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Introduction

Explainable Artificial Intelligence (XAl) (Gunning, 2017)

Tod ay % Task
+ Why did you do that?

Decision or + Why not something else?

rainin MaChI_ne earne Recommendation + When do you succeed?

g

Data Learnlng Function + When do you fail?
Process « When can | trust you?

+ How do | correct an error?

User

XAl %Task

+ | understand why
New « | understand why not
Training N Machine Ll Explainable | Explanation « | know when you succeed
Data Learning Model Interface * | know when you fail
Process « | know when to trust you
+ | know why you erred

User
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Introduction

Concerns faced by various stakeholders (Belle and Papantonis, 2021)

How does a model What is driving Can | trust the
work? decisions? model?
Key stakeholders
Data Scientist Business Owner Model Risk g C

8 Ldl 0w
p (V] vy /@ 3

+ Understand * Understand + Challenge the + Checkits «  “Whatis the
the model the model model impact on Impact on

* De-bug it +  Evaluate fit + Ensureits EOUSIN K me?”

«  Improve its for purpose robustness + Verify «  “What actions
performance + Agree to use +  Approve it reliability can | take?”
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Introduction

A taxonomy of XAl approaches (Belle and Papantonis, 2021)

Explainability
Explainability Principles
Categories Rule-based
Explanation by leamer
Model types /. simpiification |~~~ < Decsin e |
Logistic /Linear | | / )
T / ;
uence |
: / functions |
Decision Trees | / —
g | / 4 Sensitivty
/// [ KNearest ! / Feature relevance |/~
5 1. Neighbours explanation [ Gametheoy |
Transparent / |\ inspired J
/ Models Rule-based (Cirieraction based |
/ leamers Interaction based |
[Coperaiie) Rule-based
Additive Models 1 leamer J
) | ModekAgnostic —— Local !xplanal\cn&( - 4
Explainability / — R inear |
S eomcher Bayesian Models | | | T
\ v Counterfactuals. ‘[
\ TR v -
\ J Random Forest U [
\ Y- | . sensitity |
\ /R A/ . Visual )~ J
\ Opaque Support Vector Post-Hoc explanations |~ )
Vodsls Machines Explainability \“ Dependency plots |
\ < \
W Multi-ayer Neural P
Network | [ Rulebased
leamer
\ Explanation by | Decision trees / |
\ Simplification | prototypes |
| Model-Specific Distilaion |

Feature relevance | Feature
‘explanation importance

P> Rudin C (2019). Stop explaining black box models for high stakes decisions and use interpretable models instead. Nature

Machine Intelligence, 1, 206-215
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Explaining black box models

nal Offender Management Profiling for Alternative
Sanctions (COMPAS) (Northpointe, 2013)

Previous studies suggest
BLACK BOX that COMPAS predictions
SorwAR are accurate just
60-70%
of the time.

states use similar tools as a formal part
+ of the sentencing process.

@ Secret formula for predicting criminal recidivism

o Unnecessarily complicated as it does not seem to be
any more accurate than a very sparse decision tree
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Introduction

Explaining black box models

Correctional Offender Management Profiling for Alternative In vitro fertilization (Afnan et al. 2021)

Sanctions (COMPAS) (Northpointe, 2013)
_IN VITRO FERTILIZATION

Previous studies suggest
BLACK BOX that COMPAS predictions
SorwAR are accurate just
60-70%
of the time.

states use similar tools as a formal part
+ of the sentencing process.

@ Secret formula for predicting criminal recidivism
@ Black box models: Inability to perform shared

o Unnecessarily complicated as it does not seem to be decision-making with patients
any more accurate than a very sparse decision tree

o Accountability issues: Who is accountable when
the model causes harm?

BNs for Interpretable ML and Opt




Introduction

Interpretability (Lipton, 2016)

Human in the loop

» Interpretability stands for a human-level understanding of the inner working of the model

Simulatability refers to a model’s ability to be simulated by a human. Simplicity alone is not enough /very large amount of
simple rules versus a neural networks with no hidden layers). At the level of the entire model

Decomposability denotes the ability to break down a model into parts and then interpret these parts. At the level of
individual components

Algorithmic transparency expresses the ability to understand the procedure the model goes through to generate its
output. At the level of the training algorithm

BNs for Interpretable ML and Opt




Introduction

Interpretability (Lipton, 2016)

Human in the loop

» Interpretability stands for a human-level understanding of the inner working of the model

o Simulatability refers to a model’s ability to be simulated by a human. Simplicity alone is not enough /very large amount of
simple rules versus a neural networks with no hidden layers). At the level of the entire model

o Decomposability denotes the ability to break down a model into parts and then interpret these parts. At the level of
individual components

o Algorithmic transparency expresses the ability to understand the procedure the model goes through to generate its

output. At the level of the training algorithm
v

Interpret to

o Justify the decisions of the intelligent system to other people

Understand its weakness

Discover new knowledge

Robustness. Are minor perturbations (or the presence of missing or noisy data) susceptible to change the outcome of the
intelligent system?

