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Abstract

Locally weighted regression is a technique that predicts the response
for new cases from their neighbors in the training dataset. In this paper
we propose to join modern regularization approaches to locally weighted
regression. Specifically, the LASSO method is able to select relevant vari-
ables leading to sparse models. We present two algorithms that embed
LASSO in an iterative procedure that incrementally discard or add vari-
ables, respectively, in such a way that a LASSO-wise regularization path
is locally obtained. The algorithms are tested in two different datasets
from the UCI repository, obtaining promising results.

1 Introduction

Let x = {x1,..,Xp} denote the set of covariates and Y the response vari-
able. Linear regression is a widely used tool concerning the influence of x
over Y. This relationship is modelled by a linear combination of some of
the covariates, such that a least squares function is minimized. Let ¥ =
{(x™, 5y, (2@ y@), .. (2™ y™)} be the dataset containing the set of n
points in the space of covariates and the response, where (9 = (xgi), xéi), e x}(,i)).
Let X denote the n x p matrix whose rows are the p-vectors 1), x(2) .. 2™
and let y = (y(l),y@), ...,y(”)) the vector of responses. Assuming the data is
centered, the common linear regression model assumes a relationship such that:
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y=XB+e, (1)

where 8 = (B1, 2, ..., 8p) are the regression coefficients. Being 3 the p x p
covariance matrix, the stochastic unobserved component € term is distributed:

€~ N(0,3). (2)

Hence, there are p parameters to be determined, so that the sum of the
squares of the distances from the response points to the line drawn by the linear
equation is to be minimized. Typical hypothesis to be checked are linearity,
normality, independence and variance homogeneity.

Since it bases its method on empirical loss minimization, linear regression
may overfit the data. Regularization techniques add a penalization term to the
usual regression preventing overfitting, reducing the variance of the estimates
and giving rise to more interpretable models. Two widely used methods are
ridge [1] and the least absolute shrinkage regression and selection operator [2].
We are focusing here on the second, commonly referred to as LASSO or 11-
regularization. For a general review of LASSO, see [3]. A significant property
of the LASSO is its ability to move many regression coefficients to zero, per-
forming a variable selection (sparser models) at the same time than prediction.
The LARS [4] algorithm is a variable selection and regression method that out-
performs the classical forward stepwise regression algorithm [5], and solves the
LASSO with a small modification in a very efficient way.

However, the response variable cannot be always predicted by means of a
simple linear function of the covariates, and the results are not optimal from a
statistical point of view. In this case some kind of nonlinear analysis may be
required. In general, nonlinear regression procedures [6] intend to fit data to
any selected equation, finding the values of the parameters that minimize the
sum of the squares of the distances from the data points to the curve.

Sometimes, to perform a nonlinear analysis is not straightforward, and it is
not possible to establish a unique function for the entire data space. In this case
it is more convenient to use some form of local learning. A common method
is the locally weighted regression (LOESS), built on classical least squares re-
gression [7,[8,[9]. For each point in the covariate space, there is a neighborhood
containing the point in which the regression surface is well approximated by a
function from a parametric class. In this approach, instead of minimizing the
residual sum of squares, a weighted sum of squares is minimized. The weights
are provided by a function of the distances between the data and the point of
interest, giving more importance to closer points. In [7] a second algorithm,
called robust locally weighted regression, is proposed for providing robustness.
In short, after firstly performing the LOESS procedure, the algorithm itera-
tively calculates new sets of weights basing on the residuals of the estimates y
regarding the real response y, in such a way that large residuals correspond to
small weights and vice versa. Regression and weights calculation are repeated
until some stopping criterion is met. Also in the local fitting arena, in [10] the
authors face nonlinearity by using a sum of smooth functions instead of a single
parametric model for local learning.

A different form of local analysis is the spatial analysis. The expansion
method [11] and the geographically weighted regression (GWR) [12] are well-
known algorithms. Both assume that the influence of the covariates on the
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response might vary according to the spatial location of the data, typically
2D coordinates where the data are collected. In the expansion method, the
regression coefficients at a specific location are the result of a function of the
location itself and a set of parameters (constant for all cases) to be learnt from
the dataset. In the GWR algorithm, weights are locally assigned to data, so
that nearer data are given more importance than further data.

