optimum. To demonstrate that an algorithm converges to a global optimum it is sufficient to

prove that at each step the estimated joint probability distribution from selected individuals assigns

positive probability to each point of the search space. Next we analyze the convergence of different

examples of EDAs by checking whether condition (4.2) is fulfilled:
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4.1.2.1 UMDA

UMDA (Mühlenbein, 1998) uses the simplest model to estimate the joint probability distribution

of the selected individuals at each generation, pt(x). This joint probability distribution is factorized

as a product of independent univariate marginal distributions:

pt(x) =
n∏

i=1

pt(xi) =
n∏

i=1

p(xi|DSe
t−1).

These univariate marginal distributions are estimated from marginal frequencies:

p(xi|DSe
t−1) =

∑N
j=1 δj(Xi = xi|DSe

t−1)

N

where

δj(Xi = xi|DSe
t−1) =

{
1 if in the jth case of DSe

t−1, Xi = xi

0 otherwise.

Hence, taking into account the way in which the probabilities are estimated, there could be some

situations where an x exists such that pt(x) = 0. For example, when the selected individuals at a

previous step are such that δj(Xi = xi|DSe
t−1) = 0 for all j = 1, . . . , N , given an individual x with

xi in the ith component, it turns out that p(xi|DSe
t−1) = 0 and therefore:

pt(x) = p(xi|DSe
t−1)

n∏

k=1

k 6=i

p(xk|DSe
t−1) = 0.

Therefore condition (4.2) is not fulfilled and we can not ensure that UMDA visits a global

optimum.

In fact, the Markov chain that models the UMDA has m absorbing states. Those absorbing

states correspond to uniform populations. A uniform population is formed by M copies of the same

individual, and can be represented by:

Dr = (0, . . . , 0, M, 0, . . . , 0).

In this case, the probability of visiting a population Ds from a uniform population Dr is:

P (Ds|Dr) =

{
0 if Ds 6= Dr

1 otherwise.

Therefore if the chain visits one of these populations it will be trapped in it.

Clearly UMDA’s non-convergence is due to the way in which the probabilities p(xi|DSe
t−1) are

estimated. To overcome this problem the Laplace correction (Cestnik, 1990) could be applied. In

this case if the parameters p(xi|DSe
t−1) are estimated as

∑N
j=1 δj(Xi = xi|DSe

t−1) + ε

N + ε · ri
, 0 < ε ≤ 1,

we ensure that condition (4.2) is fulfilled.
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4.1.2.2 MIMIC

Unlike UMDA, MIMIC (de Bonet et al., 1997) takes into account pairwise dependencies among

variables in order to estimate the joint probability distribution.

At each step of this algorithm, a permutation of the indexes i1, i2, . . . , in that fulfills an entropy

related condition must be found before the probabilities can be estimated. Then the joint probability

distribution is factorized as:

pt(x) = pt(xi1 |xi2 ) · pt(xi2 |xi3) · . . . · pt(xin−1 |xin
) · pt(xin

)

where each conditional probability is estimated from the database DSe
t−1, by using conditional relative

frequencies. Hence if we use the same argument that we did for UMDA, we can not state that

MIMIC visits a global optimum. But in order to ensure that condition (4.2) is fulfilled by MIMIC,

it is sufficient to make similar changes in the estimation of the conditional probabilities that we

have shown for UMDA.

4.1.2.3 EBNA Algorithms

EBNA (Etxeberria and Larrañaga, 1999; Larrañaga et al., 2000a; Pelikan and Goldberg, 2000a;

Pelikan and Goldberg, 2000b; Pelikan et al., 1999; Pelikan et al., 2000c; Mühlenbein and Mahnig,

1999) are a set of algorithms which allows statistics of unrestricted order in the factorization of

the joint probability distribution. This joint probability distribution is encoded by a Bayesian

network that is learnt from the database containing the selected individuals at each generation.

The factorization can be written as:

pt(x) =
n∏

i=1

p(xi|pat
i)

where pat
i is an instantiation of Pat

i, the set of parents of variable Xi.

In EBNA learning the probabilistic model at each generation of the algorithm means learning a

Bayesian network from the selected individuals. Different algorithms can be obtained by varying

the structural search method. Two structural search methods are usually considered: score+search

and detecting conditional (in)dependencies (EBNAPC). Particularly, two scores are used in the

score+search approach, the BIC score (EBNABIC) and the K2+penalization score (EBNAK2+pen).

For all above described EBNAs the convergence is only affected by the calculus of the parameters

θijk , where θijk , as explained in Section 3.2.1.3, represents the conditional probability of variable Xi

being in its kth value, given that the set of its parent variables is in their jth value. The parameters

of the local probability distributions can be calculated for every generation using either:

Their expected values as obtained in Cooper and Herskovits (1992):

E[θijk |DSe
t−1] =

Nijk + 1

Nij + ri
(4.3)

or

The maximum-likelihood estimates:
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θ̂ijk =
Nijk

Nij
(4.4)

where Nijk denotes the number of cases in DSe
t−1 in which the variable Xi takes its kth value and

its parents Pai, are instantiated as their jth value. Nij represents the number of cases in which the

parents of variable Xi take their jth value.

In the first case, we can conclude that when the selection is elitist, EBNAs converge to a popu-

lation that contains a global optimum because (4.3) is always a positive value. In the second case,

as with UMDA and MIMIC, we can not ensure that EBNAs reach a global optimum because the

quantity (4.4) could be zero.

4.1.2.4 BOA

BOA (Pelikan et al., 1999; Pelikan and Goldberg, 2000a; Pelikan and Goldberg, 2000b; Pelikan

et al., 2000c) uses Bayesian networks to encode the joint probability distribution. The structural

search is driven by the BDe score (Heckerman et al., 1995). In this case the parameters of the local

distributions are calculated following a Bayesian approach that avoids taking a zero value. Hence

we can say that, when the selection is elitist, the algorithm converges to a population that contains

a global optimum.

4.1.2.5 LFDA

LFDA (Mühlenbein and Mahnig, 1999), like EBNAs and BOA, encodes the joint probability

distributions with Bayesian networks. LFDA uses the same score as EBNABIC but limits the number

of parents that a variable can take. In the case that the parameters of the local distributions are

calculated using the maximum-likelihood estimates (4.4) the convergence of the algorithm can not

be ensured. As in the previous algorithms the use of the Laplace correction will provide convergence.

4.2 Convergence for BEDA with Infinite Populations
In this section we summarize the only work in discrete spaces (Mühlenbein et al., 1999) – apart

from ours – where a convergence analysis of a general discrete EDA is carried out. The authors

introduce an EDA which uses Boltzmann selection: Boltzmann Estimation of Distribution Algo-

rithm (BEDA). BEDA is similar to a simulated annealing algorithm. But it generates a population

of points instead of a single point at each step, using the exact Boltzmann distribution (simulated

annealing only approximates the Boltzmann distribution). In their work the authors show the

convergence of a general BEDA for infinite populations.

The proof is based on an interesting property of the Boltzman selection that establishes that

when the points have been generated according to a Boltzmann distribution (u > 0):

p0(x) =
uf(x)

∑
y∈Ω uf(y)

,

and Boltzman selection is used with basis v > 1:

pt,sel(x) = pt(x)
vf(x)

∑
y∈Ω pt(y)vf(y)
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then after selection the selected points are also distributed according to a Boltzmann distribution,

with parameter u · v > u

p1(x) =
(u · v)f(x)

∑
y∈Ω(u · v)f(y)

.

This fact allows us to write the probability distribution at step t for a BEDA as:

pt(x) =
(u · vt)f(x)

∑
y∈Ω(u · vt)f(y)

(4.5)

Using the previous arguments the authors prove the following general theorem of convergence for

a BEDA algorithm:

Theorem 4.2. Let f(x∗) = minx∈Ω f(x). The minimum need not be unique. Let the distribution

pt(x) be given by equation (4.5). Let v > 1. Then

f(x) > f(x∗) =⇒ lim
t→∞

pt(x) = 0.

If the minimum is unique, then

lim
t→∞

Ept
[f(x)] = f(x∗).

Intuitively, Theorem (4.5) proves that almost all the individual points in the population will

move to globally optimal points (in this case to the minima) as time tends to infinity and taking

into account infinite populations.

4.3 Summary
In this chapter we have modeled EDAs using Markov chains. This framework allows us to prove

a general theorem of convergence for these algorithms. The result consists of giving a sufficient

condition which guarantees that the algorithm visits populations that contain a global optimum

infinitely often with probability one. If additionally the selection is elitist, then the EDA converges

to a population that contains a global optimum.

We also include the other general result on convergence of discrete EDAs existing in the literature.

The result proves that EDA – with Boltzmann selection and infinite populations – converges to a

population in which almost all individuals are copies of globally optimal solutions, as time tends to

infinity.



Chapter 5

Analysis of the PBIL algorithm

In order to offer a mathematical analysis of the convergence properties of the PBIL algorithm, in

this chapter the analysis is carried out under two analytic frameworks: Markov chains and discrete

dynamical systems.

PBIL (see Section 3.2.1.1) is a simple example of EDAs, and uses a probability model which is a

product of independent probabilities for each component in the string. This instance of EDAs does

not exactly comply with the general model given in Figure 3.2, because at each step PBIL does not

maintain a population of individuals. At each step PBIL maintains a vector of probabilities that

represents the population of individuals. Therefore the general Markov chain model built in the

previous chapter can not be applied to PBIL, and consequently Theorem 4.1 can not be used to

analyze the convergence behavior of this algorithm.

However, like the other EDAs, PBIL can be modeled using a Markov model, but the Markov

chain used in the analysis is different from the one used in the previous chapter. Such an approach

exactly models the behavior of PBIL, but the analysis of the chain is very complex, and our study

has been reduced to a simple problem and a simple case of the algorithm. In spite of this, the

Markov chain model allows us to prove a strong dependence of PBIL convergence on the initial

vector p0(x) and on the α parameter value.

The discrete dynamical systems framework enables us to perform a more general analysis than

Markov chains do. A general version of the algorithm is modeled, in the case of optimization of a

general injective objective function. The conclusions obtained can be easily extended to noninjective

functions. Associating an appropriate dynamical system to PBIL, we show that this algorithm

follows the iterates of the dynamical system when α is near zero. Stability analysis of the dynamical

system carried out shows that PBIL can only converge to local optima (when α is near zero),

meaning, in the case of unimodal functions, that PBIL converges to the global optimum.

The chapter is structured in four sections. Section 5.1 presents an analysis published earlier in

González et al. (1999) and was extended in González et al. (2001), where Markov chains are used to

model the simplest version of PBIL. Section 5.2 deals with the discrete dynamical system proposed

for the modeling of PBIL, and reports the study that appears in González et al. (2000). Section

5.3 reviews other works concerning the theoretical analysis of PBIL. Finally we draw conclusions in

Section 5.4.

59
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5.1 Modeling PBIL by Means of Markov Chains
In this section a preliminary study is made of the convergence behavior of PBIL based on Markov

chains. However, it is not possible to use the same Markov chain utilized in the previous chapter,

arguing through the theorem proven there. This is because PBIL is based on the idea of substituting

the individuals of a population by a set of their statistics. In each generation, the population of

individuals is represented by a vector of probabilities pt. That is, while in most EDAs a population

of individuals is maintained, in PBIL all this information is encapsulated in a vector of probabilities,

thus requiring a different sort of argument.

As a preliminary analysis, we perform a number of experiments in order to make out the behavior

of the algorithm. These empirical results are used only as an incidental tool, while in the next section

the results suggested by them are mathematically proved. The objective of the experiments is to

answer (empirically, of course) the following questions: given initial values of the probability vector,

p0 and of α, does the algorithm converge to any point of the search space? And if so, does the

algorithm converge to the global optimum, or does the limit point depend on the initial values of

p0 and of α? If the latter, how does it depend on those initial values?

We carry out the analysis on the simplest version of PBIL and when it is used to minimize the

OneMax function in two dimensions. In other words, the optimization problem to solve is:

min
x∈Ω

OneMax(x) (5.1)

where the search space is Ω = {0, 1}2, and OneMax(x) =
∑2

i=1 xi. The optimum of OneMax is,

clearly, at point (0, 0) and the worst value is at (1, 1).

The version of PBIL used here to solve problem (5.1) is the simplest one; i.e. we consider that

at each step two individuals (λ = 2) are generated and the best (µ = 1) is selected to modify the

probability vector pt.

In the experiments different values of p0 and α are used. In particular we take four values for

p0: (.05, .05), (.50, .50), (.95, .05) and (.95, .95), and three for α: .05, .50 and .95.

For each combination of these parameters we carried out 15× 104 executions. Table 5.1 shows

the results. Each entry of the table represents the number of executions in which PBIL with initial

probability p0 and parameter α got a particular point of the search space. For instance, with

p0 = (.95, .95) and α = .5 the point (1, 1) was reached 104,056 times.

In view of the experimental results, we can deduce the following. PBIL does not converge to

the global optimum. In every case the algorithm converges, but the limit point depends on the

values of p0 and α. It seems that when the value of α is near zero, the algorithm converges to the

optimum with high probability, but in other situations this does not happen. For instance, when

p0 takes values near (1, 1) and α takes values near 1, the algorithm goes to (1, 1) with a very high

probability. Similarly, when the algorithm starts with p0 near (1, 0) and α near 1 we obtain similar

results for the point (1, 0). The next section proves mathematically some of the results suggested

by these experiments.

5.1.1 A Markov Chain that Models PBIL

As we have seen empirically the behavior of PBIL depends on the initial vector p0 and on the

value of the parameter α. Thus, the experimental results obtained appear to show mathematically

that the sequence {pt}t=0,1,2,... (and hence the algorithm) can go to any point of the search space

for suitable values of p0 and α.
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p0 α (0, 0) (0, 1) (1, 0) (1, 1)

.05 150,000 0 0 0

.50 149,760 132 108 0(.05, .05)

.95 148,818 547 635 0

.05 150,000 0 0 0

.50 107,220 20,335 20,405 2,040(.5, .5)

.95 69,213 37,195 35,376 8,216

.05 120,034 0 29,966 0

.50 24,824 74 125,033 69(.95, .05)

.95 14,865 413 134,465 257

.05 88,178 28,055 27,948 5,819

.50 2,942 21,501 21,501 104,056(.95, .95)

.95 897 14,445 13,922 120,736

Table 5.1. Results of the experiments performed to see whether the behavior of PBIL depends on p0 and
α.

As above mentioned, the Markov chain used to model PBIL can not be the same as the one

used for the EDAs based on populations. But this does not mean that Markov chains are not an

appropriate tool for modeling PBIL. Because the probability vector pt only depends on pt−1, we

can model PBIL by using a Markov chain whose state space E is given by all the possible probability

vectors, pt, that can be obtained from a population of selected individuals of size µ:

E =

{
(1− α)tp0 + α

(
t−1∑

k=0

(1− α)kx
(t−k−1)
1:2

)
∣∣ t = 1, 2, . . . , and x

(l)
1:2 ∈ {0, 1}2, l = 0, . . . , t− 1

}
.

Note that the state space of this chain is infinite numerable and that for each p0 and α we have a

different Markov chain.

Given an initial probability vector p0 and a value of parameter α, the above described Markov

chain exactly models the behavior of PBIL. Unfortunately, analysis of this chain is very complex

because every state is transient. However it is easier to study the probabilities of certain transitions

in the chain, making it possible to calculate the probability of the chain path driving the algorithm

towards convergence to a particular point.

In particular, for each point of the search space we find a lower bound for the probability of a

chain path driving the algorithm towards convergence to this point.

For example, using the point (1,1), we see how to calculate a lower bound of the probability of

the chain path driving the algorithm convergence to this point. The arguments used for the point

(1, 1) illustrate the procedure used in the other points. In this case the chain path is composed of

the probability vectors that would be generated if at each step of the algorithm the point (1, 1) were

obtained after the selection. It is important to realize that in this case the sequence {pt}t=0,1,2,...

converges to the point (1, 1).

Hence we want to calculate the probability that the Markov chain visits the states:

p0, p1, . . . , pt, . . .

where pt = (1 − α)pt−1 + αx
(t−1)
1:2 and x

(t−1)
1:2 = (1, 1) for all t. It is similar to say that at each

iteration of PBIL the point (1, 1) is obtained.
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As seen in Höhfeld and Rudolph (1997), the probability of obtaining the point (1, 1) at the (t+1)th

step of PBIL, starting from a probability vector pt = (p
(t)
1 , p

(t)
2 ), is given by:

(p
(t)
1 · p(t)

2 )2. (5.2)

In Höhfeld and Rudolph (1997) the probabilities of obtaining the remainder points of Ω are also

calculated.

Therefore the probability of the chain path is expressed by an infinite product of type (5.2)

probabilities. By calculating the probabilities of paths we can establish the following theorem:

Theorem 5.1. The sequence {pt}t=0,1,2,... generated by PBIL in the minimization of OneMax

function converges to (a, b) ∈ Ω = {0, 1}2, with probability as near to 1 as we want when p0 and α

go to (a, b) and 1 respectively.

Proof. We demonstrate the case (a, b) = (1, 1), but all others are similar.

We want to calculate the probability that the chain visits the states:

p0, p1, . . . , pt, . . .

where:

pt = (1− α)pt−1 + αx1:2

= (1− α)pt−1 + α(1, 1) = (1− α)pt−1 + (α, α) .

Here,using (5.2), we calculate the probabilities of visiting pt = (1− α)pt−1 + (α, α) given pt−1.

In other words, we calculate the probability of obtaining in one step the point (1, 1):

P (pt = (1− α)pt−1 + (α, α) | pt−1)

= P(to obtain point (1, 1) starting from pt−1) = (p
(t−1)
1 p

(t−1)
2 )2 .

Hence, the probability we want to calculate, the probability of the chain path, can be expressed

as the (infinite) product of the probabilities of each transition. To simplify notation we suppose

that p
(0)
1 = p

(0)
2 = p. After several basic algebraic operations the probability can be written as:

P
(

lim
t→∞

pt = (1, 1) | p0 = (p, p)
)

= P (to obtain vector (1, 1) | p0 = (p, p)) =

[ ∞∏

t=0

[
1 + (1− α)t(p− 1)

]
]4

. (5.3)

We study the convergence of this infinite product, knowing that:

∞∏

n=0

xn, (xn > 0) converges⇔
∞∑

n=0

ln xn converges.

Therefore it is enough to see the behavior of the series

∞∑

t=0

ln
(
1 + (1− α)t(p− 1)

)
. (5.4)
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Using a classical criterion, we show that this series converges when α goes to 1. Instead of calculating

the value of the product (5.3) we will give a lower bound for this product, bounding the series (5.4):

∞∑

t=0

ln
(
1 + (1− α)t(p− 1)

)
= ln p +

∞∑

t=1

ln
(
1 + (1− α)t(p− 1)

)
> ln p +

∞∑

t=1

ln
(
1− (1− α)t

)
.

Since the power series expression of ln(1 + x) when x is near zero is:

ln(1− x) = −
∞∑

k=1

xk

k
,

we obtain:
∞∑

t=0

ln
(
1 + (1− α)t(p− 1)

)

> ln p−
[ ∞∑

t=1

( ∞∑

k=1

(1− α)tk

k

)]
= ln p−

∞∑

k=1

(
1

k

(1− α)k

1− (1− α)k

)
≥ ln p−

∞∑

k=1

(
(1− α)k

1− (1− α)k

)

≥ ln p−
∞∑

k=1

(
(1− α)

α

)k

= ln p−
(

1− α

2α− 1

)
.

Taking the limit of the last expression, when α → 1 and p → 1 we find that

lim
(α,p)→(1,1)

∞∑

t=0

ln
(
1 + (1− α)t(p− 1)

)
≥ lim

(α,p)→(1,1)

[
ln p−

(
1− α

2α− 1

)]
= 0 .

If we take:

ln

[ ∞∏

t=0

(
1 + (1− α)t(p− 1)

)
]

= ln x

we obtain:

ln x
(α,p)→(1,1)−→ 0 =⇒ x =

∞∏

t=0

[
1 + (1− α)t(p− 1)

]
−→ 1 .

Theorem 5.1 shows the dependence of the convergence behavior of PBIL on the initial parameters

(p0 and α). If some of them are sufficiently close to 0 or 1, the global optimum may never be found.

The result can be generalized to the case in which Ω = {0, 1}n by extending this proof to the general

case of a search space of dimension 2n.

5.2 Modeling PBIL by Means of Discrete Dynamical systems
A new approach can be obtained if we model PBIL by means of discrete dynamical systems. This

idea has been used previously for the simple GA (Vose, 1999a; Vose, 1999b) obtaining important

results. Our approach and notation are strongly inspired by these previous works. The key question

is to associate PBIL with a discrete dynamical system, such that the trajectories followed by the

probability vectors {pt}t=0,1,2,... in PBIL are related to the iterations of the discrete dynamical

system. This fact allows us to study the discrete dynamical system instead of the iterations of

PBIL.
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5.2.1 Assigning a Discrete Dynamical System to PBIL

For this analysis we consider that the optimization problem to solve is:

min
x∈Ω

f(x)

where f : Ω → IR is the objective function and Ω = {0, 1}n denotes the search space. The cardinality

of the search space is |Ω| = 2n = m. The version of PBIL analyzed in this section can be seen in

Figure 3.4.

Before presenting the discrete dynamical system associated with PBIL it is useful to note that

the behavior of the algorithm is the same in two different functions f1 and f2 if:

∀ x,x′ ∈ Ω , f1(x) > f1(x
′) ⇔ f2(x) > f2(x

′).

Moreover the important thing is not the particular value that a function f has in an individual

x but the ranking implied by this function in Ω. With this argument in mind, we can consider a

function f : Ω −→ IR as a permutation of the elements of Ω. In this case the last individual of Ω,

xm has the smallest function value, the penultimate xm−1 the second smallest and so on, with the

first individual x1 being the one with the highest function value:

f(x1) ≥ · · · ≥ f(xm−1) ≥ f(xm).

Therefore the number of different injective functions in Ω is given by m!. In order to simplify

notation, we assume in the rest of this section that we have to optimize an injective function.

However, the results can easily be extended to noninjective functions.

PBIL can be considered as a sequence of probability vectors, each one given by a transition

stochastic rule τ :

p0
τ−→ p1

τ−→ p2
τ−→ · · · τ−→ pt

τ−→ pt+1
τ−→ · · ·

that is, pt+1 = τ(pt) = τ t+1(p0). We are interested in the trajectories followed by the iterations of

τ , and in particular, in its limit behavior:

lim
t→∞

τ t(p0).

