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Part I

Background





1

Supervised classification

1.1 Introduction

Supervised classification is one of the most important tasks in the field of
pattern recognition. It has been widely applied to many real-world problems
such as image, speech and document classification in entertainment, indus-
trial, security, biomedical and financial domains, among others. Informally,
supervised classification can be understood as learning to distinguish con-
cepts from experience, e.g. learning to distinguish apples and bananas from
a set of images of apples and bananas. Usually, the experience is represented
by a set of examples (instances, cases or samples) of the given concepts, e.g.
the available collection of images of bananas and apples. It is also possible to
articulate the experience of the field by means of prior knowledge, but this
is out of the scope of this dissertation. Supervised classification assumes the
presence of a special variable called class variable, e.g. fruit type. In super-
vised classification, the class variable is discrete and it indicates the category
(class label, e.g. apple) of a case (or instance) described in terms of its features
(descriptors, predictor variables or input variables).

Supervised classification task involves the learning (or induction) of a clas-
sification model (classification function or classifier). A classifier is a function
that assigns a class label to an unlabeled case described in terms of its fea-
tures. The classifier is usually learned from a set of cases (training set, data
set or samples) by means of a classifier induction algorithm (learning process,
learning algorithm or inductor). Generally, in order to generate the training
set, a set of samples representative of all the classes must be collected. Usu-
ally, these observations are a set of images, documents or sounds (signals in
general) which must be processed in order to identify features (numerical or
symbolical) that allow to distinguish the patterns of the different class labels.
So we are looking for variables which provide discriminative information about
the class of the samples. The task consisting of identifying the appropriate fea-
tures is named feature extraction. For example, in order to distinguish apples
from bananas using 2D images, the shape of the object or simply its color
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could be considered as features with a great discriminative power. Although
feature extraction is critical for supervised classification, it is out of the scope
of this dissertation. After the most appropriate (discriminative) features are
identified, the set of examples are quantified by obtaining the values for the
features and the class variable. In other words, each example is summarized
into the values of the previously identified features. This task is called quan-
tification of the samples and, once the features are identified and defined, it
can be considered straightforward.

A sample (instance, case or example) is an instantiation (quantification,
realization or evaluation) of all the predictor variables, except for those with
missing (or unknown) values. A data set is a set of cases. In supervised clas-
sification the training set has no missing class labels: the class label is known
for all the instances in the training set. If there are unlabeled samples in the
training set, the problem is named semi-supervised classification. A supervised
classification domain is defined by a generalized joint probability distribution.
A data set is supposed to be obtained by means of a random sampling of
the generalized joint probability distribution of the domain and, thus, it has
independent and identically distributed (iid) samples. We include as the first
step in the classifier induction algorithm the preprocess of the data base. The
preprocess usually consists of a feature reduction procedure, the imputation
of missing values for the implied variables, and a discretization of the contin-
uous features. Once a classifier is learned from the preprocessed training data
by means of a classifier induction algorithm, it can be used for obtaining the
class of a new unlabeled instance (a quantified sample with a missing value
for the class).

Generally, before a classifier is applied to any real world domain, its per-
formance is estimated. For example, the average misclassification rate of un-
labeled instances can be estimated. Using the performance estimation, we can
consider if a classifier has enough discriminative power for the concrete do-
main and, besides, we can compare different choices of classifiers in order to
select the most suitable.

But, what is this dissertation about? This dissertation formally tries to
superficially cover some of the most relevant issues of supervised classifica-
tion, focusing attention on classifiers based on Bayesian networks for domains
with continuous random variables. It should be highlighted that our work is
focused on modeling the conditional densities of the continuous random vari-
ables directly, avoiding the discretization. For this purpose we base our work
on two types of Bayesian networks: conditional Gaussian networks and kernel
based Bayesian networks.

The document is divided into two parts: background and methodological
contributions. The background part formally introduces fundamentals about
probability theory, decision theory, generative, conditional and discriminative
learning, estimation theory, error estimation, comparison and analysis of the
error, measures of performance, information theory, curse of dimensionality
and feature selection, density estimation and Bayesian multinomial networks.
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In these fundamentals are included three algorithms for feature selection,
three popular discretization algorithms, four procedures for the comparison of
classifier induction algorithms for different experimental conditions, the most
popular bias plus variance decomposition of the error, which can be used for
analyzing the behavior of a classifier or the particularities of the domain, and
the most popular procedures for error estimation.

And, what is a novel contribution? Two groups of novel methodological
contributions can be identified in this dissertation:

• Supervised classification in mixed domains with probabilistic graphical
models: we have adapted a set of algorithms taken from Bayesian multino-
mial networks to conditional Gaussian networks. We also have proposed
novel classifier induction algorithms based on the particularities of con-
ditional Gaussian networks. Moreover, we have proposed the novel kernel
based Bayesian network paradigm which extends the idea of flexible näıve
Bayes [John and Langley (1995)] breaking with the parametric assump-
tions. In addition, we have adapted some of the algorithms proposed for
Bayesian multinomial networks to this novel paradigm. In order to present
the kernel based Bayesian network paradigm, the mixed Gaussian kernel
distribution is introduced.

• Information theory and classification error. Most of the filter algorithms
presented in this dissertation are guided by the conditional mutual infor-
mation. In order to analyze this score, we illustrate some of the intuitions
which relate the classification error and the information theory. This intu-
itions can be helpful to understand the behavior of the presented family
of filter classifier induction algorithms. In addition, we study the link be-
tween information theory and classification error to search novel scores
for guiding the structural learning of the classifiers based on Bayesian net-
works. Based on this knowledge we analyze a discriminative version of tree-
augmented näıve Bayes [Pernkopf and Bilmes (2005)]. Besides, we present
a set of parametric (Gaussian) and non-parametric (kernel based) estima-
tors of quantities based on information theory. The estimators proposed
are used to guide the structural search of some of the classifiers induction
algorithms introduced for conditional Gaussian network and kernel based
Bayesian network paradigms.

1.2 Overview of the dissertation

This document concerns with Bayesian network paradigm for supervised clas-
sification and classifier induction algorithms in domains with continuous ran-
dom variables avoiding the discretization. The document is divided into three
main blocks: introduction, methodological contributions and conclusions.

The first block formally presents some of the most relevant concepts and
procedures for supervised classification with Bayesian networks. This block
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is divided into Chapters 1 and 2. Chapter 1 presents a formal framework for
supervised classification. In Chapter 2 we introduce the Bayesian multinomial
networks for supervised classification, indicating their main drawbacks when
dealing with domains with both continuous and discrete random variables.
This block includes concepts, procedures and tools for the correct understand-
ing of the novel contributions of the dissertation.

The second block presents the main methodological contributions made by
the author and is divided into Chapter 3, Chapter 4 and Chapter 5. In Chap-
ter 3 we introduce conditional Gaussian networks for supervised classification,
adapt a set of algorithms originally developed for Bayesian multinomial net-
works, introduce two novel algorithms, and perform an experimental analysis
with all of them. In addition we provide a set of estimators for measures of
information theory under Gaussian assumptions. Chapter 4 introduces the
novel paradigm of kernel based Bayesian networks for supervised classifica-
tion. We adapt a set of algorithms originally developed for Bayesian multi-
nomial networks and perform an experimental analysis with them. Moreover,
we introduce Gaussian kernel density function and mixed Gaussian kernel
distribution and a set of results concerning their conditional and marginal
forms. Besides, we provide a set of estimators for a set of measures of in-
formation theory based on the previously presented mixed Gaussian kernel
distribution. Finally, In Chapter 5 we show the relation between information
theory and the classification error. The motivation of this chapter consist of
understanding the presented filter algorithms and finding alternative scores
to conditional mutual information for guiding the filter classifier induction
algorithms. Based on the concepts introduced in this chapter we analyze the
discriminative structural learning algorithm for tree augmented näıve Bayes
introduced in Pernkopf and Bilmes (2005).

The last block is composed of Chapter 6. This chapter summarizes the
most important contributions of the dissertation, indicating their main future
work lines.

1.3 Probability theory

This section formally introduces some of the main concepts of probability
theory. Most of the theoretical results presented in this section have been
adapted from [Peña (2001)]. Probability theory provides us with a formal
framework in order to deal with uncertainty. The objective of this section
is to present a set of definitions and theorems that gives us a mathematical
interpretation of the concepts introduced through the dissertation, paying
more attention to the semantics of probabilistic graphical models (see Chapter
2 for a formal introduction to probabilistic graphical models). Most of the
notation that is used throughout this dissertation is also introduced in this
section.
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Definition 1.1 Let Ω be the sample space of a random experiment, that is,
the exhaustive set of mutually exclusive or disjoint possible outcomes of a
random experiment. Ω is referred to as a discrete sample space when there is
a countable number (finite or infinite) of distinct outcomes, otherwise Ω is
referred to as continuous sample space.

Given a random experiment, it is usual to be interested in a subset of out-
comes rather than in a single one. The subsets of the sample space Ω of a given
random experiment are referred to as events, ω. Thus, an event is a collection
of outcomes of a random experiment. Each time that a random experiment is
run, a given event occurs when the outcome of the random experiment is an
element of the event. The sample space Ω of the random experiment at hand
is itself the event that, by definition, always occurs. Alternatively, the empty
set ∅ is the event that, by definition, never occurs.

Like most other mathematical theories, probability theory does not neces-
sarily apply to the exhaustive collection of subsets of Ω. Usually the attention
is restricted to collections of admissible subsets of Ω that are closed under cer-
tain sets of operations. Specifically, we usually impose the condition that any
subset of Ω that can be constructed from a countable number of admissible
subsets of Ω using a certain set of operations should itself be admissible. This
leads to the following definition which plays an important role in probability
theory.

Definition 1.2 Let Ω be the sample space of a random experiment. A class
F of subsets of Ω, i.e. events, is called a σ-algebra if it contains Ω itself and
is closed under the formation of complements and countable unions, that is:

1. Ω ∈ F .
2. ω ∈ F implies ω̄ ∈ F where ω̄ is the complementary of ω.
3. {ωi ∈ F|i ∈ I} with I a countable index set implies

⋃

i∈I ωi ∈ F .

In any random experiment with sample space Ω, we assume that the col-
lection of interesting or admissible events F forms a σ-algebra. F is usually
known as the event space of the random experiment.

Definition 1.3 Let Ω be the sample space and F be the event space of a
random experiment. A real-valued function on F :

Pr : F → R (1.1)

is called a probability measure if it satisfies the following conditions:

1. Pr(ω) ≥ 0 for all ω ∈ F .
2. Pr(Ω) = 1.
3. Given a set of events {ωi ∈ F|i ∈ I} with I a countable index and ωi∩ωj =

∅ for all i and j such that i 6= j, Pr(
⋃

i∈I ωi) =
∑

i∈I Pr(ωi).

Intuitively, the probability of an event is a measure of how likely the event
will occur when the random experiment is run.



8 1 Supervised classification

Definition 1.4 Let Ω be the sample space and F be the event space of a
random experiment. Let Pr(·) be a probability measure on F . The triplet
(Ω,F , P r) is called probability measure space or, simply, a probability space.

Definition 1.5 Let (Ω,F , P r) be an arbitrary probability space. A real-valued
function on Ω

X : Ω → R (1.2)

is called a unidimensional random variable.

The outcome of a random experiment may not be a number. A unidimen-
sional random variable is a function that associates a numerical value with
every outcome of a random experiment, in other words, is a quantification of
an event. The variable is random in the sense that its values may vary from
trial to trial as the experiment is repeated.

We follow the usual convention of denoting unidimensional random vari-
ables by an uppercase letter (or letters) and their values by the same letter
(or letters) in lowercase.

Definition 1.6 Let X be a unidimensional random variable. X is referred
to as an unidimensional discrete random variable when there is a countable
(finite or infinite) number of distinct values that X can have. Otherwise, X
is referred to as unidimensional continuous random variable.

Definition 1.7 Let Z be a unidimensional discrete random variable. p(z) =
Pr(Z = z) = Pr({ω ∈ Ω|Z(ω) = z}) is called a probability mass function for
Z if it satisfies the following conditions:

1. p(z) ≥ 0 for all values z of Z.
2.
∑

z p(z) = 1

It is common to use the term probability distribution as a synonym of
probability mass function. Strictly speaking, both terms are interchangeably
used throughout this dissertation although the latter is more accurate than
the former. Note also that p(z) denotes the probability that Z = z as well
as a probability distribution for Z. Whether p(z) refers to a probability or a
probability distribution should be clear from the context.

Definition 1.8 Let Y be a unidimensional continuous random variable. f(y)
is called probability density function if it satisfies the following conditions:

1. f(y) ≥ 0 for all y ∈ R.
2.
∫

R
f(y)dy = 1

3. Pr(α ≤ Y ≤ β) = Pr({ω ∈ Ω|α ≤ Y (ω) ≤ β}) =
∫ β

α
f(y)dy for all α and

β such that α ≤ β.

Since unidimensional continuous random variables Y can take values in
the continuum it no longer makes sense to talk about the probability that
Y has a particular value y because the probability of any particular exact
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value will almost always be zero. Rather, we talk about the probability that
Y falls in some interval [α, β] with α ≤ β. Instead of having a probability
mass function p(y), we have a probability density function f(y) which has

the property that Pr(y ∈ [α, β]) =
∫ β

α
f(y)dy. If we consider a small interval

[α, β] over which the probability density is constant, its probability is given
by Pr(y ∈ [α, β]) = f(α)(β − α). The values taken by a probability density
function are a measure of the probability mass per unit distance. Moreover,
from Definition 1.8 we have that

f(y) = lim
h→0

1

2h
Pr(y′ ∈ [y − h, y + h]) (1.3)

In general, most of the definitions and formulas for discrete random variables
carry over to continuous random variables, replacing sums by integrals.

Definition 1.9 Let (Ω,F , P r) be an arbitrary probability space. A function
on Ω

X : Ω → Rn (1.4)

is called n-dimensional random variable.

One way to interpret an n-dimensional random variable X = (X1, ..., Xn)
is as an ordered set of n unidimensional random variables Xi for all i. Con-
sequently, every ordered subset Y = (Y1, ..., Ym) of X may be seen as an
m-dimensional random variable. This point of view over multidimensional
random variables is very helpful in the remainder of this dissertation.

Note that we are using letter (or letters) in boldface uppercase X to des-
ignate a multidimensional random variable, and the same boldface lowercase
letter (or letters) to denote an assignment of a value x to the multidimensional
random variable.

Definition 1.10 Let X = (X1, ..., Xn) be an n-dimensional random variable.
If there is a countable number (finite or infinite) of distinct values that X

can have, i.e. every Xi is a unidimensional discrete random variable, then
X is referred to as an n-dimensional discrete random variable. On the other
hand, if every Xi is a unidimensional continuous random variable, then X is
referred to as an n-dimensional continuous random variable. Finally, if there
exist two proper subsets of X, Y = (Y1, ..., Ym) and Z = (Z1, ..., Zn−m), such
that (i) X = Y ∪Z (exhaustive subsets) and Y ∩Z = ∅ (disjoint subsets), and
(ii) Y is an m-dimensional continuous random variable and Z is an m − n-
dimensional discrete random variable, then X is referred to as n-dimensional
mixed random variable.

In the remainder of this section we will limit our discussion to multidi-
mensional random variables without loss of generality. The reason is that a
unidimensional random variable represents a special case of multidimensional
variables.
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Definition 1.11 Let Z = (Z1, ..., Zm) be an m-dimensional discrete random
variable. p(z) = p(z1, ..., zm) = Pr(Z1 = z1, ..., Zm = zm) = Pr(Z = z) =
Pr({ω ∈ Ω | Z(ω) = z}) is called a joint probability mass function for Z if
it satisfies the following conditions:

1. p(z) ≥ 0 for all value z of Z.
2.
∑

z p(z) = 1.

The term joint probability distribution is also used to refer to a joint
probability mass function. Both terms are interchangeably used throughout
this dissertation. However, strictly speaking, the latter is more correct than
the former. Note also that p(z) denotes the probability that Z = z, as well
as a joint probability distribution for Z. Whether p(z) refers to a probability
or a joint probability distribution should be clear from the context.

Definition 1.12 Let Y = (Y1, ..., Yn) be an n-dimensional continuous ran-
dom variable. f(y) = f(y1, ..., yn) is called a joint probability density function
if it satisfies the following conditions:

1. f(y) ≥ 0 for all y ∈ Rn.
2.
∫

R
...
∫

R
f(y1, ..., yn)dy1...dyn = 1.

3. Pr(α ≤ Y ≤ β)
= Pr(α1 ≤ Y1 ≤ β1, ..., αn ≤ Yn ≤ βn)
= Pr({ω ∈ Ω|αi ≤ Yi(ω) ≤ βi for all i})
= Pr({ω ∈ Ω|α ≤ Y (ω) ≤ β})
=
∫ β1

α1
, ...,

∫ βn

αn
f(y1, ..., yn)dy1...dyn

for all α = (α1, ..., αn) and β = (β1, ..., βn) such that αi ≤ βi, i = 1, ..., n.

Definition 1.13 Let X = (X1, ..., Xn+m) be an (n + m)-dimensional mixed
random variable. If there exist two proper subsets of X, Y = (Y1, ..., Yn) and
Z = (Z1, ..., Zm), such that (i) X = Y ∪ Z and Y ∩ Z = ∅, and (ii) Y

is an n-dimensional continuous random variable and Z is an m-dimensional
discrete random variable, then ρ(x) = ρ(x1, ..., xn+m) is called a generalized
joint probability distribution for X if it satisfies the following conditions:

1. ρ(x) = ρ(y, z) ≥ 0 for all y ∈ Rn and z of Z.
2.
∫

R
...
∫

R

∑

z1
...
∑

zm
ρ(y1, ..., yn, z1, ..., zm)dy1...dyn = 1.

3. Pr(α ≤ Y ≤ β, γ ≤ Z ≤ δ)
= Pr({ω ∈ Ω|αi ≤ Yi ≤ βi and γj ≤ Zj ≤ δj, i = 1, ..., n and
j = 1, ..., m})
= Pr({ω ∈ Ω|α ≤ Y ≤ β and γ ≤ Z ≤ δ})
=
∫ β1

α1
...
∫ βn

αn

∑

γ1≤z1≤δ1
...
∑

γm≤zm≤δm
ρ(y1, ..., yn, z1, ..., zm)dy1...dyn

for all α = (α1, ..., αn), β = (β1, ..., βn), γ = (γ1, ..., γm) and δ =
(δ1, ..., δm) such that αi ≤ βi, i = 1, ..., n, and γj ≤ δj, j = 1, ..., m.

Notice that ρ(x1, ..., xn+m) = f(x1, ..., xn) if m = 0, and ρ(x1, ..., xn) =
p(x1, ..., xn) if n = 0.
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For the sake of brevity, in the remainder of this section we treat multidi-
mensional continuous, discrete or mixed random variables together without
loss of generality. This means that all unnecessary references to the nature
of the random variables (discrete, continuous or mixed) are omitted in the
forthcoming definitions and theorems. Thus, the term joint probability mass
function for X, p(x), and joint probability density function for X, f(x), are
replaced by the more general term generalized joint probability distribution
for X, ρ(x), which does not reflect the nature of X. In order to particularize
the definitions and theorems that appear below to multidimensional discrete,
continuous, or mixed random variables, it is enough to consider the nature of
the random variable involved.

Definition 1.14 Let ρ(x) be a generalized probability distribution for an n-
dimensional random variable X = (X1, ..., Xn). Let U = (U1, ..., Um) and
V = (V1, ..., Vn−m) be two proper subsets of X such that X = U ∪ V and
U ∩ V = ∅. Let Y = (Y1, ..., Yl) and Z = (Z1, ..., Zm−l) be two subsets of U

such that (i) U = Y ∪ Z and Y ∩ Z = ∅, and (ii) Y is an l-dimensional
continuous random variable and Z is an (m− l)-dimensional discrete random
variable. Then,

ρ(v) =

∫

R

...

∫

R

∑

z1

...
∑

zm−l

ρ(y1, ..., yl, z1, ..., zm−l, v1, ..., vn−m)dy1, ..., dyl

(1.5)
is a generalized joint probability distribution for V , which is referred to as the
generalized marginal joint probability distribution for V .

Again, it should be noted that in the theorem above Y = (Y1, ..., Yl)
and Z = (Z1, ..., Zm−l) are two subsets of U but not necessarily two proper
subsets. In other words, either Y or Z could be empty.

Definition 1.15 Let X = (X1, ..., Xn) and Y = (Y1, ..., Ym) be two multidi-
mensional random variables. Then,

ρ(x|y) =
ρ(x, y)

ρ(y)
(1.6)

denotes the generalized conditional joint probability distribution for X given
Y = y.

Note that the generalized conditional joint probability distribution ρ(x|y)
is only defined in the case that ρ(y) > 0.

Theorem 1. Let X = (X1, ..., Xn) be an n-dimensional variable. Then,

ρ(X) = ρ(x1, ..., xn) =

n
∏

i=1

ρ(xi|x1, ..., xi−1) (1.7)
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The proof of the theorem is trivial by considering the recursive application
of Definition 1.15. Theorem 1 is also known as the chain rule of probability.

Theorem 2. Let X = (X1, ..., Xn) and Y = (Y1, ..., Ym) be two multidimen-
sional random variables. Then,

ρ(x|y) =
ρ(y|x)ρ(x)

ρ(y)
(1.8)

The proof of the theorem can be derived from Definition 1.15. Theorem 2
is also known as Bayes’ theorem.

Definition 1.16 Let X = (X1, ..., Xn) and Y = (Y1, ..., Ym) be two multidi-
mensional random variables. X and Y are independent if

ρ(x|y) = ρ(x) (1.9)

for all Y = y.

Note that if X and Y are not independent, then they are dependent.
The independence assertion that states that X and Y are independent is
represented by CI(X; Y ) (or equivalently X ⊥ Y ) for the sake of brevity.

Definition 1.17 Let X = (X1, ..., Xn), Y = (Y1, ..., Ym) and Z = (Z1, ..., Zl)
be three multidimensional random variables. X and Y are conditionally in-
dependent given Z if

ρ(x|y, z) = ρ(x|z) (1.10)

for all Y = y and Z = z.

Consequently, note that if X and Y are not conditionally independent
given Z, then they are conditionally dependent given Z. As we are con-
cerned with probabilistic graphical models, we are essentially more interested
in conditional independencies than in conditional dependencies between ran-
dom variables (see Section 2.2.1 for further details).

The conditional independence assertion that states that X and Y are con-
ditionally independent given Z is represented by CI(X ; Y |Z) (or equivalently
X ⊥ Y |Z for the sake of brevity). On the other hand, the conditional depen-
dence assertion that states that X and Y are conditionally dependent given
Z is represented by CD(X; Y |Z). It should be noticed that (in)dependence is
a particular case of conditional (in)dependence in which Z = ∅. In the litera-
ture, these kinds of statements are simply known as independence statements.
However, the term conditional independence statement seems to be more ap-
propriate than the term independence statement as the latter is a special case
of the former. A set of conditional independence statements is referred to as
a conditional independence model (see Chapter 2). In the literature, condi-
tional independence models are simply referred to as independence models.
It should be noted that every generalized joint probability distribution for
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an n-dimensional random variable X = (X1, ..., Xn) encodes a conditional
independence model that can be obtained by means of the definition of condi-
tional independence. Also, the reader should note that every generalized joint
probability distribution for X consists of a complete, i.e. qualitative, as well as
quantitative, description of X. However, the conditional independence model
induced by a generalized joint probability distribution for X only represents
the qualitative description of X [Castillo et al. (1997)].

Theorem 3. Two multidimensional random variables X = (X1, ..., Xn) and
Y = (Y1, ..., Ym) are independent, i.e. CI(X ; Y |∅), if and only if

ρ(x, y) = ρ(x)ρ(y) (1.11)

Theorem 4. Two multidimensional random variables X = (X1, ..., Xn) and
Y = (Y1, ..., Ym) are conditionally independent given a third multidimensional
random variable Z = (Z1, ..., Zl), i.e. CI(X ; Y |Z), if and only if

ρ(x, y|z) = ρ(x|z)ρ(y|z) (1.12)

for all Z = z.

The proofs of both theorems can be directly obtained from the definitions
and theorems that have been introduced above.

1.4 Supervised classification

This section formally defines supervised classification by means of the concepts
described in the previous section.

An experimental domain, D, is determined by its associated probability
measure space, (Ω,F , P r). In order to model an experimental domain D, the
domain is quantified in terms of a set of random variables X. This is the
feature extraction step, and it is performed using expert knowledge. A clas-
sification domain is a domain defined in (X, C), where C and X are two
multidimensional random variables. C = (C1, ..., Cd) are said to be the class
variables (or classes) and X = (X1, ..., Xn) are the predictor variables (predic-
tors or features). The classification consists of modeling (learning or inducting)
a classification function (or classifier). This dissertation is not concerned with
the feature extraction step, thus, henceforth, we will call the random variables
(X, C) defined in the probability measure space (Ω,F , P r) the domain.

Definition 1.18 Let (X , C) be an (n + d)-dimensional mixed random vari-
able, with X = (X1, ..., Xn) an n-dimensional predictor variable and C =
(C1, ..., Cd) a d-dimensional class variable. A function defined from X to C

φX;C : X → C (1.13)

is called classification function or classifier for X on C.
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The set of all the possible classifiers for X on C is denoted as ϕX;C .
Henceforth, since the multidimensional predictor variable X and the multidi-
mensional class variable C should be clear from the context, we denote as φ
to a classifier for X on C, for the sake of brevity. Similarly, the entire set of
classifiers for X on C is referred to as ϕ.

A classifier is usually modeled from a set of cases (instances or samples)
S = {(x(1), c(1)), ..., (x(N), c(N))}. From here on, the sets will be denoted in
mathematical calligraphy. The data set used for learning a classifier is usually
named training set.

Definition 1.19 Let (X, C) be a multidimensional mixed random variable, a
data set S of (X, C) is a collection of instances (x, c), S = {(x(1), c(1)), ..., (x(N), c(N))}

We are interested in data sets of (X, C) with independent and identically
distributed (iid) samples (x(1), c(1)), ..., (x(N), c(N)). Samples that are drawn
independently from the same distribution are said to be iid. Note that under
iid assumption, the expectance of a function based on a mixed random variable
U ∈ (X, C) can be approximated as EU [g(U)] ≈ 1/N

∑N
i=1 g(u(i)) [Bishop

(2006)]. An iid data set of (X , C) can be generated by an independent random
sampling of (X, C).

The classifiers are automatically learned from a training set by means of
a classifier induction algorithm (learning algorithm or inductor).

Definition 1.20 Let (X , C) be an (n + d)-dimensional random variable,
where X = (X1, ..., Xn) is the n-dimensional predictor variable and C =
(C1, ..., Cd) is the d-dimensional class variable. A function defined as

AS
X;C : S → ϕX;C (1.14)

is called a classifier induction algorithm for X on C, where S is a training
set .

Since the multidimensional predictor variable X and the multidimensional
class variable C should be clear from the context, we denote as A to a classifier
induction algorithm for X on C for the sake of brevity.

The type of the classification problem is defined by the nature of the
random variable (X , C), and the type of training set used to learn the classi-
fication model for X on C. Classification problems with a multivariate class
variable, C = (C1, ..., Cd) with d > 1 are named multidimensional classifica-
tion problems, and with d = 1 unidimensional classification problems. This
document focuses on unidimensional classification problem.

If the class variable C is continuous, the problem is usually referred to
as regression. From here on we call supervised classification problems to
those with discrete class variable C having r different states (or classes),
c ∈ {c1, ..., cr}. When C is a mixed random variable, the problem is called
regression-classification problem. If a class variable is not explicitly defined for
the domain, i.e. d = 0, the problem is referred to as unsupervised classification.
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If the class variable C has missing values in the training set S, i.e. S is
not complete in C, the problem is usually named semi-supervised classifica-
tion. On the other hand, if S is complete in C, the problem is referred to
as supervised classification. Note that if there are missing values for the pre-
dictors X = (X1, ..., Xn), they are generally estimated using an imputation
algorithm. The imputation is normally included as a step in the preprocess
stage.

Definition 1.21 Let (X, C), with X = (X1, ..., Xn) and C = (C1, ..., Cd),
and a training set S = {(x(1), c(1)), ..., (x(N), c(N))} a classification problem
is considered unidimensional supervised classification problem if it satisfies
the following conditions:

1. C is a univariate, i.e. d = 1, discrete random variable, C, with r states,
c ∈ {c1, ..., cr}.

2. S is complete in C.

From here on we consider only unidimensional supervised classification
problems with a complete training set S in X, and we simply call them su-
pervised classification. Moreover, this dissertation is interested in supervised
classification problems with X being a multidimensional mixed random vari-
able.

1.5 Decision theory

This section introduces some concepts of decision theory [Duda et al. (2000);
Bishop (2006)]. These concepts, combined with probability theory, allow us
to make optimal decisions in situations involving uncertainty when ρ(x, c) is
known.

As we noted before, the goal of supervised classification is to construct
a classifier φ which predicts c given an unlabeled instance x, i.e. with an
unknown class label c. An intuitive approach involves two steps, the inference
and the decision. Inference step consists of determining the generalized joint
probability distribution for (X , C), ρ(x, c), which gives us the most complete
probabilistic description of the domain. Although the determination of the
joint distribution can be very useful and informative, in the end we must
decide what class to assign to a new unlabeled instance. This is the decision
step, and the subject of decision theory is to tell us how to make optimal
decisions given the appropriate probabilities.

If our aim is to minimize the chance of assigning an unlabeled sample to
the wrong class, then intuitively we would choose the class having the highest
posterior probability. We now consider an intuitive measure of performance
called classification error, p(φ(X) 6= C), and we show that this intuition is
correct for this score.
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1.5.1 Classification error and decision boundaries

The classification error (or prediction error) ǫ of a classifier φ of X = (Y , Z)
on C, where Y and Z are multidimensional discrete and continuous random
variables respectively, is defined as the probability of making a mistake using
φ for classifying:

ǫ(φ) = p(φ(X) 6= C)

= E(X,C)[1(φ(X); C)]

=
∑

y

∫

R

∑

c 6=φ(x)

ρ(y, z, c)dz

=
∑

y

∫

R

ρ(y, z)
∑

c 6=φ(x)

p(c|y, z)dz (1.15)

where ρ(x, c) is the true underlying joint probability function of the domain,
and 1(c, c′) = 0 when c = c′ and 1(c, c′) = 1 in the other case. This score
is the most popular classification performance measurement. Henceforth, in
this section we will consider X = Z as a multidimensional continuous random
variable for the sake of simplicity. The provided expressions can be generalized
to a mixed random variable X by replacing the integrals associated to the
discrete part Y by sums.

A classifier φ divides the input space ΩX into disjoint regions Ri called
decision regions, one for each class, such that all points in Ri are assigned to
class ci

Ri = {x : φ(x) = ci} (1.16)

The boundaries between decision regions are called decision boundaries
[Bishop (2006)]. We can redefine the classification error by means of decision
regions as follows:

ǫ(φ) =
∑

ci

ǫRi(φ)

=
∑

ci

∫

Ri

∑

cj 6=ci

ρ(x, cj)dx

=
∑

ci

∫

Ri

f(x)
∑

cj 6=ci

p(cj |x)dx (1.17)

where ǫRi(φ) =
∫

Ri

∑

cj 6=ci ρ(x, cj)dx is the error associated to the decision
region Ri defined by the classifier φ. From Equation 1.17, it is easy to demon-
strate that the minimum classification error is obtained if each value of x is
assigned to the class for which the posterior probability p(c|x) is largest, i.e.
Bayes classifier. This is known as winner-takes-all rule (or Bayes rule). These
concepts are illustrated in Figure 1.1 for two classes, and a single predictor
variable.
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Fig. 1.1. This figure illustrates the equivalence of the decision rules argc max p(c|x)
and argc max ρ(x, c). The vertical black lines, denoted as b1 and b2, are the decision
boundaries determined by the Bayes classifier, φB. The decision boundaries delimit
the optimal decision regions R0 and R1 associated to the class C = 0 and C = 1,
respectively. Following Definition 1.17, the error ǫ can be decomposed by regions
as ǫB = ǫR0 + ǫR1 , where ǫR0 =

R

R0
ρ(x, C = 1)dx and ǫR1 =

R

R1
ρ(x,C = 0)dx.

The error components ǫR0 and ǫR1 are the surfaces marked in grey and black,
respectively. Otherwise, a suboptimal classifier φ determines the suboptimal decision
boundary, b3, represented by a dashed vertical line. The boundary b3 delimitates two
suboptimal regions denoted as R̂0 and R̂1, which are associated to the class C = 0
and C = 1, respectively. The suboptimal classifier φ increases the error with respect
to φB in ǫ+ = ǫ(φ)− ǫ(φB) =

R

R̂1∩R0
ρ(x,C = 0)−ρ(x, C = 1)dx+

R

R̂0∩R1
ρ(x,C =

1) − ρ(x,C = 0)dx.

1.5.2 Expected loss

For many real world domains the minimization of the prediction error is not
convenient because the consequences of different types of mistakes can be dra-
matically different. For example, let us consider a cancer diagnosis problem. If
a patient who does not have cancer is incorrectly diagnosed as having cancer,
the consequences may cause some stress for the patient. Conversely, if a pa-
tient with cancer is diagnosed as healthy, the result may be premature death
due to the lack of treatment.

The differences in the error cost are formalized by means of a loss function
L:

L : (c, φ(x)) → R

(ci, cj) → Li,j
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Suppose that, for a new unlabeled sample x, the true class is ci and the
predicted class is cj . This prediction incurs in some level of loss that we
denote by Li,j , which can be viewed as the (i, j) element of a loss matrix. Note
that Li,i = 0. The optimal prediction can be reformulated as the one which
minimizes the expected loss. The expected loss is given by the expectance of
the loss function L:

ǫL(φ) =
∑

∀ci

∑

∀cj

∫

Rj

Li,jρ(x, ci)dx (1.18)

Note that the classification error is the particular case of expected loss when
Li,j is constant for all i 6= j (0-1 loss function).

The goal is to choose the regions Rj in order to minimize the expected loss.
The minimization of the expected loss implies that for each x the selected
class φ(x) = ci should minimize

∑

cj 6=ci Li,jρ(x, cj), which is equivalent to

minimize
∑

cj 6=ci Li,jp(cj |x). This leads to the weighted winner-takes-all rule:

cB = argcimin
∑

cj 6=ci

Li,jp(cj|x) (1.19)

The classifier that uses the true underlying joint probability ρ(x, c) together
with the weighted winner-takes-all rule for classifying new unlabeled instances
is the weighted Bayes classifier, φB(x) = cB. Given a loss function L, the asso-
ciated Bayes classifier achieves the smallest possible expected loss. Note that
under 0-1 loss functions, the weighted winner-takes-all rule is equivalent to the
winner-takes-all rule. From here on, since this dissertation is not concerned
with decision theory we will consider only 0-1 loss functions.

1.6 Generative, conditional and discriminative learning

In Section 1.5 we suggest an intuitive approach for learning a classifier which
consisted of two stages: inference and decision. Depending on how the steps of
the learning process are performed, three approaches could be distinguished:
generative, conditional and discriminative learning [Jebara (2004)]. Next, we
briefly introduce the three approaches highlighting their relative merits.

Generative learning solves the problem of estimating the underlying gen-
eralized joint probability distribution, ρφ(x, c). Then marginalizing and con-
ditioning we can obtain:

pφ(c|x) =
ρφ(x, c)

∑

c′ ρφ(x, c′)

=
ρφ(x, c)

ρφ(x)
(1.20)

Taking into account that ρφ(x) is constant for all c we can obtain pφ(c|x)
normalizing the joint distribution for each x, pφ(c|x) ∝ ρφ(x, c). Finally,
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based on the conditional probability distribution obtained pφ(c|x) and insert-
ing it into weighted winner-takes-all rule (Equation 1.19), the class label c is
determined for each x.

φ(x) = argcimin
∑

cj 6=ci

Li,jpφ(cj |x) (1.21)

Note that Figure 1.1 summarizes all this process for one predictor, from
the joint generalized probability distribution ρ(c, x) to decision regions, R0

and R1. Approaches that explicitly or implicitly model the joint generalized
joint probability distribution, ρ(X , C), are known as generative models. Ex-
amples of generative learning are the classifiers based on Bayesian networks
(see Chapters 2, 3 and 4) or Parzen window classifier (see Chapter 4).

Conditional learning solves the problem of estimating the conditional
joint probability distribution pφ(c|x) ≈ p(c|x) and, then, it is plugged-in
weighted winner-takes-all-rule (Equation 1.19) for inducting the classifier.
Classifier induction algorithms that model the posterior probabilities directly
are called conditional learning. Many authors consider this approach discrimi-
native [Pernkopf and Bilmes (2004); Santafé et al. (2005)]. For example, some
Bayesian networks based classifiers (see Chapter 5) and logistic regression can
be considered conditional approaches.

Finally, discriminative learning performs the inference and decision steps
at the same time. It finds a classification function φ(x) which maps each in-
put x onto a class label c, i.e. discriminative learning directly determines the
decision boundaries. In this case, probabilities play no role. Linear discrim-
inant analysis and support vector machines are examples of discriminative
classifiers.

Generative approach is the most demanding (in terms of number of param-
eters) because it involves the estimation of the joint distribution. For many
applications, x will have high dimensionality, and consequently we may need
a large training set in order to be able to determine the class conditional
densities to reasonable accuracy (see Section 1.11). On the other hand, some
advantages can be considered with respect to conditional and discriminative
learning. It is possible to generate synthetic data representative of the do-
main by sampling a generative model because it is based on an approach
of the joint generalized probability distribution, ρφ(x, c) ≈ ρ(x, c). Besides,
generative approach allows the marginal density ρ(x) to be approached by
marginalization of ρφ(c, x) over C. This can be useful for outlier detection,
that is new unlabeled cases that have low probability ρφ(x), and for which the
predictions may be of low accuracy. However, if we only wish to make classifi-
cation decisions, we only really need the posteriori probabilities pφ(c|x) which
can be directly obtained using the conditional learning.

The simplest approach (in terms of the number of parameters) is the dis-
criminative learning in which we use the training data to find a discriminant
function, i.e. a set of decision boundaries. However, the optimization of the
parameters in discriminative approaches tends to be harder (computationally)



20 1 Supervised classification

than in the generative approach. Besides, discriminative approach does not
have available the posterior probabilities, pφ(c|x), and this knowledge could
be useful in the following situations:

• When the elements of the loss matrix are evolving from time to time. If
we have only a discriminant function, then any change to the loss matrix
would require to relearn the classification problem given by the new loss
matrix (see Section 1.9.2).

• Posterior probabilities allows us to determine a rejection criterion τ for
which an unlabeled sample x is not classified if ∄c : pφ(c|x) > τ .

• When the classes are unbalanced. On one hand, if the posterior probability
is unknown, we could generate a balanced training set from the original
training set and, then, learn the model using the discriminative learning.
On the other hand, if the posterior probability distribution is known we
can simply multiply the modeled a posteriori probability pφ(c|x) by the
balanced a priori pb(c) and then divide by the unbalanced one pu(c). Fi-
nally we need to normalize a posteriori distribution pφ(c|x) to ensure that
the new posterior probabilities sum to one, pb

φ(c|x) ∝ pb(c)/pu(c)pφ(c|x).
• For combining different models. In complex classification applications, of-

ten the problem is divided into smaller classification subproblems. For
example, given a classification problem in a domain described by p(x, c)
the problem can be divided into subproblems in the sub-domains {U , C},
{V , C} and {C}, where U ∪ V = X and U ∩ V = ∅. Three probabilistic
models can be created for each sub-domain, φU ;C , φV ;C and φ;C . As long
as each of the models gives posterior probabilities, pφU;C (c|u), pφV ;C (c|v)
and pφ;C (c), we can combine the outputs systematically using the rules of
probability. One simple way is to assume class conditional independence
between U and V given the class C and combine the conditional proba-
bilities as pφX;C (c|u, v) = pφU;C (c|u)pφV ;C (c|v)/pφ;C(c) ≃ p(c|u, v).

For further details in generative, conditional and discriminative learning
the reader may consult [Jebara (2004); Bishop (2006)].

1.7 Estimation theory

This section tries to briefly introduce some concepts of estimation theory
which are useful for the understanding of this document. We have decided
to introduce these concepts for unidimensional parameters for the sake of
simplicity. But, it should be noted that the parameter in its most general
form is a multidimensional value.

Estimation theory tries to guess a magnitude (or parameter) θ from a set
of nosy observations (samples or instances), S = {x(1), ..., x(N)}, where X is a
multidimensional mixed random variable for the sake of generality. We do not
have direct access to θ parameter but it is assumed that it has some functional
relationship with the collected observations. All the estimators provided in this
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dissertation assume that the observations, x(i), are independent and identically
distributed (iid).

In the general sense, a parameter θ is a function of the generalized joint
probability distribution for X, ρ(x). A statistic Θ̂ that is used to estimate θ
is called an estimator of θ. The estimator Θ̂ is an observable function of the
data S, θ̂ = Θ̂(S), where θ̂ is the estimation (or estimated parameter) and S
depends on the true θ. It should be noted that the data S can be considered a
random variable, whose generalized probability distribution is given by ρ(S) =
∏N

i=1 ρ(x(i)). Thus, assuming that S is observable, Θ̂(S) can be considered a

random variable derived from the data variable S. Let us assume that Θ̂ is
a continuous random variable for the sake of simplicity, then its probability
density function is defined as f(Θ̂ = θ̂) = fΘ̂(θ̂) =

∑

S|Θ̂(S)=θ̂ ρ(S).

The quality of the estimator Θ̂ can be given in probabilistic terms because
Θ̂ is a random variable. The deviation (or error) of an estimation Θ̂(S) = θ̂ is

given by ∆Θ̂ = θ − θ̂ and, hence, ∆Θ̂ is also a random variable. The average

of ∆Θ̂ is known as the bias of the estimator Θ̂, δΘ̂ = ES [∆Θ̂]. Thus, the mean

value of an estimator can be decomposed as E[Θ̂] = ES [θ−∆Θ̂] = θ−δΘ̂. The
bias can be understood as the average maladjustment or fitness error of the
estimator. It can be positive, negative or zero. If, on average, an estimator has
bias equal to zero, it is said to be an unbiased estimator. On the other hand,
the variance of an estimator is defined as σ2

Θ̂
= E[Θ̂2] − E[Θ̂]2. The variance

of an estimator can be understood as the average sensitivity to changes in the
observations set, S, used to perform the estimation. The variance can be used
as a measure of instability of the estimations. In general, the variance of an
estimator σ2

Θ̂
cannot be considered completely independent from θ, because

the values Θ̂ = θ are given by S, S is obtained by randomly sampling ρ(x),
and θ is deterministically given by ρ(x). An estimator is called efficient if it
has minimum variance.

As we will note in Section 1.8.2, in order to perform powerful comparisons
between classifier induction algorithms, the variance of the performance esti-
mator used in the experimentation is crucial. Figure 1.2 shows an example of
the distribution of two estimators Θ̂1 and Θ̂2.

Intuitively, a desirable property for an estimator is to have good fitness
and low sensitivity to changes in S and, so, we are interested in low biased es-
timators with low variance. The estimators with low bias and variance obtain
precise and stable estimations of the required parameter. As we will see in
Section 1.8.2, the bias and the variance are used in order to evaluate the qual-
ity of the error estimators. The following heuristic for choosing an appropriate
estimator can be used

• Given two estimators equally biased, choose the estimator with lower vari-
ance.

• Given two estimators with equal variance, choose the estimator with lower
bias.
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Fig. 1.2. This figure shows the distributions of two estimators of the parameter θ,
Θ̂1 and Θ̂2, indicating their respective biases δΘ̂1

and δΘ̂2
, and deviations σΘ̂1

and
σΘ̂2

, where the standard deviation is defined as the square root of the variance. The

figure shows that the estimator Θ̂1 has higher bias and lower variance than Θ̂2.

These heuristics can be understood from the mean squared error point of
view, which is given by MSE(Θ̂2) = E[∆2]. The error can be decomposed
into bias and variance terms as follows

MSE(Θ̂2) = δ2
Θ̂

+ σ2
Θ̂

(1.22)

Thus the mean squared error depends on both bias and variance. Given
two estimators equally biased, the difference of their mean square errors is
the difference between the variances. On the other hand, given two estimators
with equal variance, the difference between their mean square error is the
difference between their squared biases.

Usually, estimators are based on a set of assumptions. For example, as
we noted before, all of the estimators presented in this document assume
that the samples provided for estimating, S, are independent and identically
distributed. The (useful) assumptions made by an estimator allow to more ef-
ficiently extract information from data, provided they are true. For example,
if an estimator assumes that the underlying distribution of the data is nor-
mally distributed and it is true, the estimator could reduce its variance with
respect to a similar estimator without normality assumption. On the other
hand, when the data is far from the assumptions, the estimator will extract
incorrect information from the data, and the estimator could increase its bias.
Normally, the assumptions are related with the nature of the underlying dis-
tribution of the data. An estimator which assumes that the data comes from
a parametric distribution family is named as parametric, and, on the other
hand if the estimator does not assume any particular parametric family of
distributions, it is called non-parametric.
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For further details on estimation theory the reader may consult [Dudewicz
and Mishra (1988)].

1.8 Error estimation, comparison and analysis

This section includes some estimators of the classification (or prediction) error
(see Equation 1.15), some statistical tools for the comparison of classifiers
based on the estimated errors and, finally, a tool for analyzing the sources of
the error.

1.8.1 Classification error estimation

We are interested in estimating the generalization capability of a classifier or
a classifier induction algorithm. The generalization capability could be intu-
itively defined as the aptitude that allows to correctly classify instances that
have been not used for training the model. It could be thought to be the oppo-
site to overfitting, the skill of learning by heart the instances used for training
the model. Generalization capability is a desirable property for any classifier.
The generalization capability can be measured in terms of performance scores,
such us those described in Section 1.9.

However, this section focuses on classification (or prediction) error (see
Equation 1.15), because it is one of the most simple and intuitive performance
measures. Through this subsection, we introduce some pointwise classification
error estimators. It should be noted that the same estimators can be used for
estimating other quantities that depend on a training-test procedure using
data samples. For example, they can be used to estimate different measures of
the performance of a classifier or to estimate the likelihood of a discretization
policy, where both the classifier and the discretization policy are learned from
a training set.

In this section, depending on the purpose of the experimentation, we con-
sider two interrelated error estimation problems: classifier evaluation problem
and algorithm evaluation problem. Both problems are introduced in terms of
discrete predictors, X, for the sake of simplicity.

In the classifier evaluation problem, we want to estimate the prediction
error of a particular classifier, φ, which has been learned from an iid data
set, SN , obtained by a random sampling of p(x, c), using a classifier induction
algorithm, A(SN ) = φ. The error of a particular classifier trained in SN using
the algorithm A is denoted as ǫSN (A), or simply as ǫSN when the algorithm
is clear from the context, and it is given by.

ǫSN (A) = ǫ(φ = A(SN )) (1.23)

It can be considered an application oriented evaluation because in appli-
cations we are interested in finding the best algorithm to solve a task at hand,
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specified by a particular training set SN and some information about the data
generating process. It can be thought of as an application based evaluation,
because the goal of an application usually consists of selecting the best clas-
sifier learned from the data set SN . Sometimes, prediction error is also called
conditional error [Braga-Neto (2005)] because the classifier is trained in a
particular data set of size N , SN .

On the other hand, in algorithm evaluation problem, we are not really
interested in the performance of a specific classifier induced from a particular
training set, SN . Thus, we are concerned with the sensitivity of the learning
algorithm to the choice of the training set. So, we will take into account a set
of training sets rather than a single one SN : the set of all training sets of size
N . Since the prediction error, ǫ(A(SN )), is a function of the random variable
SN , it can be thought of as a random variable. The prediction error ǫ(A(SN ))
is distributed according to the probability distribution p(ǫ(A(S)) = e) =
∑

SN |ǫ(A(SN))=e p(SN ), where p(SN ) =
∏N

i=1 p(x(i), c(i)). Then, we can define
the expected prediction error as the expectation of the error of a classifier
trained with sample sets of size N , using the inductor A, and it will be denoted
as ǫN(A) or simply as ǫN when the inductor algorithm is clear from the
context:

ǫN (A) = ESN [ǫSN (A)]

=
∑

SN

p(SN )ǫ(A(SN )) (1.24)

The subscript N is used to differentiate the expected classification er-
ror, ǫN , from classification error, ǫSN . Expected prediction error is sometimes
called unconditional error since it does not depend on a particular training
set because it considers all SN [Braga-Neto (2005)]. It should be noted that
both problems are closely related and ǫSN can be used as an estimate of ǫN .

Note that in both problems the number of cases is treated explicitly be-
cause the size of the training set has a high impact on the prediction error. It
is well known that both errors ǫSN and ǫN tend to decrease as the size of the
training set increases. For instance, the consistent classifiers, such us Parzen
window or k-nearest neighbor classifiers, converge (under mild conditions) to
Bayes classifier as the number of cases goes to infinity.

When the data distribution p(x, c) is unknown, both ǫSN and ǫN cannot
be computed. They have to be estimated from the observed data, SN . Both
problems consist of estimating a single unknown value using a single training
set, SN (see Section 1.7). But, often, it is crucial to assess the uncertainty
attached to this estimation, which can be also measured in terms of variance.
In application-oriented experiments, the variance can be used to give a confi-
dence interval on the error associated to the model learned from SN , ǫSN . On
the other hand, in algorithm-oriented experiments, it is important to give a
measure related to the degree of (in)stability of the induction algorithm, A,
which can be also measured in terms of variance. The degree of (in)stability
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is essential to perform comparisons between both classifiers and algorithms,
as we will see in Section 1.8.2.

The estimators of the error presented will be based on the following esti-
mator of the error

ǫ̂(A(S) = φ; T ) =
1

|T |
∑

(x,c)∈T
1(φ(x), c) (1.25)

where A is the classifier induction algorithm, S is the training set, φ is
the classifier inducted from S using A, T is the test set, and 1(i, j) = 1
iff i 6= j and zero otherwise (0-1 loss function). Usually, the error estima-
tors consist of a procedure for generating a set of pairs training-test data
{(S(1), T (1)), ..., (S(k), T (k))}. A classifier is learned from training set S(i) and,
then, the error of the learned classifier in the generated test set is computed
ǫ̂(i) = ǫ̂(A(S(i)); T (i)). The estimated error ǫ̂ is usually given by an appropri-
ate statistic over the computed intermediate errors {ǫ̂(1), ..., ǫ̂(k)} taking into
account the procedure used for generating the pairs training-test. For exam-
ple, as we will see later, most of the error estimators perform an average of
the intermediate errors.

The section is divided in four parts. Section 1.8.1.1 shows some useful in-
tuitions about the bias and variance of the error estimators provided through
this section. Then, Section 1.8.1.2 and Section 1.8.1.3 present a set of es-
timators of the error taking into account their appropriateness to big and
medium-small sample sizes, respectively. We consider that a small sample size
has less than 100 instances and a big sample size more than 5000. When the
number of instances is between 100 and 5000 we say that the sample size is
medium.

1.8.1.1 Bias and variance

We consider in this subsection some intuitions behind the bias and variance of
the error estimators which will be presented in the following two subsections.
These concepts will allow to intuitively understand the theoretical properties
of the estimators introduced.

An error estimator is said to be optimistic when it has a positive bias,
i.e. on average it estimates an error lower than the true error, and pessimistic
when it has negative bias. Figure 1.2 shows an example with two estimators Θ̂1

and Θ̂2. Let us consider Θ = ǫ, then Θ̂1 and Θ̂2 are optimistic and pessimistic
error estimators respectively. Usually, the error estimators can be optimistic
due to an overlap between each test set T (i) and its corresponding training set
S(i), and to the overfitting of the classifier induction algorithm. For example,
a complete optimistic estimator for nearest neighbor classifier [Devroye et al.
(1996)] is the resubstitution estimator (see Paragraph A. in Section 1.8.1.2).
When the test set T (i) shares some instances with its corresponding training
set, S(i), we say that there exists a training-test dependence. On the other
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hand, they can be pessimistic because the generated training set sizes S(i) are
smaller than the original data set SN and they could contain less information
than SN . These intuitions will be useful to understand the nature of the
estimators given in Section 1.8.1.3.

Now we will focus our attention on the variance over the computed errors.
A low variance is crucial for making stable comparisons between classifiers
(see Section 1.8.2), and it is a desirable property for an estimator in general.
Besides, it is advisable to provide the variance as an indicator of the uncer-
tainty around the obtained estimation. The variance can be overestimated
or underestimated. Usually, the computed variance can be underestimated
due to the dependence between the computed errors, which are supposed
to be i.d.d. samples. The dependence between the computed errors comes
from the overlapping among the different pairs training-test (S(i), T (i)) and
(S(j), T (j)), S(i) ∩S(j) 6= ∅ and T (i) ∩T (j) 6= ∅. If the cases are shared by the
generated training sets, S(i) ∪ S(j) 6= ∅ (training-training dependence), the
obtained classifiers could be dependent and, thus, the computed errors could
be also dependent. Otherwise, if the cases are shared by the generated test
sets, T (i) ∪ T (j) 6= ∅ (test-test dependence), the obtained errors {ǫ̂(1), ..., ǫ̂(k)}
could be dependent because each intermediate error ǫ̂(i) consists of an average
over the instances contained in its corresponding test set T (i) (see Definition
1.25).

1.8.1.2 With big sample size

This subsection presents two simple estimators based on a single pair training-
test, (S, T ). Both estimators are appropriate for large training sets due to their
simplicity and low computation requirements. On the contrary, the variance of
both estimators in small to medium data sets tends to be prohibitive because
the estimators are constructed by training a single model.

If the amount of data is large enough, the variance of an estimator based on
a single pair training-test, ǫ̂, can be estimated as σ̂2

ǫ̂ = 1/|T |∑(x,c)∈T (1(φ(x); c)−
ǫ̂)2, where φ = A(S) and |T | is the size of the test set, T . This variance is useful
to quantify the uncertainty surrounding an estimation of the prediction error
ǫS . But estimators based on a single pair training-test do not account for the
variance with respect to the training set and, thus, they may be considered
inappropriate to quantify the uncertainty surrounding an estimation of the
error, i.e. it tends to underestimate the true variance. Therefore, they may
be considered not suitable for the purpose of the expected prediction error
estimation, ǫN , or for comparing induction algorithms [Dietterich (1999)].

A. Resubstitution

Resubstitution [Devroye and Wagner (1979)] consists of training a classifier
using the available data SN and computing the error in the test set SN using
Equation 1.25. The estimation process is summarized as follows
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SN → (SR, TR) → ǫ̂R = ǫ̂(A(SR), TR) (1.26)

where SR = TR = SN , ǫ̂(·) is the simple estimator defined in Equation 1.25,
and ǫ̂R is the resubstitution error estimation.

This estimator tends to be optimistic due to its strong training-test depen-
dency because SR = TR. Clearly, the estimator tends to be more optimistic
as the overfitting of a classifier increases. For example, the extreme case of
nearest neighbor induction algorithm, ANN , trained in SN and tested in the
same data obtains zero error, ǫ̂(ANN (SN ),SN ) = 0. Besides, resubstitution is
an estimator with a high variance because the estimated error depends on a
single value determined from the particular data set available SN .

B. Holdout

Holdout estimator [Larson (1931); Horst (1941)] tries to avoid the overfitting
problem of resubstitution estimator following a similar procedure, that is,
based on a single training-test pair. It splits the available data into a disjoint
pair training-test, SN → (SH , TH) where SH ∪ TH = SN and SH ∩ TH = ∅.
Typically, training set contains |SH | = 2/3N instances while the size of the
test set is |TH | = 1/3N . The estimation process is equivalent to the process
described in Equation 1.26 with different training-test pair, (SH , TH). The
holdout estimator of the error is given by

ǫ̂H = ǫ̂(A(SH ), TH) (1.27)

where ǫ̂(·) is defined in Equation 1.25.
This estimator avoids the complete training-test dependency of resubsti-

tution estimator by splitting the original data into disjoint training and test
sets SH and TH . But, it is known that the error of a classifier tends to de-
crease as the training set size increases, because more information could be
obtained from the data. Thus, the holdout estimator tends to be pessimistic
because the size of the training set generated, SH , is smaller than N (typi-
cally 2/3N). On the other hand, holdout tends to have more variance than
resubstitution because the learned classifier is tested in only |TH | = 1/3N
cases, while resubstitution tests the learned classifier in the entire available
data SN .

1.8.1.3 With small and medium sample sizes

This section introduces the most popular estimators for the machine learning
community. They are based on a set of pairs training-test {(S(1), T (1)), ...,
(S(k), T (k))} rather than in a single pair (S, T ) and in the assumption of
stability of the classifiers obtained using the inductor A. The training-test
pairs are usually generated by sampling the available data, SN .

The estimation process usually consists of an iterative process of train
and test classifiers for each generated pair training-test, (S(i), T (i)), and then,
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averaging the obtained partial errors to compute the final estimator. Thus,
instead of using a single classifier learned from a single training test, these es-
timators are based on O(k)∗ different classifiers, {A(S(1)), ..., A(S(k))}, which
are related and dependent, i.e. they are learned using the same algorithm A
and the training sets {S(1), ...,S(k)} usually shares some of their instances,
S(i) ∩ S(j) 6= ∅. The use of different models {A(S(1)), ..., A(S(k))} closely re-
lated to the classifier that we are interested in, φ = A(SN ), could allow to
better study its generalization capability. Summarizing, the estimators pre-
sented in this subsection could exploit the information implicit in the available
data SN in a more efficient way than resubstitution and holdout estimators
presented in the previous subsection.

The estimators based on repetitions assume that the classifier induction
algorithms are stable in the data set SN . Moreover, they suppose that the
process of generation of pairs training-test should closely approximate the
real world.

The main difference between the provided estimators consists of the pro-
cess of generating the training-test pairs and the computation of the error.
All of the estimators of this subsection are appropriate for small and medium
size data sets and it is advisable to use them in large data sets when the
computational requirements are not prohibitive. Besides, we recommend the
use of repeated k-fold cross validation, bootstrap and bolstered for small size
data sets.

On the other hand, there is a test-test dependence due to T (i) ∩ T (j) 6= ∅
for all i 6= j. Thus, the estimated intermediate errors {ǫ̂(1), ..., ǫ̂(k)} could be
dependent and, thus, the variance associated to the estimated error could be
underestimated.

A. Repeated holdout

Repeated holdout estimation is based on iterating a random holdout process
k times with different training-test splits (S(i), T (i)) of constant size. Then,
it computes the estimated error as the average of the obtained intermedi-
ate errors. The process of repeated holdout estimator can be summarized as
follows:

SN → {(S(1), T (1)), ..., (S(k), T (k))} → {ǫ̂(1), ..., ǫ̂(k)} → ǫ̂RH = 1/k
k
∑

i=1

ǫ̂(i)

(1.28)
where (S(i), T (i)) is the i-th training-test pair, S(i)∪T (i) = SN , S(i)∩T (i) = ∅
and ǫ̂(i) = ǫ̂(A(S(i)), T (i)).

∗ In this work, O(·) expressions denote complexity orders, sometimes in terms of
time (or operations) and sometimes in terms of number of parameters. The ex-
pression “f is O(g)” indicates that, in the worst case, f is bounded tightly by g
asymptotically [Cormen et al. (2003)].
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In contrast to holdout estimator, repeated holdout reduces the variance
of the estimator, but the repeated version maintains at the same time the
negative (pessimistic) bias of the simple holdout estimator. The reduction of
the variance is due to considering different splits of the available data into
training-test pairs rather than a single one, reducing the dependence from a
particular split.

