BAYESIAN NETWORK EVOLUTIVE AUTOENCODER FOR ANOMALY DETECTION

Evolutive Adversarially-Trained Bayesian Network
Autoencoder for Interpretable Anomaly Detection

Jorge Casajus-Setién JORGE.CASAJUS@QALUMNOS.UPM.ES
Concha Bielza MCBIELZA@QFI.UPM.ES
Pedro Larranaga PEDRO.LARRANAGA@QFI.UPM.ES

Universidad Politécnica de Madrid, ETS de Ingenieros Informdticos, Boadilla del Monte, 28660

Abstract

Semi-supervised detection of outliers with only positive and unlabeled data, which is among
the most frequent forms of the anomaly detection (AD) problem in real scenarios, requires
for a model to capture the normal behaviour of data from a training set exclusively com-
prised of normal-labelled data, so new unseen data can be afterwards compared to the
induced notion of normality to be flagged -or not- as anomalous. In modelling a certain
pattern of behaviour, generative models such as generative-adversarial networks (GANs)
have proved to have great performance. Thus, numerous AD algorithms with GANs at its
core have been proposed, most of them powered by deep neural networks and relying on
an autoencoder for the AD task. In the present work, a novel approach to semi-supervised
AD with Bayesian networks using generative-adversarial training and an evolutive strat-
egy is proposed, which aims to palliate the intrinsic lack of interpretability of deep neural
networks. The proposed model is tested on a real-world AD problem in cybersecurity.

Keywords: Bayesian networks, Generative models, Adversarial training, Evolutive algo-
rithms, Autoencoder, Anomaly detection, Cybersecurity.

1. Introduction

Detecting and properly flagging previously unseen anomalies, understood as patterns in
data that do not conform to expected behaviour, makes for a central problem in several
research areas (Chandola et al., 2009). In real-life domains, anomalies might appear in data
for numerous reasons. Particularly, we will demonstrate later on how anomaly detection can
be used in cybersecurity to spot malicious network traffic containing cyber-attacks, proving
that anomalous samples are usually worth of further investigation for data analysts.

Anomaly detection (AD) can be regarded as a classification task, with its goal being the
correct assignment of a binary category: 0 (normal) or 1 (anomalous) to a given sample. AD
usually involves working with unlabelled data, which narrows the set of techniques feasible
for such use to those that belong to the category of unsupervised learning. A frequent
scenario, and the one that serves as the main framework all along this paper, takes place
when the spotting of anomalies must be done by comparison with a previously learnt notion
of normality induced from data labelled as normal. This task falls under the semi-supervised
learning from only positive labelled data domain, since it requires data previously marked
as normal, but does not need anomalous samples during the learning phase of the model
(Madhuri and Rani, [2018]). Formally, given a dataset S containing a series of samples x € X
(the data space), which are considered to be representative of the normal behaviour and



JORGE CASAJUS-SETIEN ET AL.

are thus normal-labelled, the problem can be defined as the optimization of the parameters
0 of a model that learns the distribution of the normal samples in S, px, and is able to
output an anomaly score A(x) for new test samples, where larger scores indicate anomalous
samples. Setting a convenient threshold, ¢, allows for a separation of the test samples in
those considered normal (A(x) < ¢) and those considered anomalies (A(x) > ¢).

Generative algorithms, on the other hand, pursue the main goal of modelling complex
distributions of data, which suggest they can be used in AD tasks (Mattia et al., [2019) by
first learning the distribution of the normal-labelled data and then checking whether a given
sample complies or not with the learnt behaviour. Among the most widely used generative
algorithms, generative adversarial networks (GANs) stand out as the best-performing ones
(Deecke et al., 2018)). However, adversarial training ideas are often implemented over deep
neural networks (DNNs), which have some fundamental limitations regarding interpretabil-
ity and explainability stemming from their complex architecture.

In this paper, a novel approach to semi-supervised anomaly detection from normal-
labelled data using Bayesian networks is proposed. The conditional probability distributions
(CPDs), which are the parameters of the model, as well as the directed acyclic graph
structure are learnt via a generative-adversarial training, following an evolutive strategy.

