BAYESIAN NETWORKS

FOR
INTERPRETABLE
Machine Learning and Optimization

Pedro Larrañaga

Computational Intelligence Group
Artificial Intelligence Department Universidad Politécnica de Madrid

3rd International Symposium on New Trend in Computational Intelligence, December 12, 2021

Outline

(1) Introduction
(2) Bayesian Networks
(3) Machine Learning

4 Heuristic Optimization
(5) Conclusions and Further Topics

Outline

Introduction
Bayesian Networks

Machine Learning

- Modelling
- Visualization
- Evidence Propagation
- Evidence Explanation
- Machine Learning Tasks

4 Heuristic Optimization

Explainable Artificial Intelligence (XAI) (Gunning, 2017)

Concerns faced by various stakeholders (Belle and Papantonis, 2021)

A taxonomy of XAI approaches (Belle and Papantonis, 2021)

- Rudin C (2019). Stop explaining black box models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1, 206-215

Explaining black box models

```
Correctional Offender Management Profling for Alternative
Sanctions (COMPAS) (Northpointe, 2013)
```

Many courts make decisions about who to lock up, and for how long. based on software whose inner workings are a mystory.

Previous studies suggest that COMPAS predictions are accurate just
60-70\%
of the time.

10+
states use similar tools as a formal part of the sentencing process.

- Secret formula for predicting criminal recidivism
- Unnecessarily complicated as it does not seem to be any more accurate than a very sparse decision tree

Explaining black box models

Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) (Northpointe, 2013)

Many courts make decisions about who to lock up, and for how long. based on software whose inner workings are a mystory.

Previous studies suggest that COMPAS predictions are accurate just

of the time.

10+ states use similar tools as a formal part of the sentencing process.

- Secret formula for predicting criminal recidivism
- Unnecessarily complicated as it does not seem to be any more accurate than a very sparse decision tree

In vitro fertilization (Afnan et al. 2021)

- Black box models: Inability to perform shared decision-making with patients
- Accountability issues: Who is accountable when the model causes harm?

Interpretability (Lipton, 2016)

Human in the loop

- Interpretability stands for a human-level understanding of the inner working of the model
- Simulatability refers to a model's ability to be simulated by a human. Simplicity alone is not enough /very large amount of simple rules versus a neural networks with no hidden layers). At the level of the entire model
- Decomposability denotes the ability to break down a model into parts and then interpret these parts. At the level of individual components
- Algorithmic transparency expresses the ability to understand the procedure the model goes through to generate its output. At the level of the training algorithm

Interpretability (Lipton, 2016)

Human in the loop

- Interpretability stands for a human-level understanding of the inner working of the model
- Simulatability refers to a model's ability to be simulated by a human. Simplicity alone is not enough /very large amount of simple rules versus a neural networks with no hidden layers). At the level of the entire model
- Decomposability denotes the ability to break down a model into parts and then interpret these parts. At the level of individual components
- Algorithmic transparency expresses the ability to understand the procedure the model goes through to generate its output. At the level of the training algorithm

Interpret to

- Justify the decisions of the intelligent system to other people
- Understand its weakness
- Discover new knowledge
- Robustness. Are minor perturbations (or the presence of missing or noisy data) susceptible to change the outcome of the intelligent system?
- Bias. Can we detect biases in the data that unfairly penalize groups of individuals?
- Improvement. How can the prediction model be improved?
- Transferability. Under which circumstances the prediction model for one application domain can be applied (transferred) to another application domain?
- Human comprehensibility. Are we able to explain the model's algorithmic machinery to an expert? And to a non-expert?

Introduction

References

- Afnan MAM, et al. (2021). Ethical implementation of artificial intelligenc to select embryos in in vitro fertilization. Proceedings of the Fourth AAAI/ACM Conference on Artificial Intelligence
- Belle V, Papantonis I (2021). Principles and practice of explainable machine learning. Frontiers in Big Data, 1, article 688969
- European Commision (2020). White Paper on Artificial Intelligence: An European Approach to Excellence and Trust. Brussels
- Davies A et al. (2021). Advancing mathematics by guiding human intuition with AI. Nature, 600, 7074
- Gunning D (2017). Explainable Artificial Intelligence. DARPA/I20 Program
- High-Level Expert Group on AI (2019). Ethics Guidelines for Trustworthy AI. Brussels
- Lipton ZC (2016). The mythos of model interpretability. Communications of the ACM, 61 (10)
- Northpointe (2013). Practitioner's Guide to COMPAS Core. Technical Report, Northpointe
- Rudin C (2019). Stop explaining black box models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1, 206-215
- Wachter S, Mittelstadt B, Floridi L (2017). Why a right to explanation of automated decision-making does not exist in the general data protection regulation. International Data Privacy Law, 7(2), 76-99