We define a new operator G:

G : [0, 1]n −→ [0, 1]n

such that G(p) = (G1(p), . . . ,Gn(p)) = E[τ(p)]. The operator G is a deterministic function that gives

the expected value of the random operator τ . The iterations of G are defined as G t(p) = G(Gt−1(p)).

We are interested in the relation between the iterations of τ and the iterations of G, and in particular

we want to answer the question: Is there any relation between τ t(p) and Gt(p)? However, before

looking for this relation let us calculate the expression of G(p).

The operator G can be expressed as follows:

G(p) = E

[
(1− α)p + α

1

µ

µ∑

k=1

Xk:λ

]
= (1− α)p + α

1

µ
E

[
µ∑

k=1

Xk:λ | p
]

.

Hence, we have to calculate the expected sum of the µ best individuals given that λ have been

sampled from the probability vector p. Our analysis is restricted to the case µ = 1 (the most
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frequent in the literature). In this case the G operator can be calculated explicitly, which we do in

several steps.

First, the expected value E[
∑µ

k=1 Xk:λ | p] is reduced for the case µ = 1 to:

E[X1:λ|p] =

n∑

i=1

xiP(X1:λ = xi | p)

where P(X1:λ = xi | p) denotes the probability of obtaining xi as the best individual after an

iteration of the algorithm. Let P(S = xi | p) denote the probability of sampling vector xi. The

probability that xi is the best individual, given that we have sampled λ individuals and the proba-

bility vector is p, can be expressed as follows (Höhfeld and Rudolph, 1997):

P(X1:λ = xi | p) = P(S = xi | p)
λ∑

k=1

P(Ω>
i | p)k−1P(Ω≥i | p)λ−k

where:

Ω>
i = {xj ∈ Ω | f(xj) > f(xi)}

Ω≥i = {xj ∈ Ω | f(xj) ≥ f(xi)}.

Finally, it is important to note that, given a probability vector p, the probability of sampling a

particular individual x = (x1, . . . , xl, . . . , xn) is:

qx(p) = P(S = x | p) =
n∏

l=1

pxl

l (1− pl)
1−xl . (5.5)

According to these results it can be said that the operator G can be expressed as a polynomial

function of the probability vector p. In fact, if we take into account that each function can be

considered as a permutation of Ω (only the individuals preceding xi have a higher function value

than xi), then:

P(Ω>
i | p) =

i−1∑

j=1

qxj
(p)

P(Ω≥i | p) =

i∑

j=1

qxj
(p).

Finally G(p) can be expressed in our study case (µ = 1) as follows:

G(p) = (1− α)p + α
m∑

i=1

xiqxi
(p)




λ∑

k=1




i−1∑

j=1

qxj
(p)




k−1


i∑

j=1

qxj
(p)




λ−k

 .

5.2.2 Relationship Between τ t(p) and Gt(p)

In this section we demonstrate that when the parameter α is near 0, then the stochastic operator

τ follows the deterministic operator G for a long time. First we set up the relation between G and

τ and then we study the relation between their iterates.
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Lemma 5.1. Given ε > 0 and γ < 1, there exists α0 > 0 independent of the probability vector p

such that with probability at least γ:

α < α0 ⇒ ||τ(p) − G(p)|| < ε.

Proof. Suppose that τ(p) = (1− α)p + αx. The discrepancy between G and τ can be bounded by:

||τ(p) − G(p)|| = ||(1− α)p + αx− (1− α)p− αE[X1:λ | p]||
= α||x− E[X1:λ | p]|| ≤ αn.

Since the righthand side goes to zero as α −→ 0 the proof is completed.

Theorem 5.2. Given k > 0, ε > 0, and γ < 1, there exists α0 such that with probability at least γ

and for all 0 ≤ t ≤ k:

α < α0 ⇒ ||τ t(p)− Gt(p)|| < ε.

Proof. We make the proof by induction on k. The base case k = 1 coincides with the Lemma 1.

Given that G is uniformly continuous (it is continuous in the compact [0, 1]n), choose δ such that

||τk−1(p)− Gk−1(p)|| < δ ⇒ ||G(τk−1(p)) − G(Gk−1(p))|| < ε

2
.

By the inductive hypothesis, if α < α1 then with probability at least 1− (1− γ)/2 we have

||τk−1(p)− Gk−1(p)|| < δ.

By the Lemma 1 (applied to τk−1(p) instead of p) let α2 be such that with probability at least

1− (1− γ)/2

α < α2 ⇒ ||τk(p)− G(τk−1(p))|| < ε

2
.

It follows that if α < α0 = min{α1, α2}, then with probability at least γ

||τk(p)− Gk(p)|| ≤ ||G(τk−1(p)) − Gk(p)||+ ||τk(p)− G(τk−1(p))|| < ε

2
+

ε

2
.

Theorem 1 means that when α is near 0, the stochastic operator τ follows, with high probability

and for a long time, the iterations of the deterministic operator G.

The operator G can be thought of as a discrete dynamical system:

p,G(p), . . . ,Gt(p), . . . ,
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5.2.3 The Discrete Dynamical System G

In this section we try to find properties of the discrete dynamical system G that will provide

information concerning the behavior of the PBIL algorithm. Before studying the discrete dynamical

system G, it is important to note that the following discrete dynamical system G:

G(p) =
m∑

i=1

xiqxi
(p)




λ∑

k=1




i−1∑

j=1

qxj
(p)




k−1


i∑

j=1

qxj
(p)




λ−k

 (5.6)

has the same behavior as G in the points of the search space. All the results obtained here for G are

valid for G. In particular they have the same singular points, so we study the dynamical system of

equation (5.6) instead of the operator G.

Theorem 5.3. All the points of Ω are fixed points of G.

Proof. Given x ∈ Ω, clearly E[X1:λ|p = x] = x, because the probability of sampling an individual

different from x given p = x is zero. Hence:

G(x) = E[X1:λ|p = x] = x.

Before introducing Theorem 5.4, we define what we mean by a “local optimum” for the Hamming

distance. We also give a result borrowed from page 126 in Sheinerman (1996), that will be useful

in the proof of the theorem.

Definition 5.1. Given a real function f defined in Ω, a point x is a local minimum for the Hamming

distance dH if:

for all x′ ∈ Ω such that dH (x′,x) =

n∑

l=1

|x′l − xl| = 1 ⇒ f(x′) ≥ f(x).

Lemma 5.2. Let x be a fixed point of a discrete dynamical system G, and DG(x) the Jacobian

matrix of G(x).

If the eigenvalues of DG(x) all have absolute value less than 1, then x is a stable fixed point of

G.

If some eigenvalue of DG(x) has absolute value greater than 1, then x is an unstable fixed point

of G.

Theorem 5.4. Given a real function f defined on Ω, we have the following:

All the local optima of f with respect to the Hamming distance are stable fixed points of G.

All the nonlocal optima of f with respect to the Hamming distance are unstable fixed points of G.

Proof. We use the Lemma 5.2 in order to prove these affirmations.

We first show that all the local optima are stable points; and, in a second step, the last result.
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Let x ∈ Ω be a local optimum of a function f (i.e., all the individuals in Ω whose Hamming

distance from x is one, precede x in the order imposed by f in Ω). We will see that in this case

DG|x = 0. In fact, we will see that

∂Gr

∂pl

∣∣∣∣
x

= 0 for all r, l = 1, 2, . . . , n, (5.7)

where Gr is the rth component of equation (5.6):

Gr(p) =

m∑

i=1

yi,rqxi
(p)




λ∑

k=1




i−1∑

j=1

qxj
(p)




k−1


i∑

j=1

qxj
(p)




λ−k

 .

To show equation (5.7), we must first take into account the following results which can be checked

easily using the definition of qx(p) (equation (5.5)):

qxk
(x) = 0 for all x 6= xk (5.8)

qxk
(xk) = 1 for all xk ∈ Ω (5.9)

∂qxk

∂pl

∣∣∣∣
xk

=

{
1 if xk,l = 1

−1 if xk,l = 0
(5.10)

∂qxk

∂pl

∣∣∣∣
x

= 0 for all x such that dH(x,xk) ≥ 2 (5.11)

∂qxk

∂pl

∣∣∣∣
x

=

{
1 if dH(x,xk) = 1 and xk,l = 1, xl = 0

−1 if dH(x,xk) = 1 and xk,l = 0, xl = 1
(5.12)

∂qxk

∂pl

∣∣∣∣
x

= 0 if dH(x,xk) = 1 and xk,l = xl. (5.13)

The partial derivative of Gr with respect to pl can be expressed as:

∂Gr

∂pl

∣∣∣∣
x

=

m∑

i=1

∂

∂pl


yi,rqxi




λ∑

k=1




i−1∑

j=1

qxj




k−1


i∑

j=1

qxj




λ−k





∣∣∣∣∣
x

. (5.14)

We analyze each adding term of ∂Gr/∂pl|x separately and split it into three different cases. The

partial derivative of a term of equation (5.14) must be written first (yi,r has been eliminated, because

it is a constant term):

∂qxi

(∑λ
k=1(

∑i−1
j=1 qxj

)k−1(
∑i

j=1 qxj
)λ−k

)

∂pl

∣∣∣∣∣∣
x

=
∂qxi

∂pl

∣∣∣∣
x




λ∑

k=1




i−1∑

j=1

qxj
(x)




k−1


i∑

j=1

qxj
(x)




λ−k



+ qxi
(x)

∂
(∑λ

k=1(
∑i−1

j=1 qxj
)k−1(

∑i
j=1 qxj

)λ−k
)

∂pl

∣∣∣∣∣∣
x

. (5.15)
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We split the problem into the following three different cases.

1 Let xi ∈ Ω be an individual such that dH(x,xi) ≥ 2. In this case, using ∂qxi
/∂pl|x = 0 (equation

(5.11)) and qxi
(x) = 0 (equation (5.8)), equation (5.15) has a value of 0.

2 Let xi ∈ Ω be an individual such that dH(x,xi) = 1. In this case, in the second term we again

have qxi
(x) = 0 (equation (5.8)) but, in the first, ∂qxi

/∂pl|x could be different from zero. How-

ever in this case (because xi is before x in the order in Ω and then qxj
(y) = 0 for all j = 1, . . . , i)

the second multiplicative term
(∑λ

k=1(
∑i−1

j=1 qxj
)k−1(

∑i
j=1 qxj

)λ−k
)

has a value of zero in x.

Hence equation (5.15) has a value of zero for this kind of individual.

3 Finally we take into account the term corresponding to individual x. If xl = 0 this term does

not appear in the sum. Otherwise (xl = 1), if i represents the place that individual x takes in

the ordering of Ω (x = xi), equation (5.15) can be expressed by:

∂qx
∂pl

∣∣∣∣
x




λ∑

k=1




i−1∑

j=1

qxj
(x)




k−1


i∑

j=1

qxj
(x)




λ−k



+ qx(y)
∂
(∑λ

k=1(
∑i−1

j=1 qxj
)k−1(

∑i
j=1 qxj

)λ−k
)

∂pl

∣∣∣∣∣∣
x

=
∂qx
∂pl

∣∣∣∣
x

(
λ∑

k=1

Ai(x)k−1Bi(x)λ−k

)
+qx(y)

∂
(∑λ

k=1 Ai
k−1Bi

λ−k
)

∂pl

∣∣∣∣∣∣
x

(5.16)

where Ai(x) =
∑i−1

j=1 qxj
(x) and Bi(x) =

∑i
j=1 qxj

(x).

In the next reasoning, note that Ai(x) = 0 and Bi(x) = 1.

The first term of equation (5.16) is:

∂qx
∂pl

∣∣∣∣
x

(
Bi(x)λ−1 + Ai(x)Bi(x)λ−2 + · · ·+ Ai(x)λ−1

)
= 1.

The second term of equation (5.16) can be expressed as:

qx(x)︸ ︷︷ ︸
=1

∂
(
Bλ−1

i + AiB
λ−2
i + · · ·+ Aλ−1

i

)

∂pl

∣∣∣∣∣
x

= (λ − 1)Bi(x)λ−2 ∂Bi

∂pl

∣∣∣∣∣
x

+
∂Ai

∂pl

∣∣∣∣∣
x

Bi(x)λ−2

+ Ai(x)(λ − 2)Bi(x)
λ−3 ∂Bi

∂pl

∣∣∣∣∣
x

+ . . . + (λ− 1)Ai(x)
λ−2 ∂Ai

∂pl

∣∣∣∣∣
x

= (λ − 1)Bi(x)λ−2 ∂Bi

∂pl

∣∣∣∣∣
x

+
∂Ai

∂pl

∣∣∣∣∣
x

Bi(x)λ−2. (5.17)
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Substituting again the values of Ai(x) and Bi(x) in equation (5.17):

(λ− 1)

i∑

j=1

∂qxj

∂pl

∣∣∣∣
x

+

i−1∑

j=1

∂qxj

∂pl

∣∣∣∣
x

= (λ− 1)




∑

dH (xj ,x)≥2

j<i

∂qxj

∂pl

∣∣∣∣
x

︸ ︷︷ ︸
=0

+
∑

dH(xj ,x)=1

∂qxj

∂pl

∣∣∣∣
x

+
∂qx
∂pl

∣∣∣∣
x︸ ︷︷ ︸

=1




+




∑

dH (xj ,x)≥2

j<i

∂qxj

∂pl

∣∣∣∣
x

︸ ︷︷ ︸
=0

+
∑

dH(xj ,x)=1

∂qxj

∂pl

∣∣∣∣
x




.

Taking into account that xk is such that dH(x,xk) = 1, xk,l = 0, and xl = 1 we find that the

second term of equation (5.16) is:

(λ− 1)




∂qxk

∂pl

∣∣∣∣
x︸ ︷︷ ︸

=−1

+
∑

dH(xj ,x)=1

xj,l=xl

∂qxj

∂pl

∣∣∣∣
x

︸ ︷︷ ︸
=0

+1




+




∂qxk

∂pl

∣∣∣∣
x︸ ︷︷ ︸

=−1

+
∑

dH(xj ,x)=1

xj,l=xl

∂qxj

∂pl

∣∣∣∣
x

︸ ︷︷ ︸
=0




= −1.

Hence DG(x) = 0 for all local optimum points x ∈ Ω and all the eigenvalues have a value of zero.

Moreover, we have shown that the local optimum points for a function f are stable fixed points of

the discrete dynamical system G.

In the case of a point x ∈ Ω that is not a local optimum, following similar arguments to the

previous case, it can be shown that:

∂Gr

∂pl

∣∣∣∣
x

= 0 for all r 6= l.

In all the previous cases the adding terms have a value of zero, except for the case that there

exists x′ such that d(x,x′) = 1, x′l 6= xl and in addition f(x′) > f(x) (x is before x′ in the order

imposed by f in Ω), the adding terms corresponding to x and x′ are different from zero but their

sum is zero.

In the case r = l, there exists l ∈ {1, . . . , n} such that ∂Gl

∂pl

∣∣∣
x

> 1.

From Theorem 5.4 it can be deduced that when the value of α is near 0, then the PBIL algorithm

can only converge to the local optima of f . So, the PBIL algorithm converges to the global optimum

in unimodal functions (functions that have exactly one local optimum).
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5.3 Other Works that Mathematically Analyze PBIL
We include a brief summary of other works on theoretical aspects of PBIL that can be found in

the literature.

5.3.1 Reinforcement Learning, PBIL, and Gradient Dynamical
Systems

Berny (2000) shows that Reinforcement Learning and PBIL algorithms can be derived from

gradient dynamical systems acting on the probability vectors p.

To do so, the author shows the equivalence of searching for an optimal string of function f and

searching for the probability distribution implied by probability vector p over Ω, that we denoted

by q(p), which maximizes the function expectation:

J1(q(p)) = Eq(p)[f ] =
∑

x∈Ω

qx(p)f(x),

(where Eq(p)[f ] denotes the expectation of f with respect to the probability distribution implied by

probability vector p), or which maximizes the log-expectation of the exponential of the function:

J2(q(p)) = logEq(p)[e
βf ] with β > 0 .

If we try to optimize J1(q(p)) and J2(q(p)) by means of a gradient search and take into ac-

count that the probability distribution q(p) depends on the probability vector p, then two gradient

dynamical systems can be obtained. The first for J1(q(p)) can be written as:

p′ = ϕ(p)

ϕi(p) = pi(1− pi)
∂J1(q(p))

∂pi

and the second for J2(q(p)) as:

p′ = ϕ(p)

ϕi(p) = pi(1− pi)
∂J2(q(p))

∂pi
.

From the first dynamical system Reinforcement Learning can be obtained by using stochastic

approximation with a comparison scheme. PBIL is obtained from the second dynamical system

with a Lagrange technique and stochastic approximation.

The author carried out a stability analysis of vertices and states and concluded that Reinforcement

Learning and PBIL perform as well as hill climbing, since they can only converge to locally optimal

solutions. This result might appear to contradict the result in Section 5.1, but Berny obtains it

because his stability analysis is carried out without taking into account parameter α, which we have

proven that can be highly relevant to the convergence behavior of PBIL.

Similar developments were made in Berny (2000b) for real function optimization, but the author

did not give any stability results.
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5.3.2 Limit Behavior of PBIL

Höhfeld and Rudolph (1997) present an analysis of the convergence behavior of the PBIL algo-

rithm when the search space is Ω = {0, 1}l. They prove that a simplified version of PBIL’s update

rule (only the best of λ trials vectors is involved in updating the vector of probabilities):

pt = (1− α)pt−1 + αx
(t−1)
1:λ

ensures convergence with probability one to the global optimum in the case of pseudo-boolean linear

functions.

The aim of these authors is to show that the stochastic sequence {pt}t=0,1,2,... converges in mean

(and therefore in probability) to the global optimum of the search space. In order to do this, they

require that, for a linear pseudo-boolean function:

lim
t→∞

E[pt] = y∗

where E[pt] is the expectation of the probability vector at step t, and y∗ is the optimum point in Ω.

Thus, studying the (deterministic) sequence {E[pt]}t=0,1,2,..., the points in Ω to which PBIL’s

stochastic process {pt}t=0,1,2,... will eventually converge are identified and they obtain global con-

vergence in mean for PBIL in linear pseudo-boolean functions. Nonetheless, as we have seen in this

chapter, in PBIL the convergence in mean reveals little. We have found that for many values of α

the algorithm never converges to a good solution, although the mean may converge.

5.3.3 How α Controls PBIL Performance

To explain why PBIL depends on parameter α, Shapiro (2003) considers the performance of

this algorithm with µ = 1 in flat search spaces (all candidate solutions are equally good), and with

p0 = (1/2, . . . , 1/2). So at each step, t, the best point is x
(t)
1:λ = x∗ and:

E[(X∗)] = p0

which yields

E[pt+1] = pt,

and the parameters remain unchanged on average. But this does not imply that the system

goes nowhere. Considering D(t) as the average distance between the parameters pt and p0 =

(1/2, . . . , 1/2):

D(t) =
1

n

n∑

i=1

(
1

2
− p

(t)
i

)2

,

D(t) is zero when pt = (1/2, . . . , 1/2) and takes the value 1/4 when all the parameters p
(t)
i are 0 or

1. Shapiro computes the expectation of D(t), and finds that:

E[D(t)] =
1− (1− α2)t

4
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which converges to 1/4 in time τ :

τ =
−1

log(1− α2)
≈ 1/α2, when α → 0.

This explains why α must be chosen very small to avoid premature convergence.

Shapiro (2003) proves that as the system size increases, α must go to zero in a problem-dependent

way. For the Needle-In-A-Haystack problem (which has a landscape with flat subspaces) α must

be exponentially small in n, while for the OneMax problem (which also has a landscape with flat

subspaces) α must be smaller than r/
√

n, with r ∈ IR.

He also proposes a modification of the algorithm by ensuring that the dynamics obeys a condition

called “detailed balance”, which is a reversibility condition used in the Markov chain Monte Carlo

method to ensure that the Markov chain converges to a given probability distribution. In simulations

the author sees that this modification makes the algorithm largely insensitive to α and can improve

the run time because it can use a higher α.

5.4 Summary
There have been two mathematical tools used in this chapter for the theoretical study of PBIL:

Markov chains and discrete dynamical systems.

The analysis of PBIL based on Markov chains lets us show that for PBIL with λ = 2 and µ = 1

applied to the OneMax function :

P
(

lim
t→∞

pt = (a, b)
)
−→ 1

when α → 1, p0 → (a, b), and (a, b) ∈ {0, 1}2. This result implies a strong dependence of PBIL

convergence on the initial vector p0 and on the α parameter value. Although when the value of

α is small, and the experimental results seem to be more stable, we can not conclude that PBIL

converges to the optimum.

We have opened a new approach to the theoretical study of PBIL: using discrete dynamical

systems. A discrete dynamical system is associated with the PBIL algorithm. We demonstrate that

the behavior of the PBIL algorithm follows the iterates of the discrete dynamical system for a long

time when the parameter α is near zero. We show – performing a stability analysis – that all the

points of the search space are fixed points of the dynamical system, and that the local optimum

points for the function to optimize coincide with the stable fixed points. Hence it can be deduced

that the PBIL algorithm converges to the global optimum in unimodal functions.





Chapter 6

Analysis of the UMDA algorithm

This chapter is devoted to the UMDA algorithm, which will be analyzed, as in previous cases,

using two mathematical tools: Markov chains and discrete dynamical systems.

Under the first framework, an empirical analysis of the convergence behavior of the algorithm

is described. This study can be found in Section 6.1 and provides some insights into how the

absorption probability to the optimum and the expected absorption times evolve when the size of

the population increases. This analysis was published earlier in González et al. (2003). Section 6.2

is devoted to modeling UMDA with infinite population and proportionate selection using discrete

dynamical systems. The modeling sets out from the schema used in Section 5.2 and arrives at the

same expression as reported by Mühlenbein and Mahnig (2002a). The chapter finishes with the

conclusions in Section 6.3.

6.1 Analysis of the UMDA Algorithm Modeled by Markov
Chains

In Chapter 4, and based on what we call Markov model I (whose absorbing states correspond

to the individuals of the search space), we studied the convergence behavior of UMDA. There we

concluded that not to use the Laplace correction could imply that the chain which models the

algorithm (and then the algorithm itself) might be trapped at any point of the search space. In

such a situation some natural questions immediately arise. What is the absorption probability to

any absorbing state (particularly to the optimal point)?; how long must we wait until the set of

absorbing states are visited? Answering these questions enables us to learn the effects that changes

in population size have on the absorption probability to the optimum and the expected absorption

times.

