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Abstract—Variational quantum algorithms (VQAs) are hybrid
approaches between classical and quantum computation, where a
classical optimizer proposes parameter configurations for a quan-
tum parametric circuit which is iteratively sampled. The overall
performance of the algorithm depends on how the classical
optimizer tunes the parameters of the quantum circuit. Several
gradient-free and gradient-based approaches have been proposed
in the literature to face this task. Estimation of distribution
algorithms (EDAs) are a type of evolutionary algorithms where a
probabilistic model is updated and sampled at each generation to
optimize a cost function. EDAs have shown to be able to achieve
good solutions in a reasonable computation time for different
optimization problems, and thus, we believe that this algorithm
can be a good option to overcome VQAs challenges such as the
Barren plateaus phenomenon. In this paper, we study the use
of three different EDAs, characterized by different probabilistic
model complexities, to tune the parameters of two different VQAs
to solver the Max Cut problem and to a VQA to simulate the
behaviour of a molecule. Three EDA variants are compared
to some state-of-the-art optimizers widely used for this task.
Our results show statistical significant improvement of the EDA
variants compared to different optimizers, and identify the VQAs
characteristics that best fit to each EDA type. We also perform
an analysis of the main EDAs hyper-parameters.

Index Terms—Quantum optimization, variational quantum
algorithms, estimation of distribution algorithm, gradient-free
approach, gradient-based approach

I. INTRODUCTION

In the last decades there has been a noticeable increase in the
use and research in quantum computing technologies, which
have been applied to a wide range of problems [1]. Quantum
computing has demonstrated to be a way of saving energy
consumption and outperforming classical computation in some
specific problems, such as optimization or simulation. This is
leading to the noisy intermediate-scale quantum (NISQ) era,
which is characterized by being limited by the number of
qubits of the devices and the presence of quantum noise in
the systems.

Three different research tendencies can be identified in
the area of quantum optimization: (i) quantum-inspired op-
timization [2], [3], which uses classical computers to simulate
the principles of quantum mechanics; (ii) quantum adiabatic
computation [4], which consists of encoding the optimization
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problem to be solved into a set of Hamiltonians that represent
an energy function, in which the ground state is desired to be
found; and (iii) variational quantum algorithms (VQAs) [5],
which use quantum parametric circuits (henceforth named as
ansatz) to optimize a given problem.

VQAs are hybrid approaches between quantum and classical
computation, which have been applied to a wide range of
problems [6] [7] [8] for different advantages, such as their
resilience to the presence of quantum noise in quantum com-
puters [9]. Due to the common characteristics with the clas-
sical heuristics, these algorithms are also known as quantum
heuristics. VQAs involve an ansatz that represents a quantum
state, which is used as a sampling engine for new solutions. It-
eratively, a classical optimizer proposes new ansatz parameter
configurations, which represent configurations of angle rota-
tions in the qubits of the system. Thus, the overall performance
of the approach heavily depends on how the classical optimizer
tunes the ansatz parameters. Some characteristics of this
optimization problem are the increase of parameters depending
on the VQA, the computational time invested, or the presence
of Barren plateaus [10], a phenomenon present in VQAs where
gradients are vanished exponentially with the number of qubits
of the system. Some of these characteristics are analyzed in
this work. An optimum parameter configuration usually leads
to a correctly optimization of the cost function. This task
has been researched deeply in the last decades from different
perspectives [11], such as population-based algorithms [12].

Estimation of distribution algorithms (EDAs) [13] are a
type of evolutionary algorithms where a probabilistic model is
updated iteratively with the best individuals of previous gener-
ations. Depending on the complexity and type of probabilistic
model, EDAs can be classified into univariate/multivariate or
parametric/semiparametric/nonparametric approaches. Firstly,
a univariate EDA, such as the univariate marginal distribution
algorithm (UMDA) [14], embeds a probabilistic model which
does not contemplate dependencies between the variables,
while a multivariate EDA allows dependencies between vari-
ables by using complex probabilistic models as Bayesian net-
works (BNs) [15], such as the estimation of Gaussian networks
algorithm (EGNA) [16] [17]. Secondly, for continuous opti-
mization a joint Gaussian probability distribution is commonly
assumed in the variables to be optimized, which leads to
a parametric EDA, such as EGNA, or some works which
use mixtures of distributions [18] [19]. Some nonparametric
approaches have been proposed in the literature using kernel
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density estimation (KDE) [20] [21], but no further work was
researched in this line due to its heavy computational burden.
Semiparametric EDAs (SPEDAs) [22] allow KDE variables
to co-exist with Gaussian variables, and they decide if the
conditional density of a variable given its parent variables
in the BN is Gaussian or KDE. Some recent works propose
quantum evolutionary algorithms [23] [24].