There have been few attempts to combine local learning and variable se-
lection with regularization. Also in the field of spatial analysis, the geograph-
ically weighted LASSO (GWL) [13] introduces a LASSO-wise penalization on
the GWR estimated coefficients. Regardless of spatial analysis, ridge regression
(along with principal components regression and partial least squares regres-
sion) is applied to local linear prediction of chaotic time series [14]. However, to
the best of our knowledge, a LASSO penalization scheme for locally weighted
regression has never been proposed.

Our contribution is a method based on LASSO both for local prediction and
local variable selection. The setting is a scenario where usual linear regression is
not appropriate, and a local approach seems to be convenient. We have devel-
oped two algorithms based on LARS for this aim. Unlike GWL, the distances
are calculated in the covariate space instead of from separate location coordi-
nates. A naive approximation could be to add a LASSO penalty to the locally
weighted regression. However we are using LASSO because we expect a sparse
solution, and the irrelevant covariates should not have been used in the weights
estimation (distance calculation). The problem lies in that the distance calcula-
tion is previous to the regression, and hence previous to know what variables are
irrelevant. To overcome this obstacle, we suggest a couple of iterative algorithms
that alternate variable selection with distance computation. One proceeds for-
wardly from the empty solution where all variables are excluded from the model
and starts adding variables, one by one, until all the variables are in the model.
The other works in the opposite backwards way, steming from the model with
all variables and removing one by one until the empty solution is reached. At
each step, distances are recalculated from the current variables in the model,
assigning weights to the data for the following regularized regression. LARS is
used for selection and removal of variables. As we will explain below, both local
algorithms produce a pathway of solutions, from where a unique solution might
be selected by means of some selection criterion.

The organization of the paper is as follows: Section 2 describes local re-
gression and the LARS/LASSO algorithms in detail. Section 3 states the novel
algorithms, that we are calling forward local 11 selector, and backward local
LARS selector. Section 4 outlines the set of experiments to test the algorithms.
Finally, in Section 5 we round the paper off with conclusions and future work.

2 Foundations

2.1 Local regression

The local regression method was originally devised for time series, where one ex-
pects that events close in time share common patterns. We focus on the LOESS
procedure discussed in [7]. Although locally weighted regression paradigm is not
limited to local linear fitting, we will not work in this paper with functions other
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than linear. In [15] a bunch of mathematical properties of LOESS is discussed.
[16] lists some advantages of using local regression.

Assuming the response to be centered, LOESS sets out the following local
regression for x(*):

n o2 N (Al 2
Z{<y“>—2w§”ﬁj) g<d< - )>} 3)

where ¢(.) is a weight function, d(.) is a distance function and 7 is the bandwidth
constant.
Let w®) = (wgk), ey w%k)) be the vector of weights, with components

@), (k)

T

and let W be the diagonal matrix whose elements Wl(vk) = wgk), the vector of
coefficients can be estimated as:

Ig(k) — [XTW(k)TW(k)X]71XTW(k)TW(k)y. (5)

When a new point *) comes up, its response y*) is predicted by using
ad-hoc coefficients ﬁ(k) locally to the point itself and calculated just at this
moment. The distribution of y*) is unknown. This method is known as lazy
regression [17]. If the procedure turns out to be too demanding for the abundant
affluence of new x®), or we need a ready-to-use closed model for any reason, a
possibility is to run the algorithm for each pair ((?),5®) and use for each new
x(®) the set of regression coeflicients corresponding to the closer point in X, say
(). Depending on the distance from &*) to (")), we can also decide either
to calculate a new set of regression coefficients or to use 3;;.

There are four relevant aspects when considering LOESS: the parametric
family to be locally fitted, the fitting criterion, the weight function and the
bandwidth [18].

As said above, we are focusing on the linear parametric family. Assuming
y to be Gaussian with constant variance, least squares is a natural choice for
the fitting criterion. If we cannot assure constant variance, some form of regu-
larization may be used along with least squares. On the whole, the parametric
family and the fitting criterion depend on the assumptions about the nature of
the data and the distribution of the response. As we will detail in Section 3, we
are using a penalized least squares favouring parsimony.

Regarding the weight function, any weight function that satisfies the prop-
erties listed in [7] may be used. The different choices we are using for the weight
function are formulated in Section 3.

