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Tribunal

Presidente: Serafı́n Moral

Vocales: Antonio Salmerón

Robert Castelo
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summary

Pragmatism is the leading motivation of regularization. We can understand regular-

ization as a modification of the maximum-likelihood estimator so that a reasonable

answer could be given in an unstable or ill-posed situation. To mention some typical

examples, this happens when fitting parametric or non-parametric models with more

parameters than data or when estimating large covariance matrices. Regularization

is usually used, in addition, to improve the bias-variance tradeoff of an estimation.

Then, the definition of regularization is quite general, and, although the introduction

of a penalty is probably the most popular type, it is just one out of multiple forms of

regularization.

In this dissertation, we focus on the applications of regularization for obtaining

sparse or parsimonious representations, where only a subset of the inputs is used.

A particular form of regularization, L1-regularization, plays a key role for reaching

sparsity. Most of the contributions presented here revolve around L1-regularization,

although other forms of regularization are explored (also pursuing sparsity in some

sense). In addition to present a compact review of L1-regularization and its applica-

tions in statistical and machine learning, we devise methodology for regression, super-

vised classification and structure induction of graphical models. Within the regression

paradigm, we focus on kernel smoothing learning, proposing techniques for kernel

design that are suitable for high dimensional settings and sparse regression functions.

We also present an application of regularized regression techniques for modeling the

response of biological neurons. Supervised classification advances deal, on the one

hand, with the application of regularization for obtaining a naı̈ve Bayes classifier and,

on the other hand, with a novel algorithm for brain-computer interface design that

uses group regularization in an efficient manner. Finally, we present a heuristic for

inducing structures of Gaussian Bayesian networks using L1-regularization as a filter.
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resumen

El pragmatismo es la principal motivación de la regularización. Podemos entender

la regularización como una modificación del estimador de máxima verosimilitud, de

tal manera que se pueda dar una respuesta cuando la configuración del problema es

inestable. A modo de ejemplo, podemos mencionar el ajuste de modelos paramétricos

o no paramétricos cuando hay más parámetros que casos en el conjunto de datos, o la

estimación de grandes matrices de covarianzas. Se suele recurrir a la regularización,

además, para mejorar el compromiso sesgo-varianza en una estimación. Por tanto, la

definición de regularización es muy general y, aunque la introducción de una función

de penalización es probablemente el método más popular, éste es sólo uno de entre

varias posibilidades.

En esta tesis se ha trabajado en aplicaciones de regularización para obtener repre-

sentaciones dispersas, donde sólo se usa un subconjunto de las entradas. En partic-

ular, la regularización L1 juega un papel clave en la búsqueda de dicha dispersión.

La mayor parte de las contribuciones presentadas en la tesis giran alrededor de la

regularización L1, aunque también se exploran otras formas de regularización (que

igualmente persiguen un modelo disperso). Además de presentar una revisión de la

regularización L1 y sus aplicaciones en estadı́stica y aprendizaje de máquina, se ha

desarrollado metodologı́a para regresión, clasificación supervisada y aprendizaje de

estructura en modelos gráficos. Dentro de la regresión, se ha trabajado principalmente

en métodos de regresión local, proponiendo técnicas de diseño del kernel que sean

adecuadas a configuraciones de alta dimensionalidad y funciones de regresión disper-

sas. También se presenta una aplicación de las técnicas de regresión regularizada para

modelar la respuesta de neuronas reales. Los avances en clasificación supervisada

tratan, por una parte, con el uso de regularización para obtener un clasificador naive

Bayes y, por otra parte, con el desarrollo de un algoritmo que usa regularización por

grupos de una manera eficiente y que se ha aplicado al diseño de interfaces cerebro-

máquina. Finalmente, se presenta una heurı́stica para inducir la estructura de redes

Bayesianas Gaussianas usando regularización L1 a modo de filtro.
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overview of the dissertation

L1-regularization, or regularization by an L1-penalty, has become very popular in the

last two decades and is of special interest for achieving sparse solutions. We basically

add an L1-penalty, defined as the sum of absolute values of the model parameters,

to the original target function that we want to optimize. In general terms, a sparse

solution is a solution with reduced complexity. However, it is usual to define sparsity

as the selection of important variables, discarding the rest from the model, so that

L1-regularization is linked to the feature selection problem. This is the definition that

we use in this dissertation.

Although the L1-penalty idea dates back further, the major impact of this type of

L1-regularization materialized after Tibshirani (1996) proposed the lasso. The lasso

is just the application of the L1-penalty to linear regression, where the response to

predict is continuous. The emergence of the LARS algorithm (Efron et al., 2004), which

efficiently solves the optimization problem underlying the lasso, was another key to

the rapid spread of the lasso within the statistics and machine learning communities.

Some researchers view variable selection in regression as one of the most important

problems in modern statistics. Traditionally, model selection was built on methods like

forward stepwise regression, all subsets regression or prefiltering approaches. Some

of these approaches are based on univariate measures and are thus seriously biased.

Others, like all subset regression (if the cardinality of the set of features is not high),

are not computationally affordable for data sets of moderate or big size in the num-

ber of variables. The main advantage of the lasso and related methods is that they

offer interpretable, stable models and an accurate prediction (not exempt, however,

from some bias) at a reasonable cost. For example, the lasso/LARS approach has the

computational cost of a least-squares estimation. Also, it provides a data-driven and

very simple estimation of the optimal level of model complexity, i.e., of how much the

model should be regularized.

Although we pay special attention to the lasso, and most of the contributions

discussed in this thesis are about the L1-regularization idea (Vidaurre et al., 2010,

2011a,c,d,e,f), we also deal with other types of regularization. In particular, (Vidau-

rre et al., 2012) is related to L2-regularization (ridge regression within the statistical

literature), being the L2-penalty the sum of the squared parameters. L2-regularization

was formally introduced by Hoerl and Kennard (1970) almost 30 years later than the

birth of the original idea, due to Tikhonov (1943), who approximated the solution of

a set of unsolvable integral equations using this concept. Another paper (Vidaurre

et al., 2011b) applies penalty-free regularization for obtaining a naı̈ve Bayes classi-

fier. Vidaurre et al. (2011g) also make certain use of regularization different from

L1-regularization within a boosting trees approach.

The main contributions of this dissertation are presented within four blocks:

• A survey on L1-regularization for statistics and machine learning, where we

present a review of the concept and application of L1-regularization. It is not

our aim to present a comprehensive list of the utilities of the L1-penalty. Rather

we focus on what, we believe, is the set of most representative uses of this reg-

ularization technique, which we describe in some detail. Thus, we deal with a

number of L1-regularized methods for linear and nonlinear regression, super-

vised classification, unsupervised classification, induction of graphical models

and feature extraction. Although this review targets practice rather than theory,



we do give some theoretical details about L1-penalized linear regression. This

section is based on (Vidaurre et al., 2011f).

• Regularization in nonparametric regression, where we discuss some contribu-

tions for nonparametric continuous response estimation. First, we propose a

heuristic that combines the lasso with locally weighted regression to achieve

sparse models. The core of this idea is that the kernel estimation in local regres-

sion should account for the importance of each variable. In other words, if a

variable is absolutely irrelevant for the regression function, or noisy, it should

be precluded from the kernel design. We call this method lazy lasso. This idea

appeared in (Vidaurre et al., 2011d).

Second, also within the local linear regression framework, we intend to give a

Bayesian formulation of regularized local linear regression, where a nearly op-

timal smoothing parameter or bandwidth is estimated. We show how to give a

maximum posterior joint estimation of both the kernel and the regression func-

tion. Also, we develop a full Bayesian treatment, based on the data augmenta-

tion algorithm, for finding both the parameter distribution and the predictive

distribution. These contributions are compiled in (Vidaurre et al., 2012).

Finally, we apply ideas from nonparametric regression for estimating the instan-

taneous firing rate of biological neurons, showing how different levels of non-

linearity influence the instantaneous firing rate estimation. Nonlinearity can be

achieved in several ways. Besides local estimation, we can enrich the predictor

set with basis expansions of the input variables, enlarging the number of inputs.

Spline-based models are popular within this category. Our goal is to demon-

strate that appropriate nonlinearity treatment can greatly improve the results.

We test our hypothesis on both synthetic data and real neuronal recordings in

cat primary visual cortex, giving a plausible explanation of the results from a

biological perspective (Vidaurre et al., 2011e).

• Regularization for supervised classification, where we present three contribu-

tions of the application of regularization within the supervised classification

paradigm. First, we focus on the naı̈ve Bayes model and propose the application

of regularization techniques to learn a naı̈ve Bayes classifier. The main contribu-

tion is a stagewise version of the selective naı̈ve Bayes, which can be considered

a regularized version of the naı̈ve Bayes model. We call it forward stagewise naı̈ve

Bayes. For comparison’s sake, we also introduce an explicitly regularized for-

mulation of the naı̈ve Bayes model, where conditional independence (absence

of arcs) is promoted via an L1/L2-group penalty on the parameters that define

the conditional probability distributions. Although already published in the lit-

erature, this idea has only been applied for continuous predictors. We extend

this formulation to discrete predictors and propose a modification that yields an

adaptive penalization. We show that, whereas the L1/L2 group penalty formu-

lation only discards irrelevant predictors, the forward stagewise naı̈ve Bayes can

discard both irrelevant and redundant predictors, which are known to be harm-

ful for the naı̈ve Bayes classifier. This work is described in detail in (Vidaurre

et al., 2011b).

Second, we study how to apply a regularization technique to learn a computa-

tionally efficient classifier that is inspired by naı̈ve Bayes. The proposed formu-

lation, combined with an L1-penalty, is capable of discarding harmful, redun-
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dant predictors. A modification of the LARS algorithm is devised to solve this

problem. We tackle both real-valued and discrete predictors, assuring that our

method is applicable to a wide range of data. Vidaurre et al. (2011c) details this

approach.

Eventually, we present a signal classification framework that can be used for

brain-computer interface design. The actual classification is performed on sparse

autoregressive features. It can use any well-known classification algorithm, such

as discriminant analysis, linear logistic regression and support vector machines.

The autoregressive coefficients of all signals and channels are simultaneously

estimated by the group lasso, and the estimation is guided by the classification

performance. Thanks to the variable selection capability of the group lasso, the

framework can drop both individual autoregressive coefficients and entire chan-

nels that are useless in the prediction stage. Also, the framework is relatively

insensitive to the chosen autoregressive order. We devise an efficient algorithm

to solve this problem. This contribution is presented in (Vidaurre et al., 2011a)

• A regularized estimation of Gaussian Bayesian networks. Learning the struc-

ture of a graphical model from data is a common task in a wide range of prac-

tical applications. Here, we focus on Gaussian Bayesian networks, that is, on

continuous data and directed acyclic graphs with a joint probability density of

all variables given by a Gaussian density. We propose to work in an equivalence

class search space, specifically using the k-greedy equivalent search algorithm.

This, combined with regularization techniques to guide the structure search, can

learn sparse networks close to the one that generated the data. This work is

presented in (Vidaurre et al., 2010).

The dissertation is hence divided into five main parts and nine chapters. The first

part, which includes the first chapter, is devoted to introducing the basic regulariza-

tion concepts. First, we describe linear regression and the lasso. Then, we extend

the discussion beyond linearity towards methods based on basis expansions and local

nonparametric approaches. After, we deal with supervised classification, focusing on

discriminant analysis, logistic regression and support vector machines. Also, we de-

scribe methods for unsupervised classification. Following, we give a brief summary

of L1-regularized methods for structure induction of both undirected and directed

graphical models. Finally, we discuss how L1-regularization can be applied for fea-

ture extraction, including principal component analysis and independent component

analysis.

The second part discusses the contributions on nonparametric regression. Chapter

2 describes the lazy lasso approach. Chapter 3 presents the sparse Bayesian regu-

larized local regression, where the estimation of the bandwidth is based on optimal

methodologies. Chapter 4 discusses nonlinearity in neural encoding models applied

to the primary visual cortex.

The third part is about supervised classification. Chapter 5 introduces the forward

stagewise naı̈ve Bayes. Chapter 6 details an L1-regularized naı̈ve Bayes-inspired classi-

fier for discarding redundant predictors. Chapter 7 deals with classification of neural

signals from sparse autoregressive features.

The fourth part, embracing chapter 8, discusses how to learn an L1-regularized

Gaussian Bayesian network in the equivalence class space.

Specific conclusions and future work ideas are exposed in each corresponding chap-

ter. The fifth and last part gives an overview of such conclusions.

xiv



Part I

INTRODUCTION TO L1-REGULARIZATION





1
INTRODUCTION TO L1-REGULARIZATION

Generally speaking, regularization is a type of technique that, by introducing some

constraint on the parameters, alters a maximum likelihood estimation that is unstable

or cannot be obtained by a classical estimator. Consequently, the regularized solutions

are conveniently less complex and, hence, more stable. In other words, regularization

imposes certain restrictions on the optimization problem so as to trade a little bias in

exchange for a larger reduction in variance, and hence avoids overfitting. Bickel and

Li (2006) present an excellent general review of regularization in statistics.

In this part, we focus on some relevant practical methods that make use of L1-

regularization and describe them in some detail. Special attention is paid to the lasso.

The chapter is organized as follows. Section 1.1 describes linear regression and in-

cludes the lasso. Section 1.2 extends Section 1.1 beyond linearity, discussing methods

based on basis expansions and local nonparametric approaches. Section 1.3 deals with

supervised classification and is centered on discriminant analysis, logistic regression

and support vector machines. Section 1.4 describes methods for unsupervised clas-

sification. Section 1.5 gives a brief summary of L1-regularized methods for structure

induction of both undirected and directed graphical models. Section 1.6 discusses how

L1-regularization can be applied for feature extraction, including principal component

analysis and independent component analysis. Section 1.7 describes some approaches

using L1-regularization for time series analysis. Table 1.1 lists the methods that are

described throughout this chapter.

Some applications of L1-regularization that, albeit interesting, are omitted from this

review include quantile regression (Li and Zhu, 2008), Cox models for survival analy-

sis (Porzelius et al., 2010), matrix completion (Candès and Tao, 2010), compressed sens-

ing (Donoho, 2006), sparse canonical correlation analysis (Hardoon and Shawe-Taylor,

2011) or sparse coding (Sprechmann et al., 2010; Lee et al., 2007), among others.

This survey is based on the submitted article (Vidaurre et al., 2011f).

1.1 linear regression

We first deal with the estimation of a continuous dependent variable from a set of

independent (typically, but not necessarily, continuous) variables. Although this dis-

sertation focuses on the practical uses of the L1-penalty, we go into some theoretical

detail about the lasso because of its unquestionable importance. Afterwards, we de-

scribe a number of extensions of the lasso.

The general linear regression problem is defined by following notation. We denote

the set of p input variables as {X1, ...,Xp} and the scalar response variable as Y. Let

D = {(xi1, ..., xip, yi), i = 1, ...,N} be the labeled data set containing N instances. In the

simplest version of the problem, we assume xi ∈ R
p. We denote the N × p predictor

data matrix as X, i.e.

3



Table 1.1: Outline of the review

Section Subsection Described methods

Linear regression Lasso

Improving lasso’s properties Relaxed lasso, VISA, adaptive lasso, Dantzig selector,

LAD-lasso, elastic net, bootstrapping lasso

Adapting to particular Group lasso, CAP, fused lasso, multiresponse,

problems generalizations

Nonlinear regression Basis expansions L1-regularized additive cubic smoothing splines,

SpAM, adaptive functional group lasso,

lasso-type spline method, COSSO, VANISH

Kernel smoothing regression Lazy lasso, rodeo, geographically weighted lasso,

smoothed lasso,

L1-regularized varying coefficient model

Supervised Logistic regression L1-regularized logistic regression, logistic group lasso,

classification L1-regularized multinomial logistic regression,

L1-regularized nonlinear logistic regression

LDA Sparse LDA, DALASS, nearest shrunken centroids

SVM L1-regularized SVM, L1-regularized multiclass SVM,

L1-regularized multiclass SVM on ANOVA kernels

Unsupervised Model-based L1-penalized model-based clustering, CAP penalties

classification Other methods L1-regularized K-means,

L1-regularized hierarchical clustering,

L1-regularized subspace clustering

Graphical models Continuous Markov Neighborhood selection method, graphical lasso,

networks CLIME, L1-regularized Cholesky decomposition

Discrete Markov networks L1-regularized log-likelihood maximization,

neighborhood selection by

L1-regularized logistic regression,

L1-regularized pseudo-likelihood maximization

Gaussian Bayesian networks L1-regularized DAG estimation, hybrid approaches

Discrete Bayesian networks Hybrid approaches

Feature extraction PCA Sparse PCA, robust sparse PCA, SCoTLASS

ICA Sparse ICA

Time series Wavelets SURE shrinkage, regularized one-step estimator,

basis pursuit

Autoregressive models L1-regularized MAR models,

group lasso for MAR models,

L1-regularized REGAR models

Other regression models Fused lasso, smoothed lasso, LAPS

Change point analysis L1-regularized change point analysis

4
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The objective is to linearly predict the response for any new instance.

1.1.1 The lasso

Assuming centered data, the lasso (Tibshirani, 1996) estimate minimizes the residual

sum of squares subject to an L1-constraint:

β̂ = argminβ ||y− Xβ||22 s.t. ||β||1 ≤ s, (1.1)

where β ∈ R
p, s ≥ 0 and ||.||q is the q-norm. Equivalently, the lasso can be defined in

the Lagrangian form:

β̂ = argminβ ||y− Xβ||22 + λ||β||1, (1.2)

where the regularization parameter λ ≥ 0 has a one-to-one correspondence with the

parameter s of Equation (1.1). Thus, the lasso estimator substitutes the L2-penalty of

the ridge estimator (Hoerl and Kennard, 1970), defined as the sum of the squared

parameters, for an L1-penalty.

Typically, the data is standardized so that the penalty is invariant with regard to the

scale of the variables. If the data is not centered, a non-penalized intercept should be

included within vector β.

The lasso performs variable selection by driving a number of regression coefficients

to exactly zero. Therefore, by increasing the value of λ, we can control the number of

variables included in the model. A fairly small value of λ leads to the least squares

solution. As we increase the value of λ, one coefficient at a time is made different

from zero, although some variables can sporadically exit the model in the presence of

correlated inputs. In other words, the λ parameter controls the degrees of freedom of

the estimation. Zou et al. (2007) show that the number of nonzero coefficients is an

unbiased estimation of the degrees of freedom of the lasso estimator.

Unlike the ridge regression problem, the lasso solution cannot be generally given in

a closed-form expression. Exceptionally, in the case of an orthonormal input matrix

X, the lasso solution is

β̂ j = sign(β̂ls
j )(β̂ls

j − λ)+, j ∈ {1, ..., p}, (1.3)

where β̂ls
j is the least squares estimate for the j-th variable and (·)+ indicates the

positive part. This is called soft-thresholding. On the other hand, the ridge solution in

the orthonormal case is

β̂ j = β̂ls
j /(1+ λ), j ∈ {1, ..., p}. (1.4)

Figure 1.1 compares the ridge and lasso estimators for p = 1. The X-axis represents

the unrestricted coefficient β̂ls
1 and the Y-axis represents the corresponding regularized

coefficient β̂1. Thus, the dotted line corresponds to the unrestricted least squares

estimation.
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Figure 1.1: Ridge (left) and lasso (right) estimation of a regression coefficient in the

orthonormal case. The dotted line corresponds to the unrestricted least

squares estimation.
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Figure 1.2: Regularization path for the Diabetes data set.

The emergence of the Least Angle Regression (LARS) algorithm (Efron et al., 2004)

boosted the practical possibilities of the lasso enormously. With a slight modification

of the basic algorithm, LARS is able to compute the entire lasso regularization path

for the general case at the cost of a single ordinary least square fit. A robust version

of LARS is proposed by Khan et al. (2007). Also, Fraley and Hesterberg (2009) devise

a variation for dealing with large data sets.

The regularization path is the entire set of solutions for each λ value. For the regu-

larization path to be efficiently computed, the LARS algorithm takes advantage of its

linearity. More specifically, since the regularization path is piecewise linear, we only

need to compute the solution for a finite number of λ values. These values represent a

variable’s removal from or addition to the model. Figure 1.2 shows the regularization

path for the Diabetes data set, used by Efron et al. (2004). The Y-axis represents the

magnitude for the regression coefficients and the X-axis represents the L1-norm of the

vector of coefficients β. Each coefficient is represented by a different line. All the coef-

ficients are zero at the start of the regularization path, where λ takes a high value. As

λ decreases (rightward in the figure), the coefficients evolve towards the least squares

solution.

Alternatively, Friedman et al. (2007a) devise a pathwise coordinate optimization

algorithm to very efficiently compute the lasso solution for a grid of λ values.

The connexions of the lasso to boosting and forward stagewise regression fitting

have been carefully studied in the literature (Efron et al., 2004; Rosset et al., 2004;
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Figure 1.3: Contours of the least squares function (blue) and contours of the constraint

regions (black) for some penalties.

Zhao and Yu, 2007; Hastie et al., 2007). This way, the lasso idea can be generalized to

any convex loss function and computation is efficient.

Seeking for generality, Rosset and Zhu (2007) analyze the L1-penalized problems

with general loss functions and ascertain under which conditions a LARS procedure

can be applied. Specifically, the loss function must be piecewise quadratic as a func-

tion of β along the regularization path. For example, the authors design a LARS

algorithm for an L1-penalized Huber’s loss function. Besides, Wang and Leng (2007)

transform different types of loss functions into quadratic approximations that can be

computed by the LARS algorithm.

From a Bayesian perspective, least squares is the maximum a posteriori estimate

with a non-informative prior on the coefficients. A shrinkage prior centered at zero

for the parameters leads to more stable estimates. The L1-penalty in Equation (1.2) cor-

responds to a Laplace prior on β. Since the Bayesian approach considers uncertainty

in the parameter estimates, the full posterior is only sparse in the limit of infinite

data even though the prior distribution encourages sparse estimates. The Bayesian

approach for the lasso is known as the Bayesian lasso (Park and Casella, 2008; Hans,

2010).

Although the L1 and the L2-penalties are the most popular, other Lq-penalties are

possible. The bridge regression (Frank and Friedman, 1993) generalizes lasso and

ridge to q > 0. In this case, the penalty in Equation (1.2) becomes λ ||β||qq. Figure 1.3

illustrates the optimization problem for two variables for various penalties. Note that

when q = 0, the penalty is just the number of free parameters.

The L1-penalty’s biggest advantage lies in the fact that variable selection only takes

place when q ≤ 1, whereas the related optimization problem is convex only when

q ≥ 1. The lasso is the intersection of both conditions so it achieves variable selection

without surrendering the computational advantages of convexity.

Another advantage of the lasso over ridge is that predictions are less biased under

some conditions. Ridge pushes all the coefficients towards zero with a force that

depends on the regularization parameter and is proportional to the magnitude of

the coefficient. In the orthonormal case, for example, the ridge solution is given by

Equation (1.4). The lasso, on the other hand, further shrinks coefficients that are

effectively discarded. This results in a weaker shrinkage of the coefficients of the

7



variables that remain within the model. These are supposed to be the most valuable

predictors for the regression problem, i.e., they have a bigger influence on the response.

There are, however, other situations where ridge outperforms the lasso. For example,

ridge dominates the lasso when the predictors are highly correlated (Tibshirani, 1996;

Zou and Hastie, 2005). In this case, ridge shrinks the coefficients of all redundant

variables so that the total contribution is well-balanced, whereas the lasso tends to

drop all but one of the redundant variables.

Greenshtein and Ritov (2004) theoretically study the prediction capability, consider-

ing the persistency property: under some conditions, and for an adequate λ choice

(that depends on N), the expected squared prediction error approximates the irredu-

cible error (the Bayes error). They show that this holds when the number of param-

eters grows, at most, at a polynomial rate with regard to N, and the true model is

sparse. Also, Candès and Plan (2009) prove, under realistic assumptions, that the

lasso achieves a squared error not far from what could be achieved if the true sparsity

pattern were known.

Besides prediction performance, the interpretability of the model is often a primary

goal. The focus is sometimes on the identification of a simple enough model rather

than on the finest prediction accuracy. A sizeable amount of research has looked at

the lasso’s ability to recover the true sparsity pattern (i.e., to discard the irrelevant vari-

ables) and give a consistent estimation of the true coefficients. A consistent estimator

produces estimates that converge to the true parameters for a fairly large sample.

For instance, Zhao and Yu (2006) introduce the irrepresentable condition concept, al-

ready outlined by Meinshausen and Bühlmann (2006). Briefly, in an asymptotic sce-

nario, Zhao and Yu (2006) show that the true model can be recovered only if there

is no high correlations between relevant predictors and irrelevant predictors. This

condition can be formalized as

max
(

(X ′ϑXϑ)
−1X ′ϑXϑc

)

< 1− ǫ,

where X ′ϑ includes the variables with non-zero coefficients in the true model, Xϑc

includes the variables with zero coefficients in the true model and ǫ is some positive

constant.

More recently, Meinshausen and Yu (2009) examine the lasso behavior if only a

relaxed version of the irrepresentable condition is met. Specifically, although the true

sparsity pattern cannot be exactly recovered, the estimation of the coefficients can

still be consistent (in the L2-sense) if both the number of relevant variables and the

minimum eigenvalue of the design matrix (restricted to the relevant variables) are

bounded.

Finally, Xu et al. (2010) show the connexion between the lasso formulation and

the robust regression problem, which indicates that the lasso has valuable robustness

properties.

1.1.2 Variants and alternatives to the lasso

Several modifications have been introduced to the lasso so as either to improve its

statistical properties or to adapt a specific problem configuration. We focus on meth-

ods that still use an L1-penalty, omitting methods, such as Smoothly Clipped Absolute

Deviation (SCAD) (Fan and Li, 2001), that change the type of penalty.
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Improving the lasso’s properties

We start by describing some alternatives that are proposed to improve the lasso’s prop-

erties. Any form of regularization introduces a bias in the estimation in exchange for a

(hopefully) larger reduction in variance. In addition, when the number of true nonzero

coefficients is small relative to p, the lasso, so as to discard the irrelevant variables, in-

troduces considerable bias in the correct variable coefficients. To minimize the bias,

the relaxed lasso (Meinshausen, 2007) introduces a two-stage estimation. First, the lasso

discovers the sparsity pattern. Then, the lasso, with a lower regularization parameter,

is again used on the selected variables only. Hence, we have two regularization pa-

rameters, one per stage, that need to be estimated for example by cross-validation. A

similar idea, using ordinary least squares in the second phase, was already proposed

by Efron et al. (2004). This is, however, only possible when N ≥ p.

In the spirit of the relaxed lasso, the Variable Inclusion and Shrinkage Algorithm (VISA)

(Radchenko and James, 2008) performs a two-stage estimation with two different reg-

ularization parameters. In the second stage, the VISA approach does not definitely

discard the variables dropped in the first stage, although it gives a higher priority to

the previously selected variables. In this paper, Radchenko and James (2008) provide

a convincing theoretical justification of the method.

The adaptive lasso (Zou, 2006) penalizes each variable according to its importance.

The adaptive lasso estimate is

β̂ = argminβ ||y− Xβ||22 + λ
p

∑
j=1

wj|β j|,

where, in the N ≥ p case, the weights wj can be computed as wj = 1/|β̂ls
j |γ (γ > 0).

If N < p, the weights can be computed using estimates with minimal regularization

instead of β̂
ls
. Zou (2006) shows that the adaptive lasso properties are superior to those

of the lasso. In particular, the adaptive lasso meets the so-called oracle properties (Fan

and Li, 2001): (i) identify the true sparsity pattern; and (ii) have an optimal estimation

rate of the coefficients. The adaptive lasso can be considered a convex approximation

of the Lq-penalties, with 0 < q < 1, which have been proven to have the oracle

properties (Knight and Fu, 2000). Further theoretical analysis of the adaptive lasso

is performed by Huang et al. (2008) and also by Pötscher and Schneider (2009), who

study the distribution of the adaptive lasso estimator. The LARS algorithm can be

used to compute the adaptive lasso regularization path. Figure 1.4 shows the adaptive

lasso regularization path for the Diabetes data set; note the differences from Figure 1.2.

Alternatively to the lasso, the Dantzig selector (Candès and Tao, 2007) substitutes the

sum of squared errors in Equation (1.2) by an L∞ norm, i.e., the maximum absolute

value of the components of the argument. Thus, the Dantzig selector yields

β̂ = argminβ ||y− Xβ||∞ + λ||β||1.

The Dantzig selector shares some statistical properties with the lasso, particularly

as regards the recovery of the true sparsity pattern. However, the Dantzig selector

estimator is less stable than the lasso. Bickel et al. (2009) examine the theoretical

properties of the Dantzig selector compared to the lasso. James et al. (2009) propose

an algorithm to find the entire regularization path for the Dantzig selector.

To achieve further robustness, Wang et al. (2007a) propose the LAD-lasso, whose loss

function is with regard to the L1-norm:

β̂ = argminβ ||y− Xβ||1 + λ||β||1.
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Figure 1.4: Regularization path of adaptive lasso for the Diabetes data set.

As mentioned above, when the data set contains strong correlations among the

predictors, the ridge’s prediction performance is better than the lasso’s. Motivated by

this, Zou and Hastie (2005) propose the elastic net, a popular method that mixes the

lasso and the ridge penalties:

β̂ = argminβ ||y− Xβ||22 + λ1||β||1 + λ2||β||22, (1.5)

where λ1,λ2 ≥ 0.

Besides performing better in the presence of correlated predictors, the elastic net has

other interesting properties. For the p > N case, in particular, whereas the lasso can se-

lect at most N predictors (then the solution saturates), the elastic net can include more

than N predictors into the model. Furthermore, assuming that there is some group

of relevant and redundant variables, the lasso tends to discard all but one from this

group. We often want to keep all redundant (if relevant) variables for interpretation’s

sake. In microarray analysis, for example, one often wants to identify all the genes

involved in a particular process, even when their expression levels are very alike. The

elastic net selects the entire group of redundant variables, giving a balanced estima-

tion of their coefficients. Bunea (2008) analyzes the variable selection capability of the

elastic net for generalized linear models, compared to the lasso. Figure 1.5 shows the

elastic net regularization path (computed with the LARS-EN algorithm, devised by

Zou and Hastie (2005)) for the Diabetes data set; note the differences from Figure 1.2.

Li and Li (2008) modify the elastic net penalty to accommodate prior biological knowl-

edge. Lorbert et al. (2010) extend the elastic net to encourage similar variables to have

similar coefficients.

Finally, some authors, like Bach (2008a) or Chatterjee and Lahiri (2011), instead

of modifying the penalization criterion, have considered the bootstrap in order to

improve the model selection accuracy of the Lasso.

Adapting the lasso to particular problems

Until now, we have described a number of methods that either improve the properties

of the lasso or attempt to give an alternative. In the following, we describe several

modifications of the lasso for tailoring to particular problem settings. Note that the

elastic net could also be included in this subsection.
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Figure 1.5: Regularization path of the elastic net for the Diabetes data set.

On occasions, the variables are grouped beforehand and we are interested in includ-

ing only entire groups in the model. For this setting, Yuan and Lin (2006) propose the

group lasso, defined as follows:

β̂ = argminβ ||y− Xβ||22 + λ
J

∑
j=1

||βj||W j
, (1.6)

where the set of variables is partitioned into J groups and βj are the parameters of the

j-th group. The penalty is defined as ||βj||W j
= (β′jW jβj)

1/2, where W j is typically

chosen to be the identity matrix. This penalty can be considered a generalization of the

L2-penalty. A trivial application of the group lasso is the presence of categorical vari-

ables, each codified as a set of indicator dummy variables. Yuan and Lin (2006) also

introduce an efficient LARS-type algorithm to approximate the group lasso solution,

giving an exact solution when the design matrix X is orthogonal.

The consistency of the group lasso estimator, under some assumptions, was proved

by Bach (2008b). Wang and Leng (2008) propose an adaptive version of the group

lasso. Jacob et al. (2009) extend the group lasso for overlapping groups.

The Composite Absolute Penalties (CAP) approach (Zhao et al., 2009) generalizes the

group lasso by using a specific Lγj
-penalty for each group, plus some Lγ0-penalty to

combine the groups:

β̂ = argminβ ||y− Xβ||22 + λ
J

∑
j=1

(

||βj||γj

)γ0 . (1.7)

Different objectives can be pursued by this flexible approach. For example, when

L∞-penalties are used for each group, the coefficients within each group are driven

towards equality. Also, the CAP approach can account for hierarchical relationships

between the predictors by defining groups with specific overlapping patterns. Zhao

et al. (2009) develop an algorithm to compute the entire regularization path for a CAP

problem with γ0 = 1 and γj = ∞ for all j.

In other problems, variables are ordered significantly and (spatially) close variables

should have similar coefficients. The fused lasso (Tibshirani et al., 2005) penalizes both

the coefficients and the difference between adjacent coefficients:

β̂ = argminβ ||y− Xβ||22 + λ1

p

∑
j=1

|β j|+ λ2

p

∑
j=2

|β j − β j−1|.
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with λ1,λ2 ≥ 0. The fused lasso is motivated by the problem of analyzing protein

mass spectroscopy data, where spatially closer variables (sites) are known to be jointly

relevant or irrelevant. The solution of the fused lasso problem can be obtained, for

example, by pathwise coordinate optimization (Friedman et al., 2007a).

Finally, the LARS/lasso approach can also be extended for multiresponse regression.

Similä and Tikka (2006) propose an extension of the LARS algorithm by modifying the

correlation criterion between the predictors and the current residual (which depends

on multiple outputs). Unfortunately, the exact regularization path can only be recov-

ered when X is orthonormal. Similä and Tikka (2007) suggest a handy approximation

for the general case.

1.2 nonlinear regression

In the real world, the response is unlikely to follow a linear model on the inputs. To a

greater or lesser extent, nonlinearity is expectable. In scenarios where data are scarce

or not of good quality, a linear model is the best we can do without overfitting the

data. There are other cases, however, where it is worth increasing the complexity of

the model and moving beyond linearity.

Now, we deal with nonlinearity for predicting a continuous response. In a nutshell,

two families of approaches applied to achieve nonlinearity. The first option is to look

for a more complex model than the linear model by establishing a linear combination

of some basis expansions of the original terms (Schumaker, 2007). Second, we can fit

simple (linear) models for different areas of the data domain (Loader, 1999), where we

do not have a unique linear model for the entire data set. In the following, we discuss

the application of the L1-penalty to each approach.

1.2.1 Basis expansions

Typically, the basis expansion family of methods works with a dictionary of functions

(basis expansions), which contains a potentially very large set of elements. These

functions are transformations of the original input terms, and can involve one or more

input terms.

Regression splines (Schumaker, 2007) are a widely used basis expansion approach.

In the univariate case, for instance, the input domain is divided into contiguous in-

tervals, separated by a fixed set of knots. Whereas the placement of the knots can be

data-driven, the number of knots is typically specified by the user. In each interval,

an m-order polynomial function is fitted, so that the entire function is continuous, and

has continuous derivatives up to order m− 2 to assure smoothness. These models are

called m-order splines. Cubic splines, which use cubic polynomial functions (m = 4),

are a usual choice. For example, six basis functions are required to represent a cubic

spline with two knots, i.e., it has six free parameters; see (Schumaker, 2007) for details.

A more flexible spline-based model is smoothing splines. Here, a maximal set of knots

is used, and complexity is controlled by penalizing (regularizing) the curvature of the

fitted function. For example, assuming a univariate input xi, the response function

can be estimated as

argminh

N

∑
i=1

(

yi − h(xi)
)2

+ λ
∫

h′′(t)2dt, (1.8)
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where h(·) encloses the nonlinear expansion of the original terms and fulfills the re-

quirements of being in a reproducing kernel Hilbert space. Note that, in an infinite-

dimensional functional space, Equation (1.8) is connected to ridge regression.

Equation (1.8) can be generalized to multivariate fits, by considering a tensor prod-

uct basis of the basis functions of each variable. Since the dimension of the tensor

product basis grows exponentially on the number of the inputs, however, this ap-

proach can only be used in low-dimensional settings. The additive model and the

smoothing spline analysis of variance (ANOVA) decomposition, described below, are

two popular simplifications.

Whatever basis expansion approach we follow, when we use regularization, we typ-

ically handle the entire dictionary but we somehow restrict the coefficients of each

basis function so as to control the complexity of the model. As with linear regression,

L1-regularization controls both the variance of the estimation and selects which func-

tions from the dictionary are going to be part of the estimated model. The lasso/LARS

approach can be applied to any basis expansion set of the original terms.

Additive models (Hastie and Tibshirani, 1990) consider general transformations on

each multivariate input xi separately:

p

∑
j=1

hj(xij) + ǫ, (1.9)

where ǫ is the irreducible error term and hj(·), j = 1, ..., p, are smooth functions.

Cubic smoothing splines can be used in an additive model (Wahba, 1990), so that

the additive model estimate is given by

argminh1,...,hp

N

∑
i=1

(

yi −
p

∑
j=1

hj(xij)
)2

(1.10)

+
p

∑
j=1

λj

∫

h′′j (t)
2dt,

where hj(·) are univariate cubic smoothing splines and λ1, ...,λp are p different regu-

larization parameters.

For example, Avalos et al. (2007) consider an additive model with a cubic spline

per additive component, decomposing expression (1.10) into a linear component and

a nonlinear component. L1-penalties are applied on the linear and nonlinear com-

ponents separately. However, since no order restriction is imposed, some nonlinear

terms could be retained, whereas their corresponding linear terms are discarded.

The Sparse Additive Model (SpAM), proposed by Ravikumar et al. (2009), can use

arbitrary smooth functions. Function selection is made by imposing an L1-penalty on

the L2-norms of the functions, yielding the optimization problem

argminh1,...,hp

N

∑
i=1

(

yi −
p

∑
j=1

hj(xij)
)2

+ λ
p

∑
j=1

√

∫

h2j (t)dt.

Hence, SpAM can be considered as a functional version of the group lasso (Yuan

and Lin, 2006), where the L2-norms of the functions play the role of the variable
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groups. This idea, using kernel functions, was already introduced by Bach (2008b).

Unlike the classic additive model, and thanks to regularization, SpAM can be used in

high-dimensional settings, as it is more interpretable, less sensitive to overfitting and

computationally efficient.

In the same spirit, Huang et al. (2010) apply an adaptive version (Zou, 2006) of

the functional group lasso, related to SpAM, to the additive model with spline basis

functions. Also, Cui et al. (2011) propose the so-called lasso-type spline method, which

employs a group lasso-type penalty of the form

λ
p

∑
j=1

√

||βj||1,

where βj are the coefficients associated with the (truncated) set of basis terms of the

j-th spline basis function.

On the other hand, the smoothing spline ANOVA (Wahba, 1990), which generalizes

the additive model, is defined as

∑
j1

hj1(xij1) + ∑
j1<j2

hj1 j2(xij1 , xij2)

+ ∑
j1<j2<j3

hj1 j2 j3(xij1 , xij2 , xij3) + ...,

where the expansion is truncated in some way. Functional terms hj1(·), hj1 j2(·),
hj1 j2 j3(·), ... are smoothing spline functions over one or more variables. Hence, unlike

sparse additive models, smoothing spline ANOVA decomposition considers input

interactions and usually leads to more complex models.

The Component Selection and Smoothing Operator (COSSO), proposed by Lin and

Zhang (2006), estimates a smoothing spline ANOVAmodel by imposing an L1-penalty

on the component norms instead of the L2-penalty employed in the traditional smoo-

thing spline ANOVA decomposition estimate. The Variable selection using Adaptive

Nonlinear Interaction Structures in High dimensions (VANISH) (Radchenko and James,

2010) focus only on main terms and second order interactions, establishing an L1-

based penalty that gives preference to the main terms.

1.2.2 Kernel smoothing regression

Now, we deal with the estimation of a different model at each point of the input

domain. These models are smooth, in a sense that refers to model continuity along

the input domain. This is achieved by including only those data points in the model

estimation that are closest (in the input space) to the point of interest. Distances are

established by means of a kernel function Kτ(·, ·), where parameter τ accounts for the

bandwidth of the kernel.

A popular example of kernel smoothing methods is locally weighted regression (Cleve-

land, 1979; Loader, 1999), which, using the closest data, fits a (typically linear) re-

gression model for each query point. The idea is that, for each point, there is a

neighborhood where the regression surface is well approximated by a function from a

parametric class. The locally weighted regression procedure is built on classical least

squares regression, so that a weighted residual sum of squares, instead of the residual

sum of squares, is minimized.
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Assuming standardized data, the locally weighted regression solution for the query

point xk is given by

β̂k = argminβ

N

∑
i=1

Kτ(xi, xk)
(

yi − x′iβk

)2
. (1.11)

Locally weighted regression is usually less useful for large dimensions, in particular

when the true underlying model is sparse. Whereas the kernel function is defined to

use the entire set of variables, it is more adequate to use only the relevant ones. For

the same reason, the direct use of the L1-penalty on Equation (1.11) is troublesome,

because the distances would be calculated prior to the regression, and before knowing

what variables are relevant for prediction. Besides, it is convenient to restrict the kernel

function to a few variables because of the curse of dimensionality.

The lazy lasso (Vidaurre et al., 2011d) combines locally weighted regression with

L1-regularization so as to offset the variance increment of the local fitting and achieve

sparse models. To cope with this issue, it alternates variable selection and kernel

evaluation. To evaluate the kernel, a vector of bandwidths is computed at each step as

a function of the local regression coefficients. This use of sparse vectors of bandwidths

avoids the curse of dimensionality. At each step, the kernel function is evaluated, and

weights are assigned to data for the next lasso regression.

The Regularization of Derivative Expectation Operator (RODEO), proposed by Lafferty

and Wasserman (2008), performs simultaneous bandwidth and variable selection by

computing the infinitesimal change in the estimation as a function of the smoothing

parameters, and then thresholding these derivatives to get a sparse estimate. Follow-

ing a greedy strategy, RODEO updates the bandwidths at each step. This way, it

shrinks the bandwidths of relevant variables more than the bandwidths of irrelevant

variables. When soft-thresholding is used, this method is related to the lasso.