In this work, we compare the use of different EDAs to
face the VQAs ansatz parameter tuning. The results show a
univariate (UMDA), a multivariate parametric (EGNA), and a
multivariate semiparametric EDA (SPEDA) compared to the
state-of-the-art classical optimizers used for this task, in two
different VQAs, analyzing the quality of the solutions found
and their computational runtime. Although the use of (the
simplest) UMDA for a specific VQA ansatz parameter tuning
has been previously researched [25] with promising results,
the aim of this paper is to provide a deeper comparison of
different EDA complexities and identify the general VQA
characteristics that better fit to each EDA analyzed. We extend
the previous work by analysing the three EDA variants in
different optimization scenarios, and performing an analysis
of the main EDA hyper-parameters.

The remainder of the paper is organized as follows. Sec-
tion II and Section III review some theoretical background
about the VQAs and EDAs, respectively. Section IV reports the
experimental results comparing different EDA complexities to
other state-of-the-art optimizers. Section V rounds the paper
off with some conclusions and future work on the topic.

II. VARIATIONAL QUANTUM ALGORITHMS

VQAs are iterative algorithms in which, in each iteration,
a classical optimizer proposes new parameter configurations
θ ∈ [0, 2π]n for the ansatz, which is then measured to
obtain new sets of solutions, where n is the number of
qubits of the quantum system. The parameters represent angle
rotations in the ansatz of one and two-qubits rotation gates.
For each parameter configuration (θ) proposed by the classical
optimizer, the ansatz is measured N times, and the expectation
value (E(Z)) among the solutions Z is computed as follows:

E(Z) =
∑
z∈Z

C(z)Nz, (1)

where z is each different solution in Z, C(z) is the cost
of the solution evaluated in the classical cost function to
be optimized, Nz is the number of occurrences of z in Z,
and N =

∑
z∈Z Nz . Considering E(Z) and Z, the classical

optimizer proposes new sets of parameters, and iterates until
the convergence criterion is met.

Then, VQAs do not minimize the classical cost function, but
minimize the expectation value among the solutions sampled
from the ansatz. Minimizing E(Z) will lead to finding the
ground state of the quantum state ψ(θ), which will conse-
quently lead to the classical cost function minimization. The
VQA workflow is shown in Fig. 1.

In the literature, there exists a plethora of VQA proposals;
however, the quantum approximate optimization algorithm
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Fig. 1. VQA workflow where, iteratively, the classical optimizer proposes a
new set of parameters (θ) for the ansatz ψ(θ), which is then measured (Z),
and the expectation value is computed (E(Z)) Note that when measurement
is performed, each qubit is measured in the Z-axis.

(QAOA) [26] and the variational quantum eigensolver (VQE)
[27] have shown to be quite resilient to quantum noises present
in NISQ devices and to achieve competitive results in a wide
range of problems [7]. The main difference between both
approaches is the ansatz design, which, in the case of QAOA
is specific for each problem instance, while VQE uses a pre-
designed ansatz for every given problem. In this work, a study
will be conducted on each of the two VQAs.

A. QAOA

QAOA was originally proposed by Farhi, Goldstone and
Gutmann [26] for solving combinatorial optimization prob-
lems. The QAOA ansatz is composed of p ∈ N layers,
which internally builds two sequential operators: (i) the cost
operator U(HC , γ) parameterized by γ ∈ [0, 2π], which is
built specifically for each problem instance and encodes the
classical cost function through a combination of single and
two-qubit rotation gates,

U(HC , γ) = e−iγHC =

m∏
α=1

e−iγCα , (2)

where Cα is the cost function to be minimized, and m the
number of clauses that define the classical cost function to be
optimized; and (ii) the mixed operator U(HB , β) parameter-
ized by β ∈ [0, 2π], which represents a rotation in the X-axis
in each qubit (σx

j ),

U(HB , β) = e−iβHB =

n∏
j=1

e−iβσx
j , (3)

where n is the number of qubits of the quantum system.
Thus, an ansatz composed by p layers has 2p parameters

to be optimized θ = (γ1, β1, . . . , γp, βp), as shown in the
ansatz example in Fig. 2. The quantum state represented by
the QAOA ansatz is,

ψ(γ,β) = U(HB , βp)U(HC , γp) · · ·U(HB , β1)U(HC , γ1) ⟨s⟩ ,
(4)

where p ≥ 1, γ = (γ1, . . . , γp), β = (β1, . . . , βp), and ⟨s⟩ is
the superposition state over the computational quantum states.
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Fig. 2. An ansatz with p layers and 2p parameters to be tuned. The quantum
circuit starts from a superposition state over all the possible computational
states, then applies p layers, and measures the qubits in the Z-axis.