Bias. Can we detect biases in the data that unfairly penalize groups of individuals?
Improvement. How can the prediction model be improved?

Transferability. Under which circumstances the prediction model for one application domain can be applied (transferred)
to another application domain?

Human comprehensibility. Are we able to explain the model’s algorithmic machinery to an expert? And to a non-expert?
v

BNs for Interpretable ML

d Opt




Introduction

Introduction

eferences
o

Afnan MAM, et al. (2021). Ethical implementation of artificial intelligenc to select embryos in in vitro fertilization.
Proceedings of the Fourth AAAI/ACM Conference on Atrtificial Intelligence

Belle V, Papantonis | (2021). Principles and practice of explainable machine learning. Frontiers in Big Data, 1, article
688969

European Commision (2020). White Paper on Artificial Intelligence: An European Approach to Excellence and Trust.
Brussels

Davies A et al. (2021). Advancing mathematics by guiding human intuition with Al. Nature, 600, 7074
Gunning D (2017). Explainable Artificial Intelligence. DARPA/I20 Program

High-Level Expert Group on Al (2019). Ethics Guidelines for Trustworthy Al. Brussels

Lipton ZC (2016). The mythos of model interpretability. Communications of the ACM, 61 (10)
Northpointe (2013). Practitioner’s Guide to COMPAS Core. Technical Report, Northpointe

Rudin C (2019). Stop explaining black box models for high stakes decisions and use interpretable models instead.
Nature Machine Intelligence, 1, 206-215

Wachter S, Mittelstadt B, Floridi L (2017). Why a right to explanation of automated decision-making does not exist in the
general data protection regulation. International Data Privacy Law, 7(2), 76-99

BNs for Interpretable ML




Bayesian Networks

e Bayesian Networks
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Bayesian Networks

Bayesian networks

Conditional independence: W and T are conditionally
independent given Z < p(W|T, Z) = p(W|Z)

Directed acyclic graph (DAG)
Conditional probability tables (CPTs)

n
Py, ..., Xa) = T p(Xi | Pa(x))

i=1

p(PIS)

-s -p| 0.95

p(A, N, S, D, P) = p(A)p(N|A)p(S|A)p(DIN, S)p(P|S)
©Pedro Larranaga BNs for Interpretable ML and Opt




Bayesian Networks

Bayesian networks

@ Conditional independence: W and T are conditionally @ Exact: variable elimination, message passing
ind dent gi Z < p(W[T,Z) = p(W|Z . - q
fndependent given p(W| ) = pWi2Z) o Approximate: sequential simulation and MCMC

@ Directed acyclic graph (DAG)

@ Conditional probability tables (CPTs)

n
Q@ p(Xi, ..., Xn) = [[p(Xi | Pa(X))

i=1

P

> Neuronal Atrophy Stroke
ves ]I mm%—]
no 86%|I =

[} Dementia Paralysis
P(PIS) o5 52% ] yes e o
s p| 075 no 48%|l0 no 25%|1 |
sopl 025 = M
os P 0.05
s 2p| 0.95

p(Xj|stroke=yes)

p(A, N, S, D, P) = p(A)p(N|A)p(S|A)p(DIN, S)p(P|S) Bielza, Larrafiaga, 2020
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Bayesian Networks

Conditional independence. An example

=) Stroke =) Stroke

lves 100%

Dementia Paralysis

Stroke

S Paraysis & Dementia & Paysis
yes 75% ves o6% | . |
no 25% no  4%|| I
p(Xj|stroke=yes, Neural Atropy=yes) p(Xj|stroke=yes, Neural Atropy=yes,Age=young)
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Bayesian Networks

Learning Bayesian networks from data

Two elements

@ Parameters p(X; = x; | Pa(X;) = pa’,:): MLE or Bayesian
@ Structure: conditional independence tests or by optimizing a score