The varying coefficient model uses a subset of the input variables to define the locality

pattern, i.e., the kernel function. In other words, for each value of such a subset

(usually a univariate index) we estimate a simple (typically linear) model using the

remainder of the variables. Wang and Xia (2009) propose the L1-regularized varying

coefficient model. Each data instance is associated with a univariate index variable,

ranging between 0 and 1, so that data instances with similar indexes will also have

similar regression coefficients. All vectors of regression coefficients, one per data

instance, are jointly estimated. Sparsity is pursued with an L1-penalty.

There are some other scenarios where the kernel function can be computed regard-

less of the set of input variables. In these settings, the application of L1-regularization

is simplified.

One example is spatial analysis, a different form of local analysis, where the influ-

ence of the covariates on the response follows different patterns according to some spa-

tial location of the data (typically 2D coordinates). For instance, as in locally weighted

regression, geographically weighted regression (Fotheringham et al., 2002) assigns

weights to data, so that nearer data instances are given more importance than further

data instances. Unlike locally weighted regression, distances are defined on separate

geographical information attached to each instance. The geographically weighted lasso

(Wheeler, 2009) introduces a lasso-wise penalization on the geographically weighted

regression estimated coefficients.

Related to this, Meier and Bühlmann (2007) propose the smoothed lasso. Designed

for temporal data, the smoothed lasso assigns greater weights to data points that are

closer in time. The smoothed lasso is described in Section 1.7.
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1.3 supervised classification

The applications of the L1-penalty for supervised classification are an extensive field of

research. They are many and variate, both from a frequentist and a Bayesian perspec-

tive. In this dissertation, we confine our discussion to three well-known and successful

methods: logistic regression, discriminant analysis and support vector machines; see

(Hastie et al., 2008) for a detailed overview. The L1-penalty has also been applied,

however, to other paradigms, like e.g., log-linear models (Shi et al., 2008). We also

leave out the semi-supervised classification paradigm.

Again, we have variables {X1, ...,Xp,Y}, where Y is the response variable. We also

have a data set D = {(xi1, ..., xip, yi), i = 1, ...,N}. However, this time yi ∈ {1, ...,K} is
categorical. The objective is to assign any new instance x = (x1, ..., xp) to the correct

class value in {1, ...,K}. Both linear and nonlinear L1-penalized models can be used.

1.3.1 Logistic regression

Logistic regression (Hastie et al., 2008) belongs to the wider family of generalized

linear models (GLMs). It aims to model the posterior probability of the response or

class variable Y, Pr(Y = k|x), as a transformation of a linear combination of the inputs.

For a K-classes problem, K− 1 logit functions are defined as

log
Pr(Y = k|x)
Pr(Y = K|x) = β

(k)
0 + x′β(k), k ∈ {1, ...,K− 1}, (1.12)

where {β(k)
0 , β(k)} are the logistic linear regression parameters for the k-th class value.

The denominator is set to be the K-th class value, but it could be any. This yields

Pr(Y = k|x) = e(β
(k)
0 +x′β(k))

1+ ∑
K−1
l=1 e(β

(l)
0 +x′β(l))

, (1.13)

k ∈ {1, ...,K− 1},

and, hence, Pr(Y = K|x) = 1−∑
K−1
k=1 Pr(Y = k|x). The model, including the intercepts,

has (p + 1)(K − 1) parameters overall and the maximum likelihood solution can be

found by the iteratively reweighted least squares algorithm (IRLS), derived from New-

ton’s method. Note that the inputs can be either the original set of predictors or

some expansion thereof, so that nonlinear decision boundaries can be achieved. For

example, Park and Hastie (2008) include two-level interactions and regularize with an

L2-penalty (no L1-penalty is considered, though).

The L1-penalty for logistic regression was first mentioned by Tibshirani (1996). He

formulates the binary classification problem with continuous predictors as the mini-

mization of the L1-penalized negative log-likelihood function. This function is

−
N

∑
i=1

(

yix
′
iβ− log(1+ e(x

′
iβ))
)

+ λ||β||1, (1.14)

where the input xi includes the constant term 1 to integrate the intercept. This problem

is solved by applying the original lasso algorithm at each step of the IRLS algorithm.

However, the convergence of this method is not guaranteed, and it is not computation-

ally efficient for large-dimensional problems.
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For continuous predictors and a binary response, a number of contributions relate

the lasso to logistic regression. For example, Roth (2004) adapts the algorithm pro-

posed by Osborne et al. (2000), which solves the lasso, to Equation (1.14), showing the

global convergence of the algorithm. Shevade and Keerthi (2003) devise a simple and

easy way to implement the algorithm for the same task. Genkin et al. (2007) tackle

the same problem in a Bayesian context. Also from a Bayesian perspective: Balakr-

ishnan and Madigan (2008) propose online algorithms to fit an L1-regularized logistic

regression model, so that the entire data set does not have to be stored in memory;

van Gerven et al. (2010) reformulate the Laplace prior on β as a scale mixture to force

similarity between coefficients of nearby variables; Cawley and Talbot (2006) analyti-

cally integrate out the regularization parameter so that computations are accelerated.

Park and Hastie (2007) develop an efficient regularization path-following algorithm

for GLMs based on predictor-corrector methods of convex optimization. Alternatively,

Friedman et al. (2010c) present an extremely efficient coordinate descent method for

computing the GLM regression coefficients on a grid of λ parameter values for elastic

net penalties. Shi et al. (2010) give a comprehensive list of state-of-the-art algorithms

for the sparse logistic regression problem. In addition, they propose an algorithm

comprising two stages: a fast iterative shrinkage phase and an accurate interior point

phase.

Meier et al. (2008) adapt the group lasso (Yuan and Lin, 2006), defined in Equa-

tion (1.6), to the binary logistic regression model. The so-called logistic group lasso

allows for categorical predictors by modeling each categorical predictor as a group

of dummy variables. The logistic group lasso then aims to minimize the group L1-

penalized negative log-likelihood function

−
N

∑
i=1

(

yix
′
iβ− log(1+ e(x

′
iβ))
)

+ λ
p

∑
j=1

wj||βj||2.

If the j-th predictor is categorical, βj are the parameters for the set of dummy variables.

If the j-th predictor is continuous, βj has only one component. The weights wj scale the

penalty with regard to the dimensionality of βj. Meier et al. (2008) devise an efficient

algorithm based on pathwise coordinate optimization and prove that the resulting

estimator is statistically consistent.

There are considerable additional work on multinomial logistic regression. From a

Bayesian perspective, Krishnapuram et al. (2005) introduce a new method for sparse

multinomial logistic regression, finding the maximum a posteriori for the formulation

in Equation (1.13) with a Laplacian prior distribution on the parameters. Whereas a

Gaussian prior (which is equivalent to an L2-penalty) is easily accommodated into the

IRLS algorithm, IRLS cannot handle the Laplacian prior. To estimate the (p+ 1)(K− 1)

regression parameters, Krishnapuram et al. (2005) introduce a bound optimization

approach with a computational cost equivalent to IRLS.

In situations where the log-likelihood function is not well-behaved and IRLS is not

guaranteed to converge, Tian et al. (2008) propose a quadratic lower-bound algorithm

to solve the binary L1-regularized logistic regression, also applicable to the multino-

mial problem. Cawley et al. (2007) extend their previous results for a binary response

(Cawley and Talbot, 2006) to the multinomial case.

Finally, note that the ideas of Section 1.2 can also be applied to logistic regres-

sion for achieving nonlinear classification. For example, the logistic additive model

replaces the linear expression in Equation (1.12) by a nonlinear additive expression

(Equation (1.9)). Ravikumar et al. (2009) target sparse additive logistic regression with
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an L1-penalty. Zhang et al. (2004) formulate logistic regression within the smoothing

spline ANOVA decomposition framework, using L1-regularization.

1.3.2 Discriminant analysis

Linear discriminant analysis (LDA) (Hastie et al., 2008) targets a linear separation

among a set of classes assuming the inputs to be Gaussian. This is a major difference

from logistic regression, which makes no assumption about the input distribution. In

addition, LDA assumes a shared covariance matrix for the whole data set. Although

this is rarely the case in practice, the simplicity of the resulting model is often worth

it. From these assumptions, a set of K linear discriminant functions can be derived:

ψk(x) = −x′Σ̂−1µ̂k +
1

2
µ̂′kΣ̂

−1
µ̂k + log π̂k, (1.15)

k ∈ {1, ...,K},

so that we assign to x ∈ R
p the class k whose linear discriminant function ψk(x) takes

the highest value. Here, µ̂k = 1
Nk

∑i|yi=k xi, Nk is the number of instances within the

k-class, π̂k = Nk
N is the estimation of the a priori probability of class k, and Σ̂ is the

common covariance matrix of the entire set of vectors xi.

LDA is also useful for projecting the data in lower-dimensional spaces of at most

K − 1 dimensions. These spaces are optimal in the sense that they project the data

in the most discriminative directions. The sequence of vectors that define the coordi-

nates of the optimal subspaces are called the discriminant coordinates. This is closely

connected to Fisher’s reduced rank discriminant analysis.

When the underlying model is supposed to be sparse or the number of variables

is high with regard to the number of instances, a variable filtering step usually pre-

cedes LDA. There are, however, a few attempts to combine L1-regularization with

discriminant analysis. Before discussing them, we briefly introduce the idea of penal-

ized discriminant analysis (PDA) (Hastie et al., 1995).

PDA (Hastie et al., 1995) is based on the formulation of LDA as a regression problem

via optimal scoring (Hastie et al., 1994), which turns the categorical response into a

quantitative response. The optimal scoring problem is defined as

argminθ,β||Yθ− XB||22,
subject to

||Yθ||22
N

= 1, (1.16)

where Y is a response indicator N × (K − 1) matrix, B ∈ R
p×(K−1) has one vector of

regression coefficients per class and the score matrix θ ∈ R
(K−1)×(K−1) has K− 1 scores

per discriminant function. The vectors of scores are chosen to be orthonormal.

The idea is that the K − 1 vectors of regression coefficients turn out to be, up to a

constant, equal to the aforementioned discriminant coordinates. This way, many well-

known techniques for regression into discriminant analysis can be plugged, including

nonlinear extensions and regularization. In particular, PDA is formulated as follows

argminθ,β||Yθ− XB||22 + λ||Ω1/2B||22,
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subject to (1.16), where Ω ∈ R
p×p is some symmetric and positive definite penalization

matrix.

Sparse linear discriminant analysis (SDA) (Clemmensen et al., 2011) adds a handy

L1-penalty to PDA to obtain a sparse solution:

argminθ,β||Yθ− XB||22 + λ1||Ω1/2B||22 + λ2||B||1.
Note that this is closely related to the elastic net formulation in Equation (1.5).

An alternative approach, DALASS (Trendafilov and Jolliffe, 2007), is based on Fisher’s

formulation of the problem and estimates the discriminant coordinates under a lasso

constraint. Both standard and orthogonal discriminant coordinates are considered. In

this formulation, however, no L2-penalty is considered.

The nearest shrunken centroids (NSC) method (Tibshirani et al., 2003) is useful for

problems where the number of predictors greatly exceeds the number of instances.

To simplify the estimation, the authors assume that the predictors are independent

within each class, i.e., that the within-class covariance matrix is diagonal. Thus, the

discriminant functions of Equation (1.15) simplify to

ψk(x) = −
p

∑
j=1

(xj − µkj)
2

Wjj
+ 2 logπk, k ∈ {1, ...,K− 1}, (1.17)

where W is the within-class diagonal covariance matrix with diagonal elements Wjj

and µkj is the j-th component of µk. In this setting, Tibshirani et al. (2003) define

dkj =
µkj − N−1 ∑

N
i=1 xij

mk(Wjj + ǫ)
,

where mk =
√
1/Nk + 1/N and ǫ is some small positive constant. Sparsity is pro-

moted by applying soft-thresholding on dkj,

d∗kj = sign(dkj)(dkj − λ)+,

where (·)+ indicates the positive part. Recall that soft-thresholding and the lasso are

closely related (see Equation (1.3)). Now, a sparse version of the centroids µk, the

shrunken centroids µ∗k , can be computed as

µ∗kj = µkj + d∗kjmk(Wjj + ǫ), j ∈ {1, ..., p},
so that µ∗kj substitutes µkj in Equation (1.17).

The NSC method is applied, for example, to gene expression classification. For

instance, Tai and Pan (2007) classify microarray data using a version of LDA similar

to NSC. Instead of using a pure diagonal covariance matrix, Tai and Pan (2007) allow

some off-diagonal elements of the covariance matrix to be nonzero (depending on

prior knowledge about the problem).

1.3.3 Support vector machines

Support vector machines (SVMs) (Cortes and Vapnik, 1995) are a well-known paradigm

of non-probabilistic binary classification methods. They can be used in multiclass clas-

sification, for example, by performing several pairwise binary classifications. A more

sophisticated method adapts the classical SVM binary formulation to the multiclass

case (Lee et al., 2004).
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Roughly speaking, the standard SVM finds a separating hyperplane maximizing

the margin between the training points of the different classes. Let us re-codify the

classes so that yi ∈ {−1, 1}. One of the possible formulations for the SVM is

argminβ0,β

N

∑
i=1

[

1− yi(h(x)
′β + β0)

]

+
+ λ||β||22, (1.18)

where h(·) is some transformation of the inputs, β0 and β are the separating hyper-

plane coefficients and λ can be considered a regularization parameter controlling the

width of the margin. Therefore, the L2-penalty in (1.18) controls the variance of the

estimator.

Considering Equation (1.18) as a regularized function estimation problem, Bradley

and Mangasarian (1998) replace the L2-penalty for an L1-penalty:

argminβ0,β

N

∑
i=1

[

1− yi(h(x)
′β + β0)

]

+
+ λ||β||1. (1.19)

Thanks to the L1-penalty, the binary SVM can perform feature selection (in the ex-

panded space), leading some coefficients to zero. The whole set of solutions of Equa-

tions (1.18,1.19) can be computed by the SVM path algorithm (Hastie et al., 2004),

inspired by the LARS algorithm. Further discussion about the L1-regularized SVM

can be found in (Zhu et al., 2003). Derived penalties can also be employed. For exam-

ple, Wang et al. (2006) use a combination of L1 and L2-penalties, whereas Liu and Wu

(2007) use a combination of L0 and L1-penalties.

Wang et al. (2007b) extend this idea for multiclass SVMs and present an algorithm

for finding the regularization path. To do this, they generalize both the hinge loss func-

tion (the first term of Equation (1.19)) and the penalty term, formulating the following

model:

argminβ0,β1,...,βK

N

∑
i=1

∑
k 6=yi

[

1+ (h(xi)
′βk + β0)

]

+
+ λ

K

∑
k=1

||βk||1,

where βk is the vector of coefficients for the k-class. The loss function was borrowed

from (Lee et al., 2004).

Lee et al. (2006b) propose an alternative formulation for the L1-regularized multi-

class SVM based on ANOVA kernels, so as to provide a more interpretable view of

the interactions between the predictors and class values.

1.4 unsupervised classification

Unsupervised classification, or cluster analysis, deals with the identification of a set

of classes, or clusters, within the data using only unlabeled instances. Although the

application of L1-regularization is less obvious in this field, there are still a few ap-

proaches that warrant attention.

1.4.1 Probabilistic methods

Probabilistic methods model the data instances as independent multivariate observa-

tions drawn from some mixture model with K components, each corresponding to a
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cluster. A well-known approach is to employ a finite mixture of normal distributions

with a shared diagonal covariance matrix. The mixture model is defined as

f (xi; µ,σ) =
K

∑
k=1

πk fk(xi; µk,σ),

where K is the number of clusters, fk(·) are normal multivariate density functions,

µk ∈ R
p is the vector of means for the k-th cluster, µ is a p × K matrix whose k-

th column is µk, σ ∈ R
p is the vector of standard deviations that define the shared

diagonal covariance matrix and πk is the a priori probability of cluster k. In this setting,

a variable j is dropped if the µjk values are equal for all k. To favor this condition, Xie

et al. (2007) employ the EM algorithm (Dempster et al., 1977) to maximize the L1-

penalized log-likelihood for standardized data,

N

∑
i=1

log f (xi; µ,σ)− λ
K

∑
k=1

p

∑
j=1

|µjk|.

To achieve a sparser solution, Xie et al. (2008) simultaneously penalize, by a group

penalty, all the mean parameters of each variable, so that the optimization criterion is

N

∑
i=1

log f (xi; µ,σ)− λ
√
K

p

∑
j=1

||µj.||2,

where µj. = (µj1, ..., µjK). This is a group lasso-type penalty. Also, to include prior

knowledge about grouped variables, Xie et al. (2008) propose the maximization of

N

∑
i=1

log f (xi; µ,σ)− λ
J

∑
j′=1

√

Kp(j
′) ||µj′ ||2,

where j′ iterates throughout the J a priori defined groups, p(j
′) is the number of vari-

ables in group j and µj′ is the vector that results from concatenating vectors µj. such

that j belongs to group j′.
Alternatively, Wang and Zhu (2008) formulate the maximization criterion

N

∑
i=1

log f (xi; µ,σ)− λ
J

∑
j′=1

√

Kp(j
′) ||µj′ ||∞,

where || · ||∞ is the L∞-norm, i.e., the maximum absolute value of the components of

the argument.

Note that these last two penalties are actually a generalization of the CAP penalty

(Equation (1.7)).

1.4.2 Other methods

Witten and Tibshirani (2010) propose a general framework that, provided the optimiz-

ing criterion is additive on the features, establishes a weighted additive formulation,

where weights are constrained by both L1 and L2-penalties:

argmaxw,θ

p

∑
j=1

wj f j(x·j, θj)

s.t. ||w||22 ≤ 1, ||w||1 ≤ s, wj ≥ 0, ∀j,
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where x·j is the j-th columnn of X, wj is a weight assigned to variable j and θj is some

set of parameters for variable j.

Witten and Tibshirani (2010) apply this idea to derive sparse versions of K-means

and hierarchical clustering, whose optimizing criterion is additive on the features. Let

Ck be cluster k. For L1-regularized K-means, they obtain {C1, ...,CK,w} by maximizing

p

∑
j=1

wj

( N

∑
i=1

N

∑
i′=1

d
(j)
ii′ −

K

∑
k=1

1

Nk
∑
i∈Ck

∑
i′∈Ck

d
(j)
ii′

)

s.t. ||w||22 ≤ 1, ||w||1 ≤ s, wj ≥ 0, ∀j,

where d
(j)
ii′ is defined as (xij − xi′ j)

2 and Nk is the number of instances in cluster k.

In the standard hierarchical clustering, the overall dissimilarity matrix (which is

used as an input for the algorithm) is defined by the elements dii′ = ∑
p
j=1 d

(j)
ii′ . For

L1-regularized hierarchical clustering, the objective is to find w and elements dii′ by

maximizing

p

∑
j=1

wj

N

∑
i=1

N

∑
i′=1

d
(j)
ii′ dii′ s.t.

N

∑
i=1

N

∑
i′=1

d2ii′ ≤ 1, ||w||22 ≤ 1, ||w||1 ≤ s, wj ≥ 0, ∀j.

Then, usual hierarchical clustering is performed on this similarity matrix, leading to a

sparse solution.

In a different paradigm, Elhamifar and Vidal (2009) combine spectral clustering (Ng

et al., 2001) and L1-regularization to carry out unsupervised classification on multiple

affine subspaces embedded in a high-dimensional space. The idea is to cluster the

data into separate subspaces, assuming that data instances are drawn from a union

of subspaces. Elhamifar and Vidal (2009) use sparse representations, obtained by L1-

regularization, for this purpose. Then, spectral clustering is used on the similarity

matrix induced from these subspaces.

1.5 graphical models

A graphical model (Whittaker, 1990; Lauritzen, 1996; Koller and Friedman, 2009), com-

posed by a set of nodes and a set of edges and their corresponding parameters, codifies

and provides a visual representation of the factorization of the probability distribution

of the set of variables. Each variable is represented by a node, and the edges encode

the conditional independences among different triplets of variables. Graphical mod-

els can be undirected or directed so that they are respectively called Markov networks

and Bayesian networks (Pearl, 1988; Koller and Friedman, 2009). In Markov networks

the edges are undirected, whereas in Bayesian networks the edges are appropriately

called arcs. There are dependences that can be represented by a Markov network but

not by a Bayesian network, and vice versa. Besides, the nodes can represent either

continuous or discrete variables.

There is a vast amount of literature about graphical models, and their uses are

manifold. In this dissertation, we focus on the structure induction problem, i.e., the
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discovery of the set of conditional independences over a set of p nodes. The L1-

penalty has been used to promote sparse graphs, which lead to simpler probability

distributions and more interpretable structures. There is plenty of research on spar-

se Markov networks by L1-regularization, and less on sparse Bayesian networks. In

either case, we intend to give an overview and some significant examples rather than

providing a full coverage of the topic.

1.5.1 Markov networks

We deal with pairwise Markov networks, that permit only interactions between pairs

of nodes and do not consider higher-order interactions. Thus, the absence of an arc

between two nodes means that the respective pair of variables are conditionally in-

dependent. Unlike Bayesian networks, Markov networks can represent cyclic depen-

dences.

Continuous Markov networks

When the variables encoded by the Markov network are continuous, they are usually

assumed to be Gaussian-distributed. Although other distributions are possible, the

Gaussian distribution yields handy and easy to analyze models. A Gaussian distri-

bution is defined by a vector of means µ and a covariance matrix Σ. The inverse of

the covariance matrix (or precision matrix) represents the conditional independences

between the variables. Therefore, if the precision matrix has a zero at position (j1, j2),

there is no arc between nodes j1 and j2 in the corresponding Gaussian Markov net-

work. The joint distribution on x ∈ R
p is given by

Pr(x) =
1

(2π)(p/2)|Σ|1/2 exp
(

− 1

2
(x− µ)′Ω(x− µ)

)

,

where Ω = Σ
−1 is the precision matrix.

The parameters of the precision matrix of a Gaussian Markov network are usually

estimated by maximizing the log-likelihood, defined (up to a constant) as

log det(Ω)− trace(ΩΣ̂), (1.20)

where Σ̂ is the empirical covariance matrix.

Besides, there is a connection between the Gaussian distribution parameters and

multivariate linear regression. In particular, it can be shown that

βj = −
Ω·j
Ωjj

, (1.21)

where βj is the regression coefficient for the j-th variable on the remaining variables

and Ω·j is the j-th column of Ω.

In light of this, Meinshausen and Bühlmann (2006) propose to discover the sparsity

pattern of a Gaussian Markov network by carrying out, individually, an L1-regularized

linear regression for every variable on the other variables. Hence, an edge between

nodes j1 and j2 is created when the regression of variable j1 on the rest selects vari-

able j2 (its coefficient is non-zero), or when the regression of variable j2 on the rest

selects variable j1 (alternatively to this strategy, an and strategy can be followed). This

approach is usually called the neighborhood selection method. With an appropriate

selection of the penalization parameter, and under certain assumptions, the neighbor-

hood selection method has been proven to be consistent for sparse high dimensional

graphs. Specifically, the chosen regularization parameter of each L1-regularized linear

23



regression is the one that outputs the best prediction of the variable given the others.

However, the lasso estimate is based only on individual regressions and ignores the

overall likelihood of the network. Besides, this method is asymmetric in the sense that

the regression of j1 could select j2, whereas the regression of j2 does not select j1.

Peng et al. (2009) introduce a procedure that can be considered a symmetric version

of the neighborhood selection method. This method estimates Ω by explicitly forcing

the estimator to be positive definite. Friedman et al. (2010a) also look for a symmetric

version of the neighborhood selection method by adapting the group lasso (Yuan and

Lin, 2006). The groups are defined by all the edges that connect to a given node,

whereby some nodes are disconnected from the rest of the graph. In other words, the

objective is sparsity at the node level instead of at the edge level.

To estimate a sparse precision matrix at one shot (and thus a sparse Gaussian

Markov network), the graphical lasso (Friedman et al., 2007b) maximizes an L1-penalized

version of Equation (1.20),

log det(Ω)− trace(Σ̂Ω)− λ||Ω||1, (1.22)

using a blockwise coordinate descent strategy. The graphical lasso is based on the

work of Banerjee et al. (2008), and can be considered an efficient version of their

proposal. Also, Duchi et al. (2008) extend Banerjee et al.’s work to produce sparse

blocks within the precision matrix.

Alternatively, Cai et al. (2011) propose the constrained L1-minimization for inverse

matrix estimation (CLIME):

min||Ω||1 s.t. |Σ̂Ω|∞ ≤ λ,

a convex optimization problem that can be decomposed into separate vector minimiza-

tion problems and, thus, can be efficiently solved even for high dimensions. However,

the resulting estimation is not symmetric, so a symmetrizing procedure must be per-

formed afterwards.

A formulation similar to the graphical lasso, but excluding the diagonal elements

from the penalty, is also taken by Yuan and Lin (2007) and Rothman et al. (2008).

Instead of directly penalizing the number of edges in the graphical model, Yuan

(2010) exploits the relation between the precision matrix estimation and multivariate

linear regression (Equation (1.21)) to give a preliminary estimation of Ω in a similar

fashion to Meinshausen and Bühlmann (2006) but using the Dantzig selector (Candès

and Tao, 2007). Afterwards, the estimated precision matrix is simply performed to

achieve symmetry, so that the result is optimal in some sense. The objective differs

from Meinshausen and Bühlmann’s. Whereas Meinshausen and Bühlmann (2006)

focus on discovering the sparsity pattern, Yuan (2010) aims to find a proper Ω estima-

tion.

Also, Yuan (2010) realizes that a high dimensional precision matrix can be optimally

estimated insofar as it can be approximated by a graphical model with a moderate

degree. That is, not only does the true graphical structure has to be sparse according

to the usual L1-criterion (Equation (1.22)), but also the maximum number of edges per

node needs to be under some bound.

Liu et al. (2009) generalizes the Gaussian assumption to a semiparametric distribu-

tion, much like the additive models (Hastie and Tibshirani, 1990) do for linear regres-

sion. They replace the vector of variables (X1, ...,Xp) by their functional counterparts

h(X1, ...,Xp) = (h1(X1), ..., hp(Xp)), so that h(X1, ...,Xp) is Gaussian distributed. Spar-

sity is provided by an L1-penalty.
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When the variables are ordered, the precision matrix sparsity is usually introduced

via the modified Cholesky decomposition. The precision matrix can be factorized

(Cholesky decomposed) as Ω = L′D−1L, where L is a lower triangular matrix with

ones in the diagonal and D is a diagonal matrix. The elements of L below the diagonal

can be interpreted as the regression coefficients of each variable on its precessors. Note

that, without an ordering, we cannot assume L to be triangular. Huang et al. (2006)

use direct L1-regularization of the coefficients of L. Levina et al. (2008) also use the

Cholesky decomposition of the precision matrix and apply a modification of the L1-

penalty that is shown to produce better results.

Discrete Markov networks

The Ising model is the most popular discrete Markov network and the one we discuss

in this dissertation. All the nodes in the Ising model represent binary variables. Al-

though hidden nodes are sometimes allowed, we deal with Ising models whose nodes

are all “visible”. The Ising model distribution is given by

1

ψ(θ)
exp

(

∑
(a,b)∈E

θabxaxb

)

,

where x ∈ {0, 1}p, θ is a (p2)-dimensional vector of parameters (so that θj1 j2 is zero if

nodes j1 and j2 are not connected), E is the set of edges and the partition function

ψ(θ) ensures that the distribution adds up to one. Whereas the normalization term

can be computed in polynomial time in the Gaussian model, the evaluation of ψ(θ) is

intractable for discrete models.

Lee et al. (2006a) maximize the L1-regularized log-likelihood of the Ising model

(penalizing θ) by a conjugate gradient procedure. They use an approximation of the

partition function so as to reduce the computational burden. Although this approxima-

tion is exact for trees, it is somewhat troublesome in the presence of loops.

To avoid the evaluation of ψ(θ), Ravikumar et al. (2010) follow the line of Mein-

shausen and Bühlmann (2006) for the continuous case and estimate the graph struc-

ture by fitting one L1-penalized logistic regression per node. As happens with the

neighborhood selection method, the estimation is based only on individual regres-

sions and ignores the overall likelihood of the network.

Another way around ψ(θ) evaluation is to use a pseudo-likelihood consisting of the

product of univariate conditionals (Besag, 1975). The pseudo-likelihood maximization

problem can be expressed as a set of logistic regression problems, which is susceptible

of including an L1-penalization. This is the approach taken by Schmidt et al. (2008)

and Höfling and Tibshirani (2009).

1.5.2 Bayesian networks

Directed acyclic graphical models, also referred to as Bayesian networks, have direc-

tional arcs instead of undirected edges. This way, no directed cycles are formed. Al-

though there are several Bayesian network models with restricted topologies, like trees

or polytrees, we only discuss the structure induction of general Bayesian networks.

Bayesian networks are often estimated from some ordering on the variables. In

what follows, however, we do not assume any given order. Typically, graph structure

estimation is performed by either constrained-based algorithms (detecting conditional

independences between triplets of variables) or score and search-based methods.

To represent a Bayesian network, we can choose between directed acyclic graphs

(DAGs) and partial directed acyclic graphs (PDAGs).
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Gaussian Bayesian networks

In Gaussian Bayesian networks, the density function of the joint probability distri-

bution is Gaussian and can be expressed as the product of p univariate conditional

normal densities.

Li and Yang (2005) estimate a DAG with lasso-based regressions, which iteratively

alternates coefficient estimation and regularization parameter estimation. From a

Bayesian perspective, they use a Wishart prior distribution for the precision matrix.

The DAG prior is derived from this precision matrix prior, and this DAG prior turns

out to be equivalent to a Laplace prior.

Vidaurre et al. (2010) take a hybrid approach where L1-regularization is used as an

edge filtering step, prior to a greedy search through the space of Markov-equivalent

structures (using PDAGs). Assuming the lasso to be an ideal variable selector (specif-

ically, if it does not miss true relations), the greedy search is limited to the Markov

blanket of each variable. In this case, the optimality properties of the greedy search

algorithm, proved by Nielsen et al. (2003), are preserved.

Discrete Bayesian networks

Discrete Bayesian networks (or Bayesian networks) are directed acyclic graphical mod-

els with discrete nodes. Unlike discrete Markov networks, Bayesian networks are

decomposable and hence there is no need to compute the partition function. Schmidt

et al. (2007) also use an L1-regularization prefiltering step, followed by a greedy search

procedure in the DAG-space, for the induction of Bayesian network structures.

1.6 feature extraction

Dimensionality reduction amounts to the reduction of the number of variables in

the data. The dimensionality reduction process is useful in many applications and

constitutes a research field by itself. It can be categorized into feature selection and

feature extraction. Feature selection intends to find a subset of the original variables

that is useful for some subsequent task. The lasso or any of its variants can be used

for feature selection. In this section, we focus on the feature extraction approach,

which seeks for some transformation of the data into a lower dimensional space that

somehow preserves the properties of the raw initial data.

1.6.1 Principal component analysis

Discriminant analysis, defined above, is in some sense a feature extraction method,

because it allows to project the data onto an affine subspace of K − 1 dimensions,

where K is the number of classes. Thus this dimensionality reduction is oriented to

classification. Now, we deal with more general dimensionality reduction approaches,

particularly those intended to capture maximal variance.

We assume an N × p data matrix X and we want to reduce the dimension p into

a handier, lower dimensional q. We focus on the most popular feature extraction

method, principal component analysis, along with some nonlinear extensions. The

simplest version is the principal component analysis (PCA) method (Jolliffe, 2002),

which obtains a sequence of linear approximations of the data. This sequence forms a

rank-q (q < p) orthogonal matrix. We assume standardized data. PCA is based on the

eigen decomposition of the sample covariance matrix, X ′X/N, defined as
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X ′X = VD2V ′,

where V is a p × p orthogonal matrix spanning the row space of X (an orthogonal

basis) and D is a p× p diagonal matrix, with diagonal entries d1 ≥ d2 ≥ ... ≥ dp. Such

values are the singular values of X. If any value dj is zero, X is not full-rank. The

columns of V , {v1, ..., vp}, are known as the principal components directions of X and

also called the loadings.

Therefore, the PCA transformation of X is built by the first q columns of V , i.e., the

ones corresponding to the highest singular values. The linear combination z1 = Xv1
has the highest variance among all the linear combinations of the columns of X, and

the linear combination z2 = Xv2 has the highest variance given that v2 is orthogonal

to v1, and so on.

A direct application of the L1-penalty properties to PCA is the so-called sparse PCA,

proposed by Zou et al. (2006). Sparse PCA emerges from the observation that PCA

is a linear combination of all the original variables, and hence the result is often not

easy to interpret. Instead, Zou et al. (2006) aim to ascertain which variables are more

relevant for the decomposition. This is achieved when the loadings {v1, ..., vp} are

sparse. To accomplish this goal, sparse PCA exploits the connection between PCA

and regression to impose a lasso penalty (or any other variant). Assuming centered

data, the proposed formulation is

(V̂ q, θ̂) = argminV q,θ

N

∑
i=1

||xi − θV ′qxi||22 + λ||v||1,

s.t. θ′θ = I,

where V q is the p× q loadings matrix (V restricted to the first q columns), θ ∈ R
p×q

and I is the q× q identity matrix. Although this criterion is not convex, when either

V q or θ is fixed, the criterion becomes convex in the other parameter matrix. Thus,

an alternating optimization problem is performed until convergence. The elastic net

penalty (Zou et al., 2006) or the adaptive lasso penalty (Leng and Wang, 2009) have

been also proposed.

d’Aspremont et al. (2007) devise a path-following algorithm for sparse PCA. This

algorithm is based on a semidefinite relaxation of the problem. Farcomeni (2009)

proposes to use an L0-penalty instead of an L1-penalty for explicitly controlling the

degree of sparseness. Meng et al. (2011) replaces the L2-norm in the loss function by

an L2-norm so as to achieve further robustness. From a Bayesian perspective, Gao

(2008) introduces a sparse PCA formulation by replacing the Gaussian distribution of

the noise used by the probabilistic PCA (Tipping and Bishop, 1999) by a Laplacian dis-

tribution. The resulting model is expected to be robust against outliers and promote

sparsity.

Prior to Zou et al.’s research, Jolliffe et al. (2003) introduced a more direct approach

to achieve sparsity, where the only parameters to be optimized are V q, i.e., without

including θ̂ in the formulation. This approach, called Simplified Component Technique-

Lasso SCoTLASS, has a high computational cost, because it is not a convex optimiza-

tion problem. However, a recently proposed modification of the singular value decom-

position (Witten et al., 2009) is able to compute the SCoTLASS solution efficiently.

Kernel PCA (Schölkopf et al., 1999) extends PCA by expanding the original variables

with some nonlinear transformation and then applying PCA on these transformed
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data. As far as we know, no attempt has been made to apply the L1-principle to the

kernel PCA model.

1.6.2 Independent component analysis

Independent component analysis (ICA) (Hyvärinen et al., 2001) aims to separate the

different sources from which some multivariate data are generated. ICA can be con-

sidered a variation of the latent variable model, described in (Bartholomew and Knott,

1999), which also aims to identify the latent sources of some data. The difference from

the latent variable model is that ICA is built under the assumption of mutual statis-

tical independence and non-Gaussianity of the sources, whereas the classical latent

variable model assumes non-correlated, Gaussian distributed data. Note that corre-

lation only implies second-order interactions. Independence, on the other hand, is a

more general term that involves all the cross-moments. These assumptions mean that

the ICA problem has a unique solution, whereas the traditional latent variable model

suffers from lack of unicity.

Let us assume p components or sources. The ICA model is defined as

X = SA′ + ǫ,

where A is an orthogonal p × p matrix of loadings and S is an N × p matrix that

encodes the latent variables or factors, which represent common sources of variation

for X. Hence, the columns of S represent non-Gaussian, independent variables. It is

assumed that X ′X = NI and S′S = NI. The objective is to find A such that S fulfills

the mentioned conditions. A is typically estimated by information theory techniques,

such as the minimization of the mutual information between the components of XA.

This amounts to maximizing the departures from Gaussianity of the estimates, when

the estimates are constrained to be uncorrelated.

Hyvärinen and Karthikesh (2002) propose the sparse ICA, to achieve a sparse esti-

mation of A by imposing a convenient prior on the distribution of A. This prior is

related to the Laplacian prior used in the lasso.

We have included ICA in this section because it entails important applications for

dimensionality reduction; see, for example, (Wang and Chang, 2006). However, it is

also frequently used for signal analysis and also could be included in the next section.
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Part II

REGULARIZAT ION IN NONPARAMETRIC REGRESS ION





This part deals with the nonparametric estimation of a continuous response. What-

ever approach we follow, we must somehow control the nonlinearity or complexity of

the model. More complex models are less biased in exchange for increased variance.

In general terms, we would choose simpler models for limited or ill-posed data and

more complex models for well-behaved data. The objective is a model that optimizes

the bias-variance trade-off, that is, that minimizes the expected prediction error. Au-

tomatic, data-dependent methods are preferred to control the model complexity. For

example, techniques based on regularization are useful for adjusting the complexity

of the model and restricting its variance by imposing some constraint on the model

parameters.

There are two fundamental approaches for achieving nonlinearity. First, we can

fit simple (linear) models for different areas of the data domain (Loader, 1999). Sec-

ond, we can seek a more complex model than the linear model by establishing a linear

combination of some basis expansions of the original terms (Schumaker, 2007). Within

this part, chapters 2 (Vidaurre et al., 2011d) and 3 (Vidaurre et al., 2012) discuss two

methodological contributions in the field of local linear regression, which belong to

the first category of nonlinear models. Chapter 4 presents an analysis of different

nonlinear approaches for modeling instantaneous firing rate prediction of single bi-

ological neurons, particularizing for neurons in the primary visual cortex (Vidaurre

et al., 2011e). It is shown that regularization can play a key role in this setting. This

type of models, which aim to understand the neural spiking activity as a function of

a biological signal, are called encoding models.
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2
THE LAZY LASSO

2.1 introduction

Consider p independent covariates X = {X1, ...,Xp} and a response variable Y. Let X

and y = (y1, ..., yN) be, respectively, an N × p data matrix and a continuous-valued

vector, so that each row xi is iid related to a continuous response yi by means of some

unknown (nonlinear) function m(·):

yi = m(xi) + ε i,

where m(·) is assumed to be sparse and ε i is the irreducible error term, with E[ε i|xi] =
0. Therefore, E[yi|xi] = m(xi). We denote the elements of X as xij.

The objective is to estimate the response at a point of interest x = (x1, ..., xp) using

a sparsity assumption: only a subset of the covariates are indeed relevant for the

estimation. We denote as X∗ the data matrix X centered at x and augmented with

a first column of ones, so that x∗i0 = 1 for all i = 1, ...,N. The homoscedasticity

assumption is not strictly necessary, so that we can generically define the variance of

ε i as Var[ε i|xi] = s2(xi) = σ2
i .

Multivariate local regression (Loader, 1999) estimates a multivariate regression func-

tion valid for some neighborhood of x. This function is often linear, corresponding

to a first-order Taylor approximation of m(·) at x, and can be defined on the original

covariates or on some set of basis functions defined on the original covariates. We con-

sider for simplicity the first case, although the generalization is straightforward. Local

regression is appealing from both theoretical and practical sides. On the one hand, it

is known to enjoy 100% minimax efficiency for some choice of bandwidth and kernel

(Fan, 1993; Ruppert and Wand, 1994). On the other hand, it is computationally fast,

easy to implement, flexible and robust to data design (Hastie and Loader, 1993).

The neighborhood is defined by a kernel function, which assigns weights w =

(w1, ...,wN) to the data points in the data set on the grounds of their distance to x. The

kernel function has a bandwidth parameter, which strongly influences the estimation.

In this chapter, we use a single value h for all regressors. The kernel function is defined

as

w2
i = Kh(xi − x) =

p

∏
j=1

1

h
K

(

xij − xj

h

)

, i = 1, ...,N, (2.1)

where K(·) is a univariate, symmetric and nonnegative function with a compact sup-

port, such that
∫

K(t)dt = 1.

The estimated local linear regression function g(·) is defined by a vector of local

coefficients β(x) = (β1(x), ..., βp(x))t and an intercept term β̂0(x). For simplicity of

notation, in the following we denote β̂0(x) as β̂0 and β̂(x) as β̂. Then, we have

33



ŷi = g(xi) = β̂0 + xti β̂.

Since the data is centered at x, we have ŷ = g(x) = β̂0. In the following, we denote

(β̂0, β̂) as β̂
∗
, In the simplest case, we can estimate β̂

∗
as

β̂
∗
=
(

X∗
t
WX∗

)−1
X∗

t
Wy,

where W = diag(w2). We can interpret β̂ as an estimation of the gradient ∂m(x)/∂xj.

For estimation of second derivatives, we would need at least a second-order fit.

There are two main motivations for introducing variable selection within the local

regression methodology. First, since the best rate of convergence in nonparametric

regression is N−4/(4+p) (Györfi et al., 2002), to exploit the sparse nature of m(·) is

extremely convenient because, otherwise, the convergence is impractically slow if p

is high. Second, ideally, only relevant covariates should be considered by the kernel

function. If the solution is sparse, there will be several irrelevant covariates involved

in the weights calculation, yielding an incorrect weighting scheme and a rather inac-

curate prediction.

A possible naı̈ve approximation would be to add an L1-penalty to the locally weighted

regression so as to reach a sparse solution (some regression coefficients equal to zero).

This implies that the kernel function is evaluated before performing variable selec-

tion. Therefore, distances are calculated prior to the regression, and hence before we

know what variables are relevant for prediction. We claim that this method is naı̈ve

and ineffective, and it is expected to lead to incorrect predictions and incorrect fea-

ture selections. This effect will be more pronounced for a large number of irrelevant

variables. We will call this method the naı̈ve lazy lasso.

