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Abstract. Bayesian network classifiers are widely used in machine
learning because they intuitively represent causal relations. Multi-label
classification problems require each instance to be assigned a subset of
a defined set of h labels. This problem is equivalent to finding a multi-
valued decision function that predicts a vector of h binary classes. In this
paper we obtain the decision boundaries of two widely used Bayesian net-
work approaches for building multi-label classifiers: Multi-label Bayesian
network classifiers built using the binary relevance method and Bayesian
network chain classifiers. We extend our previous single-label results to
multi-label chain classifiers, and we prove that, as expected, chain classi-
fiers provide a more expressive model than the binary relevance method.

Keywords: Bayesian network classifier, multi-label classification,
expressive power, chain classifier, binary relevance.

1 Introduction

We consider a multi-label classification problem [19] over categorical predictors,
that is, mapping every instance x = (x1, . . . , xn) to a subset of h labels:

Ω1 × · · · ×Ωn → Y ⊂ Y = {y1, . . . , yh},
where Ωi ⊂ R, |Ωi| = mi < ∞. This could be transformed into a multi-
dimensional binary classification problem, that is, finding an h-valued decision
function f that maps every instance of n predictor variables x to a vector of h
binary values c = (c1, . . . , ch) ∈ {−1,+1}h:

f : Ω = Ω1 × · · · ×Ωn → {−1,+1}h

(x1, . . . , xn) �→ (c1, . . . , ch),

where ci = +1 (−1) means that the ith label is present (absent) in the predicted
label subset. Moreover, we consider the predictor variables X1, . . . , Xn and the
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binary classes Ci ∈ {−1,+1} as categorical random variables. Real examples in-
clude classification of texts into different categories by counting selected words,
diagnosis of multiple diseases from common symptoms and identification of mul-
tiple biological gene functions.

The simplest method to build a multi-label classifier is to consider h single-
label binary classifiers, one for each class variable Ci. Each classifier fi is learned
from predictor variables and Ci data, and the results are combined to form
multi-label prediction. This method, called binary relevance [6], is easily imple-
mentable, has low computational complexity and is fully parallelizable. Hence it
is scalable to a large number of classes. However, it completely ignores depen-
dencies among labels and generally it does not represent the most likely set of
labels.

Chain classifiers [14] relax the independence assumption by iteratively adding
class dependencies in the binary relevance scheme, that is, the kth classifier in
the chain predicts class Ck from X1, . . . , Xn, C1, . . . , Ck−1.

We study differences in the expressive power of these two methods when
Bayesian network (BN) classifiers [1] are used. Sucar et al. [15] employed naive
Bayes within chain classifiers. We use the results on the decision boundaries
and expressive power of one-dimensional BN classifiers. (a) For naive Bayes
classifiers, Minsky [9] proved that the decision boundaries are hyperplanes if
binary predictors are used. (b) Peot [11] observed that Minsky’s results could
be extended to categorical predictors. (c) Recently, we have developed a method
[18] to compute decision boundaries for a broad class of BN classifiers. In this
paper we extend these results to multi-label classifiers. Moreover, we suggest
some theoretical reasons why the binary relevance method performs poorly and
prove that chain classifiers provide more expressive models.

The paper is organized as follows. In Sect. 2 we give some definitions and re-
port our results on one-label classifiers. We describe the binary relevance method
in Sect. 3 and chain classifiers in Sect. 4. In Sect. 5 we compare the decision
boundaries, and expressive power of the two methods. In Sect. 6 we present our
conclusions and some ideas for future research.

2 Expressive Power of One-Dimensional BN Classifiers

We first report some results on the decision boundary and expressive power of
one-label, or equivalently one-dimensional binary, BN classifiers [18]. In partic-
ular we look at Bayesian network-augmented naive Bayes (BAN) classifiers [5].

BAN classifiers are Bayesian network classifiers where the class variable C is
assumed to be a parent of every predictor and the predictor sub-graph can be a
general BN. The decision function induced by the BAN classifier is

fBAN
G (x1, . . . , xn) = arg max

c∈{−1,+1}
P (C = c,X1 = x1, . . . , Xn = xn),
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where P (C = c,X1 = x1, . . . , Xn = xn) could be factorized according to BN
theory [10] as

P (C = c)
n∏

i=1

P
(
Xi = xi|C = c,Xpa(i) = xpa(i)

)
,

where Xpa(i) stands for the vector of parents of Xi in the predictor sub-graph
G. Moreover, pa(i) denotes the set of indexes defining the parents of Xi that are
not C and Mi = ×s∈pa(i){1, . . . ,ms}, the set of possible configurations of the
parents of Xi.