The AD task is carried out by using a Bayesian autoencoder, hence the name of the
model: Bayesian evolutive adversarial autoencoder (BEAA). The proposed architecture is
afterwards applied to a real world problem in cybersecurity, obtaining competitive perfor-
mance compared with other state-of-the-art methods. Hereafter the paper is organized as
follows: In Section 2, AD using generative models is discussed. Section [3| develops around
Bayesian anomaly detection and Bayesian generative models, and in Section |4}, the pro-
posed model for BEAA is described, with both its learning algorithm and its AD method
being thoroughly detailed. Cybersecurity experiments are analyzed in Section [5] and finally,
Section [0] includes a general discussion of the work and future development.

2. Anomaly Detection with Generative Adversarial Models

AD using generative models starts by capturing the underlying distribution of data consid-
ered to be normal in a certain domain. In doing so, the generative model becomes able to
generate new samples conforming to it.

GANSs (Goodfellow et al., 2014a) were introduced by proposing a new training procedure
for DNNs based on competition against a discriminator agent, which takes the form of
another DNN. The generator network tries to represent, using its parameters 6, a mapping
G(z;0¢) from an m-dimensional space of input noise variables Z to the output n-dimensional
space X, which contains the data samples described by their n attribute variables. The noise
vector space where the noise vectors z = (21, ..., 2, ) lie is referred to as latent space, whereas
the space in which the samples x = (x1, ..., x,) lie is called data space, with the particularity
that the latent space is always of lower dimensionality than the data space (m < n). The
discriminator network encodes within its parameters @ the function D(x;0p), which takes
a sample x for input and outputs a scalar that represents the probability that x is a real
sample, instead of a fake one, generated by applying G(z;0¢) over a random noise vector
z acting as a seed. Both generative and discriminative networks are trained in a two-part
minmax game, with D aiming to maximize the probability of assigning the correct label to



BAYESIAN NETWORK EVOLUTIVE AUTOENCODER FOR ANOMALY DETECTION

a given generated or real sample and G minimizing the chances of D guessing a generated
sample as such. Mathematically:

mén max V(D, Q) = Ex[log D(x;0p)] + E,[log(1 — D(G(z; 6¢)))-

The most basic training algorithm for generative-adversarial neural networks, as pre-
sented in |Goodfellow et al.| (2014a) is detailed in Algorithm

Algorithm 1 Minibatch stochastic gradient descent training for generative adversarial
neural networks (Goodfellow et al., 2014a)

for number of training iterations do
1. Sample minibatch of N noise samples {z(!), ..., z0")}
2. Sample minibatch of N real samples {x(M), ..., x(N)}

3. Update the discriminator by ascending its stochastic gradient:

oy 3 s () s 10 (6 (<))

=1

4. Update the generator by descending its stochastic gradient:

G OICICIED))

end for

After adversarially training a discriminator and a generator over a dataset S of normal-
labelled samples, the discriminator can be considered as a rudimentary anomaly detector by
using its output as the anomaly score for the categorization of new samples. This method
has the main drawback that its behaviour depends heavily on how the training concluded:

o If D was able to correctly flag most of the fake and real samples by the time the
training process ended, then the output D(x;60p) for new samples should be closer to
0 for anomalous ones, since the discriminator will know they do not come from the
distribution of normal samples, and closer to 1 for normal ones, indicating that the
discriminator believes they follow the same distribution as the training examples.

e If G was managing to deceive the discriminator a significant fraction of times when the
training stopped (this is, the generator captured accurately the underlying distribution
of normal data), then the output D(x;0p) for new samples can reach a point where
anomalous samples receive a score closer to 1, since the discriminator would have only
been trained on fake examples that resemble very closely the normal-labelled data.

The discriminator is then, though perfectly capable of distinguishing real from forged
data, not prepared to deal with samples that differ from the training ones. In order to make
more robust anomaly detectors with GANSs, other authors have explored the usage of the



JORGE CASAJUS-SETIEN ET AL.

generator network for this task. In this line of work, there are two studies which we used
as a reference point in AD with generative architectures to build our model upon.