B. VQE

The VQE was originally proposed by Peruzzo et al. [27]. In
contrast to QAOA, the VQE ansatz is not designed specifically
for each problem instance. There exist several pre-designed
ansatz which are used independently of the optimization
problem to be solved, and usually involve a larger number
of parameters to be optimized. The parameters are tuned
following the workflow defined in Fig. 1. In this work, we
will focus on the TwoLocal ansatz1, shown in Fig. 3, one of
the most widely-used ansatz in the literature.

0

0

0

0

Fig. 3. TwoLocal ansatz used for the VQE with p ∈ N layers, n qubits and pn
parameters. Each layer applied a rotation gate in the Y -axis over each qubit.
Between each layer, a linear entanglement is applied in the system, where
each qubit i is connected through a two-qubit rotation gate in the X-axis to
the qubit i+ 1.

The TwoLocal ansatz is composed by p layers, which have
a single-qubit rotation gate in the Y -axis for each qubit in
the system, parameterized by an independent parameter per
quantum gate. Between each layer, the ansatz builds a linear
entanglement in which the qubit i is connected with the qubit
i + 1 through a two-qubit rotation gate in the X-axis. Thus,
an ansatz composed by p layers has pn parameters to be
optimized θ = (θ1, θ2, . . . , θpn).

C. Parameter tuning

The ansatz parameter tuning consists of a continuous opti-
mization where the parameters represent angle rotations of the
qubits, and thus, are restricted to [0, 2π]. However, depending
on the type of VQA to be used, and the number of layers
that compose the circuit, the number of parameters vary
substantially. Additionally, it is necessary to decide whether to

1https://qiskit.org/documentation/stubs/qiskit.circuit.library.TwoLocal.
html

prioritise the algorithm runtime, or the quality of the solutions
given by the optimiser.

Considering the previous optimization requirements, we list
the following state-of-the-art optimizers grouped according to
whether they are gradient-based or not [28], which will be
analyzed in the comparison performed in this work.

Some gradient-based optimizers include:
• ADAM [29]: stochastic version of the gradient descent.
• Conjugate gradient method (CG) [30]: designed for sys-

tems of linear equations whose matrices are symmetric
and positive-definite.

• Gradient descent [31]: a first-order optimization algo-
rithm, commonly used in deep learning to optimize the
loss function.

• Limited-memory Broyden–Fletcher–Goldfarb-Shanno
Bound algorithm (L-BFGS-B) [32]: limited memory-
based and designed for non-linear optimization problems.

• Sequential least squares programming (SLSQP) [33]:
finds a local search direction by solving the second-order
local approximation of the objective function.

Some gradient-free optimizers include:
• Constrained optimization by linear approximation

(COBYLA) [34]: uses linear approximations of the
objective functions, and is mostly used when the
derivative of the objective function is unknown.

• Simultaneous perturbation stochastic approximation
(SPSA) [35]: suited for large-scale population
optimizations.

III. ESTIMATION OF DISTRIBUTION ALGORITHMS

The EDA baseline is shown in Algorithm 1, where E is
the cost function (Eq. 1) to be minimized. EDAs are a type
of evolutionary algorithms where a probabilistic model is
used as the sampling engine for new solutions (line 6). This
probabilistic model is updated at each iteration considering
promising solutions selected from previous generations (lines
4–5). The algorithm iterates until the stopping criteria is met.

Algorithm 1 EDA baseline
Input: Population size µ, selection ratio δ and cost function

E
Output: Best individual z′ and cost found E(z′)

1: G0 ← µ individuals randomly sampled
2: for t = 1, 2, ... until stopping criterion is met do
3: Evaluate Gt−1 according to E(·)
4: GS

t−1 ← Select ⌊δN⌋ individuals from Gt−1

5: ft−1(·)← Learn a probabilistic model from GS
t−1

6: Gt ← Sample µ individuals from ft−1(·)
7: end for

Each individual of each generation is a parameter config-
uration θ to be evaluated in the ansatz. Then, the quantum
circuit with the specific configuration is measured N times,
and E(·) is computed (line 3). Considering all the proposed
configurations in the same generation, and the respective
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computed expectation value, the probabilistic model is updated
(line 5). In this paper, we will focus on UMDA, EGNA and
SPEDA. All the algorithms are considered to have converged
if after 25 iterations no improvement is identified (stopping
criterion); otherwise, the algorithm will run the maximum
number of iterations defined by the user.