Let us recall that the sign function sgn(t) is defined as

sgn(t) =

⎧
⎪⎨

⎪⎩

+1 if t > 0

0 if t = 0

−1 if t < 0.

We define [18]:

Definition 1. Given a decision function f : Ω → {−1,+1}, where Ω ⊂ R
n,

|Ω| < ∞ and r : Rn �→ R is a polynomial, we say that r sign-represents f if

f(x) = sgn(r(x)) for every x ∈ Ω.

Moreover, given a set of polynomials P, we denote by sgn(P) the set of decision
functions that are sign-representable by polynomials in P and by {−1,+1}|Ω|,
the set of all 2|Ω| decision functions over Ω.

Example 1. We consider Ω = {0, 2} × {−3, 1} and the decision function over Ω

f(x1, x2) =

{
+1 if (x1, x2) = (0,−3), (2,−3), (0, 1)

−1 if (x1, x2) = (2, 1).

We have that the polynomial r(x1, x2) = −x2
1 − x2 +3 sign-represents f over Ω,

precisely:

r(0,−3) = 6 > 0, r(2,−3) = 2 > 0, r(0, 1) = 2 > 0 and r(2, 1) = −2 < 0.

Next let us recall the definition of the Vapnik-Chervonenkis (VC) dimension
[17].

Definition 2. Given a subset of decision functions F ⊂ {−1,+1}|Ω|, we say
that F shatters Ω0 ⊂ Ω if for every g ∈ {−1,+1}|Ω0| there exists a decision
function f ∈ F such that f|Ω0

= g, where f|Ω0
indicates the restriction of f over

Ω0.

That is, F shatters Ω0 if every decision over Ω0 is representable by some ele-
ments of F . The cardinality of the largest subset shattered by F is called the
VC dimension of F . It indicates the maximum number of points that can be
discriminated by F .
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Definition 3. The VC dimension of F ⊂ {−1,+1}|Ω|, denoted by dV C(F), is
defined by

dV C(F) = max{|Ω0| s.t. Ω0 is shattered by F}.
For every predictor variable Xi ∈ Ωi = {ξ1i , . . . , ξmi

i }, we define the Lagrange
basis polynomials over Ωi

�Ωi

j (x) =
∏

k �=j

(x− ξki )

(ξji − ξki )
for every j = 1, . . . ,mi and x ∈ R. (1)

Then we have [18]:

Lemma 1. If f is the decision function induced by a BAN classifier for a clas-
sification problem with n categorical predictor variables {Xi ∈ Ωi ⊂ R, |Ωi| =
mi}ni=1, then there exists a polynomial of the form

n∑

i=1

mi∑

j=1

�Ωi

j (xi)
∑

k∈Mi

βi(j|k)
∏

s∈pa(i)

�Ωs

ks
(xs)

that sign-represents f , where we write
∑

k∈Mi
βi(j|k)

∏
s∈pa(i) �

Ωs

ks
(xs) = βi(j)

when a variable does not have parents different from C, that is, pa(i) = ∅.

The proof of Lemma 1 [18] is constructive and the coefficients βi(j|k) of the
built polynomial are related to the conditional probability tables of the BAN.
Precisely we have that

βi(j|k) = ln
P (Xi = ξji |Xs(i) = ξks

s , ∀s ∈ pa(i), C = +1)

P (Xi = ξji |Xs(i) = ξks
s , ∀s ∈ pa(i), C = −1)

, (2)

where k =
(
ks
)
s∈pa(i)

, ks ∈ {1, . . . ,ms}.
When the predictor sub-graph G does not contain V-structures, the inverse

implication of Lemma 1 is provable and thus the following theorem [18] holds.

Theorem 1. Let G be a directed acyclic graph with nodes Xi for i ∈ {1, 2, . . . , n}
and f , a decision function over predictor variables Xi ∈ Ωi = {ξ1i , . . . , ξmi

i }. Sup-
pose that G does not contain V -structures, then we have that f is sign-represented
by a polynomial of the form

r(x) =
n∑

i=1

mi∑

j=1

�Ωi

j (xi)
∑

k∈Mi

βi(j|k)
∏

s∈pa(i)

�Ωs

ks
(xs),

if and only if f is induced by a BAN classifier whose predictor sub-graph is G.