The aim of present section is to offer an experimental analysis of the above questions, when

UMDA is used to maximize a number of pseudo-boolean functions. This experimental study was

carried out in the hope that further theoretical studies can be based on it.

The analysis is based on modeling UMDA using a type II Markov chain. The state space is given

by all the possible probability distributions, pt(x), that can be formed from a population of selected

individuals of size N . Since we have choosen a version of UMDA where Laplace correction is not

used in estimating the parameters, the absorbing states of the chain – as in the case of the type I

Markov chain mentioned above – coincide with the points of the search space.

75
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We calculate the absorption probability to the optimum and the expected absorption times for

UMDA on the maximization of an example of linear, pseudo-modular, unimax and almost positive

functions, for different values of selected population size N and individual length n. This information

is used to provide some insights into how the absorption probability to the optimum and the expected

absorption times evolve when population size increases. The results show the different behaviors of

the algorithm in the analyzed functions.

6.1.1 The Version of UMDA to be Analyzed and other General
Considerations

In this section it is suppose that UMDA is used to solve the following optimization problem:

max
x∈Ω

f(x) (6.1)

where f : Ω −→ IR is the objective function, and Ω = {0, 1}n, with n ∈ IN being the search space.

The cardinality of the search space is |Ω| = 2n = m. We denote by Ω = {x1, . . . ,xm} the different

elements of Ω.

The version of UMDA analyzed here to solve problem (6.1) is very simple. In this version elitism

and the Laplace correction are not taken into account (in the estimation of parameters maximum-

likelihood is used) it works as follows: at each step t a population of size 2N , Dt−1 is maintained,

the N best individuals of Dt−1 (truncation selection) are selected, constituting the population of

selected individuals DSe
t−1. Later, using these selected individuals the joint probability distribution

pt(x) is estimated. Finally we obtain the new population Dt sampling 2N individuals from pt(x).

6.1.2 A Markov Chain that Models UMDA

Our objective is to calculate (experimentally) the absorption probability to the optimum and the

expected absorption times for UMDA applied to the maximization of a number of functions, for

different values of selected population size N and individual length n. In order to do that we have

modeled UMDA by means of Markov chains. Our analysis is inspired by De Jong et al. (1995) where

the authors use a transient Markov chain analysis to model and understand the behavior of finite

population Genetic Algorithms for Function Optimization.

Now we describe the Markov chain chosen to model the UMDA algorithm introduced above. In

this case the Markov model II is used (see Chapter 4).

Given that the probability distribution at step t only depends on the probability distribution at

step t− 1, the above described UMDA algorithm can be modeled using a Markov chain, where the

states of the chain are all the possible probability distributions, pt(x), that can be formed from a

population of selected individuals of size N .

Taking into account that each probability distribution can be represented as a probability vector

p = (p1 . . . , pn) (where pi is the probability of obtaining a 1 in the ith gene) the set of states of the

chain can be expressed as:

E =

{
(p1, . . . , pn)

∣∣ pi ∈ {0,
1

N
, . . . ,

N − 1

N
, 1}, i ∈ {1, . . . , n}

}
,

where the ith component of p, pi is obtained using the selected population at previous step DSe as

follows:

pi =

∑N
j=1 δj(Xi = 1|DSe)

N
.
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Taking into account that the cardinality of the state space is c = |E| = (N + 1)n, E can be

written as follows:

E = {p1, . . . ,pc}.

Two question are important to note. On the one hand, here the subindex i in pi does not denote

the probability vector in generation i, but that pi is the ith element of set E. At each step t there

exists an i such that pt = pi, with i ∈ {1, . . . , c}. On the other hand, the cardinality of the state

space, c, increases exponentially as the size of the individual increases. This is the reason why in

order to have a reasonable computational cost, the experiments will be carried out for small values

of n.

We also want to stress that the Markov chain is not irreducible. More precisely, the absorbing

states of the Markov chain correspond to the individuals of the search space, while the rest are

transient states, i.e. the states with some component not equal to 0 or 1. If we denote by A and T

the set of absorbing states, and the set of transient states respectively, then:

A = {(p1, . . . , pn) | pi ∈ {0, 1}, i ∈ {1, . . . , n}} , |A| = 2n

T = {(p1, . . . , pn) | ∃i ∈ {1, . . . , n}, pi /∈ {0, 1}} , |T | = (N + 1)n − 2n.

To aid in comprehension, note that each absorbing state is associated with a uniform population

of selected individuals (which is formed by N copies of the same individual). For example the

absorbing state p = (1, . . . , 1) ∈ A is associated with the population formed by N copies of the

individual (1, . . . , 1).

Taking into account that the absorbing states are the individuals of the search space, the algorithm

could converge to any of them. Therefore it is interesting to calculate the absorption probabilities

to any absorbing state (especially to the optimal point) and the expected absorption times.

6.1.2.1 Calculation of the Absorption Probabilities and the Expected
Absorption Times

Let’s suppose that the states of the Markov chain are ordered. The first states are the transient

states, while the absorbing states are in the last places. Therefore the transition matrix P, associated

with the Markov chain can be written as follows:

P =

(
R Q

0 I2n

)
,

where I2n is the identity matrix of dimension 2n. Its entries represent the probability of going from

one absorbing state to another absorbing state. Matrix Q has dimension ((N + 1)n − 2n)× 2n and

its entries represent the probability of going from a transient state to an absorbing state. Finally we

describe matrix R, which is a matrix of dimension ((N + 1)n − 2n)× ((N + 1)n − 2n) and contains

the probabilities of going from one transient state to another transient state.

The formulas for the absorption probability and expected absorption times can be obtained from

matrices: W = (I2n −R)−1 and U = WQ. Both results can be consulted in Section (2.3).

The expected absorption time mi starting from the ith state is given by the expression:

mi =
∑

j

wij .
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The absorption probabilities to an absorbing state j starting from the ith state, uij are given by

the elements of the matrix U = (uij).

It is important to note that the computational cost in the calculation of the above quantities is

given by the cost of inverting W. Since the dimension of W is (N + 1)n − 2n × (N + 1)n − 2n it is

directly related to the individual size n.

6.1.2.2 Calculation of the Transition Probability Matrix P

Calculating the transition probability matrix P is essential for obtaining the remaining quantities.

Each entry of P = (Pij) is the probability of going from state pi to state pj in a step of the algorithm:

Pij = P(pj |pi), with i, j ∈ {1, . . . , c}. (6.2)

To obtain each Pij it is necessary to take into account all the possible populations that can be

obtained sampling vector pi and whose associated probability vector after selection is pj (note that

there exist some populations whose associated probability vector is the same). The elements of P

can be obtained as follows:

Pij = P(pj |pi) =
∑

Dj

P(obtain population Dj | vector pi is sampled) (6.3)

where Dj varies in the populations (of size N) that can be obtained sampling pi. From those Dj ,

by selecting individuals, DSe
j are obtained, after which, the vector pj is estimated. (Note that in

the calculation of pj only the individuals of DSe
j are used.) Hence, in order to calculate (6.3) it is

necessary to obtain all populations Dj .

Let DSe
j be the selected population from population Dj , and:

DSe
j = {x1j , . . . ,xNj}, xij ∈ Ω, ∀i ∈ {1, . . .N}, (6.4)

where each xij = (x1
ij , . . . , x

n
ij), i ∈ {1, . . .N}.

If pj = (a1

N , . . . , an

N ) then the population DSe
j has ak individuals with a “1” in the kth position,

k ∈ {1, . . . , n}.
The rest of N individuals of Dj can vary over no better individuals than the worst individual of

DSe
j . Therefore, in order to find all the populations Dj it is sufficient to know DSe

j , and vary the

remaining N individuals of Dj over the remaining possibilities. To find DSe
j we have to solve the

following equations system with 2n − 2n degrees of freedom:

N∑

k=1

x1
kj = a1

. . .
N∑

k=1

xn
kj = an

N∑

k=1

1− x1
kj = N − a1

. . .
N∑

k=1

1− xn
kj = N − an. (6.5)
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Unfortunately to solve the equations, system (6.5) has a high computational cost due to the fact

that it has an exponential number of degrees of freedom. This is the reason why we have to estimate

experimentally the elements of matrix P. In Section 6.1.4.1 we explain in detail how the estimation

was carried out.

6.1.3 The Functions Used

In the experiments we have chosen one particular function of each of the following classes of

pseudo-boolean functions: linear, pseudo-modular, unimax and almost positive functions. In this

section an introduction to these classes of functions can be found. First of all we define a pseudo-

boolean function:

Definition 6.1. A function f is said to be pseudo-boolean if

f : {0, 1}n −→ IR.

Every pseudo-boolean function can be (nonuniquely) expressed as a polynomial in its variables

x1, x2, . . . , xl and their complements x̄i = 1− xi of the following form (Crama et al., 1990):

f(x1, . . . , xn) =

m∑

i=1

ci

∏

j∈I(i)

x
αji

j ,

where m denotes the number of terms of the polynomial, I(i) ⊆ {1, 2 . . . , n} denotes the index set

of term i and αji ∈ {0, 1} is used to identify complemented variables by the convention x1 = x and

x0 = x̄.

In the analysis of each objective function we consider that the neighboring solutions N(x) of a

given solution x ∈ {0, 1}n, are given for all the points at the Hammimg distance equal or less than

1, i.e.:

N(x) =

{
y ∈ {0, 1}n | dH(x,y) =

n∑

i=1

|xi − yi| ≤ 1

}

6.1.3.1 Linear Functions

Definition 6.2. A pseudo-boolean function f : {0, 1}n −→ IR is said to be linear if

f(x) = c0 +
n∑

i=1

cixi,

where coefficients ci ∈ IR, i = 0, . . . , n.

This is the simplest case of a pseudo-boolean function.

The particular linear function analyzed in this work is the function:

f(x) = c0 +

n∑

i=1

cixi, xi ∈ {0, 1}, ci ∈ IR such that ci >

i−1∑

j=0

cj . (6.6)

It is clear that (1, . . . , n) is the only global maximum for the function (6.6).
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6.1.3.2 Pseudo-modular Functions

Definition 6.3. A pseudo-boolean function f : {0, 1}n −→ IR is said to be pseudo-modular if

min{f(x), f(y)} ≤ max{f(x ∧ y), f(x ∨ y)}
min{f(x ∧ y), f(x ∨ y)} ≤ max{f(x), f(y)},

The pseudo-modular function we have used is:

f(x) =
n∑

i=1

i∏

j=1

xj , xj ∈ {0, 1}. (6.7)

For fitness function (6.7) the optimal solution is (1, . . . , 1), and the value of f(x) at this point is n.

6.1.3.3 Unimax Functions

Definition 6.4. Let f : {0, 1}n −→ IR be a pseudo-boolean function. A point x∗ ∈ {0, 1}n is called

a local maximum of f if:

f(x∗) ≥ f(x), for all x ∈ N(x∗).

A pseudo-boolean function f : {0, 1}n −→ IR is said to be unimax if there exists exactly one local

maximal point x∗ ∈ {0, 1}n.

In the experiments we have carried out, a well known unimax function is used, namely the long

path function (Horn et al., 1994).

A long path is constructed as follows: Let Pl be a long path in odd dimension n. Create subpath

S00 by prepending “00” to each point in path Pl, and another subpath S11 by prepending “11” in

the reverse order of the path Pl. The bridge point is built from the last point in path Pl prepended

by “01”. Finally concatenate subpath S00, the bridge point and subpath S11 to obtain path Pn+2

of dimension n + 2. The length of the paths is described by the recurrence equations:

|P1| = 2

|Pl+2| = 2|Pl|+ 2,

whose solution is |Pl| = 3 · 2(l−1)/2 − 1 for odd l ≥ 1.

Using the initial long path P1 = (0, 1), the long path of dimension 3 is

P3 = (000, 001, 011, 111, 110). Table 6.1 shows the long path P5.

Given a point x on a path Pl, define Pos(x) to be the position of x on the path which is numbered

from 0 to 3 · 2(l−1)/2 − 2. For a point not on the path Pl, define Pos(x) to be −1. Then define the

function f(x) as:

f(x) = −(3 · 2(l−1)/2 − 2) +

{
Pos(x) if Pos(x) ≥ 0

−∑l
i=1 xi otherwise.

(6.8)

This function has been proved to be optimized in exponential time by local search algorithms.
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Pos(x) x Pos(x) x

0 00000 6 11110
1 00001 7 11111
2 00011 8 11011
3 00111 9 11001
4 00110 10 11000
5 01110

Table 6.1. Long path P5.

6.1.3.4 Almost Positive Functions

Definition 6.5. A pseudo-boolean function f : {0, 1}n −→ IR is said to be almost positive if the

coefficients of all nonlinear terms are non-negative.

The almost positive function analyzed in this paper is:

f(x) = n−
n∑

i=1

xi + (n + 1)

n∏

i=1

xi, xi ∈ {0, 1}. (6.9)

For the function (6.9), the optimal solution is (1, . . . , 1), while the individual (0, . . . , 0) is the

second best (maximum) point.

It is useful to note the classification established in Crama (1999) . If we denote:

L = {f : {0, 1}n −→ IR | f is linear},
P = {f : {0, 1}n −→ IR | f is pseudo-modular},
U = {f : {0, 1}n −→ IR | f is unimax},

we find that:

L ⊆ P ⊆ U.

Notice that the subset of almost positive functions is not included in any of the previous ones.

6.1.4 Experimental Results

Our aim is to find the absorption probability to the optimum and the expected absorption times to

some absorbing states when the UMDA algorithm is used to maximize the pseudo-boolean functions

introduced in the previous section.

Once we have those quantities we analyze how they evolve when the size of population N varies.

In other words, we want to know what is the optimal size of the population that maximizes the

absorption probability and minimizes the expected absorption times.

We made our analysis when the size of the individual n and the population of selected individuals

were:

n = 2 and 2 ≤ N ≤ 8

n = 3 and 3 ≤ N ≤ 8.
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6.1.4.1 Estimation of the Transition Probability Matrix P

The computational complexity of the exact calculation of P = (Pij) forces us to estimate these

values instead of carrying out an exact calculation.

To obtain the values of the jth row of P corresponding to probability vector pj , we carry out k

times the following two steps for each j:

pj is taken as the initial vector of probabilities, each time carrying out the basic steps of UMDA:

(i) the initial population is obtained by sampling pj , (ii) the N best individuals are selected,

giving us the selected population, (iii) the new vector of probabilities pi is obtained from the

selected population.

After the previous step the obtained probability vector is picked up.

If we denote by ki the number of times that we reach the state pi, then each value Pij , j ∈ {1, . . . , c}
of row j is estimated as Pij =

kj

k .

It is clear that when the number of experiments carried out, k, increases, the estimation improves.

In our experiments we choose k in order to obtain a reasonable computational cost. The number of

experiment carried out was k = 5, 000, 000, which fixes the 5th decimal of Pij .

6.1.4.2 The Absorption Probability to the Optimum and the Expected
Absorption Time to Some Absorbing State

In practice, the first probability vector used to be (1/2, . . . , 1/2), so we have calculated the

absorption probability and the absorption time to the optimum from this state when N is even. In

case of odd N we have used the mean of the probability vectors that are the nearest to (1/2, . . . , 1/2)

(see Table 6.2).
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Table 6.2. Starting probability vectors chosen.

6.1.5 Summarizing the Results

The results can be seen in Figure 6.1. The absorption probability to the optimum (and the

expected absorption time to some absorbing state) is given in a graph, where the y axis shows the

absorption probability (resp. the expected absorption time) and the x axis shows the size N of the

population. The same graph shows the results for n = 2 and n = 3.

Several comments can be made in view of the graphs. We can distinguish the behavior of the

first three functions (the easiest to optimize) from the almost positive.
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As was expected, for the first three functions, the absorption probability increases with N . This

probability is near to one in the linear and pseudo-modular functions, which means that in almost all

executions the algorithm will converge to the optimum. On the other hand, in the unimax function

this probability is lower than 0.6. However, it seems that the growth of this probability with N

is higher in this third function. Similarly this probability is smaller when n increases. The small

number of generations to reach convergence is noteworthy.

We obtained surprising results regarding the expected absorption times. In the linear and pseudo-

modular functions this time does not increase with population size. We think it is related to the

absorption probability. Given that the absorption probability is higher the algorithm converges

faster. On the other hand in the unimax function this time increases linearly with N . In this last

case the function is harder to optimize than the others so the algorithm needs more time to converge.

The same as before, absorption time increases with n.

The case of the almost positive function is the most interesting. While with n = 2 the absorption

probability increases a little with N , in dimension 3 this probability decreases, apparently going to

0 as N increases. It seems the algorithm can be absorbed by the local optimum point (0, . . . , 0) (see

Figure 6.2). So this function is very difficult to optimize with UMDA.

This analysis also shows the behavior of the algorithm when the complexity of the function

increases: the absorption probability decreases while the expected absorption time increases. Even

in the almost positive function the absorption probability approaches zero when N increases.

6.2 UMDA and Dynamical Systems

Once we have carried out the analysis for PBIL by means of discrete dynamical systems (see

Chapter 5) we wonder if the same dynamical system model used in the case of PBIL could be used

to model UMDA. There were two reasons for posing this question. On one hand the fact that

UMDA can be considered as a particular case of PBIL with α = 1. On the other, UMDA and PBIL

are the two only algorithms in the family of EDAs which have the property that their probability

distributions can be represented as probability vectors (because their probability models consider

only first-order statistics), and the key question in the analysis of PBIL is to associate a discrete

dynamical system with the algorithm such that the trajectories followed by the probability vectors

will be related to the iterations of that discrete dynamical system.

Unfortunately we realize that such an approach is not valid: we only have proven that the

dynamical system associated with PBIL follows the trajectories of probability vectors of PBIL when

α is near zero, and UMDA is a PBIL algorithm with α = 1, so we can not ensure that the dynamical

system used for PBIL can represent the dynamics of UMDA. Nonetheless the model schema used in

the case of PBIL is valid for UMDA until the moment when we prove that the behavior of the PBIL

algorithm follows the iterates of the discrete dynamical system for a long time when the parameter α

is near zero. From then on, we are forced to use a discrete dynamical system model which considers

infinite populations to ensure that such a model predicts the limit behavior of UMDA.
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Figure 6.1. Absorption probability and absorption time for the linear, pseudo-modular, unimax and almost
positive functions.
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Figure 6.2. Comparison of absorption probability to the optimum and to the local optimum for n = 2 and
n = 3 for the almost positive function.

6.2.1 A Dynamical System for UMDA

In this subsection we see that the dynamical system scheme used in Chapter 5 to model PBIL

can also be valid (until a given moment) for the UMDA algorithm. Here it is important to write a

pseudocode for UMDA in terms of probability vectors (see Figure 6.3, where p
(t)
i is the probability

of obtaining a 1 in the ith component in the tth generation).

UMDA

Obtain an initial vector p0 = (p
(0)
1 , p

(0)
2 , . . . , p

(0)
n )

Repeat for t = 1, 2, . . . until a stopping criterion is met

Dt−1 ← Sample M individuals from pt−1

DSe
t−1 ←Select N ≤M individuals from Dt−1 according to proportional

selection

pt =

„
PN

j=1 δj(X1=1|DSe
t−1)

N
,

PN
j=1 δj (X2=1|DSe

t−1)

N
, . . . ,

PN
j=1 δj(Xl=1|DSe

t−1)

N

«

← Find the new probability vector

Figure 6.3. Pseudocode for UMDA in terms of probability vectors.

Then the key problem is to associate a discrete dynamical system with UMDA, such that the

trajectories followed by the probability vectors {pt}t=0,1,2,... will be related to the iterations of that

discrete dynamical system.

UMDA can be considered as a sequence of probability vectors, each one given by a stochastic

transition rule τ :

p0
τ−→ p1

τ−→ p2
τ−→ · · · τ−→ pt−1

τ−→ pt · · ·
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i.e. pt = τ(pt−1) = τ t(p0). We are interested in the trajectories followed by the iterations of τ , and

in particular in its limit behavior:

lim
t→∞

τ t(p0). (6.10)

The stochastic nature of operator τ makes the study of limit (6.10) difficult. This is the reason

why a new operator G is defined:

G : [0, 1]n −→ [0, 1]n

such that G(p) = E[τ(p)] = (E[τ1(p)], E[τ2(p)], . . . , E[τn(p)]). The operator G is a deterministic

function that gives the expected value of the random operator τ . The iterations of G are defined

as Gt(p) = G(Gt−1(p)) with Gi(p) = E[τi(p)] ∀ i = 1, 2, . . . , l. The operator G can be thought as a

discrete dynamical system:

p,G(p), . . . ,Gt(p), . . .

If we consider infinite populations after one step, the next probability vector converges in prob-

ability to its expectation, so it is natural to use G to define an infinite population model. Thus G
defines a discrete dynamical system on Ω, given an initial probability vector p0. The trajectory of

this probability vector is the sequence p0, G(p0), G2(p0), G3(p0), . . .

6.2.2 An Expression for the Discrete Dynamical System Associated
with UMDA

The aim of this section is to calculate explicitly an expression for G(p). In order to do this

we have to use infinite populations. For this reason in the representation of each population we

use proportions instead of numbers of individuals. Although starting from different principles, the

expression will be the same as the one obtained by Mühlenbein and Mahnig (2000a) .

D = {(d1, d2, . . . , dn) | di = the proportion of the i-th individual in D}.

The calculation of each component of E[τ(p)] for finite populations can be done using the formula:

E[τi(p)] =
∑

x∈Ω

∑

D∈Dx

xi · P(obtain population D | p) · P(select x |D)

with Dx = {D | x ∈ D}. However, if we work with infinite populations, after drawing an infinite

number of individuals from probability vector p, a single population Dp is obtained. This population

can be expressed as:

Dp = (qp(x1), . . . , qp(xm))

where qp(x) =
∏n

k=1(pk)xk (1 − pk)(1−xk) is the proportion of the individual x in population Dp.