Outline

Introduction

2 Bayesian Networks

Machine Learning

- Modelling
- Visualization
- Evidence Propagation
- Evidence Explanation
- Machine Learning Tasks
(4) Heuristic Optimization

Bayesian networks

DAG + CPTs

- Conditional independence: \mathbf{W} and \mathbf{T} are conditionally independent given $\mathbf{Z} \Leftrightarrow p(\mathbf{W} \mid \mathbf{T}, \mathbf{Z})=p(\mathbf{W} \mid \mathbf{Z})$
- Directed acyclic graph (DAG)
- Conditional probability tables (CPTs)
- $p\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} p\left(X_{i} \mid \operatorname{Pa}\left(X_{i}\right)\right)$

$p(A, N, S, D, P)=p(A) p(N \mid A) p(S \mid A) p(D \mid N, S) p(P \mid S)$

Bayesian networks

DAG + CPTs

- Conditional independence: \mathbf{W} and \mathbf{T} are conditionally independent given $\mathbf{Z} \Leftrightarrow p(\mathbf{W} \mid \mathbf{T}, \mathbf{Z})=p(\mathbf{W} \mid \mathbf{Z})$
- Directed acyclic graph (DAG)
- Conditional probability tables (CPTs)
- $p\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} p\left(X_{i} \mid \operatorname{Pa}\left(X_{i}\right)\right)$

$p(A, N, S, D, P)=p(A) p(N \mid A) p(S \mid A) p(D \mid N, S) p(P \mid S)$

Inference

- Exact: variable elimination, message passing
- Approximate: sequential simulation and MCMC

$$
p\left(X_{i} \mid \text { Stroke }=\text { yes }\right)
$$

Bielza, Larrañaga, 2020

[^0]
Conditional independence. An example

$$
p\left(X_{i} \mid \text { Stroke=yes }\right)
$$

$p\left(X_{i} \mid\right.$ Stroke=yes, Neural Atropy=yes $)$

$p\left(X_{i} \mid\right.$ Stroke=yes, Neural Atropy=yes, Age=young $)$

Learning Bayesian networks from data

Two elements

- Parameters $p\left(X_{i}=x_{i} \mid \mathbf{P a}\left(X_{i}\right)=\mathbf{p a}_{i}^{j}\right)$: MLE or Bayesian
- Structure: conditional independence tests or by optimizing a score

Bayesian networks for machine learning

Bayesian networks for machine learning

Bayesian networks

References

- Bielza C, Larrañaga P (2020). Data-Driven Computational Neuroscience. Machine Learning and Statistical Models. Cambridge University Press
- Castillo E, Gutierrez JM, Hadi A (1997). Expert Systems and Probabilistic Network Models. Springer
- Darwiche A (2009). Modeling and Reasoning with Bayesian Networks. Cambridge University Press
- Jensen F, Nielsen TD (2007). Bayesian Networks and Decision Graphs. Springer
- Koller D, Friedman N (2009). Probabilistic Graphical Models: Principles and Techniques. The MIT Press
- Lauritzen S (1996). Graphical Models. Oxford University Press
- Maathuis M, Drton M, Lauritzen S, Wainwright M (2019). Handbook of Graphical Models. CRC Press
- Neapolitan (2003). Learning Bayesian Networks. Prentice Hall
- Pearl J (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann
- Sucar E (2015). Probabilistic Graphical Models: Principles and Applications. Springer

Outline

Introduction

Bayesian Networks

Machine Learning

- Modelling
- Visualization
- Evidence Propagation
- Evidence Explanation
- Machine Learning Tasks

Heuristic Optimization

Interpreting Bayesian networks

Interactive learning of Bayesian networks (Bermejo et al. 2012)

- The option to run the algorithms in a step-by-step fashion
- Interactive learning is performed by having two windows: one showing the DAG and another one showing the proposed edits
- The user can select any edit from the list, not necessarily the one having the highest score, and the change will be immediately displayed on the network window. Alternatively, the user can add or remove any link from the DAG. In both cases, the scores will be recalculated and a new list will be proposed
- It is focussed on score + search approaches to structure learning with a greedy strategy