Finally, the choice of the bandwidth is a crucial parameter; the nature of the
data, its cardinality and dimension, are relevant for a correct selection. On one
hand, the bandwidth may be fixed beforehand or selected locally for each a(*®).
The latter is particulary appropriate for online training [19] and yields some
advantages in any case. Typically, it is done by a leave-one-out cross-validation,
which can be solved recursively for an increased efficiency [20]. We have tested
both fixed and variable bandwidth selection. However, in principle the recursive
method of [20] cannot be applied here, as it is thought to solve the least squares
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problem by the classical estimation method. On the other hand, the curse of
dimensionality states that as far as the dimension p is bigger, the points quickly
become sparse. In this case it is a good idea to increment the bandwidth to
compensate this effect.

A relevant issue related to the extent of p is the adecuacy of local regression
for high dimensionality. First, the analyst must take into account that local
methods are relatively computationally intensive. The expected computation
time for a LOESS estimate is the same than for a least squares fit, O(p* + np?),
plus the complexity for the weights calculation, O(np). For a single (*), n
distances have to be calculated. It could be demanding, specifically when p is
high. Furthermore, in principle, the estimated ﬁ(k) is only valid for this point.
If n is very large, there has been little work done for local regression. In [21]
the author presents some validation tests to test the adecuacy of smoothing in
binary logistic regression. Although the method and the scenario are slightly
different, the conclusions are valid for the LOESS. In short, his analysis shows
that the results are still reliable for increments of p if n is large enough, although
the inclusion of irrelevant variables has a quite negative effect in the smoothing
process. This is just the point we are tackling in this paper.

2.2 LARS/LASSO

During the last years, the original reference for the LASSO algorithm [2] has
received over 1600 cites according to Google Scholar by the time this paper is
being written. The LASSO estimates are defined as

n p )
B, = argming z:(yZ — By — Z$§1)ﬁj)2, (6)
i=1 j=1

subject to

PIIEES ™

Unlike ordinary least squares and ridge regression, LASSO forces regression
coefficients to become zero as we decrease the tunning parameter «. In this way
it simultaneously performs variable selection and estimation. The complete
solution of the LASSO for all values of o forms the regularization path. The
regularization path usually starts with a small e and all coefficients equal to zero.
One coefficient at a time is made different from zero, although from time to time
any variable may also exit the model. For variable selection purposes, we only
need to concern about a finite set of a values, specifically those that make the
number of zero coefficients to change. Regarding estimation, we still need to pay
attention only to this finite set, since the increments on the coefficients between
two consecutive values of « are linear. This property makes the regularization
path to be entitled as piecewise constant.

The LASSO is a quadratic programming problem with a linear inequality
constraint. However, the LARS algorithm [4], designed for least angle regression,
is able to calculate all possible LASSO estimates for a given problem in O(p® +
np?) with a small modification. This is the same cost than for a usual least
squares fit. In short, LARS is an iterative algorithm that starts with an empty
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set of active (non-zero) variables and adds at each step one variable x; to this
set. This is the one whose correlation with the residuals is the largest. The
vector of correlations is:

c:XT(y—Q). (8)

The coefficients of the variables in the active set are increased toward the
direction of the least-squares fit based on such variables. So forth, a new variable
gets active when its correlation with the residuals equals that of the active set.

Regarding the mathematical properties, there is an amount of theoretical
work supporting the LASSO. For instance, in [22] consistency of LASSO is
discussed and demonstrated under certain conditions. There have also been
some variations of the original LASSO to improve such properties [23].

3 Local LARS/LASSO

In the discussion section, [8] comment the need of incorporating into the LOESS
methodology a variable selection procedure when required, i.e, when we know
of the presence of irrelevant variables. In this line of argument, we present
two algorithms that combine 11-regularization with the usual locally weighted
regression paradigm.

As commented above, a first possible approach is equivalent to the GWL
algorithm in [13], that is, to directly apply a set of weights to the data set.
The weights would be obtained from some transformation of the Euclidean
or Mahalanobis distances to the point of interest. Whereas for GWL these
distances come from separate coordinates, in locally weighted regression the
distances are calculated in the space of covariates. Although simple and easy to
implement, irrelevant variables are getting involved in the distance calculation
task. Therefore, we state that this method is naive and ineffective, and it is
expected to lead to incorrect predictions and incorrect feature selections. This
effect will get more marked as the number of irrelevant variables increases. To
simplify the terminology, we will call this method as naive local selector.