Hence the ith component of E[τ(p)] can be written for infinite populations as:

E[τi(p)] =
∑

x∈Ω

xi · P( select x |Dp).
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In the case in which proportionate selection is taken into account the expression can be written

as:

E[τi(p)] =
∑

x∈Ω

xi ·
qp(x) · f(x)∑
y∈Ω qp(y)f(y)

=
∑

x∈Ω

xi ·
qp(x) · f(x)

Ep[f ]

=
pi

Ep[f ]

∑

x∈Ω
xi=1

qp(x)

pi
· f(x)

where Ep[f ] denotes the expectation of f with respect to the probability distribution implied by

probability vector p. If we develop qp(x), the dynamical system expression obtained is:

Gi(p) = E[τi(p)] =
pi

Ep[f ]

∑

x∈Ω
xi=1

∏n
k=1(pk)xk(1− pk)(1−xk)

pi
· f(x)

=
pi

Ep[f ]

∑

x∈Ω
xi=1

f(x)

l∏

k 6=i

(pk)xk(1− pk)(1−xk). (6.11)

Expression (6.11) is the same as the one Mühlenbein and Mahnig (2002a) obtained from “linkage

analysis”. These authors also give another equivalent expression:

p
(t+1)
i = p

(t)
i + p

(t)
i (1− p

(t)
i )

∂Ept [f ]

∂p
(t)
i

Ept
[f ]

.

Using this last expression they state that the stable attractors of UMDA with infinite population

and proportionate selection are the corners of Ω, which in the case of maximization are the local

maxima of f(x), and that in the interior of Ω there are only saddle points or local minimum.

Zhang (2004) also used discrete dynamical systems to model UMDA with infinite populations

(in this case with 2-tournament selection), with the aim of studying the advantages of using higher-

order statistics in EDAs. He compares the behavior of UMDA and FDA with infinite population

and 2-tournament selection modeling both algorithms by means of discrete dynamical systems. The

authors show that, in the case of a general objective function, the dynamical system associated with

FDA has a better chance of obtaining a global optimum than that of UMDA. In the case of an

additively decomposable objective function, they prove that the unique asymptotically stable fixed

point of the dynamical system associated with FDA is the degenerate probability density function

at the global optimal solution, which implies that FDA can converge to the global optimal solution.

They also give an example to show that an additively decomposable objective function has some

local optimal solutions where the UMDA can become trapped.

6.3 Summary
Each of the two previous sections of this chapter describes how the UMDA algorithm has been

studied in this dissertation.

In the first section we used Markov chains to model and analyze some interesting questions

about UMDA behavior on pseudo-boolean functions. For each analyzed function, we calculated the
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absorption probabilities to the optimal point and the expected absorption times. This calculation

enables us to know the effects that changes in the population size have on these two quantities. The

analysis shows the behavior of the algorithm when the complexity of the function increases: the

absorption probability decreases while the expected absorption time increases. Even in the almost

positive function the absorption probability goes near to zero when N increases.

The second section is devoted to modeling UMDA with infinite population and proportionate

selection using discrete dynamical systems, arriving at the same expression that Mühlenbein and

Mahnig (2002a) obtained.



Chapter 7

Analysis of the UMDAc algorithm

This dissertation is primarily focused on the theoretical study of discrete EDAs, but we also want

to deal with at least a continuous instance of EDAs. This chapter presents the only analysis made for

a continuous EDA in this thesis: the theoretical study of the behavior of the Univariate Marginal

Distribution Algorithm for continuous domains (UMDAc) in dimension n. The election of the

UMDAc was based on its simplicity: this algorithm does not take into account dependencies among

the variables. Therefore it is assumed that the n-dimensional joint probability density factorizes

as a product of n independent univariate marginal densities. Here the mathematical modeling was

carried out using classical probability theory.

The analysis for the progressive behavior of UMDAc cannot be accomplished for an arbitrary test

function because of mathematical difficulties, and therefore typical fitness functions are preferred

for this analysis. These functions should represent certain characteristics of other fitness functions,

and the analysis should be feasible for them. The sphere (7.1), and linear (7.2) functions are test

functions widely used in the theoretical study of Evolution Strategies:

Q(x) =

n∑

i=1

x2
i (7.1)

L(x) = a0 +

n∑

i=1

aixi, with ai ∈ IR, i = 0, 1, . . . , n. (7.2)

Usually the quadratic function (7.1) is used to simulate the behavior of the algorithm near an

optimum (intuitively, the shape of any function near an optimum is similar to the shape of the

sphere function), while the linear function (7.2) serves when the algorithm is far from an optimum

(the shape of any function far from an optimum is similar to the shape of the linear function).

The study of UMDAc carried out in this chapter consists of modeling the application of this

algorithm (using tournament selection) to the minimization of L(x), and Q(x) functions. The

objective is to know if the algorithm works as expected far from (or near to) an optimum. The

study carried out for the linear function appeared for the first time in González et al. (2002c), and

later was extended to quadratic functions in González et al. (2002b).

The remainder of this chapter is organized as follows: Section 7.1 explains in detail UMDAc

with tournament selection. Section 7.2 is devoted to the mathematical modeling of the algorithm.

89
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Section 7.3 analyzes the modeling of linear functions, while Section 7.4 analyzes the case of quadratic

functions. Finally, we draw conclusions in Section 7.5.

7.1 The UMDAc Algorithm with Tournament Selection
We model a UMDAc that considers tournament selection, assuming an infinite number of tour-

naments. This section describes in detail how the UMDAc algorithm with tournament selection

works.

The algorithm works as follows. At each step t, an n-dimensional random variable Xt=(Xt
1,. . ., X

t
n)

is maintained. In the literature related to UMDAc it is usual to assume that the joint probability

distribution of Xt follows an n-dimensional normal distribution which is factorized by a product of

n unidimensional and independent normal densities. This assumption will be made here. Therefore

each component of Xt is distributed as a unidimensional normal, that is X t
i  N (µt

i , σ
t
i), where

fN (µt
i ,σt

i )
(xi) = 1√

2πσt
i

e−(xi−µt
i)

2/2(σt
i )

2

with i = 1, . . . , n. In other words fN (µt
i,σ

t
i )

(xi) denotes the

density function of a unidimensional normal with mean µt
i and standard deviation σt

i .

Drawing the above n-dimensional random variable, two individuals are obtained, and the better

one is selected, i.e. a tournament selection is made. This process is repeated N times, obtaining

the population of selected individuals. This population is used to obtain the mean and standard

deviation vectors of the random variable Xt+1. These parameters are estimated by using their

corresponding maximum likelihood estimators. In this way the new unidimensional distributions at

step t + 1 are achieved. Figure 7.1 shows a pseudocode for this algorithm for the minimization of

function G(x).

Obtain randomly the parameters of a normal probability
distribution for each variable
while no convergence do

begin
for (j = 1; j ≤ N ; j + +)

begin
Drawing Xt obtain 2 individuals:

xt
1,j = (x1,t

1,j , . . . , x
n,t
1,j )

xt
2,j = (x1,t

2,j , . . . , x
n,t
2,j )

Evaluate xt
1,j , xt

2,j

Select the best one:
xt

(1:2),j = argminx{G(xt
1,j), G(xt

2,j)}
end

for (i = 1; i ≤ n; i + +)
begin

Estimate the parameters of the new density functions:

µt+1
i =

PN
j=1 x

i,t

(1:2),j

N

σt+1
i =

r
P

N
j=1(x

i,t

(1:2),j
−µt+1

i
)2

N

end
end

Figure 7.1. Pseudocode for UMDAc with tournament selection.
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Our objective is to learn how the density functions change with time, which is achieved knowing

how µt
i and σt

i evolve when t increases.

7.2 Mathematical Modeling
To model the UMDAc algorithm with tournament selection for continuous optimization problems

with n variables, we take a case in which at each step an infinite number of tournaments is made.

The mathematical model will depend on the function being optimized. At first we try to model the

algorithm as generally as possible, hence we assume that the optimization problem we handle is:

min
x∈IRn

G(x).

However, as we will see later, at some point it will be necessary to particularize the function we

are analyzing.

As noted above, we assume that at each step t, each variable follows a unidimensional normal

distribution, and has associated the following density function:

fXt
i
(xi) = fN (µt

i ,σt
i )

(xi) =
1√

2πσt
i

e−(xi−µt
i)

2/2(σt
i )

2

,

where fXt
i
(xi) denotes the density function of the random variable X t

i . As we are working with

UMDAc these variables are independent. Hence at each step t we have an n-dimensional random

variable Xt= (Xt
1, . . . , X

t
n) following the density fXt(x) with:

fXt(x) =

n∏

i=1

fN (µt
i ,σt

i )
(xi).

To simplify notation, each density function associated with each variable X t
i will henceforth be

denoted by:

f t
i (xi) = fXt

i
(xi) = fN (µt

i,σ
t
i )

(xi), with i = 1, 2 . . . , n.

Likewise, its associated distribution function will be denoted by:

F t
i (xi) =

∫ xi

−∞
f t

i (s)ds, with i = 1, 2 . . . , n.

We use the usual notation not only in the case of the standard normal density:

φ(x) = fN (0,1)(x) =
1√
2π

e−x2/2,

but also in the case of its associated distribution function:

Φ(x) =

∫ x

−∞
φ(s)ds.
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At each step t the random variable Xt
(1:2) = min{Xt

1, X
t
2} is considered, i.e. the random variable

of the best of two variables Xt. Thus:

E[Xt
(1:2)] =

(
E[Xt

(1:2),1], . . . , E[Xt
(1:2),n]

)

Var[Xt
(1:2)] =

(
Var[Xt

(1:2),1], . . . , Var[Xt
(1:2),n]

)

after which, the new distributions at time t + 1 are obtained. As we consider infinite populations,

each Xt+1
i obeys N

(
µt+1

i , σt+1
i

)
, with µt+1

i = E[Xt
(1:2),i] and σt+1

i
=
√

Var[Xt
(1:2),i].

As we want to model the behavior of the algorithm, we need to know explicitly the expressions

of µt+1
i and σt+1

i given µt
i, σt

i , for i = 1, . . . , n. Then we can use these expressions to analyze the

sequences {µt
i}t and {σt

i}t with t ∈ IN , and to study how they evolve when the number of iterates

increases. In other words, we study the limits:

lim
t→∞

µt
i, i = 1, . . . , n

lim
t→∞

σt
i , i = 1, . . . , n.

In order to calculate µt+1
i and σt+1

i , we have to obtain the density function associated with Xt
(1:2)

the best individual of each tournament. We denote this density function by f t
(1:2)(x1, . . . , xn). Notice

that the previous density will depend on G, the objective function that we are considering.

7.2.1 Calculation of f t

(1:2)(x1, . . . , xn)

In order to calculate the density function f t
(1:2)(x1, . . . , xn) we proceed as follows. First we obtain

its associated distribution function, F t
(1:2)(x1, . . . , xn). Then we derive this distribution function and

obtain the density function f t
(1:2)(x1, . . . , xn).

Let Xt
1 = (Xt

1,1, . . . , X
t
1,n) be the random variable associated with the first individual obtained

in the tournament at step t, and Xt
2 = (Xt

2,1, . . . , X
t
2,n) the random variable corresponding to the

second individual. Thus, the distribution function F t
(1:2)(x1, . . . , xn) is:

F t
(1:2)(x1, . . . , xn) = P

(
(Xt

(1:2),1, . . . , X
t
(1:2),n) ≤ (x1, . . . , xn)

)
. (7.3)

To make the calculus easier, we express the random variable associated with the best individual

in each tournament as a sum of random variables:

Xt
(1:2) = Xt

1 · I{G(Xt
1)≤G(Xt

2)} + Xt
2 · I{G(Xt

1)>G(Xt
2)},

where the random variable IA denotes the characteristic function of the event A. Hence:

IA(x) =

{
1 if x ∈ A

0 otherwise.

The event described in (7.3) is written as the following union of events:

(Xt
(1:2),1, . . . , X

t
(1:2),n) ≤ (x1, . . . , xn) =

{
U t

1 ∩ U t
2

}
∪
{
V t

1 ∩ V t
2

}
,
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where:

U t
1 = {(Xt

1,1, . . . , X
t
1,n) ≤ (x1, . . . , xn)}

U t
2 = {G(Xt

1,1, . . . , X
t
1,n) ≤ G(Xt

2,1, . . . , X
t
2,n)}

V t
1 = {(Xt

2,1, . . . , X
t
2,n) ≤ (x1, . . . , xn)}

V t
2 = {G(Xt

1,1, . . . , X
t
1,n) > G(Xt

2,1, . . . , X
t
2,n)}.

We denote by U t the event U t
1 ∩ U t

2 and by V t the event V t
1 ∩ V t

2 , and since:

{(Xt
(1:2),1, . . . , X

t
(1:2),n) ≤ (x1, . . . , xn)} = {U t} ∪ {V t}.

Hence, given that we have disjoint events, we can state that:

F t
(1:2)(x1, . . . , xn) = P(U t) + P(V t).

Taking into account that P(U t) = P(V t) (G is a continuous function), it is enough to obtain

P(U t). In order to do so we find the conditional probability P(U t|Xt
1,1 = x1,1, . . . , X

t
1,n = x1,n) and

then we integrate over the rest of the variables:

P(U t|Xt
1,1 = x1,1, . . . , X

t
1,n = x1,n)

=

{
P
(
G(Xt

2,1, . . . , X
t
2,n) ≥ G(x1,1, . . . , x1,n)

)
if x1,1 ≤ x1, . . . , x1,n ≤ xn

0 otherwise.

To simplify the notation we write:

P
(
G(Xt

1, . . . , X
t
n) ≥ G(x1, . . . , xn)

)
= At (G(x))

Therefore:

P(U t)

=

∫ ∞

−∞
. . .

∫ ∞

−∞
P(U t|Xt

1,1 = x1,1, . . . , X
t
1,n = x1,n)f t

1(x1,1)·. . .·f t
n(x1,n)dx1,1 . . . dx1,n

=

∫ x1

−∞
. . .

∫ xn

−∞
At (G(x1)) f t

1(s1) · . . . · f t
n(sn)ds1 . . . dsn.

Hence, the distribution function of Xt
(1:2) is:

F t
(1:2)(x1, . . . , xn) = P

(
(Xt

(1:2),1, . . . , X
t
(1:2),n) ≤ (x1, . . . , xn)

)

= 2

∫ x1

−∞
. . .

∫ xn

−∞
At (G(x)) · f t

1(s1) · . . . · f t
n(sn)ds1 . . . dsn.

Deriving the above expression we obtain the density function as:

f t
(1:2)(x1, . . . , xn) = 2At (G(x))

n∏

i=1

f t
i (xi).
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7.2.2 Calculation of µ
t+1
i

and σ
t+1
i

To obtain µt+1
i and σt+1

i we must first calculate each marginal density function f t
(1:2),i(xi) with

i = 1, . . . , n:

µt+1
i =

∫ ∞

−∞
xif

t
(1:2),i(xi)dxi

(σt+1
i )2 =

∫ ∞

−∞
x2

i f
t
(1:2),i(xi)dxi − (µt+1

i )2.

The marginal densities can be expressed as follows:

f t
(1:2),i(xi)

=

∫ ∞

−∞
. . .

∫ ∞

−∞
f t
(1:2)(x1, . . . , xn)dx1 . . . dxi−1dxi+1 . . . dxn

=

∫ ∞

−∞
. . .

∫ ∞

−∞
2At (G(x))

n∏

j=1

f t
j (xj)dx1 . . . dxi−1dxi+1 . . . dxn

= 2f t
i (xi)h

t
i(xi), (7.4)

where:

ht
i(xi) =

∫ ∞

−∞
. . .

∫ ∞

−∞
At (G(x))

n∏

j=1

j 6=i

f t
j (xj)dx1 . . . dxi−1dxi+1 . . . dxn.

As can be seen in (7.4) the calculations of µt+1
i and σt+1

i are closely related to the objective

function G. For this reason it is necessary to particularize the objective function. Our analysis will

now focus on the following two cases:

The case of linear functions.

The case of quadratic functions.

7.3 Linear Functions
We shall start by studying the simplest case, where the function L(x) under consideration is:

L : IRn −→ IR

x 7−→ a0 +
∑n

i=1 aixi, for all i = 1, . . . , n.

This will help us to see how the algorithm performs far from the optimum. An optimum (mini-

mum) of this function does not exist in the usual mathematical terms. However, in the sense of a

limit process the algorithm (in the case in which the algorithm performs properly) is expected to

search for small values of L(x) unboundedly, trying to find the optimum.
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7.3.1 Calculation of µ
t+1
i

As the calculations are analogous for each component, they will only be given for the first com-

ponent:

E
[
Xt

(1:2),1

]
= µt+1

1 =

∫ ∞

−∞
x1f

t
(1:2),1(x1)dx1 =

∫ ∞

−∞
2x1f

t
1(x1)h

t
1(x1)dx1.

To simplify the notation, in the following calculations the superscript corresponding to the step

is left out. It is, however, written in the final expression of µt+1
i and σt+1

i .

First we need to know the value of A (L(x)):

A (L(x)) = A


a0 +

n∑

j=1

ajxj


 = P


a0 +

n∑

j=1

ajXj ≥ a0 +

n∑

j=1

ajxj


 .

Since each Xi is a random variable with density function fN (µi,σi)(xi), we know that the random

variable T =
∑n

j=1 ajXj has density function:

N




n∑

j=1

ajµj ,

√√√√
n∑

j=1

a2
jσ

2
j


 .

Therefore:

A (L(x)) = P


T −∑n

j=1 ajµj√∑n
j=1 a2

jσ
2
j

≥
∑n

j=1 aj(xj − µj)√∑n
j=1 a2

jσ
2
j


 = 1− Φ



∑n

j=1 aj(xj − µj)√∑n
j=1 a2

jσ
2
j


 .

Now we can calculate h1(x1):

h1(x1) =

∫ ∞

−∞
fn(xn) . . .

∫ ∞

−∞
fk(xk) . . .

∫ ∞

−∞
f2(x2)A (L(x)) dx2 . . . dxk . . . dxn

using the following notation:

gk(x1, xk+1, xk+2, . . . , xn) =

∫ ∞

−∞
fk(xk) . . .

∫ ∞

−∞
f2(x2)A (L(x)) dx2 . . . dxk

with k = 2, . . . , n, we know that:

h1(x1) = gn(x1).

We are going to prove by induction on k that:

gk(x1, xk+1, xk+2, . . . , xn) = 1− Φ




n∑

i=1

i6=2,...,k

ai(xi − µi)

√∑k
i=2 a2

i σ
2
i +

∑n
i=1 a2

i σ
2
i




. (7.5)
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First this is proved when k = 2, after which we use as inductive hypothesis case k and demonstrate

that (7.5) is fulfilled in case k + 1.

Before proving equation (7.5), we must first take into account the following results borrowed from

Beyer (2001), which will help us to make the calculations:

I0(a, b) =

∫ ∞

−∞
e−s2/2Φ(as + b)ds =

√
2πΦ

(
b√

1 + a2

)
. (7.6)

I1(a, b) =

∫ ∞

−∞
se−s2/2Φ(as + b)ds =

a√
1 + a2

exp

(−1

2

b2

1 + a2

)
. (7.7)

Now we verify that (7.5) is satisfied when k = 2:

g2(x1, x3, x4, . . . , xn)

=

∫ ∞

−∞

1√
2πσ2

e−(x2−µ2)2/2σ2
2

(
1− Φ

(∑n
i=1 ai(xi − µi)√∑n

i=1 a2
i σ

2
i

))
dx2.

Making the transformation of variable x2−µ2

σ2
= s we find that:

g2(x1, x3, x4, . . . , xn)

= 1−
∫ ∞

−∞

1√
2π

e−s2/2Φ




a2σ2s + a2µ2 +

n∑

i=1

i6=2

aixi −
n∑

i=1

aiµi

√∑n
i=1 a2

i σ
2
i




ds

= 1− 1√
2π

∫ ∞

−∞
e−s2/2Φ




a2σ2s√∑n
i=1 a2

i σ
2
i

+

n∑

i=1

i6=2

ai(xi − µi)

√∑n
i=1 a2

i σ
2
i




ds.

Taking into account the result (7.6):

g2(x1, x3, x4, . . . , xn) = 1− 1√
2π

I0




a2σ2√∑n
i=1 a2

i σ
2
i

,

n∑

i=1

i6=2

ai(xi − µi)

√∑n
i=1 a2

i σ
2
i




= 1− Φ




n∑

i=1

i6=2

ai(xi − µi)

√
a2
2σ

2
2 +

∑n
i=1 a2

i σ
2
i




.
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By the inductive hypothesis, we assume that (7.5) is true for k. Let us now see whether it is true

for k + 1:

gk+1(x1, xk+2, xk+3, . . . , xn) =

∫ ∞

−∞
fk+1(xk+1)gk(x1, xk+1, xk+2, . . . , xn)dxk+1

= 1−
∫ ∞

−∞
fk+1(xk+1)Φ




n∑

i=1

i6=2,...,k

ai(xi − µi)

√∑k
i=2 a2

i σ
2
i +

∑n
i=1 a2

i σ
2
i




dxk+1.

Taking into account the change of variable
xk+1−µk+1

σk+1
= s, we find that:

gk+1(x1, xk+2, xk+3, . . . , xn)

= 1−
∫ ∞

−∞

1√
2π

e−s2/2Φ




ak+1σk+1s +

n∑

i=1

i6=2,...,k+1

ai(xi − µi)

√∑k
i=2 a2

i σ
2
i +

∑n
i=1 a2

i σ
2
i




ds.

By again using the result (7.6), we find that:

gk+1(x1, xk+2, xk+3, . . . , xn)

= 1− 1√
2π

I0




ak+1σk+1√∑k
i=2 a2

i σ
2
i +

∑n
i=1 a2

i σ
2
i

,

n∑

i=1

i6=2,...,k+1

ai(xi − µi)

√∑k
i=2 a2

i σ
2
i +

∑n
i=1 a2

i σ
2
i




.

Substituting the corresponding value of I0 at this point:

gk+1(x1, xk+2, xk+3, . . . , xn)

=1− Φ




n∑

i=1

i6=2,...,k+1

ai(xi − µi)

√
P

k
i=2 a2

i σ2
i +

P

n
i=1 a2

i σ2
i√

1 +
a2

k+1σ2
k+1

P

k
i=2 a2

i σ2
i +

P

n
i=1 a2

i σ2
i




=1− Φ




n∑

i=1

i6=2,...,k+1

ai(xi − µi)

√∑k+1
i=2 a2

i σ
2
i +

∑n
i=1 a2

i σ
2
i




.