The AnoGAN architecture (Schlegl et al., |2017) emerged as an AD model based on
standard GANSs trained only on normal (non-anomalous) samples, allowing the generator
to synthesize realistic normal samples by the mapping G(z;0¢) : z — x. Such function can
also be used to find the inverse mapping to trace a new sample back to its representation
in the latent space, F(x) : x — z. In order to find the z that leads to the G(z) that is
closer to the original x, the coordinates of z in the latent space are found via an iterative
process by minimization of the residual (reconstruction) loss Lr(z,) and the discrimination
loss Lp(z,) for each step v =1,...,T"

Lr(zy;0c) = ||x — G(z;0c)|| and Lp(zy;0G,0p) = c[D(G(z4;0¢);0p),1],

where o(x, ) stands for the sigmoid cross-entropy computed over z targetting its class
«. The first loss function ensures the similarity between the generated and original samples,
while the second loss enforces the generated sample to lie on the learnt representation of
the data space from the normal-labelled training samples. The overall loss function is built
as a weighted sum of both components (with A € [0, 1]):

E(ZW; 9@, OD) = (1 — )\>£R(Z'y§ Hg) + )\ﬁD(Zy; Og, GD)

Ultimately, the detection of anomalies is performed using as the anomaly score A(x) =
(I = AN)R(x) + AD(x), where R(x) and D(x) are the residual score and the discrimination
score, defined as the residual and discrimination loss computed at the last iterative step of
the mapping of the sample to the latent space, Lr(zr) and Lp(zr), respectively. The idea
behind this anomaly score is that, as the generator is trained over normal examples, an
anomalous one will be poorly reconstructed, as the generator will have a hard time trying
to find a point in the latent space that both maps to an accurate reconstruction of the
original sample and lies in the learnt representation of the data space.

Another AD framework using GANs and normal-labelled data is the GANomaly model
(Akcay et all [2018). At the core of its architecture lies an autoencoder acting as the
generative submodel. An autencoder is a special case of encoder-decoder model for which
the inputs and outputs belong to the same domain, in this case, the data space. The
autoencoder (A) in the GANomaly structure consists of two neural networks: an encoder,
Ap, which reads an input sample x and outputs a compressed representation of it (z)
pertaining to the latent space, and a decoder, Ap, which accepts a noise vector z for
an input and upscales such vector back to the data space. Combining these two networks
forming a “bowtie” shape (the output of Ap is the input for Ap), a special type of generator
is constructed: A gets for an input a sample x and outputs a reconstruction x’ of it, which
is formed by projecting the original sample onto its variables in the latent space and then
reconstructing its image in the data space. The GANomaly structure, depicted in Figure
also comprises an aditional encoder network, F, which downscales x’ to the latent space
once again, returning z’ = E(x’), and a discriminator network D, whose goal is to classify
x and its autoencoded reconstruction x’ as real or fake. The training of the model is
carried out by optimizing not only the discrimination and reconstruction losses (in this
work these are referred to as adversarial loss and contextual loss, respectively, but they are



BAYESIAN NETWORK EVOLUTIVE AUTOENCODER FOR ANOMALY DETECTION

formulated in an analogous fashion), but also an encoder loss to minimize the difference
between the encoded features of the input (z = Ap(x)) and those of the reconstructed
sample, 2 = E(Ap(Ag(x))) = E(A(x)). It differs from the AnoGAN architecture in the
fact that the encoder is itself a neural network trained conjointly with the generative and
the discriminative model. For the AD task, the encoder loss is used as an anomaly score,
thus, for a test sample x:

D(x,x)

Figure 1: GANomaly structure (Akcay et al., [2018).

Ax) = [|[Ap(%) — E(AX))]-

3. Bayesian Anomaly Detection and Generative Models

Quoting again the work of Goodfellow et al. on GANs: “The adversarial modeling frame-
work is most straightforward to apply when the models are both multilayer perceptrons”.
All of the previously discussed architectures are powered by multilayer perceptrons (namely,
neural networks), being these the mathematical paradigms that encode the functions needed
for the general approach to work. Neural networks are, though easy to train in an adversarial
manner, naturally subject to a series of limitations regarding their lack of interpretability.
There are three main reasons why interpretability should be considered as a design objective
when developing a machine learning model (Barredo Arrieta et al., 2020), namely:

e It allows for a better detection of biases in the training dataset, enhancing imparciality.

e Interpretability assists in highlighting potential adversarial weaknesses of the model.
Adversarial samples are specialized inputs created with the purpose of confusing a
model, forcing misclassification (Goodfellow et al. |2014b)). This is a particularly
serious problem in cybersecurity, since adversarial weaknesses open a way for malicious
traffic to fly under the radar of an intrusion detection system based on AD.

e [t can help developers and operators to understand how and which variables affect the
output of a model, so it can be used to guarantee that the model reasoning follows a
meaningful underlying causality, if it existed in the training data.