The approach taken by Lafferty and Wasserman (2008), so-called regularization of

derivative expectation operator, or rodeo, considers a diagonal bandwidth, and is of spe-

cial interest to us because they consider sparsity in m(x). Specifically, they use the es-

timated gradient of the regression function with respect to the bandwidth, ∂m(x)/∂h,

to conduct a greedy search, considering that a high value of ∂m(x)/∂hj is indicative

of the relevance of variable Xj. In other words, this gradient tells how the regression

function varies with infinitesimal changes of the bandwidth. If it varies little, then

the variable is considered to be irrelevant and will be assigned a relatively large band-

width. This approach, then, assumes that relevance of the variables depends just on

how much they depart from the linear model. This method assumes a known value

of σ2. If σ2 is unknown, it has to be separately estimated.

In this dissertation, we suggest an iterative algorithm that alternates variable selec-

tion and distance computation. At each step, distances are computed using the current

variables in the model, and weights are assigned to data for the next L1-regression,

which is based in the LARS algorithm (Efron et al., 2004). We use a single overall

bandwidth parameter, and the effective bandwidth of each variable is adaptively ad-

justed in the distance calculation stage. Besides, since, at each step, only a subset of

the variables is involved, unlike rodeo, we mostly avoid large matrix inversions. Also,

we devise a validation procedure that implies no additional cost. This work appear in

the published paper (Vidaurre et al., 2011d).

In the framework of functional data analysis, the stepwise algorithm proposed by

Ferraty et al. (2010) is related to ours. Whereas Ramsay and Silverman (2005) have

popularized the functional data analysis field, the first nonparametric contributions

are described by Ferraty and Vieu (2006) and more recently by Ferraty et al. (2010).
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Now, we have an infinite (or very high) dimensional functional variable and a scalar

response. The goal is to reduce the very high set of predictors to a set of highly predic-

tive points, called design points. This method performs a greedy, forward addition of

variables guided by the cross-validated error. At each step, the variable that, together

with the variables currently in the model, most improves the accuracy is selected. A

backward deletion process is subsequently applied.

There are, however, substantial differences between this method and ours. First, Fer-

raty et al’s method is not a lazy approach, that is, it is not focused on a certain point

of interest and considers the whole data set. Hence, the goals are different, although

both algorithms could be adapted to pursue any objective. Second, the estimation pro-

cedure and the search strategy also differ. Ferraty et al. (2010) take the weighted least

squares estimation at each step. Instead, we obtain a weighted L1-regularized estima-

tion, choosing the extent of regularization that most improves the model. Given that

the whole L1-regularization path can be obtained at the same cost that a least squares

fit, and since their method performs one least squares fit per candidate variable at

each step, our method is computationally more efficient when the number of vari-

ables is high. This is supported also for a cheap validation procedure. Furthermore,

whereas their method adds one variable at a time (and deletes one variable at a time

afterwards), our method can add and delete several variables at each step, possibly

enlarging the number of different visited models. Finally, we compute the adaptive

bandwidths directly as a function of the importance of each variable. Ferraty et al.

(2010), on the other hand, perform a heuristic search for this purpose.

2.2 the algorithm

Cleveland and Devlin (1988) discussed the need to incorporate a variable selection

procedure into the loess methodology if required, i.e. if we suspect the presence of

irrelevant variables. Taking up this argument, we present an algorithm that combines

L1-regularization with the usual locally weighted regression paradigm.

We assume the hypothesis of local homoscedasticity, that is, σ2
i is supposed to be

constant within a certain neighborhood. We are interested in the local regression

coefficients β̂
∗
minimizing

N

∑
i=1

(

wiyi − wiβ0 −
p

∑
j=1

wixijβ j

)2

+ λ
p

∑
j=1

|β j|, (2.2)

where the weights w are computed by the redefined kernel function

w2
i = Kh(xi − x) = ∏

j∈Ω

1

h
K

(

xij − xj

h

)

, i = 1, ...,N, (2.3)

where Ω is the set of relevant covariates. We set Ω to contain those variables that are

relevant for the prediction of the response.

Since the problem of estimating simultaneously Ω and β cannot be solved analyti-

cally, we propose an iterative procedure, the lazy lasso, that calculates distances based

on the current Ω at each step.

In the first iteration, we let Ω = {1, ..., p} and we calculate w using Equation (2.3).

As in loess, we weight the data set. Then, the LARS algorithm is run on this weighted

data set to solve the minimization in (2.2). From the resulting LARS regularization

path, we select the best vector of regression coefficients according to some criterion
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Algorithm 1 lazy lasso

Initialization:

Ω = {1, ..., p}
overallBest := ∞ ; toStop := 0

repeat

Compute w with Equation (2.3)

W (l) := N × N diagonal matrix, with Wii = wi

Z := W (l)X

v := W (l)y

path := LARS(Z, v)

β̃
∗
:= best(path;Z, v)

Update Ω, including only those variables whose β̃ j 6= 0.

score := evaluate(β̂
∗
;Z, v)

if score ≥ overallBest then

toStop := toStop+ 1

else

toStop := 0

overallBest := score

β̂
∗
:= β̃

∗

end if

until toStop = κ

ŷ := β0

(see below for details). We update Ω according to this vector of regression coefficients

(including only those covariates whose β j 6= 0) Weights are again recalculated using

the new Ω set, and the data set is weighted. Subsequently, LARS is run again over this

weighted data set. The algorithm alternates LARS and weights calculation until some

stopping criterion is met. Here, we stop the process when there is no improvement in

the best score for a given number of iterations. This procedure can be complemented

with an estimation of h by some plug-in procedure, using only those variables in Ω.

This is computationally cheap for a single bandwidth. For details, see, for example,

(Yang and Tschernig, 1999).

The pseudocode in Algorithm 1 roughly outlines the method. In the pseudocode,

path is the LARS regularization path and β∗ is the best set of regression coefficients

at each iteration. The evaluate(·) and best(·) functions are based on the validation

procedures that we detail in the next section. The algorithm terminates if there is no

improvement in the best score for κ iterations.

To keep the local homoscedasticity assumption for the weight-ed data set, we have

chosen the kernel function to be a k-nearest neighborhood function. This function

assigns wi = 1 for the τN data items closest to x(l) and wi = 0 otherwise. Hence,

the weighted data set is just a subset of the original data set with constant σ2
i for

because they are the closest points. As discussed below, local homoscedasticity is a

requirement for the validation procedure. Although other functions, like the Epanech-

nikov function or the tricube function, are much more frequent in local regression, the

weight function mainly affects the visual quality of the regression curve and does

not significantly influence the prediction accuracy (Loader, 1999). However, both the

Epanechnikov and the tricube functions alter the data set so that we cannot assume σ2
i

to be homogeneous within a certain neighborhood.
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2.3 validation procedures

Validation plays a crucial role in the lazy lasso. On the one hand, a specific point of the

regularization path must be selected from each LARS run. On the other hand, a final

solution should be selected from the final lazy lasso sequence. Hence, the number of

solutions for evaluation can be considerably large. An efficient evaluation method is

thus required.

We first deal with model selection along the LARS regularization path. Since we

assume local homoscedasticity and we have used the k-nearest neighborhood func-

tion to weight the data set, we can now reasonably assume σ2
i to be constant for the

weighted data set (that is, within this neighborhood of x).

The Mallows’ Cp statistic (Mallows, 1973), which needs σ2
i = σ2 for all i, is defined

as

Cp =
N

∑
i=1

(

yi − β0 −∑
p
j=1 xijβ j

)

σ2
− n+ 2ν, (2.4)

where ν is the effective degrees of freedom of the model. Since we are interested only

in β̂, we use the usual Cp naturally adapted for local fitting at point x (Cleveland and

Loader, 1996):

Cp(x) =
N

∑
i=1

wi

(

yi − β0 −∑
p
j=1 xijβ j

)

σ2(x)
− tr(W) + 2ν, (2.5)

where tr(W) = ∑
N
i=1 w

2
i . A reasonable estimator for the (constant) local noise variance

σ2(x) is

σ̂2(x) =
N

∑
i=1

wi

(

yi − βLS
0 ∑

p
j=1 xijβ

LS
j

)

tr(W)− ν
, (2.6)

where βLS
j corresponds to the λ = 0 (OLS) fit of the LARS regularization path. Finally,

an unbiased estimation ν̂ for the lasso is the number of non-zero predictors in the

model (Zou et al., 2007). Note that the k-nearest neighborhood weighting scheme also

simplifies the estimation of ν. Therefore, the Cp(x) assessment requires no additional

computations, since σ̂2(x), ν̂ and the residual sum of squares are LARS products.

From the above, we can evaluate the solutions that LARS outputs for a given

weighted data set. This corresponds to the best(·) function in Algorithm 1. Unfor-

tunately, this procedure does not work for comparing solutions from different LARS

runs. This is because we do not have a universal σ2(x) estimation for different weight-

ing schemes.

Leave-one-out cross-validation through a local version of the prediction sum of

squares (PRESS) procedure (Allen, 1974) is a common and computationally efficient

choice for validation in local learning; see (Cleveland and Loader, 1996; Loader, 1999)

for details. It does not need a σ2(x) estimation. The PRESS statistic is defined as

PRESS(x) =
1

tr(W)

n

∑
i=1

(wi

(

yi − β0 −∑
p
j=1 xijβ j

)

1− Hii

)2

, (2.7)

where H is the hat matrix, such that v̂ = Hv = HWy. Diagonal elements Hii, also

called leverages, quantify the influence of the observed response on the fitted response

for each data item. H has no direct closed form for the lasso but can be derived from a
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linear approximation to the lasso fit (Tibshirani, 1996). Transforming the lasso penalty

into a Lagrangian penalty ∑j β2
j/|β j|, H becomes

H = Z(ZTZ+ λB−)−1ZT, (2.8)

where B is a diagonal matrix such that Bjj = |β̂ j| and B− is the B pseudoinverse.

Note that, in the evaluation of (2.5), we could calculate ν as tr(H). However, this is

computationally expensive and, as noted by Efron et al. (2004), the accuracy gain is

often negligible.

Note that Equation (2.7) includes a weighted residual sum of squares for all data

items xi. In principle, it should involve calculating a vector of regression coefficient for

each i. However, the PRESS statistic can make efficient use of β̂ instead of an ad-hoc

estimation for each data item. In this chapter, moreover, we use the k-nearest neigh-

borhood function, so weights are either 1 or 0. Therefore, the numerator in (2.7) is just

the usual residual sum of squares within some neighborhood of x. Equation (2.7) is

the evaluate(·) function in Algorithm 1.

2.4 experiments

Now, we describe some experimental results on synthetic and real data sets that illus-

trate the behaviour of the lazy lasso and the naı̈ve lazy lasso algorithms, compared to

the lasso, loess, regression tree (RT) and rodeo.

We perform leave-one-out validation. For each data set (with N instances), we have

built N models; for each model, the point of interest is one different data item, whose

response is unknown, and the N − 1 remaining data items make up the data set itself.

2.4.1 Synthetic data sets

The algorithms have been first tested on several data sets, generated from three differ-

ent nonlinear controlled models: m1, m2 and m3. Model m1 represents the scenario of

a single sparse nonlinear function. The sparse condition is expected to be detrimen-

tal for loess, which calculates the distances over all variables including the irrelevant

ones. Models m2 and m3 are a more complex case, where the function generating

the response and the sparsity pattern vary across the data set. Roughly speaking, the

response may be obtained either from a single function for the entire data set (m1) or

from different functions for different locations in the covariate space (m2 and m3).

From each model, we have simulated 50 data sets. All generated data sets have

N = 2000 samples.

The three models have p = 100 covariates, but only some covariates are relevant.

Whereas for m1 the subset of relevant covariates is constant for the whole data set,

this subset varies across the data set in m2 and m3. For m1, all covariates are sampled

from a Gaussian distribution with mean µ = 0 and standard deviations σ2 = 1. For

m2 and m3, whereas irrelevant covariates are sampled from a Gaussian distribution

with mean µ = 0, relevant covariates have been sampled from a Gaussian distribution

with non-zero mean (see below). Standard deviation is equal to 1 for all covariates in

m2 and m3.

The prediction function for model m1 is

yi = x2i1 + 5 sin xi2 + xi3xi4 + ǫi, i = 1, . . . ,N,
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where ǫi ∼ N (0, 0.25) for all data data items. Relevant covariates in m1 are thus

Xj, j ∈ {1, 2, 3, 4}, and irrelevant covariates are Xj, j /∈ {1, 2, 3, 4}.
Models m2 and m3 have four different prediction functions, indexed, say, by z =

1, 2, 3, 4. These prediction functions have an equal probability of 1/4 of generating

responses. For model m2 such prediction functions are linear:

yi = 2xi 3(z−1)+1 + 0.5xi 3(z−1)+2 − xi 3(z−1)+3 + ǫi, z = 1, 2, 3, 4,

whereas for model m3, they are nonlinear:

yi = x2i 3(z−1)+1 + 5 sin xi 3(z−1)+2 + xi 3(z−1)+3 + ǫi, z = 1, 2, 3, 4.

Hence, there are three relevant covariates for each data item, and covariates Xj, j ∈
{13, ..., 100} are always irrelevant.

As mentioned earlier, for models m2 and m3, relevant covariates are sampled from

a Gaussian distribution with non-zero mean µj; specifically, when z = 1, µj = −3
(j = 1, 2, 3); when z = 2, µj = −1 (j = 4, 5, 6); when z = 3, µj = 1 (j = 7, 8, 9); and

when z = 4, µj = 3 (j = 10, 11, 12). Regarding the noise term ǫi, we set σi = 0.2 for

z = 1, 3 and σi = 0.4 for z = 2, 4.

Firstly, we ran a set of tests using constant bandwidths for all the data items in

each data set. We experimented with values ranging from 2p/N (= 0.1) to 8p/N

(= 0.4). Figure 2.1 summarizes the results over the 50 data sets. Rows correspond,

respectively, to models m1, m2 and m3. The charts in the left column illustrate the

mean error against the bandwidth. The charts in the right column illustrate the mean

number of selected variables against the bandwidth. We display the output of lasso

and RT as a reference. Rodeo is not considered here because the bandwidth selection

is always adaptive.

The proposed iterative algorithm outperforms the naı̈ve approach and the other

algorithms in most cases. Excepting m1, where RT error is lower than lazy lasso error

for bandwidths over 0.28, lazy lasso accuracy is always the best. The improvement

over loess is specially remarkable. The difference between lazy lasso and naı̈ve lazy

lasso accuracies is also significant. This is more marked for m3, which turns out to

be the most difficult data set. On the other hand, the number of selected variables

is similar for the lazy lasso and the naı̈ve lazy lasso, and much lower than for the

lasso. Interestingly, the number of selected covariates for the lazy lasso and the naı̈ve

lazy lasso approximates that of RT when the bandwidth moves up from the lowest

values. Although not shown in the Figure 2 for space reasons, the number of correctly

selected variables does not vary much for different bandwidths.

Figure 2.2 shows the boxplot of the error and number of selected variables for an

adaptive bandwidth. Table 2.1 shows the mean number (and standard deviation) of

correctly selected variables. Even though lasso and RTs do not need a bandwidth

parameter, both have been included for comparison purposes.

Regarding prediction performance, the lazy lasso achieves by far the lowest mean

error and the lowest standard deviation in all cases. This can be interpreted as a

measure of robustness. Furthermore, the lazy lasso is shown to have a good variable

selection ability. It selects a higher number of correct variables than the other methods,

excepting rodeo, at the expense, however, of selecting more irrelevant variables than

the naı̈ve lazy lasso and RT. Although rodeo selects always all the relevant variables,

it clearly selects, with lasso, the highest total number of variables. The differences are

statistically significant.
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Figure 2.1: Evolution of the mean error (left) and the mean number of selected vari-

ables (right) for an increasing bandwidth, for m1 (top), m2 (middle) and

m3 (bottom). Solid-© lines represent the lazy lasso, dashed-+ lines repre-

sent the naı̈ve lazy lasso, dotted-× lines represent loess, solid straight lines

represent the lasso and dashed-dotted straight lines represent RT. Loess is

not in the right-hand plots because it does not select variables.

From this synthetic setting, we conclude that the devised lazy lasso algorithm can

outperform other nonlinear methods like loess, RT, rodeo or the naı̈ve lazy lasso.Given

that the lasso is a linear method, its performance is, as expected, worse for the pre-

sented scenarios.

2.4.2 Pumadyn data set

Next, we test the algorithm on the Pumadyn data set, a realistic simulation of the

dynamics of a Puma 560 robot arm. It is available from the Delve Repository2.

Pumadyn is a family of data sets rather than a single data set. The number of co-

variates may be eight or 32. The data may be either linear or non-linear. Finally, the

amount of noise in the output can be set to moderate or high. All combinations of

these three parameters are possible, but we confine our study to the non-linear op-

tion. However, we introduce a new parameter: the number of incorporated irrelevant

variables, i.e., randomly generated variables not related to the response. Let p0 be the

number of variables of the original data set (eight or 32). We have generated new data

2 http://www.cs.toronto.edu/ delve/data/datasets.html
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Figure 2.2: Boxplots of the error (top) and total number of selected variables (bottom),

for models m1, m2 and m3. Tested algorithms are the lazy lasso with adap-

tive bandwidth (LL), the naı̈ve lazy lasso with adaptive bandwidth (nLL),

the lasso, RT and rodeo.

sets by adding p0, 2p0 and 3p0 irrelevant variables to each original data set. All data

sets have N = 8192 data items.

Figure 2.3 shows the result of the experiments. The bandwidth is selected adaptively

for the local algorithms. We ran a leave-one-out validation scheme. We do not show

the number of correctly selected variables here because it is not clear which variables

from the original set are really relevant. In general, all the algorithms have mostly

discarded the added irrelevant variables.

As observed, the proposed method generally produces lower estimation errors than

loess, the lasso and the naı̈ve approximation. The results for RT are also very compet-

itive, and rodeo, although selects more variables than the others, performs very well

in the 32 variables data sets. Note that loess performances are better than the lasso

for the moderate (m) noise data sets, whereas the lasso is better for the high (h) noise

case. As expected, the more flexible the model is, the more likely it is to be affected

by noise. Interestingly, the lazy lasso outperforms the lasso and loess in both cases.

Regarding the number of selected variables, there is not a dominant method. RT

and lazy lasso select a reasonable amount of variables in most data sets. Rodeo often

selects more variables than the other approaches. On average, the lasso appears to se-

lect more variables than the proposed local methods. Loess does not perform variable

selection.

Table 2.1: Mean and standard deviations of the number of correctly selected variables

(out of four) for models m1, m2 and m3. The best result for each row is

highlighted. The symbol ∗ is added when the difference to the second best

method is statistically significant with a significance level of 0.05.

LL Naı̈ve LL Lasso RT Rodeo

m1 3.2(±0.8) 1.2(±0.4) 1.5(±0.7) 1.9(±0.2) 4.0(±0.0)∗
m2 2.8(±0.4)∗ 2.0(±0.3) 2.7(±0.4) 1.2(±0.5) 2.8(±0.34)∗
m3 2.8(±0.2)∗ 2.2(±0.6) 2.7(±0.5) 1.6(±0.6) 2.8(±0.34)∗
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Figure 2.3: Evolution of the mean error (left) and the mean number of selected vari-

ables (right) for different amounts of artificially added variables in Puma-

dyn data sets. Each row corresponds to some amount of noise (moderate

(m) or high (h)) and some number of variables in the original data set (8

or 32). The X-axis represents the total number of variables in the data set,

including those artificially added. Solid-© lines represent the lazy lasso,

dashed-△ lines represent the naı̈ve lazy lasso, dotted-+ lines represent

loess, dashed-dotted-× represent the lasso, dashed-♦ lines represent RT

and dashed-dotted-▽ lines represent rodeo.

2.4.3 Neuroscience fMRI data

Finally, we report algorithm performance on the StarPlus data set1, extracted from

the neuroscience field. This is functional magnetic resonance imaging (fMRI) data

collected at Carnegie Mellon University.

Experiments are conducted on six subjects and forty trials per subject. For each trial,

the subject is shown a picture for four seconds and a sentence for four seconds. The

objective is to discriminate between these two mental states: “picture” or “sentence”

Each data item matches a unique 3-dimensional image. Images are captured every

0.5 seconds. Hence, each trial has 16 useful images. Briefly, there are six data sets,

one per subject, and they all have N = 40× 16 = 640 data items. On the other hand,

each image has a number of voxels, split into 25 localized regions of interest (ROIs).

Here, instead of considering each individual voxel, we will use the mean activation of

voxels at each ROI. Therefore, our data set has p = 25 covariates.

The brain’s inherent complexity moves us to consider nonlinear models. This is

possible thanks to the dimensionality reduction resulting from the use of ROIs instead

1 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/

42



Table 2.2: Ratio of incorrectly classified images (top) and the total number of selected

variables (bottom) for the StarPlus data set. Tested algorithms are the lazy

lasso with adaptive bandwidth (LL), the naı̈ve lazy lasso with adaptive band-

width (Naı̈ve LL), loess with adaptive bandwidth, the lasso, RT and rodeo.

The best result for each row is highlighted in bold. The symbol ∗ is added
when the difference to the second best method is statistically significant

with a significance level of 0.05. Loess has been omitted from the variable

selection report because it does not perform variable selection.
Error

Subject LL Naı̈ve LL Loess Lasso RT Rodeo

04799 0.49 0.5 0.47 0.43 0.44 0.44

04820 0.45 0.5 0.45 0.44 0.46 0.30∗
04847 0.33 0.45 0.39 0.4 0.46 0.31

05675 0.39 0.46 0.43 0.38 0.42 0.41

05680 0.32 0.39 0.37 0.35 0.34 0.35

05710 0.39 0.52 0.45 0.4 0.41 0.35

Number of selected variables

Subject LL Naı̈ve LL Loess Lasso RT Rodeo

04799 3.9(±5.6) 1.4(±2.7)∗ − 19.8(±0.7) 18.9(±1.3) 8.0(±1.6)
04820 4.9(±5.3) 1.4(±2.3)∗ − 9(±0.3) 18.3(±1) 17.5(±0.5)
04847 7.2(±7.5) 2.5(±4)∗ − 24.9(±0.3) 17.5(±1.3) 9.2(±0.4)
05675 7.6(±7.2) 2.2(±3.9)∗ − 11.4(±0.8) 19.2(±0.7) 10.1(±1.5)
05680 5.2(±4.4) 2.9(±3.1)∗ − 22.7(±0.6) 15(±1.7) 6.5(±4.0)
05710 8.1(±5.2) 2.1(±3.7)∗ − 15.4(±1.5) 19.8(±1.1) 10.1(±6.7)

of individual voxels. In addition, a sparse model is helpful to identifying which brain

regions are involved in this task. These factors make the lazy lasso adequate for

modeling this kind of data.

Table 2.2 presents the results. For each data set, we performed N tests, each exclud-

ing a different image from the training set. We model the response as either −1 for

the “picture” state or 1 for the “sentence” state. This way, classification is based on

the sign of the response. For each data item, the error is 0 if it is correctly classified

and 1 otherwise. The ratio of incorrectly classified images and the mean and standard

deviation of the total number of selected ROIs is reported for each subject. We do

not show the number of correctly selected variables because it is not clear which are

relevant beforehand. We tested the statistical significance of the best prediction perfor-

mance and best number of selected ROIs with regard to the second best method. The

significance level was set to 0.05.

As observed, lazy lasso accuracy is not on average better than lasso accuracy. The

lazy lasso achieves a better accuracy for three subjects, whereas the lasso is better for

the other three subjects. Furthermore, these differences are not statistically significant.

However, both algorithms are slightly better than loess and RT, while rodeo obtains

the best accuracies. The naı̈ve lazy lasso accuracy is definitely poorer. Although not

shown in Table 2.2, the difference of accuracy between the lazy lasso and the naı̈ve

lazy lasso is significant in four out of six cases (04847, 05675, 05680 and 05710).

The big difference between the lazy lasso and loess, lasso, RT and rodeo is the

number of selected ROIs. The lazy lasso selects much fewer ROIs than the lasso, RT

and rodeo. Loess does not perform variable selection at all. Hence, at the cost of

an insignificant loss of accuracy compared to the lasso, the lazy lasso exhibits a finer

variable selection ability. The naı̈ve lazy lasso selects the lowest number of ROIs, but

its accuracy is poor.
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Summing up, the lazy lasso has also been proven to work well in real environments.

It often outperforms the naı̈ve lazy lasso, the lasso, loess and RT, especially in complex

scenarios.

2.5 discussion

In this chapter, we propose an iterative lazy variable selection and shrinkage method

that relies on a traditional locally weighted regression paradigm and L1-regularization.

This algorithm was presented in the paper (Vidaurre et al., 2011d). We prove the

usefulness of the procedure on three synthetic scenarios, several data sets derived

from the Pumadyn real data set and the StarPlus data set. The lazy lasso is particularly

appealing for sparse data sets.

On the regularization side, we provide a method for dealing with nonlinear data.

Although LARS can be extended to tackle nonlinear functions, higher-order terms

have to be defined in advance. On the local regression side, we provide a variable se-

lection functionality. Local regression is known to be less useful in high-dimensional

settings, due to the curse of dimensionality. Bias and variance cannot be kept at low

and reasonable levels, respectively, when the number of data items in the local neigh-

borhood is small compared to the number of variables. By reducing the dimension,

our approach makes local regression more applicable in these cases.

Our approach is lazy in the sense that there is no overall model valid for all future

data items. Hence, as happens with locally weighted regression, we need to run

the whole algorithm each time a new data item is presented. Flexibility for dealing

with nonlinearity and better prediction and variable selection performance are the

advantages gained in exchange for a more expensive computation when compared

with non-lazy techniques. Although this procedure is lazy, if computation time is a

primary concern, the analyst can somehow extrapolate the incoming data items to

the closest data items in the data set, whose regression coefficients have already been

estimated. If these data items are close enough, they are likely to share the same set

of relevant variables.

The lazy lasso has potential applications in the context of functional data analysis,

where predictors are points on the continuum (Ramsay and Silverman, 2005; Ferraty

and Vieu, 2006; Ferraty et al., 2010). In this field, the objective is rather a global

model that selects a set of highly predictive design points than a local estimation. As

shown by Barrientos-Marin et al. (2010), however, the functional data estimation can

be considerably benefited from some form of local analysis. To take advantage of

this fact, for example, one could obtain a local model with the lazy lasso for each train

data instance or for some selected subset. Then, those points (predictors) that have not

been selected in any model, or have been selected in few models, could be discarded.

Note that an adequate distance function had to be defined for dealing with functional

data. To cope with the computational burden, we could apply some early stopping in

the lazy lasso process and bound the number of selected variables at each step.

More future work will revolve around the adaptation of the algorithm to multi-

response regression, the use of recent variations of the lasso and any improvements on

the current algorithm. Robustness is also a major concern. There are robust versions

that prevent the harmful effects of outliers for both loess (Cleveland, 1979) and the

lasso (Khan et al., 2007). Methods that make the proposed algorithm more robust

need to be investigated.
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3
SPARSE BAYES IAN REGULARIZED LOCAL REGRESS ION

3.1 introduction

As in the previous chapter, we consider p independent covariates {X1, ...,Xp} and a

response variable Y. Let X and y = (y1, ..., yN) be, respectively, an N × p data matrix

and a continuous-valued vector, so that each row xi is iid related to a continuous

response yi by means of some unknown (nonlinear) function m(·), which is assumed

to be sparse and have continuous second order derivatives Again, the objective is to

estimate the response at a point of interest x = (x1, ..., xp) for m(·) to be sparse. We

denote as X∗ the data matrix X centered at x and augmented with a first column of

ones, so that x∗i0 = 1 for all i = 1, ...,N.

In this case, the homoscedasticity assumption is not strictly necessary, so that we

can generically define the variance of ε i as Var[ε i|xi] = s2(xi) = σ2
i .

The neighborhood is defined by a kernel function, which computes weights w =

(w1, ...,wN) on the grounds of the distance from xi to x. The kernel function has a

bandwidth parameter, which strongly influences the estimation. High bandwidths

increases the bias and decreases the variance of the estimation; low bandwidths do

the opposite. The simplest approach is to use a bandwidth single value for all regres-

sors, and the most general setting is to use a full matrix bandwidth, which allows

flexible smoothing on all orientations. While the first usually leads to a severely bi-

ased estimation, the second can imply the estimation of a large number of parameters.

A convenient compromise is a vector bandwidth or diagonal bandwidth, denoted as

h = (h1, ..., hp)
t, which permits adaptive smoothing at each coordinate direction. The

kernel function is defined as

w2
i = Kh(xi − x) =

p

∏
j=1

1

hj
K

(

xij − xj

hj

)

, i = 1, ...,N, (3.1)

where K(·) is a univariate, symmetric and nonnegative function with a compact sup-

port, such that
∫

K(t)dt = 1. In this chapter, we use the well-known Gaussian kernel,

defined as K(t) = (2/π)1/2 exp(−t2/2).
Then, the estimated local linear regression function g(·) is defined by a vector of

local regression coefficients β̂(x) = (β̂1(x), ..., β̂p(x))t and an intercept term β̂0(x). For

simplicity of notation, in the following we denote, unless necessary, β̂0(x) as β̂0 and

β̂(x) as β̂. Then, we have

Therefore, the cornerstone of (linear) local regression is the estimation of a suit-

able bandwidth. We focus on the multivariate case, where a direct estimation is not

straightforward. This estimation implies unknown functionals which themselves de-

pend on the bandwidth. Typically, the bandwidth is set by direct (plugin) computation

(Wand and Jones, 1994; Yang and Tschernig, 1999), selected by cross-validation (Sain
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et al., 1994; Hall et al., 2007) or found within some type of suboptimal search (Lafferty

and Wasserman, 2008). It is known that a suitable plugin estimation of h can improve

the cross-validated estimation. In this chapter, we work on the basis of plugin di-

agonal bandwidth estimations, which, as mentioned above, is a reasonable tradeoff

between a scalar bandwidth and a full matrix bandwidth.

We state that the kernel estimation in the local regression framework should account

for the importance of each variable. In other words, if a variable is absolutely irrelevant

for the regression function, or noisy, it should not participate in the weights calculation

(Vidaurre et al., 2011d). Since the best rate of convergence in nonparametric regression

is N−4/(4+p) (Györfi et al., 2002), to exploit the sparse nature of m(·) is extremely

convenient.

The method that we present in this dissertation and in the paper (Vidaurre et al.,

2012) is related to the rodeo approximation (Lafferty and Wasserman, 2008) because

both approaches consider sparsity in m(·). Lafferty and Wasserman (2008) use the es-

timated gradient of the regression function with respect to the bandwidth, ∂m(x)/∂h,

to conduct a greedy search, considering that a high value of ∂m(x)/∂hj is indicative

of the relevance of variable Xj. Favouring computational speed and applicability in

high-dimensional settings, rodeo does not generalize for arbitrary nonlinearities. This

method assumes a known value of σ2. If σ2 is unknown, it has to be separately esti-

mated.

In this chapter, we take a adaptive regularized multivariate local regression ap-

proach by defining appropriate distributions over the parameters, combining it with

an efficient bandwidth estimation method. We call it sparse regularized local regression,

or sRLR. The method includes the estimation of σ2 and considers sparsity by analyzing

the estimated bandwidths at each step. Several elements of the method are analogous

to other approaches (which do not consider sparsity explicitly), as for example the

work by Yang and Tschernig (1999). We expect that a suitable application of adaptive

ridge regularization will further improve the bias-variance tradeoff of the estimation.

In order to enjoy the advantages of the Bayesian paradigm, we also propose a Bayesian

estimation of the regression coefficients, where, using sampling methods, we obtain

an estimate of the posterior distribution of the response.

The rest of the chapter is organized as follows. First, we introduce the Bayesian

hierarchy. Then, we describe the bandwidth selection procedure. After, we detail the

algorithm for producing a maximum a posteriori (MAP) estimation of the response

and the parameters. Then, we set out a more Bayesian approach. The next two sub-

sections provide, respectively, theoretical and empirical justificacion of the methods.

Finally, we draw some conclusions.

3.2 hierarchical model

We first define the distribution of the response,

y|β∗, σ2 ∼ N
(

β0, σ
2
)

, (3.2)

with, in principle, no distributional assumption on the form of the noise. We show

below, nevertheless, how the homoscedasticity assumption makes the algorithm appli-

cable in high-dimensions.

Next, we define a non-isotropic Gaussian prior distribution over β:
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β|α2 ∼ N
(

0,Σ), (3.3)

with parameter Σ = diag(α2) and α2
j > 0, j = 1, ..., p. We choose a Gaussian prior

for being the conjugate of the Gaussian density, so that the problem is analytically

tractable. From the frequentist perspective, this is equivalent to impose an adaptive

L2-penalty on the regression coefficients, the regularization parameters playing the

role of the diagonal matrix σ2
Σ
−1. Then, α2 adaptively tunes the regularization for

each parameter β j.

Considering noninformative improper prior densities over σ2 and α2
j , given respec-

tively by 1/σ2 and 1/α2
j , along with a noninformative prior over β0, we complete the

hierarchical representation of the model.

3.3 bandwidth selection

In this section, we assume that σ2 and α2 are known quantities. The optimal estimation

of h is given by the minimization of the integrated squared error (MISE) statistic

MISE(h) = E

[

∫

(m(x)− g(x))2 fX(x)z(x)dx

]

, (3.4)

where z(·) is some weighting function and fX(·) is the design density function. The

weighting function is provided to allow the design density fX(·) to be not compactly

supported. In practice, z(·) can be for example an indicator of the support of m(·) or
an indicator of some neighborhood of the point of interest x).

Let us define the Hessian matrix Λ(x) with elements

λjj′(x) =
∂2m(x)

∂Xj ∂Xj′
. (3.5)

An asymptotic approximation of the MISE-optimal bandwidth ĥ is defined for exam-

ple in (Yang and Tschernig, 1999). Particularizing for the Gaussian kernel, we have

ĥ =

( ||K||2p2 ψ(s)

N

)

exp

(

φ(C(m))

2

)

, (3.6)

where ||K||2 =
∫

K2(t)dt and ϕ(K) =
∫

t2K(t)dt. If the support is infinite, then

||K||2 = 1/
√

π and ϕ(K) = 1.

Under the homoscedasticity assumption, the functional ψ(s) is defined as

ψ(s) =
∫

s2(x)z(x)dx = σ2
∫

z(x)dx (3.7)

The elements of the non-negative definite matrix C(m) ∈ R
p×p are defined as

cjj′(m) =
∫

λjj(x)λj′ j′(x) fX(x)z(x)dx ≃
1

N

N

∑
i=1

λjj(xi)λj′ j′(xi).

where the approximation assumes that z(·) is an indicator of the support of m(·). Note

that, since our bandwidth estimate is diagonal, we only need the diagonal elements

of Λ(x). We define φ(M) as the solution of the unconstrained optimization problem

φ(M) = argminv

1

4
exp(v)tM exp(v) + exp

( p

∑
j=1

−vj
2

)

,
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which can be proved to be convex because both terms are positive definite, and, thus,

the Hessian with respect to v is positive definite. Then, this problem can be easily

solved for example by a standard application of the Newton-Raphson algorithm.

Finally, a kernel density estimation of fX(xi) can be obtained as

fX(xi) =
1

N

N

∑
i′=1

Kh(xi′ − xi).

Yang and Tschernig (1999) proposed to find an approximation of Λ(xi) by perform-

ing, for each variable, a local cubic estimation with several cross-terms left out. For

p = 10 variables, for example, this estimation needs 40 parameters. This approxi-

mation requires itself a bandwidth, which is taken to be scalar and also depends on

unknown functionals that need to be estimated as well.

In this paper, we take a simpler approach. Like Yang and Tschernig (1999), we use

a local cubic estimation leaving many cross-terms out. We construct the matrix

X̃(i,j) =
[

1, {(X ·j′ − xij′)
2}pj′=1, {(X ·j − xij)(X ·j′ − xij′)}j′ 6=j, (X ·j − xij),

{(X ·j − xij)(X ·j′ − xij′)
2}j′ 6=j{(X ·j − xij)

2(X ·j′ − xij′)}j′ 6=j(X ·j − xij)
3
]

,

where 1 is a vector of length p with all elements equal to 1. Then, we compute the

regression

γ(i,j) = 2
(

X̃
′
(i,j)WX̃(i,j)

)−1
X̃
′
(i,j)Wy,

where the diagonal matrix W is computed with the current estimated bandwidth ĥ

for x. The estimate of λjj(xi) is then given by the (1+ j)-th element of γ(i,j).

Note that this Hessian estimate is suboptimal because we apply the current esti-

mated bandwidth for x to all data points involved in Equation (3.5), and the curvature

of m(·) at these points can differ from that at x. However, since we seek a local esti-

mate of the bandwidth, we can take z(xi) = 1 if xi is within some neighborhood of x

and z(xi) = 0 otherwise. Then, we only need to estimate the Hessian in this neighbor-

hood and, assuming that m(·) is not very wiggly, the current estimate ĥ is reasonable

for this purpose.

Sparsity is considered here in the sense of (Lafferty and Wasserman, 2008): to dis-

card a variable Xj amounts for using a sufficiently high bandwidth hj. Then, its

contribution for the calculation of w2 becomes negligible. For Xj to be dropped, we

can use the criterion

K(0)− K(κj/hj)

K(0)
< ǫ, (3.8)

where κj = maxNi=1 |xj− xij| and ǫ > 0 is some small constant. From Equation (3.8), we

can derive the following threshold

τj =

√

− κj

2 log(1− ǫ)
,

so that, if ĥj ≥ τj, then Xj can be discarded. We denote as Ω the set of variables under

this threshold.

Figure 3.1, left, illustrates the value K(κj/hj)/hj for several hj = 0.1, ..., 4.0 and

|xj − xij| within the unit support, so that each line represents a different hj. The value
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K(κj/hj) has been normalized so that
∫ 1
0 K(t)dt = 1. The thick red line corresponds

to hj = 4.0. Figure 3.1, right, shows the left side of Equation (3.8) for hj = 0.1, ..., 4.0.

ǫ = 0.1 is represented by the dashed line. For ǫ = 0.1, we have τj = 2.178.
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Figure 3.1: Left, values K(κj/hj)/hj for hj = 0.1, ..., 4.0 and κj = 1.0. Right, left side

of Equation (3.8) for hj = 0.1, ..., 4.0; ǫ = 0.1 is represented by the dashed

horizontal line.

3.4 map estimation

Let us assume by now that we have an estimation of the optimal diagonal bandwidth ĥ,

and, hence, we have weight values wi, i = 1, ...,N. Then, we can obtain the parameters

β∗, σ2 and α2 that maximize the expected MAP function by means of the expectation-

maximization (EM) algorithm (Dempster et al., 1977). We consider β∗ to be the latent

variable.

From distributions (3.2) and (3.3), the expectation of the complete-data log likeli-

hood function is

E[log p(β∗, y|α2, σ2)] = E[log p(y|β∗, σ2)] + E[log p(β|α2)] =

−Nw

2
log (2πσ2)− E[ (y− ŷ)2]

2σ2

− p

2
log (2π)− 1

2
log det(Σ)− E[βt

Σ
−1β]

2
, (3.9)

where Nw = ∑
N
i=1 w

2
i , and we approximate

E[ (y− ŷ)2] ≃
N

∑
i=1

(wiyi − wiβ0 − wix
t
iβ)

2.

In the E-step, we obtain the values of β∗ that maximize the expectation (3.9). Set-

ting the derivatives with respect to β∗, for some σ2 and α2, we obtain the parameter

estimation at this step as

β̂
∗
=
(

σ2
Σ
−1 + X∗

t
WX∗

)−1
X∗

t
Wy, (3.10)
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Algorithm 2 Iterative algorithm for regularized local MAP estimation

Initialize h = h0, σ2 = σ2
0 , α2 = ∞.

Repeat until convergence:

Compute ĥ as described in Section 3.3.

Compute w with Equation (3.1).

Repeat until convergence:

Update β̂
∗
with Equation (3.10).

Update σ2 and α2 with, respectively, Equations (3.11) and (3.15).

with W = diag(w2).

In the M-step, we estimate the values of σ2 and α2 that maximize Equation (3.9) for

the current value of β∗. We set the derivatives of Equation (3.9) with respect to σ2 to

zero to obtain

σ̂2 =
E[ (y− ŷ)2]

Nw
≃ ∑

N
i=1(wiyi − wiβ0 − wixi

t β̂)2

Nw
. (3.11)

To estimate α2, we first have

∂ log det(Σ)

∂α2
j

=
∂ log(∏

p
j′=1 α2

j′)

∂α2
j

=
1

α2
j

. (3.12)

On the other hand, using the definition of variance, we have

∂E[βt
Σ
−1β]

∂α2
j

=
∂E[Σ

p
j′=1β2

j′/α2
j′ ]

∂α2
j

=
∂ ∑

p
j′=1 E[β2

j′ ]/α2
j′

∂α2
j

= −
β̂2
j + ŝj+1 ,j+1

α22
j

, (3.13)

where Ŝ is the estimated covariance matrix of the posterior distribution of β

Ŝ =
(

diag−1(0, α2) +
1

σ̂2
X∗

t
WX∗

)−1
, (3.14)

ŝj+1 ,j+1 is the (j+ 1)-th element of the diagonal of Ŝ and β̂ is computed with Equa-

tion (3.10). Equation (3.14) is a standard result that arises from the convolution of two

Gaussian distributions, given by the prior, that corresponds to the first term within

the parenthesis in Equation (3.14), and the likelihood function, that corresponds to the

second term.

Putting results (3.12) and (3.13) together and reorganizing terms, we can estimate

α2
j as

α̂2
j = β̂2

j + ŝj+1 j+1. (3.15)

Note that the estimation of β depends on σ2, whose estimation depends itself on β.

The same happens with α2, whose estimation, besides, depends recursively on itself

through S. Iterating the estimation of β̂ with Equation (3.10) and the estimation of

σ2 and α2 with Equations (3.11) and (3.15), and repeating until convergence, the EM

algorithm is able to find a MAP solution for a fixed w in a finite number of steps. We

summarize the MAP estimation in Algorithm 2.