So we have proven that (7.5) is fulfilled, therefore:

h1(x1) = gn(x1) = 1− Φ

(
a1(x1 − µ1)√

a2
1σ

2
1 + 2

∑n
i=2 a2

i σ
2
i

)
.
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Now we can calculate µt+1
1 :

µt+1
1 =

∫ ∞

−∞
2x1f1(x1)h1(x1)dx1

=

∫ ∞

−∞
2

1√
2πσ1

x1e
−(x1−µ1)

2/2σ2
1

(
1− Φ

(
a1(x1 − µ1)√

a2
1σ

2
1 + 2

∑n
i=2 a2

i σ
2
i

))
dx1.

Using the new variable s = x1−µ1

σ1
, we obtain:

µt+1
1

=
2√
2π

∫ ∞

−∞
(σ1s + µ1)e

−s2/2

(
1− Φ

(
a1σ1s√

a2
1σ

2
1 + 2

∑n
i=2 a2

i σ
2
i

))
ds

=
2√
2π

[
σ1

∫ ∞

−∞
se−s2/2ds + µ1

∫ ∞

−∞
e−s2/2ds

−σ1

∫ ∞

−∞
se−s2/2Φ

(
a1σ1s√

a2
1σ

2
1 + 2

∑n
i=2 a2

i σ
2
i

)
ds

−µ1

∫ ∞

−∞
e−s2/2Φ

(
a1σ1s√

a2
1σ

2
1 + 2

∑n
i=2 a2

i σ
2
i

)
ds

]
.

Equations (7.6) and (7.7) help us to express the above integrals as follows:

µt+1
1

=
2√
2π

[
σ1 · 0 + µ1 ·

√
2π − σ1 · I1

(
a1σ1√

a2
1σ

2
1 + 2

∑n
i=2 a2

i σ
2
i

, 0

)

−µ1 · I0

(
a1σ1√

a2
1σ

2
1 + 2

∑n
i=2 a2

i σ
2
i

, 0

)]
.

Using the results (7.6) and (7.7):

µt+1
1 =

2√
2π

[
µ1

√
2π − σ1

a1σ1√
2a2

1σ
2
1 + 2

∑n
i=2 a2

i σ
2
i

− µ1

√
2π

2

]

= µ1 −
a1σ

2
1√

π
√∑n

i=1 a2
i σ

2
i

.

Summarizing:

µt+1
1 = µt

1 −
a1(σ

t
1)

2

√
π
√∑n

i=1 a2
i (σ

t
i )

2
.

The expression for the expectation in any component i is obtained analogously:

µt+1
i = µt

i −
ai(σ

t
i )

2

√
π
√∑n

j=1 a2
j (σ

t
j)

2
. (7.8)
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7.3.2 Calculation of σ
t+1
i

As done before in calculating µt+1
i , we only make the calculations for i = 1, after which we

generalize the result:

(σt+1
1 )2 = Var[Xt+1

(1:2),1] = E
[
(Xt+1

(1:2),1)
2
]
−
(
E[Xt+1

(1:2),1]
)2

.

We start by obtaining E
[
(Xt+1

(1:2),1)
2
]

E
[
(Xt+1

(1:2),1)
2
]

=

∫ ∞

−∞
2x2

1f1(x1)h1(x1)dx1

=

∫ ∞

−∞
2

1√
2πσ1

x2
1e
−(x1−µ1)

2/2σ2
1

(
1− Φ

(
a1(x1 − µ1)√

a2
1σ

2
1 + 2

∑n
i=2 a2

i σ
2
i

))
dx1.

Making the change of variable x1−µ1

σ1
= s, we have:

E
[
(Xt+1

(1:2),1)
2
]

=
2√
2π

∫ ∞

−∞
(σ1s + µ1)

2e−s2/2

(
1− Φ

(
a1σ1s√

a2
1σ

2
1 + 2

∑n
i=2 a2

i σ
2
i

))
ds

=
2√
2π

[
σ2

1

∫ ∞

−∞
s2e−s2/2ds + 2σ1µ1

∫ ∞

−∞
se−s2/2ds + µ2

1

∫ ∞

−∞
e−s2/2ds

−σ2
1

∫ ∞

−∞
s2e−s2/2Φ

(
a1σ1s√

a2
1σ

2
1 + 2

∑n
i=2 a2

i σ
2
i

)
ds

−2σ1µ1

∫ ∞

−∞
se−s2/2Φ

(
a1σ1s√

a2
1σ

2
1 + 2

∑n
i=2 a2

i σ
2
i

)
ds

−µ2
1

∫ ∞

−∞
e−s2/2Φ

(
a1σ1s√

a2
1σ

2
1 + 2

∑n
i=2 a2

i σ
2
i

)
ds

]
. (7.9)

Taking into account expressions (7.6), (7.7) and:

I2(a, b) =

∫ ∞

−∞
s2e−s2/2Φ(as + b)ds

=
√

2πΦ

(
b√

1 + a2

)
− a2b

(1 + a2)
√

1 + a2
exp

(−1

2

b2

1 + a2

)
, (7.10)

the integrals in (7.9) can be written as follows:

E
[
(Xt+1

(1:2),1)
2
]

=
2√
2π

[
σ2

1 ·
√

2π + 2σ1µ1 · 0 + µ2
1 ·
√

2π − σ2
1 ·I2

(
a1σ1√

a2
1σ

2
1 + 2

∑n
i=2 a2

i σ
2
i

, 0

)

−2σ1µ1 · I1

(
a1σ1√

a2
1σ

2
1 + 2

∑n
i=2 a2

i σ
2
i

, 0

)
− µ2

1 · I0

(
a1σ1√

a2
1σ

2
1 + 2

∑n
i=2 a2

i σ
2
i

, 0

)]
.
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Using (7.6), (7.7) and (7.10) we obtain:

E
[
(Xt+1

(1:2),1)
2
]

=
2√
2π

[
σ2

1

√
2π + µ2

1

√
2π − σ2

1

√
2π

2
− 2σ1µ1

a1σ1√
2
∑n

i=1 a2
i σ

2
i

− µ2
1

√
2π

2

]

= σ2
1 + µ2

1 −
2a1µ1σ

2
1√

π
√∑n

i=1 a2
i σ

2
i

.

Now the superscripts corresponding to the iteration are written in order to obtain the full ex-

pression:

E
[
(Xt+1

(1:2),1)
2
]
=(σt

1)
2 + (µt

1)
2 − 2a1µ

t
1(σ

t
1)

2

√
π
√∑n

i=1 a2
i (σ

t
i )

2
.

Finally:

σt+1
1 = σt

1

√
1− a2

1(σ
t
1)

2

π
∑n

i=1 a2
i (σ

t
i )

2
.

An analogous expression for any component i can be given:

σt+1
i = σt

i

√
1− a2

i (σ
t
i )

2

π
∑n

j=1 a2
j (σ

t
j)

2
. (7.11)

7.3.3 Analyzing the Algorithm’s Behavior

Having obtained the expressions of µt+1
i and σt+1

i , we now try to predict the algorithm’s behavior

when t increases. This is done by analyzing each sequence of means {µt
i}t and each sequence of

standard deviations {σt
i}t with t ∈ IN .

To prove that the algorithm performs properly we must show that:

when ai > 0 ⇒ µt
i −→ −∞ , as t →∞

when ai < 0 ⇒ µt
i −→ +∞ , as t →∞,

because if so, the algorithm would improve at each step, minimizing unboundedly the value of the

objective function.

Unfortunately means sequences {µt
i}t with t ∈ IN are difficult to study when standard deviations

σt
i are not equal in each component. However, we can state that the improvement at each step and

in each component can be written as follows:

|µt+1
i − µt

i| =

∣∣∣∣∣∣
ai(σ

t
i)

2

√
π
√∑n

j=1 a2
j (σ

t
j)

2

∣∣∣∣∣∣
.

Hence, given that sequences {σt
i}t decrease for all i (see equation (7.11), with ai > 0), the

improvement in each component decreases when t increases.
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Given the difficulty of analyzing the sequences {µt
i}t and {σt

i}t with t ∈ IN , we are going to study

a particular case, in which the function to optimize is:

L1(x) =

n∑

i=1

xi,

and the sequence of variances meets the condition:

σt
i = σt , with i = 1, . . . , n.

First of all we study the sequence of variances {σt}t with t ∈ IN . Given that:

σt+1 = σt

(
nπ − 1

nπ

)1/2

,

we can write σt+1 as a function of σ0. Therefore, solving the recurrence, the sequence of standard

deviations can be written as follows:

σt+1 = σ0

(
nπ − 1

nπ

) t+1
2

.

The above expression helps us to analyze the means sequence {µt}t with t ∈ IN . After substi-

tuting this expression in equation (7.8) we obtain:

µt = µt−1 − σ0

√
nπ

(
nπ − 1

nπ

) t−1
2

.

We can also express µt in terms of µ0 and σ0:

µt =µ0− σ0

√
nπ

(
1+

(
nπ − 1

nπ

)1/2

+. . .+

(
nπ − 1

nπ

) t−1
2

)

which yields:

µt = µ0 − σ0

√
nπ

·
(

nπ−1
nπ

)t/2 − 1
(

nπ−1
nπ

)1/2 − 1
.

This new form of writing µt makes it easier to analyze the means sequence. This sequence

decreases and has a finite limit.

lim
t→∞

µt = lim
t→∞


µ0 − σ0

√
nπ

·
(

nπ−1
nπ

) t
2 − 1

(
nπ−1

nπ

)1/2 − 1




= µ0 +
σ0

√
nπ

1
(

nπ−1
nπ

)1/2 − 1

= µ0 +
σ0

√
nπ − 1−√nπ

. (7.12)
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Figure 7.2. Values of µt
1 for different numbers of tournaments.

Therefore, although the mean values decrease at each step, this decrease is not unbounded. This

fact implies poor algorithm performance, leading us to conclude that this algorithm does not work

as expected when we are far from the optimum and the number of tournaments at each step is

infinite.

To see how the algorithm performs with a finite number of tournaments, we carried out a number

of experiments. Having chosen the number of tournaments, we ran the algorithm with the linear

function:

L1(x) =

2∑

i=1

xi, with x = (x1, x2) ∈ IR2.

The initial density functions used were:

fX0
i
(xi) = fN (1,2)(xi), with i = 1, 2.

We ran the algorithm 50 times for a number of tournaments (10, 50, 100, 1000, 10000). After which

we calculated the average value of the mean at each generation. Here we only show the results for

the mean values in the first component (the values for the second component are analogous). The

results for these finite numbers of tournaments, and also for an infinite number of tournaments –

theoretical results obtained in (7.12) – can be seen in Figure 7.2.

The experiments show that a low number of tournaments does not guarantee an unbounded

decrease in the mean values. In fact, as can be seen in Figure 7.2, the mean values block for a low

number of generations when the number of tournaments is small.

The experiment shows that the smaller the number of tournaments, the worse the algorithm

performs.
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7.4 Quadratic Function
This section deals with our analysis of the case in which the function considered is

Q : IRn −→ IR

x 7−→ ∑n
i=1 x2

i .

This function is used in the literature to study the algorithm’s behavior near the optimum.

We attempted to make a similar analysis to the one made in the linear case. However, during

the study of this function, problems arose in calculating some integrals. These problems forced

us to make certain simplifications in order to obtain as much information as possible concerning

the algorithm’s behavior. The simplifications consist of assuming that each Xi is distributed as a

normal centered at the optimum of Q(x), and that all those variables have the same deviation σ.

Such a situation describes what happens when the algorithm is very near the optimum. This fact

enables us to study if the optimum is finally reached or not. In the event that it is reached, it is

possible to analyze how the speed of convergence is affected as the space dimension increases.

7.4.1 Calculation of µ
t+1
i

As in the previous case we make the calculation for the first component:

µt+1
1 =

∫ ∞

−∞
2x1f1(x1)h1(x1)dx1.

First we need to know the value of A (Q(x)):

A (Q(x)) = A




n∑

j=1

x2
j


 = P




n∑

j=1

(Xj)
2 ≥

n∑

j=1

x2
j


 .

Since each Xi is a random variable with density function fN (µi,σi)(xi), we know that:

A (Q(x)) = A




n∑

j=1

x2
j




=

∫
. . .

∫

D

(
1√
2π

)n
1

σ1 . . . σn
e−(u1−µ1)

2/2σ2
1 · . . . · e−(un−µn)2/2σ2

ndu1 . . . dun.

where D = {u2
1 + . . . + u2

n ≥ x2
1 + . . . + x2

n}.
Here we encounter the first problem: to solve the above integral. To do so we make the following

simplification: assuming that each Xi is a random variable distributed as a normal with mean µi = 0

and deviation σi = σ, in other words with density function fN (0,σ)(xi). This is the only case where

we find the above integrals solvable.

Using this kind of density functions implies studying the algorithm’s behavior when the density

functions are centered at the optimum, so we are really very near the optimum. But here we

wonder: is the optimum actually reached? If the answer is yes, what is the speed of convergence as

the dimension of the problem increases?

In order to answer these questions we carry out the following analysis:
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Step 1.- To ensure that at each step we do not move away from the optimum, we have to demon-

strate that:

µ0
i = 0 ⇒ µt

i = 0 ∀t

Step 2.- To prove that the optimum is reached we have to see whether:

σt → 0 as t →∞

Step 3.- We study the speed of convergence as dimension increases. This study allows us to

compare the difficulty of approaching the optimum as the dimension increases.

7.4.2 Calculation of µt+1 and σt+1

First of all, as in the linear case, in order to calculate µt+1 and σt+1 we need to find the expression

of At (Q(x)):

At (Q(x)) = At




n∑

j=1

x2
j


 =

∫
. . .

∫

D

(
1√
2πσ

)n

e−(u2
1+...+u2

n)/2σ2

du1 . . . dun

where D = {u2
1 + . . . + u2

n ≥ x2
1 + . . . + x2

n}. Taking into account the change of variable ui

σ = ti,

with i = 1, . . . , n, we obtain:

At (Q(x)) =

(
1√
2π

)n ∫
. . .

∫

D∗

e−(t21+...+t2n)/2dt1 . . . dtn

where D∗ = {t21 + . . . + t2n ≥ Q(x)/σ2}. This integral can be solved thanks to the generalization

to n dimensions of the spherical change of variable in dimension three. This change can be seen in

detail in Appendix A. Here we give the essential information:

The variables (t1, . . . , tn) are changed to the variables

(ρ, αn−1, αn−2, . . . , α2, α1).

The range of variation of each new variable is:

0 ≤ ρ ≤ ∞
−π/2 ≤ αj ≤ π/2, for j = 2, . . . , n− 1

0 ≤ α1 ≤ 2π.

The Jacobian of the transformation is :

|Jn| = ρn−1 · cosα2 · cos2 α3 · . . . · cosn−3 αn−2 · cosn−2 αn−1.

Using this change the integral is modified to:
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At (Q(x))

=

(
1√
2π

)n ∫ 2π

0

dα1

∫ π/2

−π/2

cosα2dα2

∫ π/2

−π/2

cos2 α3dα3 · . . .

. . . ·
∫ π/2

−π/2

cosn−3 αn−2dαn−2

∫ π/2

−π/2

cosn−2 αn−1dαn−1

∫ ∞
√

Q(x)/σ

ρn−1e−ρ2/2dρ

=

(
1√
2π

)n

2π

n−2∏

i=1

∫ π/2

−π/2

cosi βdβ

︸ ︷︷ ︸
S(n)

∫ ∞
√

Q(x)/σ

ρn−1e−ρ2/2dρ,

where S(n) = 2π(
√

π)n−2

Γ(n
2 )

is the constant associated with the spherical change of variable in n

dimensions (see Appendix A). Therefore, substituting the value of S(n) above:

At (Q(x)) =

(
1√
2π

)n
2π(

√
π)n−2

Γ
(

n
2

)
∫ ∞
√

Q(x)/σ

ρn−1e−ρ2/2dρ.

Let In denote the indefinite integral
∫

ρn−1e−ρ2/2dρ, and In(u, v) denote definite integral In

∣∣v
u
.

The integral In(
√

Q(x)/σ,∞) has different values when n is odd or even. When n is odd I1(
√

Q(x)/σ,∞)

is an incomplete Gamma function (it has no explicit expression), meaning that from here we only

work with even dimension. We emphasize this fact writing At
2n (Q(x)). Therefore:

At
2n (Q(x)) =

(
1√
2π

)2n
2π(

√
π)2n−2

(n− 1)!

∫ ∞
√

Q(x)/σ

ρ2n−1e−ρ2/2dρ

=
1

2n−1(n− 1)!
· I2n(

√
Q(x)/σ,∞).

In order to solve integral I2n we write:

u = ρ2n−2 ⇒ du = (2n− 2)ρ2n−3dρ

dv = ρe−ρ2/2dρ ⇒ v = −e−ρ2/2

so that:

I2n = −ρ2n−2e−ρ2/2 + (2n− 2)

∫
ρ2n−3e−ρ2/2dρ

= −ρ2n−2e−ρ2/2 + (2n− 2) · I2n−2.

Substituting the expressions of I2n−j , with j = 2, . . . , 2n− 2:

I2n

= −ρ2n−2e−ρ2/2 − (2n− 2)ρ2n−4e−ρ2/2 − (2n− 2)(2n− 4)ρ2n−6e−ρ2/2

− . . .− (2n− 2)(2n− 4) · . . . · 2 · 1e−ρ2/2

= −e−ρ2/2


ρ2n−2 +

n∑

j=2

ρ2n−2j(2n− 2)(2n− 4) · . . . · (2n− 2(j − 1))




= −e−ρ2/2


ρ2n−2 +

n∑

j=2

ρ2(n−j) · 2j−1 · n!

n(n− j)!


 . (7.13)
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Taking into account equation (7.13), integral At
2n (Q(x)) can be expressed as follows:

At
2n (Q(x))

=
1

2n−1(n− 1)!
·


−e−ρ2/2


ρ2n−2 +

n∑

j=2

ρ2(n−j) · 2j−1 · n!

n(n− j)!





∣∣∣∣∣

∞

√
Q(x)/σ

=
21−n

(n− 1)!
· e−Q(x)/2σ2



(

Q(x)

σ2

)n−1

+

n∑

j=2

(
Q(x)

σ2

)n−j

· 2j−1 · n!

n(n− j)!




=
21−n

(n− 1)!
· e−Q(x)/2σ2

σ2(n−1)

[
(Q(x))

n−1

+

n∑

j=2

(Q(x))
n−j · σ2(j−1) · 2j−1 · n!

n(n− j)!

]
.

The next step is to calculate integral h1(x1):

h1(x1)

=

∫
. . .

∫

IR2n−1

(
1√
2πσ

)2n−1

e−(x2
2+...+x2

2n)/2σ2

At
2n (Q(x)) dx2 . . . dx2n

=

∫
. . .

∫

IR2n−1

(
1√
2πσ

)2n−1

e−(x2
2+...+x2

2n)/2σ2 ·

· 21−n

(n− 1)!
· e−(x2

1+x2
2+...+x2

2n)/2σ2

σ2(n−1)
·

·
[

(Q(x))
n−1

+

n∑

j=2

(Q(x))
n−j · σ2(j−1) · 2j−1 · n!

n(n− j)!

]
dx2 . . . dx2n.

Changing the variable, xi

σ = ti, and taking into account that (Q(x))
k

=
(
x2

1 + σ2(t22 + . . . + t22n)
)k

,

the expression of h1(x1) can be written as:

h1(x1)

=

(
1√
2π

)2n−1

· 21−n

σ2(n−1)(n− 1)!

∫
. . .

∫

IR2n−1

e−(t22+...+t22n) · e−x2
1/2σ2 ·

·
[
(
(x2

1 + σ2(t22 + . . . + t22n)
)n−1

+
n∑

j=2

(
(x2

1 + σ2(t22 + . . . + t22n)
)n−j · σ2(j−1) · 2j−1 · n!

n(n− j!)

]
dt2 . . . dt2n.

Making again the generalization to 2n − 1 dimensions of the spherical change of variable in

dimension three:
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h1(x1)

=

(
1√
2π

)2n−1

· 21−n

σ2(n−1)(n− 1)!

2π(
√

π)2n−3

Γ
(

2n−1
2

) ·

·
∫ ∞

0

ρ2n−2e−ρ2

e−x2
1/2σ2

[
(
x2

1 + σ2ρ2
)n−1

+

n∑

j=2

(
x2

1 + σ2ρ2
)n−j · σ2(j−1) · 2j−1 · n!

n(n− j)!

]
dρ

=

(
1√
2π

)2n−1

· 21−n

σ2(n−1)(n− 1)!

2π(
√

π)2n−3

Γ
(

2n−1
2

) ·

·e−x2
1/2σ2

[∫ ∞

0

ρ2n−2e−ρ2 (
x2

1 + σ2ρ2
)n−1

+

n∑

j=2

σ2(j−1) · 2j−1 · n!

n(n− j)!

∫ ∞

0

ρ2n−2e−ρ2 (
x2

1 + σ2ρ2
)n−j

dρ

]

Unfortunately to compute integrals
∫∞
0 ρ2n−2e−ρ2 (

x2
1 + σ2ρ2

)n−j
dρ, with j = 1, . . . , 2n is not

an easy task, hence to find an explicit general expression for h1(x1) is difficult. Therefore we have

solved this integral for some finite cases (by parts). This allows us to gain a general idea of the

algorithm’s performance as the problem dimension increases.

7.4.3 Analyzing the Algorithm’s Behavior

As explained above we solve h1(x1) in some finite cases. Although our analysis will not be so

general as in the linear case, we do obtain some information about the algorithm’s behavior near

the optimum.

The finite cases are:

2n = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 40,

50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 600.

After obtaining the values for h1(x1), for the above cases, we substitute them in the expression of

µt+1, obtaining µt+1 = 0 for every t. This indicates that for the studied dimensions, the algorithm

remains near the optimum. The results of substituting these values in the expression of σt+1 are

summarized in Table 7.1.

As can be seen in Table 7.1, for these finite cases we can write σt+1 = a2nσt. The factor of

decrease a2n is represented in Figure 7.3.

Having the {a2n} data sequence we need now to find a formula that approximates it, in other

words, to fit a curve through the points in {a2n} sequence. This allows us to estimate the speed of

convergence. We find the following least squares fit to data:

g(n) = 1− 0.4√
n

.