B. k-fold cross-validation

The estimator k-fold cross-validation (k-cv) [Hills (1966); Anscombe (1967);
Lachenbruch and Mickey (1968); Cochran (1968); Stone (1974); Burman
(1989); Burman et al. (1994); Efron and Tibshirani (1995); Droge (1996);
Braga-Neto and Dougherty (2004); Bengio and Grandvalet (2004, 2005)]
improves repeated holdout estimator by creating more appropriate pairs
training-test. The procedure consists of randomly creating a mutually ex-
clusive partition of the data P = {P(1), ...,P(k)}, where P(i) ∩P(j) = ∅ for all

i 6= j,
⋃k

i=1 P(i) = SN and each P(i) has equal size when possible |P(i)| ≈ N/k.
Then, the pairs training-test (S(i), T (i)) are created, where S(i) =

⋃

j 6=i P(j)

and T (i) = P(i). We said that these pairs are more appropriate than those
used by repeated holdout because (i) all instances in SN are used only once
for testing (ii) the test sets are disjoint T (i)∩T (j) = ∅ for all i 6= j. However, it
still has a big dependence between training sets, specially for values of k > 2.
The process of k-cv can be summarized as follows

SN → P = {P(1), ...,P(k)} → {(S(1), T (1)), ..., (S(k), T (k))} →
→ {ǫ̂1, ..., ǫ̂k} → ǫ̂kfcv = 1/k

∑

ǫ̂i (1.29)

where ǫ̂i = ǫ̂(A(S(i)) = φi, T (i)). So the k-cv error estimator is the average
of the errors committed by the classifiers φi = A(S(i)) in their respective test
sets T (i).

On the other hand, many works have assessed the difficulties of estimating
the variance [Dietterich (1999); Kohavi (1995a); Nadeau and Bengio (2003)].
The difficulties come from the fact that k-cv produces intermediate dependent
errors {ǫ̂1, ..., ǫ̂k} mainly due to the training-training dependencies. Moreover,
it has been demonstrated that there is no unbiased estimator of the variance
of k-cv [Bengio and Grandvalet (2004)]. For a set of corrected estimators of
the variance the reader should refer to Nadeau and Bengio (2003).

The most popular k value for k-cv estimator is k = 10. With k = 2
we obtain the most independent intermediate errors ǫ̂i because not only test
sets but also training sets do not share any instance among them. Note that
the training sets share (k − 2)/kN instances. With k = N the estimator is
usually named leaving-one-out (LOO) estimator [Mosteller and Tukey (1968);
Fukunaga and Hummels (1989); Kohavi (1995a)] which is supposed to slightly
decrease the variance of k-cv for k = 10 at the expense of higher computa-
tion requirements, specially when the classifier induction algorithm used is
computationally intensive.
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The k-cv estimator has a negative bias (pessimistic) because the intermedi-
ate classifiers φi = A(S(i)) are learned from training sets S(i) of size (k−1)N/k
rather than N . Alternatively, a k-cv error estimator is an unbiased estimator
of the expected prediction error on data sets of size N −N/k, ǫN−N/K , [Ben-
gio and Grandvalet (2005)] but it is biased for the expected prediction error
on data sets of size N , ǫN [Braga-Neto and Dougherty (2004)]. Recently, an
study of the sensitivity of k-cv estimator has presented in [Rodŕıguez et al.
(2009)]. This work analyzes the effect of two sources of variability in the bias
and variance of k-cv estimator: changes in the available data and changes in
the generated partitions. The study suggest the use of repeated k-cv estimator
in order to reduce the variance.

The k-cv estimator has a variance somewhat lower than repeated hold-
out due to the procedure for creating training-test pairs, which regulates the
number of instances shared by the training sets (training dependence). But
in many situation its variance is still considered too high.

In order to reduce the variance of k-cv estimator, two useful approaches
should be highlighted. It is advisable to perform a stratified k-fold cross-
validation which differs from k-cv in the creation of the partitions P =
{P1, ...,Pk}. The partitions are generated in a supervised way, that is, taking
into account the class of the instances in the data SN . The created stratified
partitions Pi, and therefore each training-test pair, contain approximately the
same proportion of classes as the original data sets SN . The stratification re-
duces the variance of k-cv in general, without increasing the computational
requirements of the estimator.

The second approach consists of repeating m times the k-cv estimator for

different partitions {P(1), ...,P(m)}, where P(i) = {P(i)
1 , ...,P(i)

k }. The esti-
mator constructed by averaging the m different errors estimated by k-cv for
different partitions is called m-repeated k-fold cross-validation. It is supposed
that the repeated version stabilizes the error estimation and it could reduce
the variance of the k-cv estimator [Rodŕıguez et al. (2009)], specially with
small data sets [Kohavi (1995b)]. Note that both stratification and repetition
can be performed at the same time for variance reduction. This estimator
reduces the variance of k-cv estimator at the expense of multiplying the com-
putational requirements of k-cv by m, where m is the number of repetitions.

C. Bootstrap

There are different bootstrap estimators. In this paragraph we will consider
the 0.632 bootstrap estimator [Efron and Gong (1983)]. This estimator is based
on pairs training-test. In order to create the pairs, this estimator performs a
random sampling of the empirical distribution or, in other words, it samples

with replacement the available data SN . The pairs (S(i), T (i)
h ) consist of a

training set S(i) of size N obtained by sampling SN with replacement, and a

disjoint test sets, T
(i)
h = SN \S(i). From the sets of pairs the set {ǫ̂(1)h , ..., ǫ̂

(k)
h }

of errors is obtained, where ǫ̂
(i)
h = ǫ̂(A(S(i)), T (i)

h ) could be considered the



1.8 Error estimation, comparison and analysis 31

intermediate holdout errors. Then, the 0.632 bootstrap estimator is obtained

by first averaging the intermediate holdout errors ǫ̂h = 1/k
∑k

i=1 ǫ̂
(i)
h , and

then, computing the weighted average ǫ̂.632 = 0.368ǫ̂r + 0.632ǫ̂h, where ǫ̂r is
the resubstitution error, ǫ̂r = ǫ̂(A(SN ),SN ). The 0.632 bootstrap estimator
process is summarized as follows:

SN → {S(1), ...,S(k)} → {(S(1), T (1)
h ), ..., (S(k), T (k)

h )} → (1.30)

→ {ǫ̂(1)h , ..., ǫ̂
(k)
h } → {ǫ̂r, ǫ̂h} → ǫ̂.632

Since the data set is sampled with replacement, the probability of any instance
of not being chosen after N samples is (1 − 1/N)N ≈ 0.368; the expected
number of distinct instances from the original data set SN appearing in the

holdout test set, T (i)
h , is thus 0.632N . Intuitively, the weight associated to

each error is related with the number of different instances contained in the
test sets. It must be noted that, the estimated intermediate holdout error
ǫ̂h is also named zero bootstrap estimator, which is more biased than 0.632
bootstrap estimator.

The 0.632 bootstrap estimator has a bias closer to zero than k-cv. This
estimator learns the classifiers using training sets S(i) of size N = |SN |. More-
over, the estimator tends to have a variance lower than k-cv [Kohavi (1995a)].

However, the 0.632 bootstrap estimator fails to give the expected result
when a classifier is a perfect memorizer and the data sets are completely
random due to the highly biased resubstitution error, ǫ̂r [Kohavi (1995a)]. For
example, when the classifier is a nearest neighbor φ and its holdout estimated
error is ǫ̂h the 0.632 bootstrap error estimator will report a highly biased
estimated error ǫ̂(φ) = 0.632ǫ̂h + 0.3680.0 = 0.632ǫ̂h because ǫ̂r = 0.

Depending on the way of generating the training and test sets, different
versions of the bootstrap estimators have been proposed in the literature.
The balanced bootstrap resampling [Chernick (1999)], following the idea of
the stratified k-fold cross validation, generates training and test sets with
approximately the same proportion of classes as the original data sets SN .
The parametric bootstrap resampling [Efron and Tibishirani (1993); Friedman
et al. (1999)] learns a factorization of the joint probability distribution ρ(x, c)
and then, it samples the learned model to generate the training and test
sets. Finally, the smoothed bootstrap resampling [Efron and Tibishirani (1993)]
learns p(x|c) by means of kernel density estimation and, then, it samples the
estimated density to generate the training and test sets.

D. Bolstered

The bolstered estimator [Braga-Neto and Dougherty (2004); Sima et al.
(2005b,a)] rather than an estimator is a novel proposal for estimating the
prediction error based on a test set. The bolstered estimators are adaptations
of classic estimators which perform the computation of the prediction error
using the bolstered approach. Bolstering can be applied to any error-counting
estimation method.



32 1 Supervised classification

Fig. 1.3. This figure illustrates the intuition behind bolstered estimators. In this
example there are three instances, (x(1), c(1)), (x(2), c(2)) and (x(3), c(3)) where
c(1) = c(2) = c(3) = +. The decision boundary of the classifier is represented by
the black solid vertical line. The correct classified examples are those at the right of
the decision boundary, (x(1), +) and (x(2), +). On the other hand (x(3), +) is mis-
classified. Each point contributes to the error its associated red area. Note that, in
spite of (x(2), +) being correctly classified, it contributes to the error its associated
red area because it is close to the decision boundary. The contributions of each point
are determined with a kernel based density (see Section 4.2 for further details).

The intuition behind bolstered is to perform a specialized computation
of the error, distinguishing classified samples as close or far from a decision
boundary: a correctly classifier point near the decision boundary can change
its contribution from 0 to 1/N (and vice versa) [Braga-Neto and Dougherty
(2004)]. Bolstered estimators replace the empirical distribution with a kernel
based density (see Section 1.13.3) in order to compute the expectance of the
error. Using kernel based densities bolstered estimators spread the empiri-
cal probability of each case, i.e. 1/N , in its neighborhood. This intuition is
graphically illustrated in Figure 1.3.

Bolstered error estimators improve k-fold cross-validation in terms of both
bias and variance [Braga-Neto and Dougherty (2004)]. The implementations
of bolstered estimators depend on the selected non-bolstered estimator, e.g.
resubstitution, and the implied classifier. The main difficulty in order to im-
plement a bolstered estimator for a concrete classifier consists of obtaining
explicit expressions of the decision boundaries in order to compute the error
contribution associated to each point.

1.8.2 Comparing classifiers or induction algorithms using
hypothesis tests

The purpose of this section is the description of some appropriate procedures
based on statistical tests that can be used for comparing the performance of
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two or more classifiers based on single or multiple data sets. We consider the
use of these safe procedures crucial in order to make proper comparisons, be-
cause the statistical evaluation of the experimental results has been considered
an essential part of the validation of new classifier induction algorithms in the
machine learning field. Before continuing, we want to include a brief expla-
nation of the classifier comparison procedure based on the standard notation
used throughout this section.

The procedures based on statistical tests usually consist of two parts: ob-
tain a set of (estimated) performance scores for each classifier induction algo-
rithm. The first part is usually achieved using a performance estimator, such
as those presented in Section 1.8.1. However, we introduce the comparison
procedures based on the classification error for the sake of simplicity.

In order to compare n different algorithms, {A1, ..., An}, on N data sets,
{S(1), ...,S(N)}, we should estimate the classification error ǫS(j)(Ai), of each
algorithm i on each data set S(j). For the sake of brevity, the true and esti-
mated errors of the classifier learned with the i-th induction algorithm using
the j-th training set is denoted as ǫj

i and ǫ̂j
i , respectively. The second part

consists of applying the appropriate statistical test to the set of the obtained
estimated errors (ǫ̂j

i )
n,N
i=1,j=1.

The section starts introducing the statistical hypothesis tests focusing on
null-hypothesis tests [Kanji (2006)]. Then, we focus our attention to the prob-
lem of obtaining samples of scores appropriate for classifier comparison. We
take into consideration two practical situations: comparisons using a single
or multiple data sets. Then, we present two methods for comparing a pair of
classifiers, in single or multiple data sets, and finally we present two simple
alternatives for making comparisons of n classifiers over multiple data sets.

A statistical hypothesis test is a method of making statistical decisions
using experimental data. We will focus our attention on the null-hypothesis
tests. Null-hypothesis tests try to answer the question: assuming that the null
hypothesis H0 is true, what is the probability of observing a value for the test
statistic that is at least as extreme as the value that was actually observed?.
These tests are designed to neither prove nor disprove hypothesis. They never
set out to prove anything; their aim is to show that an idea is untenable as it
leads to an unsatisfactorily small probability.

The process of hypothesis testing can be summarized in the following four
steps:

1. Formulate the practical problem in terms of hypothesis. We should first
concentrate on what is called the alternative hypothesis H1, since this is
the more important from the practical point of view. The null hypothesis
H0 needs to be very simple and represents the status quo. It is basically
a standard or control with which the evidence pointing to the alternative
can be compared. Once both hypothesis are formulated it should be ob-
vious whether we carry out a one- or two-tailed test. Since we are using
the hypothesis tests for making comparisons between classifiers, our null
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hypothesis is ”the differences of the scores of the classifiers is zero” and
the alternative hypothesis is ”the differences of the scores of the classifiers
is non-zero”.

2. Calculate a statistic, s, a function purely of the data. All good test statis-
tics should have two properties: (i) they should tend to behave differently
when H0 is true from when H1 is true; and (ii) their probability distribu-
tion should be calculable under the assumption that H0 is true.

3. Choose a critical region. The critical region of a hypothesis test is the set
of all outcomes S = s which, if they occur, cause the null hypothesis to be
rejected. We could also conclude that the null hypothesis is not rejected
assuming that an event of probability less than or equal to the size of the
test has occurred, but generally the first option is chosen. If s lies outside
the critical region, we do not reject H0, but we should never conclude by
accepting H0.

4. Decide the significance level of the test, α, which determines the critical
region of the test. This involves specifying how great a risk we are prepared
to run of coming to an incorrect conclusion. The critical region is the set
of outcomes for which the null hypothesis can be rejected. The probability
of the test statistic falling in the critical region when the null hypothesis
is correct is α. The significance level can be understood as the risk we are
prepared to take in rejecting the null hypothesis when it is in fact true
and, as we see below, it is called type I error. We usually set α to between
1 and 10 percent, depending on the severity of the consequences of making
such an error.

In hypothesis test two types of errors could be defined: type I error and
type II error. The type I error is the probability of rejecting the null hypothesis
when it is true, p(reject H0|H0 is true) = α. The type II error is the probability
of not rejecting the null hypothesis when it is in fact false, p(not reject H0|H0

is false) = β. The power of a test is the probability of correctly rejecting the
null hypothesis, p(reject H0|H0 is false) = (1 − β). It should be noted that
the power is different from the size of the test.

Figure 1.4 illustrates the main concepts introduced for the hypothesis test-
ing procedure. The figure shows the main statistical concepts used to compare
two classifier induction algorithms, A1 and A2, based on the estimated errors
obtained in N data sets, {S(1), ...,S(N)}. The statistical tests consist of a
null hypothesis, H0, a set of estimated errors in different data sets for both

algorithms, {ǫ̂(1)1 , ..., ǫ̂
(N)
1 } and {ǫ̂(N)

2 , ..., ǫ̂
(N)
2 }, and a statistic based on the

estimated errors with a known distribution provided that the null hypothesis
is true. First, in order to compare classifiers, the typical null hypothesis H0 is

stated as: the error differences between the inducted classifiers φ
(i)
1 = A1(S(i))

and φ
(i)
2 = A2(S(i)) in each data set {S(1), ...,S(N)} is zero. Usually, the

alternative hypothesis H1 can be simply stated as the negation of the null
hypothesis. When it is clear that A1 performs at least equally to A2, we can
state the alternative hypothesis H1 as A1 obtains better performance than A2.
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(a) True and estimated probability density functions, f(d) and

f̂(d), of the differences, {d(1), ..., d(k)} where d(i) = ǫ̂
(i)
1 − ǫ̂

(i)
2 .

(b) Distribution of the statistic, s, under the null hypothesis,
H0.

Fig. 1.4. This figure graphically illustrates some of the concepts about statistical
tests introduced in this section. The figure can be interpreted as a procedure in order
to compare two classifier induction algorithms, A1 and A2, based on their estimated
errors, {ǫ̂(1)1 , ..., ǫ̂

(N)
1 } and {ǫ̂(1)2 , ..., ǫ̂

(N)
2 }.

Next, we need to collect the set of estimated errors (ǫ̂
(j)
i )2,N

i=1,j=1, where

ǫ̂
(j)
i = ǫ̂S(j)(Ai). Then, the (paired) differences are computed in each data
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set, (d(i))N
i=1, where d(i) = ǫ̂

(i)
1 − ǫ̂

(i)
2 . Figure 1.4(a) shows the true probability

density function of the differences D ; f(d) and the estimated distribution

f̂(d) obtained from the sample of the differences {d(1), ..., d(N)}. The test of
the example shown in Figure 1.4 assumes that the differences are normally
distributed with unknown parameters µD and σ2

D, and thus, it is considered
a parametric test. However, the estimated parameters, µ̂D and σ̂2

D, based on
the obtained sample of differences {d(1), ..., d(N)}, differs from those modeling
the true distribution. The difference between the true f(d) and the estimated

f̂(d) (difference between (µD, σ2
D) and (µ̂D, σ̂D)) can result in rejectint the

true hypothesis when it is true in fact, or conversely, not rejecting it when it
is false. When the parametric assumption about f(d) is true the probability
density function tends to be estimated more accurately but, when we are not
sure about the nature of f(d), it is advisable to perform a non parametric
test. On the other hand, most non-parametric tests are based on ranks and
they do not need to explicitly estimate f(d).

Once the data is collected, we compute an appropriate statistic of the
data ŝ = ŝ({d(1), ..., d(N)}). The probability density function of the statis-
tic, s, under the null hypothesis, fH0(s; Θ), must be known where Θ are
the parameters of the function. Usually, the function fH0(s; Θ) belongs to a
parametric family of probability density functions and its parameter Θ de-
termines the shape of the function. For example, s could follow a chi squared
distribution with Θ = N degrees of freedom. Normally, the parameters Θ are
determined from the data, {d(1), ..., d(N)}. Figure 1.4(b) shows the probability
density function of the statistic s under the null hypothesis, fH0(s; Θ). Be-
sides, an estimator ŝ({d(1), ..., d(N)}) of s should be known. Intuitively, higher
values of the estimated statistics, ŝ, should indicate lower probability of H0

being true, because
∫∞

ŝ
fH0(s; Θ)ds tends to zero as ŝ increases. The p-value

of ŝ represents the probability of obtaining a test statistic as large or larger
than that which was obtained in the data, given the null hypothesis holds,
pval(ŝ) = pH0(s > ŝ) =

∫∞
ŝ

fH0(s; Θ)ds. The p-value can be interpreted as
an approximate measure of how surprised we should be by a result. The test
requires to specify the size α of the test, which is a threshold used to deter-
mine whether the null hypothesis is rejected, pval(ŝ) ≤ α (ŝ ≥ sα), or not.
As the size of the test α increases, the type I error of the test increases, pro-
vided that the null hypothesis is true. Note that by definition p(reject H0|H0

is true) = pH0(s > sα) =
∫∞

sα
fH0(s; Θ)ds where α = pval(sα). On the other

hand, as α increases the type II error of the test decreases, provided that
the alternative hypothesis is false because the probability of falling out of the
critical region decreases. Clearly, there is a trade-off between both type I error
and type II error. Figure 1.4(b) shows the thresholds sα0 and sα1 determined
by the significance levels α0 and α1 respectively. In our example, the null hy-
pothesis H0 is rejected for α0 because sα0 ≤ ŝ, and it is not rejected for α1

because sα1 < ŝ.
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Before continuing, it must be noted that different authors [Iacobucci
(2005); Garćıa and Herrera (2008)] indicate that it is advisable to report
the (corrected) p-values obtained with each statistical test, instead of indi-
cating when the null hypothesis is rejected at some α value. It provides more
information about the strength of rejection of the null hypothesis.

As we noted before, two groups of statistical tests could be identified:
(a) parametric, and (b) non parametric. In parametric tests the probability
distribution of the test statistic, s, under the null hypothesis H0 can be only
estimated by an additional assumption on the underlying probability density
function of the differences {d(1), ..., d(N)}. Most of the parametric tests used by
the machine learning community are based on normally distributed samples
(normal assumption), D ; N(d; µD, σ2

D) where D is the difference random
variable. If this assumption is not true then the test loses its validity. However,
in some cases the deviation of the assumption has only a minor influence on
the statistical test, indicating robust procedure. A parametric test also offers
greater discrimination than the corresponding distribution-free test, provided
that the parametric assumption holds.

The most popular parametric test is the paired t-test, which is based on
sample difference average and variance. In this section we show how to perform
comparison based on hypothesis tests. In general, we suggest the use of non-
parametric tests because they obtain more robust conclusions independently
of the true probability density function of the difference D. In the context
of comparing classifiers over multiple data sets, the parametric tests, such
as t-test, are not appropriate mainly due to three reasons [Demšar (2006)]:
(i) Parametric test only makes sense when the differences over data sets are
commensurable. In a single data set it can be assumed that the estimated
errors obtained for an induction algorithm A are commensurable, but this
assumption does not hold in general with scores obtained in different data
sets. So, usually, averages are meaningless. (ii) Unless the set of scores is large
enough (≥ 30), the parametric tests (under normal assumption) require that
the differences between the two classifiers compared are distributed normally.
Again, it is possible to assume normality when using a single data set, but
this assumption does not hold in general with scores obtained in different
data sets. (iii) Parametric tests are based on an average value over the scores
obtained in different data sets. The average allows the classifier’s excellent
performance on one data set to compensate for the overall bad performance,
or the opposite, a total failure in one domain can prevail over the fair results on
most others, and, usually, we are interested in classifiers that behave well on as
many problems as possible. So, the average is susceptible to outliers and it can
skew the test statistics. For the non-parametric tests, no assumption has to
be made regarding the frequency distribution and the estimated differences
{d(1), ..., d(N)} are not summarized in a few statistics such us the sample
average and variance. When comparing two samples the non-parametric tests
look at the relative ranking of the sample members. Thus, the non-parametric
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tests avoid the main drawbacks of the parametric tests, at the expense of the
power of the test when the parametric assumption holds.

An important issue of the estimated errors is their independence which has
a direct influence on the estimated variance. When the estimated errors are
dependent, the variance tends to be underestimated and the type I error of
the hypothesis test could increase. When multiple data sets are available for a
comparison, we can estimate independent errors {ǫ̂(1), ..., ǫ̂(N)} obtained from
the data sets {S(1), ...,S(N)} using any of the estimators described in Section
1.8.1. We recommend those with lower variances for stable comparisons. It is
also advisable to use the same partitions with each data set in order to obtain
scores that can be considered paired because the variance of the differences
of the estimated errors between the algorithms tends to be smaller.

Running algorithms on multiple data sets naturally gives a sample of in-
dependent measurements, but how do we proceed when we have a single data
set? The most popular procedure is to perform a k-fold cross validation using
the same partitions in the single data set, and use the scores obtained at each
of the k pairs training-test sets. The scores are clearly not independent be-
cause, in spite of the independence of the test set used, a pair of training sets
will share k − 2/k − 1 percentage of their cases. Nadeau and Bengio (2003)
propose the corrected resampled parametric t-test which adjusts the variance
based on the overlaps between subsets of examples. We suggest the use of
a stratified paired k-fold cross validation estimator as suggested in Section
1.8.1. Stratification reduces the sample variance of the obtained scores for

both classifiers, var(ǫ̂
(1)
1 , ..., ǫ̂

(N)
1 ) and var(ǫ̂

(1)
2 , ..., ǫ̂

(N)
2 ), and paired cross val-

idations reduces the variance of the differences, var(d(1), ...., d(N)). Besides,
when it is computationally feasible we suggest the use of a repeated k-fold
cross-validation [Rodŕıguez et al. (2009)]. All the proposed reductions of the
variance are beneficial because they increase the power of the test.

In this Section we consider two types of comparisons: comparisons between
two classifiers and comparisons between a set of more than two classifiers.
Section 1.8.2.1 proposes two procedures in order to compare two classifiers
in a single and in multiple data sets, respectively. Finally, Section 1.8.2.2
introduces a procedure in order to compare multiple classifiers using N data
sets.

1.8.2.1 Comparing two classifiers or two classifier induction
algorithms

Let d(i) = ǫ̂
(i)
1 − ǫ̂

(i)
2 be the difference between the estimated prediction errors

of the classifiers φ
(i)
1 and φ

(i)
2 learned and tested using S(i) out of N data

sets, {S(1), ...,S(N)}, using the induction algorithms A1 and A2, respectively,

φ
(i)
1 = A1(S(i)) and φ

(i)
2 = A2(S(i)). When the comparison is performed over

N different data sets, in general, the estimated errors are obtained using one
of the procedures introduced in Section 1.8.1.3.
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On the other hand, when the comparison is performed in a single data set,
S, usually the comparison is based on the N intermediate errors obtained by
the error estimators described in Section 1.8.1.3. For example, a comparison
can be based on the k = N intermediate errors computed by the k-cv estimator
(see Paragraph B. in Section 1.8.1.3). A computationally intensive alternative
consists of computing multiple estimations based on the estimators introduced
in Section 1.8.1 using randomly generated (different) training-test pairs.

In order to reduce the sample variance of the differences {d(1), ..., d(N)},
it is advisable to perform a paired estimation of the error, where the esti-

mated errors (ǫ̂
(i)
1 , ǫ̂

(i)
2 )N

i=1 are obtained by the same estimator using the same
training-test pairs (see Section 1.8.1.3). This reduction of the variance tends
to improve the power of the hypothesis test used.

A. Over multiple data sets

In order to compare two algorithms based on multiple data sets, we propose
the Wilcoxon signed-ranks paired test [Wilcoxon (1945)], following the sug-
gestion of Demšar (2006).

The Wilcoxon signed-rank test is a non-parametric alternative to the
paired t-test, which ranks the differences in performances of two classifiers
for each data set, ignoring the signs, and compares the ranks for the positive
and negative differences. The differences are ranked according to their abso-
lute values (average ranks are assigned in case of ties). Let R+ be the sum of
ranks for the data sets on which the second algorithm outperformed the first,
and R− the sum of ranks for the opposite. Ranks of d(i) = 0 are equally split
among the sums.

R+ =
∑

d(i)>0

rank(d(i)) +
1

2

∑

d(i)=0

rank(d(i))

R− =
∑

d(i)<0

rank(d(i)) +
1

2

∑

d(i)=0

rank(d(i))

Let Rmin be the smaller of the sums, Rmin = min(R+, R−). Then, the
statistic

z =
Rmin − 1

2N(N + 1)
√

1
24N(N + 1)(2N + 1)

(1.31)

has approximately a standard normal distribution, N (µ = 0, σ = 1). This test
is safer than t-test since it does not assume normally distributed differences.
Besides, the outlier differences have less effect on the Wilcoxon test.

B. In a single data set

Following the proposal of Nadeau and Bengio (2003), we suggest the use of
corrected resampled t-test for comparing classifiers in a single data set. The
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samples of scores are obtained using a stratified paired k-fold cross validation,
as previously suggested. The null hypothesis is “the mean difference is zero”.

The statistic

s =
d

√

1
k + σ2

k−1

(1.32)

is distributed under the null hypothesis according to a t distribution with
k − 1 degrees of freedom, where d = 1

k

∑k
i=1 d(i) is the sample mean and

σ2 = 1
k−1

∑k
i=1(d

(i) − 1/k
∑k

i=1 d(i))2 is the quasivariance of {d(1), ..., d(k)}
respectively.

1.8.2.2 Comparing many classifier induction algorithms

This section presents two procedures for comparing multiple classifier induc-
tion algorithms over multiple data sets. The procedure consists of two steps
based on hypothesis tests: (i) to check if there are significative differences
between the estimated errors of some of the classifier induction algorithms
included in the study. This step is performed by means of a single test (see
Paragraph A.). The null-hypothesis being tested is H0:all classifiers obtain
the same error. If the null hypothesis is rejected, it can be concluded that
there are statistically significant differences between the classifiers, and we
continue with the second step: (ii) to check for each pair of algorithms if there
are significative differences by means of a post-hoc test (see Paragraphs B.
and C.).

Step (ii) consists of
(

n
2

)

different comparisons. The null-hypotheses being

tested are H
(i,j)
0 : algorithms Ai and Aj obtain the same error, for all i 6= j. In

general, the probability of rejecting the null hypothesis when it is true (type
I error) is the size of the test, α. If multiple hypothesis tests (n(n− 1)/2) are

performed, the probability of rejecting some of the hypothesis H
(i)
0 provided

they are true is 1− (1−α)n(n−1)/2 and, clearly, it tends to 1 as n increases. In
order to maintain a low type I error when multiple comparisons are performed,
usually, the p-values of the individual comparisons are corrected. For example,
the Bonferroni correction [Shaffer (1995)] divides the size of the individual
tests by the number individual comparisons performed, but this correction
usually is too conservative and it tends to have a high type II error associated.

The hypothesis being tested, belonging to a family of all pairwise com-
parisons, are logically interrelated so that not all combinations of accepted
and rejected hypotheses are possible. Due to the incorporation of information
about the interrelation of the tests, procedures with more power and lower
type II error can be designed (see Paragraph C.). In Garćıa and Herrera (2008)
there is an extensive overview of the most relevant procedures including a pre-
cise guideline for choosing the most appropriate test according to the number
of algorithms to be tested and the number of available data sets.

Next, we introduce Friedman’s procedure [Friedman (1937)] for the first
step of the multiple comparison and two post-hot tests for the second step:
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Nemenyi’s [Nemenyi (1963)] and Shaffer’s static [Shaffer (1986)] procedures.
However, following the suggestion of Garćıa and Herrera (2008), we recom-
mend the use of Friedman’s plus Shaffer’s static procedures because Shaffer’s
static procedure has more power than Nemenyi’s procedure. All these tests

are based on the ranks r
(j)
i obtained by the estimated error ǫ̂

(j)
i (ranked from

the lowest to the highest) in the set of the scores obtained for the j-th data set

{ǫ̂(j)1 , ..., ǫ̂
(j)
n }. Note that, if the scores measure the goodness of the algorithms,

e.g. accuracy, the scores are ranked from the highest to the lowest.
It should be noted that in order to compare multiple classifier induction

algorithms in a single data set, similar procedures can be used based on the
intermediate errors obtained with k-fold cross validation or bootstrap estima-
tors (see Section 1.8.1.3).

A. Friedman’s procedure

Friedman’s statistics [Friedman (1937); Iman and Davenport (1980)] is based
on the average ranks of each classifier induction algorithm Ai:

Ri =
1

N

N
∑

j=1

r
(j)
i (1.33)

Friedman’s statistics [Friedman (1937)]

χ2
F =

12N

n(n + 1)
[

n
∑

i=1

R2
i −

n(n + 1)2

4
] (1.34)

follows, under the null hypothesis, a chi-square distribution with (n − 1) de-
grees of freedom.

Iman and Davenport (1980) showed that Friedman’s φ2
F statistic is unde-

sirably conservative and derived a better statistic

FF =
(N − 1)χ2

F

N(n − 1) − χ2
F

(1.35)

which follows a F-distribution with (n−1)×(n−1)(N−1) degrees of freedom.
Friedman’s test is an omnibus test which can be used to carry out these

types of comparisons. It allows to detect differences considering the global set
of classifiers. Once Friedman’s test rejects the null hypothesis, we can proceed
with a post-hoc test in order to find the concrete pairwise comparisons which
produce differences.

B. Nemenyi’s procedure

Nemenyi’s procedure [Nemenyi (1963)]considers all the possible pairwise com-
binations of rejection of the null hypothesis and, thus, it has less power than
Shaffer’s static procedure; it imposes more severe corrected p-values because
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it considers all the
(

n
2

)

pairwise comparisons. Sometimes the Friedman test
reports a significant difference but the Nemenyi post-hoc test fails to detect
it due to lower power.

The test statistics for comparing the i-th and j-th classifier is

s = (Ri − Rj)
√

6Nn(n + 1) (1.36)

where Ri is the average rank computed for the Friedman test. The z value
is used to find the corresponding probability (p-value) from the table of a
normal distribution which is then compared with an appropriate significance
level α (Table A1 in Sheskin (2003)).

So, since the size of the test is constant for all pairwise comparisons, α, a
critical rank difference CDα can be defined as follows:

CD =
sα√

6Nn(n + 1)
(1.37)

where pval(sα) = α. Given the comparison between any pair of algorithms Ai

and Aj , its null hypothesis H
(i,j)
0 can be rejected if |Ri − Rj | ≥ CDα.

As we noted before, Nemenyi’s procedure imposes severe corrected values
because it considers that all the tests are independent. But the hypotheses
being tested, belonging to a family of all pairwise comparisons, are logically
interrelated so that not all combinations of true and false hypothesis are pos-
sible.

C. Shaffer’s static procedure

Shaffer’s static procedure [Garćıa and Herrera (2008)] follows a step down
method, such us Holm’s procedure [Holm (1979)]. Holm’s procedure was also
described in [Demšar (2006)] but it was used for comparisons of multiple
classifiers involving a control method. It adjusts the test size α in a step
down method. Let p1, ..., pm the ordered p-values (smallest to largest) and
H1, ..., Hm be the corresponding m =

(

n
2

)

hypotheses. Holm’s procedure re-
jects H1, ..., H(i−1) if i is the smallest integer such that pi > α/(m − i + 1).
This procedure assumes at each step i that the null hypothesis Hi, ..., Hm

can be true. However, if the previous i− 1 hypothesis have been rejected this
assumption is not true since the null hypotheses are interrelated.

In Shaffer’s static procedure, at step i, the hypothesis Hi is rejected if
pi ≤ αi = α/ti, where ti is the maximum number of hypotheses which can

be true given that any (i − 1) hypotheses are false. For i = 2 +
∑k−1

j=1 N −
j, ..., 1 +

∑k
j=1 N − j = 2 + (2N − k)(k − 1)/2, ..., 1 + (2N − k − 1)k/2 with

k = 1, ..., N − 2, the correction coefficient ti is given by

ti =

(

N − k

2

)

(1.38)
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where t1 =
(

N
2

)

. For example, with N = 5: for i = 1 we have that k = 0 and

ti =
(

5
2

)

, i = 2, ..., 5 we have k = 1 ti =
(

4
2

)

, i = 6, ...8 we have k = 2 and

ti =
(

3
2

)

and, finally, for i = 9, 10 we have k = 3 and ti =
(

2
2

)

.
There are more sophisticated procedures which take into account the con-

crete rejected hypotheses, {H1, ..., Hi−1}, in order to reduce at each step i
the maximum number of null hypotheses among Hi, ..., Hm that can be true,
e.g. Shaffer’s dynamic procedure. These procedures improve the power with
respect to Shaffer’s static procedure due to the more efficient use of the inter-
relation between the null hypotheses. For further details on these procedures
the reader may consult [Garćıa and Herrera (2008)].

1.8.3 Bias plus variance analysis of the error

In this section we analyze the error of a classifier by decomposing it into dif-
ferent sources of error following a procedure proposed by Kohavi and Wolpert
(1996).

The concept of bias-variance decomposition was introduced to machine
learning for mean squared error by German et al. (1992). Later versions for
zero-one-loss functions were given by Friedman (1997), Kohavi and Wolpert
(1996), Domingos (2000) and James (2003). The decomposition explained in
this subsection was proposed by Kohavi and Wolpert (1996) and it is the
most popular among the proposed decompositions in machine learning. It
decomposes the classification error. The decomposition has become popular
due to its simplicity. It decomposes the error into two additive sources called
bias and variance. Besides, the intuitions behind both terms are similar to the
intuitions behind the bias and variance of an estimator (See Section 1.7). The
bias-variance decomposition of the expected error can be useful to explain the
behaviors of different algorithms [van der Putten and van Someren (2004)].
The decomposition of the classification error proposed by Friedman (1997)
seems to be more appropriate for classification but it decomposes the error
into multiplicative terms of harder interpretation which do not correspond to
the bias and variance terms of an estimator.

Kohavi and Wolpert (1996) define the classification error as:

ǫA =

∫

f(x)
r
∑

c=1

p(c|x)(1 − p̂A(c|x))dx (1.39)

where p̂A(c|x) is related to the classification associated to the classifiers ob-
tained using the inductor A from data and p(·) is the true distribution of
the domain. The definition is given in terms of a continuous multidimensional
random variable X, for the sake of simplicity. The generalization to mul-
tidimensional mixed random variables is straightforward. It must be noted
that this error could be considered a calibration measure since it takes into
consideration the estimated probabilities p̂A(c|x).
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But, how are the quantities ρ(c, x) = p(c|x)f(x) and p̂A(c|x) estimated
from data, S? Following the proposal of Kohavi and Wolpert (1996), the
data set is divided into two partitions P1 and P2, where P1 ∪ P2 = S and
P1 ∩ P2 = ∅. P1 is used in order to generate, by random sampling with
replacement, N training sets {S(1), ...,S(N)} and P2 is the single test set
T = P2. For each data set S(i) we learn a classifier φi = A(S(i)) and we

classify the entire test set T , {c(1)
i , ..., c

(n)
i }, where n is the size of the test set

T . Then, the a posteriori probability distribution of the class at each x, where
for some c (x, c) ∈ T , is estimated as:

p̂A(c|x(i)) =
1

N

N
∑

j=1

1(c; c
(i)
j ) (1.40)

where 1(c; c′) = 1 iff c = c′ and zero otherwise. Note that the estimation
p̂A(c|x(i)) can be seen as the average classification of x(i) using φi for i =
1, ..., N . On the other hand the estimation of the true a posteriori distribution
p̂(c|x) = l/m where l is the number of times that the instance (c, x) appears
in T and m is the number of times that for any c′ (c′, x) appears in T . p̂(c|x)
is typically 1 when (x, c) ∈ T and zero otherwise. Then, using these quantities
Equation 1.39 is estimated as follows:

ǫ̂A =
1

n

n
∑

i=1

p̂(c|x)(1 − p̂A(c|x)) (1.41)

The bias-variance decomposition of the expected error proposed in Kohavi
and Wolpert (1996) is given by:

ǫA =

∫

f(x)(σ2
x + bias2

x + varx)dx (1.42)

where x is an instance of the test set, σ2
x is the “intrinsic” target noise, bias2

x

is the square bias and varx is the variance associated to the instance x. Each
term in Equation 1.42 is defined as:

σ2
x =

1

2
(1 −

r
∑

c=1

p(c|x)2) bias2
x =

1

2

r
∑

c=1

(p(c|x) − p̂A(c|x))2

varx =
1

2
(1 −

r
∑

c=1

p̂A(c|x)2) (1.43)

The averaged squared bias (or bias term of the decomposition) is defined
as bias2 =

∫

f(x)bias2
xdx, and the averaged variance (or variance term) is

defined as var =
∫

f(x)varxdx. The target noise is related with the expected
error of the Bayes classifier. Therefore, it is independent of the learning al-
gorithm given the training set, and it is characteristic of each domain. In
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practice, if there are two instances in the test set with the same configuration
for the predictors and a different value for the class, the estimated “intrinsic”
noise is positive, otherwise it is zero [Kohavi and Wolpert (1996)]. Thus, it
is considered zero given the data sets when there are not repeated instances.
When the noise is zero the error of the data sets included will decompose into
bias plus variance. The bias component can be seen as the error due to the
incorrect fitness of the average classification of φi for i = 1, ..., N , p̂A(c|x),
to the target posterior distribution, p(c|x). By contrast, the variance com-
ponent measures the variability of the average classification, p̂A(c|x), which
is independent of p(c|x). From these concepts, we can hypothesize that bias
and variance terms become lower and higher, respectively, as the number of
parameters needed to model the classifier grows (as classifier complexity and
sensitivity to changes in the training set increases).

1.9 Performance measures

In this section we introduce some scores used to measure the performance of
the classifiers (or induction algorithms). We have divided the scores in two
parts: scores based on the confusion matrix and based on receiver operating
characteristic (ROC) curve.

1.9.1 Confusion matrix

This subsection includes some scores based on the confusion matrix (or con-
tingency table). Let us have a domain with a class variable C with r states,
{c1, ..., cr}, a classifier φ and a test set T , its associated contingency table M
is a matrix r × r with elements M(i, j), representing the number of instances
(x, cj) ∈ T classified as ci = φ(x).

Most of the scores based on a confusion matrix are defined for problems
with two class labels, the positive p and the negative n (binary classification
problems). A confusion matrix M of dimensions r × r can be understood
as r confusion matrix 2 × 2 (bivariate confusion matrix), i.e. the i-th ma-
trix, M i is constructed from M considering as the positive class c+ = ci

and negative c− =
⋃

j 6=i cj : M i(1, 1) = M(i, i), M i(2, 2) =
∑

j 6=i M(j, j),
M(1, 2) =

∑

j 6=i M(i, j) and M(2, 1) =
∑

j 6=i M(j, i).
For the sake of simplicity, let us consider a binary classification problem

c = {c+, c−}. Given an instance (x, c) there are four possible results depending
on the values of c and φ(x) = c′:

• A true positive occurs when c = c′ = c+.
• A true negative occurs when c = c′ = c−.
• A false positive occurs when c = n and c′ = c+.
• A false negative occurs when c = p and c′ = c−.
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Given a test set T = {(x(1), c(1)), ..., (x(n), c(n))} and a classifier φ the
confusion matrix M contains the number of true positives (TP) M1,1, of false
positives (FP) M1,2, of false negatives (FN) M2,1 and the number of true
negatives (TN) M2,2. We define P as the number of positive cases, P =
TP + FN , and N as the number of negative cases N = TN + FP .

Given a bivariate classification matrix M the following scores can be com-
puted:

• True positive rate (TPR), recall or sensitivity: TPR = TP/P
• False positive rate (FPR) or type I error : FPR = FP/N
• True negative rate (TPR), specificity or (1 − FPR): TNR = TN/N
• False negative rate (FNR), type II error or (1 − TPR): FNR = FN/P
• Classification error (ǫ) or 1-accuracy: ǫ = (FP + FN)/(N + P )
• Positive predictive value (PPV ): PPV = TP/(TP + FP )
• False discovery rate (FDR) or (1 − PPV ): FDR = FP/(TP + FP )
• Negative predictive value (NPV ): NPV = TN/(TN + FN)

1.9.2 Receiver operating characteristic

A receiver operating characteristic (ROC) curve is a graphical plot of the
sensitivity (TPR) vs 1-specificity (FPR) for a binary classification problem
as the classification threshold varies, 0 ≤ τ ≤ 1. The classification threshold
can be understood in terms of the following loss function:

Lτ =

(

0 , τ
1 − τ , 0

)

(1.44)

Given the loss function Lτ , a training set S, a domain defined by p(x, c) and a
learning algorithm which takes into account the loss function, A(S; Lτ ) = φτ ,
its associated ROC curve is defined as the curve TPR(φτ ) vs. FPR(φτ ) for
0 ≤ τ ≤ 1.

An estimation based on a test set T will be the curve TPR(φτ ; T ) vs.
FPR(φτ ; T ) for 0 ≤ τ ≤ 1. Note that each pair TPR(φτ ; T ) and FPR(φτ ; T )
represents a confusion matrix. The ROC space is defined by FPR and TPR as
X and Y axes respectively. The perfect classification (often impossible) point
is the (0,1). A completely random guess would give a point along the diagonal
line from (0, 0) to (1, 1) (line of no-discrimination). Points above and below
the line of no-discrimination indicate better and worse classifications than the
random guess respectively. The information contained in the ROC curve is
usually summarized as a single value: the area under the ROC curve (AUC).
This area can be interpreted as the probability that when we randomly pick
one positive and one negative example, the classifier will assign a higher score
to the positive example than to the negative.
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1.10 Information theory

In this section we introduce some useful concepts of information theory
[Shanon (1948); Kullback (1959); Cover and Thomas (1991); Jakulin (2002)]
for the correct understanding of this document. The entropy, one of the main
concepts of information theory, was originally proposed in physics in the con-
text of equilibrium thermodynamics and later as a measure of disorder through
developments in statistical mechanics [Bishop (2006)]. However, all the con-
cepts in this introduction are presented from an information theory point of
view.

We start considering a unidimensional discrete random variable X and we
ask how much information is received when we observe a particular value x,
also known as an event. The amount of information given by the event x, i(x),
can be understood as the degree of surprise of the value x. The amount of
information i(x) is inversely proportional to the probability p(x) and thus,
the higher p(x), the less information it provides. The form of i(x) can be
found by noting that the information gain of observing two unrelated events
X = x and Y = y should be the sum of the information gained from each
of them separately i(x, y) = i(x) + i(y). Besides, two unrelated events will
be statistically independent and thus p(x, y) = p(x)p(y). From these two
relationships, it is easily shown that i(x) should be given by the logarithm of
p(x) and so we have that:

i(x) = − log2 p(x) (1.45)

where the negative sign ensures that information is positive or zero. The choice
of the basis for the logarithm is arbitrary, and we will adopt the convention of
using logarithms of base 2. In this case the unit of the amount of information
is a bit (binary digit).

Let us suppose now that a sender wants to transmit the value of a random
variable to a receiver. The average amount of information that they transmit in
the process is obtained by taking the expectation of the amount of information
of each possible event x:

H(X) = EX [i(X)] =
∑

x

p(x)i(x) = −
∑

x

p(x) log2 p(x) (1.46)

The generalization of the entropy to d-dimensional discrete random variables
X = (X1, ..., Xd) is straightforward by considering the entropy of the unidi-
mensional discrete random variable X which is the cartesian product of Xi

for all i, X = X1 × ... × Xd.
The average amount of information transmitted by events x of a variable

X is called the entropy of the variable X . Analogously, the entropy H(X) is
the information needed to describe the random variable X . The entropy has
some useful properties:
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• The noiseless coding theorem [Shanon (1948)] states that the entropy is
a lower bound for the number of bits needed to transmit the state of a
random variable. Therefore, the entropy can be interpreted as the amount
of information of a variable.

• A nonuniform distributed variable has smaller entropy than its uniform
counterpart. Thus, for a fixed number of states, r, the upper bound for
the entropy is given by − log2 r.

The entropy can be considered as the elementary quantity of information
theory and the measures of information theory presented in this section can
be decomposed into sums and differences of entropies.

The definition of entropy can be extended to include distributions over
continuous random variables X as follows. First, we divide the variable X
into bins of size ∆. Then, assuming that f(x) is continuous, the mean value
theorem tells us that, for each such bin (i∆, (i+1)∆), there must exist a value
xi such that:

∫ (i+1)∆

i∆

f(x)dx = f(xi)∆ (1.47)

We can now discretize the continuous variable X by assigning a density of
f(xi) to any value x whenever it falls in the interval (i∆, (i+1)∆]. Therefore,
the probability of the i-th interval is f(xi)∆ = p(x∆

i ). This gives a discrete
random variable X∆ for which the entropy takes the form

H(X∆) = −
∑

i

f(xi)∆ log2(f(xi)∆)

= − log2 ∆ −
∑

i

f(xi)∆ log2(f(xi)) (1.48)

We now omit the first term − log2 ∆ in Equation 1.48 and we consider the limit
∆ → 0 of the second term −∑i f(xi)∆ log2(f(xi)). This term approaches
the integral of −f(x)log2f(x) in the limit, and this quantity is known as
differential entropy.

h(X) = lim
∆→0

{−
∑

f(xi)∆ log2 f(xi)} = −
∫

f(x)log2f(x)dx (1.49)

As in the case of the entropy, the generalization of the differential entropy to
multidimensional continuous random variables X is straightforward.

We see that the entropy and the differential entropy differ in − log2 ∆,
which diverges in the limit ∆ → 0. This reflects that a large number of
bits is required on average to specify a continuous variable very precisely. The
differential entropy shares many of the mathematical properties of the entropy.
The main particularities of the continuous and categorical formulation are:

• The entropy of a categorical variable is invariant to changes in the order
of the states of the variable.
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• The differential entropy is invariant to the translation, h(X + a) = h(X),
but it depends on the scale of the variable used, h(X ∗ a) = h(X)+ log2 a,
for a ∈ R.

In the remainder of this section we will introduce the formulation for dis-
crete random variables indicating the main differences with respect to the
continuous formulation. As we noted in Section 1.3, the continuous version of
the formulation consists of replacing the sums by integrals.

1.10.1 Conditional entropy and mutual information

Given a pair of unidimensional discrete random variables X and Y , let us
suppose that we have a joint distribution p(x, y) from which we draw pairs of
values (x, y). If a value x is known, then the additional information needed to
specify the corresponding value y is given by the relative amount of informa-
tion i(y|x) = − log2 p(y|x). The conditional entropy of Y given X is defined
as the average of the relative amount of information of x given y, i(y|x)

H(Y |X) = EX [H(Y |X)] = E(X,Y )[i(Y |X)] = −
∑

x,y

p(x, y) log2 p(y|x)

(1.50)
The conditional entropy H(Y |X) measures the average amount of information
transmitted by events y of a variable Y when the events x of X are known. It
also can be defined as the information needed to describe Y given X . It can
be easily seen, using the product rule, that the conditional entropy satisfies
the relation

H(X, Y ) = H(X) + H(Y |X) (1.51)

One interpretation is that the information needed to describe X and Y is given
by the sum of the information needed to describe X alone plus the informa-
tion needed to describe Y given X . This is known as the chain rule of the
entropy. The differential conditional entropy h(Y |X) is defined analogously
and inherits some of the properties of the conditional entropy.

Let us suppose that we have a discrete random variable X with an un-
known probability distribution p(x) and that we have modeled p(x) using the
probability distribution q(x). If we use q(x) to construct a coding scheme for
the purpose of transmitting values of X to a receiver, then the average addi-
tional amount of information required to specify the value of X as a result of
using q(x) instead of the true distribution p(x) is given by:

KL(p; q) = −
∑

x

p(x) log2 q(x) −
(

−
∑

x

p(x) log2 p(x)

)

= −
∑

x

p(x) log2

q(x)

p(x)
(1.52)
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This is known as Kullback-Leibler divergence or relative entropy [Kullback
and Leibler (1951)], between the distributions p(x) and q(x). Note that this
quantity is not symmetrical, that is, KL(p; q) 6= KL(q; p). The Kullback-
Leibler divergence satisfies that KL(p; q) ≥ 0 with equality if, and only if,
p(x) = q(x). The Kullback-Leibler divergence can be analogously defined for
probability density functions replacing sums by integrals.

Let us now consider a joint probability distribution for two variables X
and Y given by p(x, y). If the variables are independent, then their joint distri-
bution will factorize into the product of their marginal p(x, y) = p(x)p(y). If
the variables are not independent, we can gain some idea of whether they are
‘close’ to being independent by considering the Kullback-Leibler divergence
between the joint distribution and the product of the marginal distributions.
This quantity is known as mutual information (or information gain) between
X and Y [Cover and Thomas (1991)]:

I(X ; Y ) = KL(p(X, Y ); p(X)p(Y )) (1.53)

Since I(X ; Y ) is a Kullback-Leibler divergence, it inherits the property
I(X ; Y ) ≥ 0 with equality if, an only if, X and Y are independent (X ⊥ Y ).
So the mutual information can be decomposed as follows:

I(X ; Y ) = H(X) − H(X |Y ) (1.54)

= H(Y ) − H(Y |X)

= H(X) + H(Y ) − H(X, Y ) (1.55)

Note that the mutual information is symmetric I(X ; Y ) = I(Y ; X). So, we
can view the mutual information as the reduction on the uncertainty about
X when Y is known (and vice versa). In contrast to the differential entropy
and the conditional differential entropy, the continuous version of the mutual
information (differential mutual information) is invariant to changes in the
scale, i.e., given two unidimensional continuous variables X and Y and for
any a, b 6= 0, I(X ; Y ) = I(a ∗ X ; b ∗ Y ).

An interesting feature of the mutual information is that it measures the
degree of (non-linear) dependence between two variables. Now the question
is, is it possible to measure the degree of conditional dependence based on
a statistic similar to the mutual information? Let us consider a conditional
distribution of two variables X and Y given a third variable Z, p(x, y|z). The
mutual information of X and Y given a value z is defined as:

I(X ; Y |Z = z) = KL(p(X, Y |z); p(X |z)p(Y |z)) (1.56)

The conditioned mutual information of X and Y given Z is defined as:

I(X ; Y |Z) = EZ [I(X ; Y |Z)] (1.57)

The conditioned mutual information measures the degree of (non-linear) con-
ditional dependence between X and Y given Z. Since it is the expected value
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of a Kullback-Leibler divergence, it inherits the property I(X ; Y |Z) ≥ 0
with equality if, an only if, X and Y are conditionally independent given
Z (X ⊥ Y |Z). But, is it possible to generalize the dependence between a pair
of variables to an arbitrary set of variables? To answer this question we have
to introduce the concept of interaction information.

1.10.2 Interaction information

Interaction information , [Jakulin (2002)] is a metric based on the information-
theoretic concept of entropy. It reflects the degree of (non-linear) dependence
(or interaction) between a set of variables. It is based on information-theoretic
notion of entropy. Given a set of discrete random variables X = (X1, ..., Xk)
the k-way interaction information is defined as:

I(X1; ...; Xk) = −
∑

Y ⊆X

(−1)k−|Y |H(Y ) (1.58)

Note that Equation 1.58 is easily generalizable to continuous random vari-
ables, replacing the entropy term H(Y ) by the differential entropy h(Y ).

Interaction information reflects the degree of interaction between a set of
variables, X. It can be seen as a generalization of the mutual information for
measuring interactions between a set of variables X rather than between two
univariate random variables Xi, Xj. Mutual information and 2-way interaction
information are equivalent, i.e. given two univariate discrete random variables
X and Y , I(X ; Y ) = −∑Z⊆(X,Y )(−1)k−|Z|H(Z) = H(X)+H(Y )−H(X, Y ).

Now we will focus our attention on the 3-way interaction information
between three unidimensional random variables X , Y and Z. The 3-way in-
teraction information can be defined in terms of mutual information [Jakulin
and Bratko (2004)]:

I(X ; Y ; Z) = −H(X ; Y ; Z) + H(X ; Y ) + H(X ; Z) + H(Y ; Z)

−H(X)− H(Y ) − H(Z)

= I(X ; Y |Z) − I(X ; Y )

= I(X ; Z|Y ) − I(X ; Z)

= I(Y ; Z|X)− I(Y ; Z) (1.59)

If we analyze the interplay of the attributes X and Y in Equation 1.59 we
differentiate two parts. The mutual information I(X ; Y ) measures strength
of the dependence between X and Y . The conditioned mutual information
I(X ; Y |Z)) measures the strength of the conditional dependence of X and
Y given Z. The interaction information measures the difference between the
strength of the dependence and the strength of the conditional dependence.
Therefore, the higher the interaction information, the stronger is the condi-
tional dependence assumption with respect to the dependence assumption.
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Now we will briefly introduce an intuition which relates interaction infor-
mation with the error of classification models. This intuition is explained in
more detail in Chapter 5. Let (X, C) = (X1, ..., Xd, C) be a multidimensional
discrete random variable with joint probability distribution p(X1, ..., Xd, C).
Consider the sets of classifiers Mind = {∀i 6= j, φi,j

ind} and Mdep = {∀i 6=
j, φi,j

dep} where φi,j
ind and φi,j

dep are based on the probability functions p(Xi, Xj |C)

p(C) and p(Xi|C)p(Xj |C)p(C) respectively. The classifier φi,j
dep is taking into

account the dependence between Xi and Xj while φi,j
ind considers that X and

Y are independent given the class C. The difference of the classification error
between each pair of model φi,j

dep and φi,j
ind tends to increase with the increase

in the 3-way interaction information I(Xi; Xj; C). This fact is well illustrated
by artificial domains in Pérez et al. (2006a) (see Chapter 5 for further de-
tails). The 3-way interaction information has been recently used in Pernkopf
and Bilmes (2005) for the induction of Bayesian classifiers [Bilmes (2000);
Pernkopf and Bilmes (2005); Pérez et al. (2006a)]. For a detailed literature
review in interaction information since 1954 see Section 2.5 of Jakulin and
Bratko (2004).

1.11 Curse of dimensionality and feature subset selection

An important issue of the preprocessing of the data consists of transforming
the variable space or selecting the subset of relevant variables which will take
part in the classifier induction process. Reducing the dimensionality of the
domain (number of features) gives some advantages in a classifier induction
process: reduction of the search space, easy explanation capacity, improve-
ment of the classification accuracy, and enhancement of the reliability of its
estimation. Feature subset selection [Liu and Motoda (1998, 2008); Saeys et al.
(2007)] consists of selecting an appropriate subset of predictor variables for
supervised classification. On the other hand, the transformation of the space
of variables tries to construct a set of new artificial variables with interest-
ing properties for classification. For example, principal component analysis
[Jolliffe (1986)] obtains independent (orthogonal) transformed features which
captures most of the information of the original feature space by condensing
the variance of the original feature space (under Gaussian assumption). As we
noted previously, feature subset selection and transformation of the space are
usually considered a part of the preprocessing step, but it can also be consid-
ered a part of the classifier induction algorithm (learning process) because the
use of different feature inevitably imposes different models [Egmont-Peterson
(2004)].

For practical supervised classification applications in many real-world
problems we will have to deal with domains (or spaces) of high dimensionality,
e.g. O(104) predictor variables in DNA microarray domains. This poses some
serious challenges, inherited from density estimation field, and it is an im-
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portant factor influencing the design of classifiers. Let us see three intuitions
taken from Bishop (2006):

• If we divide a region of a n-dimensional space into regular cells, then the
number of such cells grows exponentially with the dimensionality of the
space, n. For example, if for n = 1, the number of cells is k, then for any
n ≥ 1 is kn. The problem with an exponentially large number of cells is
that we would need an exponentially large training set in order to ensure
that the cells are not empty. This problem is closely related with data
sparsity and the estimation of parameters in multinomial distributions (or
probability tables) and Bayesian multinomial networks –see Chapter 2.

• Consider concentric spheres of two radiuses r = {1, 1 − a} in a space of n
dimensions, and ask what is the fraction of the volume that lies between
both spheres with respect to the biggest sphere. The fraction tends to
one as n increases even for small values of a. Thus, in spaces of high
dimensionality, most of the volume of a sphere is concentrated in a thin
shell near the surface. So, in spaces of high dimensionality, the density
estimation techniques should be concentrated in obtaining estimators with
good fitting in the tails of the probability density functions.

• In a domain with n variables the number of different pairs of variables
is Θ(n2). The different number of sets of o variables is Θ(no). Thus, the
number of different statistics of order o to be computed is Θ(no).

Clearly some intuitions developed in spaces of low dimensionality are not
useful for high dimensional spaces.

Fortunately, real-world data will often be confined to a region of the space
having lower effective dimensionality, and in particular the directions over
which important variations in the target variables occur may be too confined.
In other words, real-world domains usually contain many irrelevant or redun-
dant variables. In this dissertation we introduce the most popular approach
to avoid the curse of dimensionality in supervised classification: feature subset
selection.

Following, in Section 1.11.1, we introduce the feature subset selection prob-
lem. It is divided into three main parts. The section starts by introducing FSS
problem, and filter and wrapper approaches. Then, due to the importance of
relevance concept, Section 1.11.1.1 formally presents the concept of relevance
for predictor random variables in supervised classification problems. Section
1.11.1.2 presents the two main feature subset selection problems with differ-
ent goals: minimal-optimal and all relevant problems. Then, we present four
representative feature subset selection algorithms: ranking of mutual infor-
mation plus threshold (MIT), correlation based feature selection (CFS), Phy
algorithm and wrapper approaches for Bayesian networks.
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1.11.1 Feature subset selection

Feature subset selection (FSS) [John et al. (1994); Liu and Motoda (1998); Bell
and Wang (2000); Nilsson et al. (2007)] is the process of reducing input data
dimension by selecting a subset Xs of the predictor variables X, where Xs ⊆
X. The most popular purpose of FSS in supervised classification consists of
selecting a subset of features from the feature space which is good enough to
predict the class of an unlabeled sample, ignoring its ability to describe the
training set. By reducing dimensionality, FSS attempts to solve two important
problems: facilitate learning (inducing) accurate classifiers, and discover the
most interesting features, which may provide for better understanding of the
problem itself [Guyon and Elisseeff (2003)].