We can make use of sparsity as defined above by restricting the above computations

to those variables that are currently included in Ω. Note also that we are handling
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sparsity at two levels. First, sparsity of the function m(·) is determined by the mag-

nitude of the bandwidths. Second, sparsity of β̂
∗
is handled by automatic relevance

determination. The second type of sparsity is just a particular case of the first, and,

then, we cannot use it to simplify the estimation of h.

3.5 estimation by monte carlo sampling

In this section, we evolve from the MAP approach to a sampling method for determin-

ing the posterior distribution of β∗, σ2 and α2, and then the predictive distribution.

3.5.1 Parameter distribution

First, we estimate the posterior parameter distribution of β∗, defined by the sufficient

statistics E[β∗] = β̂
∗
and Var[β∗] = Ŝ. Instead of sampling from the joint posterior of

h, β∗, σ2 and α2, we sample from the complete-data parameter posterior of σ2 and α2

given the current estimates of β∗ and h. We alternate between two steps.

first step, given the current posterior density estimate, the objective is to obtain L

samples Θl ≡ {σ2(l), α2(l)}.
First, from the current estimate of h, we compute w by Equation (3.1) and Nw =

∑
N
i=1 w

2
i . We shall now be able to sample from p(σ2, α2|y) by following the hierarchy

defined above. For each l, we can sample 1/σ2(l) from a Gamma distribution (which

maintains the conjugacy of the hierarchy) with parameters

aσ2 =
Nw

2
+ 1 and bσ2 =

1

2

N

∑
i=1

(wiyi − wi β̂0 − wixi
t β̂)2, (3.16)

where β̂
∗
is the current MAP estimate of β∗ obtained from Equation (3.10). Since the

mode of the Gamma distribution is given by (aσ2 − 1)/bσ2 , this is consistent with the

result in Equation (3.11). Also, we sample 1/α2
j
(l)
, for j = 1, ..., p, from a Gamma

distribution with parameters

aα2
j
=

3

2
and bα2

j
=

1

2
(β̂2

j + ŝj+1 j+1), (3.17)

where ŝj+1 ,j+1 is the (j+ 1)-th element of the diagonal of Ŝ.

Equations (3.16) and (3.17) were obtained by “completing the square” on the prod-

uct of the logarithm of the noninformative prior density (i.e., a Gamma distribution

with a = b = 0) and the log likelihood given by Equation (3.9).

Finally, for each sample Θl , we estimate the optimal bandwidth, ĥ
(l)
, as described

in Section 3.3 and compute w(l) by Equation (3.1).

In the second step, we update the posterior distribution of the parameters using

the w(l) samples. For each vector w(l), we iteratively estimate β̂
∗(l)

and Ŝ
(l)

with

Equations (3.10) and (3.14), and update σ̂2(l) and α̂2(l) with Equations (3.11) and (3.15)

until convergence.

Once we have the posterior estimate of the parameters for each sample Θl , we round

the P step by performing the following update

β̂
∗
=

1

L

L

∑
l=1

β̂
∗(l)

and Ŝ
−1

=
1

L

L

∑
l=1

Ŝ
(l)−1

. (3.18)
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Algorithm 3 Sampling algorithm for finding the posterior distribution of β∗, σ2 and

α2

Initialize the posterior distribution of β∗ and ĥ. Obtain w.

Step (i):

Draw L samples Θl given that:
σ2 is Gamma distributed with parameters given by Equation (3.16);
α2 are Gamma distributed with parameters given by Equation (3.17).

For each Θl , estimate ĥ
(l)

as described in Section 3.3.

For each ĥ
(l)
, compute w(l) with Equation (3.1).

Step (ii):

For each l, using w(l), iterate until convergence:

Compute β̂
(l)

and Ŝ
(l)

with Equations (3.10) and (3.14);

Update σ̂2(l) and α̂2(l) with (3.11) and (3.15).

Update the posterior distribution of β̂
∗(l)

and Ŝ
(l)

with Equation (3.18).

Update the posterior distribution of σ2 and α2 with (3.16) and (3.17).

Compute ĥ as described in Section 3.3.

Compute w with Equation (3.1).

Repeat steps (i) and (ii) until the posterior distribution of β stabilizes.

Since it is not analytically simple to characterize the sum of Gamma densities with

different scales as a Gamma density itself, it is not straightforward to formulate an

estimate of the posterior distribution of σ2 and α2 as a function of the samples σ2(l)

and α2(l) . However, we can still approximate these distributions, via β̂
∗
and Ŝ

−1
, with

Equations (3.16) and (3.17). Then, using the expectation of σ2(l) , we can compute the

optimal bandwidth ĥ as described in Section 3.3.

We summarize the method in Algorithm 3.

3.5.2 Predictive distribution

Next, we formulate the predictive distribution

p(y|y) =
∫

p(y|β∗, σ2, y) dβ∗dσ2,

which can be shown to be Student,

y|y ∼ St
(

µ = β̂0, ι = σ̂2 + (1, x)tŜ(1, x), ν = N − p
)

,

where µ is the mean, ι is the precision and ν is the degrees of freedom of the distribu-

tion.

3.6 asymptotic properties

It is well-known that local regression have high asymptotic efficiency, that can be

maximal for an adequate choice of bandwidth and kernel function. The existence of

a unique MISE-optimal vector bandwidth, estimated by Equation (3.6), was shown by

Yang and Tschernig (1999) under the following assumptions:
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• The design density fX(·) is continuously differentiable up to the second order

and is bounded away from zero in the support of m(·).

• The regression function m(·) is continuously differentiable up to order 4.

• The optimal bandwidth is positive and depends on N, such that, for the relevant

variables, hj → 0 and Nh
p+4
j → ∞.

• The matrix C(m) is non-negative definite, and is positive definite for all non-

negative vectors.

Then, assuming that the estimation of the Hessian is asymptotically optimal, and

assuming homoscedasticity, if the estimations of σ2 and α2 are optimal, the estimated

bandwidth is asymptotically MISE-optimal according to the results of Yang and Tsch-

ernig (1999).

3.7 experiments

In order to show the performance of the proposed approach for finite samples, we

have run Algorithm 2 on 100 data sets generated from eight different models. In all

cases, there are N = 500 samples and p = 10 covariates, sampled from the uniform

distribution on [0, 1]. We have set σ2 = 0.1. The test point is x = (0.5, ..., 0.5). Table 3.1

shows the regression function m(·) for each model.

Table 3.1: Regression function for each model.

Model 1 m(x) = x21 + x22
Model 2 m(x) = sin(3x1 + 3x2)

Model 3 m(x) = sin(3x1) sin(6x2)

Model 4 m(x) = 0.5 sin(3x1) + 0.5 sin(12x2)

Model 5 m(x) = x21x
2
2

Model 6 m(x) = 2(x1 + 1)3 + 2 sin(10x2)

The four former regression functions were taken from the experimental section of

(Yang and Tschernig, 1999) and the other two were taken from the work of Lafferty

and Wasserman (2008).

In addition to the sRLR methodology, we have tested rodeo and the estimated opti-

mal bandwidth selector from (Yang and Tschernig, 1999) (OBS for short). By including

OBS in the experiments set, we intend to demonstrate the need to account for sparsity

if m(·) is indeed sparse. We have used γN = 0.05 and κ = 5.

Table 3.2 reports the mean absolute error (and standard deviation) along the 100

data sets for sRLR (MAP estimation) and the other methods. Statistical significance is

checked by means of the t-test. The performance of the proposed approach is better

(with statistical significance) than OBS in four out of six experiments, and always

significantly better than rodeo. Besides, unlike the others, it does not exhibit the worst

accuracy in any of the experiments.

We conjecture that this accuracy advantage over the other methods is because, for

kernel design purposes, to directly discard the irrelevant covariates is more effective

than to assign high bandwidths to them. Table 3.3 shows the number of times that
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Table 3.2: Mean (and standard deviation) of the absolute error for each model and

method. The best result for each row is highlighted in bold. The symbol

∗ is added when the difference to the second best method is statistically

significant with a significance level of 0.005.

Model sRLR rodeo OBS

Model 1 0.0200(±0.0127)∗ 0.0700(±0.0525) 0.1342(±0.0318)
Model 2 0.0185(±0.0121) 0.0406(±0.0486) 0.0178(±0.0071)
Model 3 0.0311(±0.0228) 0.0698(±0.0578) 0.0180(±0.0133)∗
Model 4 0.0428(±0.0353)∗ 0.1382(±0.0972) 0.1228(±0.0437)
Model 5 0.0081(±0.0056)∗ 0.0384(±0.0298) 0.0379(±0.0084)
Model 6 0.2361(±0.0875)∗ 1.0634(±0.2996) 1.8556(±0.3296)

Table 3.3: Number of times that each variable has been selected by sRLR across the

100 experiment replications.

Model X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Model 1 100 100 0 1 0 0 0 1 0 0

Model 2 100 100 0 0 0 1 0 0 0 0

Model 3 54 100 13 10 10 11 6 8 13 7

Model 4 94 57 3 9 9 7 9 10 10 7

Model 5 100 100 0 0 0 0 0 0 0 0

Model 6 100 100 0 4 0 0 0 0 0 0

each variable has been selected by sRLR across the 100 experiment replications. Note

that for Models 1, 2, 5 and 6, it selects the correct covariates, and only them. The

superior performance of OBS for Model 3 is probably due to the fact that one of the

relevant covariates (X1) has been sometimes missed. For Model 4, even when the

selection of covariates is not perfect, sRLR exhibits lower errors than OBS.

Figure 3.2 shows boxplots of the bandwidth vector for each model and method. We

can observe that both rodeo and OBS tend to assign higher bandwidths to the irrelevant

covariates. This is more marked for OBS. In Models 3 and 4, where sRLR occasionally

selects some irrelevant covariates, the bandwidths computed by our approach are also

higher than those of the relevant covariates. Note that, in general, the bandwidths

estimated by OBS are higher than the ones computed by sRLR and rodeo. This is prob-

ably because OBS handles the whole set of covariates instead of a subset of relevant

covariates.

To gain more insight into the full Bayesian approach, we have run Algorithm 3

on data generated from the models described above, using different values for the

variance of ε i: σ2 ∈ {0.1, 0.2, 0.4}. Also, to introduce more uncertainty, we add some

Gaussian noise to the relevant covariates (after computing the response y with the

regression functions in Table 3.1), and then we redo the experiments. Specifically, we

make xij := xij + ̺ij, where j corresponds to a relevant variable, i = 1, ...,N, and

̺ij ∼ N (0, 0.2).
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Figure 3.2: Boxplots of the bandwidth vector for each model and method. From top to

bottom, Models 1-6 are illustrated. Left graphs correspond to sRLR, middle

graphs correspond to rodeo and right graphs correspond to OBS. For sRLR,

the bandwidths of all covariates are shown only for Models 3 and 4.

To give an example, Figure 3.3 shows the predictive distribution for some execution

and Model 1. As expected, the more uncertainty the model conveys, the higher the

variance of the response distribution is. This applies both for σ2 and noise in the

covariates.

3.8 discussion

In this chapter, we have shown how to give a Bayesian perspective to local regularized

regression, describing both a MAP estimation procedure and a full Bayesian treat-

ment. Besides, we have devised a bandwidth selection approach adequate for high-

dimensional, sparse regression functions, which is integrated with the estimation of

the regression parameters. Such sparse bandwidth selection procedure is based on

optimal bandwidth selection methodology. We have empirically demonstrated the

performance of the method and described its asymptotic behavior.

It is worth to point out that sRLR relies on some assumptions that can be removed

in exchange of computational cost. For example, we assume homoscedasticity. This is

to avoid the need of estimating σ2
i at each point. Besides, we are implicitly assuming
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Figure 3.3: Estimated distribution of the responses for Model 1, and σ2 = 0.1 (left),

σ2 = 0.2 (middle) and σ2 = 0.4 (right). Top graphs were generated from

data with non-noisy covariates and bottom graphs were generated from

data with noisy covariates. The vertical solid line indicates the mode of the

distribution and the vertical dotted line indicates the true response.

that the estimated optimal regularization parameters α̂2 are adequate for all points

of the data set, whereas, in fact, they are locally estimated. Note that the estimated

optimal regularization parameters α̂2 are globally used for estimating the Hessian for

each data point within the optimal bandwidth estimation procedure. One possibility

would be to perform the described EM algorithm for each data point, i.e., to alter-

nate Equation (3.10) and Equations (3.11) and (3.15) for all xi. We have empirically

observed, however, that, with regard to α̂2, the results of the algorithm change little

with this modification.

A further step would be to consider a fully adaptive ridge regression procedure,

where the regularization penalty is a symmetric positive definite matrix (no longer

diagonal). The minimax efficiency of adaptive ridge regression for quadratic losses

was studied, e.g., by Strawderman (1978). As future work, we plan to examine the

statistical efficiency of this method for both vector and full-matrix penalties.
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4
NONLINEARITY IN NEURAL ENCODING MODELS

4.1 introduction

In this chapter, we describe a successful application of well-known ideas on regular-

ized regression to the problem of estimating the instantaneous firing rate of neurons

in the primary visual cortex. This work appears in the published paper (Vidaurre

et al., 2011e).

In neuroscience, encoding is the task of studying the spike firing rate of a neuron

or ensemble of neurons in response to some stimuli. The prediction of neural firing

patterns from external, dynamic stimuli is an important task for understanding neu-

ronal behavior (Brown et al., 2004; Kass et al., 2005). It is well known that pure linear

models often fail to infer spiking responses (Machens et al., 2004). In general, this may

depend on the type of stimulus, the specific physiology of the observed neurons and

the species under study. However, some amount of nonlinearity (often high) is always

to be expected.

We consider models where the response is the spike firing rate of a single neuron at

each time point, and the input variables or predictors are the previous stimuli within

a certain time window. Typically, nonlinearity can be introduced after (over) a linear

temporal filter on the time-varying stimulus, like the linear-nonlinear Poisson (LNP)

model (Brenner et al., 2000; Paninski, 2004; Paninski et al., 2004; Truccolo et al., 2005;

Pillow and Simoncelli, 2006; Plourde et al., 2011), or before the linear temporal fil-

ter (Ahrens et al., 2008). In the regression framework, this linear temporal filter is

equivalent to the vector of regression coefficients. By establishing a static nonlinear

transformation on some linear combination of the inputs, the LNP model can, for ex-

ample, capture the particular nonlinearity of the actual spike generation. This is done

within the generalized linear model (GLM) framework, which provides much popu-

lar statistical machinery. The LNP model is usually employed for single trial analysis,

where the continuous point process is discretized into bins that are small enough to

contain one spike at most. Spiking history can be readily included in the LNP model;

see, e.g., (Truccolo et al., 2005). We focus, instead, on the second approach, which

builds nonlinearity separately on each input before applying the linear temporal filter,

thus dealing with nonlinear dendritic behavior and other preliminary nonlinear neu-

ron processes. Both approaches often consider only an additive (linear) contribution

of the inputs, i.e., they do not include interactions among different inputs.

Our starting points are the models introduced by Ahrens et al. (2008): the bilinear

model and the fullrank model. Both models make use of a basis expansion of the pre-

dictors (Schumaker, 2007) to achieve nonlinearity, ignoring any possible interactions

among different stimuli. Therefore, these models address the preliminary neuron pro-

cesses of the second approach mentioned above. Unlike the LNP model, these and the

models we propose attempt to model trial-averaged data, working on the basis of the
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peristimulus time histogram (PSTH) (Gerstein and Perkel, 1969) in order to focus on

the stimulus effect and ignore trial-to-trial variability.

We intend to reach more complex nonlinear relations, which will presumably help

to deal with the complex within-neuron processes. The techniques used in this chap-

ter, whose building blocks are well known to the statistics community, generalize the

linear regression setting to accommodate nonlinearity by expanding the original set

of variables, much like the bilinear and fullrank models. Note that the LNP model

can also deal with input-level nonlinearity by considering interactions between the

stimuli and other higher-order terms, on which linear regression is performed; see,

e.g., (Plourde et al., 2011). The user is usually required to define these higher-order

terms, although some can be subsequently discarded using a sparse regularization

technique (Tibshirani, 1996). Contrariwise, the models introduced in this work be-

have purely non-parametrically, and it is the data that automatically determine the

functional form of each predictor. Functionals defined on predictor subsets can also

be considered, leading to extremely flexible interaction modeling. The ascertain of

these interactions and their shape can provide useful biological insight into neuron

behavior.

On the other hand, many of the methods in the literature ignore the internal varia-

tion of the subject. Once a model (parameterized by a set of parameters) is obtained,

it will remain unchanged for all future inferences. However, some studies reveal that

several neural systems can vary the stimulus effect and the spiking pattern; see for

example (Bezdudnaya et al., 2006; Haider et al., 2007). Here, we also study how to

generate ad-hoc, adaptive model parameters for each time point and what impact it

has on the model performance. We make use of local analysis based on local regres-

sion (Loader, 1999), a technique supported by a solid theoretical background. We

also study how to incrementally combine several models in a local manner to prevent

(stimulus) overfitting. Our objective here is to be able to deal with a spiking response

to stimuli that changes over time.

The proposed local models are to some extent related to models that include spike-

history terms, which also consider the internal variation of the subject by making the

current response to be dependent on previous responses. Local models include inter-

nal variation in a more general manner, without expressing variation just by means of

previous responses.

Escola et al. (2011) recently propose to model multistate neurons by hidden Markov

models, where each state corresponds to a different GLM. Although this is a success-

ful idea, local models are easier to obtain and, since subject variation is in this work

defined on a continuum, we do not need to beforehand fix the number of states. On

the other hand, Czanner et al. (2008) propose the state-space GLM, which combines

a point-process representation of the spikes series with a hidden Markov model that

defines a (continuous) state of the model at each time point. They discuss the PSTH

and the GLM as specific cases. These and other models that take into account the

model state are often based on Monte Carlo random sampling and, hence, are compu-

tationally expensive and less simple than the proposed local approaches.

4.2 setting and preliminary methods

We consider that, at each time point t ∈ {1, ..., T}, we have a d-dimensional stimulus

s(t)Tt=1 and a single-neuron response r(t)Tt=1 to these stimuli. The objective is to predict

each response r(t) from previous consecutive stimuli s(t− i)
p
i=1 Let r(t) represent the
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number of spikes in a time slice centered at t, i.e., the firing rate at t. This is the

well-known PSTH. Here, r(t) is measured as the average spike count at time point t

over B trials,

r(t) = B−1
B

∑
b=1

rb(t),

where rb(t) is the measured spike count at time t for trial b. This way, the model

omits membrane-memory effects and erratic bursting. Hence, we can model r(t) as a

function only of previous stimuli plus some noise:

r(t) = g(s(t− i)
p
i=1) + ǫ(t),

where g(·) : R
p → R is some nonlinear function, p is a parameter indicating the

number of past stimuli influencing the current response and ǫ(t) is the noise term.

We model the noise as

ǫ(t) ∼ N(0, σ2(t)). (4.1)

Noise stands for variability in the response that is not explained by the stimuli, and

may either be given by internal processes or be purely random. Provided that r(t)Tt=1

is trial-averaged, the Gaussian noise assumption is reasonable (Averbeck et al., 2006;

Ahrens et al., 2008).

The basis for our comparisons is two basic nonlinear models devised by Ahrens

et al. (2008) that lean on the linear regression framework. These are the bilinear model

and the fullrank model. The bilinear model computes the estimated response r̂(t) as

r̂(t) = µ̂ +
p

∑
i=1

d

∑
j=1

βij f (sj(t− i)), (4.2)

where sj(t− i) is the j-th component of s(t− i) and µ̂ is the baseline firing rate, which

we can estimate by the mean of the response, ∑
T
t=1 r(t)/T. We denote as β the vector

of coefficients (β11, ..., β1d, ..., βp1, ..., βpd).

The nonlinear function f (·) : R → R is defined as a linear combination of a fixed

set of basis functions fk(·) : R → R, k ∈ {1, ..., q}. Each basis function fk(·) has a

single input. Such functions are defined as piecewise linear functions determined by

a predefined set of equidistant nodes {δ1, ..., δq} that covers the entire range of the

stimulus. Figure 4.1(a) shows a representation of these functions for q = 10.

Therefore, given a second vector of coefficients α = (α1, ..., αq) and some univariate

stimulus sj, f (·) is defined as

f (sj) =
q

∑
k=1

αk fk(sj), (4.3)

where

fk(sj) =







(sj − δk−1)/(δk − δk−1) if k > 1 and δk−1 ≤ sj < δk
(δk+1 − sj)/(δk+1 − δk) if k < q and δk ≤ sj < δk+1

0 otherwise.

Thus, vectors β and α need to be estimated, resulting in a total of pd+ q parameters.

This is done by updating β by ordinary least squares for a fixed α and then updating

α by ordinary least squares for a fixed β. Starting from an arbitrary initial value for
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Figure 4.1: (a) Piecewise linear functions used by the bilinear and fullrank models

(q = 10). (b) A cubic smoothing spline fit to a univariate input, with knots

{δ1, ..., δ10}. The red line is the fitting curve and the blue line is the true

function.

either β or α, this step is repeated until convergence. This is known as alternating

least squares (Young et al., 1976).

As noted by Ahrens et al. (2008), the bilinear model is related to separable receptive

fields (DeAngelis et al., 1995). When the receptive field is separable, the response

cannot be expressed as a product of a function that only depends on time and a

function that only depends on space (here, on the basis expansion instead).

On the other hand, the fullrank model is determined by qpd instead of q + pd pa-

rameters. The fullrank model is defined as:

r̂(t) = µ̂ +
p

∑
i=1

d

∑
j=1

q

∑
k=1

γijk fk(sj(t− i)),

where functions fk(·) : R → R are defined as before.

Parameters γijk are estimated by least squares. In both the bilinear and the fullrank

schemes, the parameters are estimated from a fixed train data set with N response

values and p stimuli values per response. These parameters will be used to estimate

future responses.

Both the bilinear model and the fullrank model have three shortcomings. First, the

basis functions are data-independently defined. Second, they do not consider inter-

actions between input variables, so the nonlinear power of the models is limited. We

discuss the basic details of nonlinear regression below. Third, the learnt parameters

are not time-varying, so that the response function is always the same. A fixed noise
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standard deviation σ(t) = σ is also assumed. In the following section, we propose the

use of some nonlinear techniques to overcome these limitations.

4.3 basis expansions and local methods

In this section, we survey and discuss how to apply some nonlinear approaches to

spike train data to obtain better results. Whatever approach we follow, we must some-

how control the nonlinearity or complexity of the model. More complex models are

less biased in exchange for increased variance. In general terms, we would choose sim-

pler models for limited or ill-posed data and more complex models for well-behaved

data. The objective is a model that optimizes the bias-variance trade-off, that is, that

minimizes the expected prediction error. Automatic, data-dependent methods are

preferred to control the model complexity. For example, techniques based on regular-

ization (Bickel and Li, 2006), are useful for adjusting the complexity of the model and

restricting its variance by imposing some constraint on the model parameters.

There are two fundamental approaches for achieving nonlinearity. First, we can seek

a more complex model than the linear model by establishing a linear combination of

some basis expansions of the original terms (Schumaker, 2007). This is the approach

taken by the bilinear and fullrank models. Second, we can fit simple (linear) mod-

els for different areas of the data domain (Loader, 1999), accounting for time-varying

subject states. This is the case of local regression, discussed in previous chapters. In

the following, we present these techniques in detail. Also, we present the incremen-

tal local learning approaches. Whereas pure local models are useful for monitoring

the changing behavior of the neuron (see the experimental subsection for examples),

the proposed incremental local learning scheme, in addition, is robust to stimulus

overfitting.

Regression splines (Schumaker, 2007) is a family of popular nonlinear models that

makes use of basis expansions of the original terms. In the univariate case, the in-

put domain is divided into contiguous intervals, separated by a fixed set of knots.

Whereas the placement of the knots can be data-driven, the number of knots is often

specified by the user. In each interval, a polynomial function of order M is fitted, in

such a way that the entire function is continuous, and has continuous derivatives up

to order M− 2 to assure continuity. Figure 1(b) shows a univariate cubic regression

spline fit (M = 4) with q = 10 knots.

A more flexible, likewise spline-based, model is known as smoothing splines. Here,

a maximal set of knots is used, and complexity is controlled by penalizing (regulariz-

ing) the curvature of the fitted function. These models can be extended to the multi-

variate case, giving rise to very flexible models. Here, we make use of two different

spline methods, with a different degree of flexibility (complexity).

The first is known as multivariate adaptive regression splines, or MARS, devised by

Friedman (1991), where the basis functions are linear splines. For simplicity, we

assume a unidimensional stimulus (d = 1). For each input variable, indexed by

i ∈ {1, ..., p}, and each instance in the training data set, indexed by n, two piece-

wise linear functions are defined, f 1ni(·) : R
p → R and f 2ni(·) : R

p → R, with one knot

at s(n− i). For a given vector x ∈ Rp, these are defined as

f 1ni(x) =

{

xi − s(n− i) if xi > s(n− i)

0 otherwise
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f 2ni(x) =

{

s(n− i)− xi if xi < s(n− i)

0 otherwise

The MARS algorithm performs a forward greedy search, sequentially adding terms

hi∗(·), which are a single piecewise linear function or a product of two (or more)

piecewise linear functions. To prevent overfitting, a backward deletion procedure is

applied afterwards. Generalized cross-validation (Craven and Wahba, 1979) is used to

decide how much the model should be pruned. Thus, MARS considers interactions

between the stimuli. The resulting model has the form

r̂(t) = µ̂ +
p∗

∑
i∗=1

βi∗hi∗(s(t− i)
p
i=1), (4.4)

where p∗ is the number of terms included into the model, s(t− i)
p
i=1 represents a vector

with the values of the stimulus from t− 1 to t− p and βi∗ are the parameters for each

term, which are estimated by least squares. The maximum number of functional terms

in such products can be considered as a parameter of the algorithm. MARS produces

continuous models with continuous derivatives.

On the other hand, we consider the sparse additive model (SpAM), devised by Raviku-

mar et al. (2009). SpAM was briefly described in chapter 1. SpAM employs regular-

ization instead of greedy searching to control the flexibility of the model. Like the

additive model, proposed by Hastie and Tibshirani (1999), SpAM considers an addi-

tive linear combination of univariate functions and ignores interactions among the

input variables:

r̂(t) = µ̂ +
p

∑
i=1

fi(s(t− i)), (4.5)

where each fi(·) : R → R is, e.g., a cubic regression spline (see Figure 4.1(b)).

To achieve sparseness, SpAM employs an L1-penalty imposed on the component L2-

norms of the functions, which is given by (
∫ T
0 f 2i (t)dt)

1/2, so that the magnitude of the

functional predictors is penalized. This leads to a number of terms (depending on the

value of some regularization parameter) being effectively discarded. Unlike the classic

additive model, regularization allows SpAM to be used in high-dimensional settings,

as it is more interpretable, less sensitive to overfitting and also computationally effi-

cient. The estimator is obtained by formulating a convex optimization problem, which

is solved with a backfitting algorithm, described in (Hastie and Tibshirani, 1999).

Note that, whereas we need to manually setup the basis expansion configuration for

the bilinear and fullrank models beforehand, both MARS and SpAM can automatically

adjust model complexity during the training process. In addition, MARS can account

for interactions among the predictors.

On the other hand, kernel smoothing models or local regression models, fit a simple

model at each query point. For example, linear local regression (Loader, 1999) fits a

linear regression model for each query point (for each spike count to be predicted),

using some weighted neighborhood composed of the closest data to the query item.

Here we apply this idea to the nonlinear methods described above.

Data (within the neighborhood) are typically weighted according to some kernel

function Kτ() and the distances to the target item. The distances are measured either

on the input variable space or can be supplied by the domain itself. In our case, the

time dimension perfectly suits for our purposes. Let n ∈ {t− N, ..., t− 1}, so that the

distances are computed as the number of time slices between the target item and each
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previous data item, so that data items closer in time will be given more importance

than further data items. We compute the weights wn with the well-known tricube

kernel function:

wn = Kτ(t− n+ 1) =

{

(1− (t− n+ 1)3)3 if (t− n+ 1) ≤ τ

0 otherwise,
(4.6)

where τ is a smoothing parameter or bandwidth that indicates the width of the neigh-

borhood. In previous chapters, we refer the bandwidth as h. In this chapter, we denote

it as τ for notational requirements. We need to estimate τ, which can be unique for

all predictions or adaptively selected. For simplicity, we consider a unique smoothing

parameter, τ = N, so that all data items in the built-in data set are used. Remember

that the neighborhood only includes past data items.

Note that this weighting scheme can be applied to any of the algorithms presented

above (bilinear, fullrank, MARS and SpAM), just by computing the weights and

weighting the data set accordingly. This would yield their corresponding local ver-

sions. For an efficient model assessment, generalized cross-validation (Hastie et al.,

2008) is a very efficient approximation to leave-one-out cross-validation for Gaussian

data.

Note that overfitting is a sensitive issue when using very flexible models like the

above nonlinear procedures. In this case, there are two types of overfitting: over-

fitting to the firing rate and overfitting to the stimulus. Model selection based on

cross-validation, for example, can prevent overfitting to the firing rate. In this way,

provided that data is trial-averaged, we prevent the selected model from describing

the trials within training data too accurately and future trials poorly. On the other

hand, overfitting to the stimulus is the non-generalization to stimulus values that dif-

fer the training data values. Note that the nature of local analysis, whose goal is

precisely to give an accurate estimation for nearby (and thus similar) inputs, leads

to overfitting to the stimulus. Therefore, unlike stationary models, models based on

local analysis are suitable for evaluating and describing the changing behavior of the

neuron, but not for extrapolating to general stimulus values.

However, there are still some approaches to exploit the flexibility of local analysis

for stimuli extrapolation. Here, we use an incremental local learning approach, where

models corresponding to previous instants are combined in a mixture defined as

r̂(t) =
t−1
∑

l=t−L
ωl r̂G(l)(t).

Here G(l) is the model obtained by some stationary method at time point l, r̂G(l)(t)

is the response that this model produces at time point t, L is the number of models

within the mixture and ωl are model weights. We can compute the unnormalized

model weights with a Gaussian kernel as

ω∗l = exp
(

− 1

2ς2
(

s(l)
p
i=1 − s(t)

p
i=1

)′
D
(

s(l)
p
i=1 − s(t)

p
i=1

)

)

,

where || · ||2 is the L2-norm operator, ς is a radius parameter and D is an nd × nd

positive definite matrix that, if the stimulus is standardized, not auto-correlated and

its components are independent, we can assume to be the identity. The actual model

weights are obtained as

ωl =
ω∗l

∑
t−1
l′=t−L ω∗l′

.
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Hence, at each time point, a new model is included into the mixture and the oldest

model is discarded. Since we are only considering the previous L time points to yield

the current prediction, this is a form of local analysis. Therefore, L defines the extent

of locality. Since the final prediction is made by combining the strengths of a collection

of basic predictors, this approach can be interpreted as an ensemble learning method

(Hastie et al., 2008).

This form of incremental local learning is, to some extent, robust to input (stimu-

lus) overfitting while keeping interesting properties of pure local analysis (Schaal and

Atkeson, 1998). In this particular approach, the trade-off between stationarity and

locality, parametrized by L, comes from using a local mixture of stationary models.

Note that the computational burden is the same than that of the pure local approach.

We need, however, a bigger amount of memory to store the L models.

In summary, this chapter investigates the effect of different types of nonlinearity to

improve spike firing rate prediction for averaged trials. Firstly, the use of regression

splines methods (MARS and SpAM) aims to deal the high complexity of neurological

processing. Besides, we consider combinations of different stimuli instead of pure

additive models by using MARS. Secondly, local methods can incorporate the subject

evolution into the model and suppress the assumption of a stationary model by us-

ing only the recent subject states to build the model. Also, it avoids the fixed noise

variance assumption. The bilinear and fullrank models, as suggested by Ahrens et al.

(2008), use the same model (obtained from a separate training data set) to predict all

future data items, thus ignoring the internal evolution of the subject. Finally, incre-

mental local learning is a type of local approach between stationary and pure local

analysis.

4.4 experiments on synthetic data

We first study the different nonlinear approaches on five different synthetic scenarios

or spike generating processes, following a similar experiment design than Ahrens et

al.’s (2008). The first three scenarios are the same as the three data models used by

Ahrens et al. (2008). The remaining two are proposed here so as to reflect dynamic

changes in the subject stimulus-response function. Results are evaluated by their pre-

dictive power (Sahani and Linden, 2003).

In all experiments we generate a one-dimensional stimuli vector, s(t)Tt=1, from a

normal distribution N (0, 1), with T = 1000 time points. From this stimuli vector

we obtain a firing probability P(t)Tt=1 for each scenario according to one of the five

generating processes described below (plus some uniform noise, U (−0.1, 0.1)). All

generating processes take into account the last η = 10 time points (the previous η

stimuli). The first η values of P(t)Tt=1 are set to zero by convention. Each resulting

vector P(t)Tt=1 is scaled to lie in [0, 1].

The five generating processes are:

• I. One stationary filter. P(t) = ∑
η
i=1 ξ

(1)
i (s(t− i))2, where ξ

(1)
i = sin(vi)/2 and v

is a vector containing η equidistant increasing values (in radians) between π/2

and π.

• II. Two stationary filters. P(t) = ∑
η
i=1 ξ

(1)
i s(t − i) + ∑

η
i=1 ξ

(2)
i (s(t − i))2, where

elements ξ
(1)
i are defined as in process I, and ξ

(2)
i = (sin(vi) + 1)/4. Here, v is a
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vector containing η equidistant increasing values (in radians) between π/4 and

3π/2. Figure 4.2(a) shows filter vectors ξ(1) and ξ(2).

• III. Nonlinear feature selective process. P(t) = ∑
η
i=1 I(|s(t− i)− vi| < 0.2(max(s(t)Tt=1)−

min(s(t)Tt=1)), where I(·) equals 1 when its argument is true and 0 otherwise,

and v is a vector containing η equidistant increasing values between min(s(t)Tt=1)

and max(s(t)Tt=1).

• IV. One non-stationary filter. P(t) = ∑
η
i=1 ξ

(1)
i (t)(s(t − i))2, where ξ

(1)
i (t) =

(T − t+ 1)sin(vi)/2T, and v is a vector containing η equidistant increasing val-

ues (in radians) between π/2 and π. Figure 4.2(b) shows the non-stationary

filter vector ξ(1)(t) for several time points.

• V. Two non-stationary filters. P(t) = ∑
η
i=1 ξ

(1)
i (t)s(t− i) + ∑

η
i=1 ξ

(2)
i (t)(s(t− i))2,

where elements ξ
(1)
i (t) are defined as in process IV, and ξ

(2)
i (t) = (sin(vi) +

1)/ut. Here, v is a vector containing η equidistant increasing values (in radians)

between π/4 and 3π/2 and u is a vector containing T equidistant increasing

values in the interval [4, 10]. Figure 4.2(c) shows the non-stationary filter vector

ξ(2)(t) for several time points.

At each time bin, the generating processes can produce up to twelve spikes. Five

trials are considered. Hence, for each generating process, we obtain five spike trials of

length T from a binomial distribution Binom(12, P(t)), t = 1, ..., T. By averaging such

spike trains over the five trials, we compute the observed firing rate r(t)Tt=1.

We have tested the bilinear and fullrank models, MARS and SpAM, their local coun-

terparts (L.bilinear, L.fullrank, L.MARS and L.SpAM) and the corresponding incre-

mental local approaches (IL.bilinear, IL.fullrank, IL.MARS and IL.SpAM) on these five

experimental settings. For each generating process, we sampled ten pairs (P(t)Tt=1, r(t)
T
t=1),

corresponding to ten simulated neurons, from the same stimuli vector s(t)Tt=1. All

models have been trained taking p = 20 previous stimuli into account. For the non-

local methods, we built the models on the first half of the data, using N = T/2− p
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Figure 4.2: (a) Stationary filter vectors ξ(1) and ξ(2). (b) Non-stationary filter vector

ξ(1)(t) at various time points. (c) Non-stationary filter vector ξ(2)(t) at

various time points.
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Figure 4.3: Predictor importance for the stationary MARS (top left) and stationary

SpAM (top right) models, and the eight most relevant functional predic-

tors in the stationary SpAM models, for generating process II.

data items, and we tested them on the second half. For the local methods, a different

model is built for each data item in the second half of the data, where the training

data set includes the N = 300 last responses. The bilinear and the fullrank models

were trained using q = 5 piecewise functions. L is set to 100 for the local incremental

methods.

An advantage of the bilinear and fullrank methods is that these models can be

graphically expressed, providing a compact description of the neuronal function. For

instance, Ahrens et al. (2008) show several plots. The MARS and SpAM models, since

they are non-parametric, are more complex to be graphically described. However, one

can still use simple graphs to ascertain the importance of the predictors within the

model. Figure 4.3 (top graphs) shows measures of the importance of each predictor

for MARS (left) and SpAM (right), for data obtained from generating process II. Each

line represents one neuron. In the MARS case, this is the highest absolute coefficient

βi∗ (Equation (4.4)) that involves each predictor. In the SpAM case, this is the L2-

norm of functions fi(·) (Equation (4.5)) of each predictor. The eight bottom graphs

of Figure 4.3 depict the univariate functions for the eight most relevant predictors in

the SPaM models, giving an idea of the influence of these predictors on the response.

Again, each line represents one neuron.

Figure 4.4 and Figure 4.5 illustrate the model fits for the local bilinear model and

local SpAM, respectively, at various time points (t = 501, 667, 834, 1000) for generating

process I. Within each figure, each pair of graphs is related to a time point. Each line

represents a different neuron. Local bilinear models are represented by coefficients

βi1 of Equation (4.2) (left graphs) and coefficients αk of Equation (4.3) (right graphs).

Local SpAM models are represented by the L2-norm of functions fi(·). Figure 4.6 and

Figure 4.7 show the same for generating process IV.

Note that the models that correspond to generating process I (stationary) vary less

across the different time points (t = 501, 667, 834, 1000) than those of generating pro-
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cess IV (non-stationary). This indicates to the practitioner that, for generating process

I, a global model is preferable, whereas, for generating process IV, a local model is

more adequate. Valuable biological insight about the underlying biological process

can be extracted from this fact.
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Figure 4.4: Local bilinear models for generating process I at various time points.
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Figure 4.5: Predictor norms of the local SpAM fits for generating process I at various

time points.

Figures 4.8-4.12 depict the true firing rate (blue) superimposed on the estimated fir-

ing rate (red), for some simulated neuron (the same for all figures) and t = 901, ..., 1000.

Focusing on the stationary models (left graphs), simple visual inspection appears to

indicate that the fullrank and bilinear models predict the firing rate approximately

as well as the more complex MARS and SpAM models for all generating processes,

although the performance of the bilinear model is slightly worse for generating pro-

cess III, whose nonlinearity is more difficult to capture. In the local models (right

graphs), however, L.SpAM seems to do the best job overall. L.SpAM is more accurate

than L.MARS because L.MARS considers interactions between the inputs, whereas

L.SpAM focuses the nonlinear strength separately at each input. Since the local mod-

els are built with fewer training data items (lower N) than the stationary models and

there is no input interaction in any of the generating processes, MARS may slightly
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Figure 4.6: Local bilinear models for generating process IV at various time points.

0.
0

0.
2

0.
4

0.
6

0.
8

Predictors

||f
i|| 2

   
(t=

50
1)

0.
0

0.
2

0.
4

0.
6

0.
8

Predictors

||f
i|| 2

   
(t=

66
7)

0.
0

0.
2

0.
4

0.
6

0.
8

Predictors

||f
i|| 2

   
(t=

83
4)

0.
0

0.
2

0.
4

0.
6

0.
8

Predictors

||f
i|| 2

   
(t=

10
00

)

Figure 4.7: Predictor norms of the local SpAM fits for generating process IV at various

time points.

overfit the data. As expected, all local models behave much better for generating

processes IV and V because they are non-stationary.

Figure 4.13 illustrates a quantitative comparison. It reports the predictive power

(Sahani and Linden, 2003) of the methods, comparing each non-local method with

its local counterpart. Each point represents a neuron simulated by each of the five

generating processes. Generating processes are distinguished by different kinds of

symbols. In the left-hand graphs, if one point lies on the left side of the dashed

(diagonal) line, then the predictive power of the local method is greater than that of

the non-local method, and the opposite applies if the point lies on the right side. The

right-hand graphs (and horizontal histograms) show the predictive power difference

between each local and non-local method as a function of the noise power (Sahani

and Linden, 2003). It is clear that the local methods excel for generating processes IV

and V, whereas the non-local methods are better for generating processes I, II and III.

The biggest difference is for generating process V, where the local methods are much

better than the non-local methods.

Figure 4.14 illustrates a comparison of L.bilinear and L.fullrank against L.MARS

and L.SpAM. Interestingly, it now is clear that L.SpAM outperforms both L.bilinear

and L.fullrank for all generating processes. L.MARS, however, only behaves much
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Figure 4.8: Predicted signal (red) and true firing rate (blue) for generating process I in

some time range for one neuron.

F
iri

ng
 ra

te

Bilinear

F
iri

ng
 ra

te

Fullrank

F
iri

ng
 ra

te

MARS

Time

F
iri

ng
 ra

te

SpAM

L.Bilinear

L.Fullrank

L.MARS

Time

L.SpAM

Figure 4.9: Predicted signal (red) and true firing rate (blue) for generating process II

in some time range for one neuron.

better for the generating process III, which is a nonlinear process that the bilinear and

fullrank methods cannot entirely capture.

Finally, we have checked the robustness to overfitting of the incremental local learn-

ing approaches. In this case, we built the models on data until time point t, and

we tested the accuracy of the obtained models at time point t+ ∆t, where ∆t is the

timescale on which the firing rate becomes non-correlated (i.e., the first time the au-

tocorrelation hits zero). ∆t is, on average, around 10. This is done for all time points.