(C)Pedro Larrañaga

BNs for Interpretable ML and Opt

Consensus of Bayesian network structures (Kennedy et al. 2018)

BayesPiles

- Software for exploring, combining and comparing large collections of Bayesian networks learnt during the search
- Heuristics for the search: greedy search and simulated annealing
- Interactive consensus process: human in the loop

(c)Pedro Larrañaga

BNs for Interpretable ML and Opt

Visualization (Lacave and Diez, 2000; Elvira Consortium, 2002)

Elvira software: http://www.ia.uned.es/~elvira/instalar/Elvira.zip

- Importance factor of a node: number between 0 and 10 given by the expert
- The nodes whose importance factor is greater than, or equal to, the expansion threshold are automatically expanded
- Automatic colouring the arcs of the DAG, in order to offer qualitative insight about the CPTs
- Verbal explanation: "The disease [Name] has the following RISK FACTORS [List of risk factors]. It presents with the following SIGNS [List of signs] and SYMPTOMS [List of symptoms]. There are several TESTS to confirm or discard its diagnosis [List of tests]"

Visualization (Michiels et al. 2020)

BayeSuites https://neurosuites.com/

A web framework for learning, visualizing, and interpreting Bayesian networks that scale to tens of thousands of nodes

For a Bayesian networks with 20,000 nodes and 20,000 arcs:

- Time to model $10-15 \mathrm{~s}$
- Time to layout $<60 \mathrm{~s}$

Louvain algorithm

Visualization options

(C)Pedro Larrañaga

BNs for Interpretable ML and Opt

Evidence propagation. Exact methods (Bielza and Larrañaga, 2020)

Evidence propagation. Exact methods (Bielza and Larrañaga, 2020)

The "Dementia" BN

$p(A, N, S, D, P)=$
$p(A) p(N \mid A) p(S \mid A) p(D \mid N, S) p(P \mid S)$

$$
\begin{aligned}
& \text { Brute force for } p(D) \\
& \begin{aligned}
p(D) & =\sum_{A, N, S, P} p(A, N, S, P, D) \\
& =\sum_{A, N, S, P} p(A) p(N \mid A) p(S \mid A) p(D \mid N, S) p(P \mid S) \\
& =\sum_{A} p(A) \sum_{N} p(N \mid A) \sum_{S} p(S \mid A) p(D \mid N, S) \sum_{P} p(P \mid S)
\end{aligned}
\end{aligned}
$$

128 multiplications and 16 additions are required to yield $p(d)$

Evidence propagation. Exact methods (Bielza and Larrañaga, 2020)

The "Dementia" BN

$p(A, N, S, D, P)=$
$p(A) p(N \mid A) p(S \mid A) p(D \mid N, S) p(P \mid S)$

Brute force for $p(D)$

$$
\begin{aligned}
p(D) & =\sum_{A, N, S, P} p(A, N, S, P, D) \\
& =\sum_{A, N, S, P} p(A) p(N \mid A) p(S \mid A) p(D \mid N, S) p(P \mid S) \\
& =\sum_{A} p(A) \sum_{N} p(N \mid A) \sum_{S} p(S \mid A) p(D \mid N, S) \sum_{P} p(P \mid S)
\end{aligned}
$$

128 multiplications and 16 additions are required to yield $p(d)$

Variable elimination (Zhang and Poole, 1994) for $p(S \mid \neg d)$

Consider $\mathcal{L}=\left\{f_{A}(A), f_{N}(N, A), f_{S}(S, A), f_{P}(P, S), f_{D}(\neg d, S, N)\right\}$ and the ordering $P-A-N$

$$
p(S \mid \neg d) \propto \sum_{N} p(\neg d \mid N, S) \sum_{A} p(N \mid A) p(S \mid A) p(A) \sum_{P} p(P \mid S)
$$

Evidence propagation. Exact methods (Bielza and Larrañaga, 2020)