With regard to how to evaluate the goodness (or quality) of a subset
of features, the FSS methods fall into two broad categories: filter [Liu and
Motoda (1998)] and wrapper approaches [Kohavi and John (1997)]. In the
filter approach a good feature set is selected as a result of pre-processing based
on properties of the data itself and independent of the learning algorithm [Bell
and Wang (2000)]. In other words, the scores used in the filter approaches are
based on intrinsic characteristics of the data [Liu and Motoda (1998)]. The
advantages of filter approaches are usually related to the time complexity
needed to make the selection and to the independence from the induction
algorithm. A score based on correlation used to select variables in a filter
manner is the correlation based feature selection score [Hall and Smith (1997);
Yu and Liu (2004)] (see Paragraph B. in Section 1.11.1.3). More examples
based on information theory are the approaches based on relevance concepts
[Wang (1996); Wang et al. (1999)].

In the wrapper approach [John et al. (1994)], FSS is done with the help
of the classifier induction algorithm selected for the problem. The FSS algo-
rithm conducts the search for a good feature set using the selected learning
algorithm itself as a part of the evaluation function [Bell and Wang (2000)].
Wrapper approaches use an estimation of the classification performance as
the search score [Kohavi and John (1997)]. Thus, they depend on the specific
classifier used to estimate the classification goodness. In comparison with filter
approach, wrapper approach can be thought of as being based on a different
notion of relevance: relevance to a classifier (see Section 1.11.1.1). However,
Kohavi (1995a) shows that the optimal feature subset for classification ob-
tained in this way must be from relevant feature subset as defined in the filter
approach [John et al. (1994)].

Most of the FSS algorithms perform a search in the space of the possi-
ble subsets of features. This process is usually based on a heuristic search
guided by a score (filter or wrapper). The search process depends on the score
and search strategy used. Two kinds of search processes can be identified,
depending on the process of constructing the solution. The solution can be
constructed incrementally by adding, removing or merging subsets of features,
or the complete solution can be given at each step, like in some population
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based meta-heuristic search algorithms such as genetic algorithms [Goldberg
(1989)] of estimation distribution algorithms [Larrañaga and Lozano (2002);
Inza et al. (2000)]. For a review of different search strategies, see Kudo (2000).

Since FSS has a traditional close link with the notion of relevance [Kinja
and Rendell (1992); John et al. (1994); Hall and Smith (1997); Bell and Wang
(2000); Nilsson et al. (2007)] the following subsection is focused on the concept
of relevance.

1.11.1.1 Relevance

This section gives some definitions of variable relevance [John et al. (1994);
Wang (1996); Bell and Wang (2000); Nilsson et al. (2007)] for supervised clas-
sification (and regression) problems. These definitions will be useful in order
to understand the variable reduction and selection techniques. The definitions
of relevance considered in this section are rooted in the well-known concept of
(probabilistic) conditional independence (See Section 1.3). There exists an al-
ternative concept of relevance which is concerned with the relevance between
instances of variables, but this is focused on sample reduction (condensation)
rather than space dimensionality reduction. However, both relevance concepts
are related and are complementary aspects of the relevance concept. For a uni-
fied framework of relevance of variables and relevance of instances see Wang
(1996). From here on, we will focus on variable relevance concept with dimen-
sionality reduction purposes for supervised classification.

The following definitions of relevance are based on the predictor random
variables X = (X1, ..., Xd) and X¬i = X \ Xi, and on the target random
variable C. The nature of the random variables, i.e. continuous, discrete or
mixed, is not specified because the definitions are independent from their
nature. Thus, the same definitions can be used in a regression problem, i.e.
when the variable C is continuous, and for mixed domains, i.e. when X is a
multidimensional mixed random variable. Moreover, the relevance definitions
are given for univariate random variables, but they can be generalized to
sets of variables by replacing the variable Xi by the subset of variables (or
multidimensional random variable) Xs ⊆ X.

Most of the methodological contributions of this document are based on
probabilistic graphical models [Pearl (1988); Castillo et al. (1997)]. Proba-
bilistic graphical models are conditional independence maps (see Chapter 2,
Section 2.2.1 and 2.3) and, thus, we are more interested in conditional inde-
pendence statements. As we will see in Chapter 2, conditional independence
statements enable us to graphically factorize the generalized joint probability
distribution for X, resulting in a reduction in the number of parameters that
are needed to completely specify this distribution. In probabilistic graphical
models, irrelevance is identified with conditional independence, and relevance
is defined as a negation of the irrelevance. On the other hand, we are more
interested in relevance rather than in irrelevance for feature subset selection.
In order to take into account both aspects, and following Pearl (1988) and
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John et al. (1994), we introduce the concept of relevance based on condi-
tional dependence. Moreover, we will quantify the relevance of one variable
with respect to a target variable in terms of the strength of their conditional
dependence. For alternative definitions and a rigorous analysis of relevance
concepts see Wang (1996).

A feature Xi can be identified as relevant to a target concept, such us the
class C, if its value varies systematically with the target.

Definition 1.22 (Relevance) A feature Xi is relevant to C iff there exist
some xi and c such that p(Xi = xi) > 0 and p(C = c|Xi = xi) 6= p(C = c).

Under this definition, Xi is relevant to C if knowing its value can change
the estimates for C, or in other words, if C is dependent on Xi, CD(C; Xi|∅).
However, this definition is not useful for our purposes since it is stated in
terms of (in)dependence and not in terms of conditional (in)dependence.
Moreover, John et al. (1994) showed by an example (see XOR example in
Section 1.11.1.2), that the above definition gives unexpected results, and that
the dichotomy (relevance/irrelevance) in general is not enough. Then, they
propose an alternative formulation of relevance, which distinguishes between
strong relevance and weak relevance.

Two well-known relevance definitions coping with this problem were pro-
posed by John et al. (1994).

Definition 1.23 (Strong relevance) A feature Xi is strongly relevant to C
iff CD(C; Xi|X¬i).

Definition 1.24 (Weak relevance) A feature Xi is weak relevant to C iff it
is not strongly relevant to C, but satisfies CD(C; Xi|Xs) for some Xs ⊆ X¬i.

A strongly relevant feature Xi provides information about C that cannot
be obtained from any other feature X¬i. On the other hand, a weakly relevant
feature Xi also provides information about C but this information is redundant
–it can also be obtained from other features X¬i. An illustrative example
of strong and weak relevances is given in the following subsection (Section
1.11.1.2).

Definition 1.25 (Relevance) A feature Xi is relevant to C iff it is strongly
relevant or weakly relevant to C. A feature Xi is irrelevant to C iff it is not
relevant to C.

Considering Definition 1.25 [John et al. (1994)] an intuitive measure for
the relevance of a feature X is I(X ; C) and for the relevance of a subset
of variables Xs ∈ X is the mutual information I(Xs; C). Unfortunately,
the number of cases required for obtaining a reliable estimator of I(Xs; C)
increases exponentially with the cardinality of the subset Xs.

The following definition considers the feature relevance concept with re-
spect to a classifier, φX [Nilsson et al. (2007)].
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Definition 1.26 A feature Xi is relevant to a classifier φX iff p(φX(xi, x¬i) 6=
φX(x′

i, x¬i)) > 0 for some X¬i = x¬i, where xi and x′
i are independent and

identically distributed samples.

This definition states that in order to be considered relevant to a classifier
φ, a feature Xi must influence the value of φ(x) for some x with non-zero
probability. The relevance for a classifier is closely related to the relevance for
the class variable. The definition can be reformulated as follows for generative
and conditional classifiers: a feature Xi is relevant to a classifier φ based on the
distributions pφ(c|x) iff p(argc max pφ(c|xi, x¬i) 6= argc max pφ(c|x′

i, x¬i)) >
0 for some x¬i. Thus, in general, a variable can be strongly relevant for a
class variable being at the same time not relevant for a classifier. Besides, one
feature can be relevant for a classifier, being at the same time irrelevant for
another. Moreover, a variable could be strongly relevant for the class variable,
being at the same time irrelevant for Bayes classifier (for the definition of
Bayes classifier see Section 1.5), that is, a value of Xi can affect the a posteriori
p(c|xi, x¬i) for some c and any x¬i without effecting the Bayes classifier.

In practise, the data distribution is unknown, and a classifier φ must be
induced from the training data S = {(x(1), c(1)), ..., (x(N), c(N))} by an in-
duction algorithm A, A(S) = φ (see Section 1). As we have seen before, the
relevance can be defined with respect to some classifier, φ. It is useful to con-
sider the relevance with respect to the Bayes classifier, φB, which is optimal
for classification and independent from the training set. Unfortunately, this
classifier is unknown in real-world domains, but there are some classifiers for
which the consistency is proved, such as k-nearest neighbor for appropriate
values of k [Devroye et al. (1996)] or Parzen window classifier (see Chapter
4). We say that an inducer is consistent if the induced classifier A(S) = φ
converges in probability to Bayes classifier φB as the sample size tends to
infinity. Thus we can use a consistent classifier φ = A(S) based on a finite
sample set S as an estimate of the Bayes classifier and consider the relevance
to φ as an estimate of the relevance to the Bayes classifier.

1.11.1.2 Minimal-optimal and all-relevant feature subset selection

The problem of feature subset selection can be approached from two different
points of view [Nilsson et al. (2007)]: finding a subset of features optimal
for classification and finding all the features relevant to the target variable.
The latter problem is motivated by recent applications within bioinformatics,
particularly gene expression analysis [Nilsson et al. (2007)]. However, most of
the works in the literature are rather interested in obtaining good features for
classification [John and Langley (1995); Hall (1999)].

The goal of minimal-optimal feature subset selection is to obtain an op-
timal classifier using the minimal number of features. We sill now consider
two related minimal-optimal problem definition. The first one is based on the
concept of relevance as given by Definition 1.25 and the latter is based on the
idea of relevance to the Bayes classifier.
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Let us consider one illustrative example taken from John et al. (1994)
in order to understand the nature of the minimal-optimal FSS. Let pre-
dictors X1, ..., X5 be boolean, where X4 = ¬X2 and X5 = ¬X3, and let
g((x1, ..., x5)) = x1

⊕

x2 = x1

⊕

x4 = c be the function that determines
the class, where

⊕

represents the XOR operator. Clearly, two minimal opti-
mal subsets of features exist, {X1, X2} and {X1, X4}. Given the definition of
strong and weak relevance of Equations 1.23 and 1.24 we can say that X1 is
strongly relevant, X2 and X4 are weakly relevant and X3 and X5 irrelevant.
Under these definitions of relevance, Xi is relevant to C if the probability of
the outcome can change when we eliminate knowledge about the value of Xi.
Strong relevance implies that the feature is indispensable [John and Langley
(1995)], in the sense that it cannot be removed without loss of accuracy in
the estimate p̂(c|x). On the other hand, weak relevance implies that the at-
tribute can sometimes contribute to improve the accuracy of the estimated
a posteriori probabilities p̂(c|x) [John and Langley (1995)]. Moreover, under
some mild conditions related with the uniqueness of the Bayes classifier, Nils-
son et al. (2007) demonstrates that the minimal-optimal set can be defined
as the set of features strongly relevant to the Bayes classifier φB . Under these
mild conditions Nilsson et al. (2007) proves that minimal-optimal subset only
contains strongly relevant features in the sense of Definition 1.23. It must be
highlighted that in certain domains a strongly relevant feature Xi could be
not included in the set of relevant features to the Bayes classifier. In other
words, the value xi can affect the probability of the class p(c|x) but not the
Bayes classifier because the change in p(c|x) is not large enough to alter the
decision argc max p(c|x). In this sense, relevance to Bayes classifier is stronger
than strong relevance to the class variable. An illustrative example of this fact
is given in Nilsson et al. (2007).

A recent study by Yu and Liu (2004) examines the role of weakly rele-
vant features in more detail and subdivides these further into redundant and
non-redundant weakly relevant features, of which the latter is deemed to be
important for the Bayes classifier. However, Yu and Liu (2004) consider arbi-
trary distributions; for strictly positive distributions however, it can be seen
that all weakly relevant features are also redundant in their terminology, so
that their distinction is not useful in this case [Nilsson et al. (2007)].

On the other hand, the goal of all-relevant FSS is to obtain the entire
set of features relevant to the class variable C. We can define the all-relevant
subset in the light of the relevance given by Definition 1.25 [Nilsson et al.
(2007)], but it can be also defined in terms of the goal of the study; for exam-
ple, in bioinformatics many researchers are more interested in the biological
significance of the features (genes) that depend on the class C rather than
in obtaining a high discriminative subset of features. However, in practice,
a minimal-optimal FSS is usually performed to optimize some classification
criteria and then the chosen features are examined for biological significance
[Golub et al. (1999); Guyon et al. (2002)]. Unfortunately, this strategy ignores
the distinction between biological significance and prediction. A characteriza-
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tion of the problem in the sense of Definition 1.25 is given in Nilsson et al.
(2007). Moreover Nilsson et al. (2007) presents, under some mild conditions
related with the uniqueness of the Bayes classifier, a consistent algorithm in
polynomial time with the number of features. In the remainder of this section,
we will focus on feature subset selection for the minimal-optimal problem.

1.11.1.3 Examples of FSS algorithms

Now we will present a representative set of feature selection algorithms, high-
lighting their main differences taking into account the heuristic, the dimen-
sionality of the used statistics and their merits and problems.

A. Mutual information plus threshold

This algorithm is representative of the family of univariate algorithms. We call
this family of FSS algorithm univariate because they measure the relevance
of each individual predictor Xi for i = 1, ..., n to the class variable C indepen-
dently from the rest of predictors Xs ∈ X¬i = (X1, ..., Xi−1, Xi+1, ..., Xn).
This algorithm quantifies the relevance of each variable Xi for i = 1, ..., n
in terms of its dependence with the class CD(Xi; C|∅) by means of the mu-
tual information I(Xi; C). Then, by means of the following (in)dependence
test presented which determines if the relevance of each predictor variable is
statistically significant or not.

This test is based on a theorem introduced in [Kullback (1959)] consider-
ing the discrete mutual information estimated using the empirical probability
distribution obtained from S, Î(Xi; C). The test is based on the following
theorem:

Theorem 5. Let Xi and C be two discrete random variables which take ri

and r different values respectively. Let S = {(x(1)
i , c(1)), ..., (x

(N)
i , c(N))} be

a bivariate sample of iid cases for (Xi, C). Let p̂(xi, c), p̂(xi) and p̂(c) be
the empirical probability distributions obtained from S for (Xi, C), Xi and C
respectively, and let Î(Xi; C) be the estimator of I(Xi; C) based on p̂(xi, c),

p̂(xi) and p̂(c), Î(Xi; C) =
∑

xi

∑

c ln p̂(xi, c)
p̂(xi,c)

p̂(xi)p̂(c) . If p(xi, c) = p(xi)p(c),

i.e. CI(Xi; C|∅), then

2N · Î(Xi; C) −→dN→∞ χ2(t; θ = (ri − 1)(r − 1))

where d indicates convergence in distribution and θ are the degrees of freedom
of the χ2 distribution. �

The proof of this theorem can be found in [Kullback (1959)]. An alternative
proof in a more general form (ϕ-divergences [Ali and Silvey (1966)]) can be
found in [Pardo et al. (1993)] (Theorem 7.4, p.307). Note that the logarithm
used to compute the mutual information is the natural logarithm (base e).

Based on Theorem 5, the following (in)dependence test can be proposed
[Kullback (1959); Pardo et al. (1993)]: Let Xi and C be two discrete random
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variables, where p(xi, c) is their joint probability distribution and, p(xi) and
p(c) their marginal probability distributions respectively. We are interested in
contrasting the null hypothesis H0: Xi and C are independent, which can be
stated as:

H0 : p(xi, c) = p(xi)p(c) for all (xi, c)

being the alternative hypothesis H1 : p(xi, c) 6= p(xi)p(c) for some (xi, c).
Then, the following statistic is considered:

t = 2N · Î(Xi; C)

Note that, by Theorem 5, we have that T ; χ2(t; (ri − 1)(r − 1)). If the
null hypothesis is true, t should be small. Then, a high t indicates a low
compatibility of the null hypothesis with the data. So, by Theorem 5, the
statistical test of size α consists of rejecting H0 if t > τ , where α = pval(τ) =
∫∞

τ χ2(t; (ri − 1)(r − 1))dt.
One of the main advantages of the family of univariate FSS algorithms

based on relevance is that they only require to compute a number of statistics
O(n), e.g. Î(Xi; C) for all i. The univariate FSS algorithms are not suitable
for minimal-optimal problems because they consider the relevance individually
for each predictor independently from the rest of predictors and, thus, they
tend to obtain features highly correlated with the class but they could share a
lot of redundant information. On the other hand, univariate FSS algorithms
can be useful to provide a first approach to the all-relevant problem selecting
the relevant variables Xi which verify CD(Xi; C|∅), but they do not not take
into account variables given by CD(Xi; C|Xs) with Xs ∈ X¬i.

B. Correlation-based feature selection

This paragraph presents an score rather than a complete FSS algorithm. This
score is called correlation based feature selection (CFS) [Hall (1999)] and it
is based on the following heuristic: a good set for supervised classification
includes predictor variables Xi highly correlated with the class C being, at the
same time, lowly correlated between them. The maximization of the score can
be done by means of different search strategies and the most popular is a
forward greedy approach. Given a set of features X = (X1, ..., Xn), its CFS
score is given by:

CFS(X) =
ncorC

√

n + n(n − 1)corX

=

∑n
i=1 cor(Xi; C)

√

n + 2
∑n

i=1

∑n
j=i+1 cor(Xi; Xj)

(1.60)
where corC = 1

n

∑n
i=1 cor(Xi; C) is the average correlation with the class

and corX = 2
n(n−1)

∑n
i=1

∑n
j=i+1 cor(Xi; Xj) is the average correlation be-

tween the predictors. We can conclude directly from Equation 1.60 that the
higher the correlations between the features and the class,

∑n
i=1 cor(Xi; C),

the higher the CFS score. Moreover, the lower the correlations among the
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features,
∑n

i=1

∑n
j=i+1 cor(Xi; Xj), the higher the CFS score. However, it is

unlikely that a group of features that are all highly correlated with the class
variable will at the same time bear low correlations among them. Furthermore,
when a new feature is added to the selected subset, low inter correlation with
the already selected features may well predominate over high correlation with
the class [Hall (1999)].

In Hall (1999) different correlation measures are proposed and tested
in order to obtain different implementations of the CFS score: symmetri-
cal uncertainty (SU), minimum description length and relief. The three cor-
relation scores are appropriate for CFS because (i) they are symmetrical
cor(Xi; Xj) = cor(Xj ; Xi), (ii) they prefer predictive features with fewer val-
ues over those with more values. Now we will focus on CFS based on symmet-
rical uncertainty correlation score. It seems to perform slightly better than
minimum description length score, specially with small training set sizes, and
it performs better than relief [Hall (1999)]. The symmetrical uncertainty cor-
relation coefficient (SU) between X and Y discrete random variables is defined
as:

su(X ; Y ) =
2I(X ; Y )

H(X) + H(Y )
(1.61)

SU is a symmetric and normalized quantity based on mutual information
I(X ; Y ) and entropy H(X), H(Y ), 0 ≤ su(X ; Y ) = su(Y ; X) ≤ 1. The mutual
information can be used to measure the correlation between variables X and
Y in terms of the level of information shared by them (see Section 1.10 for
more details). SU inherits the symmetry from I(X ; Y ), which is desirable to
quantify the correlation among the predictors. On the other hand, the entropy
is used in order to normalize the mutual information. Mutual information
can be problematic because it tends to give higher values to variables with
more states. Entropy also tends to increase with the number of values of the
discrete random variable, and it gives a high bound to the mutual information
0 ≤ I(X ; Y ) ≤ min(H(X), H(Y )). Thus, it can be considered comparable to
the mutual information. So, SU compensates the bias of mutual information
towards attributes with many values using the entropy. Due to normalization,
the obtained individual correlation coefficients can be considered comparable.

Experimentation on artificial domains shows CFS to be effective at screen-
ing both irrelevant (low correlated with the class) and redundant features
(high correlated with the included features) and, as long as there are no ex-
treme feature interactions, CFS is able to quickly identify relevant features.
Using CFS the accuracy can be dramatically improved in artificial domains
with the presence of irrelevant or redundant variables [Hall (1999)].

But CFS score is too heavily biased in favor of small feature subsets and
this aggressive bias may result in some loss of accuracy. Because correlations
are estimated globally using the training set, CFS with forward greedy selec-
tion tends to select a core subset of features, but may fail to include subsidiary
features that are locally predictive in a small area of the space of instances.
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C. Phi

Phi is a consistent FSS algorithm which solves minimal-optimal problem under
some mild assumptions related to the uniqueness of the Bayes classifier. The
consistency of the algorithm is proved by Nilsson et al. (2007). The pseudo-
code of the Phi backward algorithm is given in Figure 1

Algorithm 1: Phi feature subset selection algorithm.

1 Estimate the error of the classifier with all predictor variables, ǫ̂X

2 Estimate the errors of the classifiers with the predictors X¬i for i = 1, ..., n,
ǫ̂X¬i

3 Select the random variables Xi for which ǫ̂X¬i > ǫ̂X for i = 1, ..., n

The error can be estimated using the estimators introduced in 1.8.1. This
algorithm can be implemented for different choices of classifier induction al-
gorithms, provided that they are consistent. For example, it can be imple-
mented with k-nearest neighbor with an appropriate strategy for fixing k
value: k = log N or k =

√
N [Devroye et al. (1996)], where N is the number

of cases in the training set. An implementation of Phi algorithm with support
vector machines was proposed in Guyon et al. (2002) and it was applied to
gene selection for cancer classification.

D. Wrapper feature subset selection using Bayesian networks

In the literature several classifier induction algorithms have been proposed
based on Bayesian networks which perform a feature subset selection implicitly
in the learning process. Some of these methods are wrapper [Kohavi (1995b);
Langley and Sage (1994); Pazzani (1997); Keogh and Pazzani (1999)] and
they relate the relevance of a feature Xi with respect to the class variable
C with the improvement of the performance when the feature is Xi included
in the Markov blanket of C. The inclusion in the Markov blanket of C can
be performed in different ways: by considering the addition of an arc from C
to Xi, C → Xi, such as in selective näıve Bayes [Langley and Sage (1994)]
and in wrapper tree-augmented näıve Bayes [Keogh and Pazzani (1999)], by
considering the addition of the arc Xi → C [Cheng and Greiner (1999)], or by
considering to join the feature Xi with a variable Xj relevant to C [Pazzani
(1997)], among others. Some of the mentioned approaches are presented in
detail in Chapter 2, Section 2.5.3. Moreover, some of the mentioned algorithms
are adapted to conditional Gaussian networks in Chapter 3.

1.12 Discretization

In this section we briefly explain the discretization process of a continuous
variable.
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Often data sets are described by continuous variables. If the number of
continuous variables is large, model building for such data can be difficult
and/or highly inefficient. Moreover, many data mining algorithms can only
handle discrete attributes.

The goal of discretization is to reduce the number of values a continuous
variable assumes by grouping them into a number, r, of intervals or bins.
A discretization algorithm, used as a preprocessing step, should generate as
few discrete intervals as possible. On the other hand, too few intervals may
hide information about the relationship between the class variable and the
discretized variable. Thus, two key problems associated with discretization
are how to choose the number of intervals, r, and how to decide what the
intervals are. In summary there is a trade off between the loss of information
and the number of intervals of the discretized variable.

Discretization can be performed with or without class information. Analo-
gously to unsupervised and supervised learning methods, discretization algo-
rithms can be divided into two main categories: unsupervised and supervised.
If class information exists, a discretization algorithm should take advantage
of it, especially if obtained data is used to learn a classifier. In this case, a dis-
cretization algorithm should maximize the dependence between the variable
X and the class C. An additional benefit of using supervised discretization is
that it tends to minimize the loss of information of the class variable.

Discretization of continuous variables is most often performed one at-
tribute at a time, independent of other attributes. This approach is known
as univariate or static attribute discretization. On the other hand, when all
continuous variables are discretized simultaneously, taking into account the
interdependencies among them, the approach is known as multivariate or dy-
namic attribute discretization. For a more general and complete taxonomy of
the discretization algorithms the reader should consult [Yang (2003)].

Following, we present three univariate classic and popular discretization al-
gorithms: equal width, equal frequency and entropy [Fayyad and Irani (1993)].

1.12.1 Equal width

Equal width algorithm is a non-supervised univariate discretization algorithm.
It is considered an intuitive discretization because it divides the range of X
in the data set S = {x(1), ..., x(N)}, [xmin, ..., xmax], into r partitions of equal
width:

P i = [xmin + (i − 1)w, xmin + iw) (1.62)

for i = 2, ..., r − 1 where w = (xmax − xmin)/r, the first partition is given by
P 1 = (−∞, xmin + w) and the last partition P r = [xmin + (r − 1)w,∞).

1.12.2 Equal frequency

Equal frequency algorithm is a non-supervised univariate discretization algo-
rithm. It divides the range of X into r partitions [−∞, x1), [x1, x2), ..., [xr−2,
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xr−1), [xr−1,∞) where xi is the i-th cut point. This algorithm chooses the cut
points xi for i = 1, ..., r − 1 such that the same number of instances falls into
each partition. That is, Ni ≃ N/r, where Ni is the number of instances of S
falling in the i-th.

1.12.3 Entropy

The method proposed by Fayyad and Irani (1993), referred to as entropy dis-
cretization algorithm in this section, is based on a minimal entropy heuristic.
It is a supervised univariate discretization algorithm. This method uses the
class information entropy of candidate partitions to select bin boundaries for
discretization. If we are given a data set S = {(x(1), c(1)), ..., (x(N), c(N))},
and a partition boundary t. Then t partitions the set S of instances into the
subsets S1 and S2 of sizes N1 and N2 respectively. Let there be rC classes,
c ∈ {c1, ..., cr}, and let Pr(ci|S) the proportion of examples in S that have
the class ci. The class entropy of a subset S is defined as:

H(C|S) = −
rC
∑

i=1

Pr(ci|S) log Pr(ci|S) (1.63)

Then the class information entropy of the partition induced by t is given
by

H(C|S, t) =
N1

N
H(C|S1) +

N2

N
H(C|S2) (1.64)

For a given variable, X , the boundary tmin which minimizes Equation 1.64
over all possible partitions, a boundary is selected as a binary discretization
boundary. This method can then be applied recursively to both of the parti-
tions induced by tmin until some stopping condition is achieved, thus creating
multiple intervals on the feature X .

Entropy discretization make use of the Minimal Description Length Prin-
ciple to determine a stopping criterion for their recursive discretization algo-
rithm. Recursive partition within a data set S stops when

Gain(X, t|S) <
log2 N − 1

N
+

∆(X, t|S)

N
(1.65)

where,

Gain(X, t|S) = H(C|S) − H(C|S, t)

∆(X, t|S) = log2(3
rC − 2) − [rCH(C|S) − r1

CH(C|S1) − r2
CH(C|S2)]

and ri
C is the number of class labels represented in the set Si. Since the

partitions along each branch of the recursive discretization are evaluated in-
dependently using this criteria, some areas in the continuous range of X will
be partitioned very finely, whereas others will be partitioned coarsely.
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Fig. 1.5. This figure shows a finite Gaussian mixture density, f(x) This density
is sampled to create three data sets, S10, S100 and S1000 with 10, 100 and 1000
instances respectively, where S10 ⊂ S100 ⊂ S1000.

1.13 Non-parametric density estimation

The section starts with a brief introduction to non-parametric density estima-
tion focused on unidimensional continuous random variables, from the sim-
plest histograms to variable kernel density estimation technique. This section
has been adapted from [Silverman (1986)].

The estimated density is denoted as f̂X(x; S), or simply as f̂(x) when it
is clear from the context, where S is a set of idd samples (training set) of the
univariate continuous random variable X , S = {x(1), ..., x(N)}. Figure shows
an example of an arbitrary density function for X from the family of finite
Gaussian mixture densities [Titterington et al. (1985)], X ; 2/6N (x; µ =
5, σ = 1.5) + 3/6N (x; 6, 1) + 1/6N (x; 10, 1.5).

Often, parametric densities, such as Gaussian density function (see Section
3.2 for further details), are not able to properly represent the density function
of a continuous random variable X , f(X). In other words, the error of a
parametric density with respect to an arbitrary density function can be too
high due to restrictive function shapes. Intuitively, non-parametric density
estimators try to break with the restrictive function shapes imposed by the
family of parametric densities.

1.13.1 Histograms

The oldest and most popular density estimator is the histogram. Given an
origin x0 and a bin width h, we define the bins (or cells) of the histogram to
be the intervals [x0 + ih, x0(i + 1)h) for all i ∈ N. The intervals have been
chosen closed on the left and open on the right for definiteness.

The histogram is then defined by

f̂(x) == Ni/N (1.66)
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(a) f̂(x;S10), ǫ = 0.78.
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(b) f̂(x;S100), ǫ = 0.70.
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(c) f̂(x;S1000), ǫ = 0.73.

Fig. 1.6. These figures show the densities modeled under Gaussian assumption
with maximum likelihood parameters based on the data sets S10, S100 and S1000.
The absolute error of the estimated density, ǫ, is shown in each figure.

where x is in the i-th bin, x ∈ [x0 + ih, x0 + (i + 1)h), and Ni is the number
of samples x′ ∈ S in the same bin as x, Ni = |Si| = |{x′/x′ ∈ [x0 + ih, x0 +
(i+1)h)}|. Therefore, in order to construct the histogram, we have to specify
both an origin x0 and a bin width h. Note that, histogram is equivalent to
first discretize the random variable X using the equal width procedure and,
then, estimate the multinomial probability distribution (probability table or
contingency table) of the obtained discretized variable.

The histogram can be generalized by allowing the bin widths to vary. So
we have h = (h0, ..., hr−1) one for each bin (or cell) i. Then the estimate is
analogously given by

f̂h(x) = Ni/N (1.67)

where x is in the i-th bin, and Ni is the number of samples x′ ∈ S in the same
bin as x, Ni = |Si| = |{x′/x′ ∈ [x0 +

∑i
j=1 hj, x

0 +
∑i+1

j=1 hj)}|. This approach
is also equivalent to, firstly discretizing the random variable (by using an
appropriate discretization algorithm) and, then, estimating the multinomial
probability distribution of the obtained discretized variable.

Those who are sceptical about density estimation often ask why it ever
is necessary to use methods more sophisticated than the simple histogram.
The case for such methods and the drawbacks of the histograms depend quite
substantially on the context, i.e. there is not a best density estimation tech-
nique suitable for all domains in general. In terms of various mathematical
descriptions of accuracy in density estimation, the histogram can be quite
substantially improved upon, and this mathematical drawback translates it-
self into inefficient use of the data if histograms are used as density estimates
in procedures such as cluster analysis and nonparametric discriminant analy-
sis. The discontinuities of histograms causes extreme difficulty if derivatives of
the estimates are required. When density estimates are needed as intermediate
components of other methods, e.g. classifiers based on kernel based Bayesian
networks, the case for using alternatives to histograms is quite strong (see
Silverman (1986)).
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(a) Histogram based on S10.
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(b) Histogram based on S100.
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(c) Histogram based on S1000.

Fig. 1.7. These figures show histograms based on the data sets S10, S100 and S1000.
The obtained histogram clearly improves as the size N of the data set SN increases.

For the presentation and exploration of the data, histograms are an ex-
tremely useful class of density estimates, particularly in the univariate case.
However, even in one dimension, the choice of the origin can have quite an
effect, e.g. the occurrence or absence of peaks in the probability distribution
obtained depends on the choice of the origin. Finally, it should be stressed
that, in all cases, the histogram requires a choice of the amount of smoothing,
i.e. r bin widths h = (h0, ..., hr−1) for the case of histograms with variable
bin widths.

1.13.2 Naive estimator

From the definition of probability density function 1.8 of the random variable
X , we have that

f(x) = lim
h→0

1

2h
Pr(x′ ∈ (x − h, x + h)) (1.68)

For any given h, we can of course estimate Pr(x′ ∈ (x − h, x + h)) by the
proportion of the sample falling in the interval (x − h, x + h). Following this
intuition, a natural estimator of the density is the näıve estimator which is
given by

f̂n(x;SN ) =
1

2h
Nx/N (1.69)

where Nx is the number of cases falling in the interval (x − h, x + h), Nx =
|{x′/x′ ∈ S ∧ x′ ∈ (x − h, x + h)}|. Note that it is advisable to select a small
number h. In order to express the estimator more transparently, we define the
weight function w

w(x) =

{

1/2 if |x| < 1
0 otherwise

(1.70)

Then it is easy to see that the näıve estimator can be rewritten as

f̂n(x; h,SN ) =
1

N

N
∑

i=1

1

h
w(

x − x(i)

h
) (1.71)



68 1 Supervised classification

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

f(
x)

(a) f̂n(x;h = 1.58,S10), ǫ =

0.35.

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

f(
x)

(b) f̂n(x; h = 1.00,S100), ǫ =

0.19.
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(c) f̂n(x; h = 0.63,S1000),

ǫ = 0.10.

Fig. 1.8. These figures show the densities modeled using näıve estimator based
on the data sets S10, S100 and S1000. In each estimated density we have select
the parameter h which minimizes the absolute error. The value of the parameter
h and the absolute error of the estimated densities, ǫ, are shown in each figure.
The densities modeled with näıve estimator clearly improve the estimations under
Gaussian assumption shown in Figure 1.6. The modeled density clearly improves as
the size of the data set increases.

It follows from Equation 1.70 that the estimate is constructed by placing a
box of width 2h and height (2nh)−1 on each observation and then summing
them to obtain the estimate. We shall return to this interpretation below, but
it is instructive first to consider a connection with histograms.

Let us consider the histogram constructed from the data using bins of
size (or width) 2h assuming that no observation of SN lies exactly at the
edge of a bin. If x happens to be at the center of one of the histogram bins, it
follows at once from Equation 1.70 that the näıve estimate f̂n(x; h,SN ) will be

exactly the ordinate of the histogram at x, f̂h(x; h,SN ). Therefore, the näıve
estimator can be seen to be an attempt to construct a histogram where every
point is the center of a sampling interval, and thus, freeing the histogram from
a particular choice of bin position. But, the choice of bin width still remains
and is governed by the parameter h, which controls the amount by which the
data sample is smoothed to produce the estimate. Examples of näıve density
estimations are shown in Figure 1.8.

The näıve estimator is not wholly satisfactory from the point of view of
using density estimates for presentation. It follows from Equation 1.68 that
f̂n(x; h,SN ) is not a continuous function. It has jumps at the points x(i) ± h
(see Figure 1.8). In order to overcome this difficulty, it is of interest to consider
kernel density estimation, which can be considered a generalization of näıve
estimator.

1.13.3 Kernel density estimation

It is easy to generalize the näıve estimator to overcome some of the difficulties
discussed above. Replace the weight function w(x) (see Equation 1.70) by a
kernel function K(x) which satisfies the condition
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(a) Oversmooth: f̂k(x; h =

5.0,S20), ǫ = 0.73.
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(b) Optimum: f̂k(x; h =

1.0,S20), ǫ = 0.25.
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(c) Undersmooth: f̂k(x; h =

0.2,S20), ǫ = 0.62.

Fig. 1.9. These figures show the densities modeled using kernel density estima-
tion based on a data set with 20 samples, S20, and using different values for the
window width, h. Figures 1.9(a), 1.9(b) and 1.9(c) show oversmooth, optimum and
undersmooth density estimations based on S20, respectively.

∫ ∞

−∞
K(x)dx = 1

Usually, K(x) will be symmetric probability density function, e.g. Gaussian
density function (see Definition 3.1).

By analogy with näıve estimator (see Equation 1.68), the kernel estimator
with the kernel function K(x) is defined as

f̂k(x; K, h,SN ) =
1

N

N
∑

i=1

K(
x − x(i)

h
) (1.72)

where h is the smoothing parameter (window width or bandwidth).
Just as the näıve estimator can be considered as a sum of “boxes” centered

at the observations, the kernel estimator is a sum of “bumps” placed at the
observations. The kernel function K(x) determines the shape of the “bumps”
while the window width h determines their width.

The effect of varying the window width is illustrated in Figure 1.9. A Gaus-
sian kernel has been used to construct the density estimation. The estimation
has been constructed from 20 idd samples, S20, taken from the density shown
in Figure 1.5. If h is chosen too large then the shape of the distribution is
obscured (see Figure 1.9(a)), while if h is chosen too small then spurious fine
structure becomes visible (see Figure 1.9(c)). So, in the limit, as h tends to
zero kernel estimator is (in a sense) a sum of Dirac delta function spikes at the
observations. On the other hand, while as h becomes large kernel estimator
is a sum of uniform delta function in all x and, thus, all detail, spurious or
otherwise, is obscured. Figure 1.9(b) shows the optimum estimation based on
S20.

Some of the elementary properties of kernel estimates follow at once from
Equation 1.72. Provided the kernel K(x) is a probability density function,
i.e. everywhere non-negative and integrates to one, it will follow at once
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(a) f̂k(x; h = 1.0,S10), ǫ =

0.31.
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(b) f̂k(x;h = 0.7,S100), ǫ =

0.16.
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(c) f̂k(x; h = 0.4,S1000), ǫ =

0.09.

Fig. 1.10. These figures show the densities modeled using kernel density estimation
using the data sets S10, S100 and S1000. In each estimated density we have select the
parameter h which minimizes the absolute error. The value of the parameter h and
the absolute error of the estimated densities, ǫ, are shown in each figure. The den-
sities modeled with kernel density estimator clearly improve the estimations under
Gaussian assumption shown in Figure 1.6. The modeled density clearly improves as
the size of the data set increases. Note that the optimum window width, h, decreases
as the size of the data set increases.

from Equation 1.72 that f̂k(x; K, h,SN ) is a density function. Furthermore,

f̂k(x; K, h,SN ) will inherit all the continuity and differentiability properties
of the kernel K(x). For example if K(x) is the Gaussian density function,

then f̂(x; K, h,SN ) will be a smooth density function having derivatives of
all orders. Examples of densities modeled using kernel density estimator are
given in Figure 1.10.

Apart from the histogram, the kernel estimator is probably the most pop-
ular and is certainly the most studied mathematically. It does, however, suffer
from a slight drawback when applied to data from-long tailed distributions.
Because the window width is fixed for all x ∈ S, there is a tendency for spu-
rious noise to appear in regions which are large but with low probability, e.g.
tails of long tailed distributions. If the estimates are smoothed sufficiently to
deal with this, then essential detail in the main part of the distribution is
masked. In order to deal with this difficulty, the next section presents a ker-
nel estimator with a variable window width, which can have advantages with
respect to fixed kernel estimator by considering the local density of samples,
i.e. a function of the points in S which are in the neighborhood of each x ∈ S.

1.13.4 k-nearest neighbor estimator

The nearest neighbor class of estimators represents an attempt to adapt the
amount of smoothing to the “local” density of data. The degree of smoothing
is controlled by an integer k, chosen to be considerably smaller that the sample
size, |SN | = N , e.g. k = log N or k =

√
N [Devroye et al. (1996)].

The k-th nearest neighbor estimator depends on the distance measure
selected between two points d(x, x′), e.g. Euclidean distance |x − x′|, and for
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any x define
d1(x) ≤ d2(x) ≤ ... ≤ dN (x) (1.73)

to be the distances, shorted in ascending order, from x to the points of the
sample, x′ ∈ S. From here on we assume that the selected distance measure
is Euclidean.

The k-th nearest neighbor estimator is given by

f̂NN (x; k,SN ) =
k

2Ndk(x)
(1.74)

In order to intuitively understand this definition, suppose that the density
at x is f(x). Then, of a sample of size N , one would expect about 2rNf(x)
observations to fall in the interval [x − r, ..., x + r] for each r > 0. Since, by
definition, exactly k observations fall in the interval [x− dk(x), x + dk(x)], an

estimate of the density at x may be obtained by putting k = 2dk(x)Nf̂ (x)
and this can be rearranged to give the definition of the k-th nearest neighbor
estimate.

While the näıve estimator is based on the number of observations falling in
a box of fixed width centered at the point of interest, the nearest neighbor is
inversely proportional to the size of the box needed to contain a given number
of observations. Thus, in the tail of the distribution, the distance dk(x) will be
larger than in the main part of the distribution, i.e. the part with the highest
density function values, and so the problem of undersmoothing in the tails
should be reduced.

Like the näıve estimator, to which it is related, the nearest neighbor esti-
mate as defined in Equation 1.74 is not a smooth curve. The function dk(x)
can easily be seen to be continuous, but its derivative will have a disconti-
nuity at every point of the form 1/2(x(i) + x(i+k)), where x(i) ∈ S and S is
ordered in ascending order. It follows at once from these remarks and from
the definition in Equation 1.74 that f̂NN (x; k,SN ) will have discontinuous
derivative at all the same points as dk(x) for all x. In contrast to the kernel
estimate, the nearest neighbor estimate will not itself be a probability den-
sity, since it will not integrate to unity. For x less than smallest data point
x < x(1), we will have dk(x) = d(x, x(k)) = |x(k) − x| and for x > x(N) we
will have dk(x) = d(x(k), x) = |x−x(k)|. Substituting into 1.74, it follows that
∫∞
−∞ f̂NN (x; k,SN )dx is infinite and that the tails of f̂k(x; k,SN ) die away at

rate x−1, in other words extremely slowly. Thus, the nearest neighbor estimate
is unlikely to be appropriate if an estimate of the entire density is required.
Examples of densities modeled using k-nearest neighbor estimator are given
in Figure 1.11. The heavy tails and the discontinuities in the derivative are
clear.

It is possible to generalize the intuition of the k-th nearest neighbor esti-
mate to provide a kernel estimator which takes into account the local density
of the sampled data S. As in Section 1.13.3, let K(x) be a kernel function
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(a) f̂NN (x;k = 3,S10), ǫ =

0.77.
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(b) f̂k(x; k = 8,S100), ǫ =

0.44.
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(c) f̂k(x; k = 10,S1000), ǫ =

0.32.

Fig. 1.11. These figures show the densities modeled using k-nearest neighbor esti-
mator using the data sets S10, S100 and S1000. In each estimated density we have
select the parameter k which minimizes the absolute error. The value of the param-
eter k and the absolute error of the estimated functions, ǫ, are shown in each figure.
The densities modeled with k-nearest neighbor estimator for N = {100, 1000} clearly
improve the estimations under Gaussian assumption shown in Figure 1.6. The mod-
eled density clearly improves as the size of the data set increases. Note that the
optimum k increases as the size of the data set increases. The heavy tails and the
discontinuities in the derivative are clear

integrating to one. Then the generalized k-th nearest neighbor estimate is
defined by

f̂k,K(x) =
1

Ndk(x)

N
∑

i=1

K(
x − x(i)

dk(x)
) (1.75)

It can be seen at once that f̂k,K(x) is precisely the kernel estimate evaluated
at x with window width h = dk(x). Thus, the overall amount of smoothing
is governed by the choice of the integer k, but the window width used at any
particular point depends on the density of observations near that point.

The ordinary k-th nearest neighbor estimate, based on Euclidean distance,
is the special case of Equation 1.75 when K is the uniform kernel K(x) = w(x)
of Equation 1.68. Thus the definition given by Equation 1.75 is related in the
same way to Equation 1.74 as the kernel estimator does to the näıve estimator.
However, the derivatives of the generalized nearest neighbor estimate will be
discontinuous at all the points where the function dk(x) has discontinuous
derivative.

1.13.5 Variable kernel estimator

The variable kernel estimator is somewhat related to the nearest neighbor
approach and is another method which adapts the amount of smoothing to
the local density of data sample SN . The estimate is constructed similarly to
the classical kernel estimate, but the scale parameter of the “bumps” placed
on the sampled data points is allowed to vary from one point to another.

Let K(x) be a kernel function and k a positive integer. Define di,k =
dk(x(i)) to be the distance from x(i) to the k-th nearest point in the set
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Si
N = SN\{x(i)}. Then the variable kernel estimate with smoothing parameter

h is defined by

f̂vk(x; k, K, h,SN ) =
1

N

N
∑

i=1

1

hdi,k
K(

x − x(i)

hdi,k
) (1.76)

The window width of the kernel placed on the point x(i) is proportional to di,k,
so that sample points in regions where the data are sparse will have flatter
kernels associated with them. For any fixed k, the overall degree of smoothing
will depend on the parameter h. The choice of k determines how responsive
the window width choice will be to very local detail.

Some comparison of the variable kernel estimate with the generalized k-
th nearest neighbor estimate may be instructive. In generalized k-th nearest
neighbor estimate (see Equation 1.75) the window width used to construct the
estimate at point x depends on the distance criteria used and the distances
from x to the data points x′ ∈ S, dk(x, x′); in Equation 1.76 the window widths
are independent of the point x at which the density is being estimated, and
depend only on the distances between data points x′ ∈ S.

In contrast to generalized nearest neighbor estimate, if the kernel function
used K(x) is a probability density function, e.g. Gaussian density function, it
follows from Equation 1.76 that variable kernel estimate will itself be a proba-
bility density function. Furthermore, as with the ordinary kernel estimator, all
the local smoothness properties of the kernel will be inherited by the estimate.

1.14 Conclusions

This chapter is an introduction to the main concepts and procedures related
to supervised classification task. We have formally introduced some concepts
of probability theory indispensable for the understanding of the rest of the
document. Based on these concepts, we have formally introduced the super-
vised classification task. Then, we introduced the decision theory in order
to properly understand the classification process with probabilistic classifiers
(generative and conditional classifiers). Besides, we have presented the three
families of classifier induction algorithms in terms of the goal of the learn-
ing process: generative, conditional and discriminative learning. Moreover, we
have provided tools for estimating the performance of a classifier and for com-
paring two or many classifiers based on the estimated performances. Focusing
on classification error, we have shown a methodology in order to analyze the
sources of the error associated to a classifier induction algorithm. We also have
introduced a set of performance measures based on the confusion matrix and
the ROC curve. In addition, this chapter introduces a set of quantities of in-
formation theory useful to measure the uncertainty surrounding the random
variables. We have presented the curse of dimensionality concept providing
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some intuitions and, in order to avoid this problem, some feature subset se-
lection algorithms are explained, highlighting their merits and caveats. We
have explained the discretization process of the continuous random variables
including some of the most popular discretization algorithms. And finally, we
have introduced a set of non-parametric density estimators.



2

Supervised classification with Bayesian

multinomial networks

2.1 Introduction

This chapter formally introduces Bayesian multinomial networks in general
and Bayesian multinomial networks with classification purposes in particular.
The chapter is divided in four sections. Section 2.2 formally introduces graph
theory in order to correctly interpret the conditional (in)dependence assertions
encoded by a graph. Since we are interested in Bayesian networks, the sec-
tion is mainly focused on directed acyclic graphs. Then, Section 2.3 formally
introduces the probabilistic graphical models which represent a factorization
of the generalized joint probability of the random variables included in the
model. Bayesian multinomial networks are formally presented in Section 2.4.
Then, Section 2.5 presents a family of classifiers based on Bayesian networks:
augmented näıve Bayes classifiers. Section 2.6 shows the main approaches
in order to deal with continuous features with Bayesian networks indicating
their main drawbacks. This section motivates the main methodological con-
tributions summarized in this work (see Chapters 3 and 4). Finally, Section
2.7 enumerates the main concepts introduced in this chapter and, besides, it
indicates the main future work lines considered by the author.

2.2 Graph theory

Graphs provide us with a powerful formalism that is widely accepted as the
representation of probabilistic graphical models. This section introduces some
useful definitions as well as the notation concerning the graph theory that we
will use in the remainder of this dissertation. The theoretical results provided
in this section have been taken from [Peña (2001)].

Definition 2.1 A graph is an ordered pair G = (X, E) where X is a non-
empty finite set of vertices (also called nodes) and E is a set of ordered pairs
of distinct nodes of X called edges.
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(a) Undirected graph

GU .

(b) Directed graph GD . (c) Moral graph GM .

Fig. 2.1. This figure shows three graphs in X = (X1, ..., X4) which
are related among them: the undirected graph GU = (X , EU ),
the DAG GD = (X , ED) and the moral graph GM = (X , EM ),
where EU = {(X1, X3), (X3, X1), (X2, X3), (X3, X2), (X3, X4), (X4, X3)},
ED = {(X1, X3), (X2, X3), (X3, X4)} and EU =
{(X1, X2), (X2, X1), (X1, X3), (X3, X1), (X2, X3), (X3, X2), (X3, X4), (X4, X3)}.
The undirected graphs GU and GM are the underlaying and the moral graphs of
GD, respectively, and they differ in the edges associated to variables with at least
one common child, X1 and X2, EM \ EU = {(X1, X2), (X2, X1)}. The following
parental relations can be identified in GD: P a1 = ∅, P a2 = ∅, P a3 = {X1, X2},
P a4 = {X3}, Ch1 = {X3}, Ch2 = {X3}, Ch3 = {X4} and Ch4 = ∅.

Definition 2.2 Given a graph G = (X, E), if (Xi, Xj) ∈ E and (Xj , Xi) ∈
E, then the edge between Xi and Xj is called an undirected edge for all i and
j.

The graphical representation of a graph G = (X , E) reflects the existence
of an undirected edge between Xi and Xj with a line between Xi and Xj ,
i.e. Xi −Xj , for all i and j. An example of the graphical representation of an
undirected graph is shown in Figure 2.1(a).

Definition 2.3 Given a graph G = (X , E), if (Xi, Xj) ∈ E but (Xj , Xi) /∈
E, then the edge from Xi to Xj is called a directed edge, and Xi is parent of
Xj and Xj is a child of Xi for all i and j.

The graphical representation of a graph G = (X , E) reflects the existence
of a directed edge from Xi to Xj with an arrow from Xi to Xj , i.e. Xi → Xj .
In this dissertation, the set of all the parents of a given node Xi in G is
represented by Pa(G)i for all i. On the other hand, the set of all the children of
a given node Xi in G is represented by Ch(G)i for all i. Both representations,
Pa(G)i and Ch(G)i, can be replaced by Pai and Chi when the context
makes clear the graph G that is being considered. An example of a directed
graph is shown in Figure 2.1(b).

Definition 2.4 Let G = (X, E) be a graph. A path from Xi to Xj in G

is a sequence of distinct nodes Xi1 , ...Xim with m > 1 such that Xi1 = Xi,
Xim = Xj, and (Xik

, Xik+1
) ∈ E for all k such that 1 ≤ k < m. The length
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of the path is the number of nodes in the path minus one, i.e. m− 1. A cycle
is a path with the modification that Xi = Xj.

Definition 2.5 A graph G = (X , E) is called a complete graph if there is
an undirected or directed edge between every pair of distinct nodes of X.

The definition of complete graph is adapted to the family of augmented
näıve Bayes structures (complete structures) in Section 2.5.2.

Definition 2.6 Let G = (X , E) be a graph. G is an undirected graph if
there are only undirected edges in E.

When it is clear from the context that the graph used is either undirected
or directed, its edges (undirected and directed, respectively) are usually called
arcs. Figure 2.1(a) shows an example of an undirected graph.

Definition 2.7 Let G = (X, E) be a graph. G is a directed graph if there
are only directed edges in E.

Definition 2.8 Let G = (X , E) be a graph. G is a directed acyclic graph
(DAG) if G is a directed graph and it does not contain cycles.

DAGs play a basic role in the field of probabilistic graphical models. Figure
2.1(b) shows an example of a DAG.

Definition 2.9 Let G = (X, E) be a directed graph. If there exists a path
from Xi to Xj in G, then Xi is an ascendant of Xj and Xj is a descendant
of Xi for all i and j. A set of nodes Y ⊆ X that contains all the ascendants
of Xi is referred to as an ancestral set.

Definition 2.10 Let G = (X , E) be a DAG. An ancestral ordering of G is
a total ordering of X where Xi appears before Xj if Xi is a parent of Xj.

Note that every node appears before its children in an ancestral ordering of
a given DAG. It is well known that there exists at least one ancestral ordering
for every DAG.

Definition 2.11 Let G = (X, E) be a graph. The undirected graph that is
obtained from G by replacing directed edges by undirected edges is called un-
derlying undirected graph of G or embedded graph of G.

For example, the underlying undirected graph of the DAG presented in
Figure 2.1(b), GD, is the undirected graph GU shown in Figure 2.1(a).

Definition 2.12 A graph G = (X , E) is called connected graph if there is
a path between every pair of distinct vertices in the underlying directed graph
of G. Otherwise, G is disconnected.
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Definition 2.13 The graph GY = (Y , EY ) is called a subgraph of the graph
G = (X, E) if Y ⊆ X and EY ⊆ E such that for all (Xi, Xj) ∈ EY , we
have that Xi, Xj ∈ Y . Moreover, if for all (Xi, Xj) ∈ E such that Xi, Xj ∈ Y

we have that (Xi, Xj) ∈ EY , the GY is called the subgraph of G induced by
the set of nodes Y .

Definition 2.14 Let G = (X , E) be a directed graph. The moral graph of G

is defined as the undirected graph obtained from G by first adding undirected
edges between all the pairs of nodes that have children in common and that
are not already joined, and then forming the embedded graph of the resulting
graph.

Figure 2.1(c) shows GM which is the moral graph of the directed graph
GD, shown in Figure 2.1(b). Note that the moral graph of GD, GM , is different
from its undirected graph, GU , shown in Figure 2.1(a).

2.2.1 Conditional independence models as directed acyclic graphs

Given a graph G = (X, E), every edge of E can be seen as a relationship
between two nodes of X. Thus, a graph could be defined as a set of nodes
and a set of relationships between them. This is a very appealing point of
view that is supported by the broad use of graphs as a powerful formalism
for representing conditional independence models, i.e. lists of conditional in-
dependence assertions (see Definition 2.15). We focus on the use of DAGs for
this purpose, as this kind of graphs plays an important role in the classes of
probabilistic graphical models we are interested in. See Castillo et al. (1997)
for a parallel study of undirected graphs and DAGs as tools for encoding
conditional independence models. In particular, the set of conditional inde-
pendence statements that is encoded by a DAG corresponds somehow to the
relationships, i.e. edges, between the nodes of the graph, i.e. random vari-
ables. This section formally presents this idea. It is focused on obtaining the
conditional independence model encoded by a given DAG, in other words, on
extracting the semantics of the DAG. For this purpose we need a set of formal
definitions that enables us to read the conditional independence model that
a DAG encodes.

Definition 2.15 A conditional independence model for X = (X1, ..., Xn)
consists of a list of conditional independence assertions of the form CI(U ; V |W )
where U , V and W are disjoint subsets of X, and U and V are non-empty
sets.

Definition 2.16 Let X = (X1, ..., Xn) be a random variable and U , V and
W are disjoint subsets of X, and U and V are non-empty sets. The condi-
tional independence model induced from a generalized joint probability distri-
bution for X, ρ(X), consists of the list of conditional independence assertions
CI(U ; V |W ) for any U , V and W such that it is verified by ρ(X).
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In the following subsection we present the probabilistic graphical models
which relate the conditional independence assertions encoded by a DAG with
the conditional independence assertions inducted from a factorization of the
generalized joint probability distribution for X. Subsequently, we focus our
attention on defining the conditional independence model encoded by a DAG.

Definition 2.17 Let G = (X , E) be an undirected graph. Let U , V and W

be three disjoint subsets of X. W u-separates U and V in G if every path in
G between a node belonging to U and a node belonging to V contains at least
one node that belongs to W .

The u-separation assertion that states that W u-separates U and V in G

is denoted by US(U ; V |W )G or, simply, by US(U ; V |W ) when the context
makes clear the DAG G that is considered. For example, some of the u-
separation assertions that can be found in GU , shown in Figure 2.1(a), are
US(X1; X2|X3), US(X1; X4|X3) and US(X2; X4|X3).

Definition 2.18 Let G = (X, E) be a DAG. Let U , V and W be three
disjoint subsets of X. W d-separates U and V in G if W u-separates U and
V in the moral graph of the smallest ancestral set that contains the nodes in
U , V and W .

The d-separation assertion that states that W d-separates U and V in
G is represented by DS(U ; V |W )G or, simply, by DS(U ; V |W ) when the
context makes clear the DAG G that is considered. For example, some of the
d-separation assertions that can be found in GD, shown in Figure 2.1(b), are
DS(X1; X4|X3)GD

and DS(X2; X4|X3)GD
.

We are aware that an alternative definition exists (see Pearl (1988);
Castillo et al. (1997)). For the sake of brevity and readability, we have chosen
the definition that, in our opinion, provides the most intuitive interpretation
of the underlying concept. The interested reader may consult [Lauritzen et al.
(1990)] where Definition 2.18 appears for the first time. Moreover, Lauritzen
et al. (1990) show the equivalence between Definition 2.18 and the alternative
definition proposed by Pearl (1988).

Theorem 6. Let G = (X, E) be a DAG. Then, every Xi in X is d-separated
by Pa(G)i from the rest of non-descendants of Xi.

The reader will later realize that this theorem is of great help in the field
of probabilistic graphical models (for example see Equation 2.2). The proof
of Theorem 6 can be found in Pearl (1988).

Definition 2.19 Let G = (X, E) be a DAG. The conditional independence
model encoded by G consists of the list of conditional independence assertions
CI(U ; V |W ) such that CD(U ; V |W ) is true.

In other words, any DAG for X implies a conditional independence model
given by the list of d-separation assertions defined by the graph.
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Definition 2.20 The conditional independence model encoded by a DAG
G = (X, E) is a conditional independence map (CI-map) of a given con-
ditional independence model if every statement DS(U ; V |W ) that is derived
from G implies that the statement CI(U , V |W ) belongs to the conditional
independence model for any three disjoint subsets U , V and W of X.

Note that a CI-map G for a conditional independence model encodes a
subset, if not all, of the conditional independence statements of the conditional
independence model. Thus, a CI-map never includes conditional independence
statements that the conditional independence model does not verify. In other
words, a d-separation assertion DS(U ; V |W )G implies a conditional inde-
pendence assertion in the associated conditional independence model. This is
a key point that probabilistic graphical models exploit.

With the help of Definition 2.20 it is easy to imagine several DAGs that
are CI-maps of a given conditional independence model. In fact, any complete
DAG is a trivial CI-map of any conditional independence model because
a complete DAG does not encode any conditional independence statement.
Then, it is obvious that not all CI-maps for a given conditional independence
model are equally informative. The following definition characterizes the CI-
maps that we prefer.

Definition 2.21 A DAG G = (X, E) is a minimal CI-map of a given con-
ditional independence model if G is a CI-map of the conditional independence
model and no proper subgraph of G is a CI-map of the conditional indepen-
dence model.

In other words, the removal of any of the arcs of a DAG that is a minimal
CI-map of a given conditional independence model implies that the resulting
DAG is no longer a CI-map of a given conditional independence model. Note
that different CI-maps of a given conditional independence model could exist.

Definition 2.22 Let G = (X, E) be a DAG. Let Y = (Y1, ..., Ym) =
(X1:Y 1 , ..., Xm:Y ) be a subset of X, the Markov blanket of Y in G is a subset
Z ⊂ X that contains the parents {Pa(G)Yi}m

i=1, the children {Ch(G)Y i
}m

i=1

and the parents of the children {Pa(G)Yj |Xj:Y ∈ Ch(G)Yi}m
i=1, of Xi:Y for

all i.

In this dissertation, the Markov blanket of a node Xi in G is represented
by Mb(G)i for all i or simply by Mbi, when the context makes clear the
graph G that is being considered. On the other hand, the Markov blanket of
a random variable Y ∈ X is represented by Mb(G)Y or simply by MbY ,
when the context makes clear the graph G that is being considered.