The above result applies in a lot of practical cases as naive Bayes (NB)
classifier [9], tree augmented naive Bayes (TAN) classifier [5] and super-parent
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one-dependence-estimator (SPODE) classifier [8], because the corresponding pre-
dictor sub-graphs do not contain V-structures. Moreover, Theorem 1 implies that
when G does not contain V-structures the family of polynomials

PG =

⎧
⎨

⎩r(x) =

n∑

i=1

mi∑

j=1

�Ωi

j (xi)
∑

k∈Mi

βi(j|k)
∏

s∈pa(i)

�Ωs

ks
(xs) s.t. βi(j|k) ∈ R

⎫
⎬

⎭
(3)

completely represents the set of decision functions induced by BAN classifiers,
that is, sgn(PG) is exactly the set of decision functions induced by BAN classifiers
whose predictor sub-graph is G.
Remark 1. In the simplest NB classifier case, that is, when the predictor sub-
graph G is an empty graph, we have that

PG ≡ PNB =

⎧
⎨

⎩r(x) =

n∑

i=1

mi∑

j=1

αi(j)�
Ωi

j (xi) s.t. αi(j) ∈ R

⎫
⎬

⎭

is exactly the set of polynomials that sign-represent the decision function induced
by NB classifiers.

We can prove that the set PG is a vector space of dimension

d =

n∑

i=1

⎛

⎝(mi − 1)
∏

s∈pa(i)

ms

⎞

⎠+ 1

and that the VC dimension of sgn(PG) is precisely d. Theorem 1 also places
an upper bound on the number of decision functions representable by BAN
classifiers without V-structures [18].

Corollary 1. Consider a BAN classifier over predictor variables Xi ∈ Ωi,
|Ωi| = mi for every i = 1, . . . , n. Moreover suppose that the predictor sub-graph
G does not contain V -structures. Then we have

|sgn(PBAN
G )| ≤ C(M,d) = 2

d−1∑

k=0

(
M − 1

k

)
,

where d =
∑n

i=1

(
(mi − 1)

∏
s∈pa(i) ms

)
+ 1 and M =

∏n
i=1 mi.

Remark 2. If Ω = Ω1 × · · · × Ωn, we observe that |{−1,+1}|Ω|| = 2|Ω| = 2M .
Thus Corollary 1 implies that in the case of the NB classifier the quotient of
decision functions representable by NB classifiers over 2M becomes vanishingly
small as the number of predictors increase. Figure 1 shows the number of total
decision functions (2|Ω|) and the bounding of Corollary 1 for NB classifiers with n
binary predictors, C(M,d). Observing that the scale of the graph is logarithmic,
the graph shows that the number of decision functions induced by NB classifiers
is small compared with all possible decision functions over Ω.
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NB Upper Bound vs. Total Number of Decision Functions

n

Fig. 1. Total number of decision functions over n binary predictors (gray) and the
bounding C(M,d) of Corollary 1 (dashed black) for NB classifiers

Remark 2 could be extended to every type of BAN classifier, such that for every
variable the number of parents is bounded (Corollary 17 in Varando et al. [18]),
that is, |pa(i)| < K.

Remark 3. When the predictor sub-graph G of a BAN classifiers contains V-
structures, Lemma 1 is still valid and exists a polynomial that sign-represents
the induced decision function. The problem is that the associated family of
polynomials is not a linear space as in (3), thus is not possible to employ the
same techniques as in Varando et al. [18] to prove the bounding in Corollary 1.

3 Binary Relevance Method

We consider the binary relevance method with BAN classifiers, that is, for every
class Ci we build a BAN classifier with predictor sub-graph G. Thus every one-
dimensional classifier has the same predictor structure and differs with respect to
the values of the conditional probability tables that define the BAN models. From
a practical point of view, the advantages of this method are that the structure
of the predictor sub-graph has only to be learned once and the parameters of
the BN are then fitted to the different data sets related to each class.