The "Dementia" BN

A $N \mid P(M \mid A)$		0.25										
a $n 0.15$ A ${ }^{\text {A }}$												
			$a \cdot n \cdot 0.85 \quad A \quad A \mid p(S \mid A)$									
$\checkmark a$$\neg a$ 0.03 $\neg a$ 0 0.97												
$\begin{array}{lll}n & s & d\end{array}$	0.96										ᄀ 10.98	
$n \quad s \neg d$	0.04											
$n \rightarrow s$ d	0.40		(1) $S P$	$p(P \mid S)$								
$n \neg s \neg d$	0.60											
$\stackrel{\sim}{\square}$	0.45 0.55		s s $s$$p^{\prime}$	0.75 0.25								
$\neg n$ s $\neg n$ $\neg n$ $\sim s$ \sim	0.55 0.10		$\neg s$ s p	0.25								
	0.10 0.90		$\neg s \neg p$	0.95								

Evidence propagation. Exact methods (Bielza and Larrañaga, 2020)

Message passing algorithm (Lauritzen and Spiegelhalter, 1988)

- Moralize the Bayesian network
- Triangulate the moral graph and output the cliques (nodes of the junction tree)
- Create the junction tree and assign initial potentials to each clique

Evidence propagation. Exact methods (Bielza and Larrañaga, 2020)

The "Dementia" BN

Moral graph

Message passing algorithm (Lauritzen and

 Spiegelhalter, 1988)- Moralize the Bayesian network
- Triangulate the moral graph and output the cliques (nodes of the junction tree)
- Create the junction tree and assign initial potentials to each clique

Evidence propagation. Exact methods (Bielza and Larrañaga, 2020)

The "Dementia" BN

Moral graph

Message passing algorithm (Lauritzen and

 Spiegelhalter, 1988)- Moralize the Bayesian network
- Triangulate the moral graph and output the cliques (nodes of the junction tree)
- Create the junction tree and assign initial potentials to each clique

Junction tree and the message passing

Evidence explanation

$\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ random variables in the Bayesian network; $\mathbf{E} \subset \mathbf{X}$ evidence; $\mathbf{U}=\mathbf{X} \backslash \mathbf{E}$ unobserved variables; $\mathbf{H} \subset \mathbf{U}$ variables of interest; $\mathbf{U}=\mathbf{H} \cup \mathbf{I}, C$ class variable

Types of queries

Posterior probability of a target variable $X_{i} \subset \mathbf{U}$ given the evidence $\mathbf{e} \rightarrow p\left(x_{i} \mid \mathbf{e}\right)$

- Posterior joint of a set of target variables $\mathbf{H} \subset \mathbf{U}$ given the evidence $\mathbf{e} \rightarrow p(\mathbf{h} \mid \mathbf{e})$
- Abductive reasoning: most likely configuration event that best explains the evidence (Kwisthout 2011)
- Total abduction: most probable explanation (MPE), the search for all the unobserved variables \rightarrow $\mathbf{u}^{*}=\arg \max _{\mathbf{u}} p(\mathbf{u} \mid \mathbf{e})$
- Partial abduction: maximum a posteriori (MAP), that is search for a subset of unobserved variables \rightarrow $\mathbf{h}^{*}=\arg \max _{\mathrm{h}} p(\mathbf{h} \mid \mathbf{e})$
- k most likely explanations: k MPE and k MAP
- Most relevant explanation (MRE) (Yuan et al. 2011): assignment of a subset of the unobserved variables that maximizes its generalized Bayes factor $\rightarrow \mathbf{h}^{*}=\arg \max _{\mathbf{h}} \frac{p(\mathbf{e} \mid \mathbf{h})}{p(\mathbf{e} \mid \overline{\mathbf{h}})}$
- MAP-independence explanation (Kwisthout 2021) $\rightarrow \mathbf{h}^{*}=\arg \max _{\mathbf{h}} p(\mathbf{h} \mid \mathbf{e})=\arg \max _{\mathbf{h}} \sum_{i \in \Omega(I)} p(\mathbf{H}=\mathbf{h}, \mathbf{I}=\mathbf{i} \mid \mathbf{e})$. The goal is to partition the set I into variables \mathbf{I}^{+}that are relevant to establishing the best explanation, and variables \mathbf{I}^{-} that are irrelevant
- Counterfactual reasoning in classification problems (Albini et al. 2020). Given \mathbf{x} such that $p(C=+\mid \mathbf{x})>p(C=-\mid \mathbf{x})$, the goal is to find \mathbf{x}^{\prime} very similar to \mathbf{x}, such that $p\left(C=+\mid \mathbf{x}^{\prime}\right)<p\left(C=-\mid \mathbf{x}^{\prime}\right)$

References (i)