Theorem 7. Let G = (X, E) be a DAG. Let Y and Z be two disjoint subsets
of X, Y ∩Z = ∅, where Z is the Markov blanket of Y in G, Z = Mb(G)Y ,
then Y and X \ (Y , Z) are d-separated by Z.
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(a) The DAG G. (b) The moral graph of the DAG G.

Fig. 2.2. These figures illustrate the Markov blanket concept based on a directed
graph and its associated moral graph. We are interested in the Markov Blan-
ket of X10, Mb10 = (X6, X7, X10, X13), which consists of the parents of X10,
P a10 = {X6}, the children of X10, Ch10 = {X13}, and the parents of the chil-
dren X13, P a13 = {X7, X10}. The Markov blanket of X10 can be obtained from the
moral graph of G shown in Figure 2.2(b): the set Mb10 = {X6, X7, X13} clearly u-
separates X10 from the rest of the nodes. The Markov blanket of X10 is represented
with bigger nodes in both figures.

The proof of this theorem can be found in Pearl (1988) and it can be
derived from Definitions 2.18 and 2.20.

The classifiers based on probabilistic graphical models are interested in
modeling p(c|x) rather than p(x, c). Theorem 7 will be useful in order to
approach p(c|x) with p(c|mbC), which includes all the random variables in
X that have a direct influence on C reducing, at the same time, the number
of parameters with respect to p(c|x).

2.3 Probabilistic graphical models

This section introduces probabilistic graphical models as powerful tools for
supporting modeling and reasoning under uncertainty in complex domains. We
present probabilistic graphical models as a formal paradigm that enables us
to encode a generalized joint probability distribution for the domain random
variables. Most of the results presented in this Section has been adapted from
[Peña (2001)].

Let X = (X1, ..., Xn) be an n-dimensional random variable. A probabilistic
graphical model (PGM ) for X is a graphical factorization of a generalized joint
probability distribution for X , ρ(x) [Pearl (1988); Whittaker (1990); Bouck-
aert (1995); Jensen (1996); Lauritzen (1996); Castillo et al. (1997); Cowell
et al. (1999); Jensen and Lauritzen (2000)]. A PGM for X consists of two
components: A graph s (model structure) which determines the conditional
(in)dependencies between the random variables of X, and a set of local prob-
ability distributions for the model structure. Thus, every node of the model
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structure s is interchangeably called node and random variable in the forth-
coming discussion. The model structure represents the qualitative part of the
PGM, whereas the set of local probability distributions can be thought as the
quantitative part of the model.

As previously stated, this dissertation is limited to PGMs where the struc-
tural part is a DAG. Therefore, neither undirected graphs [Wermuth (1976);
Whittaker (1990)] nor chain graphs [Lauritzen and Wermuth (1989)] are con-
sidered in this dissertation.

From the chain rule of probability (see Equation 1), we have that the
generalized joint probability distribution encoded by a PGM for X graphically
factorizes as follows:

ρ(x) = ρ(x1, ..., xn) =

n
∏

i=1

ρ(xi|x1, ..., xi−1) (2.1)

We can assume without loss of generality that the structure of the PGM,
s, obeys an ancestral ordering such that every Xi holds the i-th place in the
ordering. As it is well known that there exists, at least, an ancestral ordering
for every DAG, if s does not obey the ancestral ordering that we assume, then
its nodes can be renamed to do so. Consequently, the set (X1, ..., Xi−1) does
not include descendants of Xi for all i. Moreover, the model structure s induces
a conditional independence model where, given Pa(s)i, Xi is conditionally
independent of the rest of its non-descendants for all i. Note that this result
can be directly obtained from Theorem 6 and Definition 2.20. Then, the model
structure s encodes a set of conditional independence statements of the form
CI(Xi; (X1, ...., Xi−1) \Pa(s)i|Pa(s)i) for all i. Thus, by Definition 1.17 we
have that ρ(xi|x1, ..., xi−1) = ρ(xi|pa(s)i). Therefore, Equation 2.1 can be
rewritten as follows:

ρ(x|s) =

n
∏

i=1

ρ(xi|pa(s)i) (2.2)

The local probability distributions of the PGM are those induced by the
terms of the product that appears in Equation 2.2, and we assume that they
depend on a finite set of parameters Θs = (Θ1, ..., Θn) (model parameters).
Moreover, assuming that the true generalized joint probability distribution for
X can be graphically factorized according to the conditional independence
assertions reflected in s (model structure hypothesis), Equation 2.2 can be
rewritten as follows:

ρ(x|Θs, s) =
n
∏

i=1

ρ(xi|pa(s)i, Θi) (2.3)

The result of Equation 2.3 is reported by several researchers Kiivery et al.
(1984); Pearl (1988); Bouckaert (1995); Castillo et al. (1997) in the form of
the following theorem.
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Theorem 8. Let (s, Θs) be a PGM for X as defined above. Then,

ρ(x|Θs, s) =

n
∏

i=1

ρ(xi|pa(s)i, Θi) (2.4)

Moreover, the DAG s is a minimal CI-map of the conditional independence
model induced by ρ(x|Θs, s).

The proof of the theorem can be found in the referred works. At this
point of the discussion, it should be clear why we are more interested in
the conditional independence statements than in the conditional dependence
statements that a PGM encodes: Conditional independence statements enable
us to graphically factorize the generalized joint probability distribution for
X, resulting in a reduction in the number of parameters that are needed to
completely specify this distribution.

Thus, as we will see in the next subsection, in order to define a PGM it is
necessary to specify:

• A DAG s encoding the set of conditional (in)dependence statements be-
tween the random variables of the problem domain.

• A set of local probability distributions for the model structure.

2.3.1 Learning a PGM

Once a PGM is built, it constitutes and effective tool for reasoning with
uncertainty. Nevertheless, the problem of learning the model remains. The
structure s and the set of local probabilities ρ(xi|pa(s)i, Θi), determined
by the parameters Θi, that characterize the PGM can be provided either
externally by experts, which can be a time consuming process subject to
mistakes, or, by learning from a database of instances following an automatic
learning procedure. This dissertation is focused on the second approach with
classification purposes.

PGM based model learning (also known as model induction, model se-
lection or model elicitation) can be thought of as being separated into two
subtasks: structural leaning (or qualitative learning) and parametric learning
(or quantitative learning). Structural learning is the identification of the graph
structure of the model, s and, parametric learning is the numerical assessment
of the parameters Θi of the local probability distributions ρ(xi|pa(s)i, Θi) for
a given model structure s.

Consequently, most of the learning algorithms work in two stages. Firstly,
the appropriate model structure s is determined and, then, the parameters for
the selected structure Θs are estimated according to maximum a posteriori
(MAP) criterion, i.e. the probability of the parameters given the database at
hand and the model structure is a local maximum, or according to maximum
likelihood (ML) criterion, i.e. the likelihood of the database at hand given the
parameters and the model structure is a local maximum, among others. Under
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reasonable assumptions the MAP and the ML parameters for a given model
structure can be easily computed from data. Thus, usually, model induction
reduces to structural learning. Through this dissertation we only consider
the ML approach for learning the parameters and, therefore, the classifier
learning algorithms presented in the subsequent sections are mainly focused
on the structural learning procedure used.

Structural learning usually involves a search process in the space of graph
structures. The search process tries to optimize a score and it generally finishes
when a local optimum is found. We consider that structural learning can
be carried out in a filter or a wrapper way, depending on the kind of the
score which guides the search process. These filter and wrapper concepts are
adapted from the feature subset selection literature. In this dissertation, the
filter approaches use likelihood as a score and the wrapper approaches use the
estimated predictive accuracy.

The space of the graph structures is exponential with the number of vari-
ables implied. In order to reduce the search space the structural learning is
usually constrained. The constraints are usually defined in terms of the kind
and number of (in)dependencies allowed among the variables. This disserta-
tion is focused on augmented näıve Bayes family of structures (see Section
2.5.2).

2.4 Bayesian multinomial networks

This section introduces one of the classes of PGMs we are interested in:
Bayesian networks [Pearl (1988); Jensen (1996); Lauritzen (1996); Castillo
et al. (1997); Cowell et al. (1999); Peña (2001); Korb and Nicholson (2004);
Jensen and Nielsen (2007)].

In the particular case that X = (X1, ..., Xn) is an n-dimensional discrete
random variable, a PGM for X is called Bayesian network (BN ) for X [Pearl
(1988); Jensen (1996); Lauritzen (1996); Castillo et al. (1997); Cowell et al.
(1999); Korb and Nicholson (2004); Jensen and Nielsen (2007)]. Then, the
graphical factorization of the joint probability distribution for X encoded by
a BN for X acquires the following form:

p(x|Θs, s) = p(x1, ..., xn|Θs, s) =

n
∏

i=1

p(xi|pa(s)i, Θi) (2.5)

where Θs = (Θ1, ..., Θn) and s are the model parameters and the model
structure hypothesis respectively. Note that Equation 2.5 is a particular case
of Equation 2.2 that takes into account the discrete nature of X.

Typically, the local probability distributions for every Xi, p(xi|pa(s)i, Θi),
are restricted to be a set of univariate multinomial distributions, one for each
value of Pa(s)i. This is also the case in this dissertation. In order to highlight
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this particular case from here on we will refer BN to as Bayesian multinomial
network (BMN ).

Let us assume that Xi can take ri distinct values (or states) denoted by
x1

i , ..., x
ri

i , and Pa(s)i can have qi distinct states denoted by pa(s)1i , ..., pa(s)qi

i

with qi =
∏

Xl∈P a(s)i
rl for all i. Then the univariate multinomial distribution

p(xi|pa(s)j
i , Θi) for all i and j consist of a set of probabilities of the form

p(xk
i |pa(s)j

i , Θi) = Θxk
i |pa(s)j

i
= Θjk

i (2.6)

such that Θjk
i > 0 representing the conditional probability that Xi takes its k-

th state given that Pa(s)i takes its j-th value for all k. Moreover,
∑ri

k=1 Θjk
i =

1 for all i and j.
Consequently, the parameters of the local probability distribution for every

Xi are given by Θi = (Θ1
i , ..., Θ

qi

i ) with Θ
j
i = (Θj1

i ..., Θjri

i ) for all j. The num-
ber of free parameters of the local probability distributions for Xi given each
value of its parents Pa(s)i is |Θi| = (ri −1) · qi. Note that the number of free
parameters for a multinomial distribution with parameters Θ = (Θ1, ..., Θr)
is r−1 because

∑r
i=1 Θi = 1. The total number of parameters of the BMN for

X, (s, Θs) is given by |Θ| =
∑n

i=1(ri − 1) · qi where qi =
∏

Xl∈Pa(s)i
rl tends

to increase exponentially with the cardinality |Pa(s)i| for all i. Therefore, the
order of the number of parameters of the BMN is given by argi max(ri − 1)qi.
If we assume that ri = r for all i, the order of the number of parameters
is given by argi max r|Pa(s)i|+1. This growth is problematic because the risk
to overfitting of a classifier tends to increase with the number of parameters
required to be estimated [Bishop (2006)]. Moreover, the number of relevant
cases used to compute each parameter can be very low and, therefore, the
statistics obtained might not be robust [Hand and Yu (2001)]. However, the
number of parameters required for a BMN can be intuitively controlled im-
posing constraints to the parents of Xi, Pa(s)i, for all i. This intuition leads
to the augmented näıve Bayes family of structures (see Section 2.5.2). The
cardinality of the parents Pa(s)i for all i is determined by the number of arcs
Ei = {(Xj, Xi) ∈ s for all j}. Thus, in the worst case, the parameters could
increase exponentially with the number of arcs in BMNs.

Analogously to the case of a PGM (see Section 2.3), in order to define a
Bayesian network, it is necessary to specify:

• A DAG s encoding the set of conditional (in)dependence statements be-
tween the random variables of the problem domain.

• A set of the local probability distributions for the model structure, i.e.
conditional probabilities Θjk

i for all i, j and k.

Section 2.5 presents several examples of structural learning algorithms for
the induction of augmented näıve Bayes classifiers based on BMN.

As we noted in Section 2.3 the parametric learning is performed using the
maximum likelihood estimator and the parameters required are given by the
structure s (see Equations 2.5 and 2.6). The maximum likelihood estimator for



86 2 Supervised classification with Bayesian multinomial networks

the parameters of a multinomial distribution p(xj
i ; pa(s)k

i , Θi) = Θjk
i given

the data D = {x(1), ..., x(N)} is

Θ̂jk
i =

N jk
i

N ·k
i

(2.7)

where N jk
i is the number of cases in D that the variable Xi takes its j-th

value when the variables Pa(s)i have their k-th value, and N ·k
i is the number

of cases in D that the variables Pa(s)i take their k-th value.

2.5 Bayesian multinomial networks for classification

This section presents a family of classifier induction algorithms for the BMN
paradigm. First, Subsection 2.5.1 introduces the notion of a classifier based
on Bayesian multinomial networks. Then, Subsection 2.5.2 presents a set of
related families of Bayesian network structures biased towards classification:
näıve Bayes, tree-augmented näıve Bayes, k-dependent augmented näıve Bayes
and joint augmented näıve Bayes structures. Subsection 2.5.3 introduces a set
of classifier induction algorithms based on Bayesian multinomial networks for
each of the previously presented families of structures. And finally, Section
2.6 presents the most popular approaches in order to deal with continuous
features in BMN paradigm, indicating its main alternatives.

2.5.1 BMN based classifiers

BMN based classifiers (and in general PGM based classifiers) are usually con-
sidered generative classifiers (see Section 1.6) because they solve the classifi-
cation problem by modeling the generalized joint probability distribution for
(X, C), ρ(x, c). Then, based on the model ρφ(x, c), they obtain the conditional
probability distribution pφ(c|x) using Equation 1.20. Finally, the classification
rule is obtained plugging-in the modeled conditional probability pφ(c|x) into
weighted-winner-takes-all-rule (see Equation 1.21).

2.5.2 Structures biased towards classification

This section presents a family of structures designed for classification. They
are focused on obtaining good estimators of the conditional distribution p(c|x)
for all x. Thus, classifiers based on PGM are more interested in obtaining a
good estimator of p(c|x), with classification purposes, rather than obtaining
an accurate model of the generalized joint probability distribution p(x, c). In
order to characterize appropriate structures with classification purposes we
propose the following intuitive heuristics:
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• Assuming that the variables X = (X1, ..., Xn) are relevant for classifica-
tion, the structure of the PGM should include at least a set of directed
arcs corresponding to the dependence assertions CD(Xi; C|U), for any
U ⊆ X \ Xi, for all i. This intuition is closely related to the concept
of strongly relevant feature (see Definition 1.24). This heuristic leads to
accurate classification models, i.e. estimators of p(c|x) with low bias (see
Section 1.8.3).

• Minimize the number of parameters of the model Θs (see Section 2.4).
This leads to robust classification models, i.e. estimators of p(c|x) with
low variance (see Section 1.8.3).

One possible approach consists of, firstly, reducing the set of variables for
obtaining a set of relevant variables for classification (see Section 1.11). Then,
assuming that all the selected variables X = (X1, ..., Xn) are relevant, the first
heuristic guarantees that the variable Xi and the class C will be conditional
dependent given the value of any U ⊆ X \Xi. In other words, there exist two
different values xi and xi′ for which the distribution of C changes given x¬i,
p(c|xi, u) 6= p(c|xi′ , u) for some c. In order to classify an unlabeled instance x

the conditional dependence CD(Xi; C|U) for any U ⊆ X \Xi guarantees the
influence of Xi in the model, p̂φ(c|x), for all i. The first heuristic implies that
the relevant variables for classification X should be included in the Markov
Blanket of the class C, Mb(s)C (see Definition 2.22 and Theorem 7).

The second heuristic states that we should try to minimize the number of
parameters, |Θs|. In order to minimize the parameters, the number of parents
of each variable should be minimized as we suggest in Section 2.4. Thus, it
is preferable to include the arcs {(C, Xi)}n

i=1 (or {C → Xi}n
i=1) instead of

{(Xi, C)}n
i=1 (or {Xi → C}n

i=1). This fact is illustrated in Figure 2.3. In order
to include Xi in the Markov blanket of C, there is a third option: an arc
from Xi to Xj can be added to the structure, for any Xi /∈ Ch(s)C and Xj ∈
Ch(s)C . But this option does not include the dependence CD(Xi; C|∅) which
is related to some definitions of relevance (see Definition 1.22). Therefore, the
proposed heuristic suggests that the class variable C should be the root of the
graph s and it should be the parent of all relevant variables Xi, C ∈ Pa(s)i,
for all i (see Figure 2.3(a)).

Both intuitions lead to the augmented näıve Bayes family of structures.
As we will note, in order to control the number of parameters and for reducing
the search space, the augmented näıve Bayes family imposes restrictions to
the maximum number of parents for each feature. From here on, we will
refer to the set of parents of each feature Xi minus the class variable C as
Pxi = Pai \ C.

Henceforth, we present a set of subfamilies of structures included in the
augmented näıve Bayes family, ranging from the simplest family of structures
(i.e. with the most restrictive conditional independencies and the minimum
number of parameters) to the most complex family. Each subfamily of struc-
tures imposes different constraints to the maximum number of feature parents
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(a) The structure sfew induces the independence assertions
{CI(Xi; (X1, ..., Xi−1)|C)}n

i=1 among others. Due to these useful con-
ditional independence assertions the factorization is greatly simplified:
p(x, c|sfew) = p(c)

Qn

i=1 p(xi|x1, ..., xi−1, c|sfew) = p(c)
Qn

i=1 p(xi|c). In order
to specify the model, the number of parameters required is (rC −1)+

Pn

i=1(ri−1)rC .
It must be noted that the number of parameters is linear with respect to n. As
we will note this structure is named näıve Bayes and it leads to the most popular
structures of classifiers based on Bayesian networks: The family of augmented näıve
Bayes structures.

(b) The structure smany has the independence assertions
{CI(Xi; (X1, ..., Xi−1)|∅)}

n
i=1, but it does not induce the conditional indepen-

dence assertions {CI(Xi; (X1, ..., Xi−1)|C)}n
i=1. The factorization can be sim-

plified due to the included independence assertions as follows: p(x, c|smany) =
p(c|x1, ..., xn, smany)

Qn

i=1 p(xi|xi, ..., xn, smany) = p(c|x1, ..., xn)
Qn

i=1 p(xi).
In order to specify the model, the number of parameters required is
Pn

i=1(ri − 1) + (rC − 1)
Qn

i=1 ri. It must be noted that the number of param-
eters is exponential with respect to n, which is comparable to the number of
parameters required to model a complete graph.

Fig. 2.3. These figures represent two intuitive approaches of structures biased to-
wards classification, sfew and smany . Both structures include the conditional de-
pendence assertion CD(Xi; C|Xs) and CD(Xi; C|∅) for i = 1, ..., n and for any
Xs ∈ X¬i = (X1, ..., Xi−1, Xi+1, ..., Xn). But we prefer sfew because it requires
fewer parameters.

allowed, |Pxi| < max, for all i. Examples of each subfamily are shown in Fig-
ure 2.4. Note that all the structures shown in the figure are constrained to
graphs with the class variable as the root and (C, X1, ..., X4) is an ancestral
ordering. At each subfamily of structures we consider two types of structures:
complete and incomplete. If some arcs can be added to a structure without
breaking the structural constraints imposed by its subfamily of structures,
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(a) Complete NB,

scNB.

(b) Complete TAN,

scT AN .

(c) Complete kAN for

k = 2, sc2AN .

(d) Complete JAN,

scJAN .

(e) Incomplete NB,

siNB .

(f) Incomplete TAN,

siT AN .

(g) Incomplete kAN

for k = 2, si2AN .

(h) Incomplete JAN,

siJAN .

Fig. 2.4. Different structure complexities taken from the augmented näıve Bayes
family of structures.

the structure is said to be incomplete. Otherwise, the structure is said to be
complete.

The simplest classifier structure of augmented näıve Bayes family of struc-
tures is the näıve Bayes structure (NB structure) [Minsky (1961); Duda
and Hart (1973); Langley et al. (1992)]. In NB structures the number of
parents minus the class for each feature is zero, |Pxi| = 0, for all i. In
other words, NB structure assumes that the predictors are conditionally inde-
pendent given the class, CI(Xi; X¬i|C) for all i. Figures 2.4(a) and 2.4(e)
show a complete and incomplete NB structures, scNB and siNB, respec-
tively. The factorization of the structures scNB and siNB is p(x, c|scNB) =
p(c)p(x1|c)p(x2|c)p(x3|c)p(x4|c) and p(x, c|siNB) = p(c)p(x1|c)p(x2|c)p(x3)
p(x4|c). Note that since CI(X3; (C, X1, X2, X4)|∅) is inferred from siNB , the
value of X3 does not affect the classification rule associated to p(c|x1, ..., x4,
siNB). In the literature, incomplete NB structures are referred to as selective
näıve Bayes structures. In spite of the strong conditional independence as-
sumption made by a NB structure, its performance is surprisingly good, even
in databases which do not hold with the independence assumption [Domin-
gos and Pazzani (1997)]. The good performance of the NB structures has
motivated the research of structures which relax this strong independence as-
sumption. The number of parameters required of a complete NB structure,
such us scNB in Figure 2.4(e), is (rC − 1) +

∏n
i=1(ri − 1)rC . Assuming that

both the features and the class variable take r different values, the number of
parameters for modeling a complete NB structure in the BMN paradigm is
r − 1 + n(r − 1)r, O(nr2). The number of parameters is linear with respect
to the number of (included) features, n, and it tends to be quadratic with
respect to the cardinality of the random variables r.
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The tree-augmented näıve Bayes structures (TAN structures) break with
the strong independence assumption made by the NB structures, allowing
probabilistic dependencies among predictors. The TAN structures consist of
graphs with arcs from the class variable to the subset of relevant predic-
tors, and with arcs between the relevant predictors taking into account that
the maximum number of parents of a variable is one plus the class vari-
able, |Pxi| ≤ 1 for all i. The TAN structures take into account relation-
ships between predictive variables by extending the näıve Bayes structure
with a tree structure among the predictive variables. In other words, it breaks
with the strong conditional independence assertions {CI(Xi; X¬i|C)}n

i=1 by
including the novel conditional dependence assertions {CD(Xi; U |V )}n

i=1

for any non-empty U ∈ Pxi and any possibly empty V ∈ (X, C) where
U ∩ V = ∅ and |Pxi| ≤ 1. It should be noted that we consider the NB
structures as a particular case of the TAN structures when |Pxi| = 0. Fig-
ures 2.4(b) and 2.4(f) show a complete and an incomplete TAN structure,
scTAN and siTAN , respectively. The factorization of the structures scTAN

and siTAN is p(x, c|scTAN ) = p(c)p(x1|c)p(x2|x1, c)p(x3|x1, c)p(x4|x1, c) and
p(x, c|siTAN ) = p(c)p(x1|c)p(x2|x1, c)p(x3)p(x4|x1, c). Assuming that Pxi =
X1:i where X1:i is the first parent of Xi with cardinality r1:i and Px1 = ∅,
without loss of generalization, the number of required parameters to model
a complete TAN structure is (rC − 1) + (r1 − 1)rC

∑

i=2(ri − 1)r1:irC . On
the other hand, assuming that the n features and the class variable have r
states, the number of parameters for modeling a complete TAN structure in
the BMN paradigm is r−1+(r−1)r+(n−1)(r−1)r2, O(nr3). The number of
parameters is linear with respect to the number of (included) features, n, and
it tends to be cubic with respect to the cardinality of the random variables r.

The k-augmented näıve Bayes structures (kAN structures) extend TAN
structures allowing a maximum of k predictor parents plus the class for each
predictor variable, |Pxi| ≤ k for all i. In the literature these structures are
usually referred to as k-dependence Bayesian classifier structure. It must be
highlighted that kAN structures can be regarded as a spectrum of allow-
able dependence in the family of augmented näıve Bayes structures with the
NB structure (k = 0) at the most restrictive extreme and the full graph
(k ≥ n − 1) at the most general one. Figures 2.4(c) and 2.4(g) show a com-
plete and an incomplete kAN structures with k = 2, sc2AN and si2AN , respec-
tively. The factorization of the structures sc2AN and si2AN is p(x, c|sc2AN ) =
p(c)p(x1|c)p(x2|x1, c)p(x3|x1, x2, c)p(x4|x2, x3, c) and p(x, c|siTAN ) = p(c)
p(x1|c)p(x2|c)p(x3|x2, c)p(x4|x2, x3, c). The number of parameters required for
specifying a model in the BMN paradigm based on a complete kAN struc-
ture, such us sc2AN for k = 2, based on the ancestral order (C, X1, ..., Xn)
is (rC − 1) + (r1 − 1)rC

∑

i = 2(ri − 1)qi where qi = rC

∏

Xj∈P xi
rj and

|Pxi| = min(i − 1, k). Assuming that the n features and the class variable
have r states, the number of parameters for modeling a complete kAN struc-
ture (k < n) in the BMN paradigm is

∑k−1
i=1 (r − 1)ri +(n − k + 1)(r − 1)rk,
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O(nrk+1). Note that this expression summarizes the expressions of NB and
TAN structures for k = 0 and k = 1, respectively.

Finally, the joint augmented näıve Bayes structure (JAN structure) in-
cludes nodes Y i that represents multidimensional random variables X =
(X1, ..., Xn) = (Y1, ..., Ym) with m ≤ n and Y i∩Y j = ∅. We call these nodes
Y i joint nodes in order to distinguish them from the univariate nodes. A joint
node Y = (X1:Y , ..., Xl:Y ) represents a full subgraph in Y . In the literature
these structures are usually referred to as semi näıve Bayes structures [Paz-
zani (1997)]. JAN structure is a NB structure defined over joint nodes, i.e. the
joint nodes are conditional independent given the class, CI(Y i; Y j |C) for all
i 6= j. The JAN structures extend the NB structures allowing the following
conditional dependencies between predictors Xi belonging to the same joint
node Y j , Xi, Xj ∈ Y j : CD(Xi; Xj |U) for any U ⊆ {X, C} \ {Xi, Xj}. Fig-
ures 2.4(d) and 2.4(h) show a complete and an incomplete JAN structure,
scJAN and siJAN , respectively. The factorization of the structures scJAN

and siJAN is p(x, c|scJAN ) = p(c)p(x1, x2, x3, x4|c) and p(x, c|siJAN ) =
p(c)p(x1|c)p(x2, x3|c)p(x4), respectively. The number of parameters of a com-
plete JAN structure, such us scJAN , in the BMN paradigm constraining the
maximum number of variables in a joint node Y i = (X1:i, ..., X|Y i|:i) to k,
|Y i| ≤ k, for all i is given by (rC−1)+

∑m
i=1(rY i

−1)rC where m = ⌊n/k⌋ and

rY i =
∏|Y i|

j=1 rj:i. Assuming that the n features and the class variable have r
states, the number of parameters required for modeling a complete JAN struc-
ture with a maximum of k variables at each joint node is (r−1)+

∑m
i=1 r|Y i|+1,

O(rk+1).

2.5.3 Classifier induction algorithms based on BMN

In the following subsections, for each kind of structure previously introduced,
a set of wrapper and filter classifier induction algorithms based on the BMN
paradigm are presented. This section is mainly focused on the structural learn-
ing algorithms, specially those which will be adapted to the conditional Gaus-
sian network and kernel based Bayesian network paradigms in Sections 3 and
4, respectively. In most of the classifier induction algorithms presented in
this section the parametric learning of the Bayesian multinomial network is
performed using the maximum likelihood estimator. An extensive review of
classifier induction algorithms based on BMN with the maximum likelihood
estimator is presented in [Blanco (2005)].

2.5.3.1 Multinomial näıve Bayes

The näıve Bayes classifier (NB) [Duda and Hart (1973); Langley et al. (1992);
Minsky (1961)] is characterized by the conditional independence assumption
between variables given the class. The NB classifier is a BMN with a complete
näıve Bayes structure and the parameters obtained by maximum likelihood
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estimation. We call multinomial NB (MNB) to the NB classifier based on
BMN. Although MNB was previously used in statistics and pattern recog-
nition [Duda and Hart (1973)], as far as we know, the first time it appears
in supervised classification is in Cestnik et al. (1987). In the literature, the
NB paradigm is designated with several names: idiot Bayes [Ohmann et al.
(1988)], näıve Bayes [Kononenko (1990)], simple Bayes [Gammerman and
Thatcher (1991); Domingos and Pazzani (1997)] or independent Bayes [Todd
and Stamper (1994)]. Moreover, all the variables are included in the model, so
the classifier structure is given a priori : complete NB structure (see for exam-
ple Figure 2.4(a)). The accuracy obtained with this classifier based on BMN
paradigm is surprisingly high in some domains, even in data sets that do not
obey the strong conditional independence assumption [Domingos and Pazzani
(1997)]. For instance, there are successful applications of näıve Bayes classi-
fiers in medical domains [Kononenko (1990); Ohmann et al. (1996); Mani et al.
(1997); Movellan et al. (2002)], in web site classification according to user in-
terest [Pazzani et al. (1996)], in collaborative filter approaches [Miyahara and
Pazzani (2000)], text classification [McCallum and Nigam (1998)] or failure
detection [Hamerly and Elkan (2001)]. For more details about näıve Bayes,
the reader may be interested in the historical review and improvements of the
näıve Bayes classifier presented in [Larrañaga (2003)] and [Blanco (2005)].

Despite the good performance of MNB even when the assumption of con-
ditional independence of the variables is not fulfilled, highly correlated fea-
tures could hurt its accuracy in practice (see Section 1.11) [Langley and Sage
(1994)]. The selective näıve Bayes [Langley and Sage (1994)] is a variant of
the näıve Bayes classifier that uses only a subset of the variables to make pre-
dictions Xr ⊆ X, i.e. incomplete näıve Bayes structure. In fact, the selective
näıve Bayes classifier can be seen as a näıve Bayes classifier for which a feature
subset selection process has been performed. We call selective multinomial NB
(sMNB) to the selective NB classifier based on BMN paradigm.

As the search space has 2n structures, i.e. the number of different subsets
of predictors Xr ⊆ X, an exhaustive search of the space is not practical.
Hence, an alternative is to perform a heuristic search. In general, any fea-
ture subset selection method can be used to obtain the subset of relevant
and non-redundant variables for classification purposes. In the literature two
main approaches are proposed. On the one hand, filter scores proposed are
the entropy, the mutual information, the Euclidean distance or the Kullback-
Leibler divergence [Ben-Bassat (1982); Doak (1992); Inza et al. (2004); Blanco
(2005)]. On the other hand, wrapper methods use model-based scores such as
accuracy to find the set of relevant variables for classification. These latter
methods usually use optimization heuristics such as hill-climbing [Langley
and Sage (1994); Inza et al. (2002)], simulated annealing [Vinciotti and Liu
(2006)], genetic algorithms [Inza et al. (2001a,b)] or estimation of distribution
algorithms [Inza et al. (2000, 2001b); Blanco et al. (2003)], among others. By
contrast, Dash and Cooper (2002); Cerquides and de Mántaras (2003); Dash
and Cooper (2004) propose a Bayesian approach by averaging over all the
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selective näıve Bayes models in order to obtain a single näıve Bayes model
which, despite including all the predictive variables in the model, is able to
capture the relevance of the variables for classification purposes. Besides, con-
trary to the intuition, the average of NB models in general breaks with the
conditional independence assumption made by a single näıve Bayes classifier.

As we noted before, Langley and Sage (1994) proposes a wrapper feature
selection process where a greedy forward algorithm is used. The process starts
with an empty set of variables and, at each step, the variable which most
increases the accuracy measured in a leaving-one-out cross-validation is added
to the model. We call this algorithm wrapper selective multinomial näıve Bayes
(wsMNB) and we will adapt it to conditional Gaussian network paradigm
in Chapter 3. Algorithm 2 shows the pseudo-code of the wsMNB classifier
induction algorithm [Langley and Sage (1994)].

Algorithm 2: Wrapper multinomial selective näıve Bayes.

1 Let the set of selected variables be empty, Xs = ∅.

2 while true do {

3 Construct the MNB models MNB(Xi ∪ Xs) for each Xi, where Xi ∈
X \ Xs.

4 Estimate using a cross validation the error of the constructed models
MNB(Xi ∪ Xs), ǫ(MNB(Xi ∪ Xs)), for all i.

5 Select the variable Xmin with the associated lowest error, ǫ(MNB(Xmin∪
Xs)).

6 if ǫ(MNB(Xmin ∪ Xs)) < ǫ(MNB(Xs)).

7 then Include the variable Xmin in the selected set Xs.

8 else Return the classifier MNB(Xs).

On the other hand, Blanco (2005) proposes a filter algorithm for the induc-
tion of selective näıve Bayes classifiers. We name this approach filter selective
multinomial näıve Bayes (fsMNB). This algorithm obtains (in)complete NB
structures based on the mutual information between the predictor variables
and the class (see Section 1.10) and the hypothesis test explained in Section
1.11.1.3, Paragraph A. [Kullback (1959); Pardo (1997)]. The fsMNB algorithm
finds the set of features which are considered correlated with the class variable
using the statistical test [Kullback (1959); Pardo (1997)] at a certain signifi-
cance level, α. The pseudo-code of the fsMNB can be seen in Algorithm 3. We
propose an adaptation of this algorithm to the conditional Gaussian paradigm
in Chapter 3 where the threshold to the mutual information is heuristically
fixed.
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Algorithm 3: Filter multinomial selective näıve Bayes.

1 Initialize the set of selected variables to empty, Xr = ∅.

2 Compute the mutual information I(Xi; C) for all i = 1, . . . , n.

3 for Xi ∈ X = (X1, ..., Xn) to

4 Compute I(Xi, C).

5 Given a test size α compute the threshold τi = χ2
(rC−1)(ri−1),α.

6 if τi ≤ I(Xi; C).

7 then Add Xi in the selected features Xr.

8 Return the classifier associated with the selected features, MNB(Xr).

2.5.3.2 Multinomial tree-augmented näıve Bayes

As we noted in Section 2.5.2 TAN structures break with the strong inde-
pendence assumption of NB structures, i.e. conditional independence of the
features given the class, CI(Xi; Xj |C) for all i 6= j. This section is focused on
learning algorithms which obtain Bayesian multinomial classifiers with TAN
structures. We will introduce in detail the two classifier induction algorithms
that will be adapted to the conditional Gaussian network and the kernel based
Bayesian network paradigms in Chapters 3 and 4, respectively.

The first classifier induction algorithm proposed for TAN structures [Fried-
man et al. (1997)] is a filter approach based on conditioned mutual informa-
tion, and we call it filter multinomial tree-augmented näıve Bayes (fMTAN ).
The structural learning procedure proposed by Friedman et al. (1997) con-
structs a tree between the features taking into account the special role of the
class variable, which is the parent of all features, Xi ∈ ChC for all i. The
algorithm adapts the procedure proposed by Chow and Liu (1968) using the
class conditional mutual information instead of the mutual information. Each
conditioned mutual information I(Xi; Xj |C), which measures the strength of
the conditional dependence assertion CD(Xi; Xj|C), is used to weight the
undirected edge between each pair Xi and Xj. Then, the Kruskal algorithm is
used to obtain the maximum weighted spanning tree. The algorithm needs the
calculation of n(n − 1)/2 (O(n2)) conditional mutual information quantities.
Algorithm 4 shows the pseudo-code for the fMTAN algorithm and Algorithm
5 shows the pseudo-code for the Kruskal algorithm.

It should be highlighted that fMTAN preserves the computational cost
of the algorithm of Chow-Liu, requiring a polynomial time in the number
of variables [Chow and Liu (1968)]. The Chow-Liu algorithm obtains a tree
structure that maximizes the likelihood. The fMTAN algorithm inherits this
important property and it obtains a complete TAN structure which maxi-
mizes the likelihood of the model given the data [Friedman et al. (1997)].
Moreover, fMTAN is asymptotically correct if the data have been generated
from a TAN structure. Two aspects must be taken into account. First, the
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Algorithm 4: Filter multinomial tree-augmented näıve Bayes.

1 Compute I(Xi; Xj |C) for all i < j.

2 Let s be a complete undirected graph where I(Xi, Xj |C) is the weight of
edge (Xi, Xj).

3 Use the Kruskal algorithm to obtain the maximum spanning tree from s.

4 Select randomly a node as the root to set the direction of the edges.

5 Add the class variable as parent of each predictive variable.

6 Learn the parameters of the associated Bayesian multinomial network using
the maximum likelihood estimator.

Algorithm 5: Kruskal algorithm.

1 Let s = (X , E) be an empty graph, |E| = 0, with n nodes, X = (X1, ..., Xn).

2 While |E | < n − 1 do

3 Add to s the edge with the highest weight which does not create a cycle
in s.

structural likelihood maximization does not necessarily imply a predictive er-
ror minimization. Second, the fMTAN constructs a complete TAN structure.
Thus, some redundant variables and irrelevant arcs could be added. An al-
ternative for avoiding the compulsory induction of complete TAN structures,
and following the intuitions behind fsMNB, consist of imposing a threshold
to the mutual information (see Blanco (2005) for further details).

The wrapper alternative to the fMTAN algorithm was proposed by Keogh
and Pazzani (1999). More than a direct attempt to approximate the under-
lying probability distribution, they solely concentrate on using the same rep-
resentation to improve the estimated classification accuracy. As the space of
possible structures is exponential with the number of variables, generally, the
wrapper optimization is approximate. For example Keogh and Pazzani (1999)
performs a forward greedy search algorithm in the space of allowed structures
guided by the estimated accuracy. They propose a greedy approach to obtain
a TAN structure. The algorithm starts with a complete NB structure and the
arcs that maximize the proposed score, e.g. accuracy, are successively added
if they agree with TAN structural restrictions. For each arc added to the
network, O(n2) classifier structures are considered and evaluated, where n is
the number of predicted variables. In order to obtain a TAN structure, O(n)
arcs can be added. Hence, the time complexity of the algorithm is O(n3). We
propose a modification to this algorithm called wrapper selective multinomial
tree-augmented näıve Bayes (wsMTAN ), which starts from an empty struc-
ture without arcs. The pseudo-code of wsMTAN is shown in Algorithm 6. The
wsMTAN algorithm should avoid the disadvantages of fMTAN mentioned at
the end of the previous paragraph, because it is not restricted to complete
TAN structures and because it performs an implicit variable selection.



96 2 Supervised classification with Bayesian multinomial networks

Algorithm 6: Wrapper selective multinomial tree-augmented näıve Bayes.

1 Let the structure s = (V , E) with E = ∅ and V = (X , C).

2 Repeat until non-improvement is reached.

3 Select the best structure sTAN , i.e. with the best estimated score, among
the following alternatives:

4 (a) Consider the classifiers with the structure s′ = (V , E ′) with E ′ =
E ∪ (C, Xi) where Xi /∈ Ch(s)C .

5 (b) Consider the classifiers with the structure s′ = (V , E ′) with E ′ =
E ∪ (Xi, Xj) where Xi, Xj ⊆ Ch(s)C and P a(s)j ≤ 2.

6 If the classifier based on BMN associated to sT AN improves the classifier
associated to s.

7 Then Set s to sTAN .

8 Else Return the structure s.

We adapt this algorithm to conditional Gaussian network paradigm in
Chapter 3 [Pérez et al. (2006b)]. wsMTAN performs an implicit feature se-
lection following the intuitions behind wsMNB. It must be noted that the
algorithms fMTAN and wsMTAN perform a forward greedy structure inclu-
sion of arcs, and this can be problematic for detecting and modeling XOR-like
relations between more than two features.

Another alternative is proposed in Pernkopf and Bilmes (2005) where the
algorithm proposed by Friedman et al. (1997) is modified in order to per-
form a discriminative learning of TAN structures by leading the structural
learning with the 3-way interaction information I(Xi; Xj ; C) instead of the
conditioned mutual information I(Xi; Xj|C). As we will discuss in Chapter 5
this algorithm is an approximation to the TAN structure that maximizes the
conditional likelihood instead of the joint likelihood.

Moreover, there are some Bayesian approaches for TAN induction. Dash
and Cooper (2003); Cerquides and de Mántaras (2003); Dash and Cooper
(2004); Cerquides and de Mántaras (2005) introduce different tractable ap-
proaches to average over all the possible TAN structures given an ancestral
order over the predictive variables. However, although the Bayesian model
averaging process is performed over TAN models, the resultant model is a
complete Bayesian network. Nevertheless, Dash and Cooper (2004) propose
some restrictions to make the calculations more efficient.

2.5.3.3 Multinomial k-dependent augmented näıve Bayes

As we noted in Section 2.5.2, kDB structures can be regarded as a spectrum of
allowable dependence in augmented näıve Bayes family of structures with the
NB structure at the most restrictive extreme (k = 0) and the full BMN at the
most general one (k ≥ n − 1). This section is focused on classifier induction
algorithms based on kDB structures for the BMN paradigm. We will introduce
in detail a classifier induction algorithm based on kDB structures that we will
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adapt to the conditional Gaussian network and the kernel based Bayesian
network paradigms in Chapters 3 and 4, respectively.

The kDB structure allows each predictor Xi to have not more than k
predictor variables as parents. This constraint allows to control the number of
parameters required by the structures as noted in Section 2.5.2. Besides, this
constraint reduces the search space with respect to the entire set of structures.

We start by presenting the classifier induction algorithm proposed by Sa-
hami (1996) which we call filter multinomial k-dependent augmented näıve
Bayes (fMkAN ). fMkAN is a generalization of the algorithm fMTAN [Fried-
man et al. (1997)] allowing a maximum of k parents plus the class for each fea-
ture. The fmkAN algorithm is a filter forward greedy approach which uses the
class conditional mutual information between variables I(Xi; Xj | C) and the
mutual information I(Xi; C) between class and variables to lead the structure
search process. First, I(Xi; C)(i = 1, ..., n) and I(Xi; Xj | C)(i = 1, ..., n)(j =
i, ..., n) are computed. The fMkAN algorithm starts from a structure with
only the class variable. At each step, from the subset of non-included predic-
tor variables, the variable Xmax with the highest I(Xi; C) is added. Next, arcs
from the variables included in the structure to variable Xmax are added while
it is possible, as long as the maximum number of parents k is not surpassed.
The arcs are added following the order of I(Xmax; Xj | C) from the great-
est value to the smallest one. The algorithm continues until a complete kAN
structure is obtained. Thus, the redundant variables and several irrelevant
relations between variables are also inevitably added. Therefore, the fMkDB
could perform worse in data sets with redundant variables. It is advisable to
perform a feature subset selection in order to remove the irrelevant and re-
dundant variables. The pseudo-code of fMkAN algorithm is shown in Figure
7.

Algorithm 7: Filter multinomial k-dependent augmented näıve Bayes (fMkAN)

1 For each feature Xi ∈ X = (X1, ..., Xn) compute the mutual information
I(Xi; C).

2 Compute the conditional mutual information I(Xi; Xj |C), for each pair of
features, where i ≤ j.

3 Let s = (V , E) be an empty graph |E | = 0 with V = (X , C).

4 for i = 1 to n

5 Select the predictor Xmax which is not included in Ch(s)C and has the
largest mutual information with the class I(Xmax; C).

6 Add the directed arc (C, Xmax) to s.

7 Add m = min(i − 1, k) arcs to s from m distinct features Xj in Ch(s)C

with the highest class conditional mutual information I(Xj ; Xmax|C).

8 Learn the parameters of the BMN with the structure s using the maximum
likelihood estimator and return the classifier.
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This algorithm induces complete kAN structures, similarly to fMTAN
which induces complete TAN structures. Following the intuitions behind
fsMNB, some arcs can be forbidden based on a threshold or a set of thresholds.

The wrapper alternative follows the intuitions behind wsMTAN allowing
the induction of incomplete kAN structures. We call this algorithm wrapper
selective multinomial k-dependence augmented näıve Bayes (wsMkAN ). The
pseudo-code of wsMkAN is shown in Algorithm 8.

Algorithm 8: Wrapper multinomial selective k-dependence augmented näıve Bayes.

1 Let the structure s = (V , E) with E = ∅ and V = (X , C).

2 } while true

3 Select the best structure s∗, i.e. with the best estimated wrapper score,
among the following alternatives:

4 (a) Consider the classifiers based in BMN with the structure s′ =
(V , E ′) with E ′ = E ∪ (C, Xi) where Xi /∈ Ch(s)C .

5 (b) Consider the classifiers based in BMN with the structure s′ =
(V , E ′) with E ′ = E ∪ (Xi, Xj) where {Xi, Xj} ⊆ Ch(s)C and
P a(s)j ≤ k + 1.

6 If structure s∗ improves s

7 Then Set s to s∗.

8 Else Return the structure s.

Note that fMkAN, and wsMkAN perform a forward greedy inclusion of
arcs and, thus, they could have problems for detecting and modeling XOR-like
relations between more than two predictors.

2.5.3.4 Multinomial joint augmented näıve Bayes

An alternative to the NB structures which also break their strong class
conditional assumption are the JAN structures [Kononenko (1991); Pazzani
(1997); Zheng et al. (1999)]. For this purpose, they introduce the joint nodes
Y = (X1:Y , ..., Xl:Y ). A joint variable Y = (X1:Y , ..., Yl:Y ) represents a
multidimensional random variable and it can be interpreted as a complete
subgraph in Y . As a JAN structure considers independent joint variables,
the factorization of a JAN structure is very similar to NB structure factor-
ization as it is illustrated in Section 2.5.2. The number of parameters re-
quired to model the distribution of a joint variable conditioned to the class,
p(y = (y1:Y , ..., yl:Y )|c), based on BMN paradigm is rC((

∏l
i=1 ri:Y ) − 1)

which is exponential with respect to l. Thus, we should limit the maximum
number of component nodes in the joint nodes in order to control the number
of parameters and the variance of the error of the classifiers based on JAN
structures.
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Depending on the direction of the greedy search process (forward and
backward), Pazzani (1997) presents two wrapper ways to detect dependencies
among variables. We name both algorithms forward wrapper multinomial joint
augmented näıve Bayes (fwMJAN ) and backward wrapper multinomial joint
augmented näıve Bayes (bwMJAN ). The fwMJAN algorithm starts from a
structure containing the class node C. It considers two operators to carry out
the search in the space of possible structures:

1. Add a variable not used by the current classifier as a new variable. The
added variable is class conditioned and conditionally independent given
the class with respect to the other variables used in the current classifier.

2. Join a variable not used by the current classifier to a variable currently
used by it.

At each step in the structural learning process, a set of candidate structures
is considered. The set consists of all structures that can be inferred from
the actual one, applying one of the operators previously introduced once.
Each structure contemplated is evaluated by means of estimated accuracy.
Afterwards, the best candidate is chosen. If the best option does not improve
the accuracy, the current classifier structure is returned.

The bwMJAN is similar to fwMJAN except in that bwMJAN starts from a
complete NB structure, and, at each step, it considers two different operators:

1. Remove a variable used by the current classifier.
2. Join a variable used by the current classifier to another variable currently

used by it.

This algorithm also considers the best option. According to Pazzani (1997),
the backward search performs better than the forward search with multinomial
variables.

In both algorithms, for each change in the network using the mentioned
operators, O(n2) classifier structures are considered and evaluated. Besides,
in the worst case, O(n) changes could be made. Thus, in the worst case, the
time complexity for both algorithms is O(n3).

Some filter approaches for the induction of JAN structures based on BMN
are presented in Blanco (2005).

2.6 Bayesian multinomial networks and continuous

features

A classifier based on PGMs is determined by the structure of the graph and the
probability distributions and probability density functions which model the
(in)dependence relations between the variables. In order to model a density
function of a continuous variable X , for a structure s, four approaches are
generally considered:
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1. To discretize the continuous variable X and to estimate the local distri-
bution p(x′|pa(s)X′) of the discretized variable X ′ by means of a multi-
nomial probability distribution.

2. To directly estimate the local density function f(x|pa(s)x) in a parametric
way, e.g. by means of the mixed Gaussian distribution [Lauritzen (1996)]
(see Chapter 3 for further details).

3. To directly estimate the local probability density function in a non-
parametric way, e.g. using the kernel based density functions [Silverman
(1986)] (see Chapter 4 for further details).

4. To directly estimate the local probability density functions in a semi-
parametric way, e.g. by means of finite mixture models [Figueiredo et al.
(1999)].

The BMN paradigm only handles discrete variables and if a continuous
variable is present, it must be discretized with the consequent loss of informa-
tion [Yang and Webb (2003)]. The loss of information due to the discretization
is illustrated in Chapter 4 using four continuous artificial domains. In spite
of this, the discretization plus multinomial distribution approach have shown
competitive performances with respect to the other alternatives [Cheng and
Greiner (1999); Pérez et al. (2006b, 2009)]. Clearly, an improvement in the
procedures used to estimate the local probability density functions does not
imply an improvement in the classification performance. On the other hand,
the discretization plus multinomial approach could have some problems when
modeling a graph with a complex structure and/or with variables discretized
in many intervals because the number of parameters to be estimated can be
very high (see Section 2.5.2).

There are alternatives to BMN among the PGMs which can handle directly
continuous attributes: conditional Gaussian networks [Lauritzen (1996); Peña
et al. (2002); Pérez et al. (2006b)] and kernel based Bayesian networks [Pérez
et al. (2009)]. Conditional Gaussian networks and kernel based Bayesian net-
works are a parametric and non-parametric alternative to the discretization
plus multinomial approach, respectively. This dissertation is mainly focused
on the presentation of both paradigms for supervised classification. The in-
tuition behind both paradigms is to allow the use of generalized probability
functions that can deal with mixed random variables in the field of PGMs.

2.7 Summary and Future work

This chapter has introduced Bayesian multinomial networks focused on su-
pervised classification. For this purpose we have introduced some fundamen-
tals of graph theory and probabilistic graphical models. Bayesian multino-
mial networks are introduced as an probabilistic graphical model. Based on
this paradigm, the family of augmented näıve Bayes structures is presented
as a set of structures biased towards supervised classification: näıve Bayes,
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tree-augmented näıve Bayes, k-dependent augmented näıve Bayes and joint-
augmented näıve Bayes. Finally, a set of classifier induction algorithms is
introduced for each subfamily of structures.

A future work line consists of designing new classifier induction algorithms
for augmented näıve Bayes structures which control the bias and the variance
of the learned classifiers. These algorithms will be focused on two heuristics:

• (a) Equilibrate the number of parameters of the model and the average
number of cases for computing each parameter.

• (b) Ensure a minimum number of cases l for computing each parameter.

Both heuristics are proposed in order to control the variance of the classi-
fier (see Section 1.8.3). They could be thought of as being inspired by [Yang
and Webb (2003)], which proposes a discretization for the näıve Bayes clas-
sifier trying to balance the trade-off between the bias and variance of the
classification error. We propose a set of classifier induction algorithms called
dynamic k-dependent augmented näıve Bayes (dynkAN ). The general pseudo-
code for dynkAN algorithms in the forward greedy search version is shown
in Algorithm 9, where the function heuristic(Xi, Xj , X, T ) depends on the
heuristic proposed being T = {(x(1), c(1)), ..., (x(N), c(N))} the training set
used.

Algorithm 9: Wrapper selective dynamic multinomial kAN.

1 Let the structure s = (V , E) with E = ∅ and V = (X , C).

2 While true.
3 Select the best structure s∗, i.e. with the best estimated wrapper score,

among the following alternatives:

4 (a) Consider the classifiers with the structure s′ = (V , E ′) with E ′ =
E ∪ (C, Xi) where Xi /∈ Ch(s)C .

5 (b) Consider the classifiers with the structure s′ = (V , E ′) with E ′ =
E ∪ (Xi, Xj) where Xi, Xj ⊆ Ch(s)C and P a(s)j ≤ k + 1 where
k = heuristic(Xi, Xj , X , T ).

6 if structure s∗ improves s

7 then Set s to s∗.

8 else Return the structure s.

For example, possible implementations of the heuristics could be

• (a) heuristic(Xi, Xj , Pa(s)bdX, T ) = ⌊ log(
√

N/(ri∗r))
log r̄i

⌋
• (b) heuristic(Xi, Xj , X, T ) = ⌊ log N/(lrir)

logr̄i
⌋

where r̄i = 1/|Pa(s)i|
∑

Xm∈P a(s)i
rm. Note that the proposed implemen-

tations for both heuristics come from the equalities ⌈rir̄
kr⌉ =

√
N and

⌊N/(rir̄
kr)⌋ = l, respectively, where l is the average minimum number of

cases for computing each parameter.
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Besides, we will propose new search strategies based on other meta-
heuristics such as genetic algorithms [Goldberg (1989)] or estimation of dis-
tribution algorithms [Larrañaga and Lozano (2002)].



Part II

Methodological contributions





3

Supervised classification with conditional

Gaussian networks

3.1 Introduction

Bayesian multinomial network-based classifiers (see Chapter 2) are able to
handle only discrete variables. However, most real-world domains involve con-
tinuous variables. A common practice to deal with continuous variables in
Bayesian multinomial networks is to discretize them, with the subsequent loss
of information (see Section 2.6). In order to deal directly with continuous
and discrete random variables, this chapter formally introduces conditional
Gaussian networks for supervised classification.

This chapter is organized as follows. Section 3.2 introduces the Gaussian
and mixed Gaussian distribution and a set of results related to condition-
ing and marginalizing. In addition, Section 3.3 provides the estimators for a
set of quantities of the information theory under mixed Gaussian assumption.
Section 3.4 formally introduces conditional Gaussian networks for general pur-
poses. Then, in Section 3.5 we introduce a set of classifier induction algorithms
based on conditional Gaussian networks, most of them originally proposed
for Bayesian multinomial networks. The classifier induction algorithms intro-
duced are ordered and grouped according to their structural complexity: näıve
Bayes, tree augmented näıve Bayes, k-dependent augmented näıve Bayes and
joint augmented näıve Bayes. All the classifier induction algorithms are em-
pirically evaluated in Section 3.6. The study suggests that joint augmented
näıve Bayes structure based classifiers seems to outperform the behavior of the
rest of the presented classifiers. Joint augmented näıve Bayes structures also
obtain quite competitive results compared to the state-of-the-art algorithms
included in the study. Finally, Section 4.9 summarizes the main contributions
provided throughout this chapter and it indicates the main future work lines.
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3.2 Gaussian and conditional Gaussian distributions

This section presents Gaussian density function and conditional Gaussian
generalized probability distribution [Lauritzen and Wermuth (1984); Lauritzen
(1992, 1996)], which we call mixed Gaussian distribution (MG distribution).
It also presents a set of propositions taken from [Lauritzen and Wermuth
(1989); Lauritzen (1996); Cowell et al. (1999)], which show the properties
of the marginal and conditional distributions associated to Gaussian density
functions and mixed Gaussian generalized probability distributions. In addi-
tion, we provide an alternative proof to most of the theorems and propositions
related to Gaussian and mixed Gaussian distributions based on moment char-
acteristics instead of canonical characteristics. It must be highlighted that MG
distribution and its marginalizing and conditioning properties are the basis
of the definition of conditional Gaussian networks (see Section 3.4). The pro-
vided results are not restricted to a particular estimation of the parameters.
However, this dissertation is focused on parameters estimated using maximum
likelihood.

This section is divided in two parts. Subsection 3.2.1 introduces the no-
tation for sub-matrixes and sub-vectors and, then, Subsection 3.2.2 presents
the joint, marginal and conditional forms for Gaussian density functions and
mixed Gaussian generalized probability distributions.

The results provided in this chapter are based on three interrelated random
variables. Let X = (X1, ..., Xn+m) be an (n + m)-dimensional mixed random
variable. By definition, there exist two subsets of X, Y = (Y1, ..., Yn) and
Z = (Z1, ..., Zm), such that (i) X = Y ∪ Z and Y ∩ Z = ∅, and (ii) Y

is an n-dimensional continuous random variable and Z is an m-dimensional
discrete random variable. Thus, there exist two indexed sets {1:Y , ..., n:Y }
and {1:Z, ..., m:Z} such that Yi = Xi:Y and Zj = Xj:Z .

3.2.1 Notation for matrix and vectors

The notation introduced in this section will be used throughout this disserta-
tion.

Let Y be a multidimensional continuous random variable. We denote a
matrix of Y as AY ,Y or AY . When it is clear from the context the subindex
is omitted, and it is simply referred to as A. Given U ⊆ Y and Ū = Y \ U ,
the sub-matrix of A with the elements AU,V for U ∈ U and V̄ ∈ Ū is denoted
as AU ,Ū .

A = AY = AY ,Y =

(

AU , AU ,Ū

AŪ ,U , AŪ

)

=

(

AU ,U , AU ,Ū

AŪ ,U , AŪ ,Ū

)

We denote a vector related to Y as aY . When it is clear from the context
the subindex is omitted, and it is simply referred to as a. Given U ⊆ Y the
sub-vector of a with the elements aU for U ∈ U is denoted as aU .
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a = aY = (aU , aŪ ) = ((aY )U , (aY )Ū )

Let Z be a multidimensional discrete random variable which takes the values
Ωz = {z1, ..., zr}. A set of matrixes and vectors for Y indexed by the values
in Ωz are denoted as AY (Z) and aY (Z), respectively. Alternatively, the
matrix and vector indexed by the value z are denoted as AY (z) and aY (z),
respectively.

3.2.2 Joint, conditional and marginal distributions

Following, we formally introduce the joint, marginal and conditional functions
for Gaussian density functions and mixed Gaussian generalized probability
distributions. Most of the presented results have been taken from [Lauritzen
(1996)].

Definition 3.1 (Joint Gaussian) Y = (Y1, ..., Yn) is said to follow an n-
dimensional Gaussian density function if its joint probability density function
is an n-dimensional normal distribution, f(y) ; N (y; µ, Σ):

f(y) =
1

(2π)n/2 | Σ |1/2
exp[−1

2
(y − µ)T Σ−1(y − µ)]

where Σ and µ are the covariance matrix and mean vector of Y , respectively.

Note that ΣYi,Yj = ΣYj ,Yi and, thus, the number of parameters required
for modeling f(y) is n(n + 1)/2 + n. Therefore, the order of the number
of parameters is O(n2). From here on, we will refer to the joint Gaussian
probability density function as Gaussian distribution, for the sake of simplicity.

Proposition 3.1 (Marginal Gaussian) Let Y follow an n-dimensional
Gaussian density function, f(y) ; N (y; µY , ΣY ), and let U = (U1, ..., Uk) ⊆
Y and Ū = Y \ U . The marginal joint density function of U , obtained
by marginalizing f(y) on Ū , follows an k-dimensional Gaussian distribu-
tion with parameters µU = (µY )U and ΣU = (ΣY )U , f(u) =

∫

f(y)dū ;

N (u; µU , ΣU ).

The proof to this proposition can be found in Lauritzen (1996), p.255-
256, using canonical characteristics instead of moment characteristics. The
number of parameters required for modeling the marginal distribution f(u)
is l(l + 1)/2 + l. Thus the order of the number of parameters is O(l2).

Proposition 3.2 (Conditional Gaussian) Let Y = (Y1, ..., Yn) follow an
n-dimensional Gaussian density function, f(y) ; N (y; µY , ΣY ), and let
U = (U1, ..., Uk) ⊆ Y and Ū = Y \ U . The conditional joint density
function of U conditioned to Ū = ū, f(U = u | Ū = ū), follows an k-
dimensional joint Gaussian density function with parameters µU |ū and ΣU |Ū ,

f(u|ū) = f(u,ū)
R

f(u,ū)du
; N (u; µU |ū, ΣU |Ū ), where
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µU |ū = µU + ΣU ,ŪΣ−1
Ū

(ū − µŪ )

ΣU |Ū = ΣU − ΣU ,ŪΣ−1
Ū

ΣŪ ,U

The term ΣU ,ŪΣ−1
Ū

is a k × (n − k) matrix which is usually referred as
regression coefficients [Shachter and Kenley (1989); Lauritzen (1992)].