Figures 4.15 and 4.16 show, for generating processes IV and V, predicted and real firing

rate for some neuron, giving a graphical example of the overfitting phenomenon in

the pure local models. Note that the incremental local approaches appear to be robust

to stimulus overfitting. Table 4.1 reports mean absolute error (and standard deviation)
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Figure 4.10: Predicted signal (red) and true firing rate (blue) for generating process III

in some time range for one neuron.
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Figure 4.11: Predicted signal (red) and true firing rate (blue) for generating process IV

in some time range for one neuron.

for each process and each stationary and incremental local learning approach. Note

that the incremental local approaches behave better than the stationary counterparts

for generating process IV and V, without showing any sign of stimulus overfitting in

any case.

From this experiment, we can conclude that, if there is no interaction between the

stimuli, SpAM is a handy algorithm for a broad spectrum of neural spike estimation

scenarios, since regularization can automatically adjust the complexity of the model.

Interactions between the stimuli are studied in the next section. Also, locality should

be taken into account when the encoding function is suspected to vary over time, pos-

sible by means of an incremental local approach. We believe that the use of stationary

models to characterize neuron responses can sometimes lead to inaccurate predictions

70



F
iri

ng
 ra

te

Bilinear

F
iri

ng
 ra

te

Fullrank

F
iri

ng
 ra

te
MARS

Time

F
iri

ng
 ra

te

SpAM

L.Bilinear

L.Fullrank

L.MARS

Time

L.SpAM

Figure 4.12: Predicted signal (red) and true firing rate (blue) for generating process V

in some time range for one neuron.

and is based on an often unrealistic assumption. In the next section, we check these

hypotheses on a real scenario.
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Figure 4.13: Comparison of the non-local methods against their local counterparts in

terms of predictive power (p.power). Red ©-dots correspond to gener-

ating process I, blue △-dots correspond to generating process II, green

+-dots correspond to generating process III, magenta ×-dots correspond

to generating process IV and grey ♦-dots correspond to generating pro-

cess V.
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Figure 4.14: Comparison of the local bilinear and fullrank models against the local

MARS and local SpAM methods in terms of predictive power (p.power).

Red ©-dots correspond to generating process I, blue △-dots correspond

to generating process II, green +-dots correspond to generating process

III, magenta ×-dots correspond to generating process IV and grey ♦-dots
correspond to generating process V.
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Figure 4.15: Predicted signal (red) and true firing rate (blue) for generating process IV

in some time range for one neuron. For each t, models were trained using

data until time point t and were tested at time point t+ ∆t.
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Figure 4.16: Predicted signal (red) and true firing rate (blue) for generating process V

in some time range for one neuron. For each t, models were trained using

data until time point t and were tested at time point t+ ∆t.

4.5 experiments on real data

We have also investigated the impact of nonlinearity on real data, in particular large-

scale neuronal recordings in cat primary visual cortex (area 17). The data were col-

lected by Tim Blanche at the laboratory of Nicholas Swindale, University of British

Columbia, and can be downloaded from the NSF-funded CRCNS Data Sharing web-

site1.

1 http://crcns.org
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Table 4.1: Mean absolute error (and standard deviation) for each process and each

stationary and incremental local learning approach. The best result for each

row is highlighted in bold.
Generating process

Method I II III IV V

Bilinear 1.19(±0.9) 1.39(±1.1) 3.49(±1.9) 1.25(±0.9) 1.38(±1.1)
Fullrank 1.20(±0.9) 1.40(±1.1) 3.57(±2.0) 1.32(±0.9) 1.42(±1.1)
MARS 1.28(±0.9) 1.46(±1.2) 3.56(±2.0) 1.36(±1.0) 1.47(±1.2)
SpAM 1.39(±0.8) 1.52(±1.1) 3.49(±1.8) 1.47(±0.8) 1.49(±1.0)
IL.Bilinear 1.19(±0.9) 1.38(±1.1) 3.45(±1.8) 0.75(±0.6) 0.69(±0.6)
IL.Fullrank 1.22(±0.9) 1.40(±1.1) 3.50(±2.0) 0.78(±0.6) 0.72(±0.6)
IL.MARS 1.31(±0.9) 1.46(±1.2) 3.53(±2.0) 0.83(±0.7) 0.76(±0.7)
IL.SpAM 1.16(±0.7) 1.19(±0.9) 3.41(±1.8) 0.78(±0.6) 0.62(±0.5)

Data corresponds to extracellular neural activity under several types of visual stim-

uli. We work with the simplest kind of stimulus, consisting of an oriented drifting bar

moving on a screen. The drifting bar moves in 18 different directions.

The data set contains eight trials of spiking data for ten (simultaneously recorded)

neurons. At each trial, the 18 stimulus values are presented in random order for

approximately 4 seconds each. We have partitioned the time range in bins of 100ms,

counting the number of spikes at each bin. Therefore, there are 40 bins per stimulus

value and T = 720 time bins in total.

Note that encoding the stimulus as the number of degrees or as a categorical

variable is an incoherent representation. For example, if we represent the bar ori-

entation as the number of degrees, we are implying that the 0◦ orientation lies far

away from the 340◦ orientation, whereas they are actually only 20◦ apart. Instead,

we use two variables to represent each orientation, s1(t) = 0.5 sin(radians(t)) and

s2(t) = 0.5 cos(radians(t)). These pairs are Cartesian coordinates on the circumfer-

ence of diameter 1.0. In this way, we have the maximum Euclidean distance (1.0)

between “opposite” stimuli.

Note also that we cannot directly average the spike counts across the trials, because

the stimulus values are presented in a different order at each trial. Noise cannot be

assumed to be Gaussian (Equation (4.1)) if trials are not averaged and, hence, the

aforementioned methods cannot be applied. Instead, we reorder each trial’s spike

counts so that the 40 bins of the 0◦ orientation are followed by the 40 bins of the 20◦

orientation, and so on. We now average the spike counts across the reordered trials.

Figure 4.17 illustrates the (averaged) firing rate for two neurons. The graphs on the

left are not ordered, so each point in the series is the mean of the spike counts at the

same time point. The graphs on the right are ordered, so each point in the series is the

mean of spike counts at different time points within the trials (with the same stimulus

value, however).

It is obvious that we cannot use previous stimuli for firing rate prediction if they

correspond to different stimulus values. However, we hypothetize that the response

does not depend here on previous stimulus values, but on the current stimulus value

and the amount of time it has been held.

In Figure 4.17 (left graphs), the “non-reordered” firing rate does not appear to fol-

low a clear pattern. Firstly, the smoothed firing rate is less informative for the non-
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Figure 4.17: Mean spike counts for one neuron (top) and another neuron (bottom)

before ordering (left) and after ordering the bins (right). Vertical dotted

lines mark the change of stimulus. The red curves are a smoothed version

of the spike counts. A common pattern is highlighted in blue.

reordered version. For example, the red curve is very flat for the neuron on top,

indicating that there is no substantial change across the entire time range. Interest-

ingly, the right graphs are more informative. The neurons are clearly more active for

certain ranges of the stimulus. For instance, the neuron on top fires mostly for stimu-

lus values around 80◦-140◦ and stimulus values around 260◦-320◦, which are opposite

orientations and same direction. Secondly, if we observe the high-frequency scale, it

is patent that, in the reordered spike counts, the spiking pattern within each segment

of 40 bins is roughly repeated in neighboring segments (segments concerning close

stimulus values). For instance, the pattern highlighted in blue in Figure 4.17 (right,

bottom graph) is almost identical, up to some scaling factor, to that in the neighboring

segments. Although not shown, the same applies for the other eight neurons. This

encourages us to consider each 40-bin segment separately from preceding segments.

The firing rate r(t) can thus be modeled as

r(t) = g(z(t− 1)) + ǫ(t) (4.7)

z(t− 1) = (s1(t− 1), s2(t− 1), θs(t− 1)),

where θs(t− 1) is the number of time points (up to t− 1) holding the same stimulus

value (s1(t − 1), s2(t − 1)). We scale θs(t − 1) so that it lies into the interval (−1, 1)
(like s1(t− 1) and s2(t− 1)).

Locality is now applied on the input space rather than on the time dimension. The

weights wn, defined in Equation (4.6), are now defined as

wn = Kτ(||z(t)− z(n)||2) =
{

(1− ||z(t)− z(n)||32)3 if ||z(t)− z(n)||2 ≤ τ

0 otherwise,

where τ is the bandwidth parameter.

The bilinear and fullrank models, MARS, SpAM, and their local versions can be

applied to a data set built according to Equation (4.7). However, stationary models are

difficult to use here. If we train a model on a fixed part of the averaged spike counts
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Figure 4.18: Predicted signal (red) and true signal (blue) for neuron t18 from primary

visual cortex (area 17) data.
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Figure 4.19: Predicted signal (red) and true signal (blue) for neuron t27 from primary

visual cortex (area 17) data.

data, only a subset of the possible stimulus values is used to build the model. Since

none of the stimulus values are the same in the testing part, extrapolation is unlikely

to work, and the prediction will be highly unstable. Therefore, we only consider here

non-stationary (local) models. We have used the N = 120 closest responses (in the

stimulus space) to build the models. Spikes have been estimated for t = N + 1, ..., T.

Figure 4.18 and Figure 4.19 illustrate the estimated spike counts against the true

estimated spike counts for two neurons, t18 and t27, respectively. It appears that

L.MARS and L.fullrank models offer the best fit, whereas L.bilinear is slightly worse

and L.SpAM (run with minimal regularization) is smoother than the others. L.MARS

probably performs better than L.SpAM because it takes into account interactions

among the inputs. The mean and standard deviation of the predictive power for the

L.bilinear and L.fullrank models, L.MARS and L.SpAM are, respectively, 0.08(±0.41),
0.11(±0.26), 0.16(±0.43) and 0.06(±0.22).

77



To evaluate the models, we use the Kolmogorov-Smirnov test based on the time-

rescaling theorem (Brown et al., 2001). We also evaluate the models obtained by the

LNP approach, which includes spike history terms (Truccolo et al., 2005). In short, we

compute rescaled times

va = 1− exp

[

−
∫ ua+1

ua

r̂(t)

∆
dt

]

,

where u1 < ... < ua < ... < uA denote the set of individual spike times and ∆ is the

bin length. Note that r̂(t)/∆ is just the estimated conditional intensity of the point

process at time t, which is directly estimated by the LNP model. It can be shown that

the va values are independent uniformly distributed random variables if and only if

the estimated response r̂(t) corresponds to the true conditional distribution of the

process. Hence, to perform a usual Kolmogorov-Smirnov test, we just need to order

the va values from the smallest one to the largest one and check if they are uniformly

distributed. We denote the ordered values as va∗ .

An intuitive way to evaluate the Kolmogorov-Smirnov test’s result is the K-S plot,

which plots the quantiles of the cumulative distribution function of the uniform distri-

bution in the unit interval, given by CDFa∗ = (a∗ − 0.5)/A against the ordered values

va∗ , where A is the number of spike events. The resulting points should lie around a

straight 45◦ line if the model correctly describes the data.

Figure 4.20 shows K-S plots for neurons t18, t27, t02 and t26. Each colored line

represents a trial. The proposed models correctly describe most trials for neurons

t18 and t27, whereas the LNP approach fails to describe neuron t18. On the other

hand, there are other neurons, like t02 and t26, that appear to be harder to model

using the introduced approaches. A few trials for neuron t02 are, however, described

a bit better by the LNP approach, probably because of a strong dependence between

spiking activity and spike history. Neither model is able to model t26.

We have also tested how robust are the incremental local learning approaches in

this setting. Note that the validation procedure that we use in Section 4 is not directly

applicable here, because, as commented above, we have conveniently reordered the

trials. Here, we built the models on data corresponding to stimuli different from

those we use for testing. In other words, we excluded from training data those data

items that have the same stimulus than the test data item that is to be predicted. L

was set to 80 and locality was time-based. Table 4.2 reports mean absolute error (and

standard deviation) for each neuron and each incremental local learning approach.

Pure local approaches overfit the stimulus and produce worse results.

4.6 discussion

In this chapter, we have studied several nonlinear models on a number of different

cases of spike firing rate prediction, showing that regularization can play a key role.

Although all spike generating processes are intrinsically nonlinear in the synthetic

scenarios, the source of their nonlinearity is certainly different. Whereas the first two

of the above generating processes can be approximated by a simple extension of the

linear model, more complex models are required to describe the third generating pro-

cess. The fourth and fifth generating processes intend to simulate a response whose

underlying model varies across the time. This could account for the habituation of

the subject to the stimulus or any other internal change in the subject. In this case,

local and incremental local models that take into account this variation, even if they

are relatively simple, definitely outperform other more complex stationary models.
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Figure 4.20: K-S plots for the L.bilinear and L.fullrank model, L.MARS, L.SpAM and

LNP. Each trial is represented by a colored line. The black straight 45◦

line represents a perfect fit.

Due to the huge variability of neural processes, it is impossible to choose a level

of complexity, a kind of nonlinear approach or a family of models that universally

fit well for the neural firing rate prediction problem. Some preliminary analysis is

needed to ascertain the best model for a specific problem. For example, we studied the

response of some neurons in the cat primary visual cortex (area 17) to simple stimuli.

The models presented above had to be refined somewhat to tackle this problem. We

finally found that the response of these neurons is to some extent independent from

previous stimuli, the current stimulus value and the exposure time being the key

inputs. In addition, the subject follows different patterns of response for different

stimulus values. These patterns, however, are alike for close stimulus values. For this

reason, locality plays a fundamental role in the prediction.

Of the studied models, bilinear, fullrank and SpAM are additive, i.e., they do not

consider interactions among different stimuli. Therefore, they appear to deal with

nonlinearity only at the earliest (dendritic) stages of neuron processing. Other models

that apply nonlinearity on the output of a linear model intend to capture the processes

at the latest stage of the neural process (spike generation). Models in the literature

typically follow one of these approaches. However, to fully understand the encoding

properties of a neuron, it may be necessary to consider interactions among different

stimuli. We believe that they could be the basis of the intermediate processing stages
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Table 4.2: Mean absolute error (and standard deviation) for each neuron and each

local and incremental local learning approach. The best result for each row

is highlighted in bold.
Neuron

Method t00 t02 t04 t08 t10

L.Bilinear 0.56(±0.2) 1.61(±0.9) 0.98(±1.4) 0.61(±0.9) 0.84(±1.1)
L.Fullrank 0.72(±0.9) 1.97(±1.1) 1.51(±1.6) 0.73(±1.0) 1.12(±1.1)
L.MARS 0.58(±0.9) 0.71(±1.0) 1.06(±1.4) 0.73(±1.0) 0.85(±1.1)
L.SpAM 0.27(±0.2) 0.59(±0.7) 1.03(±1.4) 0.46(±0.6) 0.73(±1.0)
IL.Bilinear 0.50(±0.5) 1.01(±1.1) 0.90(±1.4) 0.35(±0.6) 1.15(±1.3)
IL.Fullrank 0.29(±0.3) 1.01(±1.2) 1.07(±1.3) 0.47(±0.6) 0.81(±1.0)
IL.MARS 0.32(±0.3) 0.56(±0.9) 0.89(±1.3) 0.58(±0.8) 0.62(±1.0)
IL.SpAM 0.26(±0.2) 0.56(±0.8) 1.02(±1.4) 0.45(±0.6) 0.76(±1.0)

Method t18 t23 t25 t26 t27

L.Bilinear 1.22(±2.4) 1.93(±0.8) 0.19(±0.2) 0.43(±0.7) 2.85(±2.0)
L.Fullrank 1.53(±2.5) 1.35(±0.9) 0.29(±0.6) 0.95(±1.1) 2.12(±1.8)
L.MARS 1.26(±2.3) 1.09(±0.8) 0.25(±0.7) 0.52(±0.9) 2.74(±2.0)
L.SpAM 1.27(±2.4) 1.87(±0.7) 0.09(±0.1) 0.40(±0.6) 2.28(±2.1)
IL.Bilinear 1.29(±2.5) 1.30(±0.9) 0.22(±0.4) 0.65(±1.1) 1.76(±2.1)
IL.Fullrank 1.38(±2.4) 1.03(±0.8) 0.10(±0.1) 0.42(±0.7) 1.67(±1.7)
IL.MARS 1.27(±2.2) 1.03(±0.8) 0.07(±0.1) 0.39(±0.7) 2.03(±1.9)
IL.SpAM 1.17(±2.4) 0.91(±0.7) 0.09(±0.1) 0.40(±0.7) 2.09(±2.1)

of the neuron. MARS does consider interactions among stimuli and has output the

best results in the real data experiments.

There exist other models in the statistics field to deal with interactions among the

inputs. For example, the Component Selection and Smoothing Operator (COSSO) (Lin

and Zhang, 2006) is a method based on L1-regularization for simultaneous function se-

lection and smoothing. COSSO is defined in the context of smoothing spline ANOVA

(Wahba, 1990), where the estimated function potentially includes interactions of any

order among the inputs. However, we have found that COSSO does not perform well

for the neural spike count prediction task. Unlike MARS and SpAM, COSSO is not

designed for high-dimensional problems. Although smoothing spline ANOVA can

capture more complex relations, it tends, in this particular case, to overfit in spite of

regularization, and the resulting models are poorer than for MARS and SpAM.

Finally, note that local bilinear and local fullrank models can be adapted to single

trials, following the guidelines introduced by Ahrens et al. (2008). The extension of

MARS and SpAM to this setting is a more complex issue.
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Part III

REGULARIZAT ION FOR SUPERVISED CLASS IF ICAT ION





This part deals with the use of regularization for supervised classification. As in

the regression framework, the main objective of regularization is to improve the bias-

variance trade-off of the estimation and to permit the estimation in an ill-posed sit-

uation. Also, regularization can yield variable selection and other problem-specific

objectives.

Chapter 5 describes a novel methodology for introducing non-penalized regular-

ization in the estimation of a naı̈ve Bayes model (Vidaurre et al., 2011b). Chapter

6 introduces a regularized model based on the naı̈ve Bayes principles that discards

redundant predictors, either continuous or discrete (Vidaurre et al., 2011c). Finally,

Chapter 7 presents a signal classification framework that can be used for brain-compu-

ter interface design (Vidaurre et al., 2011a).
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5
FORWARD STAGEWISE NA ÏVE BAYES

5.1 introduction

Bayesian network classifiers (Friedman et al., 1997) are a popular supervised classifi-

cation paradigm. A well-known Bayesian network classifier is the naı̈ve Bayes (Min-

sky, 1961), a simple Bayesian network classifier that assumes that the predictors or

variables are independent given each class value. Despite its simplicity and strong

assumptions, the naı̈ve Bayes classifier has been proven to work satisfactorily in many

domains (Domingos and Pazzani, 1997; Hand and Yu, 2001). Typically, the parameters

of the naı̈ve Bayes model are found by maximizing the joint likelihood of the model.

The naı̈ve Bayes model’s accuracy, however, declines in the presence of noisy pre-

dictors. A noisy predictor can be a predictor that either carries no useful information

for the classification (irrelevant) or is strongly dependent on another predictor (re-

dundant). Redundancy is particularly harmful, because the predictor information has

double the influence than it should.

For variable selection purposes, it is common to use filtering approaches, which

perform variable selection disregarding the classifier, or (greedy) wrapper algorithms,

which simultaneously introduce variables into the model and iteratively estimate the

parameters. We focus on the wrapper paradigm. The (stepwise) selective naı̈ve Bayes

(Langley and Sage, 1994) is a popular example of greedy wrapper algorithm.

Regularization techniques introduce additional information, usually to solve an ill-

posed problem or to avoid overfitting. Also, by imposing certain restrictions, regu-

larization trades off a little bias against a larger reduction in variance. An example

of regularization within the naı̈ve Bayes model is the L1/L2-regularized naı̈ve Bayes,

taken by van Gerven and Heskes (2008), which applies optimization techniques to

minimize the negative log-likelihood function of the data given the model plus an

L1/L2-group penalty on the model complexity. This penalty encourages some predic-

tors to be discarded. Whereas they apply this idea only to the continuous predictor

case, we extend it to deal with discrete predictors. Also, we introduce an adaptive

penalty (Zou, 2006) that further improves the method’s performance.

The main contribution discussed in this chapter, however, is a stagewise version

of the selective naı̈ve Bayes that is particularly useful when there are predictors that

are relevant but, to some extent, redundant. At each iteration, instead of adding an

“entire” predictor to the model, the parameters of the selected predictor are updated

just a little. This method is inspired by the forward stagewise selection method for

linear regression, which is also related to boosting and can be considered a form of

regularization. We call this method forward stagewise naı̈ve Bayes. This chapter is based

on the published paper (Vidaurre et al., 2011b).
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5.2 notation and classical naïve bayes

Let {X1, ...,Xp} be the set of p predictors and Y the class variable. The labeled data set,

containing N instances, is denoted as D = {(xn1, . . . , xnp, yn), n = 1, ...,N}. X denotes

the N × p predictor data matrix, with elements xni, n ∈ {1, ...,N}, i ∈ {1, ..., p}, and
y = (y1, ..., yN)

T denotes the vector of responses. We assume that the class variable,

Y, may take values j ∈ {1, ..., J}. The objective is to learn a classifier from D so as to

predict the class value for incoming data points just given by predictor values.

We assume that predictors are either discrete or continuous, although generaliza-

tions for combining the two are extremely straightforward.

When the inputs are discrete, we assume that each predictor Xi has Mi possible

states. Assuming that the predictors are conditionally independent given the class

variable, we denote their conditional probability table (CPT) as an Mi × J matrix Θi.

Each element θikj of Θi, j ∈ {1, ..., J}, k ∈ {1, ...,Mi}, is the probability of the predictor

Xi taking its k-th state given the j-th class variable state, i.e. θikj = P(Xi = k|Y = j;Θi).

We assume that, when the inputs are continuous, predictors follow a Gaussian dis-

tribution within each class value. We denote as µi and σi the vectors whose elements

are, for each state of Y, the expectation and standard deviation of Xi, respectively, i.e.,

Xi|Y = j ∼ N (µij, σij), j ∈ {1, ..., J}. We denote the conditional density function for

predictor Xi, given that Y = j, as f (xi|j; µij, σij).

Let Θ = {Θ1, ...,Θp}, µ = {µ1, ..., µp} and σ = {σ1, ...,σp}. Likewise, we denote the

whole set of predictor parameters as Ω = {Ω1, ...,Ωp}, where Ωi generically denotes

either Θi or {µi,σi}. Also, we denote class prior probabilities as π = (π1, ...,πJ).

Considering the predictors to be conditionally independent given the class, the full

likelihood function for the naı̈ve Bayes (NB) (Minsky, 1961) model is defined as

L(D;Ω) =
N

∏
n=1

[

πyn

p

∏
i=1

ψ(Xi = xni|Y = yn,Ωi)
]

, (5.1)

where function ψ(·) computes the contribution of each predictor to the full likelihood.

The likelihood is thus decomposable and can be computed separately for each predic-

tor. We now define the contribution of each predictor to the full likelihood.

Let W(i) be an N × Mi indicator matrix for discrete predictor Xi. For the n-th

instance, the elements of the indicator matrix are defined as w(i)nk = 1 if xni = k and

w(i)nk = 0 if xni 6= k. Similarly, S is defined as the N × J indicator matrix for class

variable Y. Hence, the contribution of a discrete predictor Xi and instance n to the full

likelihood is

ψ(Xi = xni|Y = yn,Ωi) = P(Xi = xni|Y = yn,Θi) = w(i)n·Θis
T
n·, (5.2)

where w(i)n· is the n-th row vector of W(i) and sn· is the n-th row vector of S. Hence,

w(i)n· and sn· are selecting the appropriate conditional probability for the n-th in-

stance from Θi.

On the other hand, the contribution of a continuous predictor Xi and instance n to

the full likelihood is defined as

ψ(Xi = xni|Y = yn,Ωi) = f (xni|yn; µiyn , σiyn) = (5.3)

1√
2πσiyn

exp− (xni − µiyn)
2

2σ2
iyn

.
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Let Ω
(0)
i be the parameters of predictor Xi such that they are exactly equal for all

class values, that is, either θ
(0)
ikj in the discrete case or {µ(0)

ij , σ
(0)
ij } in the continuous case

are equal for all j ∈ {1, ..., J}. This is equivalent to removing predictor Xi from the

model.

To estimate a NB model, we compute the maximum likelihood estimation (MLE) of

the parameters, denoted as Θ̂
(1)
i , µ̂

(1)
i , σ̂

(1)
i and π̂, as

θ̂
(1)
ikj =

Nijk

Nj
, (5.4)

µ̂
(1)
ij =

∑n;yn=j xni

Nj
,

σ̂
(1)
ij =

√

∑n;yn=j(xni − µ̂ij)2

Nj
,

π̂j =
Nj

N
,

where Nijk is the number of instances in the training data set, where predictor Xi takes

the value k and Y takes the value j, and Nj is the number of instances where Y takes

the value j.

The NB formulation for the probability of the class given the (continuous or discrete)

predictors is

P(Y = j|X1 = k1, ...,Xp = kp, Ω̂
(1)

, π̂) ∝ (5.5)

π̂j

p

∏
i=1

ψ(Xi = ki|Y = j, Ω̂
(1)
i ) = φj.

Thus, given vector φ = (φ1, ..., φJ), whose components are computed with Equa-

tion (5.5), the actual classification is performed by

ĵ = maxpos(φ), (5.6)

where maxpos(·) returns the position of the maximum element of the vector argument.

Ties can be broken at random. Note that, although φ depends on the input data

configuration, it is omitted from the notation for simplicity’s sake.

5.3 methods related to naïve bayes

In this section, we introduce some existing methods related to NB: the selective naı̈ve

Bayes (Langley and Sage, 1994), the weighted naı̈ve Bayes (Ferreira et al., 2001) and

the L1/L2-regularized naı̈ve Bayes (van Gerven and Heskes, 2008). Also, we generalize

the L1/L2-regularized naı̈ve Bayes to handle both discrete and continuous predictors

and propose a simple improvement on this method.

5.3.1 Existing methods

The selective naı̈ve Bayes (SNB) model (Langley and Sage, 1994) is a popular greedy,

wrapper, stepwise algorithm for obtaining a NB model and performing variable se-

lection. The SNB approach obeys Equation (5.5) and, hence, makes use of the MLE.
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However, it is applied over only a subset of predictors. A forward greedy search finds

this subset of predictors, where predictors are included in the model as long as the

prediction accuracy (over training data) keeps increasing. Langley and Sage (1994)

also introduce a backwards search strategy, but they conclude that forward search is

often more advantageous. On this ground, we use forward search.

The weighted naı̈ve Bayes (WNB) model (Ferreira et al., 2001) includes all the predic-

tors, which it weights according to their relevance for the classification. It is conceived

only for discrete predictors. Weights are computed as

wi =

√

√

√

√

J

∑
j=1

Mi

∑
k=1

[

P(Y = j|Xi = k)− P(Y = j)
]2
,

so that the resulting model is

P(Y = j|X1 = k1, ...,Xp = kp,Ω) ∝ π̂j

p

∏
i=1

ψ(Xi = ki|Y = j,Ωi)
wi = φj.

The classification rule is the same as for NB (Equation (5.6)).

Using regularization techniques, the L1/L2-regularized naı̈ve Bayes approach (L1/L2-

NB) (van Gerven and Heskes, 2008), designed for continuous predictors, is formulated

as the optimization problem

argminµ,σ − log L(D; µ,σ) + λ
p

∑
i=1

√

√

√

√

J

∑
j=1

(µij − µ̂
(0)
ij )2 +

J

∑
j=1

(σij − σ̂
(0)
ij )2,

s.t. − σij < 0 ∀i, j, (5.7)

where L(D; µ,σ) is defined in Equations (5.1) and (5.3) and λ is some regularization

parameter. This optimization problem has Jp inequality constraints.

This way, the set of parameters of each single predictor (inside the square root)

forms a group. This penalty is hence a group lasso-type penalty or L1/L2-penalty

(Yuan and Lin, 2006), which is able to discard entire groups. Therefore, all the param-

eters {µij, σij} of some predictors will be prompted to be equal to {µ̂(0)
ij , σ̂

(0)
ij }, so that

such predictors will be effectively excluded.

Note that this optimization problem is convex. First, it is well known that the Gaus-

sian likelihood defined in Equation (5.3) is log-concave and hence the negative log-

likelihood is convex (Boyd and Vandenberghe, 2004). This can be easily proved by tak-

ing the Hessian, which is positive semidefinite and thus proves convexity. Second, the

L1/L2-penalty defined in (5.7) is just a sum of L2-penalties. Since the L2-norm function

is convex, it is the sum of L2-norms. The sum of two convex functions is convex. Fi-

nally, the inequality constraint functions are just nonnegativity constraints. Therefore,

problem (5.7) is convex and is, in fact, denoted in standard form. Although the en-

tire objective function is non-smooth (non-differentiable), it is composed of a smooth

loss function and a block-separable penalty and, hence, the problem can be solved

by unconstrained (block) coordinate gradient descent optimization (Tseng, 2001). The

constraint can be subsumed into the penalty term by setting it to ∞ when σij < 0 for

any pair (i, j).
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5.3.2 Generalized L1/L2-regularized naı̈ve Bayes

Now, we extend the L1/L2-NB formulation to deal with the discrete predictor case

and propose an adaptive formulation of the problem for achieving better predictions.

We formulate the optimization problem for discrete predictors as

argmin
Θ

− log L(D;Θ) + λ
p

∑
i=1

√

√

√

√

J

∑
j=1

Mi

∑
k=1

(θikj − θ̂
(0)
ijk )

2, (5.8)

s.t. 1tiθij − 1 = 0 ∀i, j,
−θikj < 0 ∀i, j, k,

θikj − 1 < 0 ∀i, j, k,

where the loss function L(D;Θ) is defined in Equations (5.1) and (5.2), θij is the j-

th column of Θi and 1i is a column vector with Mi ones. Therefore, there are Jp

equality and ∑
p
i=1 JMi inequality constraints (each pair of inequality constraints can

be subsumed in one open box constraint θikj ∈ (0, 1)).

This problem is also convex and is denoted in standard form. Since the expression

in Equation (5.2) is linear on Θ, it is clear that the negative log-likelihood is convex and

differentiable. The penalty in the loss function is also convex (but non-differentiable),

and thus the entire loss function is convex. Both the equality and inequality constraint

functions are affine. Even if we mixed both continuous and discrete predictors, the

problem would still be convex. However, with the equality constraints, we cannot

follow the gradient descent direction, so that (block) coordinate gradient descent opti-

mization is not directly applicable. Instead, we take a simple approximation: starting

with initial values Θ
(0)
i , i = 1, ..., p, we update Θi towards Θ

(1)
i at each iteration, while

the others predictors are held fixed, until the objective function in Equation 5.8 reaches

a minimum. This is a just a line-search.

A possible improvement on this approach is to use an adaptive penalty, which will

hopefully improve the accuracy of the estimator. In L1-penalized linear regression

(Tibshirani, 1996), for example, such penalties reduce the bias and lead to a consistent

estimation (Zou, 2006). The innovation is to penalize each predictor variable according

to its importance. Each variable penalty is thus scaled by 1/|β(1)
i |, where β

(1)
i is (in the

N > p case) the ordinary least squares regression coefficient or MLE. Note that |β(1)
i |

is just the absolute upper bound of this coefficient in the regularized problem, i.e., the

upper bound of the penalty for this variable.

We can apply an analogous idea to the L1/L2-NB formulation by computing weights

w = (w1, ...,wp), for the discrete and continuous predictor cases, respectively, as

wi =

√

√

√

√

J

∑
j=1

Mi

∑
k=1

(θ̂
(1)
ijk − θ̂

(0)
ijk )

2,

wi =

√

√

√

√

J

∑
j=1

(µ̂ij
(1) − µ̂ij

(0))2 +
J

∑
j=1

(σ̂ij
(1) − σ̂ij

(0))2,

so that loss functions in (5.8) and (5.7) become, respectively,
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− log L(D; µ,σ) + λ
p

∑
i=1

wi

√

√

√

√

J

∑
j=1

Mi

∑
k=1

(θikj − θ̂
(0)
ijk )

2,

− log L(D;Θ) + λ
p

∑
i=1

wi

√

√

√

√

J

∑
j=1

(µij − µ̂
(0)
ij )2 +

J

∑
j=1

(σij − σ̂
(0)
ij )2.

Note that each wi is a tight upper bound of the penalty for predictor Xi, and here

we have the parallelism with the adaptive penalty for linear regression. We call this

approach adaptive L1-regularized naı̈ve Bayes (aL1/L2-NB).

5.4 noisy predictors

In this section, we define irrelevance and redundancy and remark on some ideas that

motivate the approach introduced below. We show that it is sometimes beneficial to

use a point of compromise between Ω̂
(0)

and Ω̂
(1)

instead of the MLE like SNB does.

Also, we discuss why the L1/L2-NB approach (including the adaptive version) can

discard only irrelevant predictors and not redundant predictors.

First, we define the redundancy and irrelevance concepts and briefly discuss their

effect on the NB model. We define a predictor as noisy if it is irrelevant for the class

variable or is redundant to another predictor. Similar definitions of irrelevance and

redundancy can be found, for example, in (Kohavi and John, 1996; Langley and Sage,

1994).

A discrete predictor Xi is irrelevant for Y if

P(Y = j|Xi = k) = P(Y = j), ∀k ∈ {1, ...,Mi}, ∀j ∈ {1, ..., J},
so that the value of Xi does not give any information about the value of Y. Equiv-

alently, we can say that the within-class parameters of predictor Xi are equal for all

class values. The definition for a continuous predictor is analogous.

On the other hand, two predictors Xi1 and Xi2 are redundant when there is a depen-

dency between them. Let H(·) represent the entropy function. Two predictors Xi1 and

Xi2 are fully redundant when

H(Xi1 |Xi2) = H(Xi2 |Xi1) = 0. (5.9)

On the other hand, they are completely independent when

H(Xi1 |Xi2) = H(Xi1), H(Xi2 |Xi1) = H(Xi2).

Note that these conditions are just extremes of a continuum. In real-world data, pre-

dictors are rarely fully redundant or completely independent. Instead, they typically

are somewhere between these two extreme conditions.

When N → ∞ and p is finite (i.e., the complete information case), irrelevant vari-

ables do not increment the expected error of a NB classifier because Ω̂
(1)

= Ω̂
(0)

holds

exactly. In the realistic case, when N is finite, we only have Ω̂
(1) ≃ Ω̂

(0)
. In the pres-

ence of many irrelevant predictors, these small differences accumulate and can finally

bias the actual decision and degrade the classification accuracy.

It is well-known, however, that, for NB, redundant predictors have a more harmful

effect than irrelevant predictors (Drugan and Wiering, 2010). Figure 5.1 shows testing
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errors of NB models obtained from three different types of discrete synthetic data sets.

The first type has three non-noisy predictors, {X1,X2,X3}, that are generated from the

following probabilities

Θ1 =





0.80 0.33 0.33
0.10 0.33 0.33
0.10 0.33 0.33



 , Θ2 = Θ3 =





0.33 0.30 0.30
0.33 0.10 0.60
0.33 0.60 0.10



 , (5.10)

so that predictor X1 discriminates between the first and the other two class values, and

predictors X2 and X3 mainly discriminate between the second and third class values;

π is defined as being equal for all three class values. The other two types have, in

addition, 50 irrelevant discrete predictors and 50 (fully) redundant discrete predictors,

respectively. The class can take three values, each with the same frequency. We have

conducted 100 experiments, generating training data sets with N = 1000 instances and

test data sets with Nte = 3000 instances. Notice that both kinds of noisy predictors,

but especially the redundant ones, decrease accuracy.

Using the same data, Figure 5.2 illustrates, for one experiment, the evolution of the

testing error for an increasing number predictors. The X-axis represents the number of

predictors in the model. The first three added predictors (leftmost part of the graphs)

are relevant, and the others, up to 50, are irrelevant (lefthand graph) or redundant

(righthand graph). Predictors are redundant with regard to the first non-noisy pre-

dictor. The solid line represents the error computed on the complete testing data set,

whereas the other lines represent the error for each of the three class values. The black

line represents the mean of the other three lines. We find that the class value that is

best discriminated by the first predictor (short-dashed line) decreases the error in the

presence of redundant predictors, but the other class values are no longer distinguish-

able. Irrelevant predictors, on the other hand, produce a more uniform and moderate

increment of the error.
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Figure 5.1: Boxplots for the testing errors of NB without noisy variables (left), NB with

50 irrelevant predictors and NB with 50 redundant predictors.

Ideally, SNB only adds predictors that reduce the classification error to the model.

Hence, it will discard both redundant and irrelevant predictors, and retain those vari-

ables that are relevant but not redundant. However, as mentioned above, relevance

and redundancy are not absolute concepts. What will SNB do with a set of relevant

but non-fully redundant predictors? Let us suppose that there are two predictors, Xi1

and Xi2 , that are (non-fully) redundant, and each carries valuable information. Here,
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Figure 5.2: Evolution of the testing error for an increasing number of irrelevant (left)

and redundant (right) predictors. The first three predictors are non-noisy.

we claim that a NB model that balances the contribution of these predictors may be

better than a classic NB model that either excludes or fully includes them, like SNB

does.

We use an example to illustrate this point. Let us first define

Θ
(αi)
i = αiΘ

(1)
i + (1− αi)Θ

(0)
i ,

µ
(αi)
i = αiµ

(1)
i + (1− αi)µ

(0)
i ,

σ
(αi)
i = αiσ

(1)
i + (1− αi)σ

(0)
i , (5.11)

where αi ∈ [0, 1]. Hence, Ω̂
(αi)
i is a linear combination of Ω̂

(0)
i and Ω̂

(1)
i , where αi

refers to predictor Xi. Within this notation, we can say that SNB only considers values

αi ∈ {0, 1} (exclusion or inclusion, respectively, of predictor Xi).

Now, we consider a training data set with N = 1000 instances and a testing data set

with Nte = 3000 instances, with three predictors whose CPTs are given in (5.10). Now,

we consider making X2 and X3 redundant by setting xn2 = xn3 for some proportion

of the data instances.

Let us consider NB models with parameters Θ̂
(1)
1 , Θ̂

(α2)
2 and Θ̂

(α3)
3 . For a grid of

values α2, α3 ∈ [0, 1], Figure 5.3(a) shows testing errors when X2 and X3 are not made

redundant, that is, if we have not set xn2 = xn3 at any time. Figure 5.3(b) shows testing

errors when X2 and X3 are somewhat redundant, that is, after setting xn2 = xn3 for

some proportion of the data instances.

We find that, when X2 and X3 are independent, the minimum error is achieved

when α2, α3 are equal to 1, i.e., when Θ̂2 = Θ̂
(1)
2 and Θ̂3 = Θ̂

(1)
3 . On the other hand,

when there is some dependence between X2 and X3, and X1 is already part of the

model, the best model is somewhere in 0 < α2, α3 < 1.

Figure 5.4 illustrates the same scenario for continuous predictors. Figure 5.4(a)

shows testing errors when X2 and X3 are independent, and Figure 5.4(b) shows testing

errors when X2 and X3 are somewhat redundant. Although the effect is less obvious

than in the discrete case, the conclusion is analogous.
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Figure 5.3: (a) Testing error when discrete predictors X2 and X3 are not made redun-

dant, (b) testing error when predictors are somewhat redundant.
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Figure 5.4: (a) Testing error when continuous predictors X2 and X3 are not made re-

dundant, (b) testing error when predictors are somewhat redundant.

These examples illustrate that it may be worthwhile finding a tradeoff between the

MLE (Ω̂
(1)
i ) and the parameters that remove the predictor from the model (Ω̂

(0)
i ). This

is the main motivation for proposing the forward stagewise naı̈ve Bayes approach.

Finally, we note that, although L1/L2-NB is a natural choice for applying regular-

ization to the NB model, it discards only irrelevant and not redundant predictors. It

discards irrelevant predictors because, since Ω̂
(0)
i is not very different from Ω̂

(1)
i in

this case, they make only a small contribution to the loss function in optimization

problems (5.7) and (5.8). Note, however, that setting Ω̂i = Ω̂
(0)
i amounts to removing

this predictor from the NB model, but it does not lead to the exclusion of the predictor

from the loss function calculation in the optimization problem. In other words, accord-
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ing to this formulation, all predictors participate in the loss function (Equation (5.1)),

even when they can be simplified from the classification rule (Equations (5.5) and

(5.6)). Therefore, if, for example, two predictors are fully redundant but separately

relevant, the L1/L2-NB (or aL1/L2-NB) approach will add them both to the model, be-

cause, according to the log-likelihood formulation, both have a relevant impact on the

loss function, no matter what the state of the other is. In other words, the inclusion of

one predictor does not change the effect of the other on the loss function. In general

terms, any algorithm that solves optimization problems (5.7) or (5.8) will select either

both predictors or neither.

5.5 forward stagewise naïve bayes

We now introduce a more cautious version of the SNB approach, the forward stagewise

naı̈ve Bayes (fsNB). Like SNB, fsNB is a greedy algorithm but, instead of moving a set

of parameters from Ω̂
(0)
i to Ω̂

(1)
i at each iteration, it takes small steps from Ω̂

(αi)
i to

Ω̂
(αi+ǫ)
i , where ǫ > 0 is some small constant and αi determines the current parameters

of predictor Xi (see Equation (5.11)). We can informally say that fsNB is to SNB what

stagewise regression is to stepwise regression.

The rationale of this approach is to deal with the situation discussed above, i.e.,

when there are partially redundant variables that each carry separate information. By

giving a balanced estimation of their parameters, we expect to retain the valuable

information while minimizing the harmful effect of redundancy.

Concerning the greedy strategy, there is one important matter to address. At each

iteration, we need to evaluate each predictor so as to decide which is going to be

adjusted. There are two simple strategies for finding which predictor is most worth

updating. Let us suppose that the parameters of predictor Xi are Ω̂
(αi)
i . The first

strategy is to evaluate predictor Xi by checking Ω̂
(αi+ǫ)
i . The second strategy is to

check Ω̂
(1)
i . Whatever we do, the predictor that leads to the greatest error decrement

will be updated by ǫ (and the others are unchanged). Neither approach is problem

free. In the first case, it is often not possible to decide how important a predictor is by

just looking at some small increment ǫ. In the second case, if we look at the complete

update of the parameters of the predictor, the contribution of other predictors with low

αi′ (i
′ 6= i) could become negligible. Even when predictor Xi is important, the model

accuracy may decrease considerably if the contribution of other important variables

(almost) disappears.