Modelling. Visualization. Evidence Propagation. Evidence Explanation

- Albini E, Rago A, Baroni P, Toni F (2020). Relation-based counterfactual explanations for Bayesian network classifiers. Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, 451-457
- Bermejo I, Oliva J, Díez FJ, Arias M (2012). Interactive learning of Bayesian networks using OpenMarkov. Sixth European Workshop on Probabilistic Graphical Models, 27-34
- Bielza C, Larrañaga P (2020). Data-Driven Computational Neuroscience. Machine Learning and Statistical Models. Cambridge University Press
- Elvira Consortium (2002). Elvira: An enviroment for probabilistic graphical models. Proceedings of the First European Wokshop on Probabilistic Graphical Models, 222-230
- Kennedy J, Archambault D, Bach B, Smith VA (2018). BayesPiles: Visualization support for Bayesian network structure learning. ACM Transactions on Intelligent Systems and Technology, 10(1), 1-5
- Kwisthout J (2011). Most probable explanations in Bayesian networks: Complexity and tractability. International Journal of Approximate Reasoning 52(9), 1452-1469
- Kwisthout J (2021). Explainable AI using MAP-independence. Lecture Notes in Computer Science 12897, 243-254

References (ii)

Modelling. Visualization. Evidence Propagation. Evidence Explanation

- Lacave C, Diez FJ (2000). A review of explanation methods for Bayesian networks. Knowledge Engineering Review, 17(2), 107-127
- Lauritzen S, Spiegelhalter D (1988). Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B, 50(2), 157-224
- Michiels M, Larrañaga P, Bielza C (2020). BayeSuites: An open web framework for massive Bayesian networks focused on neuroscience. Neurocomputing, 428, 166-181
- Yuan C, Lim H, Lu T-C (2011). Most relevant explanation in Bayesian networks. Journal of Machine Learning Research, 42, 309-352
- Zhang N, Poole D (1994). A simple approach to Bayesian network computations, Proceedings of the 10th Biennial Canadian Conference on Artificial Intelligence, 171-178

Morphological classification of interneurons (Mihaljević et al. 2015)

Marginal probabilities

Morphological classification of interneurons (Mihaljević et al. 2015)

Marginal probabilities

Evidence in one predictor variable

Morphological classification of interneurons (Mihaljević et al. 2015)

Marginal probabilities

Evidence in one predictor variable

Evidence in two predictor variables

Morphological classification of interneurons (Mihaljević et al. 2015)

Marginal probabilities

Evidence in two predictor variables

Evidence in one predictor variable

Evidence in three predictor variables

(C)Pedro Larrañaga

BNs for Interpretable ML and Opt

Clustering of dendritic spines (Luengo-Sanchez et al. 2018)

Human dendritic spines

Clustering of dendritic spines (Luengo-Sanchez et al. 2018)

Clustering of dendritic spines (Luengo-Sanchez et al. 2018)

Mixture of Gaussian Bayesian networks

- In a multivariate Gaussian mixture model: $f(\mathbf{x} ; \boldsymbol{\theta})=\sum_{k=1}^{K} \pi_{k} f_{k}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}\right)$ each mixture density is given by:
$f_{k}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)=(2 \pi)^{-\frac{n}{2}}\left|\boldsymbol{\Sigma}_{k}\right|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)^{T} \boldsymbol{\Sigma}_{k}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)\right\}$
- In a mixture of Gaussian Bayesian networks each component is expressed as a Gaussian Bayesian network

An HMM as a Bayesian network

Autoregressive asymmetric linear Gaussian hidden Markov models (AR-AsLG-HMM) (Puerto-Santana et al. 2021)

An HMM as a Bayesian network

Graphical representation of an AR-AsLG-HMM model

Anomaly detection

Anomaly detection via likelihood of new instances (Larrañaga et al. 2018)

Anomaly detection

Anomaly detection via likelihood of new instances (Larrañaga et al. 2018)

Anomaly detection

Anomaly detection via likelihood of new instances (Larrañaga et al. 2018)

Anomaly detection

Anomaly detection via likelihood of new instances (Larrañaga et al. 2018)

Compute a probabilistic model based on (dynamic) Bayesian networks for the normal instances
Establish a threshold in this joint probability distribution
Compare the likelihood of the new instance with the likelihood threshold
(c)Pedro Larrañaga

BNs for Interpretable ML and Opt

Incorporating previous knowledge

Physics informed Bayesian networks

Two options:

Incorporate the expert knowledge into the structure of the Bayesian network
Simulation from a non-linear process defined by a system of ordinary differential equations + Learning the structure of the Bayesian network from this dataset (Quesada et al. 2021)

Bayesian approaches

- Conjugate prior distributions over the parameters. Dirichlet for mulltinomial. Normal-Wishart for Gaussian
- Prior distribution over the structures

Transfer learning (Velázquez et al. 2008)

- Transferring parameters with probability aggregation methods combining probabilities estimated from the target domain with those obatined from the auxiliary data
- Transferring structures by means of conditional independence tests using a weighted sum of conditional independence measures
(C)Pedro Larrañaga

BNs for Interpretable ML and Opt

Reinforcement learning

Interpreting reinforcement learning policies with Bayesian networks

- Modeling agent learning experience with Bayesian networks (Jin et al. 2011)
- Causal reinforcement learning (Zhang and Bareinboim, 2020)

Machine learning tasks

References (i)

- Bielza C, Li G, Larrañaga P (2011). Multi-dimensional classification with Bayesian networks. International Journal of Approximate Reasoning, 52, 705-727
- Borchani H, Bielza C, Martínez-Martín P, Larrañaga P (2012). Multidimensional Bayesian network classifiers applied to predict the European quality of life-5 dimensions (EQ-5D) from the 39-item Parkinson's disease questionnaire (PDQ-39), Journal of Biomedical Informatics, 45, 1175-1184
- Jin Z, Jin J, Song J (2011). Learning from experience: A Bayesian network based reinforcement learning approach. International Conference on Information Computing and Applications, 407-414
- Larrañaga P, Atienza D, Diaz-Rojo J, Puerto-Santana CE, Ogbechie A, Bielza C (2018). Industrial Applications of Machine Learning. CRC Press
- Luengo-Sanchez S, Fernaud-Espinosa I, Bielza C, Benavides-Piccione R, Larrañaga P, J. DeFelipe (2018). 3D morphology-based clustering and simulation of human pyramidal cell dendritic spines. PLOS Computational Biology, 14(6), e1006221
- Luengo-Sanchez S, Larrañaga P, Bielza C (2019). A directional-linear Bayesian network and its application for clustering and simulation of neural somas. IEEE Access, 7(1), 69907-69921
- Mihaljević B, Benavides-Piccione R, Bielza C, DeFelipe J, Larrañaga P (2015). Bayesian network classifiers for categorizing cortical GABAergic interneurons. Neuroinformatics, 13(2), 192208

Machine learning tasks

References (ii)

- Puerto-Santana C, Larrañaga P, Bielza C (2021) Autoregressive asymmetric linear Gaussian hidden Markov models, IEEE Transactions on Pattern Analysis and Machine Intelligence, 10.1109/TPAMI.2021.3068799
- Quesada D, Larrañaga P, Bielza C, Font P (2021). Piece-wise forecasting of non-linear time series with dynamic Bayesian networks. In preparation
- Varando G, Bielza C, Larrañaga P (2015). Decision boundary for discrete Bayesian network classifiers. Journal of Machine Learning Research, 16, 2725-2749
- Velásquez R, Sucar LE, Morales EF (2008). Transfer learning for Bayesian networks. Lecture Notes in Artificial Intelligence 5290, 93102
- Zhang J, Bareinboim E (2020). Designing optimal dynamic treatment regimes: A causal reinforcement learning approach. Proceedings of the 37th International Conference on Machine Learning, 11012-11022

Outline

Introduction

Bayesian Networks

Machine Learning

- Modelling
- Visualization
- Evidence Propagation
- Evidence Explanation
- Machine Learning Tasks
(4) Heuristic Optimization

Optimization

Heuristic search strategies

Deterministic heuristics

Sequential feature selection
Sequential forward feature selection
Sequential backward elimination
Greedy hill climbing
Best first
Plus-L-Minus-r algorithm
Floating search selection
Tabu search
Branch and bound

Non-deterministic heuristics

Single-solution metaheuristics:
Simulated annealing
Las Vegas algorithm
Greedy randomized adaptive search procedure
Variable neighborhood search
Population-based metaheuristics:
Scatter search
Ant colony optimization
Particle swarm optimization
Evolutionary algorithms:
Genetic algorithms
Estimation of distribution algorithms
Differential evolution
Genetic programming
Evolution strategies