The proof to Proposition 3.2 can be found in Lauritzen (1996), p.255, using
the canonical characteristics. Note that the covariance ΣU |Ū is independent
from the value ū, while µU |ū depends on the entire covariance matrix Σ, the
mean vector µ and the value ū. The number of required parameters is n(n +
1) + n. Therefore, the order of the number of parameters is O(m2). It should
be highlighted that in contrast to marginal distribution f(u), the conditional
Gaussian distribution f(u|ū) does not reduce the number of parameters with
respect to the joint distribution f(y).

Let us consider the joint Gaussian density for Y , f(y) ; N (y; µY , ΣY )
and a factorization based on a structure s for Y ,

∏n
i=1 f(yi|pa(s)i), where

f(yi|pa(s)i) ; N (yi; µYi|pa(s)i
, σ2

Yi|P a(s)i
). The reader should note that,

Propositions 3.1 and 3.2 can be used to obtain the parameters of f(yi|pa(s)i),
µYi|pa(s)i

and σ2
Yi|P a(s)i

, from the parameters of the joint Gaussian density

f(y), µY and ΣY , for i = 1, ..., n. Conversely, in order to obtain the parame-
ters of the joint density f(y) from the parameters of the factors f(yi|pa(s)i)
for i = 1, ..., n, the reader should consult the procedure proposed in [Shachter
and Kenley (1989)], p. 538 and Appendix B.

Definition 3.2 (Joint mixed Gaussian) Let X = (Y , Z) = (X1, ..., Xn+m)
be an (n + m)-dimensional mixed random variable, where Y = (Y1, ..., Yn) is
an n-dimensional continuous random variable and Z = (Z1, ..., Zm) is an
m-dimensional discrete random variable. X is said to follow an (n + m)-
dimensional mixed Gaussian distribution if its generalized joint probability
distribution is given by:

ρ(x) = f(y | z)p(z) ; MG(x; p(z), µY (z), ΣY (z)) (3.1)

for p(z) > 0, where p(z) follows an m-dimensional multinomial probability
mass function, p(z) = Pr(Z = z), and f(y | z) follows an n-dimensional
joint Gaussian density function for all z, f(y|z) ; N (y; ΣY (z), µY (z)),
where ΣY (z) and µY (z) are the covariance matrix and mean vector of Y

when Z = z, respectively.

In order to avoid misunderstandings, and for the sake of brevity, it should
be noted that we refer to conditional Gaussian generalized probability distribu-
tion as mixed Gaussian distribution (MG distribution). The term conditional
Gaussian distribution is used in this dissertation for naming a conditional
Gaussian density function (see Proposition 3.2). We prefer the term mixed
instead of conditional, because it is used for naming a joint generalized prob-
ability function and not a conditional one, and because it provides information
about the nature of the implied random variables.
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We denote that X follows a MG distribution with parameters p(z), ΣY (z)
and µY (z) as ρ(x) ; MG(x; p(z), ΣY (z), µY (z)). It must be noted that
a mixed Gaussian distribution is a generalization of both Gaussian density
function and multinomial probability distribution for multidimensional mixed
random variables. Intuitively, it can be said that the statement “X follows
a MG distribution”, is equivalent to the statement “Y follows a multidimen-
sional Gaussian probability density given the discrete variables” [Cowell et al.
(1999)].

The number of parameters for modeling the mixed Gaussian distribution
for X, ρ(x), is (

∏m
i=1 ri)−1+(

∏m
i=1 ri)n(n+1)/2+(

∏m
i=1 ri)n. Thus, the order

of magnitude of the number of parameters is O(n2(
∏m

i=1 ri)). If we assume
that ri = r for any 1 ≤ i ≤ m the number of required parameters is O(n2rm).

Conversely to Gaussian distribution, the marginal of a MG distribution is
not always a MG distribution [Lauritzen (1996)]. The marginalization of MG
distributions over continuous random variables always follows a MG distri-
bution but, on the other hand, the marginalization of MG distributions over
discrete random variables leads in general to complicated mixture distribu-
tions [Lauritzen (1996)]. The following two propositions formally introduce
these facts giving the closed forms for the marginal and conditional MG dis-
tributions. These propositions have been taken from [Lauritzen (1996)].

Proposition 3.3 (Marginal mixed Gaussian I) Let X = (Y , Z) =
(X1, ..., Xn+m) be an (n + m)-dimensional mixed random variable, being
Y = (Y1, ..., Yn) an n-dimensional continuous random variable and Z =
(Z1, ..., Zm) an m-dimensional discrete random variable. Let U = (U1, ..., Uk) ⊆
Y be a multidimensional continuous random variable being Ū = Y \ U its
complement in Y . If X follows an (n + m)-dimensional mixed Gaussian dis-
tribution, ρ(x) ; MG(x; p(z), Σ(z), µ(z)), then (U , Z) follows the mixed
Gaussian distribution:

ρ(u, z) =

∫

ρ(x)dū ; MG(u, z; p(z), µU (z), ΣU (z))

where

µU (z) = µ(z)U

ΣU (z) = Σ(z)U

Proof.

ρ(u, z) =

∫

ρ(x)dū = p(z)

∫

f(y|z)dū = p(z)f(u|z)

Since f(y|z) ; N (y; µ(z), Σ(z)), due to Proposition 3.2 the term f(u|z)
follows a Gaussian density function for each value z, f(u|z) ; N (u; µU (z),
ΣU (z)) where µU (z) = µ(z)U and ΣU (z) = Σ(z)U . �
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The proof of this proposition can be found in Lauritzen (1996), p.160,
using the canonical characteristics.

The number of required parameters for modeling the marginal mixed dis-
tribution ρ(u, z) is (

∏m
i=1 ri)− 1 + (

∏m
i=1 ri)l(l + 1)/2 + (

∏m
i=1 ri)l. Thus, the

order of magnitude of the number of parameters is O(l2(
∏m

i=1 ri)). If we as-
sume that ri = r for any 1 ≤ i ≤ m the number of required parameters is
O(l2rm). The reduction in the number of parameters with respect to the joint
mixed distribution ρ(x) is inherited from the reduction in the parameters of
a Gaussian distribution when it is marginalized (see Proposition 3.1).

Proposition 3.4 (Marginal mixed Gaussian II) Let X = (Y , Z) =
(X1, ..., Xn+m) be an (n + m)-dimensional mixed random variable which fol-
lows a mixed Gaussian distribution, ρ(x) ; MG(x; p(z), µY (z), ΣY (z))
being Y = (Y1, ..., Yn) an n-dimensional continuous random variable and
Z = (Z1, ..., Zm) an m-dimensional discrete random variable. Let V =
(V1, ..., Vl) ⊆ Z be a multidimensional discrete random variable being V̄ = Z\
V its complement in Y . If the conditional independence assertion CI(V̄ ; Y |V )
is satisfied, then (Y , V ) follows the mixed Gaussian distribution

ρ(y, v) ; MG(y, v; p(v), µY (v), ΣY (v))

where

p(v) =
∑

v̄

p(v, v̄)

µY (v) = µY (v, v̄) for any v̄

ΣY (v) = ΣY (v, v̄) for any v̄

Proof.

ρ(y, v) =
∑

v̄

ρ(x) =
∑

v̄

f(y|z)p(z) = f(y|v)
∑

v̄

p(v, v̄) = f(y|v)p(v)

The third equality holds due to the conditional independence CI(V̄ ; Y |V ).
Note that, for all v, both mean vector µY (v, v̄) and covariance matrix
ΣY (v, v̄) are independent from the value v̄. Thus, for all v̄, the parameters
µY (v, v̄) and ΣY (v, v̄) can be summarized in µY (v) and ΣY (v), respectively.
�

The proof of this proposition can be found in Lauritzen (1996), p.161,
using the canonical characteristics. It must be highlighted that, in fact, the
converse to Proposition 3.4 holds, i.e. if the marginal of a MG distribution,
ρ(x), over the variable V̄ , ρ(y, v), is again a MG distribution, then the con-
ditional independence assertion CI(V̄ ; Y |V ) is true [Frydemberg (1990)].

The number of parameters required for modeling the marginal ρ(y, v) is

(
∏l

i=1 ri:V ) − 1 + (
∏l

i=1 ri:V )n(n + 1)/2 + (
∏l

i=1 ri:V )n. Thus, the order of

magnitude of the number of parameters is O(n2(
∏l

i=1 ri:V )). If we assume that
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ri:V = r for any 1 ≤ i ≤ l the number of required parameters is O(n2rl). The
reduction of parameters is due to the conditional independence CI(V̄ ; Y |V )
which implies that some of the parameters involved in ρ(x) are repeated and
can be summarized.

In contrast to the situation concerning marginals, conditioning with any
subset of variables preserves the MG distribution [Lauritzen (1996)]. The fol-
lowing theorem [Lauritzen (1996)] gives the closed forms for the parameters
of a conditional MG distribution.

Proposition 3.5 (Conditional mixed Gaussian) Let X = (Y , Z) =
(X1, ..., Xn+m) be an (n + m)-dimensional mixed random variable which fol-
lows a mixed Gaussian distribution, ρ(x) ; MG(x; p(z), µ(z), Σ(z)), be-
ing Y = (Y1, ..., Yn) an n-dimensional continuous random variable and
Z = (Z1, ..., Zm) an m-dimensional discrete random variable. Let U =
(U1, ..., Uk) ⊆ Y be a multidimensional continuous random variable and
V = (V1, ..., Vk) ⊆ Z be a multidimensional discrete random variable, being
Ū = Y \U and V̄ = Z \V their complements in Y and Z, respectively. For
each value (ū, v̄), (U , V ) follows a multivariate mixed Gaussian distribution,
ρ(u, v|ū, v̄) ; MG(u, v; p(v|ū, v̄), µU |ū((v, v̄) = z), ΣU |Ū (z)), where

p(v|ū, v̄) = p(v|v̄)
N (ū; µ(v, v̄)Ū , Σ(v, v̄)Ū )

∑

v′ p(v′|v̄)N (ū; µ(v′, v̄)Ū , Σ(v′, v̄)Ū )

µU |ū(v, v̄) = µ(v, v̄)U + Σ(v, v̄)U ,ŪΣ(v, v̄)−1
Ū

(ū − µ(z)Ū )

ΣU |Ū (v, v̄) = Σ(v, v̄)U − Σ(v, v̄)U ,ŪΣ(v, v̄)−1
Ū

Σ(v, v̄)Ū ,U

Proof.
ρ(u, v|ū, v̄) = p(v|ū, v̄)f(u|ū, z)

where z = (v, v̄).
For any z, f(u|ū, z) can be seen as the conditional form of f(u, ū|z),

which follows a Gaussian density function by Definition 3.2. Thus, for any
z, by Proposition 3.2, we have that f(u|ū, z) ; N (u; µU |ū(z), ΣU |Ū (z)),
where

µU |ū(v, v̄) = µ(v, v̄)U + Σ(v, v̄)U ,ŪΣ(v, v̄)−1
Ū

(ū − µ(z)Ū )

ΣU |Ū (v, v̄) = Σ(v, v̄)U − Σ(v, v̄)U ,ŪΣ(v, v̄)−1
Ū

Σ(v, v̄)Ū ,U

Given ū and v̄, the term p(v|ū, v̄) is given by the following normalized
quantity:

p(v|ū, v̄) =
ρ(ū, v, v̄)

∑

v′ ρ(ū, v, v̄)
= p(v|v̄)

f(ū|v, v̄)
∑

v′ p(v′|v̄)f(ū|v′, v̄)

where, by Definition 3.2 and Proposition 3.3, for any (v, v̄), f(ū|v, v̄) is dis-
tributed according to N (ū; µ(v, v̄)Ū , Σ(v, v̄)Ū ). �
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An alternative proof of this proposition using the canonical characteristics
can be found in Lauritzen (1996), p.164.

The number of parameters required for modeling ρ(u, v|ū, v̄) for all (ū, v̄)

is
∏m−k

i=1 ri:V̄ ((
∏k

i=1 ri:V )− 1) + n(
∏m

i=1 ri:Z ) + n(n + 1)/2(
∏m

i=1 ri:Z). Thus,
the order of magnitude of the number of parameters is O(n2

∏m
i=1 ri:Z ). If

we assume that ri = r for i = 1, ..., m the number of parameters required
is O(rmn2). Note that the number of parameters required for modeling the
conditional distribution ρ(u, v|ū, v̄) for all (ū, v̄) is slightly smaller than the
number of parameters required for modeling the joint distribution ρ(x). How-
ever, the number of parameters required is of the same order of magnitude.

3.3 Information theory and Gaussian assumption

This section introduces a set of estimators for the mutual information and
conditional mutual information for continuous and mixed random variables
under Gaussian assumptions. In order to present the estimators for general
purpose the formulation is presented for multidimensional random variables.
These estimators will be used by the filter classifier induction algorithms in-
troduced in Section 3.5.

Following the notation of Section 3.2, the results provided in this section
are based on the following interrelated random variables: X = (X1, ..., Xn+m) =
(Y , Z) is a (n + m)-dimensional random variable. Y = (Y1, ..., Yn) = (U , Ū)
is an n-dimensional continuous random variable, where Ū = Y \ U and
U = (U1, ..., Uk). Z = (Z1, ..., Zm) = (V , V̄ ) is an m-dimensional discrete
random variable, where V̄ = Z \ V and V = (V1, ..., Vl). The following
proposition has been taken from [Cover and Thomas (1991)].

Proposition 3.6 Let Y = (Y1, ..., Yn) be an n-dimensional continuous ran-
dom variable normally distributed with parameters µ and Σ, f(y) ; N (y; µ, Σ).
The differential entropy of Y is given by:

h(Y ) =
n

2
log(2πe) +

1

2
log(|Σ|)

The proof can be found in Cover and Thomas (1991).
Note that the differential entropy of a Gaussian distributed n-dimensional

continuous random variable is proportional to log(|Σ|). In the particular case
of n = 1, the entropy is computed as

h(Y ) =
1

2
log(2πe)σ2

where σ2 is the variance of Y .
The following proposition has been taken from [Larrañaga (2003)].
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Proposition 3.7 Let X = (Y , Z) = (X1, ..., Xn+m) be an (n+m)-dimensional
mixed random variable, where Y = (Y1, ..., Yn) is an n-dimensional continuous
random variable and Z = (Z1, ..., Zm) is an m-dimensional discrete random
variable. If X follows an (n + m)-dimensional mixed Gaussian distribution
with parameters p(z), µY (z) and ΣY (z), ρ(x) ; MG(x; p(z),
µY (z), ΣY (z)), the conditional entropy of Y conditioned to Z is given by:

h(Y |Z) =
n

2
log(2πe) +

1

2

∑

z

p(z) log(|ΣY (z)|)

Proof. The proposition can be proved as follows:

h(Y |Z) = EZ [h(Y |z)]

=
∑

z

p(z)
1

2
log(|ΣY (z)|(2πe)n)

=
n

2
log(2πe) +

1

2

∑

z

p(z) log(|ΣY (z)|)

where the first equality holds by Definition 1.50 and, the second equality holds
due to Definition 3.2 and Proposition 3.5. �

In the particular case of n = m = 1, the conditional entropy is computed
as

h(Y |Z) =
1

2
log(2πe) +

1

2

∑

z

p(z) log(σ2(z))

where σ2(z) is the variance of Y when Z = z.

Proposition 3.8 Let Y = (Y1, ..., Yn) = (U , Ū) be an n-dimensional contin-
uous random variable, where U = (U1, ..., Uk) is a k-dimensional continuous
random variable. If Y follows a Gaussian density function with parameters µ

and Σ, f(y) ; N (y; µ, Σ), the conditional entropy of U given Ū is given by:

h(U |Ū) =
k

2
log(2πe) +

1

2
log(|ΣU |Ū |)

where
ΣU |Ū = ΣU − ΣU ,ŪΣ−1

Ū
ΣŪ ,U

Proof. The proposition can be proved as follows:

h(U |Ū) = EŪ [H(U |Ū)]

=

∫ ∞

−∞

k

2
log(2πe) +

1

2
log(|ΣU |Ū |)dū

=
k

2
log(2πe) +

1

2
log(|ΣU |Ū |)

where the first equality holds due to Equation 1.50 and the second is given
by Proposition 3.7 and Proposition 3.6. �
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It should be noted that the determinant can be also computed as follows:

|ΣU |Ū | =
|Σ|
|ΣŪ |

In the particular case of n = 2 and k = 1, Y = (U, Ū), the conditional
entropy is computed as

h(U |Ū) =
1

2
log[(2πe) +

σ2
Uσ2

Ū
− σ2

U,Ū

σ2
Ū

]

where σU,Ū is the covariance of U and Ū , and σ2
U,Ū

= σ2
Ū ,U

.

Proposition 3.9 Let X = (Y , Z) = (X1, ..., Xn+m) be an (n+m)-dimensional
mixed random variable, being Y = (Y1, ..., Yn) an n-dimensional continuous
random variable and Z = (Z1, ..., Zm) an m-dimensional discrete random
variable. If X follows an (n + m)-dimensional mixed Gaussian distribution,
ρ(x) ; MG(x; p(z), µY (z), ΣY (z)), then the entropy of X is given by:

H(X) =
n

2
log(2πe) +

∑

z

p(z) log(

√

|ΣY (z)|
p(z)

)

Proof. The proposition is proved as follows:

H(X) = h(Y |Z) + H(Z)

=
n

2
log(2πe) +

1

2

∑

z

p(z) log(|ΣY (z)|)

−
∑

z

p(z) log p(z)

=
n

2
log(2πe) +

∑

z

p(z) log(

√

|ΣY (z)|
p(z)

)

where the first equality holds by Equation 1.51, and the second one holds by
Proposition 3.7 and Equation 1.46. �

It should be noted that Theorem 1.46 and Proposition 3.6 are particular
cases of this theorem. In the particular case of n = m = 1, the entropy is
computed as

H(X) = H(Y, Z) =
1

2
log(2πe) +

∑

z

p(z) log(
σ(z)

p(z)
) (3.2)

where σ2(z) is the variance of Y when Z = z.
The following proposition has been taken from [Cover and Thomas (1991)].
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Proposition 3.10 Let Y = (Y1, ..., Ym) = (U , Ū) be a multidimensional
continuous random variable, where U = (U1, ..., Uk). If it is verified that
f(y) ; N (y; µY , ΣY ), the mutual information of U and Ū is given by:

I(U ; Ū) =
1

2
log

|ΣU ||ΣŪ |
|ΣY | (3.3)

where ΣU and ΣŪ are the sub-matrixes of ΣY corresponding to U and Ū

respectively.

Proof.

I(U , Ū) = H(U) + H(Ū) − H(U , Ū)

=
k

2
log(2πe) +

1

2
log(|ΣU |)

+
n − k

2
log(2πe) +

1

2
log(|ΣŪ |)

−n

2
log(2πe) +

1

2
log(|ΣY |)

=
1

2
log

|ΣU ||ΣŪ |
|ΣY |

where the first equality holds due to Equation 1.55 and the second equality
is given by Proposition 3.6. The proposition is then demonstrated by simple
algebraic manipulations. �

Note that, contrary to the case of the entropy, in the formulation of mutual
information under Gaussian assumption, the term log(2πe) does not appear.
In the particular case of n = 2 and k = 1, the mutual information is computed
as

I(U ; Ū) =
1

2
log

σ2
Uσ2

Ū

σ2
U,Ū

− σUσŪ

= −1

2
log(1 − ρ2(U, Ū))

where ρ(U, Ū) =
σU,Ū√
σ2

U σ2
Ū

is the linear correlation coefficient between U and Ū .

The following proposition has been adapted from [Larrañaga (2003)] to
multidimensional random variables.

Proposition 3.11 Let Y = (Y1, ..., Yn) be an n-dimensional continuous ran-
dom variable Z = (Z1, ..., Zm) be an m-dimensional discrete random variable.
If it is verified that f(y) ; N (y; µY , ΣY ) and f(y|z) ; N (y; µY (z), ΣY (z)),
then the mutual information of Y and Z is given by:

I(Y ; Z) =
1

2
[log |ΣY | −

∑

z

p(z) log |ΣY (z)|] (3.4)



116 3 Supervised classification with conditional Gaussian networks

Proof. This proposition can be proved as follows

I(Y ; Z) = H(Y ) − H(Y |Z)

=
n

2
log(2πe) +

1

2
log |ΣY | − n

2
(2πe) − 1

2

∑

z

p(z) log |ΣY (z)|

=
1

2
[log |ΣY | −

∑

z

p(z) log |ΣY (z)|]

where the first equality is given by Equation 1.54 and the second one holds
due to Propositions 3.6 and 3.7. �

It should be noted that the assumptions of this proposition are not fulfilled
in general. Moreover, by the converse to Proposition 3.4, they are fulfilled if
and only if Y and Z are independent and, therefore, the mutual information
is zero. However, if the parameters ΣY and ΣY (z) are estimated directly from
data, for example using maximum likelihood estimator, this quantity could
be used as an initial approach to the general case when (Y, Z) is distributed
according to a mixed Gaussian distribution with general ΣY (z) parameter.
This quantity depends on the scale of the implied continuous variables and,
thus, it is advisable to perform a normalization of the variables in order to
transform them into variables with the same dispersion, e.g. same typical
deviation.

For the particular case of n = m = 1 [Larrañaga (2003)], X = (Y, Z), the
mixed mutual information is given by:

I(Y ; Z) =
1

2
[log(σ2

Y ) −
∑

z

p(z) log(σ2
Y (z))] (3.5)

The following proposition has been adapted from [Larrañaga (2003)] to
multidimensional random variables.

Proposition 3.12 Let X = (X1, ..., Xn+m) = (Y , Z) be an (n + m)-
dimensional mixed random variable, being Y = (Y1, ..., Yn) = (U , Ū) an
n-dimensional continuous random variable, where U = (U1, ..., Uk) with
k ≥ 1, and Z = (Z1, ..., Zm) an m-dimensional discrete random variable with
m ≥ 1. If X follows an (n + m)-dimensional mixed Gaussian distribution,
ρ(x) ; MG(x; p(z), Σ(z), µ(z)), then the mutual information of U and Ū

given Z is computed as:

I(U ; Ū |Z) =
1

2

∑

z

p(z) log
|ΣU (z)||ΣŪ (z)|

|Σ(z)| (3.6)

where ΣU (z) = Σ(z)U and ΣŪ (z) = Σ(z)Ū .

Proof. The proposition can be demonstrated as follows:
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I(U ; Ū |Z) = EZ [I(U ; Ū |z)]

=
∑

z

p(z)
1

2
log

|ΣU (z)||ΣŪ (z)|
|Σ(z)|

=
1

2

∑

p(z) log
|ΣU (z)||ΣŪ (z)|

|Σ(z)|

where the first equality is given by Equation 1.57 and the second equality
holds by Propositions 3.10, 3.3 and 3.5. �

In the particular case of n = 2, m = k = 1 [Larrañaga (2003)] the condi-
tional mutual information can be computed as

I(U ; Ū |Z) =
1

2

∑

z

p(z) log
σ2

U (z)σ2
Ū

(z)

|Σ(z)|

= −1

2

∑

z

p(z)(1 − ρ2
z(U, Ū)) (3.7)

where ρz(U, Ū) =
σU,Ū (z)√

σ2
U σ2

Ū

is the conditional linear correlation coefficient be-

tween U and Ū when Z = z.
The following proposition has been adapted from [Larrañaga (2003)] to

multidimensional random variables.

Proposition 3.13 Let Y = (Y1, ..., Yn) be an n-dimensional continuous ran-
dom variable and Z = (Z1, ..., Zm) = (V , V̄ ) be an m-dimensional discrete
random variable, where V = (V1, ..., Vl) with l ≥ 1 and m ≥ 2. If it is veri-
fied that f(y|v̄) ; N (y; µY (v̄), ΣY (v̄)), f(y|z) ; N (y; µY (z), ΣY (z)), the
conditional mutual information of Y and V given V̄ is computed as:

I(Y ; V |V̄ ) =
1

2
[
∑

v̄

p(v̄) log(|ΣY (v̄)|) −
∑

z

p(z) log(|ΣY (z)|)]

Proof. Given Equation 1.54 and, Propositions 3.6 and 3.7 is demonstrated
that

I(Y ; V |V̄ ) = H(Y |V̄ ) − H(Y |V , V̄ )

=
n

2
log(2πe) +

1

2

∑

v̄

p(v̄) log(|ΣY (v̄)|)

− n

2
log(2πe) − 1

2

∑

z

p(z) log(|ΣY (z)|)

=
1

2
[
∑

v̄

p(v̄) log(|ΣY (v̄)|) −
∑

z

p(z) log(|ΣY (z)|)]

�
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It should be noted that the assumptions of this proposition are not fulfilled
in general. Moreover, by the converse to Proposition 3.4, they are fulfilled if
and only if Y and V are conditional independent given V̄ , CI(X; V |V̄ ),
and, therefore, the conditional mutual information is zero. However, if the
parameters ΣY (v̄) and ΣY (z) are estimated directly from data, for example
using maximum likelihood estimator, this quantity could be used as an initial
approach to the general case when (Y, Z) is distributed according to a mixed
Gaussian distribution with general ΣY (z) parameter (see [Lauritzen (1996)],
Lemma 6.4, p. 162, for theoretical properties of the weak marginal) . This
quantity depends on the scale of the implied continuous variables and, thus,
it is advisable to transform the continuous random variables into variables
with the same dispersion, e.g. same typical deviation.

For the particular case of n = 1, m = 2 and l = 1 [Larrañaga (2003)] the
mixed mutual information is given by:

I(Y ; V |V̄ ) =
1

2
[
∑

v̄

log(σ2
Y (v̄)) −

∑

z

p(z) log(σ2
Y (z))] (3.8)

Proposition 3.14 Let Y = (Y1, ..., Yn) be a n-multidimensional continuous
random variable. If it is verified that f(y) ; N (y; µY , ΣY ), the n-way inter-
action information of {Y1, ..., Yn} is given by:

I(Y1; ...; Yn) = −1

2

∑

U⊆Y

(−1)n−|U | log(|ΣU |)

Proof. The proposition can be demonstrated as follows:

I(Y1, ..., Yn) = −
∑

U⊆Y

(−1)n−|U |H(U)

= −
∑

U⊆Y

(−1)n−|U | 1

2
log[(2πe)|U ||ΣU |]

= −
∑

U⊆Y

(−1)n−|U | 1

2
log(2πe)|U |

−
∑

U⊆Y

(−1)n−|U | 1

2
log(|ΣU |)

= −1

2

∑

U⊆Y

(−1)n−|U | log(|ΣU |)

The first equality is given by the definition of n-way interaction information
(see Equation 1.58). The second equality holds due to Propositions 3.1 and
3.6. The third equality holds because

∑

U⊆Y (−1)n−|U| 1
2 log(2πe)|U | = 0 when

n > 1, and the proposition is demonstrated. �

Note that the generalization of this proposition to multidimensional Y i ran-
dom variables is straightforward.
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In the particular case of n = 3, the 3-way interaction information can be
computed as

I(Y1; Y2; Y3) =
1

2
log

|Σ(Y1,Y2)||Σ(Y1,Y3)||Σ(Y2,Y3)|
|Σ(Y1,Y2,Y3)|σ2

Y1
σ2

Y2
σ2

Y3

(3.9)

3.4 Conditional Gaussian networks

This section presents the second class of PGMs we are interested in, con-
ditional Gaussian networks (CGN ). BMNs deal with pure discrete discrete
random variables. However, we are often faced with mixed data, i.e. domains
where every case represents an assignment of a state to a mixed random vari-
able. This section introduces conditional Gaussian networks, a class of PGMs
that is able to deal directly with continuous and discrete random variables
without discretizing the continuous random variables.

In order to distinguish the discrete and continuous nature of the parents
of a node we introduce the following notation for the remainder of the disser-
tation. The set of all the continuous and discrete parents of a given node Xi

in s is represented by Pc(s)i = Pa(s)i ∩ Y and Pd(s)i = Pa(s)i ∩ Z for
all i, respectively. Both representations, Pc(s)i and Pd(s)i, can be replaced
by Pci and Pdi when the context makes clear the structure s that is being
considered.

Let us consider a PGM for an (n + m)-dimensional mixed random vari-
able X = (X1, ..., Xn+m) with the proper subsets Y = (Y1, ..., Yn) =
(X1:Y , ..., Xn:Y ) and Z = (Z1, ..., Zm) = (X1:Z , ..., Xm:Z) as described at the
beginning of Section 3.2. If (i) no discrete random variables have continuous
parents, Pc(s)i:Z = ∅ for i = 1, ..., m, and (ii) the variable X follows a mixed
Gaussian distribution, ρ(x) ; MG(x; p(z), µ(z), Σ(z)) (see Definition 3.2),
then the PGM for X is called conditional Gaussian network for X [Lauritzen
and Jensen (2001); Bottcher (2004)]. The structural constraints imposed to
CGN paradigm implies that any structure codified by a CGN paradigm are
decomposable (see [Lauritzen (1992)], p. 1101, and [Cowell (2001)], p.131,
Definition 7.7).

The graphical factorization of the generalized joint probability distribution
for X encoded by a CGN for X acquires the following form:
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ρ(x|Θs, s) = ρ(x1, ..., xn|Θs, s)

= ρ(y, z|Θs, s)

=

n
∏

i=1

f(yi|pa(s)i:Y , Θi:Y )

m
∏

j=1

p(zj |pa(s)j:Z , Θj:Z)

=

n
∏

i=1

f(yi|pc(s)i:Y , pd(s)i:Y , Θi:Y )

·
m
∏

j=1

p(zj |pd(s)j:Z , Θj:Z) (3.10)

where Θs = (Θ1, ..., Θn+m) and s are, as defined before, the model parame-
ters and the model structure respectively. Note that Equation 3.10 is a par-
ticularization of Equation 2.2, which takes into account the continuous and
discrete nature of Y = (X1:Y , ..., Xn:Y ) and Z = (X1:Z , ..., Xm:Z), respec-
tively, and the structural constraint (i), Pc(s)i:Z = ∅ for i = 1, ..., m.

It should be noted that by the structural constraints imposed to the CGN
paradigm, if the local factors of Xi given pa(s)i for i = 1, ..., m + n follow a
MG distribution, then the joint probability distribution for X encoded by the
CGN follows MG distribution (see [Lauritzen and Jensen (2001)]). In order to
obtain the parameters of the joint MG distribution for X, µY (z) and ΣY (z)
for all z, encoded by a CGN for X with parameters Θs = (Θ1, ..., Θn+m),
the reader may consult the properties of the conditional Gaussian potentials∗

provided in [Cowell et al. (1999)], Section 7, and [Lauritzen and Jensen (2001)],
Section 4.

Typically, the local probability distributions for every discrete random
variable Zi = Xi:Z , are restricted to be a set of univariate multinomial distri-
butions, one for each value of Pd(s)i:Z , pd(s)i:Z . Let us assume that Zi can
take ri distinct values, denoted by z1

i , ..., zri

i , and that Pd(s)i:Z can have qi

distinct states denoted by pd(s)1i:Z , ..., pd(s)qi

i:Z with qi =
∏

Zl∈P a(s)i:Z
rl for

all i = 1, ..., m. Then, the univariate multinomial distribution p(zi|pd(s)j
i:Z ,

Θi:Z) for all i = 1, ..., m consists of a set of probabilities of the form

p(zk
i |pd(s)j

i:Z , Θi:Z) = Θzk
i |pd(Zi)

j
s

= Θjk
i:Z = Pr(Zi = zk

i |Pd(s)i:Z = pd(s)j
i:Z)(3.11)

such that Θjk
i:Z > 0 representing the conditional probability that Zi = Xi:Z

takes its k-th state given that Pd(s)i:Z takes its j-th value, for k = 1, ..., ri.

Moreover,
∑ri

k=1 Θjk
i:Z = 1 for i = 1, ..., m and 1 ≤ j ≤ qi. Consequently, the

parameters of the local probability distributions for every discrete random
variable Zi = Xi:Z are given by Θi:Z = (Θj

i:Z)qi

j=1 with Θ
j
i:Z = (Θjk

i:Z)ri

k=1 for
all j ≤ qi. Using Propositions 3.4 and 3.5, the parameters Θi:Z for i = 1, ..., m
can be obtained from p(z) as follows:

∗ i.e. potentials associated to the MG distributions
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Θjk
i:Z =

∑oi

l=1 p(zk
i , pd(s)k

i:Z ,¬pd(s)l
i:Z)

∑oi

l=1

∑ri

k=1 p(zk
i , pd(s)k

i:Z ,¬pd(s)l
i:Z)

(3.12)

where ¬Pd(s)i:Z = Z \{Zi, Pd(s)i:Z} and oi =
∏

Zj∈¬P d(s)i:Z
rj is the num-

ber of states of ¬Pd(s)i:Z . The number of parameters required for determin-
ing the conditional distribution p(zi|pd(s)i:Z) is (

∏

Zj∈{Zi,P d(s)i:Z} rj) − 1
and assuming that rj = r for any j the number of required parameters is
O(r|P d(s)i:Z |+1).

On the other hand, the probability density function f(yi|pc(s)i:Y , pd(s)i:Y ,
Θi:Y ) given a value pa(s)i:Y follows a Gaussian distribution for all i = 1, ..., n

f(yi | pc(s)i:Y , pd(s)i:Y , Θi:Y )

; N (yi; µYi|pc(s)i:Y
(pd(s)i:Y ), σ2

Yi|P c(s)i:Y
(pd(s)i:Y )) (3.13)

where

µYi|pc(s)i:Y
(pd(s)i:Y ) = µ(pd(s))Yi

+Σ(pd(s)i:Y )Yi,P c(s)i:Y

·Σ(pd(s)i:Y )−1
P c(s)i:Y

·(pc(s)i:Y − µ(pd(s)i:Y )P c(s)i:Y
) (3.14)

σ2
Yi|P c(s)i:Y

(pd(s)i:Y ) = ΣYi|Pc(s)i:Y
(pd(s)i:Y )

= Σ(pd(s)i:Y )Yi

−Σ(pd(s)i:Y )Yi,P c(s)i:Y

·Σ(pd(s)i:Y )−1
P c(s)i:Y

·Σ(pd(s)i:Y )P c(s)i:Y ,Yi
(3.15)

We are aware that alternative definitions exist for CGN paradigm. CGNs
essentially belong to a class of PGM for mixed random variables that is intro-
duced for the first time by Lauritzen and Wermuth (1989), and further devel-
oped by Lauritzen (1992); Geiger and Heckerman (1994); Lauritzen (1996);
Cowell et al. (1999); Lauritzen and Jensen (2001). The definition proposed by
Geiger and Heckerman (1994) imposes additional structural constraints since
they are of great help for deriving a factorable closed score for the marginal
likelihood of data given a CGN structure [Geiger and Heckerman (1994); Peña
et al. (2002)]. However the definition for CGN provided in this dissertation
is proposed in [Lauritzen and Jensen (2001); Bottcher (2004)]. In [Bottcher
(2004)] the author generalizes the work of Geiger and Heckerman (1994) by
relaxing the structural constraints of previous definitions and deriving a fac-
torable closed form for the marginal likelihood of mixed data given a model
structure. This definition allows the use of priors in a Bayesian way. The lo-
cal parameter conjugation can be specified as a Dirichlet distribution for the
discrete part, and for the mixed part of the network as a Gaussian-inverse
Gamma distribution for each configuration of the discrete parents [Bottcher
(2004)].
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3.5 Classifiers based on CGN

Since this dissertation was initially focused on continuous domains, this sec-
tion and the experimental results presented in Section 3.6 are focused on
continuous domains, that is, domains with only continuous predictor vari-
ables and the class being the single discrete variable. In other words we are
considering domains defined over the random variables (Y , C) where the class
variable C is discrete and takes r distinct values and Y = (Y1, ..., Yn) is an
n-dimensional continuous random variable. Note that in a CGN for (Y , C)
with an augmented naive Bayes structure, the parameters of the local factor
f(yi|pci, c) can be obtained from muY (c) and ΣY (c) using Propositions 3.3
and 3.5, for i = 1, ..., n.

This section is based on the results presented in [Pérez et al. (2006a)].
Although we are considering only continuous domains, they are useful to con-
trast the behavior of classifiers based on the BMN plus discretization approach
and CGN approach because the part of the model concerning the discrete part
is equivalent in both BMN and CGN paradigms. See Section 2.6 for further
details of BMN plus multinomial approach.

This section introduces a set of wrapper and filter classifier induction al-
gorithms based on CGN for (Y , C) which learn classifiers with augmented-
näıve Bayes structures, such us, NB, TAN, kAN and JAN structures. Most
of the introduced classifier induction algorithms are adaptations to the CGN
paradigms of the algorithms presented in Section 2.5 for the BMN paradigm.
It must be highlighted that the parameters are learned using the maximum
likelihood estimator.

For the sake of readability, next, we present the particularization of the
equations provided in Sections 3.3 and 3.4 for continuous domains (Y , C)
where the structure s is considered implicitly.

The particularization of the factorization presented in Equation 3.10 to
continuous domains is as follows

ρ(y, c) = p(c)f(y|c) = p(c)

n
∏

i=1

f(yi|pai) = p(c)

n
∏

i=1

f(yi|pci, c) (3.16)

where by definition of CGN ρ(y, c) ; MG(y, c; p(c), µ(c), Σ(c)). More-
over each factor f(yi|pci, c) follows a Gaussian distribution, f(yi|pci, c) ∼
N (yi; µi|c, σ

2
i|c) where

µi|c = µ(c)Yi + Σ(c)Yi,P ciΣ(c)−1
P ci

(pci − µ(c)P ci
) (3.17)

σ2
i|c(z) = Σ(c)Yi − Σ(c)Yi,P ciΣ(c)−1

P ci
Σ(c)P ci,Yi (3.18)

One of the main advantages of CGNs with respect to BMNs is related to
the number of parameters needed to model the continuous part of the domain.
This advantage is highlighted in continuous domains such as those defined over
(Y , C). In contrast to the exponential number of parameters necessary to learn
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a complete graph in BMNs (O(r
∏n

i=1 ri), where ri and r are the cardinality
of the variables Yi and C respectively), the number of parameters necessary
to model a complete graph based on CGNs with continuous variables has a
low polynomial rate [Geiger and Heckerman (1994)], O(n2r). Due to the fewer
number of parameters, the CGN-based classifiers tend to have less sensitivity
to the changes in the training set. They also adjust the training data sets less
than BMN-based classifiers. Therefore, in general, CGN-based classifiers tend
to be more stable. In other words, they tend to have a lower variance term
of the error [Friedman (1997); Kohavi and Wolpert (1996)]. Besides, a lower
number of parameters allows a more reliable and robust computation of the
necessary statistics, which is closely related with the stability of the model.

Moreover, the parameters p(c), µY (c) and ΣY (c) can be computed a pri-
ori, without taking into account the structure to be considered. In other words,
complete TAN, kAN and JAN structures in CGN paradigm for continuous
domains (Y , C) require the same parameters, µY (c) and ΣY (c). Due to this
property, the classifiers induction algorithms based on TAN, kAN and JAN
structures tends to have the same variance term associated to the bias plus
variance decomposition of the error (see Figure 3.3). In other words, the sta-
bility of these algorithms to changes in the training set can be considered
similar. Besides, the possibility of computing the parameters a priori allows a
more efficient backward structure search compared to BMN-based algorithms.

BMNs only handle discrete variables. The continuous variables must be
discretized in order to handle them. There is a loss of information in this
discretization process [Yang and Webb (2003)]. The same classifier induction
algorithm obtains different classifiers and different classification scores de-
pending on the criteria used to discretize the data. It could be concluded that
the lost information depends on the discretization criteria used. On the other
hand, CGNs are only able to handle continuous variables assuming that they
follow a Gaussian distribution. Therefore, information is used erroneously if
the real distribution of the variables differs much from the Gaussian distribu-
tion and, thus, the estimation of ρ(y, c) tends to have higher bias term in the
estimated error decomposition.

However, in supervised classification Gaussian approach is suitable for
many non-Gaussian domain. As we noted in Chapter 1, the ultimate goal con-
sists of obtaining good estimators of the classification boundaries. In the case
of generative and conditional classifiers, the estimation of the distributions
ρ(y, c) and p(c|y), respectively, can be considered an intermediate step which
determines the classification boundaries. Moreover, when the parameters are
learned discriminatively, focusing on obtaining good classification boundaries
rather than good estimators of the distributions ρ(y, c) and p(c|x), the Gaus-
sian approach is even more suitable for many non-Gaussian densities. How-
ever, the classifiers presented in this section are based on maximum likelihood,
which is considered a generative learning of parameters. Figure 3.1 shows two
examples of a non Gaussian domain for which the Gaussian-approach is suit-
able with both generative and discriminative learning of parameters. This
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(a) The parameters of the esti-
mated Gaussian densities can be
learned with a generative approach,
such as maximum likelihood.

(b) In this example, the parameters
should be learned using a discrimi-
native approach.

Fig. 3.1. These figures illustrates how to model the classification boundaries ob-
tained with the true underlaying densities using Gaussian densities. The true densi-
ties are represented by solid lines, the approached Gaussian densities are represented
by dotted lines and the classification boundaries by solid vertical red lines.

fact is corroborated by the experimentation summarized in Section 3.6: even
most of the variables implied in the selected domains are non-Gaussian the
estimated errors for classifiers based on CGN and those based on BMN plus
discretization approach obtains comparable results. In addition, the assump-
tion of normally distributed data can avoid the overfitting problem when the
structure of the graph is too complex, and also tends to obtain an estimation
of the joint distribution with less variance due to the low polynomial number
of parameters.

3.5.1 näıve Bayes

This subsection presents three algorithms adapted from BMN paradigm for
the induction of classifiers based on CGN paradigm with näıve Bayes struc-
ture (see Section 2.5.3.1). The adaptation of MNB, fsMNB and wsMNB are
called Gaussian näıve Bayes (GNB), ranking selective Gaussian näıve Bayes
(rsGNB) and wrapper selective Gaussian näıve Bayes (wsGNB), respectively.
The pseudo-code of wsGNB is similar to Figure 2 considering CGN instead
of the BMN paradigm.

We consider the rsGNB algorithm an adaptation of fsMNB because it com-
putes the mutual information with the class I(Yi; C) and using a threshold τ .
It decides to include the arc (Yi, C) iff I(Yi; C) > τ . However, the threshold is
fixed using a wrapper approach and therefore we consider rsGNB a mixed ap-
proach. rsGNB ranks the predictor variables (Y1, ..., Yn) in descendant order of
their mutual information I(Yi; C). We assume, without loss of generality, that
the variables are ordered according to this criteria, that is, I(Yi; C) ≥ I(Yj ; C)
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for any i < j. The quantity I(Yi; C) is computed using the particularization
of Proposition 3.13 to the case n = |C| = 1. The estimation of the covariance
matrixes ΣY (c) and the probabilities p(c) = Pr(C = c) have been obtained
using the maximum likelihood estimator. This classifier induction algorithm
construct n classifiers, {NB1, ..., NBn}, with NB structures for (Y1, ..., Yi, C)
for i = 1, ..., n. Then, it estimates their performance and the best constructed
classifier is selected as the final model returns the classifier with the lower
estimated error. Note that this procedure can be understood as setting a
threshold τ = I(Yi; C) where NBi is the selected classifier. The rsGNB al-
gorithm compared to wsGNB has less time complexity: in the worst case,
only O(n) classifiers are constructed compared with O(n2) of the wrapper
approach. However, in practice, fRankingNB could has problems with redun-
dant variables. It ranks variables in terms of I(Yi; C) without considering the
redundant information that the variable shares with the previously included
variables, Yj with j < i. Therefore, any variable Yi with redundant informa-
tion (with the variables already included in the model) and a great I(Yi; C)
value, could be added in the first steps of the forward greedy structural search
process and in practice it could hurt the accuracy of the obtained NB model
Langley and Sage (1994).

For further details on classifiers based on näıve Bayes structures for the
BMN paradigm see Subsection 2.5.3.1.

3.5.2 Tree augmented näıve Bayes

This subsection presents the adaptation of two algorithms for the induction
of classifiers based on CGN paradigm with tree augmented näıve Bayes struc-
ture. The adaptation of fMTAN and wsMTAN are called Gaussian tree aug-
mented näıve Bayes (fGTAN ) and wrapper selective Gaussian tree augmented
näıve Bayes (wsMTAN ), respectively. See Section 2.5.3.2 for further details
on fMTAN and wsMTAN.

As in the original fMTAN [Friedman et al. (1997)], fGTAN finds the tree
structure that maximizes the likelihood given the data. Hence, fGTAN is con-
sidered a pure filter algorithm. In order to adapt this algorithm to continuous
domains defined over (Y , C), we need to calculate the conditional mutual in-
formation between every pair of continuous predictor variables given the class
variable, I(Yi; Yj |C) for all 1 ≤ i < j ≤ n. This quantity can be approached
using the particularization of Proposition 3.12 replacing U , Ū and Z by Yi, Yj

and C, respectively. The algorithm has the same computational complexity
as fMTAN .

The classifier induction algorithm wsGTAN is similar to wsMTAN [Keogh
and Pazzani (1999)] and, it has the same computational complexity, O(n2).
The pseudocode is similar to Algorithm 6 replacing BMN by CGN paradigm.

The algorithm wsGTAN can induce classifiers with incomplete TAN struc-
tures and it performs an implicit wrapper feature selection. Assuming that
the discretized variables have r states the number of parameters required
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by complete TAN structures in BMN is O(nr3) and, on the other hand, in
CGN paradigm is O(n2r). Thus, the number of parameters required to model
a complete TAN structure is lower in CGN paradigm than in BMN when
n < r2.

3.5.3 k-dependent augmented näıve Bayes

This subsection presents two classifier induction algorithms based on CGN
paradigm with k-dependent augmented näıve Bayes structure, which have
been adapted from the BMN paradigm. The kDB structures can be regarded
as a spectrum of allowable dependence in a given probabilistic graphical model
with the NB structure at the most restrictive extreme and the full BMN at the
most general one. The reader could consult Subsection 2.5.2 for further details
on kAN structures. The adaptation of fMkAN [Sahami (1996)] and wsMkAN
are called filter Gaussian k-dependent augmented näıve Bayes (fGkAN ) and
wrapper selective Gaussian k-dependent augmented näıve Bayes (wsGkTAN ),
respectively. See Section 2.5.3.3 for further details on fMkAN and wsMkAN.

It should be highlighted that the number of parameters required for com-
plete kAN structures increases exponentially with k for BMN paradigm and it
is constant for CGN. Assuming that the discretized variables have r states, the
number of required parameters in BMN is O(nrk+1) and in CGN paradigm
is O(rn2). The number of required parameters in CGN is lower when n < rk.

The algorithms fGkAN and wsGkAN are similar to fMkAN and wsMkAN,
respectively, but based on CGN paradigm. The pseudocode of fGkAN and
wsGkAN could be given by Figures 7 and 8 replacing BMN by CGN paradigm.
fGkAN is based on the mutual information I(Yi; C) and conditional mutual
information I(Yi; Yj |C) given by Equations 3.8 and 3.7 where the parameters
σ2

Yi
(c), σ2

Yj
(c), Σ(Yi,Yj)(c) and σ2

Yi
are estimated by maximum likelihood. The

algorithm wsMkAN can obtain classifiers with an incomplete kAN structure
and it performs an implicit wrapper feature selection.

3.5.4 Joint augmented näıve Bayes

Joint augmented structures [Kononenko (1991); Pazzani (1997)] break the
strong independence assumption of NB structures introducing the joint nodes.
A joint node U = (Y1:U , ..., Yl:U ) represents a multidimensional random vari-
able and it can be interpreted as a complete graph defined over its compo-
nents, (Y1:U , ..., Yl:U ). The joint nodes consist of subsets of the original vari-
ables, where the joint nodes are disjoint among them, Y = (Y1, ..., Yn) =
(U1, ..., Uk) where U i ∩ U j = ∅

If a joint variable consists of discrete random variables, the states of the
joint variable consist of the Cartesian product of the states of the multino-
mial random variables [Pazzani (1997)]. The main problem of joint variables
consisting of multinomial variables Zi is the estimation of their class condi-
tional probability tables. A joint node V = (Z1:V , ..., Zl:V ) has a number of
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exponential states in l, the same number of parameters as a complete graph
in (Z1:V , ..., Zl:V ). The estimation of a high number of parameters often can
be unreliable and it could tend to obtain unstable parameters, which can in-
crease the error of the associated classifier due to an increase in the variance
term of the decomposition of the error. For further details on JAN structures
the reader could consult Section 2.5.2.

On the other hand, considering the CGN paradigm, if a joint vari-
able U = (X1:U , ..., Xl:U ) consists of a set of continuous random variables,
U = (X1:U , ..., Xl:U ), we propose that it follows a multidimensional normal
distribution Anderson (1958) conditioned to its parent, C. The conditional
joint probability density function is given by:

f(u|c) = (2π)−
l
2 | ΣU (c) |− 1

2 e−
1
2 (u−µ

U
(c))tΣU (c)−1(u−µ

U
(c)) (3.19)

where ΣU (c) and µU (c) are the covariance matrix and the mean vector of
U conditioned to the class value C = c, respectively. In order to model this
density function, O(l2) parameters are required. This fact avoids the problem
of the probability table size needed to model the joint variable relation with the
class variable when the component variables are discrete. Therefore, it is not
mandatory to establish any limitation to the maximum number of predictor
variables at each joint node.

This subsection presents the adaptation of the induction of classifiers based
on CGN paradigm with joint augmented näıve Bayes structures. In addition,
we present a novel algorithm called wrapper condensed Gaussian joint aug-
mented näıve Bayes (wcGJAN ). The adaptation of wfMJAN [Pazzani (1997)]
and wbMJAN [Pazzani (1997)] are called wrapper forward Gaussian joint aug-
mented näıve Bayes (wfGJAN ) and wrapper backward Gaussian joint aug-
mented näıve Bayes (wbGJAN ), respectively. Both wfGJAN and wbGJAN
are equivalent to wfMJAN and wbMJAN but considering the CGN paradigm
instead of BMN. See Section 2.5.3.4 for further details on wfMJAN and wb-
MJAN.

As we say above, usually, it is not mandatory to limit the number of
components of a joint node in CGNs because the number of parameters is
quadratic with the number of components. The structure of a BN in (X, C)
can be interpreted in terms of conditional independencies among the implied
random variables. The conditional independencies provide a factorization of
the joint generalized probability function ρ(x, c) with less parameters than the
general case. Thus a complete graph can be seen as an exact factorization of
ρ(x, c) whether an incomplete graph can be understood as an approximation
to ρ(x, c) under some conditional independence assumptions.

This section presents the wrapper condensed Gaussian joint augmented
näıve Bayes (wcGJAN ) which tries to model ρ(x, c) considering the minimum
number of conditional independencies, removing at the same time the variables
which increase the classification error. wcGJAN is a wrapper greedy backward
algorithm which, at each step, uses a selection of the predictor variables as a
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multidimensional joint variable. It starts with all variables but, at each step
of the algorithm, one of the selected variables is excluded. The pseudocode of
wcGJAN is shown in Algorithm 10. In the worst case, the time complexity of
the algorithm is the same as in wsGNB (O(n2)). When designing the wcGJAN
algorithm, we have taken into account that the use of a backward structure
search process costs the same as a forward process because the parameters
needed can be computed a priori. We consider that the backward search is
preferable to forward search because it allows to detect dependencies of higher
order.

Algorithm 10: wcGJAN algorithm

1 Initialize structure S to JAN structure with a unique joint node which
contains all the original predictor variables.

2 do {

3 Estimate the performance of each possible classifier based on CGN
paradigm, considering all the structures with a unique joint node equal
to the joint node of S but removing one of the included variables.

4 Select as S the best option between S and the evaluated classifiers.

5 } until No option improves the inducted classifier.

3.6 Experimental results

This section presents an empirical study performed with CGN-based classi-
fier induction algorithms. This study includes a set of benchmark classifiers
taken from different families of classifiers. The empirical results are divided
in two parts. The first part includes the estimation of the classification er-
ror of the benchmarks and the CGN-based classifiers. Using on the estimated
errors the proposed classifier induction algorithms are compared using the
Friedman plus Shaffer’s static procedure as is suggested by Garćıa and Her-
rera (2008). The second part consists of analyzing the sources of the error
associated to CGN-based classifier induction algorithms using the bias plus
variance decomposition of the error proposed by Kohavi and Wolpert (1996).

The results have been obtained in nine UCI repository data sets Asuncion
and Newman (2007), which only contain continuous predictor variables. In
order to interpret the results, it should be take into account that most parts
of the UCI repository data sets are already preprocessed Kohavi (1995b): in
the data sets included, there are few irrelevant or redundant variables, and
little noise as suggested by van der Putten and van Someren (2004). Thus, it is
more difficult to obtain statistically significant differences between the results
of the algorithms in this type of data sets [van der Putten and van Someren
(2004)]. The main characteristics of the data sets included are summarized
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in Table 3.1. It must be noted that none of the included data sets, except
WAVEFORM and a subset of variables of WINE, clearly obey the assumption
that class-conditioned variables follow a conditional Gaussian distribution.

♯ Data Set num. class values num. variables num. instances
1 BALANCE 3 4 625
2 BLOCK 5 10 5474
3 HABERMAN 2 3 307
4 IRIS 3 4 150
5 LIVER 2 6 345
6 PIMA 2 8 768
7 VEHICLE 4 19 846
8 WAVEFORM 3 21 5000
9 WINE 3 13 179

Table 3.1. Basic characteristics of the data sets: the number of different values of
the class variable, the number of predictor variables, and the number of instances.

Table 4.3 shows the errors obtained with the following set of well known
state-of-the-art classifier induction algorithms: k-NN [Cover and Hart (1967)]
with different k, MNB [Duda and Hart (1973)] and fMTAN [Friedman et al.
(1997)], ID3 [Quinlan (1986)] and C4.5 [Quinlan (1993)], linear discriminant
analysis (LDA) [Fisher (1936)] and Multilayer Perceptron (MP) [Rosenblatt
(1959)] (all of them implemented in Weka 3.4.3 package [Witten and Frank
(2005)]). The estimated predictive errors summarized in Table 4.3 have been
obtained, for each classifier at each data set, by a stratified 10-fold cross-
validation process. In order to learn the discrete classifiers presented in Table
4.3 (MNB, fMTAN and ID3), data sets have been discretized following the
supervised discretization presented by Fayyad and Irani (1993).

k-NN Bayesian Trees
Data Set 1-NN 3-NN NB TAN ID3 C4.5 MP LDA

1 15.2±3.5 15.2±3.5 29.3±4.1 28.6±3.7 30.4±3.8 23.4±3.8 19.3±3.8 12.3±6.1

2 4.0±0.6 4.1±0.6 6.4±0.6 3.9±0.9 4.5±0.7 3.1±0.4 3.9±1.5 10.0±0.6

3 32.4±7.0 29.7±4.9 27.1±3.2 27.1±3.2 27.1±3.2 28.1±4.1 27.1±6.1 26.5±6.3

4 4.7±5.5 4.7±5.5 6.0±5.8 5.3±5.3 6.0±6.6 4.0±5.6 2.3±3.4 1.3±2.7

5 27.1±6.3 28.3±5.9 26.8±10.5 26.7±10.5 26.8±10.5 21.3±8.7 28.4±7.4 30.7±6.1

6 29.8±4.7 27.3±5.1 22.1±3.5 21.1±3.8 23.1±3.8 26.2±5.7 24.9±5.5 23.1±4.2

7 20.1±4.5 28.5±5.3 37.4±4.2 25.8±4.8 29.6±4.4 27.4±6.0 17.5±3.1 20.2±4.2

8 23.1±2.0 18.7±1.9 18.2±1.5 16.8±1.5 22.5±1.2 14.0±1.4 15.5±0.9 13.7±1.3

9 5.1±4.1 5.1±4.1 1.1±2.3 1.7±2.7 3.4±2.9 6.2±5.5 2.8±4.0 0.0±0.0

Average 17.9 17.9 19.4 17.4 19.3 17.1 15.7 15.3

Table 3.2. The estimated predictive error averages obtained with a set of well
known state-of-the-art algorithms. The best results, in each data set, are marked in
grey.

The parameters for the fGkAN, wGkAN, wfGJAN and wbGJAN algo-
rithms are the following:

1. fGkAN with k = 1. We have checked that fGkDB obtains the best scores
at k = 1.
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2. wGkAN with k = n − 1. Bear in mind that the number of parameters to
model a complete graph is only (O(n2)). With k = n − 1, there are no
limitations for the wGkAN algorithm. It is not mandatory to limit the
structural complexity with the wGkAN algorithm. With k = n− 1, there
are no limitations for the wGkAN algorithm: We allow each predictor
variable to have the maximum number of parents, n − 1.

3. wfGJAN and wbGJAN with r = n, where r is the maximum number
of predictor variables allowed at each joint node. With r = n, there are
no limitations for the wfGJAN and wbGJAN algorithms: We allow joint
nodes with n predictor variables (the maximum) to be constructed.

The experimental results are divided into two subsections. In Section 3.6.1,
the estimated classification errors of the algorithms are summarized. Besides,
based on these results the algorithms are compared using Friedman plus Shaf-
fer’s static procedure as Garćıa and Herrera (2008) suggest. Then, following
the experimental setup proposed by Kohavi and Wolpert (1996), the bias-
variance decomposition of the obtained estimated errors is performed in Sec-
tion 3.6.2 in order to study the sources of the error of the presented CGN-based
classifiers.

3.6.1 Estimated classification error

The results, for each classifier based on CGN paradigm in each data set, have
been obtained by a 10-fold cross-validation process in order to estimate the
predictive accuracies. The estimated classification error, for each classifier in
each data set, is summarized in Table 3.3. Due to the low number of the
included data sets in the experimentation, the comparisons between classifier
induction algorithms based on the estimated error has been divided in groups
of interest. Otherwise, the number of all pairwise comparisons is too high and
the corrections imposed to the p-values by the Shaffer’s static procedure are
too strong to obtain statistical significative results.

Table 3.3 also summarizes two different analyses of the estimated accu-
racies obtained. The first analysis calculates for each classifier, the average
estimated classification error across all data sets. The Average row contains
the results of the analysis. For example, wGkAN has obtained an average
estimated error of 16.2 across all domains (see Table 3.3).