Figure 5.5 illustrates this situation for two predictors, one relevant (left) and one

irrelevant (right). It shows, at some early step of the algorithm, the evolution of the

training and testing errors when we increase αi for each predictor. Note that, in order

to select the relevant rather than the irrelevant predictor, we have to look at a point

between Ω̂
(αi+ǫ)

and Ω̂
(1)

, where the training (and testing error) is most decreased.

To do this, we consider some further steps ν at each iteration, i.e., we check the error

for Ω̂
αi+ǫ
i , Ω̂

αi+2ǫ
i , ..., Ω̂

αi+tǫ
i , ..., Ω̂

αi+νǫ
i for each predictor. This way, at each iteration, we

select the optimal values {i, t}, and update the parameters accordingly. Parameters ǫ

and ν define how detailed is the search at each step and may have an impact in the

computational efficiency of the algorithm. Reasonable variations of them, however,

does not greatly change the algorithm accuracy.
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Figure 5.5: Training error (dashed line) and testing error (solid line) across the evolu-

tion of two variables, one relevant (left) and one irrelevant (right).

Algorithm 4 Forward stagewise naı̈ve Bayes (fsNB)

Initialize αi = 0, ∀i ∈ {1, ..., p}, so that Ω̂
(αi)
i = Ω̂

(0)
i

while αi 6= 1, ∀i ∈ {1, ..., p}, do

error∗ = ∞

for i ∈ {1, ..., p} such that αi 6= 1 do

for t ∈ {1, ...ν} do
Compute Ω̂

+
i = Ω̂

(αi+tǫ)
i

φ
(n)
j = πj ∏

p
i′=1 ψ(Xi′ = xni′ |Y = j, Ω̂

+
i′ )

error = 1/N ∑
N
n=1 I

(

maxpos(φ(n)), yn
)

if error ≤ error∗ then
error∗ = error

i∗ = i

t∗ = t

end if

end for

end for

αi∗ = αi∗ + t∗ǫ
end while

Algorithm 4 details the fsNB method in pseudocode format. The main part consists

of two nested loops that look for the best pair {i, t} at each iteration. Like SNB, the

fitting criterion is the training error. The function I(·, ·) is an indicator function that

outputs 1 if its arguments are equal and 0 otherwise.

To minimize the computational cost, we can stop the procedure early if the training

error has not improved during a certain number of iterations. We have observed that

the minimum testing error is very rarely found after the training error comes to a

standstill, which makes this strategy promising.

95



5.6 model selection

Both the L1/L2-NB (using a grid of λ values) and the fsNB approaches generate a

potentially large set of models, from which a final model needs to be selected. We can

use a validation subset of the data set (if data are abundant), K-fold cross-validation,

or some penalized criterion, which is typically the training loss plus some estimation

of the optimism of the training loss rate. Here, we use the AIC statistic (Akaike, 1974):

AIC = Q (D, Ω̂) +
2

N
d,

where the loss function is the mean cross-entropy or deviance

Q (D, Ω̂) =
1

N

N

∑
n=1

−2 log P(Y = yn|X1 = xn1, ...,Xp = xnp, Ω̂, π̂),

and d represents the degrees of freedom of the model, which we compute as

d =
p

∑
i=1

I(αi > 0), (5.12)

where I(·) outputs 1 if the argument is true and 0 otherwise. Since a NB model is

linear and 0 < d ≤ p, this is a reasonable estimation.

For L1/L2-NB, a possible natural choice, instead of Equation (5.12), for computing

d, in the discrete and continuous case, respectively, would be

d =
p

∑
i=1

1

JMi

J

∑
j=1

Mi

∑
k=1

θikj − θ̂
(0)
ijk

θ̂
(1)
ijk − θ̂

(0)
ijk

,

d =
p

∑
i=1

1

J

J

∑
j=1

(

µij − µ̂
(0)
ij

µ̂
(1)
ij − µ̂

(0)
ij

+
σij − σ̂

(0)
ij

σ̂
(1)
ij − σ̂

(0)
ij

)

.

For fsNB, this would simplify to

d =
p

∑
i=1

αi.

We have found, however, that the results are better using Equation (5.12). Therefore,

in this work, we compute d using Equation (5.12).

Figure 5.6 shows, for some generated data set with three relevant variables and

twelve irrelevant variables, training and testing errors (left) and the AIC statistic, loss

function and AIC penalty term (right) for a sequence of NB models generated by fsNB.

Note that, in this example, the best model is nearly the same for the test data as for

AIC.

5.7 experiments

So far, we have presented some examples to illustrate the claims. Now, we perform

a more systematic evaluation of the methods. We test the methods first on some

synthetic data sets and then on some data sets derived from the Diabetes data set,

taken from the UCI repository1.

1 http://archive.ics.uci.edu/ml
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Figure 5.6: Left: Training error (dashed line) and testing error (solid line). Minimum

testing error step is highlighted with a vertical line. Right: AIC statistic

(solid line), loss function (dashed line) and AIC penalty term (dashed-

dotted line). The step with the lowest AIC statistic value is highlighted

with a vertical line.

5.7.1 Synthetic data sets

We now run the algorithms on a number of synthetic training/test data sets, generated

from several scenarios. Each data set has p = 20 predictors, which can be discrete

(Mi = 3) or continuous. Training data sets have N = 300 instances and test data sets

have Nte = 3000 instances. There are J = 3 class values.

Within each data set, there are p1 = 3 non-noisy predictors, p2 = 7 non-fully redun-

dant predictors, which nevertheless carry some information, and p3 = 10 totally noisy

predictors, which may be irrelevant or redundant to any of the p1 non-noisy predictors.

We call these three groups, respectively, V1, V2 and V3. Hence, p = p1 + p2 + p3.

For each experiment, we randomly generate the “true” parameters that produce the

data as follows. In the discrete case, for each predictor in V1, we sample

θij ∼ Dir(c),

where θij is the j-th column of Θi and Dir(c) is a Dirichlet distribution with the vector

of shape parameters c, whose components are all equal except one, which is different

for each j ∈ {1, ..., J}.
Within each data set, all predictors in V2 have the same CPT, which is similarly

generated from a Dirichlet distribution. Each predictor in V2 is slightly redundant to

the preceding and following predictor, i.e., H(Xi|Xi−1) < H(Xi) and H(Xi|Xi+1) <

H(Xi) for i ∈ {p1 + 2, p1 + p2 − 1} (assuming that predictors in V2 are preceded by

predictors in V1 and followed by predictors in V3). This redundancy is achieved by

setting the value of the predictor Xi to be equal to either Xi−1 or Xi+1 with a probability

equal to 0.5.

If predictors in V3 are irrelevant, they have the parameters of a multinomial distribu-

tion, and they are generated from a Dirichlet distribution with equal hyperparameters.

In other words, the CPT columns of each predictor in V3 are all equal. If predictors
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in V3 are redundant, the parameters are generated as for irrelevant predictors. In this

case, however, each predictor has a very low conditional entropy given some randomly

selected predictor from V1. This is achieved by setting the value of the predictor in

V3 to be equal to the predictor in V1 with a probability equal to 0.9. Note that, once

the corresponding predictor in V1 has been added, this predictor does not carry any

additional useful information at all.

In the continuous case, predictors are generated from Gaussian distributions. For

each predictor in V1, we sample

µij ∼ Unif(−2, 2), σij = 0.75,

where Unif(−2, 2) is the uniform distribution between −2 and 2.

As in the discrete case, all predictors in V2 have the same parameters. Again, let Xi

be equal to either Xi−1 or Xi+1 with a probability equal to 0.5.

If predictors in V3 are irrelevant, we have µij = mi, for all j ∈ {1, ...,C}. The value

mi is generated from a uniform distribution in the interval (−2, 2). If predictors in V3

are redundant, parameters are generated similarly, but, for each data instance, each

predictor in V3 is bound, with a probability equal to 0.9, to have the same value as

some predictor in V1, plus some small noise.

Finally, we set π = (1/3, 1/3, 1/3) in all cases. Hence, we have four different

scenarios, which are the four possible combinations of discrete/continuous predictors

and irrelevant/redundant predictors within V3.

We generate 100 different data sets from each scenario using the Bayes rule (taking

into account the mentioned redundancies). Table 5.1 shows, for each data set type,

the means and standard deviations of the testing misclassification error, number of

selected variables and number of (fully) noisy selected variables, for NB, SNB, WNB,

aL1/L2-NB and fsNB. We have run fsNB with parameters ǫ = 0.025, ν = 20, which we

have empirically observed to be a good choice in general. Also, we use early stopping.

For comparison’s sake, we have also run NB on a subset of predictors, selected by

(prefiltering) correlation-based feature selection (Hall, 2000). We denote this approach

as CFS+NB.

We find that there are two clearly different scenarios. First, when the noisy predic-

tors are irrelevant, the methods that do not select variables (NB and WNB) perform

best. This is certainly expectable, because, as discussed above, NB is relatively robust

to irrelevant predictors, and there are not enough to significantly reduce accuracy.

Note, however, that, in the discrete case at least, fsNB is closer to NB and WNB than

the other wrapper selective methods and also than CFS+NB. Second, when the noisy

predictors are redundant, fsNB beats the others. CFS+NB also works fine and turns

out to be the most accurate method in the continuous case. The differences between

fsNB and SNB are probably due to the fsNB’s balanced estimation of parameters

of the predictors in V2. The number of selected predictors is not very different for

fsNB and SNB in this case. CFS+NB clearly selects more predictors than the wrap-

per approaches. Finally, note that, excepting for the continuous with irrelevant noise

variables data set, aL1/L2-NB does not excel. Although L1/L2-NB is not shown in

Table 5.1, aL1/L2-NB is slightly better than its non-adaptive counterpart. Regarding

computational cost, SNB and fsNB take, respectively, 125.10 and 6732.25 evaluations

on average. The computational cost is similar for all data sets.
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Table 5.1: Mean testing misclassification error (top), mean number of selected vari-

ables (middle) and mean number of (fully) noisy selected variables (bottom)

for each synthetic data set type and each method. Data set types are dis-

crete with irrelevant noise variables (DI), continuous with irrelevant noise

variables (CI), discrete with redundant noise variables (DR) and continuous

with redundant noise variables (CR). The best result for each row is high-

lighted in bold. NB and WNB have been omitted from the variable selection

report because they do not perform variable selection.
Misclassification error

Data set type NB SNB WNB aL1/L2-NB fsNB CFS+NB

DI 0.076(±0.03) 0.080(±0.03) 0.075(±0.03) 0.079(±0.06) 0.077(±0.02) 0.166(±0.18)
CI 0.082(±0.04) 0.083(±0.05) 0.082(±0.04) 0.083(±0.05) 0.083(±0.05) 0.087(±0.02)
DR 0.152(±0.07) 0.076(±0.02) 0.131(±0.08) 0.171(±0.10) 0.070(±0.03) 0.082(±0.06)
CR 0.132(±0.05) 0.097(±0.03) 0.132(±0.05) 0.158(±0.10) 0.090(±0.03) 0.083(±0.08)

Number of selected variables
Data set type NB SNB WNB aL1/L2-NB fsNB CFS+NB

DI − 6.2(±1.4) − 6.5(±2.1) 6.3(±1.7) 10.8(±0.8)
CI − 6.0(±1.5) − 6.0(±1.2) 5.3(±1.8) 10.0(±0.1)
DR − 5.7(±1.5) − 10.2(±2.1) 5.6(±1.7) 10.4(±0.6)
CR − 5.5∗(±1.3) − 11.8(±1.9) 6.6(±2.3) 10.8(±1.0)

Number of noisy selected variables
Data set type NB SNB WNB aL1/L2-NB fsNB CFS+NB

DI − 0.6(±0.8) − 0.2(±0.7) 0.3(±0.9) 0.8(±0.9)
CI − 0.8(±0.8) − 0.1(±0.3) 0.1(±0.2) 0.4(±0.5)
DR − 0.4(±0.7) − 5.1(±0.8) 0.2(±0.5) 0.6(±0.6)
CR − 0.8(±0.4) − 5.9(±0.8) 1.1(±0.7) 1.0(±1.0)

5.7.2 Diabetes data sets

Next, we carry out some experiments with real data. We use the Diabetes data set,

which has N = 442 instances and p = 10 continuous predictors. Although the re-

sponse is continuous, we generate data sets for binary classification by means of the

rule

yn =

{

0 if ỹn < τ,

1 if ỹn ≥ τ.

where ỹn is the continuous response and τ is some real constant. We generate three

different data sets by setting τ to be equal to the first three quartiles. Therefore,

for each data set, we have, respectively, π = (1/4, 3/4), π = (1/2, 1/2) and π =

(3/4, 1/4).

Table 5.2 illustrates the results obtained from 10-fold cross-validation, which include

testing misclassification error and number of selected variables. As before, the tested

methods are NB, SNB, WNB, aL1/L2-NB, fsNB and CFS+NB. We have run fsNB with

parameters ǫ = 0.025, ν = 20, using early stopping.

Note that fsNB is the most accurate, followed by SNB and CFS+NB. Note that

aL1/L2-NB is always worse than fsNB and SNB, which is a possible sign of certain

redundancy among the predictors (that aL1/L2-NB is not purging). In these data sets,

WNB obtains very similar results to NB. None of the methods, however, is very accu-

rate when π = (1/4, 3/4). In this case, the simple “most frequent class” rule obtains

an accuracy similar to NB (0.28), which is not greatly improved by any method. On

the other hand, the number of selected predictors is reasonable for SNB, fsNB and

CFS+NB, and higher for aL1/L2-NB. The L1/L2-NB approach (not shown) achieves

similar results to aL1/L2-NB, for both accuracy and selected variables. The mean

number of evaluations for SNB is 30.7, whereas fsNB needs 905.4 evaluations on aver-

age.
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Table 5.2: Mean 10-CV cross-validated misclassification error (top) and number of se-

lected variables (bottom) for each data set derived from the Diabetes data set

and each method. The best result for each row is highlighted in bold. NB

and WNB have been omitted from the variable selection report because they

do not perform variable selection.
Misclassification error

Data set NB SNB WNB aL1/L2-NB fsNB CFS+NB

π = (1/4, 3/4) 0.28(±0.06) 0.23(±0.05) 0.28(±0.06) 0.25(±0.07) 0.21(±0.06) 0.26(±0.10)
π = (1/2, 1/2) 0.28(±0.07) 0.27(±0.06) 0.28(±0.07) 0.27(±0.08) 0.26(±0.07) 0.27(±0.15)
π = (3/4, 1/4) 0.20(±0.04) 0.18(±0.05) 0.20(±0.04) 0.19(±0.05) 0.16(±0.06) 0.18(±0.15)

Number of selected predictors
Data set NB SNB WNB aL1/L2-NB fsNB CFS+NB

π = (1/4, 3/4) − 1.7(±0.48) − 4.4(±3.80) 2.2(±0.42) 3.0(±0.42)
π = (1/2, 1/2) − 3.3(±0.48) − 8.3(±0.48) 4.4(±0.95) 4.2(±0.51)
π = (3/4, 1/4) − 3.3(±0.67) − 8.4(0.84±) 2.4(±0.51) 4.9(±0.78)

5.7.3 Neuroscience fMRI data

Finally, we report results on functional magnetic resonance imaging (fMRI) data, the

StarPlus data set1, collected at Carnegie Mellon University.

Experiments are conducted on six subjects and forty trials per subject. For each trial,

the subject is shown a picture for four seconds and a sentence for four seconds. The

objective is to discriminate between these two mental states: “picture” or “sentence”.

Each data item matches a unique 3-dimensional image. Images are captured every

0.5 seconds. Hence, each trial has 16 useful images. Briefly, there are six data sets,

one per subject, and they all have N = 40× 16 = 640 data items. On the other hand,

each image has a number of voxels, split into 25 localized regions of interest (ROIs).

Here, instead of considering each individual voxel, we will use the mean activation of

voxels at each ROI. Therefore, our data set has p = 25 predictors.

Table 5.3 shows the results obtained from 10-fold cross-validation. Algorithms and

parameter configuration are the same than in previous experiments.

In this example, fsNB beats the other wrapper algorithms in four out of six subjects,

whereas SNB is the best wrapper method for the other two subjects. CFS+NB performs

better than fsNB and SNB in one of the subjects. On the other hand, fsNB selects

fewer predictors than SNB in all cases. The number of selected predictors is not

very different from CFS+NB. The performance of aL1/L2-NB is poor, and the model

selection procedure often prefers the model with no predictors. Note that, in general,

none of the approaches behave particularly well. We conjecture that this is because

the data have a very nonlinear nature.

The mean number of evaluations for SNB is 126.2, whereas fsNB needs 9311.1 eval-

uations on average.

5.7.4 Comparison across data sets

To conclude the experimental discussion, we perform an overall analysis of the meth-

ods that includes the results obtained from all the data sets described above. To do so,

we follow the guidelines outlined by Garcı́a and Herrera (2008), performing all pair-

wise comparisons among the classifiers to detect (statistically) significant differences

between each pair. In particular, we use the Bergmann and Hommel (1988) dynamic

1 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/
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Table 5.3: Mean 10-CV cross-validated misclassification error (top) and number of se-

lected variables (bottom) for each subject in the Starplus data set and each

method. The best result for each row is highlighted in bold. NB and WNB

have been omitted from the variable selection report because they do not

perform variable selection.
Misclassification error

Subject NB SNB WNB aL1/L2-NB fsNB CFS+NB

04799 0.47(±0.08) 0.45(±0.04) 0.47(±0.08) 0.52(±0.07) 0.41(±0.26) 0.50(±0.23)
05675 0.44(±0.07) 0.43(±0.06) 0.44(±0.07) 0.51(±0.06) 0.50(±0.11) 0.46(±0.19)
04820 0.44(±0.07) 0.43(±0.06) 0.44(±0.07) 0.55(±0.03) 0.37(±0.34) 0.34(±0.21)
05680 0.45(±0.05) 0.44(±0.06) 0.45(±0.05) 0.57(±0.04) 0.35(±0.26) 0.48(±0.16)
04847 0.36(±0.06) 0.33(±0.05) 0.36(±0.06) 0.57(±0.06) 0.35(±0.06) 0.44(±0.18)
05710 0.40(±0.07) 0.45(±0.06) 0.40(±0.07) 0.55(±0.02) 0.36(±0.26) 0.48(±0.32)

Number of selected predictors
Subject NB SNB WNB aL1/L2-NB fsNB CFS+NB

04799 − 3.8(±1.51) − 0.2(±0.02) 1.0(±0.77) 1.1(±0.81)
05675 − 3.5(±1.32) − 0.3(±0.01) 0.9(±0.30) 1.0(±0.66)
04820 − 4.9(±1.31) − 0.1(±0.01) 1.3(±1.04) 0.9(±1.01)
05680 − 5.5(±2.50) − 0.3(±0.02) 1.2(±0.79) 1.2(±0.36)
04847 − 4.2(±1.51) − 0.1(±0.02) 1.8(±0.03) 2.1(±0.77)
05710 − 5.9(±1.82) − 0.2(±0.03) 1.5(±0.91) 2.0(±0.52)

procedure to adjust the raw p-values. Table 5.4 shows, for each pair, these adjusted p-

values. We can observe that fsNB is significantly better than all the other procedures,

with a significance level of 0.05.

Table 5.4: Adjusted p-values, via the Bergmann-Hommel’s dynamic procedure, for

each pair of methods.
Pair Adjusted Pair Adjusted

p-value p-value

fsNB vs NB 1.57E-6 SNB vs NB 0.783

fsNB vs WNB 3.35E-6 SNB vs WNB 0.783

fsNB vs aL1/L2-NB 3.35E-6 SNB vs aL1/L2-NB 0.783

fsNB vs SNB 9.86E-4 CFS+NB vs SNB 2.210

fsNB vs CFS+NB 0.030 aL1/L2-NB vs NB 2.424

CFS+NB vs NB 0.352 WNB vs NB 2.424

CFS+NB vs WNB 0.352 aL1/L2-NB vs NB vs 2.424

CFS+NB vs aL1/L2-NB 0.352

5.8 discussion

In this chapter, we have proposed a forward stagewise version of the forward stepwise

selective naı̈ve Bayes approach. This work has been published in the paper (Vidaurre

et al., 2011b). This approach has some advantages over the usual selective naı̈ve Bayes,

and often beats other naı̈ve Bayes-based algorithms, like the weighted naı̈ve Bayes.

We have illustrated this point empirically on both synthetic and real data sets. The

forward stagewise approach is computationally more expensive than selective naı̈ve

Bayes. Computational complexity, however, can be modulated via the ν parameter,

which, with ǫ, defines the extent of the search at each step.

We have also extended the L1/L2-regularized naı̈ve Bayes approach taken by van

Gerven and Heskes (2008) to accommodate discrete predictors. In addition, we have

introduced a handy modification of this method based on adaptive penalties (Zou,

2006). Unlike the forward stagewise naı̈ve Bayes, however, the L1/L2-regularized

naı̈ve Bayes approach does not discard redundant predictors and, hence, performs
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poorly when the data set contains large sets of these noisy predictors. This phe-

nomenon has been discussed and observed in a comprehensive synthetic experimental

setting. L1/L2-regularized naı̈ve Bayes fares relatively well, though, when noisy pre-

dictors are irrelevant. Nonetheless, irrelevant predictors are considerably less harmful

to the classification than redundant predictors.

In addition, note that, whereas it is straightforward for the forward stagewise naı̈ve

Bayes approach to deal with data sets with both discrete and continuous predictors,

it is not so simple for the L1/L2-regularized naı̈ve Bayes method. This is because the

continuous and discrete penalties scale differently. Besides discretizing the continuous

predictors, we have two choices to address this issue. First, we can use two separate

regularization parameters for each type of penalty, which is an expensive solution if

they have to be estimated. Second, we can somehow scale the continuous predictors to

make the penalties scale similarly. This is an approximate and rather tricky solution,

and we do not expect the results to be good.

Also, the weighted naı̈ve Bayes approach cannot be used with continuous predictors

unless they are discretized beforehand. In summary, flexibility is another advantage

of the proposed forward stagewise naı̈ve Bayes approach.

Future work could focus on the possibility of converting the forward stagewise

naı̈ve Bayes approach into a boosting method, where all intermediate models collab-

orate to output a final prediction. Plugging more complex Bayesian classifiers into

this framework is also on the agenda. Of course, the algorithm structure accepts other

distributions than multinomial and Gaussian.
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6
AN L1-REGULARIZED NAÏVE BAYES-INSPIRED CLASSIFIER

6.1 introduction

This chapter is, like Chapter 5, very related to the naı̈ve Bayes idea. Some training

schemes have been proposed on top of the naı̈ve Bayes idea. For example, the weighted

naı̈ve Bayes (Ferreira et al., 2001), discussed in Chapter 5, assigns a weight to each

predictor so that some predictors have more influence than others. Unfortunately, the

naı̈ve Bayes model (including weighted naı̈ve Bayes) always includes all predictors in

the model and behaves poorly in the presence of redundant predictors. Langley and

Sage (Langley and Sage, 1994) discussed this issue and proposed the selective naı̈ve

Bayes classifier. This classifier greedily includes predictors in a search-based algorithm.

However, this is a heuristic method and is not guaranteed to find an optimal model.

Without a prefiltering step, as in (Djebbari and Labbe, 2009; Blanco et al., 2005) for

example, the selective naı̈ve Bayes is seldom applicable for high-dimensional settings

on computational grounds. On the other hand, the so-called semi-naı̈ve Bayes (Pazzani,

1996) performs a heuristic greedy search to select predictors and find dependences

between them, fusing these predictors to a single predictor. The same computational

issue applies here.

Regularization techniques have occasionally been used to improve naı̈ve Bayes. For

example, Boullé (2007) applied regularization on a selective naı̈ve Bayes procedure.

The criterion used to fit data to a model is the data likelihood plus a penalization

term. This is derived from a Bayesian approach with a prior distribution that assigns

higher probabilities to networks with fewer predictors. This is embedded in a greedy

search heuristic that iteratively selects predictors for inclusion in (or exclusion from)

the model.

In this chapter, we introduce a supervised classification method that is inspired on

naı̈ve Bayes and based on linear regression. As we discuss below, it enjoys advantages

from both frameworks. On the one hand, this formulation allows to apply regular-

ization techniques from linear regression that permit to discard both redundant and

irrelevant predictors. Redundant predictors are known to be harmful for naı̈ve Bayes

and variants, and also for our model. On the other hand, like naı̈ve Bayes, it can

directly deal with both continuous and discrete predictors and can be directly used

in multi-class problems. Thus, our method is applicable to a wide range of data sets.

This chapter is based on the submitted paper (Vidaurre et al., 2011c).

The proposed method establishes an L1-regularized linear combination of the like-

lihood contributions of each predictor, choosing the coefficients of the linear combi-

nation so that the resulting value is as close to 1.0 as possible for each instance. The

L1-penalty yields a sparse vector of coefficients, dropping the likelihood contribution

of some predictors and, thus, enhancing the interpretability of the model. As we

103



will show, this method can discard both redundant and irrelevant predictors (their

respective likelihood contributions).

The devised loss function also meets the requirements for applying a LARS type

algorithm (Rosset and Zhu, 2007). This algorithm would efficiently compute the entire

regularization path at one shot. This is beneficial in high dimensional settings, where

gradient-based methods are difficult to apply on computational grounds.

6.2 the method

The notation and main concepts used all along this chapter were introduced in Chap-

ter 5. In this section, therefore, we directly introduce the method. First, we separately

focus on each predictor to build a penalized linear expression whose minimization

will yield a classifier that discards irrelevant and redundant predictors.

We first obtain the ML parameters Θ̂
(1)
i , for Xi being discrete, and µ̂

(1)
i and σ̂

(1)
i , for

Xi being discrete, from Equations (5.4), defined in the previous chapter. Let Ω̂
(1)
i be

either Θ̂
(1)
i or {µ̂(1)

i , σ̂
(1)
i }. Now, we establish the linear expression:

N

∑
n=1

p

∑
i=1

βiP(Y = yn|Xi = xni, Ω̂
(1)
i ), s.t.

p

∑
i=1

βi = 1, 0 ≤ βi ≤ 1, (6.1)

where, following the Bayes’ rule, we have

P(Y = yn|Xi = xni, Ω̂
(1)
i ) =

ψ(X = xni|Y = yn, Ω̂
(1)
i )P(Y = yn)

∑
c
j=1 ψ(X = xni|Y = j, Ω̂

(1)
i )P(Y = j)

(6.2)

where the function ψ(·) is defined in Equations (5.2) and (5.3).

Vector β̂ = (β̂1, ..., β̂p) would be chosen to maximize (6.1), hence giving more weight

to predictors that are more relevant for the classification. The rationale of this ap-

proach is that relevant predictors will have values P(Y = yn|Xi = xni, Ω̂
(1)
i ) closer to

one than irrelevant predictors. Hence, when maximizing (6.1) across the data set, the

coefficients βi of the relevant predictors are promoted to be higher. Note also that, as

long as ∑
p
i=1 βi = 1, expression

p

∑
i=1

βiP(Y = yn|Xi = xni, Ω̂
(1)
i )

ranges from 0 to 1, like a probability. We can use this as a basis for classifying future

instances. Specifically, given β̂ and Ω̂
(1)

, we would select, for a new instance given by

xi, the class value j ∈ {1, ..., c} that maximizes

p

∑
i=1

βiP(Y = j|Xi = xi, Ω̂
(1)
i ). (6.3)

Note that βi = 0 implies that predictor Xi is not selected. Likewise, higher values of

βi would attach more importance to predictor Xi. Predictors that are considered to be

relevant (i.e., with a high βi) are expected to have a higher probability P(Y = j|Xi =

xi, Ω̂
(1)
i ) for the true class, as it was in the training data set.

To obtain β, we could devise a linear optimization problem that maximizes (6.1) for

the data set. However, it will typically not drive any βi to exactly zero, and, hence, will
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not perform variable selection. Since the condition ∑
p
i=1 βi = 1 leads to a numerically

difficult problem, we alternatively propose an L1-constrained problem to estimate β:

min
β

N

∑
n=1

[

1−
p

∑
i=1

βiP(Y = yn|Xi = xni, Ω̂
(1)
i )
]2

+
+ λ

p

∑
i=1

|βi| (6.4)

s.t. 0 ≤ βi ≤ 1, ∀i.

where [·]+ is the positive part of the argument. Penalty term λ ∑
p
i=1 |βi| in (6.4) is

equivalent to imposing a restriction

p

∑
i=1

|βi| ≤ s,

and there is a one-to-one correspondence between λ and s (Tibshirani, 1996). Hence,

for some λ = λ1 such that ∑
p
i=1 βi ≤ 1 is imposed, we have, as before,

0 ≤
p

∑
i=1

βiP(Y = yn|Xi = xni, Ω̂
(1)
i ) ≤ 1

and therefore

max
β

N

∑
n=1

p

∑
i=1

βiP(Y = yn|Xi = xni, Ω̂
(1)
i ) = (6.5)

min
β

N

∑
n=1

[

1−
p

∑
i=1

βiP(Y = yn|Xi = xni, Ω̂
(1)
i )
]

+

For mathematical convenience, the expression in brackets in the right term of Equa-

tion (6.5) is squared in (6.4). Thus, a vector β̂ solving (6.4) for λ = λ1 will be an

estimator of the maximizer of (6.1). Because of the variable selection effect of the lasso

penalty, β̂ is expected to be sparse.

In this chapter, instead of fixing λ to λ1, we let λ to traverse the whole regularization

path, choosing it either to maximize the classification accuracy on a validation data

set or to minimize some penalization criterion like AIC (Akaike, 1974).

Equation (6.4) fulfills the requirements listed in (Rosset and Zhu, 2007) and can be

solved by an efficient LARS procedure. Specifically, as sufficient conditions, the loss

function is a quadratic loss function and the penalty function is a lasso penalty. We

detail in the next subsection a LARS-type algorithm with a couple of modifications

to include the restriction 0 ≤ βi ≤ 1. As we discuss below, this formulation allows

us to discard both redundant and irrelevant predictors. The method, which we will

call L1-NB, is summarized in Algorithm 5. In the pseudocode, AIC is used for model

selection.

Although our approach is definitely different from naı̈ve Bayes, we rely, to some

extent, on the same two principles. First, since the loss function in Equation (6.4) is

linear on P(Y = yn|Xi = xni, Ω̂
(1)
i ), we are assuming that the values of the class are

linearly separable given the predictors. Naı̈ve Bayes establishes the same assumption.

Second, both do not model any explicit relation between the predictors. Nonetheless,

unlike naı̈ve Bayes, we are implicitly avoiding redundancy.
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6.3 redundant and irrelevant predictors

We have discussed in Chapter 5 why L1/L2-regularization of differences applied to

naı̈ve Bayes (van Gerven and Heskes, 2008) does not discard redundant predictors.

Unfortunately, redundant predictors are known to have a more harmful effect on the

classification accuracy than irrelevant predictors in the naı̈ve Bayes model (Langley

and Sage, 1994; Drugan and Wiering, 2010).

Let us consider two extreme examples. For simplicity’s sake we will consider dis-

crete predictors only. Let Xi be an irrelevant predictor and let Xi1 and Xi2 be two

redundant predictors, for example, a predictor that appears twice. In the first case,

irrelevance, P(Y = j|Xi = k) takes the same value for all k ∈ {1, ...,mi} and, hence,

Xi has no influence on the decision. In the second case, redundancy, however, the

duplicated predictor is twice as important as it should be:

P(Y = j|X1 = k1, ...,Xq = kq,Θ1, ...,Θq)
∝ P(Y = j) · · · P(Xi1 = ki1 |Y = j,Θi1) · · · P(Xq = kq|Y = j,Θq)
= P(Y = j) · · · P(Xi1 = ki1 |Y = j,Θi1)

2 · · · P(Xq = kq|Y = j,Θq).

It is clear that the weighted naı̈ve Bayes by Ferreira et al. (2001) does not penal-

ize redundant predictors. Since the weights assessment relies on the very concept

of relevance, this method assigns high weights to all (separately considered) relevant

predictors, no matter whether they are redundant. Other weighted naı̈ve Bayes al-

gorithms whose weights estimation relies on prediction accuracy (Zhang and Sheng,

2004) instead of on the individual informative power of the predictor would in fact be

able to discard redundant predictors. As mentioned above, this is because redundant

predictors diminish the accuracy. These algorithms, however, are usually based on

heuristic procedures like hill climbing or Markov chain Monte Carlo simulation and

are computationally demanding when p is high.

It is well-known that, in regression, the original lasso only draws one out of a set of

redundant predictors (Zou and Hastie, 2005). This can be easily shown, for example,

on the LARS algorithm. Once LARS has selected one predictor, the correlation with

the residuals of the other redundant predictors decreases dramatically. That is, the

angle between the vector of residuals and the predictor evolves towards the right

angle at the same pace for all redundant predictors. Since error correlation is the

criterion for including new predictors, predictors that are redundant to those already

included in the model are unlikely to be selected.

Interestingly, the proposed classifier can discard redundant predictors by solving

(6.4). First, if Xi1 and Xi2 are discrete and Equation (5.9) is satisfied, the value of Xi2 can

be determined if Xi1 is known and vice versa. Hence, there is a bijection between the

i1-th and the i2-th columns of matrix X. Obviously, this means that P(Xi1 = xni1 |Y =

yn, Θ̂i1)
(1) and P(Xi2 = xni2 |Y = yn, Θ̂

(1)
i2

) are equal, n = 1, ...,N. Therefore, it follows

Algorithm 5 L1-NB

Obtain ML parameters Ω̂
(1)
i

Obtain matrix B, Bni = P(Y = yn|Xi = xni, Ω̂
(1)
i )

Obtain solutions β̂
(l)
, l = 1, ..., L, with LARS from B

β̂ := argmin
β(l)AIC(β(l)), l = 1, ..., L

Classify unlabeled classes using β̂ and Equation (6.3)
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from Equation (6.2) that P(Y = yn|Xi1 = xni1 , Θ̂
(1)
i1

) and P(Y = yn|Xi2 = xni2 , Θ̂
(1)
i2

),

n = 1, ...,N, are equal too.

Hence, if two predictors, Xi1 and Xi2 , are highly correlated then vector P(Y =

yn|Xi1 = xni1 , Θ̂
(1)
i1

), n = 1, ...,N, and vector P(Y = yn|Xi2 = xni2 , Θ̂
(1)
i2

), n = 1, ...,N,

will also be highly correlated. Therefore, Equation (6.4), which can be solved by LARS,

would drop either Xi1 or Xi2 for the same reason that lasso does.

Second, if Xi1 and Xi2 are continuous and redundant, either Xi1 or Xi2 would also

be discarded.

Proposition 1. If Xi1 and Xi2 are continuous and redundant, vector P(Y = yn|Xi1 =

xni1 , Θ̂
(1)
i1

), n = 1, ...,N, and vector P(Y = yn|Xi2 = xni2 , Θ̂
(1)
i2

), n = 1, ...,N, are also

equal.

Proof. If Xi1 and Xi2 are continuous and Equation (5.9) is satisfied, then Xi1 = g(Xi2),

g() being some deterministic linear function Xi1 = g(Xi2) = b0 + b1Xi2 .

In this case, we have that µi1
= b1µi2

+ b0, σi1 = |b1|σi2 , and, trivially, f (xni1 |yn; µi1yn , σi1yn) =

|b−11 | f (xni2 |yr; µi2yn , σi2yn). By plugging this into Equation (6.2) we obtain

P(Y = yn|Xi1 = xni1 , µ̂
(1)
i1

, σ̂
(1)
i1

) =
|b−11 | f (xni2 |yn; µ̂

(1)
iyn

, σ̂
(1)
iyn

)P(Y = yn)

∑
c
j=1 |b−11 | f (xni|j; µ̂

(1)
ij , σ̂

(1)
ij )P(Y = j)

=
f (xni2 |yn; µ̂

(1)
iyn

, σ̂
(1)
iyn

)P(Y = yn)

∑
c
j=1 f (xni|j; µ̂(1)

ij , σ̂
(1)
ij )P(Y = j)

= P(Y = yn|Xi2 = xni2 , µ̂
(1)
i2

, σ̂
(1)
i2

).

On the other hand, for all irrelevant predictors Xi, we have that

P(Y = yn|Xi = xni, Θ̂
(1)
i ) = P(Y = yn), n = 1, ...,N.

Thus, irrelevant predictors give rise to equal vectors P(Y = yn|Xi = xni, Θ̂
(1)
i ), n =

1, ...,N, and will be also discarded.

6.4 an efficient lars-type algorithm

In this section, we present a LARS (Efron et al., 2004) variant to accommodate the

restriction 0 ≤ βi ≤ 1. This restriction can be considered as two separate conditions:

βi ≥ 0 and βi ≤ 1.

The LARS algorithm is an iterative procedure that adds a predictor to the model

at each step. LARS starts with no predictors. Firstly, it includes the predictor that is

most correlated with the response into the active set of predictors A. The response is

regressed on this predictor, so that the coefficient of this predictor is moved towards

the least squares solution until a new predictor reaches the same absolute correlation

with the vector of residuals as that of A. This new predictor is included in the active

set A. Now, the vector of residuals is regressed on the predictors in A, moving their

coefficients towards the joint least squares solution until a new predictor not in A
reaches the same absolute correlation with such vector of residuals as that of A. When
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n ≥ p, this procedure is repeated until all predictors are into the model. Otherwise,

after n− 1 steps, the residuals are zero and the algorithm terminates.

We denote the LARS input matrix as B, so that Bni = P(Y = yn|Xi = xni, Θ̂i).

Let BA be the columns of B indexed by A, β̂
(l)
A be the regression coefficients of the

predictors in A at step l, 1 be a column vector with N elements equal to one, and

c = (c1, ..., cp) = B(1− BA β̂
(l)
A ) be the correlation with the residuals.

Hence, at each step, the coefficients in A are updated as

β̂
(l+1)
A = β̂

(l)
A + γwA, (6.6)

where wA is the joint least squares direction for the predictors in A, and γ is “how

much” β̂
(l)
A must be updated at step l. Then, γ is computed as the minimum value

such that some predictor i /∈ A reaches the same absolute correlation with such vector

of residuals as that of A. Algebraic details about the exact computation of γ and wA
are described in (Efron et al., 2004).

The LARS modification for computing the exact regularization path of the lasso

problem is based on detecting when a non-zero coefficient hits zero. Then, this pre-

dictor is dropped from A and the new least squares direction is computed. Working

out γ in (6.6), for each predictor i ∈ A, this happens when γ reaches

γi = −
β̂
(l)
i

wi
. (6.7)

It will happen first at

γ̃ = minγi>0{γi}. (6.8)

Hence, if γ̃ < γ, γ is corrected to be γ̃, and the new coefficients are computed by

(6.6). The corresponding predictor is dropped from A for the next iteration.

Now, to accomplish the first condition βi ≥ 0, we compute γ as the minimum value

such that some predictor i /∈ A reaches the same positive correlation with the vector

of residuals as that of A. Thus, the difference is that the negative correlations with

the residuals of predictors i /∈ A are ignored for computing γ and deciding which

predictor i /∈ A enters the model. This modification is presented in (Efron et al., 2004).

Condition βi ≤ 1 does not appear in (Efron et al., 2004) and is slightly more complex.

In this case, we need to detect when a regression coefficient hits 1. LetM be the set

containing all predictors that have already reached 1. Again, for each predictor i ∈ A,
we work out γ in (6.6):

γi =
1− β̂

(l)
i

wi
, (6.9)

so that

γ̃ = minγi>0{γi}. (6.10)

If γ̃ < γ, then we would set γ = γ̃, compute the new coefficients by (6.6) and

move this predictor from A toM. The new direction wA is computed on the current

residual as usual.

However, it is well known that, when there is some dependence between the pre-

dictors, some predictors can decrease their regression coefficients at some step of the

algorithm. We need to verify when it happens for predictors in M, because they
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would detach from 1 and should be included in A again. Since the regularization

path is piecewise linear, it can only occur when a new predictor is included into or

dropped from the model.

Let us include the predictors in M into the calculation of the joint least squares

direction at step l. Let wA∪M denote this direction, assuming that M is not empty.

Predictors from M that have a positive direction wi ≥ 0 are definitely discarded at

this step. Let M− contain all predictors in M excepting predictors with direction

wi ≥ 0. Now, we calculate a new joint least squares direction wA∪M− . Again, we

check if there are predictors inM− whose direction wi is positive. If this occurs, we

delete them fromM− and update wA∪M− . In summary, at each step l, this procedure

must be repeated until M− is empty or all its predictors have a negative direction.

These predictors must be moved fromM to A for the next step.

Notice that, unlike βi ≥ 0, the βi ≤ 1 restriction implies additional computations.

Specifically, at each step, additional least squares directions must be computed ifM
is not empty. If p is high and efficiency is a main concern, a possibility is, once

regression coefficients reach 1, to attach these predictors to M for the rest of the

algorithm. Hence, at each step, the joint least squares direction is only computed in

A and we do not need to check whether any predictor inM has to be be moved to

A. Note that this can potentially produce a different regularization path. This is the

approach followed in this chapter because the exact calculation of the regularization

path is not crucial.

Summing up, the three described modifications are trivially combined by choosing

γ as the value that first triggers any of the following events:

• A non-zero coefficient hits zero (Equations (6.7,6.8)).

• Some predictor i /∈ A reaches the same positive correlation with the vector of

residuals as that of A.

• A non-zero coefficient hits 1 (Equations (6.9,6.10)).