Scores

@ Penalized likelihood: avoid structural
overfitting

@ Bayesian: arg maxg p(G|D), with

marginal likeli. prior

—
p(GID) < p(PIG) p(G), with

Exact | /Approximate
H—J p(PIG) = [ p(DIG,0) f(6|G) do
——— ——
[ mome | [ 2] . s EDAS likelihood  prior param. )
mathemaical || MCMC

programming

©Pedro Larrafaga
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Bayesian Networks

Bayesian networks for machine learning

Clustering Multiview-clustering
o Non-probabilistic. o Agglomerative clustering
~ Hierarchical « Density-based

« Agglomerative  Principal component analysis

« Divisive
_ Partitional — Canonical correlation analysis
e — o Spectral clustering
o K-medians o Co-regularization
o K-modes
+ Py Comoons « Ensemble clustering
o Self-organizing map « Bayesian networks
« Spectral clustering
o K-medoids

« Affinity propagation
o K-plane clustering

o Probabilistic (Chrerrecofirrt| o Eat o
Supervised classification
~ Finite-mixture models

S ——— © Non-probabilistic

~ Nearest neighbors
~ Classification trees

~ Rule induction

— Artificial neural networks
— Support vector machines

MACHINE
LEARNING

« Probabilistic
~ Discriminant analysis
— Logistic regression
— Bayesian network classifiers
o Metaclassifiers
— Fusion of ontputs
— Stacked generalization
— Cascading
~ Bagging.
— Random forest
~ Boosting
— Hybrid classifiers
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Bayesian Networks

Bayesian networks for machine learning

Clustering Multiview-clustering

« Bayesian networks

Supervised classification

MACHINE
LEARNING

~ Bayesian network classifiers
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Bayesian Networks

Bayesian networks
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Machine Learning

e Machine Learning
@ Modelling
@ Visualization
@ Evidence Propagation
@ Evidence Explanation

@ Machine Learning Tasks
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Machine Learning
Interpreting Bayesian networks
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Machine Learning Modelling

Interactive learning of Bayesian networks (Bermejo et al. 2012)

arkov

@ The option to run the algorithms in a step-by-step fashion

@ Interactive learning is performed by having two windows: one showing the DAG and another one showing the proposed
edits

@ The user can select any edit from the list, not necessarily the one having the highest score, and the change will be
immediately displayed on the network window. Alternatively, the user can add or remove any link from the DAG. In both
cases, the scores will be recalculated and a new list will be proposed

@ itis focussed on score + search approaches to structure learning with a greedy strategy
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Machine Learning Modelling

Consensus of Bayesian network structures (Kennedy et al. 20

BayesPiles

@ Software for exploring, combining and comparing large collections of Bayesian networks learnt during the search
@ Heuristics for the search: greedy search and simulated annealing

@ Interactive consensus process: human in the loop
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Machine Learning Visualization

Visualization (Lacave and Diez, 2000; Elvira Consortium, 2002

Elvira software: http://www.ia.uned.es/~elvira/instalar/Elvira.zip

(*] Importance factor of a node: number between 0 and 10 given by the expert
@ The nodes whose importance factor is greater than, or equal to, the expansion threshold are automatically expanded
@ Automatic colouring the arcs of the DAG, in order to offer qualitative insight about the CPTs

@ Verbal explanation: “The disease [Name] has the following RISK FACTORS [List of risk factors].
It presents with the following SIGNS [List of signs] and SYMPTOMS [List of symptoms].
There are several TESTS to confirm or discard its diagnosis [List of tests]”

o|=(a| &fws &) 2|
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Machine Learning Visualization

Visualization (Michiels et al. 2020)

BayeSuites https://neurosuites.com/ Leveln SR

@ A web framework for learning, visualizing, and interpreting Bayesian networks
that scale to tens of thousands of nodes

@ Fora Bayesian networks with 20,000 nodes and 20,000 arcs:
@ Time to model 10-15 s
@ Time to layout < 60 s
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Machine Learning Evidence Propagation

Evidence propagation. Exact methods (Bielza and Larrafiaga, 2020)

The “Dementia” BN

AlpA)

P(A,N, S, D, P) =
P(A)p(N|A)p(S|A)p(DIN, S)p(P|S)
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Machine Learning Evidence Propagation