A. UMDA

UMDA assumes a Gaussian distribution over each indepen-
dent variable, where each variable refers to each parameter
of the ansatz. Then, the algorithm, in each iteration, selects
the best individuals and fits an independent Gaussian distri-
bution over each variable. To generate a new solution, each
independent Gaussian is sampled once. The main advantage
of this algorithm is its simplicity, which on the other hand is
a disadvantage, since it is very prone to fall into local optima
because of ignoring dependencies between variables.

B. EGNA

To address the UMDA shortcomings, EGNA is able to
contemplate dependencies between variables, with the use of
Gaussian Bayesian networks (GBNs). In each iteration, the
structure and parameters of a GBN are learned, where the
joint probability distribution of the variables is assumed to be
linearly Gaussian. Thus, marginal and conditional distributions
are also Gaussians. Although there exist other multivariate
variants that model such dependencies, EGNA is one of
the most widely used approaches due to its speed and the
capability of generalization. Nevertheless, some works have
found that EGNA might fall into local optima and revisit
previously explored areas of the search space [22] [36].

C. SPEDA

Because some distributions cannot be approximated using
Gaussians, the SPEDA allows Gaussian variables and KDE
variables to coexist. SPEDA decides whether the conditional
density of a variable given its parents in the graphical structure
representing the probabilistic model will be Gaussian or not.
This type of algorithm is able to find solutions not achiev-
able by other types of EDAs, in addition to minimizing the
number of iterations needed for convergence [22]. Due to the
complexity of the probabilistic model embedded by SPEDA,
the computation time was shown to be a drawback in some
experiments.

IV. EXPERIMENTAL RESULTS

In this section we show some numerical results when
comparing different EDA complexities to some state-of-the-
art gradient-free and -based algorithms. Note that all the
implemented experiments for this study have been coded in
Python using Qiskit-0.21.2 [37] and EDAspy-1.0.22,3 Python
packages and is available at a GitHub repository4. Different
optimizers have been executed to tune the parameters of the

2https://github.com/VicentePerezSoloviev/EDAspy
3https://pypi.org/project/EDAspy/
4https://github.com/VicentePerezSoloviev/EDA QAOA

QAOA ansatz and the VQE TwoLocal ansatz, both to optimize
the same benchmark, an instance of the well-known MaxCut
benchmark for 10 variables and 10 qubits (n = 10). Moreover,
Section IV-C shows some experimental results using different
optimizers for tuning the parameters of an VQE ansatz used
to simulate a molecule. Section IV-D analyzes the hyper-
parameter tuning of the EDA approach.

-2 -3 /2 - - /2 0 /2 3 /2 2

-2

-3 /2

-

- /2

0

/2

3 /2

2

Fig. 4. Optimization landscape where Y - and X-axis represent, respectively,
β and γ QAOA ansatz parameters for p = 1 layer, and the lighted regions over
the purple background represent the optimum parameters that minimize the
expectation value (Eq. 1). Although the parameter tuning has been restricted
to θ ∈ [0, 2π]n, the landscape of θ ∈ [−2π, 2π]n is displayed to show that
−2π is equivalent to 2π.

(a) (b)

Fig. 5. GBN structures designed for QAOA (a) and VQE TwoLocal (b) ansatz
parameter tuning embedded by EGNA. Each node represents a parameter
in the ansatz, and an arc between two nodes represents a linear Gaussian
dependency between both variables.

All the algorithms have been configured to a maximum of
100 iterations and the number of shots for the ansatz is t =
1000. In the case of the EDAs, the selection ratio has been
set to δ = 0.5 for all the variants, the population size is µ =
60, and the EDA is considered to have converged if after 20
generations, the algorithm has not improved the best solution
found. Note that all the EDAs have been implemented as elitist
approaches, where the best individuals of each iteration remain
in the future, so that the algorithm never worsens the best
results found in previous iterations, and also SPEDA’s archive-
based feature has been omitted to perform a fair comparison
with the other EDAs (l = 1, where l is the archive length).
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Fig. 6. Comparison of the different EDA variants with the other state-of-the-art optimizers for the QAOA ansatz parameter tuning. The top panel shows the
mean computation time and standard deviation after running each algorithm 25 independent times for different number of layers p ∈ {1, . . . , 8}. The bottom
panel shows the mean best expectation value achieved (Eq. 1) and standard deviation after running each algorithm 25 independent times for different number
of layers p ∈ {1, . . . , 8}.