Figure 7.4 shows that g(n) fit properly the {a2n} data.
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2n σt+1 2n σt+1

2 .7071σt 30 .9249σt

4 .7906σt 40 .9352σt

6 .8291σt 50 .9422σt

8 .8524σt 60 .9473σt

10 .8683σt 70 .9513σt

12 .8800σt 80 .9545σt

14 .8891σt 90 .9571σt

16 .8964σt 100 .9594σt

18 .9025σt 150 .9669σt

20 .9076σt 200 .9714σt

22 .9120σt 300 .9767σt

24 .9159σt 400 .9799σt

26 .9192σt 500 .9820σt

28 .9223σt 600 .9836σt

Table 7.1. Values of σt+1 for some finite cases.
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a 2n

Figure 7.3. Factor of decrease of σt+1.

The results indicate that:

1 The value of σt → 0 as t → ∞ in the analyzed dimensions, therefore the algorithm reaches the

optimum.

2 Since g(n) seems to fit properly the points in {a2n} data, the speed of convergence decreases

with the dimension as O
(

1√
n

)
.

Therefore we can conclude that in the finite cases studied, the algorithm reaches the optimum,

but the speed of convergence decreases as the dimension of the problem increases.
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Figure 7.4. Fitting {a2n} values.

7.5 Summary
We have modeled the UMDAc algorithm with tournament selection applied to linear and quadratic

functions when an infinite number of tournaments is performed. Linear functions are used to model

the algorithm when far from the optimum, while quadratic function is used to analyze the algorithm

when near the optimum.

Based on this modeling we have analyzed its behavior in n-dimensional linear functions and in

an n-dimensional quadratic function. In the case of linear functions we conclude that the algorithm

does not work as expected in linear function L1(x) =
∑n

i=1 xi, with x = (x1, . . . , xn) ∈ IRn. After

making certain assumptions in the case of quadratic function Q(x) =
∑n

i=1 x2
i , we have proved for

some finite dimensions that the algorithm reaches the optimum. Moreover, the speed of convergence

gets slower as dimension increases.

The results obtained are closely related to the chosen distributions (unidimensional normals). It

will be helpful to study the behavior of the algorithm when different distributions are used.
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Chapter 8

Results concerning Time Complexity

The third part of this dissertation deals with the analysis of time complexity of EDAs. Time

complexity studies the expected waiting time until a global optimum is encountered for the first

time in terms of individual size. This is an important measure of performance for any optimization

algorithm.

The chapter is organized in four sections. Section 8.1 introduces the chapter and also reviews

previous work on time complexity of EAs.

Section 8.2 analyzes the time complexity of EDAs and offers a result concerning worst-case first

hitting time for EDAs based on Markov chains: the highest expected first hitting time for UMDA,

MIMIC, TREE and EBNABIC , is exponential in individual size, when they are used to maximize

any pseudo-boolean injective function. Finally, we discuss how this result influences the calculus of

bounds of average-case hitting times for EDAs. The analysis for UMDA algorithm appears for the

first time in González et al. (2004).

Section 8.3 presents a study based on empirical results of the average first hitting time of EDAs,

and it reports the analysis carried out in González et al. (2005). The algorithms are applied

to one example of linear, pseudo-modular, and unimax functions. The average first hitting time is

analyzed and compared. This section also addresses the following issues in EDAs: (i) the relationship

between the complexity of the probabilistic model used by the algorithm and its efficiency, and (ii)

the matching between this model and the relationship among the variables of the objective function.

To finalize, conclusions are drawn in Section 8.4

8.1 Introduction

In working with EAs, it is important to calculate the first hitting time for a given objective

function, and to know what is the best solution the algorithm can provide for a given computational

time. Time complexity is a particularly crucial issue in the analysis of EAs. It shows how efficient

an algorithm is for a large problem. However, for most algorithms and functions, time complexity

is relatively unknown (except for some cases), and few results are available (Eiben and Rudolph,

1999; He and Yao, 2001; Rudolph, 1998; Wolpert and Macready, 1997). This fact makes theoretical

comparisons between EAs and other optimization algorithms difficult.

Time complexity has been theoretically analyzed mainly for (1 + 1) algorithms. The first results

were made available by Rudolph (1997), who studied the application of (1 + 1) EAs to OneMax,

linear, and general unimodal problems.

113
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Droste et al. (1998) offer a rigorous complexity analysis of (1+1) EAs for linear functions with

boolean inputs. In a later work Droste et al. (2002) prove that linear functions are optimized in

expected time O(n ln n), when the mutation rate is 1/n (where n is the size of the individual), while

the optimization of some degree 2 polynomials, and a unimodal function need exponential time.

He and Yao (2001) considered EAs which use a population size greater than 1, crossover, mutation

and selection. In their work, using drift analysis, conditions under which an EA will take no more

than polynomial time (in problem size) to solve a problem and conditions under which an EA will

take at least exponential time (in problem size) are obtained. This work was extended (He and Yao,

2002) to carry out a comparison between the first hitting time between (1+1) EAs and (N + N)

EAs. A further extension of He and Yao (2001) can be found in He and Yao (2004), where a general

classification of easy and hard problems for EAs is added. He and Yao (2003) have also proposed a

general framework based on Markov chains for analyzing first hitting times for EAs.

8.2 Worst-case First Hitting Time Analysis for EDAs
This section is intended as a first step toward furthering the theoretical study of time complexity

of EDAs. Based on the work of He and Yao (2003), we have modeled EDAs by means of an absorbing

Markov chain. This model enables us to show the following result: the UMDA, MIMIC, TREE and

EBNABIC algorithms need in the worst-case, exponential expected time (in individual size) for their

first hitting time in any pseudo-boolean injective function.

It is clear that the calculation of the mean first hitting time of an algorithm is highly important to

its analysis. But surely people reading this dissertation will wonder why it is interesting to calculate

the algorithm’s worst-case first hitting time. The reason is the following: our calculation of the

worst-case first hitting time for some EDAs has major implications for the derivation of bounds of

the expected first hitting time for EDAs, and helps to better understand how these algorithms work.

Moreover, our result provides clues for recognizing situations in which the worst-case hitting time

is exponential: when there exists a population of selected individuals such that the probability for

the EDA to visit populations with better individuals is very small.

We want to point out that for the EDAs used in this section we take into account the following

assumptions:

Assumption 8.1. The estimated probability distribution assigns positive probability to each point

of the search space at each step of the algorithm (this can be guaranteed using estimations based on

the Laplace correction (Cestnik, 1990)).

Assumption 8.2. The population of selected individuals at time t, DSe
t is obtained as follows: Dt

is obtained sampling M − 1 times p(x|DSe
t−1), and adding the best individual of the previous selected

population, DSe
t−1. After that the N best individuals of Dt are selected to obtain the population DSe

t .

Assumption 8.3. All the variables are binary.

8.2.1 Modeling EDAs by Means of an Absorbing Markov Chain

This section is devoted to modeling EDAs using Markov chains. Here we give the general frame-

work necessary to obtain the result (adapted from He and Yao (2003)) that characterizes those

EDAs whose first hitting time is exponential in the worst case.

Let us introduce some notation. The pseudo-boolean combinatorial optimization problem to

solve will be:
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max
x∈Ω

f(x), (8.1)

where f : Ω → IR is the objective function and Ω = {0, 1}n denotes the search space.

Let x ∈ Ω be a solution of an EDA, which is represented by an individual. A population Dt is

a set of M individuals (in the multiset sense, it could contain repeated individuals). The selected

population at step t is denoted by DSe
t , has N individuals and:

DSe
t ∈ {(x1, . . . ,xN )|xi ∈ Ω}.

The Markov chain used here to model EDAs (Markov model III) is sightly different than the two

used previously (Markov model I and Markov model II). In this case and given that the selected

population at time t, DSe
t , only depends on the selected population at time t − 1, DSe

t−1, we can

model EDAs by means of the following Markov chain:

(DSe
t : t = 0, 1, . . .) (8.2)

whose state space E consists of all possible selected populations (of size N). Let r be the number

of different populations of size N that could be formed, then:

E = {1, . . . , r},

where i denotes the ith population of size N . If no self-adaptation is used (as in our case) the

Markov chain is homogeneous.

Let Ωopt be the set of solutions of problem (8.1). We divide the set of selected populations into

two disjointed subsets. On the one hand, we have the set of all selected populations that contain at

least an optimal solution:

H = {i ∈ E | ∃x∗ ∈ Ωopt such that x∗ ∈ i}. (8.3)

On the other, the set of selected populations that does not contain any optima:

T = {i ∈ E | @x∗ ∈ Ωopt such that x∗ ∈ i}. (8.4)

The cardinality of H and T will be denoted by |H | and |T | respectively. We also order the states

as follows: the first states are the states in H , while the states in T are in the last places. Therefore

the transition matrix associated with the Markov chain is:

P̄ =

[
H 0

R T

]
,

where H is a matrix whose dimension is |H |×|H | and each entry of H, Pij , represents the probability

of going from the selected population i that contains at least an optimum to the selected population

j that contains at least an optimum. T has dimension |T | × |T | and its entries Pij represent the

probability of going from the selected population i that does not contain any optima to the selected

population j that does not contain any optima. Matrix 0 is the null matrix of dimension |H | × |T |.
Finally we describe matrix R, which is a matrix of dimension |T |×|H | and contains the probabilities

of going from a selected population that does not contain any optima to a selected population that

contains at least one optimum.
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When set H is reached the algorithm is trapped in it and it is impossible to leave this set (we

consider Assumption 2). We are only interested in the first hitting time, and do not care about the

behavior after that. Therefore we can substitute matrix H for the identity matrix I|H|. Now it is

sufficient to analyze the Markov chain associated whith the following transition matrix:

P =

[
I|H| 0

R T

]
.

The absorbing states in this chain are the states belonging to set H . Given that the states in H

can be reached from any other state, the chain is absorbing.

Once we have modeled the algorithm by means of the above absorbing Markov chain, we are

interested in the first time in which an optimum is reached. As defined in Section 2.3.2, the random

variable that indicates the first hitting time to the set H – the set of populations that contain at

least an optimal point – when starting from state i, is:

τi = min{t; t ≥ 0, DSe
t ∈ H |DSe

0 = i}.
We are interested in the expectation of the random variable τi:

mi = E[τi; τi < ∞] .

The vector whose components represent the expected first hitting time depending on the initial

state i, is m = [mi]i∈E . It can be proven that this vector can be calculated as follows:

m = (I|T | −T)−11 , (8.5)

where 1 denotes the |T |-dimensional vector (1, . . . , 1)t.

For vector m we can define different norms. Two special norms are:

‖m‖0 =
1

|E|
∑

i∈E

mi .

‖m‖∞ = max
i∈E

mi .

The above norms represent two different performance measures of the expected first hitting time.

Norm ‖m‖0 is related to the average-case analysis (when the initial distribution of the states is

uniform), while norm ‖m‖∞ is related to the worst-case analysis.

The calculation of both quantities, ‖m‖∞ and ‖m‖0 is interesting for the analysis of any EDA.

Here we have focused our efforts on the calculation of ‖m‖∞. We also see how the calculation of

‖m‖∞ can help to bound the quantity ‖m‖0.

Now we give a result that characterizes those EDAs whose first hitting time, in the worst-case

analysis, is exponential in the individual size. This result is adapted from He and Yao (2003). The

proof is based on the calculation of the formula (8.5), which requires handling matrix P. Since the

number of entries in the transition matrix is often huge (exponential in individual and population

size), we decompose the state space E into L + 1 disjointed subsets E0, E1, . . . , EL, where El,

l = 0, . . . , L, contains as best individual the (l + 1)th best individual of the search space.

Theorem 8.1. For the Markov chain associated with an EDA such that it fulfills Assumption 8.1

and Assumption 8.2, ‖m‖∞ is exponential in n if and only if, for some l, 0 ≤ l ≤ L and for some

population i with i ∈ El,
1

∑l−1
k=0

∑
j∈Ek

P(j | i)
(8.6)
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is exponential in n.

The condition associated with expression (8.6) means that starting from some state (population

i), in a subset of populations El, the probability for the EDA to move to upper subsets with higher

fitness is very small.

8.2.2 Worst Case Analysis for Some EDAs

This section is concerned with proving the main result of this chapter: UMDA, MIMIC, TREE

and EBNABIC algorithms fulfill the condition of Theorem 8.1, when they are used to maximize any

pseudo-boolean injective function. Therefore we must show that in the worst-case analysis, the first

hitting time for these algorithms is exponential in n.

It is important to remember that the algorithms we are analyzing satisfy Assumption 1, Assump-

tion 2 and Assumption 3.

Our aim is to prove that Theorem 8.1 is true for the different algorithms. To this end we will

demonstrate that the population composed of the second best individual and N − 1 copies of the

complement of the best individual (which we denote by i∗) fulfills the condition of Theorem 1.

Given that population i∗ belongs to subset E1 (contains as best individual the second best

individual), we must write the expression (8.6) for l = 1:

1∑
j∈E0

P(j | i∗)
. (8.7)

If we want to see that i∗ meets the condition of Theorem 8.1 for these algorithms, we must show

that (8.7) is exponential in n in all cases.

Without loss of generality we prove the condition in a situation in which the optimum is the

point (1, . . . , 1) and the second best individual is (1, . . . , 1, 0). Notice that which are the best

and the second best individuals is irrelevant for the proof. In this case the population of selected

individuals that we analyze is i∗ = {x∗1, . . . ,x∗N}, where:

x∗1 = (0, . . . , 0, 0)

. . .

x∗N−1 = (0, . . . , 0, 0)

x∗N = (1, . . . , 1, 0) .

The next step is to calculate P(j | i∗), the probability of going from population i∗ to a population

j ∈ E0, i.e. to a population that contains the individual (1, . . . , 1). In order to do so we have to

estimate the joint probability distribution associated with the population of the selected individuals

i∗ for each algorithm. This estimation depends on the probabilistic model used by the algorithm.

This is the reason why from this point we analyze the problem separately for UMDA, MIMIC,

TREE and EBNABIC algorithms.

8.2.2.1 Worst Case Analysis for UMDA

The UMDA algorithm uses the simplest model to estimate the joint probability distribution of

the selected individuals, supposing that all the variables are independent. Here we use a version

of the algorithm that fulfills Assumptions 1, 2 and 3 mentioned above. In order to satisfy the first

Assumption and taking into account that the variables are binary, we use estimations based on the

Laplace correction as follows:
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P(Xi = 1 | DSe
t−1) =

Ni + 1

N + 2
, (8.8)

where Ni is the number of times variable Xi takes value 1 in DSe
t−1.

Taking into account that the population of selected individuals is i∗ and using (8.8) to calculate

the univariate marginal distributions, the probability distribution associated with selected individ-

uals can be written as a vector:

p =

(
2

N + 2
,

2

N + 2
, . . . ,

2

N + 2
,

1

N + 2

)
,

where the ith component of vector p, pi is the probability of obtaining a one in the ith position, i.e.

pi = P(Xi = 1).

Therefore at the next step of the algorithm, the following population is obtained sampling the

probability vector p. Thus the denominator of quotient (8.7) for population i∗ can be expressed as:

∑

j∈E0

P(j|i∗) =
∑

j∈E0

P(j|p) ,

where P(j|p) is the probability of obtaining population j after sampling the probability vector p.

Thus:

∑

j∈E0

P(j|p) = 1− P(j 6∈ E0|p) = 1− P((1, 1, . . . , 1) 6∈ j|p) .

Expression P((1, 1, . . . , 1) 6∈ j|p) denotes the probability after sampling M − 1 times p, of not

obtaining individual (1, 1, . . . , 1). Given that the probability of obtaining (1, 1, . . . , 1) after sampling

p once is:

(
2

N + 2

)n−1

· 1

N + 2
,

the probability of not obtaining (1, 1, . . . , 1) after sampling p once is:

1−
(

2

N + 2

)n−1

· 1

N + 2
.

Thus, the probability of not obtaining (1, 1, . . . , 1) after sampling p M − 1 times is given by:

P((1, 1, . . . , 1) 6∈ j|p) =

(
1−

(
2

N + 2

)n−1

· 1

N + 2

)M−1

.

Finally, we have:

∑

j∈E0

P(j|p) = 1−
(

1−
(

2

N + 2

)n−1

· 1

N + 2

)M−1

. (8.9)

If we set M and N such that they depend linearly on n, we find that (8.9) decreases exponentially

in n, with the result that quotient (8.7) is exponential in n.
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8.2.2.2 Worst Case Analysis for MIMIC

The probabilistic model used by MIMIC takes into account dependencies between pairs of vari-

ables. Denoting by π = (i1, . . . , in) a permutation of the indexes 1, 2, . . . , n, the probabilistic model

used by MIMIC can be written as:

pπ
t (x) = pt(xi1 |xi2) · pt(xi2 |xi3 ) · . . . · pt(xin−1 |xin

) · pt(xin
).

In order to learn the structure, a greedy algorithm is used. At each generation the objective is

to find the best permutation π among the variables such that it minimizes the Kullback-Leibler

divergence between pπ
t (x) and the empirical distribution of the set of selected points.

Therefore we have to find the order of the variables (a permutation π∗ in the indexes), using the

algorithm in Figure 3.7. The first step consists of calculating the empirical Shannon entropy of all

the variables (taking into account that the population of selected individuals is i∗) and choosing

the minimum of them. Given that the first n − 1 variables have the same values, we find that for

i = 1, . . . , n− 1:

Ĥ(Xi) = −
∑

x

P(Xi = x) log P(Xi = x)

= − [P(Xi = 0) logP(Xi = 0) + P(Xi = 1) log P(Xi = 1)] .

Given the set of selected individuals the parameters are estimated using the Laplace correction

with the following expressions:

P(Xi = xi|Xj = xj) =
Nij + 1

Nj + 2
, (8.10)

P(Xi = xi) =
Ni + 1

N + 2
, (8.11)

where Nij is the number of times variable Xi takes value xi and variable Xj takes value xj in i∗,
and Ni (resp. Nj) is the number of times variable Xi (resp. Xj) takes value xi (resp. xj) in i∗.

Therefore using expression (8.11) for the estimation of the parameters we obtain:

Ĥ(Xi) = −
[(

N

N + 2

)
log

(
N

N + 2

)
+

(
2

N + 2

)
log

(
2

N + 2

)]

= −
[
log

(
1

N + 2

)
+

N log N + 2 log 2

N + 2

]
.

The empirical entropy for the variable Xn is:

Ĥ(Xn) = −
[(

N + 1

N + 2

)
log

(
N + 1

N + 2

)
+

(
1

N + 2

)
log

(
1

N + 2

)]

= −
[
log

(
1

N + 2

)
+

(N + 1) log(N + 1)

N + 2

]
.

It is easy to see that for N ≥ 2, Ĥ(Xi) > Ĥ(Xn) with i = 1, . . . , n− 1. For this reason variable

Xn is selected at step 1 of the algorithm in Figure 3.7. Therefore, given that Ĥ(Xi|Xn) is equal for

all i = 1, . . . , n − 1, one possible permutation for the variables is π∗ = (i∗1 = 1, i∗2 = 2, . . . , i∗n−1 =

n − 1, i∗n = n) (the choice of this permutation does not affect the final result). The probabilistic

model used by MIMIC in this case is:
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pπ∗(x) = p(x1|x2) · p(x2|x3) · . . . · p(xn−1|xn) · p(xn).

Thus the denominator of quotient (8.7) for population i∗ can be expressed as:

∑

j∈E0

P(j|i∗) =
∑

j∈E0

P(j|pπ∗(x)) ,

where P(DSe|pπ∗(x)) is the probability of obtaining population j after sampling the joint probability

distribution pπ∗(x). Hence, arguing as in the case of UMDA algorithm, we find that:

∑

j∈E0

P(j|pπ∗(x)) = 1− P((1, 1, . . . , 1) 6∈ j|pπ∗(x)) .

The probability of obtaining one (1, 1, . . . , 1) after sampling pπ∗(x) once is:

P((1, 1, . . . , 1)|pπ∗(x))

= P(X1 = 1|X2 = 1) · P(X2 = 1|X3 = 1) · . . . · P(Xn−1 = 1|Xn = 1) · P(Xn = 1) .

Taking into account that the parameters are estimated by means of expressions (8.10) and (8.11):

P((1, 1, . . . , 1)|pπ∗(x)) =

(
2

3

)n−2

· 1

2
· 1

N + 2
,

which implies that:

∑

j∈E0

P(j|pπ∗(x)) = 1−
(

1−
((

2

3

)n−2

· 1

2
· 1

N + 2

))M−1

. (8.12)

Finally, taking M and N linear in n we clearly find that (8.12) decreases exponentially in n. This

proves that quotient (8.7) is exponential in n in the case of MIMIC algorithm.

8.2.2.3 Worst Case Analysis for TREE

In this algorithm the dependency structure among the variables forms a tree. Estimation of the

tree structure of the probability distribution of the selected individuals is carried out using the Chow

and Liu algorithm (see Figure 3.8). Furthermore, in this case the parameters, given the structure,

are calculated using the Laplace correction by means of the following expressions:

P(Xi = xi, Xj = xj) =
Nij + 1

N + 4
, (8.13)

P(Xi = xi|Xj = xj) =
Nij + 1

Nj + 2
, (8.14)

P(Xi = xi) =
Ni + 1

N + 2
, (8.15)

where Nij is the number of times variable Xi takes value xi and variable Xj takes value xj in DSe
t−1

(which is i∗), and Ni (resp. Nj) is the number of times variable Xi (resp. Xj) takes value xi (resp.

xj) in DSe
t−1 (which is i∗).
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Hence, using the Chow Liu (1968) algorithm in order to find the tree structure, first we must

calculate the mutual information for all variable pairs. Because the mutual information between

each pair of the first n−1 variables takes the same value, as well as the mutual information between

variable Xn and any of the n − 1 first variables, it is sufficient to calculate I(Xi, Xi+1) for some

i = 1, . . . , n− 2 and I(Xi, Xn) for some i = 1, . . . , n− 1.

For i = 1, . . . , n− 2:

I(Xi, Xi+1) =
∑

xi,xi+1

P(Xi = xi, Xi+1 = xi+1) log

(
P(Xi = xi, Xi+1 = xi+1)

P(Xi = xi)P(Xi+1 = xi+1)

)
.

Given that the parameters are estimated using expressions (8.13) and (8.15):

I(Xi, Xi+1)

=
N

N + 4
log

(
N

N+4
N

N+2
N

N+2

)
+

2

N + 4
log

(
1

N+4
2

N+2
N

N+2

)
+

2

N + 4
log

(
2

N+4
2

N+2
2

N+2

)
.