Evidence propagation. Exact methods (Bielza and Larrafiaga, 2020)

Brute force for p(D)

p(d) = > p(AN,S,P,D)
A,N,S,P

D> P(AP(NIAP(SIAP(DIN, S)p(P|S)

The “Dementia” BN AN,S,P

ALoth) = ZA:P(A)ZN:P(NIA)ZSZP(SIA)P(DIN, S)ZP:P(F’IS)

128 multiplications and 16 additions are required to yield p(d)
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Machine Learning Evidence Propagation

Evidence propagation. Exact methods (Bielza and Larrafiaga, 2020)

Brute force for p(D)

p(d) = > p(AN,S,P,D)
A,N,S,P

D> P(AP(NIAP(SIAP(DIN, S)p(P|S)

The “Dementia” BN AN,S,P

ALoth) XA:P(A)XN:P(NIA)ZSZP(SIA)P(DIN, S)XP:P(F’IS)

128 multiplications and 16 additions are required to yield p(d)

Variable elimination (Zhang and Poole, 1994) for

p(S|-d)

Consider £ = {fa(A), fy(N, A), f5(S, A), fp(P, S), fp(—~d, S, N)}
and the ordering P-A-N

P(S|=d) o< > p(=d|N, S) > p(N|A)p(S|A)p(A) > p(PIS)
N A P

©Pedro Larranaga BNs for Interpretable ML and Opt



Machine Learning Evidence Propagation

Evidence propagation. Exact methods (Bielza and Larrafiaga, 2020)

The “Dementia” BN

Al o)
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Evidence Propagation

Machine Learning

Evidence propagation. Exact methods (Bielza and Larranaga, 202

The “Dementia” BN Message passing algorithm (Lauritzen and
Spiegelhalter, 1988)

Al o)

@ Moralize the Bayesian network
Triangulate the moral graph and output the cliques (nodes of

A_S|p(siA)
°
a5l 098 the junction tree)
@ s P|pAS)
T fon @ Create the junction tree and assign initial potentials to each
s Pl 005 i
e clique
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Machine Learning Evidence Propagation

Evidence propagation. Exact methods (Bielza and Larranaga, 202

The “Dementia” BN Message passing algorithm (Lauritzen and

Spiegelhalter, 1988)

A| p(4)
@ Moralize the Bayesian network

o Triangulate the moral graph and output the cliques (nodes of
the junction tree)

@ Create the junction tree and assign initial potentials to each
clique

©Pedro Larranaga BNs for Interpretable ML and Opt



Machine Learning Evidence Propagation

Evidence propagation. Exact methods (Bielza and Larranaga, 202

The “Dementia” BN

Message passing algorithm (Lauritzen and

AlpA)

Spiegelhalter, 1988)

@ Moralize the Bayesian network

o Triangulate the moral graph and output the cliques (nodes of
the junction tree)

@ Create the junction tree and assign initial potentials to each
clique

Junction tree and the message passing

C

)
nWaD) (Y " (’

5,P)
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Machine Learning Evidence Explanation

Evidence explanation

X = (Xj, ..., Xn) random variables in the Bayesian network; E C X evidence; U = X\ E
unobserved variables; H C U variables of interest; U = HU, C class variable

ypes of queries

@ Posterior probability of a target variable X; C U given the evidence e — p(x;|e)

@ Posterior joint of a set of target variables H C U given the evidence e — p(hle)

@ Abductive reasoning: most likely configuration event that best explains the evidence (Kwisthout 2011)
@ Total abduction: most probable explanation (MPE), the search for all the unobserved variables —
u™ = arg maxy p(ule)
@ Partial abduction: maximum a posteriori (MAP), that is search for a subset of unobserved variables —
h* = arg maxy p(h|e)
@ K most likely explanations: kK MPE and k MAP

@ Most relevant explanation (MRE) (Yuan et al. 2011): assignment of a subset of the unobserved variables that maximizes

its generalized Bayes factor — h* = arg maxy, 2L
p(elh)
@ MAP-independence explanation (Kwisthout 2021) — h* = arg maxp, p(h|e) = arg maxp Eieﬂ(/) p(H=h,1=ile).