From Lemma 1 it follows that if f = (f1(x), f2(x), . . . , fh(x)) is the multi-
valued decision function induced by the h BAN classifiers, then there exist

p1(x), . . . , ph(x) ∈ PG ,

such that fi(x) = sgn(pi(x)) for every i ∈ {1, . . . , h}. Thus, in Lemma 2, we
bound the number of multi-valued decision functions representable by the BAN
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binary relevance method, when the predictor sub-graph does not contain V-
structures.

Lemma 2. Consider h BAN classifiers, whose predictor sub-graph G contains
no V-structures, to predict h binary classes. We have that N(G, h), the number of
h-valued decision functions representable by the BAN binary relevance method,
satisfies

N(G, h) ≤ C(M,d)h,

where C(M,d) = 2
∑d−1

k=0

(
M−1

k

)
, d =

∑n
i=1

(
(mi − 1)

∏
s∈pa(i) ms

)
+ 1 and

M =
∏n

i=1 mi.

Proof. The proof is a straightforward application of Corollary 1. �

Remark 4. The total number of h-valued decision functions over n categorical
predictors is 2h

∏
mi = 2hM . Then the fraction of h-valued decision functions

representable by the BAN binary relevance method is bounded by

N(G, h)
2hM

≤
(
C(M,d)

2M

)h

.

Thus, as in Remark 2, we have that if we fix the structure of the predictor sub-
graph, and it does not contain V-structures, the number of representable multi-
valued decision functions becomes vanishingly small as the number of predictors
increase. Moreover, using the binary relevance method, the speed at which the
ratio between representable multi-valued decision functions and the total number
of multi-valued decision functions drops to zero, is exponential in h, the number
of classes.

The above bound could also be computed when each of the h BAN classifiers
is built with different structures, that is, the kth classifier to predict class Ck is
a BAN classifier whose predictor sub-graph Gk does not contain V-structures.
Then if we denote N(G1, . . . ,Gh) the number of h-valued decision functions built
with h BAN classifiers whose predictor sub-graph is G1, . . . ,Gh respectively, we
have that

N(G1, . . . ,Gh) ≤
h∏

k=1

C(M,dk),

where dk =
∑n

i=1

(
(mi − 1)

∏
s∈pak(i)

ms

)
+ 1 , pak(i) is the set of Xi parents

in Gk and M =
∏n

i=1 mi.

Example 2. We consider two binary classes C1, C2 and two predictor variables
X1 ∈ {0, 1} and X2 ∈ {2, 3, 4}. Using the binary relevance method we build two
independent NB classifiers, see Fig. 2.

Next, we list the conditional probability tables for both classifiers (Tables 1a
and 1b).
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C1

X1 X2

C2

X1 X2

Fig. 2. Two NB classifiers in Example 2

Table 1. Conditional probability tables in Example 2 for the two NB classifiers

(a) NB for C1

X1 C1 = +1 C1 = −1
0 0.5 0.25
1 0.5 0.75

X2 C1 = +1 C1 = −1

2 0.3 0.1

3 0.5 0.7

4 0.2 0.2

(b) NB for C2

X1 C2 = +1 C2 = −1
0 0.7 0.4
1 0.3 0.6

X2 C2 = +1 C2 = −1

2 0.1 0.6

3 0.1 0.2

4 0.8 0.2

From the representation of Theorem 1 we have that there exist two polyno-
mials p1, p2 that sign-represent the decision functions induced by the two NB
classifiers

p1(x1, x2) = ln

(
0.5

0.25

)
x1 − 1

−1
+ ln

(
0.5

0.75

)
x1

1

+ ln

(
0.3

0.1

)
(x2 − 3)(x2 − 4)

2
+ ln

(
0.5

0.7

)
(x2 − 2)(x2 − 4)

−1

+ ln

(
0.2

0.2

)
(x2 − 2)(x2 − 3)

2

and

p2(x1, x2) = ln

(
0.7

0.4

)
x1 − 1

−1
+ ln

(
0.3

0.6

)
x1

1

+ ln

(
0.1

0.6

)
(x2 − 3)(x2 − 4)

2
+ ln

(
0.1

0.2

)
(x2 − 2)(x2 − 4)

−1

+ ln

(
0.8

0.2

)
(x2 − 2)(x2 − 3)

2
.
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We have that

f(x) =

(
sgn

(
p1(x)

)
, sgn

(
p2(x)

))

is the bi-valued decision function that predicts C1, C2 from X1, X2. Figure 3
shows the decision boundaries of the two classifiers (black for C1 and gray for
C2). We observe that the predictor space Ω = {0, 1} × {2, 3, 4} is partitioned
into four subsets corresponding to the four different predictions of the two binary
classes. Moreover, the value of the respective predicted class changes when one
of the decision boundaries is crossed.