Note that the computational cost of the LARS algorithm is dominated by the inver-

sion of B′ABA for computing the joint least squares direction at each step. The entire

LARS solution path for p < n variables, however, can be computed at the same cost

than a least squares fit, i.e., O(p3 + Np2). This is achieved by updating the Cholesky

factorization of B′ABA found at the previous step. At the final step, we have computed

the Cholesky factorization of B′B. Nevertheless, the introduced modifications can in-

duce more than p steps, and, hence, the computational cost can be slightly increased.

Second, we test the proposed method on a high dimensional data set.

6.5 experiments

We present some illustrative results on two different scenarios. First, we evaluate the

effect of redundant and irrelevant predictors. Second, we test the proposed method

on a high dimensional data set.

6.5.1 Irrelevance and redundancy

For the first objective, we test the behavior of our method on one of the Soybean

data sets (Michalski, 1980), where all the predictors are discrete with four or five
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categories. We focus on the version with no missing values, called Soybean Small in

the UCI repository1. This data set has N = 47 instances and p = 21 predictors. We

have chosen Soybean because it is a moderate-sized and well-behaved data set, suitable

for testing how sensitive the algorithm is to the above issues.

Based on the original data set, we built several new data sets by adding differ-

ent numbers of irrelevant and redundant predictors. We added 0, p, 2p, 3p, 4p and

5p irrelevant (randomly generated) predictors, and the same numbers of redundant

predictors. We tested all combinations of redundancy and irrelevance. Redundant

predictors are randomly generated values that are highly correlated (0.8) with an ex-

isting predictor, which is itself highly correlated to the class. We have tested a total of

6× 6 = 36 data sets.

We compared the proposed method to ordinary naı̈ve Bayes, naı̈ve Bayes with pre-

filtering feature selection, weighted naı̈ve Bayes (Ferreira et al., 2001) with prefiltering

feature selection and selective naı̈ve Bayes (Langley and Sage, 1994). Prefiltering is

based on mutual information to the class. We introduced three random predictors

sampled from a multinomial distribution with five categories and equal probabilities

for each category. After, we discarded those predictors whose mutual information is

lower than one of the three random predictors. An analogous prefiltering approach

was taken for example in (Bi et al., 2003).

For each data set we performed 5-fold cross-validation, so that 80% of the data is

used for training at each fold. Model evaluation was based on the AIC statistic. Note

that this is needed by both our approach (for selecting λ) and selective naı̈ve Bayes.

Graphs in Figures 6.1 and 6.2 show, respectively, the accuracy and the number of

selected predictors. For a given number of irrelevant predictors, each graph displays

the results for increasing numbers of redundant predictors. Figure 6.1 indicates with

a horizontal thick line that the difference of the L1-NB accuracy to the second best

method is statistically significant with a significance level of 0.05. We do not show the

number of correctly selected predictors because it is not clear which variables from

the original set should really be selected. The total number of predictors in the data

set is marked by the ordinary naı̈ve Bayes line.

As expected, irrelevant predictors do not affect the performance of the evaluated

classifiers much, except for selective naı̈ve Bayes. Their accuracies do not greatly

decrease as the number of irrelevant predictors grows. On the other hand, excepting

our approach and selective naı̈ve Bayes, there is an increment of selected predictors

for data sets containing more irrelevant predictors.

The effect of redundant predictors is stronger. As a general rule, selective naı̈ve

Bayes exhibits lower accuracy in the presence of redundant predictors. The L1-NB

accuracy is the least affected by this issue, and, generally, it shows the best classifi-

cation performance. Note that accuracy is very similar for ordinary naı̈ve Bayes and

weighted naı̈ve Bayes. More impressive are the graphs considering the number of se-

lected predictors. As expected, prefiltering does not satisfactorily handle redundancy.

The more redundant predictors there are, the greater the number of selected predic-

tors. On the other hand, the number of selected variables for L1-NB and selective

naı̈ve Bayes barely fluctuates at around 3 predictors for all data sets, always selected

from the original set of variables.

With regard to L1/L2-regularization of differences (van Gerven and Heskes, 2008),

even for a moderate number of predictors, the gradient-based method that solves this

1 http://archive.ics.uci.edu/ml
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problem becomes computationally intractable. For this reason, we left this method

out of the complete test set. However, we ran it on some data sets to check that

it is unable to discard redundant predictors. For example, the mean accuracy for

the original Soybean data set is 0.98 (standard deviation equals 0.1). When adding p

redundant predictors, accuracy falls to 0.79 (standard deviation equals 0.19). Even

worse, up to 32 predictors (out of 42) are selected on average (standard deviation

equals 11.8). Hence, redundant predictors are definitely not excluded.
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Figure 6.1: Classification accuracy (Y-axis) for increasing redundant predictors (X-

axis). The solid-© line plots L1-NB, the long-dashed-△ line plots ordinary

naı̈ve Bayes, the short-dashed-▽ line plots naı̈ve Bayes with prefiltering

feature selection, the dotted-× line plots weighted naı̈ve Bayes with pre-

filtering feature selection and he dashed-dotted-+ line plots selective naı̈ve

Bayes.
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Figure 6.2: Number of selected predictors (Y axis) against increasing redundant pre-

dictors (X axis). The solid-© line plots L1-NB, the long-dashed-△ line

plots ordinary naı̈ve Bayes, the short-dashed-▽ line plots naı̈ve Bayes with

prefiltering feature selection, the dotted-× line plots weighted naı̈ve Bayes

with prefiltering feature selection and the dashed-dotted-+ line plots selec-

tive naı̈ve Bayes.

6.5.2 High-dimensional data: brain imaging

Next, we test the method in a high-dimensional setting The discrimination of mental

states from neural activity is a hot topic in cognitive neuroscience. Data are usually

high-dimensional, and efficiency is crucial in a pattern recognition analysis. Func-

tional magnetic resonance imaging (fMRI) is of particular interest. Such data often

contains thousands or even millions of predictors mapping 3D voxels.
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Table 6.1: Mean accuracy (and standard deviation) and mean number of selected pre-

dictors (and standard deviation) for L1-NB, discretized L1-NB (dL1-NB),

naı̈ve Bayes with pre-filtering feature selection (NB+FSS), discretized naı̈ve

Bayes with pre-filtering feature selection (dNB+FSS), weighted naı̈ve Bayes

with pre-filtering feature selection (WNB+FSS), discretized weighted naı̈ve

Bayes with pre-filtering feature selection (dWNB+FSS), selective naı̈ve Bayes

with pre-filtering feature selection (SNB+FSS) and discretized selective naı̈ve

Bayes with pre-filtering feature selection (dSNB+FSS). Best results are high-

lighted.

Method Accuracy #predictors

L1-NB 0.29(±0.09) 511(±130)
dL1-NB 0.55(±0.13) 509(±93)
NB+FSS 0.23(±0.01) 914.1(±770.1)
dNB+FSS 0.39(±0.1) 3811.9(±419.7)
Method Accuracy #predictors

WNB+FSS 0.23(±0.01) 914.1(±770.1)
dWNB+FSS 0.43(±0.1) 3811.9(±419.7)
SNB+FSS 0.19(±0.08) 69.3(±15)
dSNB+FSS 0.31(±0.01) 61.4(±6.5)

In this chapter we deal with a data set that considers visual stimuli (Haxby et al.,

2002) as provided within the MVPA MatLab Toolbox1. A single subject is analyzed

over 12 trials or runs. At each trial, the subject is shown pictures illustrating each of

eight types of content (classes) for a length of time. A brain image is taken every few

seconds. Each image is thus an instance, also referred to as repetition time (TR). In

summary, at each trial, we have 9 TRs for each content type. Also, there are some

TRs that does not match any content. We ignore these no-content TRs, so that N =

12× 8× 9 = 864 instances are available. There are p = 39912 voxels.

In addition to the proposed method, we have tested naı̈ve Bayes, weighted naı̈ve

Bayes and selective naı̈ve Bayes. We also trained the classifiers over a discretized

version of the data set. Discretization conformed to the MDL-based scheme from

(Fayyad and Irani, 1993).

All except L1-NB were preceded by feature selection. For selective naı̈ve Bayes, this

is necessary on computational grounds. Again, we introduced a number of random

predictors and discarded those predictors whose univariate relation with the class is

weaker than one of the random predictors. For the original data set (with continuous

predictors), we use the ANOVA p-value. For the discretized data set, we use mutual

information to the class. The number of random predictors was chosen to maximize

the accuracy on some validation data.

Taking advantage of the trial structure of the data set, we performed 12-fold cross-

validation for all learning procedures, leaving out one trial at each iteration for testing.

One run was also reserved for validation purposes (model selection and number of

random predictors in the prefiltering step). Table 6.1 presents the results.

1 http://code.google.com/p/princeton-mvpa-toolbox
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All methods behave much better on the discretized data set. The discretized L1-NB

method shows the best overall accuracy (0.55± 0.13). The difference between the best

and the second-best accuracy is statistically significant according to a t-test. Of the

Gaussian classifiers, L1-NB also exhibits the best accuracy (0.29± 0.09). The difference

between the best and the second-best Gaussian method is again statistically significant.

On the other hand, L1-NB selects a higher number of predictors than selective naı̈ve

Bayes. The number of selected predictors for L1-NB is not, however, out of proportion,

and interpretability is good. Note that, unlike L1-NB, selective naı̈ve Bayes is preceded

by prefiltering. The number of selected predictors of the other naı̈ve Bayes approaches

are higher, specially when discretization is involved. This is probably due to the nature

of the discretization process.

In the neuroscience domain, it is known that sparse brain areas are simultaneously

activated under certain stimuli. The distributed nature of the brain is very closely

related to redundancy from a pattern analysis perspective. This explains why L1-NB

is far better than the other approaches based on naı̈ve Bayes.

It appears that the assumptions of building a Gaussian naı̈ve Bayes model for fMRI

data are too strong. This could be the cause of the poor performance of the classifiers

for continuous data. The normality assumption for the predictors given the class is

not always met. For example, if we take the voxel that is most correlated to the class

and perform a Shapiro-Wilk hypothesis test to check normality within each class, we

obtain 0.376, 0.276, 0.3608, 0.4819, 0.001, 0.565, 0.021 and 0.0579 p-values. For a p-value

threshold of 0.05, the predictor does not follow a normal distribution within classes

5 and 7. Only 1045 out of 39912 voxels (a proportion of 0.025) fulfill the normality

assumption within the eight classes. On average, voxels fulfill the normality assump-

tion only within 2.2 classes. The frequently superior performance of the naı̈ve Bayes

classifiers when they are applied on discretized data was reported, e.g., in (Dougherty

et al., 1995).

Summing up, we have shown that the proposed method is a flexible and accurate

classifier, in both synthetic and real data sets. In particular, it deals with both numeric

and continuous predictors. It has been demonstrated that naı̈ve Bayes methods are not

competitive against L1-NB in data sets with a strong correlation between predictors.

6.6 discussion

So far, we have discussed the issue of irrelevant predictors and redundant predictors

for the naı̈ve Bayes model. We have proposed a model that, initially inspired by the

naı̈ve Bayes scheme, deals successfully with these spurious predictors.

This has been proved empirically on several data sets, where different numbers of

irrelevant and redundant predictors have been added. As shown, our method works

on both discrete and continuous data sets. Moreover, a high-dimensional setting,

extracted from the neuroscience domain, has been tested. We found that the proposed

method works much better on a discretized version of this data set. This is probably

due to the particular features of fMRI data.

Like the naı̈ve Bayes model, we have not explicitly considered dependence between

predictors in this chapter. However, since the L1-penalty deals with redundancy (as

seen above, with regard to the loss function), we can discard redundant predictors.
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7
CLASS IF ICAT ION OF NEURAL S IGNALS FROM SPARSE

AUTOREGRESS IVE FEATURES

7.1 introduction

Brain-computer interfaces (BCI) establish a direct communication between the brain

and some external device, where brain activity is decoded to control the device. This

is a very promising application of machine learning techniques that, for example, can

help to greatly improve the quality of life of disabled people.

Of BCI technologies, non-invasive BCIs, which use neuroimaging inputs collected

without entering the body, are of particular interest. Some of the possible data sources

are electroencephalography (EEG) data, magnetoencephalography (MEG) data and

functional magnetic resonance imaging (fMRI) data. In this chapter, we focus on bi-

nary classification with EEG inputs. Therefore, data usually consist of a set of signals,

each collected from a specific location on the scalp (called a channel). For a general

review of EEG-based classification, see, for example, (Lotte et al., 2007).

Usually, some feature extraction procedure is used to assemble the classifying pre-

dictors from the raw signals. To number a few possibilities, we have time-frequency

features (Wang et al., 2004), power spectral density values (Chiappa and Bengio, 2004)

or the fitted autoregressive (AR) coefficients (Penny et al., 2000). We focus on AR

coefficients.

We assume that each instance of the data set is constituted by a signal or a simulta-

neously recorded set of signals (each corresponding to a different channel). Typically,

a vector of AR linear coefficients is estimated separately for each single signal by, for

example, least squares or Burg’s algorithm (Burg, 1967). These coefficients would be

the inputs for the subsequent classifier. When more than one channel is available, the

AR coefficients for all channels are concatenated to build a single instance. Hence, if a

p-order AR model is fitted for each signal, we have p predictors per channel. Alterna-

tively, the signal can be divided into various segments so that a p-order AR model is

fitted for each segment. In this case, we would have a number of predictors equal to

p multiplied by the number of segments, multiplied by the number of channels. This

is done separately for each instance.

Huan and Palaniappan (2004) compare these two methods, estimating the AR coef-

ficients using both the least squares method and Burg’s algorithm. All their estimates

are of sixth-order AR coefficients, which have been reported in the literature to empiri-

cally produce good results. They use either linear discriminant analysis or a multilayer

perceptron for the binary classification step, concluding that the best feature extrac-

tion approach is the simplest least squares method of fitting AR models for entire

signals. No variable selection is performed. Unfortunately, this type of methods en-

tails two major drawbacks. First, the order of the AR models is fixed beforehand,

without considering the data. Also, the same order is used for all channels. Second,
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the AR coefficients are estimated by exclusively minimizing the AR prediction error,

regardless of the classification performance.

We aim to overcome these pitfalls by choosing an initial arbitrarily high AR order

and then looking for a sparse AR solution by means of L1-regularization. Hsu et al.

(2008) apply the lasso to AR models. The novelty of our approach is that, instead

of making a separate AR estimate for each signal, we estimate the AR coefficients

for all signals altogether. The objective is to discard (or select) the same variables

for all signals. The selected variables can be different for each channel, and entire

channels can even be discarded. We use the group lasso (Yuan and Lin, 2006), which

can discard or select entire groups by means of a block L1-penalization, to generate a

sparse solution. This work appears in the submitted paper (Vidaurre et al., 2011a).

There are efficient algorithms to solve the group lasso, either finding the whole

regularization path (Yuan and Lin, 2006) or computing the solution for a grid of dif-

ferent regularization parameter values (Meier et al., 2008). In this chapter, we devise

an efficient LARS-type algorithm (Yuan and Lin, 2006; Efron et al., 2004) based on

multiresponse linear regression that provides computational advantages for this par-

ticular problem. Whatever algorithm we use, we select the group lasso solution that

maximizes some classifier-related measure. Since the classifier somehow guides the

AR coefficient estimation, it is with the second aforementioned issue that we are con-

cerned here.

Our method can be deemed a wrapper method. Wrapper methods are often com-

putationally expensive. In this case, though, the number of predictors (selected AR

coefficients) is moderate, so the computational cost is affordable.

7.2 basic methodology

We consider N signals zi = (zi1, ..., ziT)
t, i ∈ {1, ...,N}, each labeled as ci ∈ {0, 1}. Let

us denote the class vector as c ∈ {0, 1}N . We want to obtain a classifier that assigns

any future signal zi, i > N, to a class in {0, 1}.
The autoregressive p-order model presumes, for each signal zi, that

zij = βi0 +
p

∑
k=1

βikzi(j−k) + ǫj, j ∈ {p+ 1, ..., T},

where ǫj is Gaussian white noise. Given some estimator β̂i = (β̂i0, β̂i1, ..., β̂ip)
t, the

squared sum of autoregressive errors is defined for zi as

SSE(β̂i, zi) =
T

∑
j=p+1

(

zij − β̂i0 −
p

∑
k=1

β̂ikzi(j−k)
)2

.

Now, let us consider a classifier ψ and a function fψ(·, ·), which returns some

classifier-related fitness measure, and whose arguments are, respectively, a set of

inputs and a set of responses. Given a high enough order p, we jointly estimate

the N sparse vectors of autoregressive coefficients, stacked in an N × p matrix B =

[β̂
t

1, ..., β̂
t

N ], as

B̂ = argmaxB fψ(B, c) s.t.
N

∑
i=1

SSE(β̂i, zi) < s,

where s is some positive constant. So, B̂ is the input of the classifier and is chosen

to optimize the classification. Hence, we want to discard those coefficients that are
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useless for the classification. Also, the discarded coefficients should be the same for

all vectors β̂i, i ∈ {1, ...,N}.
To estimate B, we define the following elements:

y = (z1(p+1), ..., z1T, ..., zN(p+1), ..., zNT)
t,

X =


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





















1 z11 . . . z1p 0 0 . . . 0 . . . 0 0 . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
1 z1(T−p) . . . z1(T−1) 0 0 . . . 0 . . . 0 0 . . . 0

0 0 . . . 0 1 z21 . . . z2p . . . 0 0 . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 . . . 0 1 z2(T−p) . . . z2(T−1) . . . 0 0 . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 . . . 0 0 . . . 0 . . . . . . 1 zN1 . . . zNp

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 . . . 0 0 . . . 0 . . . . . . 1 zN(T−p) . . . zN(T−1)






















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,

β∗ = (β10, β11, ..., β1p, ..., βN0, βN1, ..., βNp)
t,

where vector β∗ is the concatenation of the elements of B. Therefore, if we include the

intercept as an additional predictor for each signal, we have y ∈ R
Nq, X ∈ R

Nq×N(p+1)

and β∗ ∈ R
N(p+1), where q = T − p. Otherwise, we have y ∈ R

Nq, X ∈ R
Nq×Np and

β∗ ∈ R
Np. Here, we choose to include the intercept.

Assuming that the N signals are independent, we can establish the linear relation:

y = Xβ∗ + ǫ, (7.1)

where ǫ = (ǫ1(p+1), ..., ǫ1T, ..., ǫN(p+1), ..., ǫNT)
t is Gaussian white noise.

We can impose an L1-penalty that would drive some AR coefficients to zero (de-

pending on some regularization parameter λ). However, since we are interested in

discarding the same coefficients for each signal, we use a group lasso penalty in-

stead. The proposed formulation allows us to define p groups θk = (β∗1k, ..., β∗Nk)
t,

k ∈ {1, ..., p}, to estimate β̂∗ as the minimizer of

||y− Xβ∗||22 + λ
p

∑
k=1

||θk||2, (7.2)

where ||.||2 is the 2-norm. The intercepts (β10, ..., βN0) are not penalized.

This is a usual group lasso problem (Yuan and Lin, 2006), and the complete reg-

ularization path can be obtained by group LARS (Yuan and Lin, 2006; Efron et al.,

2004) if X is orthogonal. Otherwise, the group LARS offers an approximation of the

regularization path, which serves our purposes. However, even though group LARS

is a very efficient method, X can become a huge matrix and computation can be ex-

pensive unless we exploit its sparse structure. Similar arguments have been followed

in the multiresponse regression literature. Below, we introduce a forward selection

approach that considers this structure. This algorithm is based on group LARS and

the multiresponse sparse regression algorithm (Similä and Tikka, 2006).

Usually, we would choose, from the set of solutions, the solution minimizing the

mean squared error (the first term in Equation (7.2)) on some testing data set, the

solution minimizing some penalized criterion on the training data set or the solution

minimizing the K-fold cross-validated mean square error. However, the rationale of

our approach is to select the best solution according to the performance of the subse-

quent classifier. Thus, we propose to select the solution β̂
∗
that maximizes fψ(B̂, c),

where B̂ is the vector β̂
∗
in matrix form as defined above.
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Linear discriminant analysis (LDA) logistic regression (LR) or support vector ma-

chines (SVM) are all possible options for the classifier ψ; see (Hastie et al., 2008) for

a general review. LDA and LR are linear in the most basic version, whereas SVM,

which constructs a linear boundary in a transformed version of the feature space, is

nonlinear. We give now a brief description of these methods; a complete overview can

be found in Chapter 1.

For LDA, fψ(B̂, c) is naturally defined as the log-likelihood function:

fψ(B̂, c) =
N

∑
i=1

(

− β̂
t

i Σ̂
−1

µ̂ci
+

1

2
µ̂t
ci

Σ̂
−1

µ̂ci
+ log π̂ci

)

, (7.3)

where µ̂ci
is the mean of those vectors βi whose class is ci, Σ̂ is the common covariance

matrix of B̂ and π̂ci is the estimated a priori probability of class ci. We can estimate

πci as
Nci
N , where Nci is the number of instances whose class is ci. To compute (7.3),

we remove the coefficients that correspond to dropped groups (since β̂
∗
i is sparse by

groups). Note that this is necessary to compute Σ̂. Otherwise, matrix B̂ has columns

with all elements equal to zero and is not full rank.

For LR, fψ(B̂, c) can also be the log-likelihood function, defined as

fψ(B̂, c) =
N

∑
i=1

(

ciŵ
t β̂i − log(1+ eŵ

t β̂i)
)

, (7.4)

where ŵ ∈ Rp is the estimated vector of logistic regression coefficients, computed by

the iteratively reweighted least squares algorithm (IRLS).

In order to avoid overfitting, we select the solution of Equation (7.2) that minimizes

a penalized version of fψ(B̂, c). In particular, since Equations (7.3) and (7.4) are log-

likelihood functions, we can employ the Akaike information criterion (Akaike, 1974):

AIC = − 2

N
fψ(B̂, c) + 2

d f

N
, (7.5)

where d f is the number of columns of B̂ with non-zero coefficients.

Finally, for SVM, fψ(B̂, c) can be defined as some margin maximizing loss function.

For convenience, we redefine the class to be in {−1, 1}. One possible formulation of

the SVM estimates the separating hyperplane parameters w ∈ R
p+ as the minimizer

of
N

∑
i=1

(

1− cih(βi)
tw
)

+
+ α ||w||2, (7.6)

where (·)+ indicates the positive part, h(·) is some mapping function, p+ is the di-

mension of the expanded feature space and α > 0 is the regularization cost parameter.

Hence, function h(·) gives the nonlinear power to the SVM. Typically, a kernel func-

tion that computes the distance between any two points in the expanded feature space

defined by h(·) is all we need for an efficient computation. In this chapter, we use a

radial basis function kernel.

The entire regularization path for Equation (7.6) can be computed with a small

multiple of the computational cost of fitting an SVM model for a single α parameter

(Hastie et al., 2004). From this regularization path, we select the model that minimizes

the K-fold cross-validated error. Here, fψ(B̂, c) can be the value of the left term of

Equation (7.6) that corresponds to the selected model. Since we use a cross-validated

estimation of the loss function, we do not need to use a penalization such as AIC in

Equation (7.5).
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Whereas the LDA formulation can be used for multiclass classification, the LR and

SVM expressions are for binary classification but can be easily generalized. See (Lee

et al., 2004), for example, for details about the multiclass SVM.

7.3 multiple channel classification

An instance is usually defined as a group of signals instead of just one signal. For

instance, an EEG instance is usually a set of signals recorded from different points on

the scalp, that is, from different channels. Here, it makes sense to consider that the

same AR coefficients are perhaps not appropriate for all channels.

Let us modify the above notation to accommodate this problem. We consider N

sets of signals, each with M channels, and labeled as c ∈ {0, 1}N as before. Now, each

signal is denoted as zil = (zil1, ..., zilT), i ∈ {1, ...,N}, l ∈ {1, ...,M}. We define
y = (z11(p+1), ..., z11T, ..., z1M(p+1), ..., z1MT, ..., zNM(p+1), ..., zNMT)

t,

X il =

(

1 zil1 . . . zilp

.

.

.

.

.

.

.

.

.

.

.

.
1 zil(T−p) . . . zil(T−1)

)

, X =
















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.

.
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.
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.

.
0 . . . 0 . . . 0 . . . XNM

















,

β∗ = (β111, ..., β11p, ..., β1M1, ..., β1Mp, ..., βNM1, ..., βNMp)
t,

where y ∈ R
NMq, X il ∈ R

q×p+1, X ∈ R
NMq×NM(p+1) and β∗ ∈ R

MN(p+1). As before,

q = T− p. The same linear relation as Equation (7.1) can be applied here.

Now, we have two choices to define the groups. We can either define p groups as

θk = (β11k, ..., β1Mk, ..., βN1k, ..., βNMk)
t, k ∈ {1, ..., p}, (7.7)

or Mp groups as

θlk = (β1lk, ..., βNlk)
t, l ∈ {1, ...,M}, k ∈ {1, ..., p}. (7.8)

Equation (7.7) defines the same AR coefficients for all the channels, whereas Equa-

tion (7.8) defines adaptive AR coefficients for each channel. The group lasso formula-

tion in Equation (7.2) is unchanged in the first case. In the second case, it becomes

||y− Xβ∗||22 + λ
p

∑
k=1

M

∑
l=1

||θlk||2. (7.9)

The solutions can be used as inputs for the classifier ψ as before, and, specifying

for this classifier, the solution β̂
∗
that maximizes fψ(B̂, c) is selected. Here, B̂ =

[β̂
T

1 , ..., β̂
T

N ], where β̂i = (βi10, βi11, ..., βi1p, ..., βiM0, βiM1, ..., βiMp)
t.

Since there is no reason to assume that all the channels contribute equally, we prefer

the second grouping approach. This way, we can exclude entire channels that are not

of interest, and possibly gather biological insight from this fact.

Besides, this approach would keep just one of a redundant set of channels (with

similar signals), if any, provided it is relevant to the classification. This is a well-

known lasso property. In the methods followed by Huan and Palaniappan (2004),

among others, redundant channels would affect the classification performance and

could lead to an ill-posed problem.
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7.4 an efficient lars-type algorithm

In this section, we briefly describe the group LARS (Efron et al., 2004) and the mul-

tiresponse sparse regression algorithm (Similä and Tikka, 2006). We then introduce an

efficient algorithm to find an approximate regularization path for Equations (7.2) and

(7.9). Although we define the method for Equation (7.9), it can be straightforwardly

adapted to Equation (7.2). We assume centered data (no intercepts) for notation sim-

plicity.

The group LARS algorithm is an iterative procedure that adds a set of predictors,

or group, to the model at each step. The group LARS starts with no groups. Firstly,

it adds the group that is most correlated with the response to the active set of groups

A. The response is regressed on this group, moving the coefficients of this group

towards the least squares solution until a new group reaches the same correlation

with the vector of residuals as the active set. This new group is added to the active

set A. Now, the vector of residuals is regressed on the groups in A, moving their

coefficients towards the joint least squares solution until a new group reaches the

same correlation with that vector of residuals as the active set. When the number of

instances is greater than the number of predictors, this procedure is repeated until all

predictors are in the model. With a small modification, the group LARS can find the

entire regularization path of a group lasso problem if the design matrix is orthogonal.

Otherwise, it provides an approximate solution.

The multiresponse sparse regression algorithm extends the (group) LARS algorithm

to multiresponse linear regression by modifying the correlation criterion between the

predictors and the current residual, which depends on multiple outputs.

Here, we derive an algorithm based on group LARS and multiresponse sparse re-

gression for efficiently computing an approximate set of solutions of Equations (7.2)

and (7.9). In the sequel, we will use the notation X il , i ∈ {1, ...,N}, l ∈ {1, ...,M}.
Groups are defined in Equation (7.8). The active set A is thus defined by a set of

pairs (l, k), l ∈ {1, ...,M}, k ∈ {1, ..., p}. We also define yil = (zil(p+1), ..., zilT)
t and

βil = (βil1, ..., βilp)
t.

The algorithm follows the group LARS steps described by Yuan and Lin (2006),

with some modifications. First, we devise a new correlation measure. We define the

correlation of the lk-th group with the current residual as

ρlk =
N

∑
i=1

(

rtilX
(k)
il

)2
,

where X
(k)
il is the k-th column of X il and ril ∈ R

q is the current residual for the i-th

signal and the l-th channel, defined as

ril = yil − X il β̂il .

Second, the joint least squares solution dil ∈ R
p is computed separately for the i-th

signal and the l-th channel. Setting to zero the elements of dil that are not in A, we

compute the remainder as

dAil = (XA
t

il X
A
il )
−1XA

t

il ril ,

where XAil denotes the columns of X il indexed by the active set A. Hence, the re-

gression coefficients for the i-th signal and the l-th channel are updated at each step

as
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βil = βil + γdil ,

where the γ ∈ [0, 1] constant is computed as

γ = minγlk
s.t. (7.10)

N

∑
i=1

[

X
(k)t

il (ril − γlkX ildil)
]2

=
N

∑
i=1

[

X
(k′)t

il′ (ril′ − γlkX il′dil′)
]2
,

Here, (l′, k′) are a pair of indexes arbitrarily chosen from A. Basic algebraic manipu-

lations lead to

γil =
−v+ v′ ±

√

v2 + v′2 − 2vv′ − 4ub+ 4u′b′

2(u− u′)
,

where we define

u =
N

∑
i=1

(X
(k)t

il X ildil)
2, u′ =

N

∑
i=1

(X
(k′)t

il′ X il′dil′)
2,

v = 2
N

∑
i=1

(X
(k)t

il ril)(X
(k)t

il X ildil), v′ = 2
N

∑
i=1

(X
(k′)t

il′ ril′)(X
(k′)t

il′ X il′dil′),

b =
N

∑
i=1

(X
(k)t

il ril)
2, b′ =

N

∑
i=1

(X
(k′)t

il′ ril′)
2.

Thus, the indexes (l, k) /∈ A that minimize Equation (7.10) correspond to the group

that is added to the active set in the next iteration. As with group LARS, we now

update the residual

ril = yil − γX ilβil ∀il.
This procedure is repeated until γ = 1.

It turns out that the group LARS solution is the same yielded for the multiresponse

sparse regression algorithm. The same connection holds for the algorithm that we

propose. Unlike group LARS, however, we do not need to store an NMq×NM(p+ 1)

matrix in memory (in the multiple channel case), speeding up the computations. Since

X is not an orthogonal matrix, this solution is only approximated. At the cost of

storing the entire matrix X in memory, an exact group lasso regularization path can

be computed following the algorithm described in recent work by Friedman et al.

(2010b). In this chapter, however, we do not follow this approach.

7.5 further computational issues

We deal with the multiple channel classification problem, because it is both more

frequent and more computationally demanding. We can split our method in two

steps: the preprocessing group lasso step and the classification step.

Whereas we use quick algorithms on data matrices of at most N ×Mp elements at

the classification step, the preprocessing step deals with NMq×NMp design matrices.

Even considering that the group LARS algorithm is fast (and so are other algorithms
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solving the group lasso problem, e.g. (Meier et al., 2008)), the dimension of the design

matrix can be huge. Hence, the computation effort, both from time and memory

perspectives, is clearly greater at the first step.

To overcome this limitation, some approaches can be followed.

First, if the number of channels is high, a possible heuristic approximation is to

run the algorithm for each channel, separately, following the single-channel approach

described above. Using some statistical test, we would discard the channels whose

classification accuracy is low enough. Keeping only the most accurate channels, we

would let them be the entrance for the multiple channel algorithm. In the machine

learning jargon, this is a prefiltering step previous to the wrapper algorithm.

Second, if the signals are long, we can perform a convolution process to extract

shorter signals, keeping the low frequences and removing the high frequences, which

are probably due to noise, from the original signal. For instance, we can make use of

the discrete wavelet transform to divide the signal length by any power of two.

Third, although big, the design matrix is significantly sparse. More precisely, only

NMpq out of N2M2pq elements are different from zero. Such circumstance can be

utilized to accelerate computations and save space in memory. For example, the R

library Matrix implements some classes and methods for sparse matrices.

Sometimes a fast algorithm is needed to run in a real-time (online) environment

with very limited computational resources available. Some BCI applications are of

this type. Such an approach can be hard to apply in the high-dimensional setting.

However, offline (previously stored) data can be used to simplify the online task. Of-

fline data are usually available in the BCI field, where the device has to be trained for

each subject prior to its real use. For instance, we can run the algorithm on the offline

data set so as to select which channels and AR coefficient indexes are relevant. After-

wards, in the online phase, we can use least squares to estimate the AR coefficients

that correspond to the previously selected channels and AR coefficient indexes.

This two-step procedure follows the spirit of the relaxed lasso (Meinshausen, 2007).

The relaxed lasso firstly discovers the sparsity pattern by lasso. Then, either least

squares or the lasso, with a small penalty (i.e., with no variable selection), is used just

on the selected variables. Among other nice theoretical properties, the relaxed lasso is

less biased than the original lasso.

7.6 experiments

To test the proposed framework, we use the EEG data recorded by Zak Keirn at Purdue

University (Keirn and Aunon, 1990). The data is a collection of experiments on seven

different subjects. Each subject is told to perform five different mental activities, say:

stay relaxed, solve a mathematics problem, write a letter, mentally rotate a geometric

figure and count a series of made-up numbers. Each subject repeats each task for a

number of trials. Specifically, subjects 1, 3, 4 and 6 perform ten trials, subjects 2 and

7 perform five trials and subject 5 performs fifteen trials. Each trial lasts ten seconds

with a sampling frequency of 250 Hz, that is, it has a total of 2500 sample points per

channel. EEG signals were recorded from seven channels. The positions are defined

by the 10-20 system of electrode placement. Keirn and Aunon (1990) describe the

collection procedure in more detail.

We use these data to test our signal classifier on the ten possible pairwise activity

combinations, that is, on ten binary classification problems. The ten pairwise combi-

nations are listed in the first column of Table 7.1. Binary classification was performed
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on these data for example by Keirn and Aunon (1990) and Huan and Palaniappan

(2004). In both papers, the trials are divided into subperiods that make up the in-

stances for classification. Keirn and Aunon (1990) use two-second subperiods and

train a unique model for all subjects. Huan and Palaniappan (2004), instead, use half-

second subperiods, and have 20 available instances for each subject, trial and activity,

with 2500/20 = 125 sample points per channel. Huan and Palaniappan (2004) esti-

mate individual models for each subject, using ten trials. Subjects performing only

five trials are ignored, as are the last five trials of the subject who performs fifteen

trials.

In this work, like Huan and Palaniappan (2004), we train individual models for each

subject. To be able to use all available data in equilibrated conditions, we consider each

group of five trials as a different data set. Thus, there are thirteen five-trials sets: two

for subjects 1, 3, 4 and 6, one for subjects 2 and 7 and three for subject 5. We omitted

one set (from subject 4) due to missing data. Therefore, for each pair of activities (each

binary classification problem), we obtain twelve different, individual models.

We divide each trial into ten one-second subperiods of 250 sample points. This way,

we have ten instances per trial. Since we have five trials for each of two activities, we

have 100 instances for training and testing for each experiment. We use a maximum

AR order of 15. Then, we have T = 250, N = 100, M = 7, p = 15 and q = T− p = 235.

In this setting, we test the basic methodology explained above, using Equation (7.9),

and the algorithm devised in the last subsection. We compare our approach (using

also this setting) with the best feature extraction method reported by Huan and Pala-

niappan (2004), that is, the sixth-order AR coefficients computed by least squares. For

the classification methods, we use LDA, LR and SVM.

On the one hand, Table 7.1 shows the mean classification accuracy for each method

and each combination of activities, averaging across all thirteen five-trials sets. These

results give an idea of the global performance of each method for each binary clas-

sification problem. On the other hand, Table 7.2 gives the best accuracy for each

five-trials set, reporting which pairwise combination of activities and classification al-

gorithm produced this result. The left columns show the best of our methods, and the

right columns show the best of Huan and Palaniappan’s methods. In a practical sce-

nario, the pairwise combination of activities and the algorithm that best discriminate

for a given subject would be chosen to implement the customized BCI device for this

subject. All results are obtained by 5-fold cross-validation.

In both tables, the methods related to our approach are referred to as sparse LDA

(sLDA), sparse logistic regression (sLR) and sparse SVM (sSVM). The methods related

to the AR coefficients feature extraction approach are referred to as LDA, LR and SVM.

Best results are highlighted. Statistical significance is checked by means of the t-test,

so that the symbol ∗ is added when the difference between the best and the second

best method is statistically significant with a significance level of 0.05. In Table 7.2,

each five-trials set is identified by a number indicating the subject (1,...,7) and a letter

(a,b) indicating the five-trials set within this subject.

As observed, the devised method outperforms the best method reported by Huan

and Palaniappan (2004) in most experiments. The biggest differences can be observed

in Table 7.2, where the best pair of activities and method is selected for each five-trials

set. Interestingly, the SVM classifier offers the best results, possibly indicating that, in

this scenario, the classification can be enhanced by appropriate nonlinear modeling.
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Table 7.1: Summary of the classification accuracy for each combination of activities

and methods.

Accuracy ± std. deviation
Activities sLDA sLR sSVM LDA LR SVM

Relax,maths 0.70± 0.07 0.73± 0.06 0.73± 0.10 0.70± 0.06 0.69± 0.05 0.73± 0.08
Relax,letter 0.62± 0.08 0.63± 0.09 0.68± 0.10 0.63± 0.07 0.59± 0.07 0.68± 0.08
Relax,rotate 0.71± 0.10 0.74± 0.06 0.78± 0.10∗ 0.70± 0.09 0.67± 0.07 0.73± 0.10
Relax,count 0.64± 0.12 0.65± 0.05 0.71± 0.10 0.66± 0.09 0.65± 0.07 0.70± 0.08
Maths,letter 0.65± 0.10 0.66± 0.07 0.73± 0.10 0.71± 0.06 0.67± 0.05 0.73± 0.07
Maths,rotate 0.69± 0.07 0.69± 0.09 0.73± 0.08 0.70± 0.06 0.65± 0.04 0.73± 0.10
Maths,count 0.67± 0.08 0.68± 0.09 0.70± 0.10 0.66± 0.09 0.64± 0.10 0.69± 0.08
Letter,rotate 0.75± 0.12 0.74± 0.10 0.83± 0.12∗ 0.74± 0.10 0.70± 0.10 0.77± 0.14
Letter,count 0.66± 0.08 0.70± 0.10 0.73± 0.12 0.65± 0.07 0.61± 0.07 0.71± 0.08
Rotate,count 0.65± 0.10 0.65± 0.10 0.71± 0.10 0.67± 0.11 0.64± 0.08 0.72± 0.10

Table 7.2: Accuracy of the best combination of activities for each five-trials set.

Subject Accuracy Method Activities Accuracy Method Activities

1a 0.93± 0.05 sSVM Maths,rotate 0.85± 0.06 LDA Relax,count
1b 0.85± 0.06 sSVM Relax,rotate 0.89± 0.05 LR Relax,maths
2a 0.92± 0.08 sSVM Relax,rotate 0.92± 0.06 SVM Letter,rotate
3a 0.86± 0.05∗ sSVM Letter,rotate 0.71± 0.11 LR Relax,maths
3b 0.93± 0.12∗ sSVM Letter,rotate 0.82± 0.08 SVM Letter,rotate
4a 0.94± 0.20∗ sLR Relax,maths 0.87± 0.09 SVM Relax,rotate
5a 0.99± 0.02∗ sSVM Letter,rotate 0.86± 0.10 SVM Letter,rotate
5b 0.81± 0.06∗ sLDA Letter,rotate 0.73± 0.09 LDA Maths,letter
5c 0.75± 0.60 sLR Maths,count 0.77± 0.08 SVM Relax,rotate
6a 0.88± 0.10 sSVM Relax,rotate 0.95± 0.04∗ SVM Letter,rotate
6b 0.96± 0.20 sLDA Relax,rotate 0.9± 0.04 SVM Relax,rotate
7a 0.92± 0.02 sSVM Relax,rotate 0.9± 0.08 SVM Letter,rotate

7.7 discussion

In this chapter, we have proposed a new feature extraction method based on sparse au-

toregressive features for multiple signal classification. We have applied the method, to-

gether with different classification algorithms, to an EEG signal classification problem,

and compared its performance to a state-of-the-art AR feature extraction approach.

Our method excels when the underlying model is sparse, for example when some

channels are irrelevant, redundant or very noisy. Besides, the performance benefits

from the fact that feature extraction is guided by some classification-related measure.

Moreover, we do not need to previously estimate the order of the AR models, because,

starting from a high enough order, model selection is completely data driven. Finally,

thanks to regularization, our approach is applicable to data sets with few instances,

whereas other methods might suffer from overfitting in the same scenario.

The drawback of our method is that, since we altogether estimate the AR coefficients

of all signals, it can be computationally demanding. However, we have provided sev-

eral shortcuts to overcome this problem. As future work, we plan to develop more

direct ways to reduce the complexity. In particular, we want to find a proper factoriza-

tion of the sparse matrix X, defined above, that turns out to be useful for the group

lasso estimation.

Note that the proposed approach can be classed in the semisupervised classification

paradigm. In semisupervised classification, there is typically a considerable amount

of data, but only a portion is labeled. To make the most of the data, it is beneficial to

also use the information provided by the unlabeled data. In our particular case, if we

have a collection of unlabeled EEG signals, they can be included in the group lasso

estimation of the AR coefficients (Equations (7.2) and (7.9)), even though the posterior

model selection relies on a fully supervised classification algorithm, that is, only on

the labeled data.
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Part IV

REGULARIZAT ION FOR GRAPHICAL MODELS
INDUCTION





8
A REGULARIZED EST IMATION OF GAUSS IAN BAYES IAN

NETWORKS

This section deals with the estimation of directed graphical models on continuous

data, where we assume the variables to be Gaussian-distributed.