Bayesian networks (BNs) stand among the most interpretable machine learning mod-
els (Mihaljevi¢ et al.| [2021)), but are usually related to lower performance than black-box



JORGE CASAJUS-SETIEN ET AL.

models, as deep neural networks (DNNs), specially when facing high dimensional problems.
This is the reason why in this work we bring a new generative-adversarial approach based on
BNs that aims to be a hybrid AD solution, which provides better accuracy than BNs while
retaining part of their inherent interpretability, justifying its use against a pure DNN-based
GAN approach in contexts that require interpretability, such as cybersecurity.

AD using a single BN is easy to perform once the structure (a directed acyclic graph)
and parameters of the model, in this case the CPDs, are learnt. It is carried out using
the log-likelihood of a sample as a measure of how anomalous it is, and it requires for a
threshold to be set for the purpose of separating normal samples from anomalies (Atienza,
et al., 2021al). In order to construct a GAN-based AD system using BNs, one must first
figure out how to adversarially train a Bayesian discriminator-generator couple. Some of
the most closely related works are those of |Li et al| (2018) on graphical GANs and Ding
et al.| (2021) regarding GANs with conditional independence graphs.

The first of the two aforementioned works stablishes a generative modelling framework
for structured data featuring a generator that has an associated directed acyclic graph
(DAG), so samples can be efficiently generated via ancestral sampling. Still, albeit the
dependencies are represented by a DAG, the dependency functions among the variables are
parametrized as DNNs. It is precisely in the implicit treatment of probabilities, by defining
a stochastic process that aims to draw samples according to an unspecified distribution,
that these graphical GANs most closely resemble our proposed algorithm (see Section .
The parameters of the model are found by gradient descent in an adversarial manner, try-
ing to maximize with respect to the discriminator parameters and minimize with respect
to the generator ones the divergence between the probability distributions of both a gen-
erative and a recognition submodel. The latter work is also focused on providing GANs
with a graphical structure, turning them into a model-based design, with the difference
that their probabilistic approach computes the optimal parameters by minimization of the
upper bound of a general divergence measure using local discriminators and consequently
improving computational efficiency.

4. BEAA: Model Structure, Learning Algorithm and AD Mechanism

In our proposal, not only the generative and discriminative models are built upon a prob-
abilistic graphical structure, but they straightforward are BNs. Both the CPDs and the
graph structure are iteratively and adversarially learnt in a minimization problem following
an evolutive strategy. The AD task is performed by an autoencoder system, hence the
name of the framework. The model has been implemented for posterior experimentation
on Python using the PyBNesian library (Atienza et al., 2022). Thus, its advantages and
limitations have been decisive in the design of a compatible structure and the development
of the learning and AD algorithms. One of the key aspects of the library is that nodes
that accept evidence must have no parents, and are referred to as interface nodes. In its
PyBNesian-compatible form, the model integrates three BNs:

e A generator BN, G, whose parameters are learnt in an evolutive procedure by ad-
versarial competition against the discriminator. Unlike the original GAN training
schema, which alternatively optimizes the generator and the discriminator in an iter-
ative way, here the discriminator is not developed conjointly with the generator, but



BAYESIAN NETWORK EVOLUTIVE AUTOENCODER FOR ANOMALY DETECTION

(a) G structure (b) D structure (¢) R structure

Figure 2: The three components of the BEAA for a generic example case with n attribute
nodes (circles) and m noise nodes (squares).

the generator is trained by confronting a global and static discriminator. The graph
of the generator network is devised to comply with the following constraints:

— Latent variables (noise nodes) must be root nodes, having no parents, as these
will be the interface nodes for the BN.

— Data space variables (attribute nodes) must be leaf nodes, having no children.

In addition, we considered the model to be free of arcs from one noise variable to
another, thus containing all of the information about dependencies of attributes in
the arcs connecting noise nodes to attribute nodes. This way, the generator network
is suitable to perform ancestral sampling of forged examples following its underlying
distribution from a set of noise variables acting as seeds.

e A discriminator network, D, which is only used during the training phase of the model.
This one is a standard Bayesian network learnt directly from the training dataset.

e An inverse generator network, R, which is learnt from G and represents its inverse
function, returning the expected noise from an input sample. The constraints over
the inverse generator are the same applied over the generator network, but reversed:

— Noise nodes must be leaf nodes, having no children.