To minimize this risk we propose an iterative algorithm that calculates dis-
tances just on the active set of variables at each step. Two versions are pre-
sented: a forward algorithm and a backward algorithm.

The forward algorithm, that we will call forward local 1 selector, starts with
an empty set of variables. It initializes a set of n weights on the distances over
all variables. After appropriately weighting the data with them, it runs a LARS
algorithm, stopping at the first iteration and keeping the first variable coming
up. This variable, say indexed by j, will be the first member of the active set V.
Then, weights are recalculated, but using only V' = {x;}, and LARS is run again
over weighted data, that will stop when a variable not included in V' appears.
This variable is then included in V. It recalculates weights again, basing on the
active set, and iterates like that until the active set contains all variables or any
other stopping criterion is met. Note that at each step of the algorithm, LARS
starts from zero variables and makes an arbitrary number of iterations, adding
variables before reaching a variable not included in V. However, it is expected
that, previous to get a variable not in V', LARS will pass through most of the
variables in V' at that moment.
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Finally, when the algorithm completes all p iterations, some selection crite-
rion is needed. Since the LARS method has run several times starting from zero
variables, there are some solutions available with one variable, some solutions
with two variables, etc. We will just select the best solution of each variable
cardinality by the criterion applied to a separate test database. For example, as
the algorithm iterates p times, and run LARS p times, there will be exactly p
solutions with one variable. In this work we are using a minimum absolute error
11-penalized on the (weighted) test database. The pseudocode in Algorithm 1
roughly schematizes the procedure.

Algorithm 1 forward local 11 selector

Input: training data set X,y with p variables and n cases,
Input: testing data set X', vy’ with p variables and n’ cases,
Input: bandwidth 7 of the neighborhood,
Input: weight function g(.) and distance function d(.),
Input: point *) whose response is to be predicted,
Output: set of coefficients ,B(k)
Calculate distances d = (dy, da, ..., dy,) to ¥) over all variables
w = g(d, T) (vector of weights)
W .= diagonal (w)
V := {} (active set)
t:=0
repeat
Xw := W x X (weighted covariates)
yw = W x y (weighted response)
paths(t) := LARS (X w, yw) (stopping when a variable ¢ V appears)
Vi=VUyx; | path;(t)#0
Calculate distances d to z(®) using variables in V

w:=g(d,T)
W := diagonal(w)
t:=t+1

until |V]|=p

for j:=1topdo

B(j) = bestsolution(X',y', paths, j),

the best solution among those with j coefficients different from zero
end for

The second algorithm is a backward version of the forward local 11 selector,
with some differences that we show straightaway. We call it the backward local
l1 selector. The algorithm starts with all the p covariates, V' = {x1, X2, .-, Xp }»
calculates the weights and uses LASSO to discard one variable, say indexed by
Jj. In a second step, it calculates the distances again on V' = V'\ x;, and performs
another LASSO regression with the new weights, discarding another variable.
The algorithm keeps alternating variable selection with weights calculation until
some stopping criterion is met, or until there are no variables left. Two possible
stopping criteria are the similarity of the predictions and the similarity of the
weights across iterations. In this work we are running the algorithm until all
variables are run out. Note that a test database is not needed anymore, because
LARS is run p times and only the last solution before stopping is kept. That
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is, there is already only one solution for each variable cardinality. Hence, the
entire dataset can be used for the training. We show the pseudocode for the
backward local 11 selector in Algorithm 2.

Algorithm 2 backward local 11 selector

Input: training data set X,y with p variables and n cases,
Input: bandwidth 7 of the neighborhood,
Input: weighting function g(.) and distance function d(.),
Input: point (¥, whose response is to be predicted,
Output: set of coefficients ﬂ(k)
V ={x1, - xp} (active set)
Calculate distances d to z(®) using variables in V
w := g(d, T) (vector of weights)
W := diagonal(w)
Xw :=W x X (weighted covariates)
yw := W x y (weighted response)
paths(0) := LARS (X w, yw), taking the last solution, with all 3 # 0
t:=1
repeat
Calculate distances d to (*) using variables in V
w:=g(d,T1)
W := diagonal(w)
Xw :=W x Xv (let Xv =X but including only variables in V)
yw:=Wxy
paths(t) := LARS(Xw, yw), taking the last but one, with one 8; =0
V=V\x; | paths(t); =0
t:=t+1
until |V| =0

For both algorithms, we have used Euclidean distances, and for weighting
we have employed the well-known tricube function used in [8]. Let 2(*) be the
point that the local procedure concerns and (¥ any other point. The tricube
function establishes

3
d(x® 2 3 . i
w; = <1 - (TZEEW),E(’“)))) ) if CU( ) S Cq— (9)

0 otherwise,

where d(.) is a distance function, 7 is the bandwidth, C; contains the 7n closer
points to ¥ and (9 is the furthest point to *) in C,.