The second analysis is a hypothesis test in order to study whether the
best classifier induction algorithm, at each data set, has obtained statistically
significant better score values with respect to the rest of the algorithms. For
each data set, the algorithm with the best average score is marked as the
best: In case of a tie, the algorithm with the smallest standard deviation is
marked. Then, based on the estimated predictive accuracies (obtained with
each fold of the 10-fold cross-validation process), we establish whether the
previously selected algorithm has obtained statistically significantly better re-
sults with respect to the rest of algorithms using a non-paired Mann-Whitney
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Structures NB TAN kAN JAN

# Data Set GNB rsGNB wsGNB fGTAN wGTAN fGkAN wkAN wfGJAN wbGJAN wCGJAN

1 BALANCE 9.1± 4.2 9.1± 2.9 9.1± 3.0 10.9± 4.5 9.1± 2.2 • 11.8± 3.7 9.1± 2.6 8.3± 4.6 9.1± 3.1 8.3± 3.1

2 BLOCK • 9.6± 0.8 • 7.3± 0.7 • 5.7± 1.0 • 7.5± 1.4 • 5.2± 0.4 • 7.3± 0.7 4.4± 0.7 4.6± 1.0 5.0± 1.0 5.8± 0.6

3 HABERMAN 25.4± 8.1 25.2± 8.6 25.3± 12.4 24.2± 6.0 24.6± 7.0 24.2± 9.7 24.5± 8.5 24.2± 7.2 24.2± 3.1 23.8± 9.9

4 IRIS 4.0± 5.3 4.0± 3.3 4.0± 3.3 3.7± 3.3 2.0± 3.1 3.7± 4.4 2.0± 3.1 2.0± 3.1 2.0± 4.3 2.0± 3.1

5 LIVER 44.1± 5.6 43.2± 8.4 42.0± 6.0 38.8± 7.3 42.1± 9.1 48.3± 6.4 41.4± 6.0 42.0± 5.7 48.3± 5.7 42.2± 7.4

6 PIMA 23.8± 4.6 23.3± 4.3 23.4± 7.3 23.4± 4.6 23.3± 6.4 24.2± 6.4 22.4± 3.6 23.3± 4.4 22.7± 4.4 23.8± 4.4

7 VEHICLE • 52.7± 6.7 • 50.9± 5.0 • 43.3± 3.8 • 21.6± 3.4 • 24.9± 4.7 • 21.4± 2.2 • 25.9± 2.8 11.0± 4.0 9.3± 2.6 9.3± 2.6

8 WAVEFORM • 19.1± 2.4 • 18.2± 2.6 • 17.5± 1.4 • 17.2± 1.8 • 15.1± 0.9 • 17.3± 1.5 • 15.6± 1.0 12.7± 1.4 12.5± 1.8 12.5± 1.8

9 WINE 1.1± 2.3 ◦ 2.2± 3.7 0.6± 1.7 0.0± 0.0 1.1± 2.3 0.6± 1.7 0.6± 1.7 0.6± 1.7 1.1± 2.3 0.6± 4.4

Average 21.0 20.4 19.0 16.4 16.4 17.6 16.2 14.3 14.9 14.3

Best estimated error in each data set x± s

α = 5% significance level in a non-paired Mann-Whitney test •
α = 10% significance level in a non-paired Mann-Whitney test ◦

Table 3.3. Summary of the estimated classification error. The first row of the table contains the type of structures, and the second
row, the classifier induction algorithms associated with each structure.
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test [Dudewicz and Mishra (1988)]. The study has been performed at α = 10%
and α = 5% significance levels, represented in Table 3.3 by “◦” and “•” sym-
bols, respectively. For example, in the BLOCK data set, fTAN has obtained
an error significantly worse at α = 5% than wkAN, which has obtained the
best score.

The comparisons between the performance of the classifiers have been
performed using a procedure suggested by Garćıa and Herrera (2008). The
procedure consists of two hypotheses tests. First, Friedman test is performed
in order to conclude if there are statistical differences among some of the clas-
sifiers included in the comparison (see 1.8.2.2 for further details). In other
words, the null hypothesis consists of considering that all the classifiers have
the same average performance. Once the initial null hypothesis is rejected
Shaffer’s static procedure is performed in order to make all the pairwise com-
parisons between the implied algorithms (see 1.8.2.2 for further details).

The comparisons between classifier induction algorithms using hypothesis
tests has been divided in three groups:

• All the classifier induction algorithms: 1NN, 2NN, ID3, C4.5, LDA, MP,
MNB, fMTAN, GNB, frGN, wGNB, fGTAN, wGTAN, fkAN, wkAN, wfG-
JAN, wbGJAN and wcGJAN.

• Bayesian multinomial network and conditional Gaussian network based
classifiers: MNB, MTAN, GNB and fGTAN.

• Conditional Gaussian network based classifier induction algorithms: GNB,
frGNB, wGNB, fGTAN, wGTAN, fGkAN, wGkAN, wfGJAN, wbGJAN
and wcGJAN.

Next we analyze the results obtained with the mentioned Friedman plus
Shaffer’s static procedure divided by blocks. All the statistical tests have been
performed using a test size α = 0.05.

Taking all the classifiers into account, the Friedman test rejects the null
hypothesis and, thus, it can be concluded that there exist some statistical
significant differences between the classifier induction algorithms being con-
sidered. Then we apply the Shaffer’s static procedure to make all the pairwise
comparisons and the results are summarized in Figure 3.2(a). As we noted
previously, in order to obtain statistically significative differences, the num-
ber of classifiers being considered in this comparison (18) is too high with
respect to the number of data sets included in the experimentation (9). Two
overlapped clusters of classifiers have been obtained and we can only conclude
that wcGJAN is statistically better than ID3 and 1NN taking into account all
the pairwise comparisons. On the other hand, this comparison provides the
mean rank obtained by each classifier induction algorithm and this rank il-
lustrates the competitive behavior of the proposed classifiers, especially those
based on JAN structures (wfGJAN, wbGJAN and wcGJAN).

The second study consists of comparing classifier induction algorithms
based on both BMN and CGN classifiers. In order to make a fair comparison
the näıve Bayes and filter tree augmented näıve Bayes algorithms have been
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(a) Comparisons among all the classifier induction algorithms.

(b) Comparisons among BMN and CGN based classifier induc-
tion algorithms.

(c) Comparisons among all the provided classifier induction
algorithms based on CGN.

Fig. 3.2. These diagrams summarize all the pairwise comparisons performed with
the Friedman plus Shaffer’s static procedure [Garćıa and Herrera (2008)].

selected: MNB, GNB fMTAN and fGTAN. Friedman hypothesis test rejects
the null hypothesis which states that MNB, GNB, fMTAN and fGTAN obtains
the same average performances. However, Shaffer’s static procedure can not
detect statistically significant results, which is illustrated in Figure 3.2(b).

The third and last study, consists of comparing the algorithms based on
CGN paradigm which have been presented in Section 3.5. Friedman’s hypoth-
esis test rejects the null hypothesis and, thus, it can be concluded that there
exist some differences between the classifier induction algorithms being con-
sidered. The results provided with the Shaffer’s static post hoc procedure are
summarized in Figure 3.2(c). Due to the low number of data sets with respect
to the number of algorithms being compared, there are not many statisti-
cally significant results. Shaffer’s static procedure is only able to detect two
overlapped clusters of algorithms. However, the provided rank illustrates the
relative behavior of the presented classifiers. Clearly, NB based algorithms ob-
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tain the worst average behavior and JAN structures the best results. Note that
JAN structure based classifier algorithms obtains statistically significant bet-
ter performances than NB based classifiers, except wsGNB. Filter approaches
obtain worse average rankings than the wapper alternatives, probably due
to the complete structures induced by the filter versions which implies the
compulsory addition of some of the included arcs.

3.6.2 Bias-variance decomposition of CGN-based classifiers

In this section, we perform the bias-variance decomposition in order to an-
alyze the different sources of the error of the provided CGN based classifier
induction algorithms. For further details on the theory behind the bias plus
variance decomposition see Section 1.8.3. The analysis of the sources of the
error is useful to explain the behavior of an algorithm and also to study the
particularities of a given domain.

The decompositions have been performed following the suggestions of Ko-
havi and Wolpert (1996) with parameters N = 20 and m = 1/3|BD|, where
N is the number of training sets, m is its size and |BD| is the size of the data
set. We have set N = 20 because the bias estimation is precise enough for
this value (see Figure 1 of Kohavi and Wolpert (1996)), and m = 1/3|BD|
to ensure a minimum training set size which could avoid overfitting prob-
lems. Kohavi and Wolpert (1996) choose a set of databases with at least 500
instances in order to ensure accurate estimates of the error. In order to inter-
pret the results, we must take into account that only the BALANCE, BLOCK,
PIMA, VEHICLE and WAVEFORM data sets fulfill this condition (see Ta-
ble 3.1). Thus, the conclusions obtained with the data sets mentioned are the
most important ones.

Table 3.4 shows the results of the decomposition obtained for each clas-
sifier in each data set. It also includes an additional row which contains the
averages for each classifier across all data sets. For example fGTAN obtains
a bias2 = 7.0 and var = 4.0 decomposition for BALANCE, and an average
decomposition across all the data sets of bias2 = 17.1 and var = 6.5.

From Table 3.4, one can conclude, on average, that the bias terms of the
CGN-based classifiers presented are higher than the variance term. Moreover,
the variance is almost constant for different structure complexities. This can
be due to the Gaussian assumption and to the low number of parameters
needed to model even the most complex classifiers, which can be interpreted
as low sensitivity. Besides, it can be seen that, on average (see row Average of
the Table 3.4 and Figure 3.3(b)), the bias term decreases with an increase of
model complexity, whereas the variance remains almost constant. Comparing
the filter and wrapper approaches at each augmented näıve Bayes structure,
filter algorithms seems to obtain lower variance but higher bias than wrapper
approaches, probably due to the complete and incomplete structures obtained
by the filter and wrapper approaches, respectively.
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Structures näıve Bayes TAN kDB Semi

# Data Set GNB rsGNB wsGNB fGTAN wGTAN fGkAN wGkAN wfGJAN wbGJAN wcGJAN

1 BALANCE 6.8 ± 3.7 6.0 ± 3.3 7.5 ± 4.5 7.0 ± 4.0 8.2 ± 4.1 7.9 ± 3.9 7.8 ± 3.5 8.5 ± 4.9 9.7 ± 0.6 8.0 ± 3.2

2 BLOCK 6.5 ± 2.3 6.1 ± 1.9 4.1 ± 1.1 5.8 ± 1.9 3.1 ± 1.4 5.1 ± 1.9 3.7 ± 2.0 4.2 ± 2.6 3.5 ± 1.7 3.9 ± 2.1

6 PIMA 21.9 ± 3.6 31.0 ± 1.6 18.9 ± 4.5 21.7 ± 5.5 19.0 ± 5.6 21.5 ± 5.1 22.6 ± 5.3 20.4 ± 5.5 19.6 ± 6.1 18.9 ± 7.5

7 VEHICLE 43.1 ± 11.4 49.7 ± 13.6 28.4 ± 19.9 17.4 ± 7.3 23.7 ± 17.7 18.2 ± 6.7 19.8 ± 18.5 12.9 ± 11.0 11.7 ± 7.0 10.0 ± 8.1

8 WAVEFORM 18.1 ± 0.7 13.9 ± 3.6 13.9 ± 4.7 14.6 ± 3.4 10.6 ± 7.1 13.1 ± 4.4 10.9 ± 6.8 11.6 ± 6.4 10.9 ± 4.9 11.8 ± 4.7

Average 19.3 ± 4.3 21.3 ± 4.8 14.6 ± 7.0 13.3 ± 4.4 12.9 ± 2.7 13.2 ± 4.5 13.0 ± 7.2 11.5 ± 6.1 11.1 ± 4.1 10.5 ± 5.1

Table 3.4. Bias-variance decomposition of the expected misclassification error rate.
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(a) VEHICLE data set.

(b) Average across all data sets.

Fig. 3.3. Bias-variance decomposition examples. Due to the Gaussian assumption
and to the low number of parameters, the bias term tends to dominate the variance
of the decomposition of the error on average.

In order to illustrate the behavior of the classifiers taking into account
the different complexities, the following behavior must be highlighted. It is
illustrated in Figure 3.3(a) and Figure 3.3(b) (which correspond to the rows
labeled with VEHICLE and Average of Table 3.4). Figure 3.3(a) shows that
the bias term decreases if the complexity increases. This could be due to the
great adjustment of the more complex models, which can approximate the
target densities better. The variance term is always lower than the bias. Fi-
nally, the variance of the filter algorithms seems to be slightly lower compared
to the wrapper algorithms.

Similarly, the behavior of the average across all the data sets at each al-
gorithm, shown in Figure 3.3(b), is consistent with the behavior in Figure
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3.3(a): the bias term decreases with the complexity whereas the variance re-
mains almost constant.

3.7 Conclusions and future work

This chapter introduces the conditional Gaussian network paradigm for su-
pervised classification in mixed domains. In order to properly present this
paradigm we have provided a set of results concerning the joint, conditional
and marginal mixed Gaussian distribution and Gaussian density function.
Besides, we provide a set of estimators of information theory quantities un-
der Gaussian assumption. Some of these estimators will be used by the filter
classifier induction algorithms presented in this chapter.

We have proposed a battery of filter and wrapper classifier induction algo-
rithms based on CGNs. Most of the algorithms have been adapted from BMN
to the CGN paradigm: Gaussian näıve Bayes, wrapper selective Gaussian
näıve Bayes, filter Gaussian tree augmented näıve Bayes, wrapper Gaussian
tree augmented näıve Bayes, filter Gaussian k-dependent augmented näıve
Bayes, wrapper Gaussian k-dependent augmented näıve Bayes, wrapper for-
ward Gaussian joint augmented näıve Bayes, and wrapper backward Gaussian
joint augmented näıve Bayes backward. In addition, two novel algorithms have
been introduced: filter ranking Gaussian näıve Bayes, and wrapper condensed
Gaussian joint augmented näıve Bayes backward.

The classifiers proposed have been compared in nine data sets by means of
the estimated classification error. The family of joint augmented näıve Bayes
structure-based algorithms obtains the best results among the algorithms pro-
posed. Most of the algorithms based on CGN seem to be quite competitive
compared to the state-of-the-art classifiers included in the experimentation.
The behavior of the bias and variance terms of the decomposition of the error
[Kohavi and Wolpert (1996)] shows that, if the model complexity increases,
the bias term decreases and the variance remains almost constant.

The main future work lines consist of adapting the set of classifier induction
algorithms for augmented näıve Bayes family of structures to deal with mixed
domains. In order to design the novel filter algorithms, a set of estimators for
the information theory based quantities under Gaussian assumptions will be
proposed for mixed random variables.

Another future work line consists of making an empirical evaluation of
alternative estimations to maximum likelihood for learning the parameters of
the model. We are considering two approaches: a generative learning of pa-
rameters more stable to outliers, and a discriminative learning of parameters.
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Supervised classification with kernel based

Bayesian networks

4.1 Introduction

In previous chapters we have introduced the two most popular Bayesian net-
works: Bayesian multinomial networks and conditional Gaussian networks.
Bayesian multinomial networks have problems handling continuous random
variables and it is necessary to discretize them, with the consequent loss of
information. Nevertheless, conditional Gaussian networks can directly model
mixed random variables assuming that they follow a mixed Gaussian distribu-
tion. However, as we noted in Section 1.13, the implied Gaussian assumption
can be a very strong constraint in some domains. This chapter introduces
a third type of Bayesian network paradigm: kernel based Bayesian network
(KBN ). This paradigm can deal directly with mixed random variables with-
out assuming that they follow a mixed Gaussian distribution. Alternatively,
kernel based Bayesian networks are based on a non-parametric density esti-
mation technique called kernel density estimation.

This chapter presents several non-parametric theoretical results for mixed
domains. However, since this dissertation initially focuses on continuous do-
mains, we present a set of classifier induction algorithms for continuous pre-
dictor variables. Consequently, the behavior of the presented algorithms is
evaluated in continuous domains. It should be noted that most of the results
presented in this chapter are based on the work [Pérez et al. (2009)].

The chapter is organized as follows. Section 4.2 introduces the non-
parametric multidimensional kernel density estimation, focusing on Gaussian
kernels. Then, Section 4.3 presents the mixed Gaussian kernel distribution
which is inspired by kernel density estimation and multinomial distribution.
This section, analogously to Section 3.2, introduces a set of propositions con-
cerning the marginalization and conditioning of mixed Gaussian kernel dis-
tributions. Section 4.4 presents a general purpose non-parametric estimator
for the quantities of estimation theory such us, entropy, conditional entropy,
mutual information, conditional mutual information and interaction informa-
tion. In addition, particular estimators of the mixed mutual information and
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conditional mutual information are presented in this section. These estima-
tors are used by the classifier induction algorithms introduced in this chapter.
Section 4.5 presents a definition for KBN paradigm which is based on mixed
Gaussian kernel distribution. Once the paradigm is presented, Section 4.6
presents a set of classifier induction algorithms for continuous domains based
on KBN paradigm. Most of these algorithms are adaptations of the filter algo-
rithms presented in Bayesian multinomial network for augmented näıve Bayes
structures. Section 4.7 demonstrates the strong consistency of mixed Gaussian
kernel distribution, of the provided estimator for the measures of information
theory, of KBN given that it is a CI-map and of the flexible classifiers under
the same assumption. Section 4.8 empirically studies the proposed classifier
induction algorithms by means of artificial and real world data sets. The ex-
perimentation includes the error estimation, comparison and the bias plus
variance decomposition of the error. Finally, in Section 4.9 we summarize the
main contributions presented in this chapter and we indicate the main fu-
ture work lines concerning the KBN paradigm and the mixed Gaussian kernel
distribution.

4.2 Multivariate kernel density estimation

This section presents the multivariate kernel density estimator, which is the
multivariate generalization of the estimator introduced in Section 1.13.3. As
we explained in Section 1.13, the intuition behind kernel density estimators
is that there is a probability mass around the neighborhood of each of the
training points, since they have been independently sampled from the under-
lying true distribution. The extension from the unidimensional form consists
of replacing univariate kernel K by a multivariate one, and the window width,
h, by a bandwidth matrix H . Let Y = (Y1, ..., Yn) be an n-dimensional con-
tinuous random variable and let SN = {y(1), ..., y(N)} be a set of iid samples
of Y . From here on, we will omit the superscript N which indicates the size
of the training set SN for the sake of simplicity. The n-dimensional kernel es-
timator [Silverman (1986); Wand and Jones (1995)] with the kernel function
K of the probability density function for Y , f(y), based on the data sample
S and the bandwidth matrix H is given by

f̂K(y;S, H) =
1

N

N
∑

i=1

KH(y − y(i)) (4.1)

where H is an n × n smoothing or bandwidth matrix (BM ) and KH(·) is

the kernel function used. The kernel based density estimate f̂K(y;S, H) is
determined by averaging N kernel densities, K(·), placed at each observation
y(i) ∈ S. It should be noted that the probability mass placed at each ob-
servation, y ∈ S is the same, 1/N , as a consequence of the iid assumption.
Section 4.3 present the Gaussian kernel density functions, which generalize



4.2 Multivariate kernel density estimation 141

this intuition allowing different mass probabilities (mixing weights) for each
observation. The kernel function KH(·) used is defined as:

KH(y) = |H |−1/2K(H−1/2y) (4.2)

assuming that K is an n-dimensional density function. A kernel density esti-
mator is characterized by

1. The kernel density K selected.
2. The bandwidth matrix H used.

H plays the role of scaling factor and is constant for all kernels. It deter-
mines the spread of the kernel at each coordinate direction. The kernel density
estimate is constructed centering a scaled kernel at each observation. So, the
kernel density estimator is a sum of bumps placed at the observations. The
kernel function K(·) determines the shape of the bumps. The value of the
kernel estimate at the point y is simply the average of the N kernel at that
point. One can think of the kernel as spreading a “probability mass” of size
1/N associated with each data point in its neighborhood. Combining contri-
butions from each data point means that in regions where there are many
observations it is expected that the true density has a relatively large value.
The choice of the shape of the kernel function is not particularly important.
However, the choice of the value for the bandwidth matrix is very important
for density estimation [Wand and Jones (1995)]. Examples for the univariate
and bivariate density estimation are shown in Figures 4.1(a) and 4.1(b).
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(a) Univariate kernel density estimation using

three points.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

−1

0

1

2

3

4

(b) Bivariate kernel density estimation using

five points.

Fig. 4.1. Univariate and bivariate kernel density estimators with Gaussian kernel
function. Broken and solid lines represent the contribution of each kernel to the
density estimation and the kernel based density estimate respectively.

In order to estimate density functions, the KBN paradigm proposed in this
dissertation uses the n-dimensional Gaussian probability density function with
identity covariance matrix, Σ = I, as kernel function:
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K(y) = (2π)−n/2exp(−1/2yT y) ; N (µ = (0, ..., 0), Σ = I) (4.3)

It must be noted that, in order to define the KBN paradigm, one can use
another kernel function as well, such as Epanechnikov, biweight, triweight,
triangular, rectangular or uniform [Silverman (1986); Wand and Jones (1995)].

Thus, the Gaussian kernel KH(y−y(i)) is equivalent to N (y; µ = y(i), Σ =
H) density function. H is a square symmetric matrix n× n, and it has, in its

most general form, n(n+1)
2 different parameters. This number of parameters

can be very high, even for low dimensional densities. This suggests constrain-
ing H to a less general form. For example, if a diagonal matrix is used, only
n different parameters must be learned. Besides, as we noted before, the im-
pact of the BM selection is smaller in supervised classification than in density
estimation and, thus, the number of parameters could be reduced without
increasing the error of the obtained classifiers. Moreover, in order to control
the variance of the kernel density estimators and reduce the variance term
of the error of the classifier induction algorithms based on kernels [Kohavi
(1995b); Pérez et al. (2009)] we suggest to reduce the number of parameters
by restricting the BM to a diagonal matrix.

4.2.1 Learning the bandwidth matrix

As we noted in the introduction of the univariate kernel estimator (see Section
1.13.3), the selection of a proper BM HY is crucial for the density estimation,
even more than the kernel function used, K(·) [Delaigle and Gijbels (2002)].
As we noted before, HY establishes the degree of smoothing of the density
function estimation for Y , f̂(y;SY , HY ). However, as we will see in the ex-
perimentation of Section 4.8, the impact of the selection of the BM is not so
crucial for supervised classification because we are only interested in obtaining
an accurate rule argc max ρ(c, x) rather than obtaining a good estimation of
ρ(c, x), where X = (Y , Z). We suggest sacrificing the bias of ρ̂(x, c) as an
estimator of ρ(x, c) in order to reduce the variance of the associated classifi-
cation rule, argc max ρ̂(c, x).

In the univariate case, the smoothing degree depends on a unique param-
eter, h. Figure 4.2 shows the effect of the parameter h in the estimation of
the true density using the same set of training cases. Intuitively, with h near
to zero, a noisy estimation is obtained by the undersmooth effect (see Fig-
ure 4.2(a)). As h increases, the noise in the estimation is reduced and the
univariate density begins to approximate the true density, until the optimum∗

is reached (see Figure 4.2(b)). As h increases, and distances itself from the
optimum, the estimation starts to lose details due to the oversmooth effect

∗ The optimum is defined in terms of a loss function. Mean squared error and
classification error are usually used in density estimation and classification, re-
spectively. The optimum term is defined as the parameter value which minimizes
the selected loss function.
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(see Figure 4.2(c)). Finally, as h tends to ∞, the function becomes uniform
and the estimator begins to resemble the nearest neighbor estimator.

(a) h value under the opti-

mum.

(b) Optimum h value. (c) h value over the opti-

mum.

Fig. 4.2. The effect on the density estimation of different smoothing degrees, con-
trolled by the parameter h.

The degree of smoothing is crucial for density estimation [Wand and Jones
(1995)], e.g. for minimizing the mean squared error. On the other hand, the
influence of the smoothing degree does not have such a crucial role in classi-
fication problems under 0-1 loss functions, since, as we noted before, density
estimation is only an intermediate step for classifying. For example, we have
shown in Chapter 3 that the Gaussian approach can obtain good estimates
for classification in many non-Gaussian domains (see the examples provided
in Figure 3.1) [Pérez et al. (2006b)]. Intuitively, smoothing degree controls
the sensitivity to changes in the training set of the estimator and hence, of
the associated classifier induction algorithm. In other words, the smoothing
degree controls, somehow, the bias and variance of the estimator ρ̂(x, c), and
it indirectly controls the bias and variance terms of the error associated with
the rule argc max ρ̂(x, c). When the smoothing degree tends to zero, flexible
complete graph classifier tends to the nearest neighbor classifier (maximum
sensitivity). When the smoothing degree tends to infinity, it tends to the Eu-
clidean distance classifier (minimum sensitivity) [Raudys (1991)]. The effect of
the smoothing degree in supervised classification has been empirically studied
in Sections 4.8.1.2 and 4.8.2.3.

Besides, in order to guarantee an efficient parametrization of a great num-
ber of densities, our goal is to use a computationally inexpensive technique
to compute the BM, HY . The number of parameters to be estimated for the
specification of a full bandwidth matrix is n(n + 1)/2. This number becomes
unmanageable very quickly, which suggests that HY should be restricted to
a simpler form to reduce the computation requirements.

In this work we use the differential scaled [Simonoff (1996)] approach. This
approach depends on a unique smoothing parameter h:

HY = diag(h2
1, ..., h

2
d) = h2diag(s2

1, ..., s
2
d) (4.4)
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where hi is the smoothing parameter of the variable Yi, si is a dispersion
measure (e.g. sample standard deviation of Yi) and diag(·) represents a di-
agonal matrix. This parametrization allows different degrees of smoothing in
each coordinate direction and it performs an implicit standardization of the
variables.

In the majority of practical situations, the principal problem for the se-
lection of an optimum BM is that the real density function is unknown and,
thus, it is really difficult to optimize any appropriate loss criteria (a distance
function between the real and estimated densities). In this dissertation, we
use the normal rule [Silverman (1986)]. It selects the BM that minimizes the
mean integrated square error of the estimated density, under the assumption
that the variables follow a multidimensional Gaussian density with identity
covariance matrix I. Due to the competitive behavior in supervised classifica-
tion tasks of the Gaussian approach shown in Chapter 3, we consider that this
approach is justified from the point of view of bias of the density estimator.
Under this assumption we can compute the optimum h as follows [Silverman
(1986)]:

h = (
4

(l + 2)N
)

1
l+4 (4.5)

where l is the dimensionality of the function to be estimated and N is the
number of available instances. For example, in spite of the number of contin-
uous variables in the domain, (y1, ..., yn), in order to model f(y1, ..., y3) we
set l = 3 in Equation 4.5. However, in some situations it is desirable to use
other values of l, such as the number of the random continuous variables in
the domain. The computation of h using the normal rule will be explicitly
explained at the estimators of the measures of the information theory pre-
sented in Section 4.4, at the end of Section 4.5 and at each classifier induction
algorithm presented in Section 4.6.

As we noted before, we have chosen the normal rule Silverman (1986)
plus differential scaled [Simonoff (1996)] approach because it obtains den-
sity estimations that are good enough for classifying (see Sections 4.8.1.2 and
4.8.2.3). Furthermore, we know that the normal rule tends to oversmooth the
estimation [Wand and Jones (1995)] and, thus, it could obtain more stable
estimations with noisy data, i.e. estimations with less variance. Besides, this
approach reduces the number of parameters, and thus, it tends to obtain more
stable estimators and classifier induction algorithms with less variance. At the
same time, this rule avoids the increase of the high computational require-
ments related to the classifier induction process (see Table 4.1). It only needs
to compute a fixed number of operations independently from the dimension
of the density and the number of examples. There are other approaches to
decide the smoothing degree for obtaining a good classification performance.
The wrapper approach [Kohavi (1995b); Kohavi and John (1997)] could be
one of the most interesting procedures from the performance point of view
(see Sections 4.8.1.2 and 4.8.2.3). However, it involves intensive computations
with flexible classifiers, especially compared with the normal rule.
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4.3 Gaussian kernel probability density and mixed

Gaussian kernel distribution

The definitions and propositions provided in this section are based on the
following multidimensional random variables: X = (X1, ..., Xn+m) = (Y , Z)
is an (n + m)-dimensional mixed random variable, Y = (Y1, ..., Yn) is an
n-dimensional continuous random variable and Z = (Z1, ..., Zm) is an m-
dimensional discrete random variable, where Y ∩ Z = ∅. The random vari-
ables Y and Z can be partitioned as Y = (U , Ū) and Z = (V , V̄ ), where
U = (U1, ..., Uk) = (Y1:U , ..., Yk:U ) with k > 0 and V = (V1, ..., Vl) =
(Y1:V , ..., Yl:V ) with l > 0. These variables will be helpful to define the
marginal and conditional functions.

The definitions and propositions provided in this section are based on a
data set S = {x(1), ..., x(N)} = {(y(1), z(1)), ..., (y(N), z(N))} which can be
partitioned by Z into the indexed sets SY (z) = {y(1:z), ..., y(Nz:z)} for all z,
where z(i:z) = z and

∑

z Nz = N . For the sake of simplicity and clarity the
following nomenclature is used to handle the indexed sets

y(i) = y(Z)i = y(j)(z(i)) = y(j:z(i)) for i = 1, ..., N and j : z(i) = i

y(i)(z) = y(i:z) = y(j) for i = 1, ..., Nz and j = i : z

The projections of a set SY = {y(1), ..., y(N)} into the random variable
U ⊂ Y is denoted as (SY )U = SU = {u(1), ..., u(N)} or simply as SU , where
y(i) = (u(i), ū(i)) for all i.

We now present a set of results concerning the probability density func-
tion represented by the kernel density estimator, fixed the training set and the
bandwidth matrixes. The results provided will be useful to analyze the math-
ematical properties of the estimators for the measures of information theory
given in Section 4.4, the KBN network paradigm and the classifiers based on
KBN presented in Section 4.6.

We call Gaussian kernel probability density function (GK probability den-
sity function) to a probability density function inspired in kernel density esti-
mation, fixed the training set SY = {y(1), ..., y(N)}, the bandwidth matrix HY

and the mixing weights πY = (π1
Y , ..., πN

Y ) associated to each Gaussian com-

ponent, f̂(y;SY , πY , HY ). Note that Kernel density estimation is a particular
case of GK probability density function where the mixing weight associated
to the instance y(i) is πi

Y = 1/N , for i = 1, ..., N .
GK probability density function can be viewed as a particular case of the

finite Gaussian mixture density function [Titterington et al. (1985); McLach-
lan and Peel (2000)] when N is finite, for which all the compounds have the
same covariance matrix Σ = HY . In the framework of Gaussian mixture den-
sity function, the set SY and the distribution πY are interpreted as the set of
means and mixture weights for the Gaussian components, respectively [Tit-
terington et al. (1985)]. It should be highlighted that the results provided in
this section regarding the GK probability density functions can be applied to
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finite Gaussian mixture density function taking into account the constraints
imposed to the covariance matrixes.

Following the intuitions behind mixed Gaussian distribution (which gener-
alizes the Gaussian probability density function to mixed domains) we propose
mixed Gaussian kernel distribution, which generalizes Gaussian kernel prob-
ability density function to mixed domains. This section changes the point
of view of the kernel density estimation and considers the training sets and
bandwidth matrixes as a set of parameters. In other words, the sets are con-
sidered as sets of mean vectors of the compounds of the associated mixture of
Gaussian densities and the bandwidth matrixes as their covariance matrixes.

This section, analogously to Section 3.2, formally introduces the joint,
marginal and conditional forms of the Gaussian kernel probability density and
mixed Gaussian kernel distribution functions. All the results provided in this
section can be directly obtained by applying the definitions and propositions
introduced in Section 3.2 to each particular Gaussian kernel function taking
into account that they share the same bandwidth matrix.

Definition 4.1 (Joint Gaussian kernel) Y = (Y1, ..., Yn) is said to follow
an n-dimensional Gaussian kernel probability density function based on SY =
{y(1), ..., y(N)}, πY = (π1

Y , ..., πN
Y ) and HY , f(y) ; GK(y;SY , πY , HY ), if

its joint probability density function is given by:

f(y;SY , πY , HY ) =

N
∑

i=1

πi
Y N (y; µ = y(i), Σ = HY )

where N (y; µ = y(i), Σ = HY ) denotes the value of the Gaussian probability
density function with parameters µ = y(i) and Σ = HY at the point y, and
πi

Y is the mixing weight of the i-th Gaussian component.

Thus, a n-dimensional kernel density estimation with a fixed bandwidth
matrix based on Gaussian kernel is a particular case of Gaussian kernel prob-
ability function, where πi

Y = 1/N for i = 1, ..., N . Besides, when N is finite,
Gaussian kernel probability density function can be understood as a finite
mixture of Gaussian densities with equal covariance matrix for each Gaussian
component.

Note that for HY diagonal, HY = diag(h2
1, ..., h

2
n), the joint density is

given by

f(y;SY , πY , HY ) =

N
∑

i=1

πi
Y

n
∏

j=1

N (y; y
(i)
j , h2

j) (4.6)

Proposition 4.1 (Marginal Gaussian kernel) Let Y = (Y1, ..., Yn) follow
an n-dimensional Gaussian kernel probability density function based on SY =
{y(1), ..., y(N)}, πY = (π1

Y , ..., πN
Y ) and HY , f(y) ; GK(y;SY , πY , HY ),

and let U = (U1, ..., Uk) ⊆ Y and Ū = Y \ U . The marginal joint density
function of U , obtained by marginalizing f(y) on Ū , follows an k-dimensional
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Gaussian kernel probability density function, f(u) =
∫∞
−∞ f(y)dū ; GK(u;SU , πU , HU ),

where

SU = (SY )U = {u(1), ..., u(N)}
πU = πY

HU = (HY )U

Proof. The proof of this proposition is as follows:

f(u) =

∫ ∞

−∞
f(u, ū)dū

=

∫ ∞

−∞

N
∑

i=1

πi
Y N (u, ū; y(i), HY )dū

=

N
∑

i=1

πi
Y

∫ ∞

−∞
N (u, ū; y(i), HY )dū

=
N
∑

i=1

πi
UN (u; u(i), (HY )U )

; GK(u;SU , πU , HU )

where the fourth equality is given by Proposition 3.1. �

It should be noted that the number of the parameters required is reduced
under marginalization. The mixing weights πY = (π1

Y , ..., πN
Y ) are preserved

in the marginal, πU = πY .

Proposition 4.2 (Conditional Gaussian kernel) Let Y = (Y1, ..., Yn) fol-
low an n-dimensional Gaussian kernel probability density function, f(y) ;

GK(y;SY , πY , HY ), and let U = (U1, ..., Uk) ⊆ Y and Ū = Y \ U .
The conditional joint density function of U conditioned to Ū = ū, fol-
lows an l-dimensional joint Gaussian kernel density function with parame-

ters SU |ū, πU |ū = (π1
U |ū, ..., πN

U |ū) and HU |Ū , f(u | ū) = f(u,ū)
R

∞

−∞
f(u,ū)du

;

GK(u;SU |ū, πU |ū, HU |Ū ), where

SU |ū = {u(1)|ū, ..., u(N)|ū}
u(i)|ū = u(i) + HU ,ŪH−1

Ū
(ū − ū(i))

πi
U |ū =

πi
Y N (ū; ū(i), HŪ )

∑N
j=1 πj

Y N (ū; ū(j), HŪ )

HU |Ū = HU − HU ,ŪH−1
Ū

HŪ ,U

Proof. This proposition can be proved as follows:
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f(u|ū) =
f(u, ū)

∫∞
−∞ f(u, ū)du

=

∑N
i=1 πi

Y N ((u, ū); (u(i), ū(i)), HY )
∑

i=1 πi
Y N (ū; ū(N), HŪ )

=
N
∑

i=1

πi
Y N (ū; ū(i), HŪ )

∑N
j=1 πj

Y N (ū; ū(j), HŪ )
N (u; u(i)|ū, HU |Ū )

=

N
∑

i=1

πi
U |ūN (u; u(i)|ū, HU |Ū )

; GK(u;SU |ū, πU |ū, HU |Ū )

where the first equality is given by Definitions 1.14 and 1.15, and the second
and third equalities hold due to Proposition 4.2 and Proposition 3.2, respec-
tively. The explicit forms of the parameters u(i)|ū and HU |Ū are described in
Proposition 3.2. �

Note that for HY diagonal, HY = diag(h2
1, ..., h

2
n), the parameters of

f(u|ū) for any ū are given by SU |ū = (SY )U and HU |ū = HU .
From here on, for the sake of brevity, we will refer to the joint Gaus-

sian kernel probability density function as Gaussian kernel distribution (GK
distribution).

We now generalize these results to multidimensional mixed random vari-
ables following the intuitions behind mixed Gaussian distribution (MG distri-
bution). For this purpose we introduce what we call mixed Gaussian kernel
distribution (MGK distribution).

Definition 4.2 (Joint mixed Gaussian kernel) Let X = (Y , Z) =
(X1, ..., Xn+m) be an (n + m)-dimensional mixed random variable, where
Y = (Y1, ..., Yn) is an n-dimensional continuous random variable and Z =
(Z1, ..., Zm) is an m-dimensional discrete random variable. X is said to fol-
low an (n + m)-dimensional mixed Gaussian kernel distribution based on
SY (z) = {y(1:z), ..., y(Nz:z)}, πY (z) = (π1

Y (z), ..., πN
Y (z)) and HY (z) if its

generalized joint probability distribution is given by:

ρ(x) = f(y|z)p(z) ; MGK(x; p(z),SY (z), πY (z), HY (z)) (4.7)

for p(z) > 0, where p(z) follows an m-dimensional multinomial probability
mass function, p(z) = Pr(Z = z), and f(y|z) follows an n-dimensional joint
Gaussian kernel density function based on SY (z), πY (z) and H(z), for all
z, f(y|z) ; GK(y;SY (z), πY (z), H(z)).

It should be highlighted that the definition of MGK distribution is simi-
lar to the definition of MG distribution, replacing Gaussian densities by GK
distributions (see Definition 3.2). If HY (z) is diagonal for any z, HY (z) =
diag(h1(z)2, ..., hn(z)2), then we have that
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f(y|z) =

Nz
∑

i=1

πi
Y (z)

n
∏

j=1

N (yj ; y
(i:z)
j , hj(z)2) (4.8)

Similarly to a MG distribution, the marginal of a MGK distribution is
not always a MGK distribution. The marginalization of MGK distributions
over continuous random variables always follows a MGK distribution but,
on the other hand, the marginalization of MGK distributions over discrete
random variables, in general, leads to variable bandwidth mixed Gaussian
kernel density functions. The following two propositions formally introduce
these facts giving the closed forms for the marginal and conditional MGK
distributions.

Proposition 4.3 (Marginal mixed Gaussian kernel I) Let X = (Y , Z) =
(X1, ..., Xn+m) be an (n + m)-dimensional mixed random variable, being
Y = (Y1, ..., Yn) an n-dimensional continuous random variable and Z =
(Z1, ..., Zm) an m-dimensional discrete random variable, and let U = (U1, ...,
Ul) ⊆ Y be an l-dimensional continuous random variable being Ū = Y \ U

its complement in Y . If X follows an (n + m)-dimensional mixed Gaussian
kernel distribution based on S(z), πY (z) = (π1

Y (z), ..., πNz

Y (z)) and H(z),
ρ(x) ; MGK(x; p(z),SY (z), πY (z), HY (z)), then (U , Z) follows the mixed
Gaussian kernel distribution:

ρ(u, z) =

∫ ∞

−∞
ρ(x)dū ; MGK((u, z); p(z),SU (z), πY (z), HU (z)) (4.9)

where

SU (z) = (SY (z))U = {u(1:z), ..., u(Nz:z)}
πU (z) = πY (z)

HU (z) = (HY (z))U

for all z.

Proof.

∫ ∞

−∞
ρ(y, z)dū =

∫ ∞

−∞
p(z)f(y|z)dū

= p(z)

∫ ∞

−∞
f(y|z)dū

(4.10)

where by Definition 4.2 f(y|z) is a GK distribution for any z, f(y|z) ;

GK(y;SY (z), πY (z), HY (z)). Then, for any z, by Proposition 4.1, we have
that

∫∞
−∞ f(y|z)dū = f(u|z) follows a GK distribution with parameters

SU (z) = (SY (z))U = {u(1:z), ..., u(Nz:z)}, πU (z) = πY (z) and HU (z) =
(HY (z))U . �
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It should be noted that, similar to the case of GK density functions,
the number of the parameters required is reduced under marginalization
over continuous random variables. Moreover, the mixed weights πY (z) =
(π1

Y (z), ..., πNz

Y (z) are preserved in the marginal, πU (z) = πY (z) for all z.

Proposition 4.4 (Marginal mixed Gaussian kernel II) Let X = (Y , Z) =
(X1, ..., Xn+m) be an (n + m)-dimensional mixed random variable which fol-
lows a mixed Gaussian kernel distribution based on SY (z) = {y(1:z), ..., y(Nz:z)},
πY (z) = (π1

Y (z), ..., πNz

Y (z)) and H(z), ρ(x) ; MGK(x; p(z),SY (z), πY (z), H(z))
being Y = (Y1, ..., Yn) an n-dimensional continuous random variable and
Z = (Z1, ..., Zm) an m-dimensional discrete random variable, let V =
(V1, ..., Vl) ⊆ Z be an l-dimensional discrete random variable being V̄ = Z\V

its complement in Z. If the bandwidth matrix H(v, v̄) is constant for any v̄

then (Y , V ) follows the mixed Gaussian distribution

ρ(y, v) ; MGK((y, v); p(v),SY (v), πY (v), HY (v))

where

p(v) =
∑

v̄

p(v, v̄)

SY (v) =
⋃

v̄

SY (v, v̄)

yi(v) = y(v, V̄ )i:v

πi
Y (v) = p(v̄(i:v)|v)πY (v, V̄ )i:v

HY (v) = HY (v, v̄) for any v̄

Proof. The proof of this proposition is as follows

∑

v̄

ρ(y, z) =
∑

v̄

p(v, v̄)

Nv,v̄
∑

i=1

πi
Y (v, v̄)N (y; y(i)(v, v̄), HY (v, v̄))

= p(v)
∑

v̄

p(v̄|v)

Nv,v̄
∑

i=1

πi
Y (v, v̄)N (y; y(i)(v, v̄), HY (v))

= p(v)

Nv
∑

i=1

p(v̄(i:v)|v)πY (v, V̄ )i:vN (y; y(v, V̄ )i:v, HY (v))

= p(v)

Nv
∑

i=1

πi
Y (v)N (y; y(i)(v), HY (v))

where the first equality holds by Definition 4.2, the second equality is due to
H(v) = H(v, v̄) for any v̄ and the third equality consist of a rearrangements
of the terms of the second equality. Note that πY (v, V̄ )i:v = πj

Y (v, v̄(i:v))
and y(v, V̄ )i:v = y(j)(v, v̄(i:v)) where j : v, v̄(i:v) = i : v for i = 1, ..., Nv and
Nv =

∑

v̄ Nv,v̄. �
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In the particular case of πi(v, v̄) = 1/Nv,v̄ for i = 1, ..., Nv,v̄ and p(v, v̄) =
Nv,v̄/N , for any (v, v̄), the parameter πi

Y (v) for i = 1, ..., Nv is simply given
by:

πi
Y (v) =

Nv,v̄(i:v)

Nv

∗ 1

Nv,v̄(i:v)

=
1

Nv

(4.11)

It should be noted that, by the conditional independence CI(Y ; V̄ |V ) (see
Definition 1.17), for any v̄, the next equality holds:

f(y|v) = f(y|v, v̄) (4.12)

and, thus, HY (v, v̄) is constant for any v̄. Therefore, Proposition 4.4 can used
to obtain the marginal over V̄ of a MG distribution for X when CI(U ; V̄ |V ).

Similarly to MG distribution, and in contrast to the situation concerning
marginals in MGK distribution, conditioning with any subset of variables
preserves the MGK distribution. The following proposition gives the closed
forms for the parameters of a conditional MGK distribution obtained from a
MGK distribution.

Proposition 4.5 (Conditional mixed Gaussian kernel) Let X = (Y , Z) =
(X1, ..., Xn+m) be an (n + m)-dimensional mixed random variable which fol-
lows a mixed Gaussian kernel distribution based on S(z), πY (z) = (π1

Y (z), ..., πN
Y (z))

and H(z), ρ(x) ; MGK(x; p(z),S(z), πY (z), H(z)), being Y = (Y1, ..., Yn)
an n-dimensional continuous random variable and Z = (Z1, ..., Zm) an m-
dimensional discrete random variable, and let U = (U1, ..., Ul) ⊆ Y be an
l-dimensional continuous random variable and V = (V1, ..., Vk) ⊆ Z be a k-
dimensional discrete random variable, being Ū = Y \ U and V̄ = Z \ V

their complements in Y and Z, respectively. For each value (ū, v̄), (U , V )
follows a multivariate mixed Gaussian kernel distribution, ρ(u, v|ū, v̄) ;

MGK(u, v; p(v|ū, v̄),SU |ū(v, v̄), πU |ū(v, v̄), HU |Ū (v, v̄)), where

p(v|ū, v̄) = p(v|v̄)
GK(ū;S(v, v̄)Ū , pY |v,v̄(i), H(v, v̄)Ū )

∑

v′ p(v′|v̄)GK(ū;S(v′, v̄)Ū , pY |v′,v̄(i), H(v′, v̄)Ū )

SU |ū(v, v̄) = {u(1:z)|ū, ..., u(Nz:z)|ū}
u(i:v,v̄)|ū = u(i:z) + H(z)U ,Ū (H(z)Ū )−1(ū − ū(i:z))

πi
U |ū(v, v̄) =

πi
Y (z)N (ū; ū(i:z), H(z)Ū )

∑Nz

j=1 πj
Y (z)N (ū; ū(j:z), H(z)Ū )

HU |Ū (v, v̄) = H(z)U − H(z)U ,Ū (H(z)Ū )−1H(z)Ū ,U

Proof.
ρ(u, v|ū, v̄) = p(v|ū, v̄)f(u|ū, z)

where z = (v, v̄).
For any z, f(u|ū, z) can be seen as the conditional form of f(u, ū|z). Thus,

for any z, by Proposition 4.2, we have that f(u|ū, v, v̄) ; GK(u;SU |ū(z),
πU |ū(z), HU |Ū (z)), where
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SU |ū(z) = {u(1:z)|ū, ..., u(Nz:z)|ū}
u(i:z)|ū = u(i:z) + H(z)U ,Ū (H(z)Ū )−1(ū − ū(i:z))

πi
U |ū(z) =

πi
Y (z)N (ū; ū(i:z), H(z)Ū )

∑Nz

j=1 πj
Y (z)N (ū; ū(j:z), H(z)Ū )

HU |Ū (z) = H(z)U − H(z)U ,Ū (H(z)Ū )−1H(z)Ū ,U

Given ū and v̄, the term p(v|ū, v̄) is given by the following normalized
quantity:

p(v|ū, v̄) =
ρ(ū, v, v̄)

∑

v′ ρ(ū, v′, v̄)
= p(v|v̄)

f(ū|v, v̄)
∑

v′ p(v′|v̄)f(ū|v′, v̄)

where, by Proposition 4.3, ρ(ū, v, v̄) = ρ(ū, z) ; MGK(ū, z; p(z),S(z)Ū ,
πY (z), H(z)Ū ). Thus, by Definition 4.2, for each value (v, v̄) = (z), f(ū|z)
is distributed according to GK(ū;S(z)Ū , πY (z), H(z)Ū ). �

Note that when HY (z) is diagonal, HY (z) = diag(h1(z)2, ..., hn(z)2),
we have that the parameters are simply given by SU |ū(z) = (SY (z))U and
HU |Ū (z) = (HY (z))U , for any z.

The results concerning MGK distributions can be used in order to adapt
the classifier induction algorithms presented in Section 4.6 to mixed domains.

4.4 MGK distribution based estimators for measures of

information theory

This section introduces a set of non-parametric estimators for the following
measures of information theory: entropy, conditional entropy, mutual infor-
mation, conditional mutual information and interaction information. Then it
presents the explicit formulation of a set of quantities that are used by the
classifier induction algorithms introduced in Section 4.6. The estimators are
based on Gaussian kernel density estimation and multinomial distribution.
Note that these estimators can be thought of as being based on MGK distri-
bution. This point of view will be useful in order to analyze the mathematical
properties of the obtained quantities.

The notation and the random variables used in this section were introduced
at the beginning of Section 4.3. However, in this section, we need to consider
the more general partition X = (X1, ..., Xm+n) = (X1, ..., Xd), where Xi =

(Y i, Zi),
⋃d

i=1 Y i = Y and
⋃d

i=1 Zi = Z, for the definition of interaction
information.

All the measures based on information theory introduced in Chapter 1,
Section 1.10 can be expressed as an average over X of the logarithm of a
function g(x1, ..., xd), that is:

t(X1; ...; Xd) = EX [log g(x1; ...; xd)] = EZEY |z[log g(x1; ...; xd)]



4.4 MGK distribution based estimators for measures of information theory 153

The function g(x1, ..., xd) is defined in terms of a quotient of products of
marginal and conditional functions obtained from ρ(x). Depending on the
measure of the information theory, the function g is defined as:

• Entropy, H(X) = H(Y , Z): gH(x) = 1
ρ(y,z) .

• Conditional entropy, H(U , V |Ū , V̄ ): gH(u, v; ū, v̄) = 1
ρ(u,v|ū,v̄) .

• Mutual information, I(U , V ; Ū , V̄ ): gI(u, v; ū, v̄) = ρ(u,ū,v,v̄)
ρ(u,v)ρ(ū,v̄) .

• Interaction information, I(X1; ...; Xd):
gI(x1; ...; xd) =

∏

(U ,V )⊆{X1,...,Xd}(−1)l−|(U ,V )|ρ(u, v) where

|(U , V )| represents the number of variables Xi included in (U , V ).

A natural non-parametric estimator of the general measure t(X1; ...; Xd)
can be given by

t̂(X1; ...; Xd) =
∑

z

p(z)

Nz

Nz
∑

i=1

log ĝ((y
(i:z)
1 , z

(i:z)
1 ); ...; (y

(i:z)
d , z

(i:z)
d ))

=
1

N

∑

z

Nz
∑

i=1

log ĝ((y
(i:z)
1 , z1); ...; (y

(i:z)
d , zd))

=
1

N

N
∑

i=1

log ĝ((y
(i)
1 , z

(i)
1 ); ...; (y

(i)
d , z

(i)
d )) (4.13)

where ĝ(x1; ...; xd) is obtained by modeling each factor of the form ρ(xi|xj)
using a mixed Gaussian kernel distribution for (Xi, Xj) = (Y i, Y j , Zi, Zj),
ρ(yi, yj , zi, zj) ; MGK(yi, yj , zi, zj ; p(zi, zj),SY i,Y j (zi, zj), πY i,Y j (zi, zj),

H(Y i,Y j)(zi, zj)) where πi
Y i,Y j

(zi, zj) = 1/N(zi,zj).
The general purpose estimator presented in Equation 4.13 inherits the con-

vergence properties of the kernel density estimation (see Section 4.7 for further
details). Moreover, Equation 4.13 estimates the expectance of the function
log(ĝ(x1, ..., xd)), when the instances of the training set are independent and
identically distributed [Bishop (2006)]. The estimation of the expectance be-
comes exact in the limit, as N → ∞ [Bishop (2006)]. Another proposal based
on kernels can be found in [Moon et al. (1995)]. Thus, we think that the
estimators based on Equation 4.13 are suitable to estimate the measures of
information theory such us entropy, conditional entropy, mutual information,
conditional mutual information and interaction information (see Section 4.7).

The estimator for the conditional mutual information between two contin-
uous multivariate random variables U and Ū given Z is given by:

Î(U , Ū |Z) (4.14)

=
1

N

N
∑

i=1

log
f̂(y(i);SY (z(i)), πY (z), HY (z(i)))

f̂(u(i);SU (z(i)), πU (z), HU (z(i)))f̂(ū(i);SŪ (z(i)), πŪ (z), HŪ (z(i)))

where HU (z) = HY (z)U , HŪ (z) = HY (z)Ū , SU (z) = SY (z)U , SŪ (z) =
SY (z)U and πi

U (z) = πi
Ū

(z) = πi
Y (z) = 1/Nz for i = 1, ..., Nz by Proposition
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4.5. We suggest computing the bandwidth matrix HY (z) using the normal rule
plus differential scale approach with l = |Y | = |U | + |Ū | = n.

The estimator for the mutual information between a multivariate contin-
uous variable Y and a multivariate discrete variable Z is given by:

Î(Y , Z) =
1

N

N
∑

i=1

log
f̂(y(i);SY (z(i)), πY (z(i)), HY (z(i)))

f̂(y(i);SY , πY , HY )
(4.15)

where πi
Y (z) = 1/Nz for i = 1, ..., Nz and πi

Y = 1/N for i = 1, ..., N . In
addition, HY (z) and HY can be estimated from SY (z) and SY , respectively.
In this case, we suggest the use of the normal rule plus differential scaled
approach with l = |Y | = n to compute both HY (z) and HY . It should be

noted that both f̂(y|z;SY (z), πY (z), HY (z)) and f̂(y;SY , πY , HY ) can not
be GK distributions in general (see Proposition 4.4). Thus, this estimator can
be dependent on linear transformations of the implied continuous random
variables, and therefore it is advisable to transform the continuous random
variables Y1, ..., Yn in order to have similar dispersion values.

The estimators presented in Equations 4.14 and 4.15 have been presented
for multidimensional random variables and they can be used, in their unidi-
mensional form, by the classifier induction algorithms based on KBN paradigm
presented in Section 4.6.

4.5 Kernel based Bayesian network

This section presents the third class of PGMs we are interested in, kernel
based Bayesian networks (KBN ) [Pérez et al. (2009)]. KBN can deal with
mixed random variables while breaking with the strong Gaussian assumption
made by CGNs. We propose a definition of the KBN paradigm based on MGK
distributions.

Let us consider a PGM for an (n + m)-dimensional mixed random vari-
able X = (X1, ..., Xn+m) with the proper subsets Y = (Y1, ..., Yn) =
(X1:Y , ..., Xn:Y ) and Z = (Z1, ..., Zm) = (X1:Z , ..., Xm:Z) as described in the
beginning of Section 4.3. If (i) no discrete random variables have continuous
parents, Pc(s)i:Z∩Pa(s)i:Z = ∅ for 1 ≤ i ≤ m, and (ii) the variable X follows
a mixed kernel Gaussian distribution, ρ(x) ; MKG(x; p(z),SY (z), πY (z),
HY (z)) (see Definition 4.2), then the PGM for X is called kernel based
Bayesian network (KBN ) for X. It should be highlighted that the definitions
of CGN and KBN paradigms impose the same structural constraint. Thus,
the structures of KBN paradigm are also decomposable [Lauritzen (1992)].

The graphical factorization of the generalized joint probability distribution
for X encoded by a KBN for X is similar to the CGN paradigm but consid-
ering MGK distribution instead of MG distribution (see Equation 3.10).

We want to note that there are different ways of applying the nor-
mal rule (see Equation 4.5) to the local factors in order to obtain a KBN



4.6 Classifiers based on kernel based Bayesian networks: flexible classifiers 155

which factorizes ρ(x). We recommend fixing l taking into account the max-
imum number of continuous random variables implied in local densities
f(yi|pc(s)i:Y , pd(s)i:Y ) for all i, |Yi| + |Pc(s)i:Y |. For example, in the case
of TAN structures we recommend setting l = 2. Another approach could be
to fix l = n.

4.6 Classifiers based on kernel based Bayesian networks:

flexible classifiers

Since this dissertation initially focuses on continuous domains, this section and
the experimental results presented in Section 4.8 are focused on continuous
domains, that is, domains with only continuous predictor variables, being the
class the single discrete variable. Thus, the domains are defined in terms of
the random variables (Y , C) = (Y1, ..., Yn, C). Note that in a KBN for (Y , C)
with an augmented naive Bayes structure, the parameters of the local factor
f(yi|pci, c) can be obtained from SY (c), πY (c) and HY (c) for all c using
Propositions 4.3 and 4.5, for i = 1, ..., n. Fortunately, the main difference
between BMNs, CGNs and KBNs is related to the factors with continuous
random variables. Thus, continuous domains can be considered appropriate to
highlight the main differences between the three Bayesian network paradigms.

This section presents a set of classifier induction algorithms based on KBN
for augmented näıve Bayes family of structures, ordered by their structural
complexity: flexible näıve Bayes, flexible tree-augmented näıve Bayes, flexible
k-dependent augmented naive Bayes and flexible complete graph Bayesian
classifier. Examples of their different structure complexities are shown in Fig-
ure 2.4. Most of the algorithms have been adapted from BMN to the novel
KBN paradigm.

4.6.1 Flexible näıve Bayes

The näıve Bayes classifier induction algorithm (NB) [Duda and Hart (1973);
Langley et al. (1992); Minsky (1961)] learns the complete näıve Bayes struc-
ture, which is known a priori. Originally, NB classifier was introduced for the
BMN (multinomial NB or mNB), and it was adapted to the KBN paradigm
(flexible NB or fNB) by John and Langley (1995). This classifier has been
recently used by Lerner and Lawrence (2001), Bouckaert (2004) and Lerner
(2004). It must be noted that our version of the fNB uses the normal rule [Sil-
verman (1986)] plus differential scaling with l = 1 for computing h, instead
of the heuristic proposed by John and Langley (1995).

For further details on NB structures and NB classifier based on BMN
paradigm see Section 2.5.2 and Section 2.5.3.1, respectively.
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4.6.2 Flexible tree-augmented näıve Bayes

The tree-augmented näıve Bayes structures (TAN structures) break with the
strong independence assumption made by NB structures, allowing probabilis-
tic dependencies among predictors.

This section presents the novel adaptation to the KBN paradigm of fM-
TAN algorithm [Friedman et al. (1997)], originally introduced for BMN. The
algorithm proposed by Friedman et al. (1997) follows the general outline of
Chow and Liu’s procedure [Chow and Liu (1968)], but instead of using the
mutual information between two variables, it uses conditional mutual infor-
mation between predictors given the class variable to construct the maximal
weighted spanning tree. In order to adapt this algorithm to continuous do-
mains, we estimate the mutual information between every pair of continuous
predictor variables conditioned to the class variable I(Yi, Yj |C), using the esti-
mator proposed in Equation 4.14. In order to compute the bandwidth matrix
using the normal rule plus differential scaling approach, we have set l = 2 in
our experiments.

For further details on TAN structures and fMTAN classifier induction see
Sections 2.5.2 and 2.5.3.2, respectively.

4.6.3 Flexible k-dependent augmented näıve Bayes

The k-dependent augmented naive Bayes structure (kAN structure) extends
TAN structures allowing a maximum of k predictor parents plus the class for
each predictor variable (NB, TAN and CG structures are equivalent to kDB
structures with k = 0 , k = 1 and k = n − 1, respectively).

This section introduces the novel adaptation of fMkDB classifier induction
algorithm [Sahami (1996)] to the KBN paradigm. We call this adaptation flex-
ible k-dependent augmented näıve Bayes (fkAN ). This algorithm is a greedy
approach which uses the class conditioned mutual information between each
pair of predictor variables I(Yi, Yj | C) and the mutual information between
the class and each predictor I(Yi, C) to lead the structure search process. In or-
der to adapt this algorithm to the KBN paradigm, we compute the amounts of
mutual information I(Yi, Yj | C) and I(Yi, C), using the estimators proposed
in Equations 4.14 and 4.15, respectively. In order to compute the bandwidth
matrix using the normal rule, we have set l = k + 1.

For further details on kAN structures and fMkAN see Sections 2.5.2 and
2.5.3.3, respectively.

4.6.4 Flexible complete graph classifier: Parzen window classifier

All the complete graphs represent the same factorization of the joint distribu-
tion, a factorization without any simplification derived from the conditional
(in)dependence statements. We can assume any of the complete acyclic graphs
for classification because they are Markov equivalent [Chickering (2002)].
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Therefore, the structure of the flexible complete graph classifier (fCG) can
be fixed randomly, provided that there are no cycles. We can assume any
complete kAN structure with k ≥ n − 1. It should be noted that fCG is
equivalent to the Parzen window classifier [Fukunaga (1972); Parzen (1962);
Rosenblatt (1956)].

4.6.5 Storage and computational complexity

KBN based classifiers require more storage space and have greater compu-
tational costs than CGN based classifiers for learning and classifying new
instances, respectively. First, we introduce the requirements associated with
the structural learning, and then the requirements associated with the para-
metric learning. Finally, the requirements related to each of the presented
classifier induction algorithms based on KBN are presented.

In order to obtain the structure to be modeled from data (structural learn-
ing), a subset of the classifier induction algorithms proposed in this section†

estimates the mutual information between every pair of variables conditioned
to the class, I(Yi, Yj |C), and the mutual information between each variable
and the class, I(Yi, C). The number of operations involved for computing
I(Yi; Yj |C), using the estimator given by Equation 4.14, is O(

∑

c N2
c ), where

Nc is the number of instances in the partition of the training set induced by
C = c. Thus, fTAN and fkAN algorithms require to compute O(n2

∑

c N2
c ) op-

erations, where n is the number of continuous predictor variables included in
the model. On the other hand, the computational cost for estimating I(Yi; C),
with the estimator proposed in Equation 4.15, is O(N2). Therefore, fkAN al-
gorithm requires O(nN2) computations additionally.