— Attribute nodes must be root nodes, having no parents, as they will be interface
nodes. Besides, arcs between attribute nodes are forbidden.

The DAG structure for each of the components is illustrated in Figure[2] The decision of
using two separate networks for generation of data from noise (decodification) and prediction
of noise from data (codification), as well as the structure used for both, was made taking
into account that the PyBNesian library only supports evidence-driven ancestral sampling
of data by instantiating root nodes. In the practical implementation, all of the three BNs
of the BEAA are defined as conditional linear Gaussian BNs, with each CPD being;:

k
flaile) = N(xs; Bo+ Y Bijej,07),

=1

where x; denotes the variable for which the CPD is defined, e is the k-dimensional vector
containing the instantiation of the parents of the corresponding variable used as evidence,



JORGE CASAJUS-SETIEN ET AL.

B = (Bo, b1, -, Bi) is the vector of parameters modelling the dependencies between nodes
and o2 stands for the variance of the conditional Gaussian (Koller and Friedman| [2009). The
choice of linear Gaussian BNs was made out of practicity, since these are readily available
in the PyBNesian library, though the model can also be implemented for any kind of BN,
such as conditional KDE networks or semiparametric Bayesian networks (Atienza et al.,
2021b)), also included in the package. Several learning algorithms have been designed for
the model, but the most basic and PyBNesian compliant form of it goes by the following
guidelines:

1. In the first instance, the discriminator D is adjusted to fit the initial distribution of
the training data &, comprised exclusively of positive-labelled samples.

2. Following, the generator network G is initialized. This is carried out by fully connect-
ing each noise node to each attribute node. The parameters of the initial probability
distributions are randomized and act as the starting seed for the training procedure.

3. The optimal parameters for the generator are found in an iterative process starting
from the randomized initialization of G. For each iteration, a batch of samples is
generated according to the distribution encoded in G using Gaussian noise as evidence
for the noise nodes and following ancestral sampling. The log-likelihood according
to D (and thus, only regarding attribute nodes) of each of the generated samples
is calculated, so that a fraction of the best-scoring ones is chosen as the training
set for the generator that will be used in the next iteration. This is an evolutive
process that reminds of the estimation of distribution algorithms (Larranaga and
Lozano, 2002)), since each generation of samples is estimated from a simulation of a
probability distribution inferred by the selected samples of the previous generation.
This process is repeated until convergence, i.e., until a maximum number of epochs
(training iterations) is reached or until a certain log-likelihood threshold is met.

4. Once the generator has learned its definitive parameters, the inverse generator must
be learned. At a practical level, this has been implemented by generating a final
batch of samples according to G and learning the parameters of R from it. The set
of learnt arcs from the attribute nodes to the noise ones and the CPDs that describe
such dependencies constitute the interpretable element that gives the BEAA an upper
hand against standard GANs in certain contexts.

A pseudocode version of the algorithm is featured in Algorithm [2] As for the technical
learning module implementation, all of the used structure learning and parameter estima-
tion algorithms belong to the PyBNesian library. For all three BNs, experiments have been
conducted with the PC structure discovery algorithm (Spirtes et al.l |1993)), using both mu-
tual information and linear correlation for the conditional independence tests. Parameters
are always found by maximum likelihood estimation.

A more sophisticated -though less time-efficient- version of the algorithm, including a
greedy search heuristic for the optimal number of noise nodes, has also been implemented,
repeating the learning procedure until convergence for an incremental number of noise
variables up to the point where the mean value of the log-likelihood computed over the last
batch of samples does not improve by adding another noise node.



BAYESIAN NETWORK EVOLUTIVE AUTOENCODER FOR ANOMALY DETECTION

Algorithm 2 Adversarial-evolutive learning algorithm for a Bayesian autoencoder with a
fixed number m of noise nodes and n attribute nodes

Learn discriminator D with n nodes from normal training data
Initialize generator G with m noise nodes and n attribute nodes
for number of noise nodes in G do

1. Generate n random coefficients 3;; for noise node 7, where j =1,....,n
2. Fully connect noise node ¢ to each attribute node j with coefficient 3;;

end for
repeat

1. Sample batch of Ngeneration Samples from G

2. Compute log-likelihood of samples according to D
3. Select Ngglection best scoring samples
4

. Update the generator by re-learning its structure and parameters according to the
selected minibatch of samples

until convergence or maximum number of epochs
Sample batch of Nz samples from G
Learn structure and parameters of R from generated samples

The discriminator and generator model, though useful on their own for Bayesian gener-
ation of forged coherent samples, are just a means to an end in this work, since the main
pursue was to build an AD system, and it will be the inverse generator R the element
carrying this task out, for what we present two methods, both of them based on outlier
classification according to an anomaly score.