It is based on the published paper by Vidaurre et al. (2010). A previous version of

this methodology was presented in the workshop “Sparse Optimization and Variable

Selection” of the 2008 edition of the International Conference of Machine Learning

(ICML). For this method to be optimal, we must assume the lasso to be an optimal

variable selector. This theoretical question was discussed in Chapter 1.
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8.1 learning an l1 -regularized gaussian bayesian network in the equiv-

alence class space

8.2 introduction

A Gaussian Bayesian network (GBN) (Geiger and Heckerman, 1994) is a probabilis-

tic graphical model that encodes a joint Gaussian density, f (X), on a p-dimensional

random variable X = (X1, . . . ,Xp):

f (x) ≡ 1

(2π)p/2|Σ|1/2 exp
(

− 1

2
(x− µ)TΣ

−1(x− µ)
)

, (8.1)

where µ = (µ1, . . . , µp)T is the vector of means and Σ is the p× p covariance matrix. In

a GBN, the density function of the joint distribution can be expressed as the product

of p univariate normal densities defined as

fi(xi|pa(xi)) ≡ N(mi + ∑
xj∈pa(xi)

β ji(xj −mj), vi). (8.2)

The variance is vi and the mean is composed of subparametersmi and βi = (β1i, . . . , βli)
T,

where l is the number of parents of variable Xi, denoted by Pa(Xi). β ji is the linear

regression coefficient of Xj in the regression of Xi on Pa(Xi). It represents how strong

the relationship between Xi and Xj is; if β ji = 0, then Xj will not be a parent of Xi.

Multivariate normal density and the product of normal densities given in equation

(8.2) are alternative and interchangeable representations.

There are two basic approaches to GBN structure learning from data: algorithms

based on constrained methods and score+ searchmethods. Constraint-based approaches

build networks that fulfill the conditional independences estimated from data (Smith

and Whittaker, 1998). The conditional independences between variables are checked

by means of statistical tests. A recent method of this kind was developed by Margaritis

(2005).

On the other hand, score+search algorithms are founded on a scoring function for

network evaluation in an attempt to find the model that best fits the data. The methods

suggested in (Bach and Jordan, 2003; Davies, 2002) are two examples of score+search

algorithms. A representation, a scoring function and a search strategy have to be

defined.

First, to represent the solutions and move in the search space, we typically choose

between directed acyclic graphs (DAGs), partial directed acyclic graphs (PDAGs) or

variable orderings. Variable orderings are an intermediate representation that must

be mapped to a graph to be meaningful. An equivalence class, modelled by a PDAG,

is the set of graphs with the same conditional independences, encoding a unique

probability density. Equivalence classes are often the preferred representation. They

are the only representation capable of meeting the inclusion boundary requirement

(Koc̆ka et al., 2001; Chickering, 2002b) described below. In the PDAG, compelled arcs

(arcs with the same orientation for all the members in the class) are modelled by

directed arcs; the others are represented by undirected edges.

Second, assuming that we have a data set D of size N, to measure how well the

model fits the data, the likelihood of the model given the data is defined as

L(D ; v,m) =
p

∏
i=1

N

∏
n=1

1√
2πvi

exp

(

− 1

2vi
(xni −mi − ∑

xj∈pa(xi)
β ji(xnj −mj))

2

)

.
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A penalized scoring criterion, made up of the likelihood function and a penalization

term that favors simple models, is usually employed. An example of such a criterion

is minimum description length (MDL). A scoring criterion is score equivalent if it

returns the same value for all the members inside the class. Sometimes, a unique

orientation for all arcs is needed to provide an exact causal semantic to the network.

When the density function itself, without causality implications, is of interest, to be

score equivalent is a positive property.

Finally, the third element is the search strategy. Whether it is better to search in

equivalence class spaces or alternatively in DAG spaces is still an open question. Some

researchers think that it is not always worthwhile to work with equivalence classes be-

cause it is more complex. Gillispie and Perlman (2001) analyzed the expected number

of DAGs inside an equivalence class. They found that on average this number is not

big. This could be an argument in favour of DAG spaces. However, the variance is

high, and, potentially, there could be a huge number of DAGs inside some equivalence

classes, even when we are trying to achieve sparse graphs. For example, a tree of p

vertices gives rise to a class of size p, whereas the equivalence class contains p! DAGs

in the case of the complete DAG (worst case) (Gillispie, 2006). For this reason, it is

often a good idea to work with equivalence classes because they are a more efficient

and robust representation: this representation is more able to deal with situations

involving equivalence classes of high cardinality.

Three main problems arise when working in the DAG space rather than with equiv-

alence classes. First, some operators defined to move between DAGs may operate

between graphs in the same equivalence class. This is a waste of time unless it is

checked by the algorithm. Therefore, if we work with a score equivalent criterion,

these moves do not change the overall network fitness. Second, the move from the

current equivalence class might not be the best if we ignore the equivalence class

space and analyze only the neighborhood of just one of its DAGs. Given that all mem-

bers of a class score the same value (assuming a score equivalent criterion), there is no

reason other than randomness to prefer a specific DAG member. The third problem is

related to how likely the final DAG is to belong to a specific equivalence class. If all

DAGs in the same class are interpreted as different models, it is reasonable to expect

the final output to be an equivalence class covering many rather than just a few DAGs.

This makes it unpredictable.

A model is defined as inclusion optimal with regard to a density f (X) if it is able

to represent the density with a minimum number of arcs. The inclusion boundary (IB)

concept (Koc̆ka et al., 2001) is defined as a neighborhood of a model where the search

strategy selects new models. Intuitively, the IB can be defined as the union set of

equivalence classes that can be reached from each DAG inside the current class by sin-

gle arc addition or deletion (see Figure 8.1). The Greedy Equivalence Search algorithm

(GES) for Bayesian network learning (Meek, 1997) uses the IB. It has appealing theo-

retical properties for finding inclusion optimal models (Chickering, 2002b; Chickering

and Meek, 2002). The KES algorithm –k-Greedy Equivalence Search– by Nielsen et al.

(2003) generalizes GES and respects the IB too. Hence it retains the same theoretical

properties. KES features a stochastic factor. This way multiple runs can be made to

extract common patterns in the solutions, whereby the final model includes just the

arcs that showed up in most of the runs.

In this chapter, we extend the KES algorithm to continuous (Gaussian) densities and

learn sparser models based on regularization techniques. By definition, a GBN defines
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Figure 8.1: An equivalence class for 3 nodes. Around it, its inclusion boundary, drop-

ping an arc (top) and adding an arc (bottom).

a regression for each variable Xi over its parents (see expression (8.2)). Supposing

standardized data (so that mi = 0 and vi = 1), it is defined as

xi = ∑
xj∈pa(xi)

β jixj + wi,

where wi is the Gaussian noise term. Thus, it makes sense to apply a regularization

technique to these regressions, linking the variable selection task to the neighborhood

selection process in network structure learning. Here, we use the lasso (Tibshirani,

1996).

The key idea is to use lasso regression in the equivalence class space (prior to the

learning stage) for each variable Xi on the remaining variables, discarding variables

whose coefficients have been moved to zero as possible parents of Xi in the GBN.

This produces simple models that properly fit available data. We keep the set of

parents that yields the best MDL score. As an additional contribution, to reduce the

computational burden, we also take advantage of the “approximate” convexity of the

MDL score for each separate variable against the remainder. This makes it possible to

stop the lasso algorithm before it ends.

The lasso has already been employed in the literature for some sorts of probabilistic

graphical model learning, taking advantage of its ability for variable selection (neigh-

borhood selection).

Li and Yang (2005) performed neighborhood selection by using the lasso to estimate

a DAG from a given ordering, and then transformed the DAG into an undirected

graph, which is the final aim of their algorithm. Under a Bayesian perspective, they

used a Wishart prior distribution for the precision matrix. The DAG prior is derived

from this precision matrix prior, and such DAG prior turns out to be equivalent to

a Laplace prior. Since the objective is learning the undirected graph, they used an

arbitrary ordering. Hence this method cannot be used to estimate a final directed

graph.

Meinshausen and Bühlmann (2006) carried out neighborhood selection also in an

undirected Gaussian graphical model setting. They used lasso regressions individu-

ally with every variable against the rest, in such a way that an edge is created when

the regression coefficient is not zero. With an appropriate selection of the penalization

parameter, the method is proved to be consistent for sparse high dimensional graphs

under certain assumptions. However, the lasso estimate is based only on individual

regressions and ignores the overall likelihood of the network. This may entail some

problems. For example, the regression coefficient of a given variable Xi, when Xj is
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the response, may (and probably will) be different from the regression coefficient of

Xj, when Xi is the response; it means that it is possible that only one coefficient is

shrunk to zero. In such a case, it is not clear whether the undirected edge must be

present or not in the learnt graph.

Recently, Banerjee et al. (2008) presented two new efficient algorithms to estimate

the (sparse) covariance matrix that exactly maximizes the L1-penalized maximum like-

lihood. Friedman et al. (2007b) developed an even faster algorithm for this task, called

graphical lasso. Both papers state that the method of Meinshausen and Bühlmann

(2006) is an approximation, as in general it does not reach the maximum likelihood

solution.

The use of lasso directly to learn a graphical model entails an important drawback:

it fails to recover the true sparsity pattern when variables are highly correlated, in

particular when there exists high correlation between relevant and irrelevant variables

(Zhao and Yu, 2006). This could be the case in some real world scenarios. Thus,

as proposed in this chapter, it is reasonable to use additional heuristics instead of

employing the lasso directly for network induction.

There has been less work focusing on (directed) GBNs, but we claim that the orienta-

tion is semantically useful in some problems like gene networks analysis. Undirected

graphs also imply a high complexity (NP-hard) in the estimation of the parameters

when the distribution is not Gaussian. Schmidt et al. (2007) worked alternatively on

the DAG space and the variable ordering space using the lasso to restrict both search

spaces. The drawbacks of their method are those commented above for greedy search-

ing in the DAG space. In this chapter, instead of directly creating an arc when the

corresponding regression coefficient is not zero as in (Meinshausen and Bühlmann,

2006), we employ the lasso as a previous neighborhood selector working in the equiv-

alence class space. The regression is also carried out for every variable against the rest,

as in (Schmidt et al., 2007). Therefore, the lasso is viewed as a variable filtering first

step and not as a direct model selection method. Afterwards, we employ the greedy

algorithm KES in the GBN training scenario.

8.3 kes algorithm

The concept of equivalence for Bayesian networks (Chickering, 2002b) has been widely

discussed in the literature: two DAGs are Markov equivalent (just equivalent from now

on) if they represent the same set of conditional independences.

A DAG G′ is said to include a graph G, G ⊂ G′, if for all the models M(G, θ)

parameterized by θ whose structure is represented by G, there exists a second model

M′(G′, θ′) parameterized by θ′ with a structure G′ that represents the same density

function, i.e.

G ⊂ G′ iff ∀θ ∃θ′ | f (xM(G,θ)) ≡ f (xM′(G′,θ′)).

Two DAGs G and G′ are said to be equivalent if

G ⊂ G′ ∧ G′ ⊂ G.

For example, the DAG A → B → C is equivalent to the DAG A ← B ← C, because

all the joint density functions (or probability functions) that can be encoded by the

first DAG can also be encoded by the second, and vice versa.
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The equivalence relationship is reflexive, symmetric and transitive, and hence gives

rise to the concept of equivalence class. The equivalence class definition is the same for

Gaussian Bayesian networks. A v-structure, also called immorality, is induced when

two disconnected vertices are parents of a third vertex. G and G′ are equivalent if they
have the same skeletons and the same v-structures (Verma and Pearl, 1990). A covered

arc is an arc that is not part of any v-structure. Thus, it is possible to move across all

the individuals inside an equivalence class just by covered arc reversing.

A formal definition of inclusion boundary can be presented on the basis of the DAG

inclusion concept. Let G and G′ be two DAGs, we denote G ≺ G′ to mean that G ⊂ G′,
and there is no DAG G′′ such that G ⊂ G′′ ⊂ G′. The IB of G is then defined as

IB(G) = {G′|G′ ≺ G} ∪ {G′′|G ≺ G′′}.
The set of DAGs defined by the first term of the union is called the lower IB; the

set of DAGs defined by the second term is the upper IB. A set of operators defined

by a neighborhood is said to satisfy the IB condition if, for a DAG G, the induced

neighborhood includes IB(G) (Koc̆ka et al., 2001). Two neighborhoods satisfying this

condition are:

• ENR (Equivalence class-based No arcs Reversals), that considers all simple edge

additions and deletions from all the DAGs belonging to the equivalence class.

• ENCR (Equivalence class-based Non-Covered arcs Reversals), that considers all

simple edge additions, deletions and non-covered arc reversals from all the

DAGs belonging to the equivalence class.

The ENR neighborhood exactly matches and the ENCR neighborhood includes the

inclusion boundary, but they are computationally complex to calculate. As we will

note below, these neighborhoods may be somehow approximated.

The so-called Meek Conjecture (Meek, 1997) essentially claims that, if a DAG G

includes another DAG G′, G is reachable from G′ through a finite sequence of edge

additions and covered arc reversals. An important conclusion of this premise is drawn:

in the limit of large data sets, if the probability distribution (density function) has a

perfect map in a DAG, a greedy search algorithm is suitable for finding the optimal

solution after a finite set of edge additions and covered arc reversals. Chickering

(2002b) presented a proof of the Meek Conjecture.

Basing on this, the GES algorithm (Meek, 1997) starts with the empty graph and

greedily explores the equivalence class space, moving at each iteration to the state

where score improvement is the greatest, and stopping the search when a locally opti-

mal model is reached. It does so in two phases, considering different neighborhoods

in each one. In the first phase the neighborhood is based on edge addition, whereas

in the second phase the neighborhood contains the networks obtained by deleting a

single edge. Chickering (2002b) presented a version of GES where the entire IB is ex-

amined at each step, removing the separation into two phases. In (Chickering, 2002a),

six operators were introduced to enrich the search space: insert undirected arc, delete

undirected arc, insert directed arc, delete directed arc, reverse directed arc and create

v-structure.

Because of the high computational cost of working with neighborhoods (specifically,

ENR and ENCR) that satisfy the IB condition, mainly to enumerate all the DAGs of

the class, Castelo and Koc̆ka (2003) defined an approximate approach. The strategy
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is to somehow simulate the class by performing a sufficient number of covered arc

reversals. At each individual or set of covered arc reversals, we get a DAG member of

the class, and we explore some neighborhood of this member in a cheaper DAG space.

It is shown that the number of covered arc reversals does not need to be large, since

the average size of a class is bounded by a constant (Gillispie and Perlman, 2001). The

number of covered arc reversals should depend on the size of the true equivalence

class, if we have any idea of its cardinality (Muruzábal and Cotta, 2007).

The Stochastic Equivalence Search algorithm (SES) introduces a modification in the

GES search strategy: it does not select the best member of the IB at each step, but

randomly picks any of the models that improve the score.

In search of a trade-off, GES and SES are generalized in the KES algorithm (Nielsen

et al., 2003), controlling the degree of randomness versus greediness by a parameter

0 ≤ k ≤ 1. In a nutshell, KES is an iterative algorithm that extracts an uninformed

k proportion (at least one model) of the IB at each step, selecting the best model in

this set. GES corresponds to the k = 1 case; SES is the k = 0 case. Nielsen et al.

(2003) presented a theoretical analysis of KES, supported on known results about

GES. We will work here with the KES algorithm, performing the IB neighborhood

approximation proposed by Nielsen et al. (2003) and already suggested by Castelo

and Koc̆ka (2003).

8.4 kes combined with the lasso

We propose a lasso-based previous step to preselect a set of potential parents for

each variable on which the KES algorithm will work greedily. Arcs corresponding

to zero coefficients in the penalized regression are discarded. The Sparse Candidate

algorithm (Friedman et al., 1999) also performs a preselection phase. This algorithm

needs the user to set the maximum number of parents per node in advance. The

Sparse Candidate algorithm restricts the search space so that there is only one set of

possible parents for each variable in the subsequent maximization step (typically a

greedy algorithm). These sets are constructed by including the variables that are most

closely associated with the target variable; this is usually quantified with a pairwise

measure like mutual information.

Alternatively, we employ the lasso with each variable on the rest, discarding as par-

ents the variables whose regression coefficients become zero. Afterwards we launch

the KES algorithm on the equivalence class search space. Thus, unlike the Sparse

Candidate algorithm, we do not need to establish a maximum number of parents in

advance.

The pseudocode of our proposal is shown in Algorithm 6, illustrating the two

phases of the algorithm. Parents restriction appears in the for loop, calculating for

each variable the set of coefficients that yields the best MDL score in the regulariza-

tion path (represented by a matrix with p columns and a variable number of rows,

one for each point in the regularization path where a coefficient vanishes or reappears

into the model). The score+search KES algorithm, restricted by the previous step, is

enclosed in the repeat loop. Notice that MDL is used in both phases.

Note that not all the variables have to share the same value of s when carrying out

their regression against the rest of variables, as some nodes in the true structure may

have stronger connectivity than others. A stronger regularizer (smaller s) would be

required for these nodes, so that more regression coefficients β̂s
i will be driven to zero.

A common strategy for selecting s is to choose it by cross-validation from a grid of
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values. However, it would have to be applied individually for each variable and hence

could introduce a heavy computational load in high-dimensional problems.

Instead, Schmidt et al. (2007) took advantage of the piecewise constant nature of the

number of non-zero coefficients against parameter s and suggested to take for each

variable the best set of “parent candidates” from such regularization path according to

some criterion, that has a finite and reduced number of solutions. That is the approach

we use in this chapter. Hence we do not estimate an explicit value of s. We employ

the (score equivalent) MDL criterion, which is defined as

MDL(Xi) = m log(N)/2+ NLL(Xi|Pa(Xi)), (8.3)

where m is the number of parameters different from zero and NLL(Xi|Pa(Xi)) is the

negative log-likelihood of the network made up of this node and its parents.

In short, we evaluate all the points (all the sets of p coefficients) where a new one

coefficient vanishes (or appears) in each variable’s regularization path and choose

the set of coefficients that minimizes the MDL score. The chosen set of penalized

regression coefficients is not used again beyond the parents preselection stage, and

the GBN parameters will be learnt later, irrespective of these coefficients.

In the second phase, we must choose between two strategies: the first is that a

variable Xj is included as a possible parent of Xi if Xj is selected by the lasso when

the response variable is Xi, or if Xi is selected by the lasso when the response variable

is Xj; the second, if both conditions are fulfilled. We have tested the two strategies,

which we will call OR-Lasso and AND-Lasso, respectively.

Even restricted to the above subset of potential parents, the KES algorithm does not

lose the theoretical properties that we described above if we assume L1-regularization

to be an ideal variable selector (specifically, if it does not miss true relations). As

noted above, this applies under certain conditions. In this case, it will find a set of

Algorithm 6 Lasso embedded in KES

for i = 1 to p do

Path(i) := matrix with the L1-regularization path of Xi

Beta(i) := MDL-best row of p coefficients in Path(i)

PotentialParents(i) := set of variables s.t. Beta(i)(j) 6= 0,

1 ≤ j ≤ p

end for

Initialize G := Empty or randomly generated model

minimum := f alse

repeat

K := max(k · size(IB(G, PotentialParents)), 1)
where IB(G, PotentialParents) is the IB(G) constrained

by the lasso

S := set of K models drawn from IB(G, PotentialParents)

G′ := the model from S with the best MDL score

if MDL(G′) < MDL(G) then

G := G′

else

minimum := true

end if

until minimum is true
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Table 8.1: Mean and standard deviation (in seconds) of 10 runs measuring the run time

for some network sizes of Factor structure. All data sets have 1000 instances.

No. variables KES KES + Lasso Lasso

20 3.08(±0.22) 1.75(±0.06) 0.25(±0.06)
50 84.68(±13.28) 27.57(±0.82) 1.77(±0.05)
100 1145.3(±28.11) 259.0(±9.90) 16.3(±0.84)

variables with all the parents, children and co-parents: the Markov blanket (Schmidt

et al., 2007). Hence, ideally, the lasso only discards false parents.

We use a DAG to represent the current equivalence class in our implementation.

Therefore, we need a method to approximate the IB from a DAG representation. We

do not calculate the complete IB neighborhood at each step; rather we approximate

its size from the total number of possible parents (taking the the lasso restriction into

account). Then we derive a k-proportional number of models of this estimated size

and keep the best one. Thus, we are not actually drawing a k-proportion from the set

of models that are better than the current one, but an approximate k-proportion from

the total (approximate because the size of the IB has been approximated), keeping the

best model from this set.

The worst-case computational cost of the algorithm is equivalent to KES. This would

be the unlikely situation where the best lasso preselection yields that all variables can

be parents of all variables. However, the lasso is proved to hold a parsimonious

property (Knight and Fu, 2000). Thus, the variable selector nature of the lasso usually

restricts the search space quite a lot and makes the mean computational cost of the

proposed approach definitely lower than KES algorithm alone. Some run times are

shown in Table 8.1 to illustrate this issue.

Moreover, this chapter introduces a simple but useful heuristic on the LARS algo-

rithm when used in the parents restriction phase. As noted before, we must search for

the MDL-optimal β̂̂β̂βs for each and every variable in the regularization paths. The MDL

score along the regularization path of each lasso with each variable as the response

(starting with all β̂s
i = 0 and ending with all β̂s

i 6= 0) often follows a convex curve with

only one minimum (see Figure 8.2).

These irregularities are the source of our heuristic, as more than one local minimum

is sometimes present (Figures 8.2b-8.2d). For this reason the whole curve should be

inspected to be sure of getting the global minimum. However, the global minimum

is usually reached at an early phase (an exception is shown in Figure 8.2c). Even

more importantly, when the MDL curve has grown for long enough, it normally never

decays significantly again. This leads us to stop LARS if the MDL curve has grown

for a number of steps, say equal to 20% of the full model variables, where we can be

reasonably sure of having obtained the global minimum. In this way we are saving

some computational cost.

In some cases, some local minima are reached later on (Figure 8.2c,8.2d, and es-

pecially in Figure 8.2d), but they are far from the global minimum and should be

ignored. To make our stopping method robust to these minor slumps and preserve

its efficiency, instead of checking punctual MDL values, we calculate the mean in a

certain window of MDL values. This way we only keep searching if the decay is rel-

evant, that is, we stop LARS when the MDL-mean of this window has been growing

for enough iterations. If the number of values to be included in this mean is too small
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Figure 8.2: At the top, MDL curve along the regularization path for two variables of

the Alarm network; at the bottom, two variables of isoprenoid biosyntesis

for Arabidopsis thaliana. The solid line represents MDL, the dotted line is

the negative log-likelihood, and the dashed line is the penalization term in

MDL (first term in equation (8.3)). Therefore, the solid line is the sum of

the other two lines.

(or is just one), we are being conservative and will probably advance along the regu-

larization path further than necessary. On the other hand, if we take many values, we

risk stopping early and missing the real global minimum. Empirically, we have found

that taking the last five values leads to good results, although this point should be

further researched.

In Table 8.2 we show the iteration number where the algorithm stops using different

window sizes for each variable against the rest in the Arabidopsis thaliana isoprenoid

biosynthesis data set. The optimal iteration, where the global minimum is reached,

is depicted in the second column; if the stopping iteration is lower than the optimal

one, we are trapped in a local minimum. Note that the window size does not have

a big impact on most variables. For example, for the first variable, the algorithm

always stops around iteration 18, that is, beyond the global minimum in iteration

10, regardless of the window size. More meaningful is the effect of the number of

iterations that the MDL-mean of the window needs to keep increasing to stop. In

Table 8.3 we show the ratio of this parameter against the number of variables. To

simplify, we call such ratio “stopping ratio”. Note that the difference between 0.05

and 0.3 is significant. Again, the iteration corresponding to the global minimum is

depicted in the second column. Note that in both experiments we always advanced

further than the optimal iteration and thus covered the global minimum. For all

variables, the lowest size of the regularization path is over 60, and the mean size is 82.

However, the global minimum is usually in the first third of the regularization path.

136



Table 8.2: LARS stopping iteration for different window sizes, for the Arabidopsis

thaliana data set. The second column represents the iteration when the

global minimum is reached.

Variable Optimal Window size

iteration 1 2 3 4 5 6 7

AACT1 10 18 18 18 18 17 18 19

AACT2 3 14 14 14 14 13 14 14

CMK 2 9 10 11 12 12 13 14

DPPS1 3 14 14 14 14 12 14 15

DPPS2 2 9 10 11 12 12 13 14

DPPS3 1 9 10 11 12 12 13 14

DXPS1 22 33 33 33 33 30 33 34

DXPS2 2 9 10 11 12 12 13 14

DXPS3 6 15 15 15 15 14 15 14

DXR 4 14 14 14 14 13 14 14

FPPS1 5 14 14 14 14 13 14 15

FPPS2 3 9 10 11 12 12 13 14

GGPPS1 3 17 17 17 17 16 17 15

GGPPS2 2 9 10 11 12 12 13 14

GGPPS3 1 9 10 11 12 12 13 14

GGPPS4 1 9 10 11 12 12 13 14

GGPPS5 1 9 10 11 12 12 13 14

GGPPS6 2 9 10 11 12 12 13 14

GGPPS8 2 9 10 11 12 12 13 14

GGPPS9 2 9 10 11 12 12 13 14

GGPPS10 2 9 10 11 12 12 13 14

GGPPS11 4 14 14 14 14 13 14 14

GGPPS12 3 14 14 14 14 13 14 14

GPPS 7 17 17 17 17 16 17 17

HDR 3 9 10 11 12 13 13 14

HDS 4 9 10 11 12 13 13 14

HMGR1 4 9 10 11 12 13 13 14

HMGR2 6 15 15 15 15 14 15 16

HMGS 4 14 14 14 14 13 14 15

IPPI1 6 9 10 11 12 21 22 21

IPPI2 4 9 10 11 12 21 22 21

MCT 3 9 10 11 12 21 22 21

MECPS 3 9 10 11 12 21 22 21

MK 3 9 10 11 12 21 22 21

MPDC1 3 9 10 11 12 21 22 21

MPDC2 4 9 10 11 12 21 22 21

PPDS1 2 9 10 11 12 21 22 21

PPDS2 2 9 10 11 12 21 22 21

UPPS1 3 14 14 14 14 13 14 15
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8.5 experiments

8.5.1 Synthetic networks

The Alarm network Beinlich et al. (1989) contains 37 nodes and 46 arcs. The Insurance

network Binder et al. (1997) has 27 variables and 52 arcs. Both are commonly used

Table 8.3: LARS stopping iteration for different stopping ratios (see text), for the Ara-

bidopsis thaliana data set. The second column represents the iteration when

the global minimum is reached.

Variable Optimal Stopping ratio

iteration 0.05 0.1 0.15 0.2 0.3

AACT1 10 14 16 18 20 24

AACT2 3 10 12 14 16 20

CMK 2 8 10 12 14 18

DPPS1 3 10 12 14 16 20

DPPS2 2 8 10 12 14 18

DPPS3 1 8 10 12 14 18

DXPS1 22 25 31 33 35 39

DXPS2 2 8 10 12 14 18

DXPS3 6 11 13 15 17 21

DXR 4 10 12 14 16 20

FPPS1 5 10 12 14 16 20

FPPS2 3 8 10 12 14 18

GGPPS1 3 10 15 17 19 23

GGPPS2 2 8 10 12 14 18

GGPPS3 1 8 10 12 14 18

GGPPS4 1 8 10 12 14 18

GGPPS5 1 8 10 12 14 18

GGPPS6 2 8 10 12 14 18

GGPPS8 2 8 10 12 14 18

GGPPS9 2 8 10 12 14 18

GGPPS10 2 8 10 12 14 18

GGPPS11 4 10 12 14 16 20

GGPPS12 3 10 12 14 16 20

GPPS 7 13 15 17 19 23

HDR 3 8 10 12 14 18

HDS 4 8 10 12 14 18

HMGR1 4 8 10 12 14 18

HMGR2 6 11 13 15 17 21

HMGS 4 10 12 14 16 20

IPPI1 6 8 10 12 24 28

IPPI2 4 8 10 12 24 28

MCT 3 8 10 12 24 28

MECPS 3 8 10 12 24 28

MK 3 8 10 12 24 28

MPDC1 3 8 10 12 24 28

MPDC2 4 8 10 12 24 28

PPDS1 2 8 10 12 24 28

PPDS2 2 8 10 12 24 28

UPPS1 3 10 12 14 16 20
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to test Bayesian network learning algorithms. Finally, we have generated a synthetic

network called Factor, with 100 variables and 382 arcs. This holds an arc from variable

Xi to Xj if i is a divisor of j. Since we need a GBN, we will use the dependences of each

network to simulate continuous Gaussian data sets of 100 samples for Alarm, 1000 for

Insurance and 50 for Factor (testing the p > N case). Parameter βi in equation (8.2) is

generated at random from a standard normal distribution. The rest of the parameters

of the density functions are fixed (mi = 0 and vi = 1). We run the KES algorithm for

10 different values of k : 0.1, 0.2, . . . , 0.9, 1.0, with and without a previous lasso step.

Here we illustrate the results using the OR-Lasso strategy, as the AND-Lasso strategy

turned out to be very restrictive in this case, producing networks with few arcs. For

each k, we performed 10 runs and calculated the mean and the standard deviation.

We show the results for the Alarm network in Figure 8.3. We also tried the approach

proposed in Schmidt et al. (2007), that works in the DAG space, although we do not

show the results in the figures for clarity. Instead, we present means and standard

deviations in Table 8.4.

Note that our approach (working in the equivalence class space) on the whole out-

performs the networks obtained working in the DAG space. This is specially notable

in the Alarm network. For the Factor network, the number of correct arcs is equivalent

in both spaces, whereas in the equivalence class space the number of false positives is

slightly lower. On the other hand, for the Insurance network, where n > p, the results

between the DAG space and the equivalence class space are quite similar. Note also

that the random generation of the network parameters may affect the final output, and

could be the cause of some differences between the learnt structures and the original

network.

Regarding the comparisons, within the equivalence class space, between networks

learnt with lasso preselection and networks learnt without it, the main conclusion we

can draw is that the lasso information makes the output network sparser and tends

to include fewer false arcs, and even, encouragingly, more correct arcs. Again, this

is more obvious for the Alarm network. For the Insurance network the number of

correct arcs is not very different, but the lasso preselection yields less false positives

(and therefore, fewer total arcs). The same happens for the Factor network, where the

number of false positives and the number of correct arcs are surprisingly alike for the

KES algorithm.

Without lasso, we also observe that intermediate values of k (moderate randomness)

result in slightly better networks. The Factor network, where k has not any influence at

all, is an exception. When using the lasso, the quality of the networks is roughly equiv-

alent in all cases of k. Moreover, the variance of the results is lower. Consequently, we

could say that, with the preselection phase, the algorithm becomes quite robust to k,

that is, there is not so much variation on parameter k, and this is no longer a cause

Table 8.4: Mean and standard deviation of some measures for networks obtained by

the approach proposed in Schmidt et al. (2007).

Network No. of arcs False positives Matches

Alarm 33.50(±1.58) 13.70(±1.70) 19.80(±0.42)
Insurance 63.80(±4.10) 22.60(±3.03) 41.20(±2.44)
Factor 168.10(±2.02) 70.50(±2.76) 97.60(±1.17)
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Figure 8.3: Behaviour of the KES algorithm for the Alarm network: Left, with lasso

preselection. Right, without lasso parents preselection. Total arcs, true arcs

and false arcs are shown.

for concern. Furthermore, as mentioned before, the computational cost is significantly

lower when the lasso is employed.

8.5.2 Pathways of the Arabidopsis thaliana plant

Probabilistic graphical models, and specifically GBNs, may be used to model genetic

networks. In the GBN case, each variable represents a continuous gene expression

level; see (Friedman, 2004) for a review. Narrowing the field down to static GBNs (that

do not model gene co-regulation against time), Wu et al. (2003) defined the GBN by

previously determining the conditional independence relationships, Imoto et al. (2004)

combined microarray data and known biological information to train the model.

Next we will test our method with a real-world data set taken from a biological en-

vironment: a list of 118 gene-expression patterns measured under different conditions

for 40 genes that are found to be relevant in isoprenoid biosynthesis for Arabidop-

sis thaliana (Wille et al., 2004). Arabidopsis thaliana is the first plant whose complete

genoma has been sequenced. Isoprenoids are the largest family of biological sub-

stances in nature and the oldest known biomolecules; over 30000 known compounds

help in a great variety of biochemical processes. Understanding the nature of their

synthesis is a task with many practical pharmaceutical and food applications. It is

known that such synthesis follows two different gene routes in high-order plants, like

Arabidopsis thaliana: the MVA (mevalonate) pathway and the MEP (methylerythritol

4-phosphate) pathway. Of the 40 measured genes, 16 come from the MVA pathway,

19 from the MEP pathway and the remaining 5 are encoding proteins located in the

mitochondrion. Figure 8.4a shows the true pathways: the MEP pathway is the set of

proteins on the left and the MVA pathway is the set on the right; genes related to

mithocondrial proteins are UPPS1, DPPS2, GGPPS1, GGPPS5 and GGPPS9.

Our aim here is to check if our method is capable of neatly separating the two

pathways. We train 10 networks for each k value (k ∈ {0.1, 0.2, . . . , 0.9, 1.0}), and we

140



Figure 8.4: a. Real isoprenoid biosynthesis network; b. network shown in Wille et al.

(2004); c. network shown in Li and Gui (2006).

Figure 8.5: a. Network trained without lasso preselection ( f r = 0.8, k = 0.2); b. net-

work trained with AND-Lasso preselection ( f r = 0.7, k = 0.7); c. network

trained with OR-Lasso preselection ( f r = 0.8, k = 0.8).

only keep those arcs that have been repeated with a frequency of at least f r. In order

to experiment with different degrees of sparseness, we examine some values for f r:

0.6, 0.7, 0.8, 0.9 and 1.0. The networks obtained by Wille et al. (2004) and Li and Gui

(2006) are shown in Figure 8.4b and Figure 8.4c, respectively.

It is also interesting to investigate the cross relationship between both pathways.

One might expect a limited connectivity between the two pathways (Li and Gui, 2006),

since they are both developed in different parts of the cell (see Figure 8.4a). However,

Wille et al. (2004) cited some reports about these interactions, showing that cross-link

connections do exist under certain circumstances.

Both the method suggested by Wille et al. (2004) and the threshold gradient method

(TGD) proposed by Li and Gui (2006) identify a separation of both pathways. Note

that undirected networks are used in both papers, whereas we train directed networks.

The simpler method shown by Wille et al. (2004) trained a dense network. Although

this network in essence owns many true arcs and distinguishes the two pathways, it

connects many genes that are independent in the true network, with relatively dense

cross-link connections. On the other hand, TGD, using bootstrap and keeping only

the arcs that appear in at least a 50% of the obtained networks, reached a sparse

network and no cross-link between pathways was drawn. However there are some

141



connections between the MEP pathway and mithocondrial proteins (located at the

center of the network) that do not exist in the true pathways diagram. Furthermore,

this network misses many true edges. For example, DXPS1, DXPS2 and DXPS3 appear

to be completely independent, as do all GPPSS genes.

We have built different networks depending on the parent preselection strategy

used (no preselection, AND-Lasso, and OR-Lasso) and on the f r and k values. Except

for the networks trained without lasso preselection, parameter k has little influence.

If we do not employ the lasso (Figure 8.5a), the KES algorithm outputs very dense

networks where we can barely distinguish the two pathways. Only when f r is set to a

high value sparser networks are reached, but it is not yet possible to appreciate the two

pathways. For example, there are no arcs connecting genes inside the MVA pathway in

Figure 8.5a. Note that this network has an equivalent number or even fewer arcs than

the others; this is because of the higher variability of the networks trained without

constraints: there are many arcs but they differ from one run to another.

AND-Lasso networks (Figure 8.5b) turn out to be the most interesting because they

identify two interconnected modules in the network with relatively few arcs. The

MVA pathway is specially well connected as compared with the real one in Figure

8.4a, and the DXPS, DXR, MCT, CMK, MECPS and HDS set is also connected in the

MEP pathway except for the missing CMK - MECPS arc. Moreover, most AND-Lasso

networks discover a relation between IPPI1 and some MVA pathway genes, which, as

noted by Wille et al. (2004), could have an interesting biological interpretation.

When using an OR-Lasso (Figure 8.5c), there are many arcs that appear in at least

80% of the trained networks. Although we find some cross-link connections, we also

find a higher arc density in each pathway. For instance, in the MEP pathway, DXPS,

DXR, MCT, CMK, MECPS, HDS and HDR are closely connected. Again, we find an

interaction of IPPI1 with elements of the MVA pathway.

Table 8.5 shows a quantitative comparison among the networks in Figures 8.4b, 8.4c,

8.5a, 8.5b and 8.5c. We score each pathway using a simplified version of the Structural

Hamming Distance (SHD) Tsamardinos et al. (2006). This measure is defined by the

number of operators (add or delete an undirected edge, and add, remove or reverse a

directed arc) that are different in the PDAG to be scored and in the real PDAG. Since

we want to evaluate also the undirected networks shown in Figures 8.4b and 8.4c, we

will ignore the arc orientation and will not count reversal operators.

We also measure the rate between the number of arcs within the pathways and

the number of arcs crossing between pathways and linking with mithocondrial genes.

This value might be considered as a measure of the ability to separate the pathways,

and will be denoted as separability.

Roughly speaking, networks of Figures 8.4c and 8.5b (corresponding to TGD and

AND-Lasso methods) appear to be the best. Whereas TGD presents the best separabil-

ity, AND-Lasso gives good SHD results and could produce the most refined pathways

at some extent.

In summary, we have built networks that can compete with state-of-the-art methods,

showing a very good computational performance. This has been shown with some

synthetic data sets and a real biological network.

8.6 discussion

We have presented a procedure for learning the structure of Gaussian Bayesian net-

works based on a well-known regularization method for parent filtering and on the
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Table 8.5: SHD and separability measures for the networks shown in Figures 8.4b, 8.4c

and 8.5a, 8.5b, 8.5c. SHD assesses independently each pathway.

Network SHD in pathway Total SHD Separability
MEP MVA

Wille et al. (2004) 16 22 38 1.52
TGD Li and Gui (2006) 14 21 35 5.66
KES 15 16 31 0.50
AND-Lasso 11 20 31 3.75
OR-Lasso 15 17 32 1.60

KES algorithm, a greedy algorithm working on the equivalence class space. As dis-

cussed above, there are theoretical properties that support both methods. To the best

of our knowledge, this is the first time that regularization has been employed in equiv-

alence classes searching.

One advantage of our method is its computational efficiency. It is known that LARS

solves the lasso with a reduced computational burden. Also, with parent restriction,

the KES algorithm is significantly faster than ordinary KES, while offering better re-

sults. This means that several executions or bootstraping, trying to extract common

patterns, can be run in situations where this would normally be infeasible. With

the aim of improving efficiency, we have developed a simple but useful MDL-based

method for stopping LARS in advance when it is used for parent preselection.

Note, however, that, since the optimality proof of KES is based on the IB neighbor-

hood, our method is still heuristic. Although that it is unclear whether the asymptotic

optimality is maintained in the considered restricted search, it is empirically proved

to work well in practice. More recently, Gámez et al. (2011) explored optimality for

restricted search algorithms. The authors propose a constrained search followed by

an unconstrained search, achieving optimality under certain assumptions.

We have applied our approach with good results to three synthetic databases and

a real biological data set, the isoprenoid biosynthesis pathways of Arabidopsis thaliana.

Our results are successfully backed by previous domain knowledge, even though the

available data offer just gene co-expression levels, not always directly related to reg-

ulatory patterns, that is, it does not always exactly reflect regulatory dependences.

Previous work on building graphical models for this data set used undirected Gaus-

sian networks. We think that our link orientation could supply useful information on

the underlying biological processes in some situations. In fact, the original biological

network that we are trying to model is also directed.
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9
CONCLUS IONS

So far, we have introduced a number of contributions that range from innovations on

machine learning methodology to applications to specific problems in neuroscience,

showing that this methodology and its interesting properties can be of paramount im-

portance in a wide variety of problems. In particular, regularization usually enriches

the models with variable selection and a reasonable bias-variance trade-off.

From our contributions from kernel design in nonparametric regression, we can

conclude the importance of considering sparsity and the noxious consequences of

including irrelevant covariates in the weighting scheme calculation. These ideas can

be applied also in the classification context when a kernel function is involved. For

example, we could consider how the efficiency of a support vector machine can be

improved by considering a nearly optimal (and sparse) bandwidth.

From the study of regularization for learning naı̈ve Bayes classifiers, we can also

extract some important ideas. Most importantly, regularization can help to overcome

the problems derived from the presence of irrelevant and redundant predictors. We

have discussed from a theoretical perspective that irrelevance and redundancy are

neither absolute nor exclusive concepts. A predictor can be somewhat relevant for the

prediction and partially redundant with another predictor. An automatic induction of

the contributions of each predictors turns out to be valuable. In the future, some of

these ideas can be applied to obtain Bayesian classifiers with a more complex structure

than naı̈ve Bayes.

Computational neuroscience is an emerging science that requires advances from

statistical analysis and machine learning. Large efforts are being made for better un-

derstanding the brain, both from an operational and structural level. Future work will

step up in this direction. In particular, we are interested in the application of some of

the discussed ideas about regression, supervised classification and induction of graph-

ical models’ structures as a support for making hypotheses about the organization of

the cortical column in the neocortex.
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Meinshausen, N. and Bühlmann, P. (2006). High dimensional graphs and variable selection
with the lasso. The Annals of Statistics, 34:1436–1462.

Meinshausen, N. and Yu, B. (2009). Lasso-type recovery of sparse representations for high-
dimensional data. The Annals of Statistics, 37:246–270.

Meng, D., Zhao, Q., and Xu, Z. (2011). Improve robustness of sparse pca by l1-norm maxi-
mization. Pattern Recognition, 45:487–497.

Michalski, R. S. (1980). Learning by being told and learning from examples: An experimental
comparison of the two methods of knowledge acquisition in the context of developing an
expert system for soybean disease diagnosis. Policy Analysis and Information Systems, 4:125–
161.

156



Minsky, M. (1961). Steps toward artificial intelligence. In Computers and Thought, pages 406–450.
McGraw-Hill.
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Similä, T. and Tikka, J. (2006). Common subset selection of inputs in multiresponse regression.
In International Joint Conference on Neural Networks, pages 1908–1915.
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