For modeling a classifier based on the KBN paradigm (using differentially
scaled plus Normal rule approach) from continuous data given its structure
(parametric learning), every instance in the training set and the variances of
the predictors conditioned on each class label C = c are stored. Note that
the mixing weights are not stored because they can be obtained directly from
data. Therefore, a classifier with kAN structure stores O(Nn+r(n+1)) values
(cases and parameters) to proceed with classification (k = 0 for NB, k = 1
for TAN and k = n− 1 for CG). In order to classify a new instance, the same
KBN based classifier requires to compute O(Nn(k + 1)) operations. Table
4.1 summarizes the storage and computational complexity for both CGN and
KBN based classifiers given a kDB structure.

Therefore, the number of operations for learning each flexible classifier
proposed is: O(Nn) for fNB [John and Langley (1995)] and fCG, O(n2

∑

c N2
c )

for fTAN, and O(n2
∑

c N2
c + nN2) for fkAN. Due to the high computational

requirements for learning the classifier and for classifying new instances, it
can be said that flexible classifiers are more suitable for low and medium
sized data sets.
† The structure induced with fNB and fCG classifier induction algorithms are given

a priori and, therefore, their computational cost can be considered constant.
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CGN based KBN based
Training space Testing time Training space Testing time

O(rn2) O(rn(k + 1)) O(Nn + r(n + 1)) O(Nn(k + 1))

Table 4.1. Storage and computational requirements of a classifier with a kAN struc-
ture based on both KBN paradigm, with the differential scaled bandwidth matrix
plus the normal rule approach, and CGN paradigm. The domain has n continuous
predictor variables and r classes, the training set has N cases. The computational
requirements have been obtained for classifying a new instance.

4.7 Consistency of MGK distribution based results

In this section we discuss the asymptotic properties of MGK distribution as
an estimator of the true underlying distribution given a training set SN =
{x(1), ..., x(N)}. This section is based on the random variables introduced in
Section 4.3. It is also based on the definition of strong pointwise consistency
and the theorems and lemmas presented by John and Langley (1995).

Definition 4.3 (Strong pointwise consistency) If ρ(x) is a generalized
probability distribution for X and ρ̂N (x) is an estimation of ρ(x) based on N
independent and identically distributed instances, SN , then ρ̂N (x) is strongly
pointwise consistent if ρ̂N (x) → ρ(x) almost surely for all x; i.e., for every
ǫ > 0, p(limN→∞ |ρ̂N (x) − ρ(x)| < ǫ) = 1.

Note that we have modified the definition of strong pointwise consistency
to take into account the mixed nature of the random variable X. We consider
the particular case of a MGK distribution for X learned from SN when the
bandwidth matrix is computed using the differential scaling plus normal rule
approach. Moreover, we consider the particular case where the distribution
p(z) is estimated from SN using a multinomial distribution with maximum
likelihood parameters as assumed in [John and Langley (1995)]. Next, we
proved the consistency of MGK distributions, KBN paradigm and the esti-
mators of the measures of information theory based on MGK distributions.

John and Langley (1995) demonstrate, based on Casella and Berger (1990),
the consistency of kernel density estimation for modeling continuous variables
Y under some conditions regarding the estimator of the bandwidth matrix
HY (strong consistency for reals theorem [John and Langley (1995)]). It must
be noted that kernel density estimate using Gaussian kernel with the normal
rule plus differential scaling approach satisfies the constraints of the strong
consistency for reals. Thus, a GK density function for Y based on SN , f̂(y) ;

GK(y;SN
Y , πY , HY ) where πi

Y = 1/N for i = 1, .., N is a strong pointwise
consistent estimator of f(y).

Then, John and Langley (1995) demonstrate, based on Devroye (1983),
the consistency of the multinomial distribution for Z as an estimator of p(z)
when the parameters are estimated by maximum likelihood. Furthermore,
they demonstrate the consistency of the product of strongly consistent esti-
mates (consistency of products [John and Langley (1995)]) and the related
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consistency of the quotient (see the proof of Theorem 3 in John and Langley
(1995)). Following, based on these lemmas and theorems, we demonstrate the
strong consistency of MGK distribution for X as an estimator based on SN .

Lemma 4.1 (Strong consistency of MGK distribution) The MGK es-
timator for the generalized probability function for X based on SN , ρ̂N (x) ;

MGK(x; p(z),
SN

Y (z), πY (z), HY (z)) is strongly consistent.

Proof.
ρ̂N(x) = f̂N (y|z)p̂N (z) → f(y|z)p(z) = ρ(x)

where the second equality holds due to the strong consistency for reals, strong
consistency for nominals and strong consistency for the product. �

Corollary 4.1 (Consistency of local density functions of KBN) The es-
timates of the local factor f(yi|pc(s)i:Y , pd(s)i:Y ) based on SN in the KBN

framework, f̂(yi|pc(s)i:Y , pd(s)i:Y ) ; MGK(yi;S(Y i|pc(s)i:Y )(pd(s)i:Y ),
π(Y i|pc(s)i:Y )(pd(s)i:Y ), H(Y i|P c(s)i:Y )(pd(s)i:Y )), is strongly consistent.

This corollary is proved by the consistency of MGK distribution, strong
consistency for the quotient and Proposition 4.5, taking into account that

f̂(yi|pd(s)i:Y , pc(s)i:Y ) = f̂(yi,pd(s)i:Y ,pc(s)i:Y )

f̂(pd(s)i:Y ,pc(s)i:Y )
and f(yi|pd(s)i:Y , pc(s)i:Y ) =

f(yi,pd(s)i:Y ,pc(s)i:Y )
f(pd(s)i:Y ,pc(s)i:Y ) .

Corollary 4.2 (Consistency of KBN) The KBN estimate of the general-
ized probability function ρ(x) based on SN , ρ̂N (x) ; MGK(x; p(z),SN

Y (z), πY (z),
HY (z)) is strongly consistent if the structure s of KBN is a CI-map.

This corollary is proved by the consistency of MGK distribution, the strong
consistency of local density functions, by the definition of CI map, and the
strong consistency of the product. Note that a CI-map for X captures all the
conditional dependencies included in ρ(x). Besides, this corollary implies, by
the consistency of the quotient, that the flexible classifiers which are a CI map
of ρ(x, c) are strongly consistent.

Corollary 4.3 (Consistency of t̂(X1; ...; Xk) ) The estimates of the mea-
sures of information theory t(X1; ...; Xk), t̂(X1; ...; Xk), is strongly consis-
tent.

This corollary is proved in two steps. Firstly, the consistency of ĝ(X1; ...;
Xk) is proved due to the consistency of MGK distribution, the consistency of
the product and consistency of the quotient. Note that g(X1; ...; Xk) is a func-
tion composed of the product and quotients of generalized probability func-
tions defined over Xs ⊆ {X1, ..., Xk}. Then, the consistency of t̂(X1; ...; Xk)
is proved because Equation 4.13 exactly estimates the expectance of the func-
tion log(ĝ(x1, ..., xk)) in the limit, as N → ∞, when the instances of the
training set are independent and identically distributed [Bishop (2006)].
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4.8 Experimental results

This section presents the experimental results of previously introduced flexible
classifiers.

First, in Section 4.8.1, we study the behavior of the flexible classifiers and
their sensitivity to changes in the smoothing degree using artificial domains.
Then, in Section B., we present a set of results in 21 UCI repository continuous
data sets [Asuncion and Newman (2007)]. These results include a comparison
of the classifiers using the Friedman plus Shaffer’s static post-hoc test [Garćıa
and Herrera (2008)] based on the estimated errors obtained in the data sets
from UCI repository (Section 4.8.2.2). This section also includes the study of
the effect of the smoothing degree on the performance of flexible classifiers
(Section 4.8.2.3), and the bias plus variance decomposition of the expected
error [Kohavi and Wolpert (1996)] (Section 4.8.2.4).

4.8.1 Artificial data sets

This section, which includes two subsections, illustrates the behavior of the
flexible classifiers using artificial domains. Section 4.8.1.1 studies the classifi-
cation performance of the NB and TAN classifiers based on the BMN, CGN
and KBN paradigms, by means of six ad-hoc designed representative artifi-
cial data sets. The use of the flexible classifiers which model the correlation
between predictors is justified, presenting their advantages. Section 4.8.1.2
studies the effect of the smoothing degree in the performance of the flexible
classifiers by means of four artificial domains.

At each artificial domain a parameter λ is fixed in order to guarantee
a Bayes error of ǫB = 0.1. We define the error of a classifier M under the
winner-takes-all rule [Duda et al. (2000)] as:

ǫM =

∫ ∞

−∞
f(y)(1 − p(c∗|y))dy (4.16)

where p(·) and f(·) are the true probability distribution and density functions
of the domain respectively, and c∗ = argcmax[pM (c|y)] under the winner-
takes-all rule. The Bayes error ǫB is defined as the error of the Bayes classifier,
which is obtained by the decision c∗ = argcmax[p(c|y)] under the winner-
takes-all rule.

4.8.1.1 Error estimation

This section illustrates the differences between NB and TAN classifiers based
on the BMN (plus supervised discretization [Fayyad and Irani (1993)]), CGN
and KBN paradigms. For this purpose, we have designed six representative ar-
tificial domains with two continuous predictors, Y = (Y1, Y2), and two equally
probable classes, c ∈ {0, 1} with p(C = 0) = 0.5. It must be noted that TAN,
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kDB (at k > 0 values), and complete graph structures are equivalent in the
bivariate domains. Taking into account the dependencies between predictor
variables (correlated or non-correlated) and four types of densities (Gaussian,
Gaussian mixture, chi square and chi square mixture), we propose the follow-
ing six domains:

• Domains with non-correlated Gaussian predictors (ncG).
• Domains with correlated Gaussian predictors (cG).
• Domains with non-correlated Gaussian mixture predictors (ncGM).
• Domains with correlated Gaussian mixture predictors (cGM).
• Domains with non-correlated chi square predictors (ncCh).
• Domains with correlated chi square mixture predictors (cChM).

We have used the mixture of two or three densities for each class (ncGM, cGM
and cChM) so as to model non-Gaussian densities. Note that these densities
are different to a single Gaussian density. The chi square domains (ncCh and
cChM) are based on the following pseudo-chi square density:

fchi(y; y0, κ) =

{

1
2κ/2Γ (κ/2)

y(κ/2)−1e−(y−y0)/2 y − y0 > 0

0 otherwise
(4.17)

where κ specifies the number of degrees of freedom. In order to experiment
with long tailed densities, we have set κ = 4. Besides, in contrast to the sym-
metry of the Gaussian density, pseudo-chi square has a skewness of

√

8/κ. The
bivariate version of pseudo-chi square is defined as fchi(y1, y2; (y

0
1 , y

0
2), κ) =

fchi(y1; y
0
1 , κ) · fchi(y2; y

0
2 , κ).

We have created the training and test sets by simulation for each of the
exposed domains. Each simulated data set is defined by means of its associ-
ated generalized probability function ρ(y, c) = ρ(y1, y2, c) = p(c)f(y1, y2|c).
In order to obtain a domain with dependent variables given the class, we use
a function f(y1, y2|c) which can not be decomposed into f(y1|c)f(y2|c). The
ncG, cG, ncGM, cGM, ncCh and cChM domains are defined by the following
densities f(y1, y2|c):
• The ncG data set is generated from the density functions defined by

f(y1, y2|c) = f(y1|c)f(y2|c) where f(y1|C = 0) ≡ f(y2|0) ; N(µ =
0, σ2 = 1) and f(y1|1) ≡ f(y2|1) ; N(λ, 1) with λ = 1.8 (see Figure
4.3(a)).

• The cG data set is defined by the density functions f(y1, y2|0) ; N(µ =
(0, 0), Σ = [1, 0.75; 0.75, 1] and f(y1, y2|1) ; N((λ, λ), [1,−0.75;−0.75, 1])
with λ = 1.4 (see Figure 4.3(b)).

• The ncGM data set is defined by the mixture functions f(y1|0) ≡ f(y2|0) ;

0.5N(0, 1)+0.5N(λ, 1) and f(y1|1) ≡ f(y2|1) ; 0.5N(λ/2, 1)+0.5N(3λ/2,
1) with λ = 4.7 (see Figure 4.3(c)).

• The cGM data set is defined by the mixture functions f(y1, y2|0) ;

1/3(N((0, 0), I = [1, 0; 0, 1])+N((λ, λ), I)+N((0, 2λ), I)) and f(y1, y2|1) ;
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(d) Correlated, Gaussian mixture domain.

Fig. 4.3. Visualization of the artificial domains based on Gaussian and mixture of
Gaussian densities. At each artificial domain f(y, c = 0) is represented with broken
lines and a lighter surface, and f(y, 1) with continuous solid lines and a darker
surface.

1/3(N((λ, 0), I) + N((0, λ), I) + N((λ, 2λ), I)) with λ = 3.4 (see Figure
4.3(d)).

• The ncCh data set is generated from the density functions defined by
f(y1, y2|0) ; fchi(y1, y2; (y

0
1 , y

0
2) = (0, 0), κ = 4) and f(y1, y2|1) ;

fchi(y1, y2; (λ, λ), 4) with λ = 3.5 (see Figure 4.3(a)).
• The cChM data set is defined by the mixture functions f(y1, y2|0) ;

1/3[fchi(y1, y2; (0, 0), 4)+ fchi(y1, y2; (λ, λ), 4) + fchi(y1, y2; (0, 2λ), 4)] and
f(y1, y2|1) ; 1/3[fchi(y1, y2; (0, λ), 4) + fchi(y1, y2; (λ, 0), 4) + fchi(y1, y2;
(λ, 2λ), 4)] with λ = 7.9 (see Figure 4.3(d)).

It must be noted that the ncCh and cChM domains are similar to the ncG
and cGM (see Figure 4.3), replacing Gaussian by pseudo-chi square densities.

In order to study the errors of different classifiers (mNB, mTAN, gNB,
gTAN, fNB and fTAN) with different training set sizes, at each artificial do-
main proposed, we have sampled training sets with 10, 20, 40, 80, 160, 320,
640, 1280 and 2560 cases. The experiment has been repeated 50 times for



4.8 Experimental results 163

estimating the errors in each training set size. All the classifiers learned have
been tested on an independent data set of 3000 cases. The variables have
been discretized using the entropy algorithm [Fayyad and Irani (1993)] for
each training-test pair, learning the discretization policies from the training
set. The evolution of the errors estimated, with each classifier learned, is pre-
sented in Figure 4.4.

From the results shown in Figure 4.4, the following conclusions can be
obtained:

• In the ncG domain (see Figure 4.3(a)) all the classifiers reach the Bayes
error. Gaussian and flexible classifiers behave similarly (see Figure 4.4(a)).
They reach the Bayes error with training sizes of 160 or greater. This
suggests that ncG domains can be modeled similarly for classifying using
the kernel density estimation and the parametric Gaussian approach. The
multinomial classifiers show a slower learning curve.

• In the cG domain (see Figure 4.3(b)) the classifiers which do not model
the correlation between predictors (gNB, mNB and fNB) seem to behave
somewhat worse than gTAN and fTAN (see Figure 4.4(b)). Gaussian and
fTAN reach the Bayes error with a training size of 320 or greater. By
contrast, mTAN does not reach the Bayes error but behaves a little better
than NB classifiers. These results suggest that cG domains could generally
be better modeled by Gaussian and flexible classifiers which consider the
correlation between predictor variables. Thus, gTAN and fTAN show a
better behavior than gNB and fNB respectively.

• In the ncGM domain (see Figure 4.3(c)) the flexible classifiers behave
notably better than Gaussian based classifiers (see Figure 4.4(c)). Flexible
and multinomial classifiers reach the Bayes error, but flexible classifiers
converge to the Bayes error quicker. Flexible classifiers can clearly model
the ncGM domains better than Gaussian classifiers.

• In the cGM domain (see Figure 4.3(d)) fTAN classifier behaves clearly
better than the rest of the classifiers (see Figure 4.4(d)). This result sug-
gests the importance of modeling the correlation between predictors using
kernel based density estimation for the cGM domains. Multinomial TAN
plus discretization converges to the same error value as NB models. Each
variable is discretized independently, in a univariate way. Thus, the dis-
cretization algorithm [Fayyad and Irani (1993)] loses useful information
about the class conditional dependencies between predictor variables. It
must be noted that the most used discretization algorithms are univariate
[Dougherty et al. (1995)].

• The results in the ncCh domain are similar to those obtained in the ncGM.
The flexible classifiers clearly behave better than Gaussian based classifiers
(see Figure 4.4(e)). Flexible and multinomial classifiers reach the Bayes
error but multinomial classifiers converge to the Bayes error quicker.

• The results in the cChM domain are similar to those obtained in the
cGM. In the cChM domain, fTAN classifier behaves clearly better than
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(a) Non-correlated, Gaussian domain, ncG. (b) Correlated, Gaussian domain, cG.

(c) Non-correlated, Gaussian mixture do-

main, ncGM.

(d) Correlated, Gaussian mixture domain,

cGM.

(e) Non-correlated, chi square domain, ncCh. (f) Correlated, chi square mixture domain,

cChM

Fig. 4.4. The graphics represent the evolution, with respect to the number of cases,
of the errors of different classifiers (mNB, mTAN, gNB, gTAN, fNB and fTAN) in
each of the artificial domains proposed.

the rest of the classifiers (see Figure 4.4(f)). These results also suggest the
importance of modeling the correlation between predictors with flexible
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classifiers. Multinomial TAN plus discretization converges to the same er-
ror value as NB models. The discretization algorithm [Fayyad and Irani
(1993)] loses useful information once again, due to its univariate nature.

Taking into account the four continuous domains presented, at each struc-
tural complexity level, the flexible classifiers seem to be at least as equally
suitable as the Gaussian and multinomial classifiers (plus univariate super-
vised discretization [Fayyad and Irani (1993)]) for supervised classification in
continuous domains. Flexible classifiers which model the true dependencies
between predictor variables reach the Bayes error in the artificial domains
proposed.

In Gaussian domains, the flexible classifiers show a learning curve similar
to the Gaussian classifiers. Multinomial classifiers have a slower learning curve
than flexible classifiers at each type of the proposed domain (except in the
ncCh domain). fTAN, which models correlations between variables, obtains
acceptable errors (less than 15%) with training set sizes of 20 in the ncG and
cG domains, with 40 cases in the ncGM and cGM domains, and with 160 cases
in the ncCh and cChM domains. Besides, it reaches the Bayes error with less
than 1280 training cases in most of the domains. This suggests that flexible
classifiers which model the true dependencies between variables could perform
well in multi-modal domains, even with small sample sizes.

4.8.1.2 Analysis of the smoothing degree

This section illustrates the effect of the smoothing degree in the performance
of flexible classifiers. For this purpose, we have designed four representative
univariate artificial domains.

• Gaussian domain (Ga).
• Gaussian mixture domain (GaM).
• Chi square domain (Ch).
• Chi square mixture domain (ChM).

It must be noted that all the presented flexible classifiers are equivalent in the
univariate domains.

The training and test sets of each of the four univariate artificial domains
have been created by simulation. Each simulated data set is defined by means
of its associated generalized probability function ρ(y, c) = p(c)f(y|c). The
domains have two equally probable classes, c ∈ {0, 1} with p(C = 0) = 0.5.
They are defined by the following densities f(y|c):
• Ga domain: f(y|C = 0) ; N(y; µ = 0, σ2 = 1) and f(y|1) ; N(y; λ, 1)

with λ = 2.5.
• GaM domain: f(y|0) ; 1/2[N(y; 0, 1)+N(y; 2λ, 1)] and f(y|1) ; 1/2[N(y;

λ, 1) + N(y; 3λ, 1)] with λ = 3.0.
• Ch domain: f(y|0) ; fchi(y; y0 = 0, κ = 4) and f(y|1) ; fchi(y; λ, 4) with

λ = 5.8.
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• ChM domain: f(y|0) ; 1/2[fchi(y; 0, 4) + fchi(y; 2λ, 4)] and f(y|1) ;

fchi(y; λ, 4) + fchi(y; 3λ, 4)] with λ = 6.8.

In order to study the errors of flexible classifiers with different training set
sizes, at each artificial domain proposed, we have sampled training sets with
10, 25, 100 and 250 cases. The experiments have been repeated 50 times to
estimate the errors for each training set size. We have generated 50 training
sets for each train size and 50 test sets with 3000 cases. The variables have
been discretized independently for each training-test pair. The discretization
policies and the classifiers have been learned using the training set.

At each experiment we compute the smoothing parameter h using the nor-
mal rule plus differential scaled approach with l = 1 (see Section 4.2.1). Then,
the bandwidth matrix H = h2 is scaled using the following 18 coefficients,
τ = {0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2.5, 5, 7.5, 10, 25,
75, 100}. For each scaled value of h2 the error of the associated flexible clas-
sifier is estimated. Note that this scaling process can be understood as a
wrapper optimization of the smoothing parameter, h. The evolution of the
estimated errors with respect to the smoothing degree, τ , in the proposed
artificial domains (Ga, GaM, Ch and ChM) are presented in Figure 4.5.

It should be noted that the study does not take into account the over-
smooth effect of the parameter l in the normal rule plus differential scaled
approach. However, when Equation 4.5 is analyzed, it is clear that the effect
of the parameter l is lower than the parameter τ of our experimentation. For
example, with N = 25 when l = 1 is set, we obtain h = 0.37, and if we set
l = 106, h ≃ 1.

The standard deviation, σ, is the most common measure of statistical
dispersion, measuring how widely spread the values in a data set are. The
standard deviation is very sensitive to outliers. Note that the data obtained
from long tailed densities generally presents outliers, e.g. chi square with κ =
4. This sensitivity is increased when the training set has few cases. It also
increases when the density presents more than one mode, such as GaM and
ChM domains. Under these conditions, the deviation overestimates the spread
of the data. We say that the standard deviation is overestimating the spread
if the interval [µ − σ, µ + σ] contains more than 90% of the cases.

The normal rule tends to oversmooth the estimations. Taking into account
that the standard deviation tends to overestimate the spread of the data, the
effect of the oversmoothing of the normal rule is increased. Next, the results
presented in Figure 4.4 are analyzed, taking into account the properties of the
standard deviation and the normal rule:

• In the Ga domain (see Figure 4.5(a)) the standard deviation obtains a
good measure of the spread of the data. In this case the normal rule obtains
appropriate density estimations to classify.

• In the GaM domain (see Figure 4.5(b)) the deviation is overestimating the
spread, especially with small training sets (10, 25). Given enough cases
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(a) Gaussian (b) Gaussian mixture

(c) Chi square (d) Chi square mixture

Fig. 4.5. The effect of the smoothing degree, τh2, in the performance of the flexible
classifiers. Note that the scale coefficient τ amplifies or reduces the smoothing degree
h2 obtained using the normal rule, e.g. for τ = 1.25 the smoothing degree given by
h2 is amplified 1.25 times. The errors obtained using the normal rule, τ = 1, are
marked using a dashed vertical line. This figure shows the competitive behavior of
the normal rule in supervised classification compared to other smoothing degrees,
τ 6= 1.

(more than 25), the normal rule models appropriate densities with classi-
fication purposes.

• In the Ch domain (see Figure 4.5(c)) the deviation is overestimating the
spread, especially with small training sets (10, 25). The normal rule obtains
good estimations when the training set has enough cases (more than 25).

• In the ChM domain (see Figure 4.5(d)) the deviation overestimates the
spread of the data, especially with small training sets. Besides, the normal
rule increases the oversmoothing effect. In spite of the oversmoothing,
the normal rule obtains appropriate density estimations with classification
purposes when the training set has enough cases (more than 25).
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These results suggest that it could be useful to compute a spread mea-
sure which is more robust to outliers than the standard deviation, e.g. the
interquartile range. The normal rule tends to obtain enough good density es-
timations with classification purposes if the deviation does not overestimate
the spread of the training data. Besides, flexible classifiers seem to have a
good classification behavior even when the optimum smoothing degree is not
used. Moreover, they seem to be quite insensitive to the optimum smoothing
parameter, especially when the training set has enough cases (more than 25
in the univariate case). Note that, for training sizes of 100 and 250, Figure
4.5 presents error curves close to the Bayes error (0.1) at different smooth-
ing degrees, τ : in Ga domain the error curves are close to the Bayes error
for τ ∈ [0.01, 50] (see Figure 4.5(a)), in GaM domain for τ ∈ [0.01, 2.5] (see
Figure 4.5(b)), in Ch domain for τ ∈ [0.01, 50] (see Figure 4.5(c)) and in ChM
domain for τ ∈ [0.01, 2.5] (see Figure 4.5(d)).

On the other hand, Figure 4.5 suggests that the performance of the flexible
classifiers could be improved when the optimization of the smoothing degree
is performed in a wrapper way, especially for small databases.

4.8.2 UCI data sets

This section is divided in three parts. In Section 4.8.2.2 the classification
error (see Equation 4.16) of the presented algorithms is estimated for each
data set. Moreover, the results of two classifiers based on Bayesian networks
(multinomial and Gaussian NB and TAN), k-nearest neighbour with k =
{1, 3}, ID3 and C4.5 classification trees, quadratic discriminant analysis and
multilayer perceptron are presented. Then, based on these results, flexible
classifiers and the benchmarks included are compared across the UCI data
sets by means of Friedman plus Shaffer’s static post-hoc tests, as proposed in
Garćıa and Herrera (2008). Finally, in Section 4.8.2.4, and in order to study
the nature of the error of flexible classifiers, we perform the bias plus variance
decomposition of the error [Kohavi and Wolpert (1996)] in a subset of the
UCI data sets included.

4.8.2.1 Main characteristics and preprocessing

The results have been obtained in 21 UCI repository data sets [Asuncion and
Newman (2007)], which only contain continuous predictor variables without
missing values. As we indicate at the beginning of this section, we think that
the continuous domains can be useful in order to highlight the main differ-
ences between BMN, CGN and KBN paradigms. Besides continuous domains
allow the use of the most complex models, such as fCG. Note that fCG can
be considered prohibitive for mixed domains with many discrete variables be-
cause the number of parameters of the model increases exponentially with the
number of variables. The main characteristics of the data sets included are
summarized in Table 5.2.
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Label r n N Name of the data set
Balance 3 4 625 Balance Scale Weight & Distance
Block 5 10 5474 Page Block’s Classification

Haberman 2 3 307 Haberman’s Survival
Image 7 18 2310 Image Segmentation

Ionosphere 2 34 351 Johns Hopkins University Ionosphere
Iris 3 4 150 Iris Plant

Letter 26 16 20000 Letter Image Recognition
Liver 2 6 345 Bupa Liver Disorders

MFeatures 10 649 2000 Multiple Feature Digit
Musk 2 166 6598 Musk Clean2

Pendigits 10 16 10992 Pen-Digit Recognition of Handwritten Digits
Pima 2 8 768 Pima Indians Diabetes

Satellite 6 36 6435 Landsat Satellite
Sonar 2 60 208 Sonar, Mines VS Rocks

Spambase 2 57 4601 Spam e-mail database atributes
Thyroid 3 5 215 Thyroid Disease Records
Vehicle 4 19 846 Vehicle Silhouetes
Vowel 11 10 990 Vowel Recognition

Waveform 3 21 5000 Waveform Data Generation
Wine 3 13 179 Wine Recognition
Yeast 10 9 1484 Yeast

Table 4.2. Main characteristics of the data sets: the number of different values
of the class variable (r), the number of predictor variables (n), and the number of
instances (N).

In order to interpret the results, we must take into account that most
data sets of the UCI repository are already preprocessed [Kohavi (1995b)]: in
the data sets included, there are few irrelevant or redundant variables, and
little noise [van der Putten and van Someren (2004)]. Therefore, it is more
difficult to obtain statistically significant differences between the results of the
algorithms in these types of data sets.

Some of the included data sets have a high-dimensional feature space (see
the value n in Table 5.2). We have decided to reduce their dimensionality by
a preprocessing stage to avoid the computational problems related with the
flexible classifiers presented (especially for computing the conditioned mutual
information among each pair of predictors, I(Yi; Yj |C)).

The preprocess stage is performed for each training-test pair separately. In
order to estimate the error (Sections 4.8.2.2 and 4.8.2.3) at each data set, ten
training-test pairs are generated using a 10-fold cross validation procedure. In
the bias plus variance decomposition (Section 4.8.2.4), ten training-test pairs
are generated. Firstly, in order to reduce the computational requirements of
the algorithms proposed (especially for fTAN and fkDB), we have performed a
feature selection process. If the number of predictors n is greater than 50, the
dimensionality is reduced to 50 predictor variables. With this purpose, the
mutual information with the class, I(Yi; C), is computed for each variable,
Yi, using the training set. Then, variables are sorted in descendant order of
I(Yi; C) and the first 50 variables are selected. So as to perform the experi-
mentation with the discrete classifiers, training and testing sets are discretized
following the entropy algorithm proposed by Fayyad and Irani (1993), using
the discretization policy learned in the training set.
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4.8.2.2 Classification error estimation

The classification error has been estimated for the following flexible classifiers:
flexible NB (fNB), flexible TAN (fTAN), flexible kDB for k = 2 (f2AN) and
k = n/2 (fn.5AN), and flexible complete graph (fCG).

The benchmark classifiers selected are: Gaussian NB and TAN [Pérez et al.
(2006b)] (gNB and gTAN), multinomial NB and TAN [Friedman et al. (1997)]
(mNB and mTAN), k-nearest neighbour with k = 1, 3 [Cover and Hart (1967)]
(k-NN) as lazy classifiers, ID3 [Quinlan (1986)] and C4.5 [Quinlan (1993)] as
classification trees, and quadratic discriminant analysis (QDA) and multilayer
perceptron [Rosenblatt (1959)] (MP) as discriminant functions. All of them,
except gTAN [Pérez et al. (2006b)] and mTAN [Friedman et al. (1997)], are
implemented in Weka 3.4.3 [Witten and Frank (2005)].

In order to estimate the classification error, for each flexible classifier and
benchmark, at each data set, a stratified 10-fold cross-validation process has
been performed. Stratified cross-validation obtains estimations with less vari-
ance than the standard cross-validation procedure [Diamantidis et al. (2000);
Kohavi (1995a); Witten and Frank (2005)]. The validation was performed in a
paired way, that is, the classifiers are trained and tested in the same train-test
pairs. The estimated classification errors of the benchmarks and the flexible
classifiers are summarized in Tables 4.3 and 4.4 respectively.

Using estimated errors in Tables 4.3 and 4.4, we compare the behavior
of the flexible classifiers by means of the Friedman plus Shaffer’s static post-
hoc test [Garćıa and Herrera (2008)]. The results for Shaffer’s static post-hoc
test are shown by means of the critical difference diagrams introduced by
Demšar (2006). These plots show the mean ranks of each model across all the
domains in a numbered line. If there are not statistically significant differences
between two classifiers, they are connected in the diagram by a straight line.
For example, in Figure 4.6(c), at α = 0.1 level, fTAN is significantly better
than fCG. On the other hand, at α = 0.05 the differences are not significant.
A set of classifiers conform a cluster when they are connected in the diagram
with the same line. Two clusters are significantly different (disjoint) when
they are not connected.

Each test has been carried out at two significance levels α = {0.1, 0.05}.
The studies proposed are:

• Comparison of the benchmarks and the flexible classifier induction algo-
rithms: fNB, fTAN, f2AN, fn.5AN and fCG.

• Comparison of the families of multinomial, Gaussian and flexible classifiers
using the mNB, mTAN, gNB, gTAN, fNB and fTAN classifier induction
algorithms.

• Comparison of the family of the flexible classifiers proposed.

The Friedman test for all the classifiers (benchmarks and flexible classi-
fiers) rejects the null hypothesis at α = 0.05. Thus, their errors can not be
considered equivalent. The results for Shaffer’s static post-hoc test and the
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k-NN Classification Trees Discriminant func. CGN BMN

Data set 1-NN 3-NN ID3 C4.5 QDA MP gNB gTAN mNB mTAN

Balance 14.9 ± 3.8 14.7 ± 3.8 29.8 ± 4.6 23.0 ± 4.7 8.3 ± 2.8 9.0 ± 1.9 9.3 ± 1.0 11.5 ± 1.8 27.7 ± 4.8 28.2 ± 4.3

Block 3.8 ± 0.8 3.8 ± 0.8 3.9 ± 0.5 3.1 ± 0.5 6.2 ± 0.7 3.8 ± 0.7 10.1 ± 2.4 7.5 ± 0.8 6.6 ± 1.4 4.4 ± 0.5

Haberman 33.3 ± 3.8 32.0 ± 3.8 27.8 ± 3.8 28.4 ± 7.7 24.8 ± 4.3 26.5 ± 4.3 25.8 ± 4.9 24.5 ± 4.6 27.8 ± 3.8 27.8 ± 3.8

Image 3.1 ± 1.1 4.0 ± 1.2 7.5 ± 2.1 4.0 ± 1.5 19.6 ± 22.1 4.0 ± 1.3 21.1 ± 2.0 20.5 ± 8.5 11.3 ± 2.0 5.9 ± 1.7

Ionosphere 13.1 ± 4.5 14.8 ± 3.3 10.0 ± 6.2 11.7 ± 5.0 13.4 ± 4.3 11.4 ± 6.4 18.0 ± 6.3 7.7 ± 3.6 10.5 ± 4.0 8.6 ± 4.1

Iris 4.7 ± 6.7 5.3 ± 7.2 6.0 ± 8.1 7.3 ± 8.1 2.7 ± 4.4 3.3 ± 6.1 4.0 ± 6.8 3.3 ± 6.1 8.0 ± 7.8 7.3 ± 8.1

Letter 3.9 ± 0.5 4.4 ± 0.5 20.9 ± 0.6 12.1 ± 0.6 11.5 ± 0.7 17.4 ± 1.2 35.9 ± 1.4 28.3 ± 1.1 26.0 ± 1.2 14.5 ± 0.4

Liver 39.1 ± 4.6 37.9 ± 6.2 41.4 ± 2.9 33.3 ± 6.7 39.7 ± 5.7 32.2 ± 7.1 43.7 ± 7.8 39.7 ± 5.6 41.4 ± 2.9 41.4 ± 2.9

MFeatures 20.1 ± 1.7 18.1 ± 1.4 31.7 ± 2.0 23.6 ± 3.9 18.2 ± 2.3 16.9 ± 2.5 23.3 ± 2.7 19.7 ± 1.6 22.6 ± 2.5 20.7 ± 3.0

Musk 4.7 ± 0.9 3.9 ± 0.7 6.6 ± 1.3 4.1 ± 0.7 13.7 ± 1.2 2.6 ± 0.6 20.1 ± 1.8 23.8 ± 1.4 8.8 ± 1.1 6.0 ± 1.2

Pendigit 0.7 ± 0.3 0.7 ± 0.2 13.0 ± 1.3 3.7 ± 0.4 2.2 ± 0.5 6.2 ± 0.5 15.0 ± 1.1 7.3 ± 1.2 12.9 ± 0.9 4.5 ± 0.5

Pima 29.3 ± 4.0 27.2 ± 4.8 27.0 ± 5.4 24.9 ± 4.8 25.6 ± 3.7 25.0 ± 3.6 25.0 ± 3.3 24.6 ± 3.6 23.7 ± 3.7 23.0 ± 3.3

Satellite 9.6 ± 0.9 9.4 ± 1.1 18.9 ± 1.4 13.1 ± 1.4 14.4 ± 0.8 10.4 ± 1.0 20.5 ± 0.9 14.5 ± 1.6 17.9 ± 1.1 11.6 ± 1.4

Sonar 13.0 ± 4.8 16.4 ± 6.9 23.6 ± 7.3 26.0 ± 9.0 23.5 ± 6.7 13.9 ± 6.8 31.7 ± 7.0 31.7 ± 9.7 22.5 ± 9.2 22.5 ± 11.2

Spambase 8.9 ± 1.4 9.8 ± 1.4 9.5 ± 1.3 7.1 ± 1.5 19.3 ± 6.9 7.9 ± 1.3 18.0 ± 1.5 17.2 ± 1.5 10.3 ± 0.9 7.2 ± 0.8

Thyroid 3.3 ± 3.7 5.6 ± 5.4 8.4 ± 4.6 6.9 ± 4.6 3.2 ± 4.6 3.3 ± 3.0 4.2 ± 4.3 3.2 ± 4.6 5.0 ± 5.2 5.0 ± 5.5

Vehicle 30.4 ± 3.4 29.2 ± 2.5 32.7 ± 3.1 30.2 ± 4.5 40.2 ± 3.1 40.5 ± 4.7 54.3 ± 4.7 23.3 ± 4.0 30.6 ± 3.1 20.0 ± 5.3

Vowel 0.9 ± 0.8 3.1 ± 1.8 22.7 ± 4.6 20.4 ± 4.0 11.3 ± 3.0 20.5 ± 4.7 32.6 ± 2.9 22.7 ± 3.6 35.5 ± 4.4 28.1 ± 4.0

Waveform 22.5 ± 2.2 19.5 ± 1.5 30.3 ± 2.3 22.8 ± 2.0 15.1 ± 1.8 15.5 ± 1.7 19.0 ± 0.7 17.6 ± 2.1 18.8 ± 0.8 18.0 ± 2.6

Wine 5.7 ± 4.4 4.0 ± 4.5 6.2 ± 6.9 6.1 ± 5.2 0.6 ± 1.7 2.8 ± 4.5 2.8 ± 3.8 0.6 ± 1.8 1.7 ± 2.6 4.5 ± 4.9

Yeast 48.1 ± 3.8 47.2 ± 3.0 43.5 ± 4.4 44.1 ± 3.7 42.9 ± 3.8 40.6 ± 3.0 42.3 ± 5.0 42.9 ± 4.8 43.7 ± 4.0 43.2 ± 4.1

Average 14.9 14.8 20.1 16.9 17.0 14.9 22.7 18.7 19.7 16.8

Table 4.3. The estimated errors obtained with a set of well known state-of-the-art algorithms. The best results, in each data set, are
marked in grey.
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Data set fNB fTAN f2AN fn.5AN fCG

Balance 8.3 ± 1.2 10.7 ± 1.9 12.8 ± 2.6 12.8 ± 9.9 1.2 ± 0.7

Block 6.1 ± 0.6 5.2 ± 0.7 5.8 ± 0.9 6.3 ± 0.7 6.2 ± 0.7

Haberman 25.5 ± 5.9 24.8 ± 4.3 26.4 ± 4.7 24.8 ± 4.3 26.4 ± 4.7

Image 18.7 ± 1.4 15.7 ± 1.6 16.5 ± 1.4 18.4 ± 1.6 17.1 ± 1.7

Ionosphere 9.1 ± 4.6 7.1 ± 2.6 7.1 ± 3.2 10.0 ± 4.5 10.5 ± 5.0

Iris 4.0 ± 6.8 4.7 ± 6.7 4.7 ± 6.7 4.7 ± 6.7 3.3 ± 6.1

Letter 28.7 ± 1.2 15.7 ± 0.5 11.4 ± 0.7 7.7 ± 0.8 7.1 ± 0.8

Liver 33.6 ± 7.9 37.4 ± 8.4 37.4 ± 8.3 38.2 ± 6.7 40.8 ± 6.6

MFeatures 22.5 ± 3.4 18.5 ± 2.2 23.1 ± 2.6 18.6 ± 2.3 19.0 ± 2.3

Musk 13.4 ± 1.7 10.7 ± 1.6 18.3 ± 1.8 41.5 ± 1.7 40.0 ± 1.5

Pendigit 14.1 ± 1.0 4.3 ± 0.4 3.1 ± 0.5 3.1 ± 0.4 3.1 ± 0.3

Pima 24.3 ± 4.3 23.1 ± 4.3 25.4 ± 3.3 24.9 ± 4.7 25.8 ± 3.8

Satellite 18.3 ± 0.9 12.0 ± 0.9 12.2 ± 0.7 12.6 ± 0.6 12.2 ± 0.8

Sonar 26.9 ± 8.1 19.7 ± 5.5 24.5 ± 7.1 15.4 ± 5.5 16.8 ± 7.7

Spambase 22.8 ± 1.4 20.3 ± 1.6 25.1 ± 2.6 21.6 ± 1.9 20.9 ± 1.8

Thyroid 3.2 ± 4.6 4.2 ± 5.6 4.2 ± 5.6 4.2 ± 5.6 4.2 ± 5.6

Vehicle 29.7 ± 3.4 31.1 ± 3.6 33.6 ± 2.9 34.6 ± 3.8 35.6 ± 3.4

Vowel 26.0 ± 4.1 10.6 ± 3.9 5.1 ± 2.7 1.9 ± 1.0 1.9 ± 1.5

Waveform 19.3 ± 0.7 18.4 ± 1.7 19.6 ± 1.8 22.3 ± 1.9 20.5 ± 2.0

Wine 2.3 ± 3.7 1.1 ± 2.3 1.1 ± 2.3 1.7 ± 2.6 1.7 ± 2.5

Yeast 40.8 ± 3.9 41.0 ± 3.9 42.2 ± 3.1 42.5 ± 3.6 43.9 ± 3.4

Average 18.9 16.0 17.1 17.5 17.5

Table 4.4. The estimated errors and their corresponding standard deviations ob-
tained with the presented flexible classifiers: flexible näıve Bayes (fNB), flexible
tree-augmented näıve Bayes (fTAN), flexible k-dependent augmented näıve Bayes
with k = 2, n/2 (f2AN, fn.5AN) and flexible complete graph classifier (fCG). The
best results, in each data set, are marked in grey.

average ranks are shown in the critical difference diagrams [Demšar (2006)]
in Figure 4.6(a). The analysis is quite similar at α = {0.1, 0.05}. No dis-
joint cluster of algorithms is obtained, but the good average rank obtained by
fTAN and MP, and the competitive results of the flexible classifiers should be
highlighted.

The comparison between the three BN based paradigms (CMN, CGN and
KBN), using mNB, mTAN, gNB, gTAN, fNB and fTAN classifiers, shows two
types of behaviors: families of NB and TAN classifiers. The Friedman test re-
jects the null hypothesis at α = {0.1, 0.05}. The results for the Nemenyi test
and the average ranks are shown in Figure 4.6(b). The analysis are similar
at α = {0.1, 0.05}. The different behavior of NB and TAN classifier families,
especially at α = 0.1, should be noted. Flexible classifiers, at each complexity
level, seem to perform better than Gaussian and multinomial classifiers in
terms of the average rank. However, the differences are not statistically sig-
nificant using the Nemenyi test at α = 0.1. It should be noted that using the
Wilcoxon test, which has a larger discriminative power than Shaffer’s static
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(a) Flexible classifiers and benchmarks. In order to simplify the diagram, we have

decided to include only the clusters associated with the best (MP) and the worst

(gNB) classifiers in terms of average ranks.

(b) gNB, gTAN, mNB, mTAN, fNB and fTAN.

(c) Flexible classifiers.

Fig. 4.6. Critical difference diagrams Demšar (2006) representing Nemenyi post-hoc
test and average ranks for different sets of classifiers. The test has been performed
at α = {0.1, 0.05} significance levels as is suggested in [Demšar (2006)].

procedure, the fTAN shows significantly lower error levels than the mNB,
mTAN, gNB, gTAN and fNB classifiers at α = 0.05.

The last comparison has been performed between the flexible classifiers
proposed. The Friedman test finds statistically significant differences in the
overall behavior at α = {0.1, 0.05}. The results of the Nemenyi test and the
average ranks are shown in Figure 4.6(c). While fNB seems to show the worst
behavior, fTAN shows the best one. The fTAN classifier obtains significantly
better errors than fNB at α = 0.05 (see Figure 4.6(c)). Moreover, fTAN ob-
tains the highest number of best results across all data sets (see Table 4.4).
The curse of dimensionality of the kernel density estimation [Duda et al.
(2000); Scott (1992); Silverman (1986)] could explain the decrease of the per-
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(a) Average (b) Image

Fig. 4.7. The graphs show the effect of the smoothing degree in the performance of
flexible classifiers. A vertical dashed line indicates the normal rule plus differential
scaled smoothing option. Figure 4.7(a) shows the average across all the data sets and
it illustrates the good behavior of the normal rule plus differential scaled approach.
The behavior of the error shown in Figure 4.7(a) is representative of most data
sets included in this study. On the other hand, Figure 4.7(b) shows an abnormal
behavior for which the normal rule plus differential scale approach obtains a bad
performance.

formance of flexible classifiers while the structural complexity increases, such
as from fTAN to fCG (see Table 4.4 and Figure 4.6(c)).

4.8.2.3 Smoothing degree

This section illustrates the effect of the smoothing degree in the flexible clas-
sifiers by means of 21 UCI databases (see Table 5.2). The error estimation
is performed in the same way as the experimentation of Section 4.8.2.2. In
order to study the effect of the smoothing degree, we have scaled the band-
width matrix, which has been obtained with the normal rule plus differential
scaled approach, using the following 15 coefficients τ = {1.6−7, ..., 1.67} =
{0.037, ..., 26.843}. The coefficients cover a broad range of smoothness in a
logarithmic scale. Due to the base 1.6 the jumps from one coefficient to the
next are not too big. Note that this scaling process can be understood as a
wrapper optimization of the smoothing parameter, h.

Figure 4.7 summarizes the main results of this section. For simplicity, as
fTAN and fNB are representative of the flexible classifiers presented, we only
include their results.

In the worst case (see Figure 4.7(b)), the differences between the error
obtained with the normal rule plus differential scaled approach and the best
smoothing degree are 8.6% and 9.0% for fNB and fTAN respectively. This
result suggests that, when the optimization of the smoothing degree is per-
formed in a wrapper way, the performance of the flexible classifiers can be
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considerably improved in some domains (see Figure 4.7(b)). Note that in Im-
age 1-NN classifier obtains the best performance (see Tables 4.3 and 4.4) and
thus the error decreases as h tends to zero.

In spite of this, on average, the error difference with respect to the best
smoothing degree value is only 0.7% for both fNB and fTAN (see Figure
4.7(a)). Besides, on average, the flexible classifiers obtain good results with
the smoothing coefficient τ ∈ {1.6−6, ..., 1.61}. Therefore, it can be concluded
that the normal rule plus differential scaled approach usually obtains good
approximations for classification. Coupled with this, we think that, using a
more robust spread measure than standard deviation, the flexible classifiers
could obtain better results in some problematic domains, such as Image.

4.8.2.4 Bias plus variance decomposition of the expected error

In this section, we perform the bias plus variance decomposition in order to
study, in each data set, the behavior of the error [Kohavi and Wolpert (1996)]
of the flexible classifiers presented. We define the expected error of the zero-
one loss function as:

EM =

∫ ∞

−∞
f(y)

r
∑

c=1

p(c|y)(1 − pM (c|y))dy (4.18)

where pM (·) is the estimation modeled by a classifier and p(·) is the true distri-
bution of the domain. The bias-variance decomposition of the expected error
can be useful to explain the behaviors of different algorithms [van der Put-
ten and van Someren (2004)]. For further details on the bias plus variance
decomposition of the error see Section 1.8.3.

The decompositions have been performed following the procedure pro-
posed by Kohavi and Wolpert (1996) with parameters a = 10 and b = 1/3|S|,
where a is the number of training sets {S1, ...,Sa}, b is its size and |S| is the
size of the entire data set. We have set a = 10 because the bias estimation
is precise enough for this value (see Figure 1 of Kohavi and Wolpert (1996)),
and due to its acceptable computational cost. We have set b = 1/3|BD| to
ensure a minimum training set size which could avoid overfitting problems.
Kohavi and Wolpert (1996) choose a set of databases with at least 500 in-
stances in order to ensure accurate estimates of the error. So as to obtain
more robust conclusions, we have fulfilled this constraint and the following
data sets have been selected for the experimentation: Block, Image, Letter,
MFeatures, Musk, Pima, Satellite, Vehicle, Vowel, Waveform and Yeast

(see Table 5.2).
Table 4.5 shows the results of the decomposition obtained for each classifier

in the selected data sets following the criteria of Kohavi and Wolpert (1996)
–at least 500 instances. It also includes an additional row which contains the
average values for each classifier across all the data sets selected. For example
fTAN obtains a bias2 = 11.6 plus var = 18.1 decomposition for Balance,
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Data set fNB fTAN f2AN fn.5AN fCG

Balance 13.3 + 20.3 11.6 + 18.1 10.8 + 16.3 10.8 + 16.3 9.8 + 14.7

Block 3.5 + 1.3 3.2 + 1.3 3.4 + 1.3 3.6 + 1.2 3.7 + 1.2

Image 15.8 + 3.1 14.1 + 2.4 14.3 + 3.0 14.9 + 3.7 14.6 + 3.5

Letter 20.5 + 13.4 12.1 + 10.2 8.4 + 9.6 5.7 + 8.5 5.6 + 8.3

MFeatures 15.6 + 6.5 11.7 + 6.9 11.5 + 7.5 10.9 + 6.9 11.3 + 6.5

Musk 12.3 + 1.4 9.8 + 3.6 14.8 + 6.6 28.8 + 6.9 27.6 + 6.5

Pendigits 11.7 + 3.0 4.0 + 1.6 2.7 + 1.1 2.5 + 1.0 2.7 + 1.0

Pima 16.6 + 11.5 16.4 + 12.6 16.4 + 12.9 16.6 + 12.3 17.3 + 12.0

Satellite 17.3 + 1.3 9.1 + 3.1 8.4 + 4.7 8.3 + 4.8 8.1 + 4.6

Spambase 19.1 + 2.8 19.0 + 2.8 19.0 + 2.8 19.0 + 2.8 19.0 + 2.8

Vehicle 29.3 + 13.5 20.6 + 14.6 20.3 + 15.5 21.0 + 17.0 21.2 + 16.8

Vowel 21.1 + 24.7 11.1 + 17.5 8.9 + 14.7 7.2 + 12.1 6.9 + 11.7

Waveform 17.3 + 3.7 12.5 + 9.5 12.4 + 10.4 13.1 + 11.8 13.7 + 10.3

Yeast 31.1 + 27.2 30.7 + 27.5 31.2 + 27.4 31.2 + 27.1 31.9 + 27.2

Average 17.5 + 9.4 13.3 + 9.4 13.0 + 9.6 13.8 + 9.4 13.8 + 9.1

Table 4.5. Bias plus variance decomposition of the expected misclassification error
rate.

and an average decomposition across all the data sets of bias2 = 13.3 plus
var = 9.4. Taking into account the results of Table 4.5, the following four
behaviors could be highlighted (see Figure 4.8):

• The behavior of the decomposition with Vehicle data set (and in a similar
way for Waveform and Satellite) is as follows (see Figure 4.8(a)):
– Bias notably decreases in the jump from fNB to fTAN. On the other

hand, fTAN, f2AN, fn.5AN and fCG obtain quite similar bias compo-
nent values.

– Variance slightly increases with the increase of the complexity.
• The behavior of the decomposition with Vowel data set (and in a similar

way for Balance, Letter, Pendigit and Vowel) is as follows (see Figure
4.8(b)):
– Bias decreases with the increase of the complexity.
– Variance also decreases with the increase of the complexity.

• The behavior of the decomposition with Pima data set (and in a similar way
for Block, Image, Spambase and Yeast) is as follows (see Figure 4.8(c)):
– Bias and variance terms remain almost constant for all the flexible

classifiers.
• Taking into account Balance, Block, Image, Letter, MFeatures, Musk,

Pendigits, Pima, Satellite, Spambase, Vehicle, Vowel, Waveform and
Yeast data sets, on average, the behavior of the decomposition is as follows
(see Figure 4.8(d)):
– Bias notably decreases in the jump from fNB to fTAN. On the other

hand, fTAN, f2DB, fn.5DB and fCG obtain quite similar bias compo-
nent values of the error. Therefore, it can be concluded that for the
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selected data sets, fTAN model is precise enough for estimating the
underlying density of the data.

– Variance remains almost constant with the increase of the complexity,
and thus, all the models seem to have a similar sensitivity to changes
in the training set.

In Musk data set the bias component of the fNB is clearly lower than fn.5AN
and fCG. The mutual information between predictors conditioned on the class
reveals that some predictor variables are independent with respect to each
other. Thus, the compulsory addition of arcs could be the reason for the
increment of the bias term.

In order to understand the behavior of the variance term, the following
two observations should be taken into account:

• The number of parameters (see Section 4.6.5) among the flexible classifiers
presented is quite similar, and it is almost independent with respect to their
structural complexity (see Table 4.1 with k = 0 for fNB and k = d − 1
for fCG). Thus, from the parametric learning point of view, the sensitivity
to the changes in the training set (variance term) should be quite similar
among flexible classifiers.

• Given a factorization of the density f(y|c), the probability mass of the
density is more spread as fewer dependencies between variables are con-
sidered. For example, f(y1, y2|c) is sharper than f(y1|c)f(y2|c). Therefore,
the classifiers which model more dependencies between variables tend to
model an a posteriori distribution p(c|y) with values nearest to 0 or 1
(degenerated distributions). If an instance y(i) has a distribution more de-
generated than another instance y(j), then its variance should be lower,
vary(i) < vary(j) (see Equation 1.43).

The first observation explains the similar variance values for fNB, fTAN, fkDB
and fCG classifiers in Block, Image, Vehicle, MFeatures, Pima, Satimage
and Spambase. The first and the second observations could explain the slight
decrease of the variance term as the structural complexity increases in Vowel,
Letter and Pendigits.

Generally, among flexible classifiers, those which model correlations be-
tween predictor variables seem to be more suitable for modeling the under-
lying true densities of the variables, keeping at the same time the error due
to the variance almost constant. Therefore, in the absence of prior knowledge
about the true density underlying the data, it may be advisable to use flexible
classifiers which model correlations between predictors.

4.9 Conclusions and future work

This chapter presents the novel kernel based Bayesian network (KBN) paradigm.
A KBN is a Bayesian network which models the generalized probability dis-
tribution for X, ρ(x), using a mixed Gaussian kernel probability distribution.
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(a) Vehicle (b) Vowel

(c) Pima (d) Average decomposition

Fig. 4.8. The graphics represent the evolution of the bias plus variance decomposi-
tion of the expected error for different flexible classifiers ordered by their structural
complexity. The graphics include the decompositions for three representative data
sets (Vehicle (a), Vowel (b) and Pima (c)) and for the average over the selected
data sets (d).

Besides, this chapter proposes a general purpose estimator for the quantities
of the information theory based on mixed Gaussian kernel distributions. Fol-
lowing the nomenclature introduced by John and Langley (1995), we use the
term flexible classifiers to name the family of classifiers based on KBN. We
have presented the following classifier induction algorithms for KBN: fNB,
fTAN, fkAN and fCG.

We have demonstrated the strong consistency of mixed Gaussian kernel
probability distributions as estimators of ρ(x), of the KBN paradigm provided
that it is a CI-map, of the estimators for the quantities of the mutual infor-
mation t̂(X1; ...; Xd), and for the flexible classifiers as estimators of p(c|x)
assuming that they are CI-maps.

The KBN paradigm can be considered as an alternative to Bayesian multi-
nomial networks because they can directly handle continuous variables with-
out needing to discretize them. In addition, it can also be considered as an
extension of the conditional Gaussian network paradigm from the point of
view of the flexibility of their approaches for estimating densities, because
kernel based Bayesian network uses a non-parametric kernel based density
estimation instead of a parametric Gaussian one. The kernel based estima-
tion confers better flexibility properties than Gaussian approach in order to
fit non-Gaussian densities. In summary, the factorizations codified by a KBN
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tends to be better approaches to the true joint density and, therefore, the
flexible classifiers tend to obtain error rates closer to the Bayes error. This
idea is illustrated in Section 4.8.1 by means of a set of four artificial domains.
In the UCI data sets included, flexible classifiers seems to outperform their
Gaussian versions, and at least, equal to their multinomial versions. Besides,
they obtain competitive results compared to the state-of-the-art algorithms
selected.

Among the flexible classifiers proposed, the novel flexible tree-augmented
näıve Bayes obtains the best ranking average and estimated errors in the
selected domains. Besides, taking into account the bias plus variance decom-
position of the expected error, it seems to model the true densities much better
than the flexible näıve Bayes, and thus, the error due to the bias component is
lower. On the other hand, flexible classifiers which model the correlation be-
tween predictors obtain quite similar bias components of the error. Moreover,
the error due to the variance remains almost constant among flexible classifiers
and, therefore, all the models seem to have a similar sensitivity to changes in
the training set. In summary, among the flexible classifiers presented, in the
absence of prior knowledge about the true density underlying the data, it is
generally advisable to use the novel flexible tree-augmented näıve Bayes for
supervised classification.

One of the most important disadvantages of the kernel density estima-
tion is related with the computational cost that is required to evaluate an
instance. Our main future work line consists of relaxing the strong computa-
tional cost required. We have considered approximating the kernel-based esti-
mation by means of semi-parametric approaches, such as, mixture of truncated
exponentials [Moral et al. (2002); Romero et al. (2006)], spline approxima-
tion [de Boor (2001); Gurwicz and Lerner (2004, 2005)] or Gaussian mixture
models [McLachlan and Peel (2000)]. The Gaussian mixture models can be
learned by means of the following approaches: EM algorithm [Bilmes (1997);
McLachlan and Peel (2000)], projection pursuit algorithm [Aladjem (2002,
2005)], iterative pairwise replacement algorithm [Scott and Szewczyk (2001)]
or M-Kernel merging procedure [Zhou et al. (2003)]. These semi-parametric
approaches considerably reduce the computational cost: from a number of
operations related with the number of training cases to a fixed one. Both
approaches will allow us to design and implement other search techniques in
the space of possible structures: wrapper search [Kohavi et al. (1997)] guided
by the accuracy, or using metaheuristics such as genetic algorithms [Gold-
berg (1989)] or estimation of distribution algorithms [Larrañaga and Lozano
(2002); Lozano et al. (2006)].

Other future lines based on KBN include the experimental study of clas-
sifiers in mixed domains and the use of the paradigm for making probabilistic
inference. We thought that the paradigm can be specially useful with training
sets of short and medium size.
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Information theory, classification error and

tree-augmented structures

This chapter focuses on the relation that seems to exist between some mea-
sures of information theory and the classification error of classifiers based on
Bayesian networks. We were initially interested in this relation because con-
ditional mutual information and/or mutual information have been used to
guide the structural learning of most of filter classifier induction algorithms
based on Bayesian networks [Sahami (1996); Friedman et al. (1997)]. The ini-
tial motivation of this chapter consist of searching novel alternative scores to
conditional mutual information for guiding the structural learning of the tilter
classifier induction algorithms presented in this document.

It is known that information theory provides a set of measures which can
be interpreted in terms of uncertainty. Intuitively, the uncertainty surrounding
the class random variable and the classification error should be related: when
the uncertainty of the class increases the classification error tends to increase.
This chapter provides a set of empirical evidences and theoretical arguments,
which are used to show the connection between classification error and infor-
mation theory. Besides, based on this knowledge, a discriminative structural
learning algorithm of tree-augmented structures proposed by Pernkopf and
Bilmes (2005) is theoretically analyzed.