(0,2)

(0,3)

(0,4)

(1,2)

(1,3)

(1,4)

(+1,−1)

(+1,−1)

(+1,+1)

(+1,−1)

(−1,−1)

(−1,+1)

Fig. 3. Decision boundaries for the two NB classifiers in Example 2. The value of the
predicted classes and the coordinates of the points are reported.

4 BN Chain Classifiers

The easiest way to relax the strong independence assumption of the binary
relevance method is to gradually add the predicted classes to the predictors.
Specifically, suppose that we have to predict h binary classes C1, . . . , Ch from n
predictor variables X1, . . . , Xn. We consider h BAN classifiers such that the kth
BAN classifier predicts Ck from the variables

X1, . . . , Xn, C1, . . . , Ck−1.

From Lemma 1 we have that there exist h polynomials p1, . . . , ph such that

pk(x, c1, . . . , ck−1) : R
n+k−1 → R



528 G. Varando, C. Bielza, and P. Larrañaga

pk ∈ PGk
,

where Gk is the predictor sub-graph related to the kth BAN classifier over
X1, . . . , Xn, C1, . . . , Ck−1.

If we consider only naive Bayes classifiers, we state

Pk =

⎧
⎪⎨

⎪⎩

r(x) =
n∑

i=1

mi∑

j=1

αi(j)�
Ωi
j (xi) +

k−1∑

i=1

βi(+1)�
{−1,+1}
+1 (ci) + βi(−1)�

{−1,+1}
−1 (ci)

s.t. αi(j), βi(+1), βi(−1) ∈ R

⎫
⎪⎬

⎪⎭
,

(4)

for the set of polynomials sign-representing the decision function of the kth
classifier in the chain, that is, the NB classifier that predicts Ck from X1, . . . , Xn

and C1, . . . , Ck−1. Moreover, observe that

�
{−1,+1}
+1 (ci) =

ci + 1

2
=

{
1 if ci = +1

0 if ci = −1

�
{−1,+1}
−1 (ci) =

1− ci
2

=

{
0 if ci = +1

1 if ci = −1

For the first class C1, we have that the first classifier is a NB over X1, . . . , Xn

and so the decision function for C1 is

f1(x) = sgn
(
p1(x)

)
, (5)

where p1(x) =
∑n

i=1

∑mi

j=1 αi(j)�
Ωi

j (xi) ∈ P1. For the second class C2, we have
a NB classifier over X1, . . . , Xn, C1. Thus f2(x), the decision function for C2, is

f2(x) = sgn

(
p2
(
x, c1

))
, (6)

where p2 ∈ P2 and c1 = f1(x). Substituting (5) in (6), we obtain

f2(x) = sgn

(
p2
(
x, sgn(p1(x))

))
.

This chain classifier over two classes is equivalent to the bi-valued decision func-
tion

f =
(
f1(x), f2(x)

)
.

Iterating the above computations, we have that the kth decision function that
predicts class Ck is given by

fk(x) = sgn

(
pk
(
x, f1(x), . . . , fk−1(x)

))
,
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where pk ∈ Pk. More explicitly, we have that

fk(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sgn

(

qk(x) + γ(+1,+1, . . . ,+1)

)

if f1(x) = +1, . . . , fk−1(x) = +1

...
...

sgn

(

qk(x) + γ(σ1, σ2 . . . , σk−1)

)

if f1(x) = σ1, . . . , fl−1(x) = σk−1

...
...

sgn

(

qk(x) + γ(−1,−1, . . . ,−1)

)

if f1(x) = −1, . . . , fk−1(x) = −1

(7)

where qk(x) ∈ P1 and γ(σ1, . . . , σk−1) ∈ R for every (σ1, . . . , σk−1) ∈
{−1,+1}k−1. In other words, the kth decision function, in every subset of Ω
defined by the previous k − 1 decision functions, is sign-represented by a poly-
nomial in P1 or equivalently by a NB classifier over the original predictors. The
only difference between these polynomials is the additive coefficients. Precisely
the additive coefficients γ(σ1, . . . , σk−1) are obtained from the representation in
(4) as follows:

γ(σ1, . . . , σk−1) =

k−1∑

i=1

βi(σi),

where

βi(σi) = ln
P (Ci = σi|Ck = +1)

P (Ci = σi|Ck = −1)
.