The goal is to partition the set I into variables I that are relevant to establishing the best explanation, and variables 1~
that are irrelevant

@ Counterfactual reasoning in classification problems (Albini et al. 2020). Given x such that p(C = +|x) > p(C = —|x),
the goal is to find x” very similar to x, such that p(C = +[x’) < p(C = —|x")
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Machine Learning Evidence Explanation
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Machine Learning Machine Learning Tasks

Morphological classification of interneurons (Mihaljevi¢ et al. 20
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Machine Learning Machine Learning Tasks

Morphological classification of interneurons (Mihaljevi¢ et al. 2015

Evidence in one predictor variable
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Machine Learning Machine Learning Tasks

Morphological classification of interneurons (Mihaljevi¢ et al. 2015

Evidence in one predictor variable
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Machine Learning Machine Learning Tasks

Morphological classification of interneurons (Mihaljevi¢ et al. 2015

Evidence in one predictor variable

(O  euclideandistmax o dlass O remotebifurcationan... IO euclideandistmax o dlass O remotebifurcationan...|
(x1320_1870 13%] 1320_1870 24% ] 16366 6%]|

- 18 50% ) - >
211765 40%|[ 0% 211765 28%| ";iz::z - 1x66_80 52%| I
1765_1320 47% ([l L 765_1320 4%/l L 4 N2l &
O pathdistavg (o] totallength (O Nbifurcations O pathdistavg (@] totallength (O Nbifurcations
67507 5% 15700_27500 38% 6516 65% IR (187_507 31%) 1570027500 0% 6516 30%[l
IX507_825  34%| [ 27500_39400 9%| 516986 12%|| [x507_825 31%| 27500 39400 100%|[ 1¥516_986 56%|[F
(x825_1140 9%' v x3900_15700 53%) 1¥986_1460 3%|| | [x825_1140 39%| [3900_15700  0%| B [x986_1460 14%' v/

v ”

Evidence in two predictor variables Evidence in three predictor variables

(O euclideandistmax o dlass O remotebifurcationan... (O  euclideandistmax o dlass O remotebifurcationan...
[X53_66 5% [x1320_1870 0%}
o xSG_EOAQ%IL iz o [ 2
7 i ]
LU ey 160_93 46% [ X765 1320 100% kil

|O totallength IO Nbifurcations O pathdistavg O totallength (O Nbifurcations
[15700_27500 0% k6516 3R]l 187_507 13%[] x15700_27500 0% 6516 32%[l]
127500 39400 100% 7 X516_986 5% 4507_825 49% |8 27500 39400 100%][ 516_986 52%(F
o050 0% @ o eIkl s 140 senll [ poS0ISTO0 0% g [ess_téc0 16wl
v v

BNs for Interpretable and Opt
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Clustering of dendritic spines (Luengo-Sanchez et al. 2018)

Human dendritic spines
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Machine Learning Machine Learning Tasks

Clustering of dendritic spines (Luengo-Sanchez et al. 2018)

Human dendritic spines

Virtual spines simulated from the model
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Machine Learning Machine Learning Tasks

Clustering of dendritic spines (Luengo-Sanchez et al. 201

Human dendritic spines ual spines simulated

—

Mixture of Gaussian Bayesian networks

@ In a multivariate Gaussian mixture model: f(x; 6) = 2521 7 fi (X; 1) €ach mixture density is given by:
n 1
- -3 —1
B (X e, Bh) = (2m) T 2| T2 exp{— 5 (x — pi) TS (x — i)}

@ In a mixture of Gaussian Bayesian networks each component is expressed as a Gaussian Bayesian network
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Autoregressive asymmetric linear Gaussian hidden Markov models (AR-AsLG-HMM) (Puerto-Santana et al. 20

HMM as a Bayesian network

Jag+2qtes

byes (1) byess (at9)
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Machine Learning Machine Learning Tasks

Autoregressive asymmetric linear Gaussian hidden Markov models (AR-AsLG-HMM) (Puerto-Santana et al. 2021)
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Anomaly detection

Anomaly detection via likelihood of new instances (Larrafiaga et al. 2018)
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Machine Learning Machine Learning Tasks

Anomaly detection

Anomaly detection via likelihood of new instances (Larrafiaga et al. 2018)
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Anomaly detection

Anomaly detection via likelihood of new instances (Larrafiaga et al. 2018)

Normality Anomaly Score———
Model
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Machine Learning Machine Learning Tasks

Anomaly detection

maly detection via likelihood of new instances (Larrafiaga et al. 2018)