By carrying out some basic calculations, we obtain:

I(Xi, Xi+1) = log

(
(N + 2)2

N + 4

)
− (N + 2) logN + 4 log 2

N + 4
. (8.16)

For i = 1, . . . , n− 1, and estimating the parameters as above, we find that:

I(Xi, Xn)

=
N

N + 4
log

(
N

N+4
N+1
N+2

N
N+2

)
+

1

N + 4
log

(
1

N+4
N

N+2
1

N+2

)

+
2

N + 4
log

(
2

N+4
2

N+2
N+1
N+2

)
+

1

N + 4
log

(
1

N+4
1

N+2
2

N+2

)
.

Further calculations yield the following:

I(Xi, Xn) = log

(
(N + 2)2

N + 4

)
− (N + 2) log(N + 1) + log N + log 2

N + 4
. (8.17)

It can be seen that for N ≥ 2, expression (8.16) is greater than expression (8.17). Taking into

account that expression (8.16) is equal for each i = 1, . . . , n− 2, and that expression (8.17) is equal

for i = 1, . . . , n− 1, there are many possible tree structures that can be the result of the Chow and

Liu algorithm. All of them can be listed following these steps:

1 Find one of the possible trees that can be formed with the first n− 1 variables.

2 Connect variable Xn to one variable of the tree formed in the previous step.

Consequently, we can choose any of the possible structures formed as above. We have chosen the

following:

Given that the above structure is the same as in the case of MIMIC algorithm, from this point

on the demonstration is equal to the demonstration in the MIMIC case. It is important to note

that the resulting tree does not affect the final result.
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...
1X 2X X nXn−1

8.2.2.4 Worst Case Analysis for EBNABIC

In the EBNABIC algorithm, learning the probabilistic model means learning a Bayesian network

(whose structure is denoted by S) from the selected individuals, in our case from i∗ = {x∗1, . . .x∗N}.
The structure is searched using Algorithm B, which starts with an arc-less structure, and at each

step, adds the arc with the maximum improvement in the BIC score (based on penalized maximum

likelihood), which evaluates how well the Bayesian network represents the probability distribution

of a database. Given a database D and a Bayesian network with structure S and set of parameters

θ, (S, θ), a general formula for a penalized maximum likelihood score can be written as follows:

log P(D|S, θ)− f(N)dim(S) ,

where P(D|S, θ) denotes the probability of obtaining the data D sampling the Bayesian network

(S, θ), dim(S) is the dimension – number of parameters needed to specify the model – of the

Bayesian network with a structure given by S, and f(N) is a non negative penalization function.

Thus:

dim(S) =

n∑

i=1

qi(ri − 1) ,

where qi denotes the number of possible different instances of the parent variables of Xi (if Xi

has no parent, qi = 1). The Jeffreys-Schwarz criterion, sometimes called the Bayesian Information

Criterion (BIC) (Schwarz, 1978) establishes f(N) = 1
2 log N . Thus the BIC score can be written

as follows:

BIC(S, D) = log

N∏

w=1

n∏

i=1

P(Xi = xw,i|paS
i , θi)−

1

2
log N

n∑

i=1

qi(ri − 1) .

The parameters of the Bayesian network are calculated using the Laplace correction:

θ̂ijk =
Nijk + 1

Nij + 2
. (8.18)

Note that in this case Nij does not represent the same thing as in the previous cases. Here Nij

is the number of individuals in jt−1 in which variables PaS
i take their jth value and Nijk is the

number of individuals in jt−1 in which variable Xi takes its kth value and variables PaS
i take their

jth value.

At each step of Algorithm B, there is not only one arc with the maximum improvement in the BIC

score. This is the reason why there are a number of final structures resulting from the application

of Algorithm B. Any of those structures can be chosen and it does not influence our reasoning.

In Appendix B we prove in detail why one possible final structure after n− 1 steps of Algorithm

B – denoted by Sn−1 – is the structure that appears in Figure 8.1.

Taking into account the structure in Figure 8.1, the probabilistic model used by EBNABIC in

this case is:

p∗(x) = p(x1|x2) · p(x2|x3) · . . . · p(xn−2|xn−1) · p(xn−1) · p(xn)
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Figure 8.1. One possible final structure Sn−1.

Therefore we can write the denominator of quotient (8.7) for population i∗:

∑

j∈E0

P(j|i∗) =
∑

j∈E0

P(j|p∗(x)) ,

where P(j|p∗(x)) is the probability of obtaining population j after sampling the joint probability

distribution p∗(x). Therefore, using the same arguments as for the previous algorithms:

∑

j∈E0

P(j|p∗(x)) = 1− P((1, 1, . . . , 1) 6∈ j|p∗(x)) .

The probability of obtaining one (1, 1, . . . , 1) after sampling p∗(x) once is:

P((1, 1, . . . , 1)|p∗(x))

= P(X1 = 1|X2 = 1)· . . . ·P(Xn−2 = 1|Xn−1 = 1)·P(Xn−1 = 1)·P(Xn = 1).

Now we estimate the parameters:

P((1, 1, . . . , 1)|p∗(x)) =

(
2

3

)n−2

· 2

N + 2
· 1

N + 2
.

Finally we find that:

∑

j∈E0

P(j|p∗(x)) = 1−
(

1−
((

2

3

)n−2

· 2

(N + 2)2

))M−1

. (8.19)

Assuming that M and N depend linearly on n it can be seen that (8.19) decreases exponentially

in n, meaning that quotient (8.7) is exponential in n in the case of EBNABIC algorithm.

8.2.3 The Average-case Analysis

In the previous section we showed for some instances of EDAs that ‖m‖∞ is exponential in n.

This fact does not imply that the first hitting time is exponential in the average-case for these EDAs.

In fact we will prove (empirically) in the next section that some problems – the optimization of a

linear function, a pseudo-modular one, and other unimax function – can be solved in polynomial

time in the average-case.

The result found for the worst-case analysis for EDAs helps us in the study of the average-case

analysis. Here we explain how the bounding of ‖m‖0 is influenced by the fact of ‖m‖∞ being

exponential in n.
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Remember that:

‖m‖0 =
1

|E|
∑

i∈E

mi .

Quantity ‖m‖0 is a quotient whose denominator is the number of different populations |E| which

is given by the different ways to place |Ω| balls into N + |Ω|−1 boxes. Therefore, taking into account

that |Ω| = 2n:

|E| =
(

N + 2n − 1

2n − 1

)
.

Based on the expected first hitting time we can divide the states in E into two different classes:

E(P ) is the class of the states i ∈ E such that mi is polynomial in n.

E(NP ) is the class of the states i ∈ E such that mi is exponential in n.

Taking this division into account we can write ‖m‖0 as follows:

‖m‖0 =
1

|E|


 ∑

i∈E(P )

mi +
∑

i∈E(NP )

mi


 .

As we explain above, in the next section we will experimentally prove for some functions that

‖m‖0 can be bounded by a polynomial. Therefore the first idea for bounding ‖m‖0 consists of

finding a general polynomial bound for all mi, but the existence of some populations in E(NP )

keep us from finding it. This is the reason why, if we want to find a polynomial bound for ‖m‖0,

we must first find a polynomial bound for |E(NP )| (which is really difficult).

In particular, for those cases in which |E(NP )|/|E| is an inverse polynomial of n, ‖m‖0 is

exponential in n.

8.3 Average Time Complexity of EDAs
The previous section provides an idea of how hard it can be to find (theoretically) a bound for

the average time complexity of an EDA. Nevertheless, in order to give some idea of the average

time complexity of these algorithms, a good starting point would seem to be an empirical analysis

of their first hitting time.

In this section we present empirical results of the average first hitting time for some instances

of EDAs: UMDA, TREE and EBNABIC applied to one example of linear, pseudo-modular and

unimax functions. The particular algorithms used in this Section have been chosen to provide one

instance of each level of complexity of the probabilistic model. Our aim is to give information about

the average first hitting time of the EDA approaches studied, and to compare them.

We also want to address some important questions related to the order of convergence that

have been raised in recent research on EDAs (Mühlenbein and Mahnig, 1999; Pelikan et al., 2002b;

Mühlenbein and Mahnig, 2002b): Does the average first hitting time decrease when the complexity

of the probabilistic model used by the algorithm increases? Is the algorithm’s capability of detecting

and exploiting the (in)dependencies of the objective function related to efficiency?
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8.3.1 The Functions Used

To carry out the experiments, we have chosen one particular function of each of the following

classes of pseudo-boolean functions: linear, pseudo-modular and unimax functions. Section 6.1.3 in

a previous chapter introduces in detail those classes of functions.

The linear function analyzed in this work is:

f(x) =

n∑

i=1

i · xi, xi ∈ {0, 1} (8.20)

It is clear that (1, . . . , 1) is the only global maximum for function (8.20), and the value of f(x)

at this point is 1 + 2 + . . . + n = n(n+1)
2 .

It should be stressed that function (8.20) can be optimized individually, variable to variable.

Taking this fact into account a suitable probabilistic model that corresponds to the relationship

between the variables of function (8.20) is one that supposes that all the variables are independent.

Therefore UMDA seems a good candidate to optimize (8.20).

The pseudo-modular function we have used is:

f(x) =

n∑

i=1

i∏

j=1

xj , xj ∈ {0, 1} (8.21)

For fitness function (8.21) the only optimal solution is (1, . . . , 1), and the value of f(x) at this point

is n.

The variables of function (8.21) present a chain of pairwise dependencies, where xi depends on

xi−1, i = 1, . . . , n− 1. This fact suggests MIMIC as a suitable model to optimize (8.21).

The unimax function chosen to carry out the experiments was the well-known long path prob-

lem (see Section 6.1.3). It is important to remember that this function only has sense for odd values

of n.

The optimal point in the long path problem is (1, 1, 0, . . . , 0) and the function value is 0.

The long path problem has been designed to be very difficult to optimize for a hill climbing

algorithm. Particularly the expected first hitting time for a hill climbing algorithm in this problem

is exponential in the dimension of the problem n (the algorithm has to go from one point on the

path to the next point on the path and the path has exponential length).

In long path problems the relationship between the variables of the problem are not so evident,

and EBNA algorithms therefore seem to be the most adequate to optimize these functions.

8.3.2 Experimental Results

In order to find the average first hitting time of the EDAs we are studying, we have carried

out experiments using those algorithms to maximize the different functions in Section 8.3.1. The

empirical results for each algorithm and each objective function have been fitted to curves (in

the least squares sense) in terms of problem size, using the “Mathematica” program. We have

measured the “goodness” of each fit with the coefficient of determination and the mean squared

error. After comparing those quantities for various fits we have chosen the fit with the highest

coefficient of determination and lowest mean squared error. Cotta and Moscatto (2003) was an

interesting reference on how a fitting must be done, in this work empirical data from EAs is fitted

to severeal complexity curves. Finally, all this information has been graphically presented.
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8.3.2.1 General Considerations

In this section we will set up the parameters and decisions that are common to all EDAs used in

the experiments. These characteristics are: (i) size of the population, (ii) stopping condition, (iii)

selection method, (iv) number of selected individuals and (v) type of elitism.

The population size, M , was fixed to avoid dependency of the order of convergence on this

parameter. Accordingly we fixed M to the individual size n, i.e. the problem dimension. The

stopping condition taken into account is the same for each EDA approach: the algorithm is stopped

when it finds the optimum for the first time. Truncation selection is the selection method of choice,

i.e. the best individuals are selected.

Finally we would like to illustrate the way in which the new population is created in order to set

up the number of individuals selected and the type of elitism used. Once the population Dt−1 is

created, the n/2 best individuals of Dt−1 are used to estimate the joint probability distribution pt(x).

After that, n− 1 individuals are sampled from pt(x), obtaining D∗
t . Finally the new population Dt

is created by selecting the n best individuals from Dt−1 ∪ D∗
t . In this way we make sure that the

best individual in population Dt−1 will never be lost.

Remember that if we want to calculate the order of convergence of an algorithm we need to

ensure that the algorithm passes through the optimum. This can be done in EDAs (see Chapter

4) by slightly modifying the maximum likelihood estimation of the parameters of the probability

distributions at each step. For instance, the Laplace correction (which keeps the parameter from

taking a value of 0 or 1) is the estimation used in the experiments:

θ̂ijk =
Nijk + 1

Nij + 2

Notice that all the probabilistic models used for the estimation of pl(x) can be represented as

instances of Bayesian networks. This is the reason why, for those algorithms that do not use Bayesian

networks, similar formulas can be given.

A pseudocode for a general algorithm used in the experiments can be seen in Figure 8.2.

We run each algorithm 1,000 times for each objective function and each problem dimension,

each time recording the generation in which the optimum was reached for the first time. Due to

the computational cost associated with the learning of a Bayesian network at each iteration, the

problem dimension of the EBNA algorithm is lower than in the rest. Table 8.1 shows the problem

dimension for linear, pseudo-modular and unimax objective functions for each algorithm.

Linear Pseudo-modular Unimax

UMDA 5 to 300 5 to 150 5 to 65
TREE 5 to 300 5 to 150 5 to 65
EBNABIC 5 to 150 5 to 150 5 to 65

Table 8.1. Problem dimensions used in the experiments with linear, pseudo-modular and unimax functions.

8.3.2.2 Summarizing the Results

After obtaining the results for each algorithm and each objective function, we have found a

simple formula that approximates these numerical results, fitting a curve through the data obtained.

Furthermore, we can offer a general idea concerning the expected time complexity for each algorithm.

We provide here four figures for each function, the last of them being a table. The first three figures
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EDA

D0 ← Generate M = n, individuals (initial population) randomly, with 5 ≤ n ≤ 300.
Define: fmax = max {f(x) : x ∈ {0, 1}n}

Repeat for t = 1, 2, . . . until fDt = fmax

DSe
t−1 ← Select the n/2 best individuals from Dt−1

pt(x) = p(x|DSe
t−1) ← Estimate the joint probability distribution of an individual

being among the selected individuals, using the Laplace correction in the
estimation of the parameters

D∗
t ← Sample n − 1 individuals from pt(x)

Dt ← Select the n best individuals from Dt−1 ∪D∗
t

fDt ← max {f(x) : x ∈ Dt}

Figure 8.2. Pseudocode for the EDA approach used in the experiments.

show the results obtained for an EDA when optimizing the objective function. The table entries

are: (i) the curve that fits the results obtained for each EDA and (ii) the order of the fitting curve.

Linear function: The results in the linear function can be seen in Figures 8.3 to 8.6. They show

that UMDA has the best behavior (O(nε), 0.6 < ε < 1). In this case, the probabilistic model

of UMDA, which seemed to be the one that best corresponds with the relationship between the

variables of the problem, obtains the best average first hitting time.

Pseudo-modular function: The results for the pseudo-modular function are shown in Figures 8.7

to 8.10. As can be seen in Figure 8.10, all the algorithms have the same linear (O(n)) behav-

ior. If we take into account the fitting curves, UMDA’s results appear slightly better than the

others. Here the correspondence between the probabilistic model used by the algorithm and the

relationship between the variables of the problem does not result in a better average first hitting

time.

Unimax function: The results for the unimax function are given in Figures 8.11 to 8.14. As can

be seen in Figure 8.14 all the algorithms have the same quadratic behavior (O(n2)). Taking

into account the fitting curves, TREE seems to have better behavior than the others. Again,

the correspondence between the probabilistic model used by the algorithm and the relationship

between the variables of the problem does not imply a better average first hitting time.

The results enable us to conclude that:(i) the average optimization time is not related to the com-

plexity of the probabilistic model, (ii) an algorithm whose probabilistic model mimics the structure

of the objective function does not guarantee a greater efficiency.
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Figure 8.4. TREE - Linear F.
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Figure 8.5. EBNABIC - Linear F.

Fitting Curve Order

UMDA 1.2964·n0.60888 O(nε) 0.6<ε<1

TREE −57.928+55.91 log(n) O(log n)

EBNABIC −32.943+38.763 log n O(log n)

Figure 8.6. Fitting curves for the different EDAs in
the optimization of the linear function and their order.

8.4 Summary
In this chapter we have analyzed the time complexity of EDAs from a theoretical stand point.

The most important goal of this analysis lies in demonstrating for some instances of EDAs – UMDA,

MIMIC, TREE and EBNABIC – that their worst-case first hitting time is exponential (in individual

size) when they are used to maximize any pseudo-boolean injective function. The proof of this result

is based on a framework built on the absorbing Markov chain model of EDAs.

The worst-case analysis carried out is useful for discussing how to find bounds in the average-case

analysis.

Secondly, based on empirical results, this chapter has provided new information on the average

time complexity of some EDAs applied to a number of objective functions.

Our experiments lead to the following conclusions:

i) The average optimization time is not related to the complexity of the probabilistic model used

by the algorithm. Greater complexity of the probabilistic model of the EDA does not imply

greater efficiency (low order of the first hitting time).

ii) EDAs whose probabilistic model reflects the relationship between the variables of the problem

do not obtain a better order of the first hitting time than those that do not.
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UMDA −4.3384+1.2883·n O(n)
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Figure 8.10. Fitting curves for the different EDAs in
the optimization of the pseudo-modular function and
their order.
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Chapter 9

Conclusions

This part summarizes the main contributions and conclusions of this dissertation regarding the

theoretical study of EDAs, and points to areas where further research is required.

9.1 Contributions
This thesis has been concerned with helping to close the gap between the vast amounts of empirical

observations on EDAs and the sparse number of theoretical results from their study reported in the

literature.

Specifically, this dissertation has presented the following items and conclusions as novel contri-

butions to the theoretical study of EDAs:

Building of a general analytic framework based on Markov chains for analyzing the convergence

of a general EDA. Proving of a new general convergence theorem for EDAs using Markov chains.

Analysis of the most common discrete EDAs, by means of the application of this theorem,

resulting in convergence and non-convergence algorithms. For those algorithms that do not

converge, some conditions have been imposed on the parameters of their probability distributions

to guarantee convergence.

Analysis of PBIL based on Markov chains making it possible to study the behavior of PBIL

applied to the OneMax function when M = 2 (population size) and N=1 (number of selected

individuals). This enables us to prove that:

P
(

lim
t→∞

pt = (a, b)
)
−→ 1

when α → 1, p0 → (a, b), and (a, b) ∈ {0, 1}2. This fact implies a strong dependence of PBIL

convergence on the initial vector p0 and on the α parameter value. It is also important to note

that although when the value of α is small the experimental results carried out seem to be more

stable, it can not be concluded that PBIL converges to the optimum.

Analysis of PBIL based on discrete dynamical systems. A discrete dynamical system is associated

with the PBIL algorithm. It is proved that the behavior of the PBIL algorithm follows the iterates

of the discrete dynamical system for a long time when the parameter α is near zero. It is proved

– performing a stability analysis – that all the points of the search space are fixed points of the

133



134 Contributions on Theoretical Aspects of Estimation of Distribution Algorithms

dynamical system, and that the local optimum points for the function to optimize coincide with

the stable fixed points. Hence it can be deduced that the PBIL algorithm converges to the global

optimum in unimodal functions.

Analysis of the behavior of UMDA in some pseudo-boolean functions based on Markov chains.

Calculation of the absorption probability to the optimum and the expected absorption times for

UMDA on the maximization of linear, pseudo-modular, unimax and almost positive functions,

for different values of selected population size N and individual length n. This information is used

to provide some insights into how the absorption probability to the optimum and the expected

absorption times evolve when the size of population increases. The results show the different

behaviors of the algorithm in the analyzed functions and the behavior of the algorithm when the

complexity of the function increases: the absorption probability decreases while the expected

absorption time increases. Even in the almost positive function the absorption probability to

the optimum approaches zero as N increases.

Modeling of UMDA with infinite population and proportionate selection using discrete dynamical

systems, arriving at the same expression as obtained by Mühlenbein and Mahnig (2002a).

Analysis and modeling of UMDAc with tournament selection applied to n-dimensional linear

and quadratic functions when an infinite number of tournaments is performed. Linear func-

tions are used to model the algorithm when far from the optimum, while quadratic function

is used to analyze the algorithm when near the optimum. In the case of linear functions it is

concluded that the algorithm does not work correctly in linear function L1(x) =
∑n

i=1 xi, with

x = (x1, . . . , xn) ∈ IRn. After making certain assumptions in the case of quadratic function

Q(x) =
∑n

i=1 x2
i , it is proved for some finite dimensions that the algorithm reaches the optimum.

Moreover, the speed of convergence becomes slower as dimension increases.

Analysis of time complexity of EDAs based on a framework built on the absorbing Markov chain

model of EDAs. For some instances of EDAs – UMDA, MIMIC, TREE and EBNABIC – it is

proved that their worst-case first hitting time is exponential (in individual size) when they are

used to maximize any pseudo-boolean injective function. The worst-case analysis carried out is

useful for discussing how to find bounds in the average-case analysis.

Based on empirical results, new information is provided on average time complexity of some

EDAs applied to a number of objective functions. The main conclusions after the experiments

are: (i) The average optimization time is not related to the complexity of the probabilistic

model used by the algorithm. Greater complexity of the probabilistic model of the EDA does

not imply greater efficiency (low order of the first hitting time); (ii) EDAs whose probabilistic

model reflects the relationship between the variables of the problem do not obtain a better order

of the first hitting time than those that do not.

9.2 Future Work
EDAs are being used more and more in a wide variety of applications. Sometimes they are very

successful, and sometimes they are not. We still have no clear understanding of why they work

when they do and why they sometimes fail. This is why theoretical research is so important, so that

we can begin to understand what it is we are doing and how we can do it better. However, while it

is relatively easy to invent yet another variant of an EDA, it can be much harder to analyze it. But
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unless we have a formal understanding of these algorithms, their development is largely going to be

based on guesswork.

There is much further work to be done in the theoretical analysis of EDAs. Here we propose

some lines of further research.

As a first step, if we want to have a formal way of comparing the efficiency of EDAs with and

between other algorithms, research on the time complexity of EDAs is of special importance, in

particular in the first hitting time in the average-case. The contributions presented here concerning

the study of the worst-case first hitting time of EDAs give a possible route for future investigations.

As we explain in Chapter 8, to find a polynomial bound for the first hitting time in the average-case

of some EDAs it is necessary to find a polynomial bound for the number of those populations from

which the first hitting time is exponential. This is an exceedingly difficult task because in principle

the entire information about the evolutionary process in an EDA is implicitly contained in the

joint probability distribution of the selected individuals, and to extract sufficient and appropriate

information out of it in order to predict finite time behavior is hard work.