The first method recognizes abnormalities in data by looking at the Euclidean module
of the noise vector that R calculates for a given sample. The intuition behind this idea
is built upon the fact that, after training, each noise node will encode a statistical rela-
tionship between a subset of the attribute variables that, provided training and test data
were previously normalized, should diverge from 0 when anomalies are present. The second
method is a straightforward adaptation of the reconstruction error mentioned in Section
By calculating the module of the difference between the original and reconstructed sample,
an estimation of how poor the reconstruction is, and thus, of how anomalous the sample
is, can be obtained. Both methods provide interpretation insight, since the relationship(s)
responsible for the anomaly will be highlighted by looking at the most deviated noise di-
rection(s). In the experiments presented in Section |5, a combination by multiplication of
both measures, referred to as the combined measure, was also put to test for AD.

5. Experimental Results

The BEAA implementation used for the following experiments can be found submitted
to GitHubl All of experiments were conducted on the UNSW-NB15 public cybersecurity
dataset Moustafa (2017)), containing 2,540,044 records of network traffic and including 9
types of different attacks, which will all be merged into the anomalous class for this prob-


https://github.com/jogecodes/BEAA.git
https://github.com/jogecodes/BEAA.git

JORGE CASAJUS-SETIEN ET AL.

lem, summing up to 321,283 anomalies. Some of the variables present in the dataset are
synthetically calculated through packet-level data processing, and were dumped in order
to test the attack detection capabilities of the system exclusively at the network traffic
level, leaving a total of 24 variables to be taken into account. It has been experimentally
demonstrated that the training scheme consistently improves the log-likelihood of the gen-
erated samples. Two cases of evolution of the mean log-likelihood according to D of a
batch samples produced by G are illustrated in Figure [3| Here, quick convergence towards
more realistic samples is achieved, even though random initialization of noise CPDs causes
the D-likelihood of the initial generated samples to diverge towards negative infinity. For
comparision, D reports a value of 5.25 for the log-likelihood averaged over the subset of
normal-labelled test examples.

—— Logl — Loagl
. Start logl: -8.5T7e+23 1t Start logl: -1.652425
-10 End logl- 9.5882 End logl: 4.8809
109
o -10° o 10
Q Q
2 2
g _1p1 g —10%
& &
3 1w 3 -1
_1p7 —10%
T T T T T _JOM T T T T T T T T
o 100 200 300 400 ] 25 50 75 100 125 150 175
Epoch Epoch

Figure 3: Mean log-likelihood evolution for two training cases on the UNSW-NB15 dataset.
Logarithmic scale is used for visualization purposes.

It has also been proved that an improvement on the expected log-likelihood of generated
samples is directly correlated to a better separation between the anomalies and the normally
behaved samples. However, overtraining of the model can lead to all of the multivariate
linear conditional Gaussian distributions collapsing into univariate independent Gaussian
distributions, what ultimately entails a dramatic decrease of the AD power of the model.
This, together with to-be-resolved instabilities in the learning algorithm, has rendered im-
possible to prove in statistical tests that our model consistently achieves higher accuracy on
detection of anomalies in the UNSW-NB15 dataset compared with a simple BN working as
an anomaly detector, which deterministically achieves an area under the ROC curve score
of 0.9805. Still, the BEAA has scored significantly over this threshold multiple times under
the same setup, as illustrated in Figure [

6. Discussion and Future Lines of Work

Overall, the proposed model has proved useful in stretching the performance of a BN applied
to anomaly detection at the cost of some interpretability. Despite the BEAA not having yet
reached its full potential, specially in terms of training stability, it already shows a promising
advance in Bayesian generative models, providing, as demonstrated, interpretable AD.
This one is an ongoing work, though. As such, the idea we have deemed to have the
greatest potential incorporates at each training iteration a reconfiguration of the points of