Different works in the literature [38] [39] have shown that
the QAOA ansatz parameters in the same layer are dependent,
and there exist different optimum configurations for γi and βi
for which the expectation value (Eq. 1) is minimum. Fig. 4
shows an example for the MaxCut problem instance, with p =
1, where the optimization landscape is shown. Lighted areas
over the purple background represent the optimum parameters
for the QAOA ansatz, which our EDA approach should find.

Due to this dependency between γi and βi in the same layer,
in the following experiments the GBN structure embedded
by the EGNA approach has been fixed. An example of the
embedded GBN in the EGNA approach to tune QAOA ansatz
parameters with p layers is shown in Fig. 5(a), where each
node represents a parameter in the QAOA ansatz, and γi and
βi are connected for each layer. Thus, the runtime of EGNA
is expected to be reduced, as the structure of the GBN is not
learned, and only the parameters of the model are updated
according to the provided data.

Following the same strategy, a fixed structure has been
proposed for the VQE ansatz parameter tuning using EGNA.
In this case, as in each layer a quantum parametric gate is
implemented for each qubit, we have designed a structure in
which each parameter θi is connected to parameter θi+1 in
the same layer, justified by the subsequent entanglement of
the qubits following the same sequence, between each layer
of the ansatz, as shown in Fig. 3. In addition, the parameters
of the quantum parametric gates in each qubit are sequentially
connected. An example is shown in Fig. 5(b), where each node
represents a parameter in the ansatz with p layers, n qubits

123

SPEDA
EGNA_fs

UMDA

Fig. 7. Critical difference diagram using Friedman tests to reject the null
hypothesis of equal expected value, and a post-hoc analysis based on the
Wilcoxon-Holm method. The horizontal black line connects the EDA variants
that do not have a significant difference in the QAOA ansatz parameter tuning
in terms of expectation value minimization using the three EDA variants.

and pn parameters.
In the case of SPEDA, we have decided not to restrict the

topology, since the BN structure learning algorithm embedded
by SPEDA also learns the node types (Gaussian or KDE).

A. QAOA ansatz parameter tuning

Fig. 6 shows a comparison of the computation time and
expectation value minimization for different optimizers and
the three EDAs: UMDA, EGNA with the fixed structure
(EGNA fs) and SPEDA, for the QAOA parameter tuning.

Fig. 6 (top) shows how EGNA fs reduces the computation
time notably. Note that, when p < 6 the UMDA takes a
notably larger computation time to converge compared to
SPEDA and EGNA fs, which is probably due to the number
of iterations needed during runtime. SPEDA and EGNA fs
take a similar computation time up to p < 5. For larger p,
EGNA fs improves runtime.

No statistical significant differences have been found be-
tween the three EDA approaches in terms of expectation value
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Fig. 8. Critical difference diagram for the QAOA ansatz parameter tuning in
terms of expectation value minimization comparing the different optimizers
including the EDA variants.

minimization, as shown in the critical difference diagram [40]
in Fig. 7. Comparing the EDA variants against the other
algorithms, it is shown how the EDAs are the algorithms
which achieve the smallest expectation values when p < 5. For
more layers, the EDAs provide competitive results compared
to their competitors, being only beaten by some gradient-based
algorithms (CG, L BFGS B and SLSQP), see Fig 6 (bottom).

Analyzing the computation time, when p > 5, the EDA
variants offer a computation time advantage compared to
most of their competitors. Nevertheless, when p < 6, the
computation time is slightly larger or equal than the rest of
their competitors. It is worth noting that the computation time
of CG is no longer competitive when p > 3.

Fig. 8 shows a critical difference diagram where the statisti-
cal significant differences are identified in terms of expectation
value minimization. The three EDA variants are grouped
with other three gradient-based approaches (CG, L BFGS B
and SLSQP) as the best optimizers for the QAOA ansatz
parameter tuning for p ∈ {1, 2, . . . , 8}, and UMDA improves
the performance over the other gradient-free optimizers.