Heuristic Optimization

Estimation of distribution algorithms (Larrañaga and Lozano 2002)

The Rashomon effect

- Rashomon effect (Breiman et al. 2001): A storytelling and writing method in cinema meant to provide different perspectives
- Rashomon set (Fisher et al. 2019; Dong and Rudin, 2020): A reduced set of individuals in the last generation

Estimation of distribution algorithms

Multi-objective estimation of distribution algorithms (Karshenas et al. 2014)

Joint modeling of objectives and variables for the 5-objective WFG1 optimization problem

A multi-objective optimization problem

$$
\begin{array}{rl}
\min _{\boldsymbol{x}} & \boldsymbol{Q}(\boldsymbol{x})= \\
\text { subject to } & \left(Q_{1}(\boldsymbol{x}), \ldots, Q_{m}(\boldsymbol{x})\right) \\
& \left\{\begin{array}{l}
\boldsymbol{x} \in \mathcal{D} \subseteq \mathbb{R}^{n} \\
\boldsymbol{Q} \in \mathcal{Q} \subseteq \mathbb{R}^{m}
\end{array}\right.
\end{array}
$$

The WFG1 multi-objective optimization problem

$$
\left\{\begin{array}{l}
Q_{1}(\boldsymbol{x})=a+2 \cdot h_{1}\left(g_{2}\left(x_{1}\right), g_{2}\left(x_{2}\right), g_{2}\left(x_{3}\right)\right) \\
Q_{2}(\boldsymbol{x})=a+4 \cdot h_{2}\left(g_{2}\left(x_{1}\right), g_{2}\left(x_{2}\right), g_{2}\left(x_{3}\right)\right) \\
Q_{3}(\boldsymbol{x})=a+6 \cdot h_{3}\left(g_{2}\left(x_{1}\right), g_{2}\left(x_{2}\right), g_{2}\left(x_{3}\right)\right) \\
Q_{4}(\boldsymbol{x})=a+8 \cdot h_{4}\left(g_{2}\left(x_{1}\right), g_{2}\left(x_{2}\right), g_{2}\left(x_{3}\right)\right) \\
Q_{5}(\boldsymbol{x})=a+10 \cdot h_{5}\left(g_{2}\left(x_{1}\right)\right) \\
a=g_{1}\left(x_{5}, \ldots, x_{16}\right)
\end{array}\right.
$$

Estimation of distribution algorithms

References

O Breiman L (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical Science, 16(3), 199-231

- Dong J, Rudin C (2020). Exploring the cloud of variable importance for the set of aal good models. Nature Machine Intelligence, 2(12), 810-824
- Fisher A, Rudin C, Dominici F (2019), All models are wrong, but many are useful: Learning a variable's importance by studing an entire class of prediction models simultaneously. Journal of Machine Learning Research, 20(177), 1-81
- Karshenas H, Santana R, Bielza C, Larrañaga P (2014). Multi-objective estimation of distribution algorithm based on joint modeling of objectives and variables. IEEE Transactions on Evolutionary Computation, 18 (4), 519-542
- Larrañaga P, Lozano JA (2002) Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic Publishers

Outline

Introduction

Bayesian Networks

Machine Learning

- Modelling
- Visualization
- Evidence Propagation
- Evidence Explanation
- Machine Learning Tasks

4. Heuristic Optimization

Conclusions

- Explainable Al is not enough for high stakes decisions
- Interpretable AI (simulatability, decomposability, algorithmic transparency) necessary
- Bayesian networks as a framework providing interpretability for machine learning and optimization

Further topics

- Interpreting other probabilistic graphical models
- Sum-product networks
- Influence diagrams
- Probabilistic generative adversarial networks
- Markov networks
- Conditional random fields
- Interpreting Bayesian networks for temporal data
- Dynamic Bayesian networks
- Temporal Bayesian networks
- Continuous time Bayesian networks
- Interpreting causal Bayesian networks

BayEsian Networks FOR INTERPRETABLE Machine Learning and Optimization

Pedro Larrañaga

$$
\begin{gathered}
\text { Computational Intelligence Group } \\
\text { Artificial Intelligence Department } \\
\text { Universidad Politécnica de Madrid }
\end{gathered}
$$

3rd International Symposium on New Trend in Computational Intelligence, December 12, 2021

[^0]: (C)Pedro Larrañaga

 BNs for Interpretable ML and Opt