The chapter is organized as follows. Section 5.1 presents the intuitions
related to a set of quantities of the information theory, the likelihood and
conditional likelihood with respect to the classification error. Then, some of
the intuitions are illustrated by means of a set of experiments with tree-
augmented naive Bayes structures. In Section 5.2 we analyze the discrimina-
tive structural learning of tree-augmented naive Bayes structures proposed by
Pernkopf (2005). In the same section we provide a set of experiments which
illustrate some intuitions related to the structural learning of classifiers based
on BNs. This section includes an empirical comparison between both genera-
tive and discriminative learning algorithms of tree-augmented structures when
the parameters are learned with a generative approach. Finally, Section 5.3
summarizes the main contributions introduced in this section and indicates
the main future work lines.
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5.1 Information theory, likelihood and classification error

Let us consider a supervised classification domain defined over the random
variables C and X, where C is a discrete class random variable with r states,
{c1, ..., cr}, and X = (X1, ..., Xn) are the predictor random variables. In su-
pervised classification we are interested in predicting the state of C given a
value of the predictor random variables X = x. This task is usually achieved
learning a classifier φ, that is, a classification rule that assigns class labels
to the different values of X . The reader may consult Section 1.4 for further
details on supervised classification.

As we noted in Section 1.5, the classifier which achieves the lower error
is the Bayes classifier, φB(x) ≡ argc max p(c|x) ≡ argc max ρ(x, c). Note that
in this section we are considering only 0-1 loss functions (see Equation 1.19).
The classification error of the Bayes classifier, ǫB, is given by Equation 1.15
using the Bayes classifier φB(x).

However, in most situations the a posteriori distribution of the class given
the predictors, p(c|x), is unknown and it must be estimated from a training set
S = {(x(1), c(1)), ..., (x(N), c(N))}. This chapter is focused on classifiers φ(x) =
argc max ρφ(x, c) learned from data S, which are based on Bayesian networks
(BNs) for (X, C). These classifiers approach the joint generalized probabil-
ity function ρ(x, c), by means of the generalized probability function ρφ(x, c)
provided by the BN. They classify using the rule φ(x) = argc max ρ(x, c).
Note that the classification rule φ(x) = argc max ρφ(x, c) is equivalent to the
rule argc max pφ(c|x), where pφ(c|x) can be obtained from ρφ(x, c). When the
learning is focused on modeling ρ(x, c), it is said to be generative or informa-
tive learning. Alternatively, when the learning is focused on obtaining a good
estimation of p(c|x), it is said to be conditional [Jebara (2004)] or discrimina-
tive learning [Pernkopf and Bilmes (2004); Santafé et al. (2005)] (see Section
1.6 for further details on generative, conditional and discriminative learning).
In the remainder of this chapter we will use the term discriminative as pro-
posed by [Pernkopf and Bilmes (2004); Santafé et al. (2005)]. Discriminative
learning is justified from the point of view of the Occam’s razor principle: “It
is futile to do with more what can be done with fewer”. Following a similar
idea Vapnik (1998) says “...one should solve the (classification) problem di-
rectly and never solve a more general problem as an intermediate step (such
as modeling ρ(x, c))”. Indeed, generative learning solves a more general prob-
lem than discriminative learning because it tries to model ρ(x, c) instead of
p(c|x).

The BN associated to the classifier φ is defined by the pair (s, Θs), where
s is the structure of the network and Θs is the set of its parameters (see
Section 2.4 for further details on BNs). The BN associated to φ is usually
learned in two steps: the structural learning and the parametric learning. The
structural learning defines the qualitative part of the BN for (X, C), that
is, the structure s. The structure can be interpreted as a set of conditional
independence assertions between the implied random variables (X, C) (see
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Section 2.2.1 for further details on the conditional independence assertions
codified by a BN). In other words, the structural learning defines the factor-
ization of ρφ(x, c) = ρ(x, c; s, Θs) = p(c; Θc)

∏n
i=1 ρ(xi|pa(s)i; Θi), where the

parameters Θ = (Θ1, ..., Θn, Θc) are not learned. This chapter is focused on
structural learning of BN based classifiers. On the other hand, the paramet-
ric learning defines the quantitative part of the model, that is, the param-
eters Θs = (Θ1, ..., Θn, Θc) which determine the local probability functions
ρ(xi|pai, c; Θi) and p(c; Θc). For further details on BNs in general, and BMNs
in particular, the reader may consult Chapter 2.

This section is focused on the structural learning of tree-augmented naive
Bayes (TAN) family of structures which are clearly biased towards supervised
classification (see Section 2.5.2 for the intuitions behind the augmented-naive
Bayes family of structures). The parametric learning is performed using a
generative procedure, such as the maximum likelihood.

5.1.1 Intuitions behind information theory

The entropy of the class C, H(C), can be interpreted as a measure of the un-
certainty surrounding the class variable C (see Section 1.10 for further inter-
pretations of the entropy). It is intuitive to think that both the uncertainty of
the class C and the capability to predict C a priori should be somehow related
[Cover and Thomas (1991)]. The entropy H(C) depends on the distribution
p(c) and it reaches the maximum when the class labels are equiprobable, that
is, when the error of the classification rule argc max p(c) is maximum. Alter-
natively, the entropy is minimum (zero) whenever a class label c exists for
which p(c) = 1 and, therefore, the error of the classification rule argc max p(c)
is also minimum (zero). When the uncertainty surrounding the class variable
increases, the error of the classification rule argc max p(c) seems to increase.
Thus, the error and the uncertainty surrounding C should be somehow related
and the reduction of the uncertainty of C tends to be beneficial for supervised
classification.

The conditional entropy of C given the predictors X, H(C|X), measures
the uncertainty surrounding the class variable when the predictors are known.
Following the intuition behind H(C), it could be thought that the conditional
entropy H(C|X) is given some information about the error associated to the
classification rule argc max p(c|x). Moreover, the mutual information between
the class and the predictors, I(X ; C) = H(C) − H(C|X), can be interpreted
as the reduction in the uncertainty of C when the predictors X are known (see
Section 1.10 for further interpretations). Intuitively, the mutual information
I(X; C) tends to be inversely related to the error of the rule argc max p(c|x).

The classifier φ defines a factorization ρφ(x, c) through a BN defined by
(s, Θs). It is possible to define the entropy of the random variables (X, C)
assuming that they are distributed according to ρφ(x, c):
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Hφ(X, C) = −Eρ̂(x,c)[log(ρφ(x, c))] = − 1

N

N
∑

i=1

log(ρφ(x(i), c(i))) (5.1)

where ρ̂(x, c) = 1/N iff (x, c) ∈ S, and 0 in the other case, is the empirical
distribution given by the training set S = {(x(1), c(1)), ..., (x(N), c(N))}. Note
that in order to indicate explicitly the generalized probability function used
to compute the expectance over (X , C), we have changed the notation E(x,c)

by Eρ(x,c). We call φ-entropy of (X, C) to Hφ(X, C) and it depends on both
the structure of the model, s, and the parameters, Θ. However, we focus our
attention on the structural learning and the set of conditional independence
statements inferred from the structure of φ, s. We have removed from the
study the parametric learning. From here on we will consider only generative
approaches to the parametric learning: the parameters of BMN and CGN
based classifiers are learned by maximum likelihood (see Chapters 2 and 3),
and the parameters of KBN are learned with the differential scaled plus normal
rule approach (see Chapter 4). Therefore, through this chapter, the value of φ-
entropy only depends on the structure of the model, s. The experimental and
theoretical results should be interpreted in the light of a generative learning
of the parameters.

Analogously to the φ-entropy, Hφ(X , C), we can define other measures of
the information theory such us the φ-conditional entropy of C given X:

Hφ(C|X) = Eρ̂(x,c)[pφ(c|x)] (5.2)

where pφ(c|x) is obtained from ρφ(x, c) by conditioning on X. We are in-
terested in finding relations between these quantities based on the general-
ized probability function ρφ(x, c) and the classification error associated to
the classification rule φ(x) = argc max ρφ(x, c) taking into account the condi-
tional independencies included in the structure s of the model φ. Intuitively,
Hφ(C|X) is the measure we are interested in because, assuming the distri-
bution ρφ(x, c), it measures the uncertainty surrounding the class variable C
given the predictors X. Thus, when learning the structure of the classifier
φ(x) we could try to minimize the φ-conditional entropy, Hφ(C|X). However,
the use of φ-mutual information between C and X is useful. The φ-mutual
information is given by:

Iφ(X; C) = Eρ̂(x,c)[log
ρφ(x, c)

pφ(c)ρφ(x)
] (5.3)

It can be interpreted as the reduction of the uncertainty of the class C when
the predictors X are known.

5.1.2 Intuitions behind likelihood and conditional likelihood

Some generative structural learning algorithms make use of the likelihood of
the model φ given the data S [Friedman et al. (1997); Jebara (2004)]:
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L(φ|S) =

N
∏

i=1

ρφ(x(i), c(i))

The likelihood of the model given the data can be interpreted as the proba-
bility of the data set S given the model φ, L(φ|S) ≡ p(S|φ). The probability
p(S|φ) can be understood as the capability of φ for explaining the random
variables (X , C) in the data set S.

In order to facilitate the operations, the log likelihood is commonly used:

LL(φ|S) =

N
∑

i=1

log(pφ(c(i), x(i)))

It should be noted that argφ max L(φ|S) ≡ argφ max LL(φ|S).
Some of the most common criteria based on the likelihood are: likelihood

maximization [Friedman et al. (1997)], minimum description length [Lam and
Bacchus (1994); Rissanen (1978)] and Bayesian metrics [Cooper and Her-
skovits (1992); Heckerman et al. (1995)]. These approximations can be con-
sidered generative because they try to maximize the likelihood LL(φ|S) under
some constraints. Therefore, they try to accurately model p(x, c) (see Propo-
sition 5.1, Proposition 5.2 and Corollary 5.1). However, the likelihood shows
some problems for the supervised classification tasks [Friedman et al. (1997);
Jebara (2004)]:

LL(φ|S) =

N
∑

i=1

log(pφ(c(i)|x(i))) + log(ρφ(x(i))) (5.4)

The first term is directly related with supervised classification and it is usu-
ally referred to as conditional likelihood. The second one, named marginal
log likelihood, is only relevant for modeling the (in)conditional dependence
relationships among predictive variables X but it is irrelevant for classifica-
tion purposes [Jebara (2004); Friedman et al. (1997)]. Moreover, when the
number of variables, n, grows p(x) tends to take lower values and, on the
other hand, p(c|x) tends to take values of the same magnitude. Therefore,
the marginal log likelihood term becomes more important than conditional
likelihood as n grows [Friedman et al. (1997)] and this is clearly detrimen-
tal for supervised classification. Besides, focusing on the structural learning
process, maximum likelihood increases monotonically with respect to the con-
ditional dependencies modeled. In other words, maximum likelihood criteria
tends to induct complete structures. Nevertheless, the maximization of the log
likelihood score does not necessarily obtain classifiers with lower error rates.

On the other hand, maximum conditional likelihood criterion could be
more appropriate than maximum likelihood for supervised classification prob-
lems [Jebara (2004); Grossman and Domingos (2004)]:

CL(φ|S) =

N
∏

i=1

pφ(c(i)|x(i))



186 5 Information theory, classification error and tree-augmented structures

The conditional likelihood is given by the conditional probability of the class
variable given the predictors, p(c|x) [Jebara (2004)]. It treats the class variable
C in the same special way as supervised classification. Analogously to the like-
lihood, the conditional likelihood can be interpreted as the likelihood of the
random variable C when the predictor variables X are known given the data
set S. The structural learning process guided by the conditional likelihood
can be considered discriminative because it tries to find a set of arcs which
accurately model the conditional distribution p(c|x) rather than ρ(x, c) (see
Proposition 5.3, Proposition 5.4 and Corollary 5.2). The logarithm of CL(φ|S)
is known as conditional log likelihood, CLL(φ|S), and it corresponds to the
first term of Equation 5.4. The maximization of conditional log likelihood is
directly related with the minimization of the φ-conditional entropy Hφ(C|X)
(see Proposition 5.3). From the point of view of the information theory, min-
imizing the conditional entropy is equivalent to reducing the uncertainty of
the class variable when the predictors are known. This is clearly beneficial for
classification.

Usually, the structural learning is constrained to a subfamily of struc-
tures, e.g. TAN structures. In this case, two situations are possible. If the
true distribution of the domain, ρ(x, c), can be represented by the selected
subfamily of structures, e.g. TAN structures, generative learning may learn
classifiers with a competitive performance. On the other hand, if ρ(x, c) can
not be represented by the selected subfamily of structures, generative struc-
tural learning should perform worse than discriminative structural learning.
The idea is generalizable to both parametric and structural learning of BNs
(see [Santafé (2007)] for theoretical results).

Following, we present a set of theoretical results related to the intuitions
provided in the previous sections.

5.1.3 Theoretical results

This subsection provides a set of theoretical results which relate the previously
introduced measures. Besides, we show that these quantities are related to
Kullback-Leibler divergence [Cover and Thomas (1991)]. We have presented
the results only for discrete random variables for the sake of simplicity and
clarity but, these results are generalizable to mixed domains. Some of the
provided results are adapted from Friedman et al. (1997).

Proposition 5.1 Given a training set S = {(x(1), c(1)), ..., (x(N), c(N))} and
a classifier φ learned from S given by (s, Θs), the φ-entropy of (X , C) verifies
that

Hφ(X, C) = − 1

N
LL(φ|S) (5.5)

Proof.
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Hφ(X , C) = −Ep̂(x,c)[log pφ(x, c)]

= −
∑

x,c

p̂(x, c) log pφ(x, c)

= − 1

N

N
∑

i=1

log pφ(x(i), c(i))

= − 1

N
LL(φ|S)

. �

Thus, given a training set S, minimizing Hφ(X , C) is equivalent to maximizing
LL(φ|S).

Proposition 5.2 Given a training set S = {(x(1), c(1)), ..., (x(N), c(N))} and
a classifier φ learned from S given by (s, Θs), the Kullback-Leibler divergence
DKL(p̂(x, c)||pφ(x, c)) verifies that

DKL(p̂(x, c)||pφ(x, c)) ∝ Hφ(X , C) (5.6)

Proof.

DKL(p̂(x, c)||pφ(x, c)) = Ep̂(x,c)[log
p̂(x, c)

pφ(x, c)
]

= Ep̂(x,c)[log p̂(x, c)] − Ep̂(x,c)[log pφ(x, c)]

= k + Hφ(X , C)

where k is a constant given S. �

Corollary 5.1 Given a training set S = {(x(1), c(1)), ..., (x(N), c(N))} and a
classifier φ learned from S given by (s, Θs), the Kullback-Leibler divergence
DKL(p̂(x, c)||pφ(x, c)) verifies that

DKL(p̂(x, c)||pφ(x, c)) ∝ LL(φ|S) (5.7)

The proof is straightforward in the light of Proposition 5.1 and Theorem 5.2.
Thus, maximizing the log likelihood, or equivalently minimizing the φ-

entropy, is equivalent to minimizing the Kullback-Leibler divergence between
the empirical and the modeled distributions, p̂(x, c) and pφ(x, c).

Proposition 5.3 Given a training set S = {(x(1), c(1)), ..., (x(N), c(N))} and
a classifier φ learned from S given by (s, Θs), the φ-conditional entropy ver-
ifies that

Hφ(C|X) = − 1

N
CLL(φ|S) (5.8)
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Proof.

Hφ(C|X) = −Ep̂(x,c)[log pφ(c|x)]

= −
∑

x,c

p̂(x, c) log pφ(c|x)

= − 1

N

N
∑

i=1

log pφ(c(i)|x(i))

= − 1

N
CLL(φ|S)

. �

Thus, given a training set S, minimizing Hφ(C|X) is equivalent to maximizing
CLL(φ|S).

Proposition 5.4 Given a training set S = {(x(1), c(1)), ..., (x(N), c(N))} and
a classifier φ learned from S given by (s, Θs), the expectance of the Kullback-
Leibler divergence Ep̂(x)[DKL(p̂(c|x)||pφ(c|x))] verifies that

Ep̂(x)[DKL(p̂(c|x)||pφ(c|x))] ∝ Hφ(C|X) (5.9)

where p̂(x) has been obtained by marginalizing p̂(x, c) over C.

Proof.

Ep̂(x)[DKL(p̂(c|x)||pφ(c|x))] = Ep̂(x)[Ep̂(c|x)[log
p̂(c|x)

pφ(c|x)
]]

= Ep̂(x,c)[log
p̂(c|x)

pφ(c|x)
]

= Ep̂(x,c)[log p̂(c|x)] − Ep̂(x,c)[log pφ(c|x)]

= k + Hφ(C|X)

where k is a constant given S. �

Corollary 5.2 Given a training set S = {(x(1), c(1)), ..., (x(N), c(N))} and
a classifier φ learned from S given by (s, Θs), the expected Kullback-Leibler
divergence Ep̂(x)[DKL(p̂(x, c)||pφ(x, c))] verifies that

Ep̂(x)[DKL(p̂(c|x)||pφ(c|x))] ∝ CLL(φ|S) (5.10)

The proof is straightforward in the light of Proposition 5.3 and Proposition
5.4.

Thus, maximizing the conditional log likelihood, or equivalently minimiz-
ing the conditional entropy, is equivalent to minimizing the expected Kullback-
Leibler divergence between the empirical and the modeled conditional distri-
butions, p̂(c|x) and pφ(c|x).

Following, in order to illustrate some of the presented theoretical results,
we perform a set of experiments which show the benefits of CLL for guiding the
structural learning of classifiers based on TAN structures when the parameters
are learned in a generative way.
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5.1.4 Experimental results with TAN structures

This section provides empirical evidence in order to illustrate the benefits
of using conditional log likelihood instead of log likelihood in the structural
learning process. We experimentally show that conditional log likelihood is
significantly better than log likelihood for guiding the structural learning of
TAN structures with classification purposes. We estimate the Spearman cor-
relation coefficient between the classification error and both the likelihood and
the conditional likelihood of TAN structures. This estimation is performed in
different domains using Algorithm 11.

The experiments have been performed in both artificial and real-world
[Asuncion and Newman (2007)] continuous domains. It must be noted that the
experiments of this section have been performed with kernel based Bayesian
networks (KBN) [Pérez et al. (2009)], a kind of BN which uses kernel density
estimation [Silverman (1986); Wand and Jones (1995); Simonoff (1996)] in
order to model the densities of the continuous predictors conditioned to each
class value. The parameters of the classifiers based on KBN are learned with
differential scaled plus normal rule option, as described in Chapter 4. Note
that this approach can be understood as a generative learning of parameters.
The reader may consult Chapter 4 for further details on KBN paradigm.

Algorithm 11: Estimation of the Spearman correlation coefficient.

1 Inputs

2 The number of different TAN structures (l), the data S .

3 Outputs

4 Spearman correlation coefficients: s(LL(φ|S); ǫφ) and s(CLL(φ|S); ǫφ).

5 Procedure
6 Create l different TAN structures s in a deterministic way.

7 Estimate for each TAN structure s: classification error ǫφ, log likelihood
LL(φ|S), and conditional log likelihood CLL(φ|S).

8 Using all the estimated measures calculate the following Spearman cor-
relation coefficients: s(LL(φ|S); ǫφ) and s(CLL(φ|S); ǫφ).

A. Artificial data sets

This section summarizes the results obtained in a set of artificial domains
generated using the procedure of Figure 12. Intuitively, the procedure starts
generating a graph. Then, a uniform distribution is sampled. The factorization
of the joint probability function, given by the graph, is estimated by means of
kernels using the sampled data. The result of the procedure is a factorization of
ρ(x, c) based on KBN. Most experiments with artificial data are restricted to
certain distribution assumptions, but real-world problems do not necessarily
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follow a parametric distribution in general. Besides, the underlaying distribu-
tion usually is unknown in real-world domains. On the other hand, there is no
way of generating all possible kinds of distributions as a consequence of the No
Free Lunch Theorem [Bishop (2006)]. However, a broad range of distributions
can be represented using KBNs. The generation of artificial domains based on
KBNs ensure a wide range of density shapes. The conclusions obtained from
the data sets sampled from KBNs can be considered general enough for our
purposes.

Algorithm 12: Procedure used to generate the artificial data sets.

1 Inputs

2 The number of classes (r), the a priori distribution of C (p(c)), the number
of predictor variables (n), the maximum number of predictor parents for
each predictor (k), the number of kernels (m) which models each
density f(xi|pai, C = c), and the range of the variables [0...max].

3 Outputs

4 A probability distribution ρ(x, c) based on the KBN paradigm.

5 Procedure
6 Generate randomly the graph s of the KBN structure taking into account

k and n.

7 Determine randomly, rand(1, 1+20, 1+21, ..., 1+2⌊log(m−1)⌋, m), the num-
ber of instances to be generated per each class C = c.

8 Generate randomly the instances S determined for each class c, which will
be used in order to model each kernel based density functions f(xi|xpai , c),
associated to s.

9 Learn from S the KBN based classifier associated to s and return it.

Each cell of Table 5.1 represents a Spearman non-linear correlation coeffi-
cient. The Spearman correlation coefficients have been obtained as follows:

• Repeat 50 times:
– Generate a distribution ρ(x, c) based on the KBN paradigm following

the procedure described in Figure 12 with parameters r = rand(2, 3, 4),
p(c) at random, n = {4, 8, 16, 32}, k = rand(1, ..., n − 1), m = 2048,
and max = 10.

– Sample from ρ(x, c) a test set ST of size 1000.
– Sample from ρ(x, c) three training sets S of size N = {20, 400, 8000}.
– Repeat for each training set S generated:

Obtain the Spearman correlation coefficients of this domain following
the procedure described in Figure 11 with l = 50. The estimation of
step 8 is performed using a holdout scheme (S for training and ST for
testing).

• Compute the mean value of the Spearman correlation coefficients across
the 50 domains generated.
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• Perform a Wilcoxon paired test at α = 1% significance level between the
Spearman coefficients s(LL(φ|S); ǫφ) and s(CLL(φ|S); ǫφ) following the
procedure described in Demšar (2006).

Number of variables
Score N 4 8 16 32

LL 20 -58.1 -56.0 -52.3 -46.1
CLL 20 ◦ -71.0 ◦ -67.2 ◦ -64.4 ◦ -60.5

LL 400 -58.1 -56.0 -52.3 -46.1
CLL 400 ◦ -71.0 ◦ -67.2 ◦ -64.4 ◦ -60.5

LL 8000 -64.4 -60.0 -55.0 -55.1
CLL 8000 ◦ -82.3 ◦ -80.5 ◦ -79.3 ◦ -80.6

Table 5.1. Mean of the Spearman correlation coefficients between the error and
both the LL and CLL scores across 50 domains. The artificial domains have been
generated with the procedure of Fig 12 with parameters r ∈ rand{2, 3, 4}, p(c)
at random (ensuring a minimum of p(c) = 0.1 per each class), n ∈ {4, 8, 16, 32},
k ∈ rand{1, ..., n − 1}, m = 2048, and max = 10.

Table 5.1 shows that CLL obtains statistically significant better non-linear
correlation coefficients for a different number of variables and different training
set sizes. We can conclude that, in the set of generated domains, CLL is better
than LL for guiding the structural learning of TAN structures when the local
factors are learned in a generative way.

B. UCI data sets

The main characteristics of the real-world continuous domains selected from
the UCI repository [Asuncion and Newman (2007)] are summarized in Figure
5.2. In order to obtain robust conclusions, we have selected data sets with
more than 5 variables for the experiment. Predictor variables with a variance
less than 10−4 have been removed to avoid precision problems.

The Spearman correlation coefficients of Table 5.3 have been obtained, at
each data set, using the procedure of Figure 11 with l = 50. The estimation
of step 3 is performed using a stratified 10-fold cross-validation for data sets
of less than 3000 samples and stratified 3-fold cross-validation in other cases.
In order to check the significance of the differences between the Spearman
coefficients s(LL(φ|S); ǫφ) and s(CLL(φ|S); ǫφ), a Wilcoxon paired test at
α = 1% significance level has been performed across all the included UCI
data sets following the procedure described in Demšar (2006).

The results show that conditional log likelihood is clearly better to guide
the structural learning of TAN structures for classification in the selected data
sets: it obtains statistically significant results at α = 1% across all the data
sets. Only in two data sets, Liver and Yeast, log likelihood obtains slightly
better non-linear correlation coefficients.
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Label r n N Name of the data set

1 Balance 3 4 625 Balance Scale Weight & Distance
2 Block 5 10 5474 Page Block’s Classification
3 Haberman 2 3 307 Haberman’s Survival
4 Image 7 18 2310 Image Segmentation
5 Ionosphere 2 34 351 Johns Hopkins University Ionosphere
6 Iris 3 4 150 Iris Plant

7 Letter 26 16 20000 Letter Image Recognition
8 Liver 2 6 345 Bupa Liver Disorders
9 Pima 2 8 768 Pima Indians Diabetes
10 Satellite 6 36 6435 Landsat Satellite
11 Sonar 2 60 208 Sonar, Mines VS Rocks
12 Thyroid 3 5 215 Thyroid Disease Records

13 Vehicle 4 19 846 Vehicle Silhouetes
14 Vowel 11 10 990 Vowel Recognition
15 Waveform 3 21 5000 Waveform Data Generation
16 Wine 3 13 179 Wine Recognition
17 Yeast 10 9 1484 Yeast

Table 5.2. Main characteristics of the data sets selected from UCI [Asuncion and
Newman (2007)]: the number of different values of the class variable (r), the number
of predictor variables (n), and the number of instances (N).

Correlation
Label LL ◦CLL

Block -0.51 -0.65

Image -0.12 -0.76

Ionosphere -0.60 -0.61

Letter -0.84 -0.96

Liver -0.48 -0.40

Pima -0.18 -0.28

Satellite -0.53 -0.83

Sonar -0.24 -0.27

Vehicle -0.55 -0.67

Vowel -0.81 -0.93

Waveform -0.78 -0.85

Wine -0.19 -0.42

Yeast -0.04 0.24

Table 5.3. Spearman non-linear correlation coefficients between the error and both
the LL and CLL scores for 50 different TAN structures in the selected data sets.
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5.2 Structural learning of classifiers based on TAN

structures

The version of the well known classifier induction algorithm proposed by Fried-
man et al. (1997), which learns tree-augmented naive Bayes classifier struc-
tures in a discriminative way, was presented to the Machine Learning com-
munity by Pernkopf and Bilmes (2005). This section analyzes the promising
discriminative structural learning algorithm, highlighting its theoretical prop-
erties. We demonstrate that, the discriminative algorithm does not necessarily
find a TAN structure that maximizes the conditional likelihood. The experi-
mentation has been performed with both artificial and real-world continuous
data sets for the following paradigms based on BNs: Bayesian multinomial net-
work (BMNs) plus discretization, conditional Gaussian networks (CGNs) and
kernel based Bayesian networks (KBNs). When the parameters are learned
in a generative way, the analyzed algorithm does not seem to outperform the
algorithm of Friedman et al. (1997). For further details on BMN, CGN and
KBN paradigms the reader may consult Section 2, Section 3 and Section 4,
respectively.

5.2.1 Some intuitions for generative classifiers

This section provides a set of experiments which intuitively illustrates the re-
lation between the uncertainty surrounding the class variable and the classifi-
cation error. The explanations are based on the following random framework:
on two continuous predictor random variables, X1 and X2, and a class random
variable, C, with r states, {c1, ..., cr}. Using these random variables, two clas-
sification models could be proposed based on TAN structures, φuni and φmul.
φuni corresponds to a classifier with a naive Bayes structure and φmul corre-
sponds to a classifier with a complete structure. Note that in domains with two
random variables, a complete TAN structure is equivalent to a complete graph.
Both models, φuni and φmul are based on the factorizations ρuni(x1, x2, c) =
p(c)f(x1|c)f(x2|c) and ρuni(x1, x2, c) = p(c)f(x1|c)f(x2|x1, c), respectively.
We assume that the factors are obtained from ρ(x1, x2, c) by conditioning and
marginalizing over the appropriate variables. For example, p(c) is obtained by
marginalizing over X1 and X2, and it represents the true distribution of the
class variable. However, in the experimental subsection the parameters will be

learned from data S = {(x(1)
1 , x

(1)
2 , c(1)), ..., (x

(N)
1 , x

(N)
2 , c(N))} in a generative

way and the factors will be estimators of the true p(c), f(x1|c), f(x2|c) and
f(x2|x1, c).

As we have introduced in Section 5.1, intuitively, the error of a classifier
φ should be directly related with the φ-entropy, Hφ(C|X), which measures
the uncertainty of the class when the predictor random variables are known.
Based on the models, φuni and φmul, two conditional entropies are defined
Huni(C|X1, X2) and Hmul(C|X1, X2). Besides, as we have noted in Section
5.1 both quantities are given by:
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Huni(C|X1, X2) = H(C) − Iuni((X1, X2); C)

Hmul(C|X1, X2) = H(C) − Imul((X1, X2); C)

where Iuni(X1, X2; C) = I(C; X1) + I(C; X2), due to the conditional in-
dependence CI(X1; X2|C), and Imul(X1, X2; C) = I(C; X1) + I(C; X2) −
I(X1; X2; C). Since the distribution p(c) is constant, the entropy H(C)
is constant and thus the quantities Huni(C|X1, X2) and Hmul(C|X1, X2)
are indirectly related with Iuni((X1, X2); C) and Imul((X1, X2); C), respec-
tively. In the next subsection we will illustrate that the errors associated to
φuni and φmul (ǫuni and ǫmul) are directly related to Huni(C|X1, X2) and
Hmul(C|X1, X2), respectively. This is equivalent to saying that the errors
ǫuni and ǫmul are indirectly related with the quantities Iuni(X1, X2; C) and
Imul(X1, X2; C) respectively. Therefore, in order to minimize the error in a
certain domain defined over (X1, X2, C), it should be more advisable to clas-
sify using φmul instead of φuni as the quantity I(X1; X2; C) increases. In the
following subsection we try to answer the following questions: given the a
posteriori probability pmul(c|x1, x2), what kind of relation exists between the
uncertainty that surrounds the class variable and the classification errors ǫmul

and ǫuni? Intuitively, the error should grow with the increase in the uncer-
tainty associated to pφ(c|x1, x2). When is more advisable to use pmul(c|x1, x2)
instead of puni(c|x1, x2) for classification? It can be hoped that a relevant mea-
sure is the difference between the information theory based measures related
to ǫuni and ǫmul.

5.2.1.1 Experimental analysis

This section tries to find monotonically increasing/decreasing relations be-
tween different measures based on information theory and the errors ǫmul,
ǫuni and ǫdif = ǫuni − ǫmul, when the predictors are continuous. For this pur-
pose, we randomly generate a set of continuous bivariate artificial domains
for computing a set of measures from information theory and the errors in-
troduced. The experimental results presented in this section have been taken
from Pérez et al. (2006a).

A. Random generator of domains

The random generator of domains (RGD) function employed in the experi-
mentation generates, in a random way, a set of artificial bivariate domains (see
Algorithm 13). Then, in each domain, a set of measures of information theory
and the exposed errors (ǫmul, ǫuni and ǫdif ) are computed. Each generated
domain is specified by a KBN given by the pseudocode shown in Algorithm
13. The factor f(x1, x2|c) is based on kernel densities and it depends on the
number of kernels to be used m, on the coordinates of each of those ker-

nels {k1, ..., km}, being ki = (x
(i)
1 , x

(i)
2 ), and on a unique smooth parameter

h2 = m− 1
6 .
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Algorithm 13: The pseudocode of the RGD function.

1 Inputs

2 The maximum number of kernels (mmax), number of classes (r), number
of domains to be generated (d), the range of the variables X1 and X2

(ranX1 and ranX2) and the a priori distribution of the class (p(c)).

3 Outputs

4 The errors ǫmul and ǫuni and a set of measures from information theory
for each domain generated.

5 Procedure
6 Repeat d times:

7 Set a number of kernel components mc ∈ {1, ..., mmax} for each density
f(x1, x2|c).

8 Compute a set of measures from information theory and the errors ǫmul,
ǫuni and ǫdif for the current domain.

9 End repeat

10 Plot ǫmul, ǫuni and ǫdif versus measures from information theory.

B. Experimental results

In order to study the relation between information theory based measures
and introduced errors, we generate a set of artificial domains with the same
a priori distribution p(c). Therefore, the entropy H(C) is constant across

them. Any real-world domain, with n predictors, can be seen as a set of
„

n
2

«

bivariate domains fulfilling the constraint that H(C) is constant. In this sense,
we hope that the conclusions of this study can be applied to certain real-
world domains. Figure 5.1 has been obtained using the RGD function with
parameters mmax = 40, r = 4, d = 10000, ranX1 = [0, 15], ranX2 = [0, 15]
and p(C = c) = 0.1c for c ∈ {1, 2, 3, 4}. The experiment has been performed
with different parameter values obtaining similar conclusions.

It seems that I((X1, X2); C) and I(X1; C)+I(X2; C) are inversely propor-
tional to ǫmul and ǫuni respectively (see Figures 5.1(a) and 5.1(b)). Besides,
I(X1; X2; C) = I(X1; C) + I(X2; C) − I((X1, X2); C) seems to be inversely
proportional to ǫdif (see Figure 5.1(c)). Therefore, given a pair of continuous
predictors, the lower I(X1; X2; C) becomes, the more advisable it is to use a
classifier which models pφ(c|x1, x2) in a multivariate way.

5.2.2 Filter TAN structural learning algorithms

In this section we theoretically analyze the promising discriminative structural
learning of TAN structures proposed by Pernkopf and Bilmes (2005). Besides,
we empirically study the algorithm in both artificial and real-world data sets.
The algorithm is compared with the classic and well known generative version
proposed by Friedman et al. (1997).
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Fig. 5.1. This figure shows the errors ǫmul, ǫuni and ǫdif versus measures based on
information theory.

5.2.2.1 Generative tree augmented naive Bayes

TAN structure was introduced by Friedman et al. (1997) in order to relax
the strong conditional independence assumption between predictor variables
made by a naive Bayes structure (see Section 2.5.2 for further details on TAN
and naive Bayes structures).

In TAN structures each predictor may have at most one predictor variable
as parent, plus the class variable. In Friedman et al. (1997) a generative algo-
rithm is proposed for learning a classifier with TAN structure which maximizes
the likelihood L(φ|S). We name this algorithm filter multinomial TAN and it
has been introduced in detail in Section 2.5.3.2. In this section we call this al-
gorithm generative TAN for the sake of clarity and simplicity. The structural
learning procedure of generative TAN constructs a maximum weighted span-
ning tree, using the mutual information conditioned to the class I(Xi; Xj |C),
following the procedure proposed by Chow and Liu (1968). The algorithm
builds a TAN model that maximizes the likelihood and it is asymptotically
correct if the data have been generated from a TAN structure.

5.2.2.2 Discriminative tree augmented naive Bayes

This section analyzes the theoretical properties of discriminative TAN algo-
rithm proposed by Pernkopf and Bilmes (2005) (see Algorithm 14). Discrim-
inative TAN is equivalent to generative TAN introduced by Friedman et al.
(1997) with two differences:
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• Instead of using the conditional mutual information between two attributes
given the class variables, it uses the 3-way interaction information (see
Equation 1.59).

• Edges (Xi, Xj) with a negative estimation of the 3-way interaction infor-
mation, I(Xi; Xj; C), are forbidden. This difference provides the advan-
tage with respect to its generative version of removing useless arcs between
variables without the need of any threshold measure.

Algorithm 14: Discriminative TAN algorithm.

1 Inputs

2 Training set S .

3 Outputs

4 TAN structure.

5 Procedure
6 ∀i, j/i < j compute I(Xi; Xj ; C).

7 Construct an undirected complete graph with the predictors as nodes
{X1, ..., Xn}. Label each edge XiXj with I(Xi; Xj ; C).

8 Construct the maximum spanning tree from the undirected complete one
using the Chow and Liu procedure [Chow and Liu (1968)].

9 Delete the edges XiXj with I(Xi; Xj ; C) < 0.

10 Direct the forest structure obtained choosing at random a root node Xi

at each connected component. Add arcs from the class variable C to each
predictor {X1, ..., Xn}.

5.2.3 Analyzing discriminative TAN

This section analyzes the theoretical properties of discriminative TAN al-
gorithm taking into account the information theory measures based on the
model φ: φ-conditional entropy, Hφ(C|X) (see Equation 5.2), and φ-mutual
information, Iφ(X; C) (see Equation 5.3).

Theorem 9. Let C be a discrete random variable and X = (X1, ..., Xn) a
multivariate discrete random variable, and let S be a collection of N in-
stances, S = {(x(1), c(1)), ..., (x(N), c(N))}. Given a joint probability function
p(x, c) learned from data S and the set of marginal distributions obtained by
its marginalization, the discriminative TAN algorithm (see Figure 14) builds
a TAN structure s that does not necessarily maximize CLL(φ|S).

Proof. Maximizing conditional likelihood is equivalent to maximizing the con-
ditional log likelihood:

CLL(φ|S) =
N
∑

j=1

log pφ(c(j)|x(j))
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where pφ(c|x) is given by the joint distribution pφ(x, c) modeled by the clas-
sifier φ, which has been learned from S.

Using the empirical distribution, p̂(x, c), we can reformulate the condi-
tional log likelihood in terms of φ-conditional entropy defined in Equation
5.1:

CLL(φ|S) = −N(Hφ(C|X))

∝ −Hφ(C) + Iφ(X; C) (5.11)

Given p(x, c), Hφ(C) is constant and thus, minimizing Hφ(C|X) is equiv-
alent to maximizing Iφ(X; C) (Equation 5.11). Using the chain rule for the
mutual information [Cover and Thomas (1991)] we can reformulate Iφ(X; C)
as follows:

Iφ(X ; C) =

n
∑

i=1

I(Xi; C|X1, ..., Xi−1)

=

n
∑

i=1

I(Xi; C)

+

n
∑

i=1

I(Xi; Pai; C)

−
n
∑

i=1

I(Xi; ¬Pai|Pai)

where ¬Pai = {X1, ..., Xi−1}\Pai and I(Xj ; Pai; C) = I(Xj ; Pai|C) −
I(Xj ; Pai). Considering the constraints of the TAN structures, Iφ(X ; C) can
be rewritten as:

Iφ(X ; C) =

n
∑

i=1

I(Xi; C)

+

n
∑

i=1

I(Xi; Pai; C)

−
n
∑

i=1

I(Xi; ¬Pai|Pai) (5.12)

The first term is constant in TAN structures. The second term is max-
imized by the algorithm discriminative TAN (see Figure 14). However, the
second term is not considered by discriminative TAN and it can be greater
than zero. We call the quantity

∑n
i=1 I(Xi; ¬Pai|Pai) the residual (see

Equation 5.12). This term becomes zero when the following set of condi-
tional independencies is true {∀i ∈ {1, ..., n} : ¬Pai ⊥ Xi|Pai ∧ Pai ∈
{X1, ..., Xi−1} ∧ |Pai| ≤ 1}. These constraints are not true in general for
TAN models. Moreover, the residual is not constant for all TAN structures.
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Therefore, discriminative TAN algorithm does not necessarily maximize the
conditional log likelihood. �.

Besides, as a consequence of Proposition 5.4 and Corollary 5.2, discrimina-
tive TAN procedure does not necessarily minimize Ep̂(x)(DKL(p̂(c|x)||pφ(c|x)).

Discriminative TAN algorithm needs to compute O(n2) 3-way interaction
information statistics. If the complexity of the estimator used to compute
I(Xi; Xj; C) is O(I), the time complexity of discriminative TAN results in
O(n2I). Usually, the computational cost to estimate I(Xi; Xj ; C) is similar to
I(Xi; Xj; C). Thus, usually, discriminative TAN and generative TAN [Fried-
man et al. (1997); Pérez et al. (2006b)] have the same the computational
complexity.

5.2.3.1 Analyzing the residual term

We call the quantity
∑n

i=1 I(Xi; ¬Pai|Pai) the residual (see Equation 5.12).
This term becomes zero when the following set of conditional independencies
is true {∀i ∈ {1, ..., n} : ¬Pai ⊥ Xi|Pai ∧ Pai ∈ {X1, ..., Xi−1} ∧ |Pai| ≤ 1}.
These constraints are not true in general for TAN models.

5.2.4 Experimental results

This section includes the experimentation in both artificial and real-world
continuous domains. The experimentation has been performed for algorithms
which induct TAN structures in both discriminative (see Figure 14) and gen-
erative [Friedman et al. (1997)] ways. It must be noted that parametric learn-
ing is performed in a generative way, maximizing the likelihood [Geiger and
Heckerman (1994); Friedman et al. (1997)]. The experimentation has been
performed for the following algorithms:

• Generative flexible TAN (GF) [Pérez et al. (2009)].
• Discriminative flexible TAN (DF).
• Generative Gaussian TAN (GG) [Pérez et al. (2006b)].
• Discriminative Gaussian TAN (DG).
• Generative multinomial TAN (GM) [Friedman et al. (1997)].
• Discriminative multinomial TAN (DM) [Pernkopf and Bilmes (2005)].

The term flexible means that inducted classifier is based on KBN [Pérez
et al. (2009)], Gaussian is based on conditional Gaussian networks [Pérez et al.
(2006b)], and multinomial is based on Bayesian multinomial networks (see
Chapters 2, 3 and 4 for further details on BMN, CGN and KBN paradigms,
respectively). The mutual information quantities I(Xi; Xj) and I(Xi; Xj |C)
[Cover and Thomas (1991)] used by the algorithms have been estimated using
the KDE [Pérez et al. (2009)], Gaussian [Pérez et al. (2006b); Geiger and Heck-
erman (1994); Cover and Thomas (1991)] and multinomial [Friedman et al.
(1997); Cover and Thomas (1991)] approaches, respectively. In order to work
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with TAN models based on BMN, we have performed independent discretiza-
tions for each pair training-test, learning the discretization policy using only
the training set. We have decided to use the supervised entropy discretization
algorithm [Fayyad and Irani (1993)] because it obtains competitive perfor-
mances in supervised classification tasks. When the entropy algorithm only
creates one interval, equal frequency discretization with 3 intervals has been
used.

A. Artificial data sets

This section shows the results obtained in a set of continuous artificial domains
generated using the procedure of Figure 12. Table 5.4 summarizes the obtained
results. Each entry of the table represents a mean estimated classification error
and a Wilcoxon paired test between the estimated errors across all data sets
following the procedure described in Demšar (2006). Each mean estimated
error has been obtained using the following procedure:

• Repeat 50 times:
– Generate a KBN following the procedure described in Figure 12 with

parameters r = rand(2, 3, 4), p(c) at random, n ∈ {4, 8, 16, 32}, k ∈
rand{1, ..., n − 1} and m = 1024. The value of m has been increased
to 2048 for n = 32 in order to obtain similar errors.

– Generate a test set ST of size 1000, sampling the generated KBN.
– Sample three training sets SN of size N = {20, 400, 8000} from the

generated KBN.
– Repeat for each training set SN generated: Obtain the errors of this

domain using a holdout scheme (SN for training and ST for testing).
• Compute the mean error value across the 50 domains.
• Compute a Wilcoxon paired test at α = 1% significance level with each

paradigm using the estimated errors obtained by the generative and dis-
criminative models, across the 50 artificial domains following the procedure
described in Demšar (2006).

A set of statistically significant difference of errors is shown in Table 5.4.
Most of them indicate that the generative approach is better. In spite of
being statistically significant, they represent small differences (less than 1%)
(see Figure 5.2).

B. UCI data sets

The results provided in this section have been obtained in a set of continuous
real-world domains taken from the UCI repository [Asuncion and Newman
(2007)] (see Figure 5.2). Predictor variables with a variance less than 10−4

have been removed. The classification error has been estimated using a strat-
ified 10-fold cross-validation. The results have been summarized in Table 5.5.

There is no statistically significative difference between the discriminative
and generative versions at α = 1% significance level taking into account all
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Number of variables
Training size Classifiers 4 8 16 32

20 GF ◦ 38.3 ◦ 36.3 36.9 32.2
DF 39.3 36.9 36.7 32.4
GG 41.5 40.0 40.7 37.4
DG 41.2 40.1 40.8 37.2
GM 42.7 41.4 40.0 34.1
DM ◦ 42.3 ◦ 40.5 39.5 33.8

400 GF ◦ 26.9 21.5 15.7 20.0
DF 27.5 21.4 15.8 20.1
GG 29.5 24.0 17.9 23.0
DG 29.7 24.3 17.8 23.0
GM 30.5 25.3 18.6 23.3
DM 30.5 25.3 18.7 23.6

8000 GF 23.3 ◦ 16.2 13.1 17.1
DF 23.4 16.6 13.1 17.2
GG 29.3 22.1 17.3 19.9
DG 29.3 22.3 17.0 20.0
GM 22.5 16.6 ◦ 12.6 17.5
DM 22.7 16.8 13.0 17.6

Table 5.4. Mean errors of the classifiers in generated artificial data sets. The circles
◦ represent statistically significant differences between the generative and discrimi-
native versions of the algorithm.

Error
Label GF DF GG DG GM DM

Balance 12.3 11.7 11.4 11.4 29.0 28.6

Block 5.6 5.6 7.8 8.4 4.5 48.4

Haberman 26.2 25.5 24.2 24.9 30.4 31.0

Image 14.5 16.4 12.9 14.3 6.1 12.2

Ionosphere 8.3 7.7 7.7 8.8 8.5 9.9

Iris 4.0 4.0 2.7 3.3 6.7 6.0

Letter 19.0 23.7 28.5 28.3 15.4 14.9

Liver 38.5 38.7 41.7 43.4 35.4 36.8

Pima 28.2 26.0 24.5 25.8 24.7 25.4

Satellite 13.3 15.3 16.8 16.7 12.2 17.8

Sonar 26.0 26.0 35.1 29.4 21.2 20.7

Thyroid 1.6 3.7 4.2 3.3 6.5 6.5

Vehicle 37.1 37.8 23.9 37.9 29.8 31.0

Vowel 10.7 11.2 22.8 26.8 28.2 27.2

Waveform 19.5 19.7 17.8 19.5 17.9 19.6

Wine 2.3 0.6 0.6 1.1 2.2 1.7

Yeast 40.6 41.1 43.3 44.1 43.0 42.9

Table 5.5. Errors of the different classifiers in selected UCI data sets.
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Fig. 5.2. This graph shows the error of the generative approach minus the error
of the discriminative approach (ǫgener. − ǫdiscrim.) for the artificial data sets. Each
value in the axis X corresponds to a configuration of the number of variables and the
training size: 1-(4 variables, 20 cases), 2-(4 variables, 400 cases),...,11-(32 variables,
400 cases), 12-(32 variables, 8000 cases).

Fig. 5.3. This figure shows the error of the generative approach minus the error of
discriminative approach in the selected real-world data sets. The values in the axis
X correspond to the indexes of the data sets (see Table 5.2)

the data sets for each kind of BN. The differences between the errors of the
generative and discriminative approaches at each data set are shown in Figure
5.3. In most of the data sets the differences are smaller than 3%.

Taking into account the results presented in this section for both artificial
and real-world data sets and the results of Section 5.1.4, it seems that the in-
fluence of the residual term should be taken into account by the discriminative
TAN algorithm.

5.3 Conclusions

This chapter intuitively shows the relations among the classification error ǫφ,
the conditional entropy Hφ(C|X), the mutual information Iφ(C; X), and the
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conditional log likelihood CLL(φ|S). The chapter provides a set of illustra-
tive experimental results which support the presented intuitions. Besides, we
present a theoretical result which relates the conditional likelihood CLL(φ|S)
with the conditional entropy Hφ(C|X). We theoretically analyze the promis-
ing discriminative structural learning of tree-augmented naive Bayes classifiers
proposed by Pernkopf and Bilmes (2005), proving that it does not necessarily
maximize the conditional likelihood of the obtained model.

The main future line of work consists of proposing new algorithms for
the induction of classifiers based on Bayesian networks guided by conditional
likelihood.
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Conclusions

This chapter summarizes the main contributions and conclusions provided in
this dissertation. Moreover, this chapter addresses a set of general directions
for further research. More specific conclusions and future work lines have been
exposed in each corresponding chapter.

6.1 Summary of the dissertation

The summary of this document can be divided into two parts: background con-
cepts related to supervised classification and Bayesian networks, and method-
ological contributions.

6.1.1 Background concepts

The literature review presented in the first part of this dissertation tries to
cover the most relevant aspects of supervised classification based on Bayesian
networks. This part is divided into Chapter 1 and Chapter 2.

Chapter 1 formally presents a set of relevant concepts and procedures
for supervised classification. It covers the following issues: probability the-
ory, definition of supervised classification and some related problems, decision
theory, generative, conditional and discriminative learning of classifiers, esti-
mation theory, error estimation, comparison of classifier induction algorithms,
bias plus variance decomposition of the error [Kohavi and Wolpert (1996)],
different performance measures based on confusion matrix and ROC curves,
information theory, curse of dimensionality and feature subset selection, dis-
cretization, and non-parametric density estimation.

In Chapter 2 we focus our attention on the Bayesian multinomial network
paradigm for supervised classification. For this purpose, we have introduced
some concepts of graph theory focusing on directed acyclic graphs, proba-
bilistic graphical models, Bayesian networks for supervised classification, aug-
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mented näıve Bayes family of structures and a set of classifier induction al-
gorithms for each kind of augmented näıve Bayes structure. Besides, we have
explained the main drawbacks of Bayesian multinomial network paradigm in
order to deal with continuous features and we have presented the most popular
approaches to avoid them.

6.1.2 Methodological contributions

The main contributions provided in this document have a methodological na-
ture. This dissertation is concerned with supervised classification in domains
with continuous random variables, Bayesian networks and information theory.
The methodological contributions can be divided into three parts: conditional
Gaussian networks, kernel based Bayesian networks and information theory.

The main contributions concerning conditional Gaussian networks can be
summarized as follows:

• We have collected a set of theoretical results taken from [Lauritzen (1996)]
regarding joint, marginal and conditional forms of Gaussian density func-
tion and mixed Gaussian distribution. We have provided alternative proofs
to some of these theoretical results.

• We have proposed the formulation of a set of measures of information
theory under some assumptions related to mixed Gaussian distribution.

• The conditional Gaussian network paradigm is formally defined [Bottcher
(2004)] analyzing the properties of the local factors. Besides, we have in-
cluded a discussion about alternative definitions of conditional Gaussian
networks.

• A set of classifiers for each subfamily of augmented näıve Bayes struc-
tures is presented: ranking selective Gaussian näıve Bayes, wrapper selec-
tive Gaussian näıve Bayes, Gaussian tree-augmented näıve Bayes, wrap-
per selective Gaussian tree-augmented näıve Bayes, filter Gaussian k-
dependent augmented näıve Bayes, wrapper selective Gaussian k-dependent
augmented näıve Bayes, wrapper forward Gaussian joint augmented näıve
Bayes, wrapper backward Gaussian joint augmented näıve Bayes and wrap-
per condensed Gaussian joint augmented näıve Bayes.

• We have included an experimental study in continuous real-world domains
of the presented classifiers based on conditional Gaussian networks. The
errors of the classifiers are estimated and, then, they are compared fol-
lowing a multiple comparison procedure [Garćıa and Herrera (2008)]. In
addition, the behavior of the classifiers and the sources of the error are
analyzed using the bias plus variance decomposition of the error [Kohavi
and Wolpert (1996)].

For further details on the methodological contributions related to conditional
Gaussian networks the reader should consult Chapter 3.
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The main contributions concerning kernel based Bayesian networks are
summarized in the following list:

• In order to learn the bandwidth matrix with classification purposes, we
have proposed the normal rule plus differential scaled heuristic.

• Gaussian kernel probability density function and mixed Gaussian kernel
distribution have been introduced. Besides, we have provided a set of the-
oretical results regarding joint, marginal and conditional forms of Gaussian
kernel probability density function and mixed Gaussian kernel distribution.

• We have introduced a set of non-parametric estimators for quantities of
information theory which can be thought of as being based on mixed
Gaussian kernel distributions.

• Kernel based Bayesian network paradigm has been formally defined based
on the results provided for mixed Gaussian kernel distributions.

• A set of classifiers based on augmented näıve Bayes structures has been
presented for kernel based Bayesian networks: flexible näıve Bayes, flexible
tree-augmented näıve Bayes, flexible k-dependent augmented näıve Bayes
and flexible complete graph classifier. These classifiers have been named
flexible classifiers [Pérez et al. (2009)].

• We have analyzed the storage and computational complexity of the pro-
posed classifier induction algorithms.

• We have studied the asymptotic properties of the results based on mixed
Gaussian kernel distribution: the definition of kernel based Bayesian net-
work, the flexible classifiers and the provided non-parametric estimators
of the quantities of information theory.

• Flexible classifiers have been empirically studied using artificial and real-
world data sets. We have analyzed the behavior of the flexible classifiers
and their sensitivity to changes in the smoothing degree using artificial
domains. We have estimated the classification errors of a set of benchmarks
and the proposed flexible classifiers in 21 continuous data sets from UCI
repository [Asuncion and Newman (2007)]. Based on the estimated errors,
we have performed different comparisons among the classifiers included
in the study. Besides, using the real-world data sets, we have studied the
effect of the smoothing degree in the performance of flexible classifiers and
the bias plus variance decomposition of the expected error [Kohavi and
Wolpert (1996)].

For further details on the methodological contributions related to kernel based
Bayesian networks the reader may consult Chapter 4.

The main contributions concerning the relation between information the-
ory and classification error are summarized in the following list:

• We have intuitively explained the connections between a set of measures
of information theory, conditional likelihood and classification error.

• We have provided a set of theoretical results which support some of the
previously introduced intuitions.
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• The relation between the error and information theory have been empir-
ically studied for tree-augmented näıve Bayes structures, using artificial
and real-world domains.

• Discriminative tree-augmented näıve Bayes classifier induction algorithm
[Pernkopf and Bilmes (2005)] has been theoretically studied and we show
that it does not necessarily maximize the conditional likelihood. A mod-
ification of the algorithm which takes into account the influence of the
residual term is proposed. The original algorithm has been compared to its
generative version for Bayesian multinomial network, conditional Gaussian
network and kernel based Bayesian network paradigms. The experimenta-
tion has been performed in artificial and real-world domains.

For further details on the methodological contributions related to information
theory and classification error the reader may consult Chapter 5.

6.2 Publications

The research work performed during the thesis period has produced the fol-
lowing publications in international JCR journals:

• A. Pérez and P. Larrañaga and I. Inza (2009) Bayesian classifiers based
on kernel density estimation: Flexible classifiers. International Journal of
Approximate Reasoning, 50(2):341–362.

• J. D. Rodŕıguez, A. Pérez and J. A. Lozano (2009) Sensitivity analysis of
k-fold cross-validation in prediction error estimation. IEEE Transactions
on Pattern Analysis and Machine Intelligence. In press.

• J. A. Fernandes, X. Irigoien, N. Goikoetxea, J. A. Lozano, I. Inza, A.
Pérez and A. Bode (2009) Fish recruitment prediction, using robust su-
pervised classification methods. Ecological Modelling. In press.

• M. Guid, A. Pérez and I. Bratko (2008) How trustworthy is Crafty’s
analysis of world chess champions?. International Computer Games Asso-
ciation Journal, 31(3):131-144.

• A. Pérez and P. Larrañaga and I. Inza (2006). Supervised classification
with conditional Gaussian networks: Increasing the structure complexity
from näıve Bayes. International Journal of Approximate Reasoning, 43;
1–25.

• P. Larrañaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, J. A.
Lozano, R. Armañanzas, G. Santafé, A. Pérez and V. Robles (2006)
Machine learning in Bioinformatics. Briefings in Bioinformatics, 7:86-112.



6.3 Future work 211

In addition, the author has produced the following publications in confer-
ences and workshops:

• A. Pérez and P. Larrañaga and I. Inza (2006) Information theory and
classification error in probabilistic classifiers. Proceedings of the Ninth In-
ternational Conference on Discovery Science. Lecture Notes in Artificial
Intelligence, 4265:347–351.

• M. Guid, A. Pérez and I. Bratko (2007) How trustworthy is Crafty’s
analysis of world chess champions? Workshop on Computer Games, 15–
26.

• A. Pérez, P. Larrañaga e I. Inza (2005) Modelos gráficos probabiĺısticos
para la clasificación supervisada empleando la estimación basada en kernels
Gaussianos esféricos. Primer Congreso Español de Informática. Actas del
Tercer Taller de Mineŕıa de Datos y Aprendizaje, 3:125–134.

6.3 Future work

The topics of the future work can be divided into four groups: Bayesian multi-
nomial networks, conditional Gaussian networks, kernel based Bayesian net-
works and, information theory and classification error.

Regarding Bayesian multinomial networks, we are working on the design of
new classifier induction algorithms which control the bias and the variance of
the learned classifiers for augmented näıve Bayes structures. The idea consists
of controlling the available number of cases to compute reliable parameters of
the classifiers. This heuristic should directly control the variance component
of the classification error. Moreover, due to the bias and variance trade-off, it
controls the bias component. An example of this family of algorithms is the
wrapper selective dynamic multinomial kAN (see Section 2.7).

We suggest three future work lines related to the conditional Gaussian
network paradigm:

• We will provide a more flexible paradigm to deal with mixed domains
under Gaussian assumption by breaking with the structural constraints
imposed on the paradigm.

• Novel estimators for the quantities based on information theory under
Gaussian assumptions will be proposed.

• We will empirically evaluate alternative estimations to maximum likeli-
hood for learning the parameters of the model. Two are the main alter-
natives: a generative learning of parameters more stable to outliers than
maximum likelihood, and a discriminative learning of the parameters based
on conditional log likelihood and classification error.

We suggest four future work lines regarding kernel based Bayesian net-
works:
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• The experimental part presented in this document will be extended to
mixed domains.

• We will relax the strong computational requirements of the paradigm for
classifying new instances. We consider approximating the kernel-based es-
timation by means of a semi-parametric approach. This reduction in the
classification time will allow us to design and implement other search tech-
niques in the space of possible structures.

• We will apply the novel paradigm to inference problems in mixed domains.
• The structural constraint imposed on the paradigm will be broken and we

will propose a novel definition based on mixed variable Gaussian kernel
distribution.

Concerning information theory and supervised classification, we will pro-
pose novel discriminative classifier induction algorithms for Bayesian networks
guided by conditional likelihood.
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Blanco, R., Larrañaga, P., Inza, I., Sierra, B., 2003. Gene selection for cancer
classification using wrapper approaches. International Journal of Pattern
Recognition and Artificial Intelligence 18 (8), 1373–1390.

Bottcher, S. G., 2004. Learning Bayesian Networks with Mixed Variables.
Ph.D. thesis, Aalborg University.

Bouckaert, R. R., 1995. Bayesian Belief Networks: From Construction to In-
ference. Ph.D. thesis, University of Utrecht.

Bouckaert, R. R., 2004. Naive Bayes classifiers that perform well with contin-
uous variables. In: Proceedings of the Seventeenth Australian Conference
on Artificial Intelligence. pp. 1089–1094.

Braga-Neto, U. M., 2005. Small-sample error estimation: mythology versus
mathematics. In: Proceedings of the International Society for Optical En-
gineering. Vol. 5916. pp. 304–314.

Braga-Neto, U. M., Dougherty, E., 2004. Bolstered error estimation. Pattern
Recognition 37, 1267–1281.

Burman, P., 1989. A comparative study of ordinary cross-validation, v-fold
cross-validation and the repeated learning-testing methods. Biometrika 76,
503–514.

Burman, P., Chow, E., Nolan, D., 1994. A cross-validation method for depen-
dent data. Biometrika 81, 351–358.

Casella, G., Berger, R. L., 1990. Statistical Inference. Wadsworth and Brooks.
Castillo, E., Gutierrez, J. M., Hadi, A. S., 1997. Expert Systems and Proba-

bilistic Network Models. Springer-Verlag.
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Inza, I., Larrañaga, P., Sierra, B., 2001a. Feature subset selection by Bayesian
networks: A comparison with genetic and sequential algorithms. Interna-
tional Journal of Approximate Reasoning 27 (2), 143–164.
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Pérez, A., Larrañaga, P., Inza, I., 2006b. Supervised classification with con-
ditional Gaussian networks: Increasing the structure complexity from näıve
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