Regarding the computation complexity of the algorithms, in principle we are
running p times a LARS algorithm with complexity O(p® + np?), which would
yield a complexity O(p*+np?) plus the distances calculation (O(np)). However,
it is remarkable that for the backward version, as long as the algorithms iterates,
LARS has to deal with fewer variables. Therefore the complexity is

> 0@ 4ni?) =Y 0% +>_ O(nj?) = O((j(j;r 1)) Jrnj(j + 1)6(2j + 1))1

j=1 j=1 j=1

(10)
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For the forward version, LARS stops earlier, specially in the first iterations.
The worst complexity is the same than for the backward algorithm, although
the mean complexity is smaller (at iteration ¢, LARS will loop at most ¢ times,
but sometimes it stops before). Naive algorithm has the same complexity than
LARS.

4 Experiments

In this section we face the algorithms with two real databases: Housing and
Forest Fires. Both can be found in the UCI Repository L Housing dataset
deals with prices of housing in the suburbs of Boston. Besides the response
variable (the price) it has 14 variables (integer and real), and 506 instances.
Forest fires dataset, thoroughly described in [24], has 13 real attributes and
517 instances. It concerns the occurence of forest fires in the Montensinho
natural park, Portugal. A logarithm function in(y; + 1) has been applied on the
response. Since among the variables we have the fires location coordinates, it is
very suitable the use of some way of spatial analysis. However, we will abstain
from including such analysis as it is not the concern of this work. Thus, we
put the coordinates values into the independent variables set. The comparisons
have been done with LASSO, usual LOESS and Regression trees (DT) [25].

Firstly, to compare local approaches, we have run a set of tests using con-
stant bandwidths, experimenting with 12 values between 0.15 and 0.8. To choose
the best solution of the pathway for the proposed algorithms, we have cross-
validated with 1/4 of each dataset. For space reasons, we only show the results
for the Housing dataset (see Figure 1). Tables 1 and 2 show also some useful
statistics for Housing database. An equivalent table has not been shown for For-
est fires database because the many small values of the responses (small predic-
tion errors) are dominated by the few big values (big prediction errors). We have
taken one by one all points in the datasets, we have predicted their responses
and compared to the true response. For each bandwidth and each algorithm,
we show mean prediction errors and the mean numbers of variables. The best
solution of each pathway has been selected with a ll-penalized score, basing
on a separate test proportion of the database. Figure 1 shows that for small
bandwidths the performance of the proposed algorithms is better than LOESS.
However, LASSO turns out to be more accurate excepting for big bandwidths of
LOESS. It reveals that the dataset can be up to a point linearly approximated.
The good news is that the local approach needs some less variables to make the
prediction.

Besides a competitive performance, the proposed algorithms seem to behave
more robustly. It can be observed in the worst case (maximum error) and
standard deviation for LOESS, LASSO and Regression Tree, significantly bigger
than for the other algorithms.

As mentioned above, in local regression it is common to use an ad-hoc band-
width for each point to be predicted. To analyze this method, in Figure 2 split
prediction errors and number of variables in 15 intervals and plot histograms for
each algorithm, for the Forest fires dataset. Again, we have used cross-validation
with 1/4 of the dataset. We have cut off errors above 3.0. This is done to make

Thttp://archive.ics.uci.edu/ml/
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Figure 1: Evolution of the mean error and the mean number of variables for an
increasing bandwidth, for Housing dataset. For LOESS, the number of variables
is always the maximum, so it has been omitted.