Figure 4 shows two examples of decision boundaries of a NB chain classifier for
two classes. The predictor domain in both examples is {0, 1, 2, 3} × {0, 1, 2, 3}.
We observe that the decision boundaries related to the second class in the chain
C2 (dashed black line) are dependent on the decision boundaries of the first class
C1 (gray line).

Remark 5. For simplicity’s sake, we have presented the computation of the de-
cision boundaries in the NB case. The same arguments as used above could be
applied to a broader class of chain classifiers, specifically to every model where a
BAN classifier with predictor sub-graph Gk is built in the kth step of the chain.
If the previously predicted classes C1, . . . , Ck−1 are added in a naive way, that
is, they have only one parent, Ck and they have no children, we have that the
form of the kth decision function is similar to (7), where the previously predicted
classes contribute in the form of additive constants.

Example 3. We use a chain NB classifier over the prediction problems of Example
2. The NB classifier for predicting class C1 is the same as in Example 2 (see Fig.
2 left and Table 1a). The predictors of the NB classifier for predicting C2 now
include C1. We consider the same conditional probability tables as in Example
2 (Tables 1a and 1b). Moreover we have to specify the conditional probabilities
of C1 given C2 in the NB that predicts C2. We set

P (C1 = +1|C2 = +1) = 0.3 and P (C1 = −1|C2 = +1) = 0.7
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(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

Fig. 4. Decision boundaries for NB chain classifiers with two predictor variables

P (C1 = +1|C2 = −1) = 0.9 and P (C1 = −1|C2 = −1) = 0.1

And, thus, coefficients β1(+1) and β1(−1) as defined in (4) are given by

β1(+1) = ln

(
0.3

0.9

)
and β1(−1) = ln

(
0.7

0.1

)
.

We have that the decision function to predict C2 is given by

f2(x1, x2) =

⎧
⎪⎪⎨

⎪⎪⎩

sgn

(
p2(x1, x2) + β1(+1)

)
if p1(x1, x2) > 0

sgn

(
p2(x1, x2) + β1(−1)

)
if p1(x1, x2) < 0

where p1 and p2 are the polynomials defined in Example 2. The decision bound-
aries of the two classes are shown in Fig. 5. We observe that the two boundaries
are no longer independent; the decision boundary for the second class C2 (dashed
black line) depends on the predicted value of the first class C1.

5 Binary Relevance vs. Chain Classifier

We denote the set of multi-valued decision functions representable by a NB chain
classifier over X1, . . . , Xn and by a multiple independent NB classifiers built as
in the binary relevance method by F and D, respectively. We can prove the
following lemma.

Lemma 3.
|F| > |D|.

In other words, NB chain classifiers are more expressive than the NB binary
relevance method.
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(0,2)

(0,3)

(0,4)

(1,2)

(1,3)

(1,4)

(+1,−1)

(+1,−1)

(+1,+1)

(+1,−1)

(−1,+1)

(−1,+1)

Fig. 5. Decision boundaries for the chain NB classifier in Example 3. The value of the
predicted classes and the coordinates of the points are reported

Proof. We need only consider two class variables, since the result in the general
case is proved analogously. If we define Pk for k = 1, 2 as in (4), we have that

D = sgn(P1)× sgn(P1) ⊂ sgn(P1)× sgn(P2) = F .

So, obviously, |F| ≥ |D|. Thus to prove the lemma we just have to disprove
the equality. Moreover, the VC dimension of sgn(P1) (the cardinality of the
maximum shattered subset) is equal to

d =

n∑

i=1

mi − n+ 1 < |Ω| =
n∏

i=1

mi.

Then, by the definition of VC dimension, there exists Ω0 ⊂ Ω such that |Ω0| = d
which is shattered by sgn(P1). We now choose ω ∈ Ω \Ω0 and find that there
exists p0(x) ∈ P1 such that

p0(ω) < 0

and
p0(x) > 0 for every x �= ω.

Consider the bi-valued decision function f ∈ F with the form

f =

(
sgn

(
p0(x)

)
, sgn

(
p2(x, sgn(p0(x)))

))
.