Normality Anomaly Score———
Mode

a0 \ g N

< ;‘(( «« P Normal -—— Abnormal
- QO P

Anomaly Score

Anomaly Threshold

o Compute a probabilistic model based on (dynamic) Bayesian networks for the normal instances
@ Establish a threshold in this joint probability distribution
e Compare the likelihood of the new instance with the likelihood threshold
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Machine Learning Machine Learning Tasks

Incorporating previous knowledge

Physics informed Bayesian networks

Two options:
Incorporate the expert knowledge into the structure of the Bayesian network

Simulation from a non-linear process defined by a system of ordinary differential equations + Learning the structure of
the Bayesian network from this dataset (Quesada et al. 2021)

| A\

Bayesian approaches

@ Conjugate prior distributions over the parameters. Dirichlet for mulltinomial. Normal-Wishart for Gaussian

@ Prior distribution over the structures

Transfer learning (Veldzquez et al. 2008)

o Transferring parameters with probability aggregation methods combining probabilities estimated from the target domain
with those obatined from the auxiliary data

o Transferring structures by means of conditional independence tests using a weighted sum of conditional independence
measures
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Machine Learning Tasks

Machine Learning

Reinforcement learning

Interpreting reinforcement learning policies with Bayesian networks
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~

REWARD
Rt

ENVIRONMENT

o Modeling agent learning experience with Bayesian networks (Jin et al. 2011)

@ cCausal reinforcement learning (Zhang and Bareinboim, 2020)
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Machine learning tasks
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Machine Learning. CRC Press
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14(6), 1006221
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Machine learning tasks
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e Heuristic Optimization
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Heuristic Optimization

Optimization

Deterministic heuristics

Sequential feature selection Single-solution metaheuristics:

Sequential forward feature selection
Sequential backward elimination
Greedy hill climbing

Best first

Simulated annealing

Las Vegas algorithm

Greedy randomized adaptive search procedure
Variable neighborhood search

Plus-L-Minus-r algorithm Population-based metaheuristics:

Floating search selection
Tabu search
Branch and bound

Scatter search
Ant colony optimization
Particle swarm optimization
Evolutionary algorithms:
Genetic algorithms
Estimation of distribution algorithms
Differential evolution
Genetic programming
Evolution strategies
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Heuristic Optimization

Estimation of distribution algorithms (Larr

Population of Selected Bayesian network New candidate
candidate solutions candidates or Gaussian network solutions
I/ S A (o
d BN | d ~ BED d  EED |
| DN | | DN | T [T
| DN | | DN | | DN |
| DN | | DN | | DN |
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| DN | [ L EN |
vl Aﬁ v
/X 4 N

The Rashomon effect

@ Rashomon effect (Breiman et al. 2001): A storytelling and writing method in cinema meant to provide different
perspectives

@ Rashomon set (Fisher et al. 2019; Dong and Rudin, 2020): A reduced set of individuals in the last generation
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Heuristic Optimization

Estimation of distribution algorithms

ribution algorithms (Karshenas et al. 2014)

Joint modeling of objectives and variables for the A multi-objective optimization problem
5-objective WFG1 optimization problem

min - Q(x) = (Q1(x), . . ., Am(x))

< W ’ xeDCR’
“ subject to Qc ocCRr™

The WFG1 multi-objective optimization problem
° ° G ° Qi (x) = a+2-hi(g2(x1), 92(x2), 92(x3))

hy(
@ (x) = a+4- h(ga(x1), 92(x2), 92(X3))
Q3(x) = a+6- h3(g2(x1), 92(x2), g2 (X3))
Qu(x) = a+ 8- hy(g2(x1), 92(x2), 92(x3))
Qs(x) = a+ 10 - h5(ga(x1))
a=gi(x, ..., X1p)
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Heuristic Optimization

Estimation of distribution algorithms
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Outline

e Conclusions and Further Topics
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Conclusions and Further Topics

o Explainable Al is not enough for high stakes decisions

o Interpretable Al (simulatability, decomposability, algorithmic transparency) necessary

o Bayesian networks as a framework providing interpretability for machine learning and optimization
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Conclusions and Further Topics

Further topics

o Interpreting other probabilistic graphical models

@ Sum-product networks

@ Influence diagrams

@ Probabilistic generative adversarial networks
@ Markov networks

@ Conditional random fields

o Interpreting Bayesian networks for temporal data
@ Dynamic Bayesian networks
@ Temporal Bayesian networks
@ Continuous time Bayesian networks

@ Interpreting causal Bayesian networks
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