In order to contribute to the question of whether EDAs which exploit the structure of the ob-

jective function perform better than those that do not, another line of approach could be to find

mathematical models which enable us to analyze the relationship between the probabilistic models

that EDAs use and the characteristics of the function to optimize.

An ambitious and interesting task could be to find a general and unified analytic framework

which makes it possible to analyze different EDAs for different problems and for convergence and

computation time. This would be a step towards a systematic comparative study among different

EDAs. Such a framework should also serve to find a classification of easy and hard problems for

EDAs. A future challenge to gain knowledge would be to be able to rank the different classes of

problems according to how hard they are to be optimized by each EDA. In other words, we would

want to categorize the problems in groups P1, . . . , Pl, in such a way that given an instance of EDA,

A, the average-time complexity of A applied to problem Pi would be τi, with i = 1, . . . , l.





Appendix A
Spherical Change of Variable in Dimension n

This appendix explains in detail the generalization to n dimensions of the spherical change of variable in
dimension three.

The first step is to solve the problem for n = 4. In spherical coordinates the position of a point
P (x1, x2, x3, x4) in the space is determined by four numbers ρ, α1, α2, α3, where:

ρ is the distance from point P to the origin.

α3 is the angle formed by the vector OP and its projection (denoted by r1) upon the plane OX1X2X3.

α2 is the angle formed by the projection of r1 (denoted by r2) upon the plain OX1X2.

α1 is the angle formed by axis X1 and r2.

Taking these facts into account, we can write the old coordinates depending on the new ones:

x4 = ρ sin α3 (A.1)

x3 = ρ cos α3 sin α2 (A.2)

x2 = ρ cos α3 cos α2 sin α1 (A.3)

x1 = ρ cos α3 cos α2 cos α1 (A.4)

(A.5)

For any point P (x1, x2, x3, x4) ∈ IR4, each new variable varies in:

0 ≤ ρ ≤ ∞ (A.6)

−π/2 ≤ α2, α3 ≤ π/2 (A.7)

0 ≤ α1 ≤ 2π . (A.8)

Jacobian of the change J4 is:
J4 = ρ cos α2 cos2 α3. (A.9)

Therefore after making this change of variable in the integral:
Z Z Z Z

IR4

f(x1, x2, x3, x4)dx1dx2dx3dx4, (A.10)

we obtain:

Z 2π

0

Z π/2

−π/2

Z π/2

−π/2

Z ∞

0

f(ρ, α3, α2, α1) · ρ cos α2 cos2 α3 · dα1dα2dα3dρ. (A.11)
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Taking into account the above arguments, we can say that using the generalization to n dimensions of
the spherical change of variable in dimension four, the integral

IS
n =

Z
. . .

Z

IRn

f(x1, . . . , xn)dx1 . . . dxn, (A.12)

changes to:

IS
n

=

Z 2π

0

Z π/2

−π/2

. . .

Z π/2

−π/2

Z ∞

0

f(ρ, αn−1, . . . , α1)ρ
n−1 cos α2 · cos2 α3 ·

· cosn−3 αn−2 · . . . · cosn−2 αn−1dα1dα2dα3 . . . dαn−2dαn−3dαn−1dρ.

In the integrals we have to solve in this dissertation using this change of variable, function f only depends
on ρ (f(ρ)). Therefore, the above integral can be written as follows:

IS
n =

Z 2π

0

dα1

Z π/2

−π/2

cos α2dα2

Z π/2

−π/2

cos2 α3dα3 · . . .

. . . ·
Z π/2

−π/2

cosn−3 αn−2dαn−2

Z π/2

−π/2

cosn−2 αn−1dαn−1

Z ∞

0

ρn−1f(ρ)dρ

= 2π

n−2Y

i=1

Z π/2

−π/2

cosi βdβ

Z ∞

0

ρn−1f(ρ)dρ . (A.13)

To solve this integral it will be useful to calculate the constant:

S(n) = 2π

n−2Y

i=1

Z π/2

−π/2

cosi βdβ = 2π

n−2Y

i=1

√
π

Γ
`

i+1
2

´

Γ
`
1 + i

2

´ , (A.14)

where Γ is the Gamma function. Simplifying:

S(n) =
2π(
√

π)n−2

Γ
`

n
2

´ . (A.15)



Appendix B
One possible final structure after n− 1 steps of Algorithm
B

Our aim here is to prove that one possible final structure after n− 1 steps of Algorithm B – denoted by
Sn−1 – is as follows:

...
1X 2X Xn−2 Xn−1 nX

Figure B.1. One possible final structure Sn−1.

In order to prove that we carry out the schema:

i) First we prove by induction on k that at the k-th step of Algorithm B, with k = 1, . . . , n − 2, the arc
that goes from variable Xk+1 to variable Xk is added.

ii) After this we prove that at the n− 1-th step of Algorithm B no arc is added.

Throughout the demonstration it will be necessary to compare the BIC scores associated with the different
structures we have to choose from. Because these BIC scores depend on two parameters, N and n, in order
to make this comparison easy at the moment of the choice, we will assume that N depends linearly on n.

First, part (i) is proved for k = 1. To this end we have to calculate the score associated with the arc-less
structure, which we denote by S0, as well as the score associated with the structure with an arc and choose
the case with the maximum associated score. Given that:

BIC(S0, i
∗) = log

NY

w=1

nY

i=1

P(Xi = x∗w,i|paS0
i , θi)− 1

2
log N

nX

i=1

qi(ri − 1) ,

and taking into account that no variable has a parent we find that:

BIC(S0, i
∗) = log

NY

w=1

nY

i=1

P(Xi = x∗w,i)−
1

2
n log N .

The expression for the BIC score in this case is:

BIC(S0, i
∗)

= log

" h
(P(X1 = 0))N−1 ·P(X1 = 1)

i
· . . . ·

h
(P(Xn−1 = 0))N−1 ·P(Xn−1 = 1)

i
(P(Xn = 0))N

#
− 1

2
n log N.

139
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Given that the parameters of the Bayesian network are calculated using expression (8.18), we find that:

BIC(S0, i
∗)=log

"„
N

N + 2

«(N−1)(n−1)

·
„

2

N + 2

«(n−1)

·
„

N + 1

N + 2

«N

·
„

1

Nn/2

«#
.

Now we have to calculate the score for the structure when an arc is added (we denote this kind of
structure by S1). There are three kinds of arcs to add (classified by the associated BIC score):

1 Arcs that go from variable Xi to variable Xj , with i, j = 1, . . . , n − 1 and i 6= j. The score of this kind
of structures will be denoted by BIC(S1

1 , i∗).

2 Arcs that go from variable Xn to variable Xi, with i = 1, . . . , n− 1. The score of this kind of structures
will be denoted by BIC(S2

1 , i∗).

3 Arcs that go from variable Xi, with i = 1, . . . , n − 1 to variable Xn. The score of this kind of structures
will be denoted by BIC(S3

1 , i∗).

The quantity BIC(S1
1 , i∗) is equal for the (n−1)(n−2) possible arcs of kind 1, so it is sufficient to study

the situation in which the structure S1
1 is the structure resulting from adding the arc that goes from variable

X2 to variable X1. Given that only variable X1 has as parent variable X2, and that no other variables have
a parent, we find that:

BIC(S1
1 , i∗) = log

"
NY

w=1

P(X1 = x∗w,1|pa
S1
1

1 , θ1)

NY

w=1

nY

i=2

P(Xi = x∗w,i)

#
−1

2
(n + 1) log N

= log

" h
(P(X1 = 0|X2 = 0))N−1 · P(X1 = 1|X2 = 1)

i
·

·
h
(P(X2 = 0))N−1 · P(X2 = 1)

i
· . . . ·

h
(P(Xn−1 = 0))N−1 · P(Xn−1 = 1)

i
· (P(Xn = 0))N

#
−1

2
(n + 1) log N.

We carry out the estimation of probabilities as before, which yields that the BIC score for structure S1
1

can be written as:

BIC(S1
1 , i∗) = log

" „
N

N + 1

«(N−1)

· 2
3
·
„

N

N + 2

«(N−1)(n−2)

·
„

2

N + 2

«n−2

·
„

N + 1

N + 2

«N

· 1

N (n+1)/2

#
.

Next we calculate BIC(S2
1 , i∗). As in the previous case, we calculate this quantity only for one of the

n− 1 possible cases. Here we study the case in which S2
1 is the structure resulting from adding the arc that

goes from variable Xn to variable Xn−1. Because only variable Xn−1 has as parent variable Xn, and no
other variable has a parent we find that:

BIC(S2
1 , i∗)

= log

"
NY

w=1

n−2Y

i=1

P(Xi = x∗w,i)
NY

w=1

P(Xn−1 = x∗w,n−1|pa
S2
1

n−1, θn−1)
nY

w=1

P(Xn = x∗w,n)

#
−1

2
(n + 1) log N

= log

" h
(P(X1 = 0))N−1 ·P(X1 = 1)

i
· . . . ·

h
(P(Xn−2 = 0))N−1 ·P(Xn−2 = 1)

i
·

·
h
(P(Xn−1 = 0|Xn = 0))N−1 · P(Xn−1 = 1|Xn = 0)

i
· (P(Xn = 0))N

#
− 1

2
(n + 1) log N .

Estimating the probabilities as above, the BIC score for structure S2
1 can be written as:
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BIC(S2
1 , i∗) = log

"„
N

N + 2

«(N−1)(n−1)

·
„

2

N + 2

«(n−1)

·
„

N + 1

N + 2

«N

·
„

1

N (n+1)/2

«#
.

Finally, for the calculation of BIC(S3
1 , i∗), we use the structure S3

1 resulting from the addition of the
arc that goes from variable Xn−1 to variable Xn. Taking into account that only variable Xn has as parent
variable Xn−1, and that no other variable has a parent, we see that:

BIC(S3
1 , i∗)

= log

"
NY

w=1

n−1Y

i=1

P(Xi = x∗w,i)
NY

w=1

P(Xn = x∗w,n|paS3
1

n , θn)

#
− 1

2
(n + 1) log N

= log

"
ˆ
(P(X1 = 0))N−1 ·P(X1 = 1)

˜
· . . . ·

ˆ
(P(Xn−1 = 0))N−1 ·P(Xn−1 = 1)

˜
·

·
ˆ
(P(Xn = 0|Xn−1 = 0))N−1 · P(Xn = 0|Xn−1 = 1)

˜
#
− 1

2
(n + 1) log N .

Now we estimate the probabilities as before, which yields that the BIC score for structure S3
1 can be

written as:

BIC(S3
1 , i∗) = log

"„
N

N + 2

«(N−1)(n−1)

·
„

2

N + 2

«(n−1)

·
„

N

N + 1

«(N−1)

· 2
3
·
„

1

N (n+1)/2

«#
.

To carry out the comparison between the scores associated with structures S0, S1
1 , S2

1 and S3
1 we take into

account that N depends linearly on n. It can be seen that BIC(S1
1 , i∗) > BIC(S0, i

∗), BIC(S2
1 , i∗), BIC(S3

1 , i∗).
Therefore we have proved part (i) for k = 1.

By the inductive hypothesis, we assume that part (i) is true for k, k = 1, . . . , n − 3. Let us now see
whether it is true for k + 1.

By the inductive hypothesis we know that at the k-th step of Algorithm B, with k = 1, . . . , n − 3, the
arc that goes from variable Xk+1 to variable Xk has been added (we denote by S1

k the resulting structure).
Hence the biggest score in this case is the score associated with structure S1

k. Since variables X1, . . . , Xk

have one parent and the remaining variables have no parents, we find that:

BIC(S1
k, i∗) = log

"
NY

w=1

kY

i=1

P(Xi = x∗w,i|pa
S1

k
i , θi)

NY

w=1

nY

i=k+1

P(Xi = x∗w,i)

#
−1

2
(n + k) log N.

Estimating the probabilities as before:

BIC(S1
k, i∗) = log

2
4

"„
N

N + 1

«(N−1)

· 2
3

#k

·
"„

N

N + 2

«(N−1)

· 2

N + 2

#n−k−1

·
„

N + 1

N + 2

«N
3
5− 1

2
(n + k) log N.

Therefore, the BIC score for structure S1
k can be written as:

BIC(S1
k, i∗)=log

"„
N

N + 1

«k(N−1)

·
„

2

3

«k

·
„

N

N + 2

«(N−1)(n−k−1)

·
„

2

N + 2

«n−k−1

·
„

N + 1

N + 2

«N

· 1

N (n+k)/2

#
.

Now he have to calculate the score for the structure after k + 1 steps of Algorithm B (this structure is
denoted by Sk+1), and choose the bigger one between BIC(S1

k, i∗), and BIC(Sk+1, i
∗). At this step of the

algorithm there are four kinds of arcs to add (classified by the associated BIC score):
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1 Arcs that go from variable Xi to variable Xj , with i = 1, . . . , n− 1, j = k +1, . . . , n − 1, and i 6= j. The
score of this kind of structures will be denoted by BIC(S1

k+1, i
∗).

2 Arcs that go from variable Xn to variable Xi, with i = k + 1, . . . , n− 1. The score of this kind of
structures will be denoted by BIC(S2

k+1, i
∗).

3 Arcs that go from variable Xi, with i = 1, . . . , n − 1 to variable Xn. The score of this kind of structures
will be denoted by BIC(S3

k+1, i
∗).

4 Arcs that go from variable Xi to variable Xj , with i = k + 1, . . . , n and j = 1, . . . , k. The score of this
kind of structures will be denoted by BIC(S4

k+1, i
∗).

Given that the quantity BIC(S1
k+1, i

∗) is equal for the (n − k − 1)(n − 2) possible arcs of kind 1, it is
sufficient to calculate this quantity when the structure S1

k+1 is the structure resulting from adding the arc
that goes from variable Xk+2 to variable Xk+1. Taking into account that the first k + 1 variables have one
parent, and the remaining variables have no parents, we see that:

BIC(S1
k+1, i

∗) = log

"
NY

w=1

k+1Y

i=1

P(Xi = x∗w,i|pa
S1

k+1

i , θi)
NY

w=1

nY

i=k+2

P(Xi = x∗w,i)

#
−1

2
(n + k + 1) log N.

If we estimate the parameters as in previous cases, we find that the BIC score for structure S1
k+1 can be

written as:

BIC(S1
k+1, i

∗)

= log

"„
N

N + 1

«(N−1)(k+1)

·
„

2

3

«k+1

·
„

N

N + 2

«(N−1)(n−k−2)

·
„

2

N + 2

«n−k−2

·
„

N + 1

N + 2

«N

· 1

N (n+k+1)/2

#
.

(B.1)

Next we calculate BIC(S2
k+1, i

∗). Given that the score is equal for the n − k − 1 possible structures of
kind 2 we calculate it only when S2

k+1 is the structure resulting from adding the arc that goes from variable
Xn to variable Xn−1. Because variable X1, . . . , Xk and variable Xn−1 have one parent and the remaining
variables have no parents, we find that:

BIC(S2
k+1, i

∗)

= log

"
NY

w=1

kY

i=1

P(Xi = x∗w,i|pa
S2

k+1

i , θi)

NY

w=1

n−2Y

i=k+1

P(Xi = x∗w,i)

NY

w=1

P(Xn−1 = x∗w,n−1|pa
S2

k+1

n−1 , θn−1)
NY

w=1

P(Xn = x∗w,n)

#
− 1

2
(n + k + 1) log N .

Taking into account that the parameters are estimated as above, the BIC score for structure S2
k+1 can

be expressed as:

BIC(S2
k+1, i

∗)

= log

"„
N

N + 1

«(N−1)k

·
„

2

3

«k

·
„

N

N + 2

«(N−1)(n−k−1)

·
„

2

N + 2

«n−k−1

·
„

N + 1

N + 2

«N

·
„

1

N (n+k+1)/2

«#
.

(B.2)

The calculation of BIC(S3
k+1, i

∗) is carried out using the structure S3
k+1 where the arc that goes from

variable Xn−1 to variable Xn is added. In this case variables X1, X2, . . . , Xk have one parent, and the rest
have none, which yields that:
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BIC(S3
k+1, i

∗)

= log

"
NY

w=1

kY

i=1

P(Xi = x∗w,i|pa
S3

k+1

i , θi)

NY

w=1

n−1Y

i=k+1

P(Xi = x∗w,i)

NY

w=1

P(Xn = x∗w,n|pa
S3

k+1
n , θn)

#
−1

2
(n + 1) log N.

Given that the parameters are estimated as in the previous cases:

BIC(S3
k+1, i

∗)

= log

" „
N

N + 1

«(N−1)k

·
„

2

3

«k

·
„

N

N + 2

«(N−1)(n−k−1)

·
„

2

N + 2

«(n−k−1)

·

·
„

N

N + 1

«(N−1)

· 2
3
·

„
1

N (n+k+1)/2

« #
. (B.3)

For the calculation of BIC(S4
k+1, i

∗), we use the structure S4
k+1 resulting from adding the arc that goes

from variable Xk+2 to variable X1. It follows from variables X1, X2, . . . , Xk having one parent and the rest
having none, that:

BIC(S4
k+1, i

∗) = log

"
NY

w=1

kY

i=1

P(Xi = x∗w,i|pa
S4

k+1

i , θi)
NY

w=1

nY

i=k+1

P(Xi = x∗w,i)

#
− 1

2
(n + 1) log N .

Consequently, estimating the probabilities as above, the BIC score for structure S4
k+1 can be expressed

as:

BIC(S4
k+1, i

∗)

= log

" „
N

N + 1

«(N−1)k

·
„

2

3

«k

·
„

N

N + 2

«(N−1)(n−k−1)

·
„

2

N + 2

«n−k−1 „
N + 1

N + 2

«N

·
„

1

N (n+k)/2

« #
.

(B.4)

Taking N linear in n makes it easier to compare the different scores. It can be seen that BIC(S1
k+1, i

∗) >
BIC(Sk, i∗), BIC(S2

k+1, i
∗), BIC(S3

k+1, i
∗), BIC(S4

k+1, i
∗). Therefore we have proven part (i).

To finalize we have to demonstrate part (ii). In order to do so it is necessary to compare the score
associated with structure S1

n−2 (note that (i) is true) and the score associated with the structure Sn−1.
The calculation of BIC(S1

n−2, i
∗) can be carried out as follows:

BIC(S1
n−2, i

∗) = BIC(S1
k+1, i

∗), for k = n− 3,

therefore, using (B.1) for k = n− 3, we see that:

BIC(S1
n−2, i

∗) = log

" „
N

N + 1

«(N−1)(n−2)

·
„

2

3

«n−2

·
„

N

N + 2

«(N−1)

·
„

2

N + 2

«
·

„
N + 1

N + 2

«N

· 1

Nn−1

#
.

Following the score for the structure after n − 1 steps, Sn−1 is calculated. After that the bigger of
BIC(S1

n−2, i
∗), and BIC(Sn−1, i

∗) is chosen. At this step of the algorithm there are again four kinds of
arcs to add (classified by the associated BIC score):

1 Arcs that go from variable Xi, with i = 1, . . . , n − 2 to variable Xn−1. The score of this kind of structures
will be denoted by BIC(S1

n−1, i
∗).

2 The arc that goes from variable Xn to variable Xn−1. The score of this structure will be denoted by
BIC(S2

n−1, i
∗).
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3 Arcs that go from variable Xi, with i = 1, . . . , n − 1 to variable Xn. The score of this kind of structures
will be denoted by BIC(S3

n−1, i
∗).

4 Arcs that go from variable Xi, with i = n− 1, n to variable Xj , with j = 1, . . . , n− 2. The score of this
kind of structures will be denoted by BIC(S4

n−1, i
∗).

The score associated with S1
n−1 can be calculated as follows:

BIC(S1
n−1, i

∗) = BIC(S1
k+1, i

∗), for k = n− 2. (B.5)

Thus, taking into account expression (B.1) for k = n− 2, we see that:

BIC(S1
n−1, i

∗) = log

" „
N

N + 1

«(N−1)(n−1)

·
„

2

3

«n−1

·
„

N + 1

N + 2

«N

·
„

1

N (2n−1)/2

« #
.

Among the n− 2 possible structures of kind S1
k+1 we choose the structure resulting from adding the arc

that goes from variable X1 to variable Xn−1.
To obtain the score associated with S2

n−1 we can use:

BIC(S2
n−1, i

∗) = BIC(S2
k+1, i

∗), for k = n− 2,

hence, after using (B.2), for k = n − 2:

BIC(S2
n−1, i

∗)

= log

" „
N

N + 1

«(N−1)(n−2)

·
„

2

3

«(n−2)

·
„

N

N + 2

«(N−1)

·
„

2

N + 2

«
·

„
N + 1

N + 2

«N

·
„

1

N (2n−1)/2

« #
.

The calculation of the score associated with S3
n−1 can be carried out using:

BIC(S3
n−1, i

∗) = BIC(S3
k+1, i

∗), for k = n− 2.

Therefore, taking k = n− 2 in expression (B.3) gives:

BIC(S3
n−1, i

∗)

= log

"„
N

N + 1

«(N−1)(n−2)

·
„

2

3

«(n−2)

·
„

N

N + 2

«(N−1)

·
„

2

N + 2

«
·

„
N

N + 1

«(N−1)

· 2
3
·

„
1

N (2n−1)/2

«#
.

Finally, to calculate S4
n−1 we can use:

BIC(S4
n−1, i

∗) = BIC(S4
k+1, i

∗), for k = n− 2.

If we write expression (B.4) for k = n− 2:

BIC(S4
n−1, i

∗) = log

"„
N

N + 1

«(N−1)(n−2)

·
„

2

3

«(n−2)

·
„

N

N + 2

«(N−1)

·
„

2

N + 2

«
·

„
N + 1

N + 2

«N

·
„

1

N (n−1)

«#
.

As in the previous cases, to make the comparison among the scores easier, we assume that N depends
linearly on n. Hence, it can be seen that BIC(S1

n−1, i
∗) > BIC(S2

n−2, i
∗), BIC(S2

n−1, i
∗), BIC(S3

n−1, i
∗),

BIC(S4
n−1, i

∗). Therefore we have proved part (ii), i.e. one possible structure that can be found after n− 1
steps of Algorithm B is the structure that can be seen in Figure B.1.
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Larrañaga, P., Etxeberria, R., Lozano, J. A., and Peña, J. M. (2000b). Optimization in Continuous

Domains by learning and Simulation of Gaussian Networks. In Wu, A. S., editor, Workshop

Program at the Genetic and Evolutionary Computation Conference - GECCO 2000, Proceedings,

pages 201–204.
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