We observe from (4) that we have

p2
(
x, sgn(p0(x)

)
=

{
q(x) + β1(+1) if p0(x) > 0

q(x) + β1(−1) if p0(x) < 0,
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where q(x) ∈ sgn(P1). We now prove that the set of decision functions
{
f2 = sgn

(
p2
(
x, sgn(p0(x)

))
s.t. p2 ∈ P2

}

can shatter a subset of cardinality d+1 and thus cannot be represented by a NB
classifier over predictors X1, . . . , Xn alone. We have that q(x) + β1(+1) ∈ P1.
Thus, by varying q ∈ P1, it can sign-represent every decision function over Ω0

because of the choice of Ω0. But the value of f2(x) over ω can be set indepen-
dently by choosing β1(−1) ∈ R. So we have that choosing the polynomial q ∈ P1

and the real numbers β1(+1) and β1(−1), the defined decision functions f2(x)
can shatter Ω0 ∪ {ω}, a subset of cardinality d+ 1. �
Remark 6. As the number of classes grows, we see from (7) that the number of
extra parameters, that is, the coefficients γ(. . .) that are added in a chain classi-
fier model increase. Thus the chain NB classifier is considerably more expressive
than a set of NB classifiers built with the binary relevance method.

From Remark 5, it follows that Lemma 3 could be extended to compare the ex-
pressive power of BAN chain classifiers versus the BAN binary relevance method,
proving that BAN chain classifiers are in general more expressive than classifiers
built using binary relevance.

Moreover we observe that changing the order of classes in which the classifier
is built implies a change in the expressive power of the resulting multi-label
classifier. In fact we find that the first class in NB chain classifiers is predicted
as in the binary relevance method, and from Lemma 3, we get that the chain
classifier is more expressive than binary relevance over the second variable. In
general it is possible to prove that if the chain classifier for classes C1, . . . , Ch, is
built with the class ordering j1, . . . , jh, we have that the kth classifier for Cjk is
more expressive than all the previous classifiers in the chain. So, by changing the
order of the classes, we obtain a multi-label classifier with different expressive
power. This last observation led us to formulate an easy expressiveness-based
heuristic to select an ordering for the chain classifier. We built h classifiers,
one for each class as in the binary relevance method. We sorted the classifiers
according to some evaluation metric and we used the resulting order to build a
chain classifier. Precisely we started with the classifier with the best prediction
performance and we ended with the worst predicted classes. In other words,
we tried to employ the more expressive classifiers in the chain for the classes
that were predicted worst by the binary relevance model. Moreover, if the BAN
chain classifier is built as suggested in Remark 5, that is, by adding the previously
predicted classes in a naive way, we find that the above heuristic introduces a low
computational complexity: once the binary relevance model is built we have only
to compute the additive coefficient, corresponding to the previously predicted
classes to build the chain classifier. In real problems, where the coefficient of
the models have to be estimated, overfitting could be an issue, specially with
a limited number of observations available. In those cases we have to check
that the increased expressive power of the chain model does not increase the
classification errors. This could be achieved estimating the errors with cross-
validation techniques [7] or using structural risk minimization [16].
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6 Conclusions and Future Work

In this paper we have extended our previous results on the decision bound-
aries and expressive power of one-label BN classifiers to two types of BN multi-
label classifiers: BAN classifiers built with binary relevance method and BAN
chain classifiers. We have given theoretical grounds for why the binary relevance
method provides models with poor expressive power and why this gets worst
for larger numbers of classes. In both models we have expressed the multi-label
decision boundaries in polynomial forms, and we have proved that chain clas-
sifiers provide more expressive models than the binary relevance method when
the same type of BAN classifier is used as the base classifier.

As possible future research, we would like to extend our results to general
multi-dimensional BN classifiers [4,12,2,13]. Multi-dimensional BN classifiers
permit BN structures between classes and predictors, and so the multi-valued
decision functions have to be found by a global maximum search over the possi-
ble class values. This fact does not permit to employ the same arguments used
in this work. Class-Bridge decomposable multi-dimensional BN classifiers [2,3]
could be easier to study due to the factorization of the maximization problem
into a number of maximization problems in lower dimensional spaces.
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2. Bielza, C., Li, G., Larrañaga, P.: Multi-dimensional classification with Bayesian
networks. International Journal of Approximate Reasoning 52, 705–727 (2011)
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