Ff Bf Nf LRf | Fv Bv Nv LRv |L RT
mean 38 36 39 43 |43 42 40 34 3.5 29
median | 25 24 27 20 |28 27 25 19 23 19
stddv. | 44 39 41 73 |49 47 44 57 3.8 3.6
max. 279 238 268 933|274 272 275 61.5 | 308 30.7

Table 1: Some statistics for estimation error, for Housing dataset, and algo-
rithms: forward local 11 selector and fixed bandwidth (Ff), backward local 11
selector and fixed bandwidth (Bf), naive local 11 selector and fixed bandwidth
(Nf), LOESS and fixed bandwidth (LRf), forward local 11 selector and adaptive
bandwidth (Fv), backward local 11 selector and adaptive bandwidth (Bv), naive
local 11 selector and adaptive bandwidth (Nv), LOESS and adaptive bandwidth
(LRv), classical LASSO (L) and Regression tree (RT). For fixed bandwidth
cases, a value of 0.3 has been taken.

Ff Bf Nf | Fv Bv Nv | L
mean 2.6 3.6 14121 28 12190
median | 2.0 3.0 1.0 20 3.0 1.0] 9.0
std dv. | 1.8 1.9 1.0|14 15 0.6 0.0
max. 100 12.0 70|80 7.0 6.0]9.0

Table 2: Same setting than for Table 1, for average number of variables. Local
Regression algorithms and Regression tree have been removed.
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intervals more specific and informative, ignoring outliers. This is fair play any-
way with regard to our comparisons, since most big errors were obtained with
LASSO and Regression trees. As observed, results are slightly better for the
proposed algorithms than for LOESS and LASSO. Specifically, for LASSO most
errors concentrate around 1, whereas for the other algorithms many error are
smaller. It is remarkable the good behaviour of the Regression tree in this case,
although it produces more big errors than the proposed algorithms. Note that
the best solution for the naive version and LASSO approach often yields all
regression coefficients equal zero, which obviously generalizes poorly. This is so
because there are many zero responses in this dataset. However, the forward
and backward versions usually recover at least two variables.

B regression tree

number of data

4 100 4
sof I B
° I | "
2 o 3 o 10

mean error mean number of variables

Figure 2: Histogram of 15 intervals of error and number of variables, for Forest
fires dataset.

[24] emphasizes the importance of the prediction of small fires, which are
the great majority. In Figure 5 we show a scatter plot of the response against
the error. We exclude backward and naive approaches because of its similarity
with the forward approach. All local algorithms were run with an adaptable
bandwidth. The proposed algorithms are the ones which best predicts small
fires, although all the methods have certain difficulties with responses equal to
Z€ro.

5 Discussion

In this work, we propose two variable selection and shrinkage iterative methods
that lean on traditional locally weighted regression paradigm and l1-regularization.
We prove its usefulness in two real datasets from the UCI repository, but we feel
that better results are possible. The nature of the data is important to decide
the adecuacy of the proposed methods. Specifically, the methods would stand
out when the relation between covariates and response is sparse and nonlinear.
From the regularization side, we are providing an alternative for dealing with
nonlinear data. From the local regression side, we supply the variable selection
functionality. Moreover, using regularization techniques we can overcome the
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Figure 3: Scatter plots for Forest fires dataset, for forward local 11 selector,
LOESS, LASSO and Regression tree, respectively. Responses are not centered

p >> n case, that is, when the data matrix is not invertible As a derivation of
least squares regression, locally weighted regression needs the cardinality of the
dataset to be greater or equal than the number of variables.

Our approach is lazy in the sense that we lack an overall model valid for all
future cases. Hence, as happens with locally weighted regression, we need to
run the whole algorithm each time a new case is presented. Flexibility against
nonlinearity and best performance of prediction are the advantages gained in
exchange for a more expensive computation if compared with linear techniques.
Although the way we are proceeding here is lazy, if computation time is a main
concern, the analysis can draw the regression coefficients for some or all the
cases in the training dataset, and extrapolate the new case to the closest points
in the dataset in some way (for example giving a weighted mean of the “closest”
responses).

Future work will revolve around the adaptation of the algorithms to mul-
tiresponse problems, applications to challeging data, use of recent variations
of LASSO, and improvements over the algorithms. Specifically, we expect to
develop a more sophisticated method for the selection phase of the forward al-
gorithm. We consider this algorithm the most sensible and promising, but it
needs to set aside a piece of the dataset to sieve solutions. This is a disadvantage
against backward and naive algorithms that claims to be solved. Robustness
is also an important concern. There are robust versions that prevent the bad
effects of outliers both for LOESS [7] and for LASSO [26]. Methods that make
the proposed algorithms more robust need to be investigated.
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