10



BAYESIAN NETWORK EVOLUTIVE AUTOENCODER FOR ANOMALY DETECTION

10 r—ﬁ 10 ﬁ
0.8 0.8
o o
& &
L 06 L 06
= =
= =
& &
v 04 v 04
& &
0z 0z
0o — BayesGEM NoisefnoScore (AUC = 0.9866) oo — BayesGEN Comb. score (AUC = 0.9840)
0.0 0z 04 0.6 08 10 0.0 0z 04 0.6 08 10
False Positive Rate False Positive Rate

Figure 4: Area under the ROC curve for two learnt models. The models in the left and
right panel use, respectively, the noise module anomaly score and the combined one.

the latent space by reparametrizing their coordinates proportionally to the D-likelihood of
each sample. We also consider to be worthy of future research the usability of the proposed
generative Bayesian model as a tuneable synthetic data generator. We will also be working
on further experimenting with the BEAA model in order to characterize its interpretability
properties and exhaustively describe how to adjust its parameters to get optimum results.

Acknowledgments

This project was developed in collaboration with Titanium Industrial Security S.L. as a part
of the SLISE (network SLIcing SEcurity for next generation communications) program.

References

S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon. GANomaly: Semi-supervised
anomaly detection via adversarial training. In Asian Conference on Computer Vision,
pages 622—637. Springer, 2018.

D. Atienza, C. Bielza, J. Diaz-Rozo, and P. Larranaga. Efficient anomaly detection in a
laser-surface heat-treatment process via laser-spot tracking. IEEE/ASME Transactions
on Mechatronics, 26(1):405-415, 2021a.

D. Atienza, C. Bielza, and P. Larranaga. Semiparametric Bayesian networks. Information
Sciences, 584:564-582, 2021b.

D. Atienza, C. Bielza, and P. Larranaga. PyBNesian: An extensible python package for
Bayesian networks. Neurocomputing, 504:204-209, 2022.

A. Barredo Arrieta, N. Diaz-Rodriguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado,
S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and F. Herrera. Explainable
Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward
responsible Al. Information Fusion, 58:82—115, 2020.

11



JORGE CASAJUS-SETIEN ET AL.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Computing
Surveys, 41, 07 2009.

L. Deecke, R. A. Vandermeulen, L. Ruff, S. Mandt, and M. Kloft. Image anomaly detection
with generative adversarial networks. In ECML/PKDD, pages 3-17, 2018.

M. Ding, C. Daskalakis, and S. Feizi. GANs with conditional independence graphs: On
subadditivity of probability divergences. In Proceedings of The 24th International Con-

ference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine
Learning Research, pages 3709-3717. PMLR, 2021.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial networks. Advances in Neural In-
formation Processing Systems, 3, 2014a.

1. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.
arXiw 1412.6572, 2014b.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. The
MIT Press, 2009.

P. Larraniaga and J. Lozano. Estimation of Distribution Algorithms: A New Tool for Fvo-
lutionary Computation. Genetic algorithms and evolutionary computation. Springer New
York, NY, 2002.

C. Li, M. Welling, J. Zhu, and B. Zhang. Graphical generative adversarial networks. In
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018.

S. Madhuri and M. U. Rani. Anomaly detection techniques causes and issues. International
Journal of Engineering Technology, 7(3.24):449-453, 2018.

F. D. Mattia, P. Galeone, M. D. Simoni, and E. Ghelfi. A survey on GANs for anomaly
detection. CoRR, abs/1906.11632, 2019.

B. Mihaljevi¢, C. Bielza, and P. Larranaga. Bayesian networks for interpretable machine
learning and optimization. Neurocomputing, 456(C):648-665, 2021.

N. Moustafa. Designing an online and reliable statistical anomaly detection framework for
dealing with large high-speed network traffic. University of New South Wales, Canberra,
Australia, 2017.

T. Schlegl, P. Seebock, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs. Unsupervised
anomaly detection with generative adversarial networks to guide marker discovery. CoRR,
abs/1703.05921, 2017.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. Lecture Notes
in Statistics. Springer New York, NY, 1993.

12



	Introduction
	Anomaly Detection with Generative Adversarial Models
	Bayesian Anomaly Detection and Generative Models
	BEAA: Model Structure, Learning Algorithm and AD Mechanism
	Experimental Results
	Discussion and Future Lines of Work