From this analysis we conjecture that EGNA fs improves
the expectation value minimization compared to its competi-
tors, achieving a competitive computation time, when p ≤ 5.
When p > 5, EGNA fs reaches similar results compared to
its competitors but offering one of the best computation times.

One of the advantages of EDAs is the interpretability of
the algorithm. Due to the use of BNs, it is possible to infer
dependencies between variables, which may be of interest
when analyzing the problem to be solved. It is expected that
the EDA, in the last iterations of the runtime, will find the
optimal structure that represents the landscape of the cost
function. Fig. 9 shows a BN structure presenting the common
arcs found in the BNs of the last iterations of 10 different
SPEDA runs for the QAOA ansatz parameter tuning with
p = 4, where white and grey nodes represent the Gaussian
and KDE nodes, respectively. Comparing the BN structure
with the one fixed for the EGNA fs approach in Fig. 5, it
can be observed the common arcs between nodes βi and γi
in each layer, although some arcs have been reversed, which
verifies that the structure fixed for the EGNA fs approach is
consistent with the findings. Some spurious arcs have also been
identified, such as β1 → β2 and β3 → β2.

B. VQE ansatz parameter tuning

Fig. 10 shows a comparison of the computation time and
expectation value minimization for different optimizers and

Fig. 9. BN structure where the common arcs found in the BNs of the last
iterations of 10 different SPEDA runs for the QAOA ansatz parameter tuning
with p = 4 are represented. White and grey nodes represent the Gaussian and
KDE nodes, respectively.

the three EDAs: UMDA, EGNA with the fixed structure
(EGNA fs) and SPEDA for the VQE ansatz parameter tuning.

No significant differences were found between EGNA fs
and SPEDA; however, a significant improvement is found for
the case of UMDA for p ∈ {1, . . . , 9}, as shown in the critical
difference diagram in Fig. 11. Analyzing the computation time,
it can be observed that UMDA, for all p, needs a larger runtime
than the other EDA variants, and as p increases, a greater
difference is found. For p ≥ 6 the difference of computation
time compared to EGNA fs and SPEDA is noticeably larger,
while the minimization of the expectation value no longer
has a statistically significant advantage, as shown in Fig. 12,
where all the EDA variants are grouped together. From this
analysis we conjecture that UMDA is a competitive optimizer
for TwoLocal ansatz parameter tuning for low values of p.
For larger values, EGNA fs and SPEDA outperform UMDA,
if a trade-off between computation time and expectation value
minimization is desired. Moreover, it is worth mentioning the
low standard deviation of the expectation value achieved with
EGNA fs and SPEDA compared to its competitors.

The computation time difference of UMDA compared to
the other EDA variants has been identified in both the QAOA
and VQE ansatz parameter tuning. Fig. 13 shows the number
of cost function evaluations of the three EDA variants, for
different values of p in the VQE TwoLocal ansatz case.
Note that each cost function evaluation involves an ansatz
parameter configuration and measuring the quantum circuit
N times. The figure shows how SPEDA is the EDA variant
which needs fewer evaluations to converge to a solution that
has no significant difference with EGNA fs and UMDA, for
p ≥ 6. Note that UMDA is the algorithm which needs more
evaluations for convergence, and the difference compared to
EGNA fs and SPEDA increases with p. Although the number
of evaluations of SPEDA is lower than those of EGNA, the
computation time has shown to be slightly higher in Fig. 6 due
to the probabilistic model complexity embedded by SPEDA
and its structure learning, which was omitted in the case
of EGNA fs. SPEDA estimates some variables using KDE,
exploring several areas of the search space in parallel [22],
so the cost function evaluations is likely to be reduced, which
seems to be happening in this case resulting in a competitive
computation time compared to EGNA fs and UMDA.

Fig. 14 shows a critical difference diagram to identify the
significant differences in the results shown in Fig. 10 for the
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shows the mean computation time and standard deviation after running each algorithm 25 independent times for different number of layers p ∈ {1, . . . , 9}.
The bottom panel shows the mean best expectation value achieved (Eq. 1) and standard deviation after running each algorithm 25 independent times for
different number of layers p ∈ {1, . . . , 9}.
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Fig. 11. Critical difference diagram for the VQE TwoLocal ansatz parameter
tuning in terms of expectation value minimization using three EDA variants.

expectation value minimization and p ∈ {1, . . . , 9}. The EDA
variants are beaten by three gradient-based approaches: CG,
L BFGS B and SLSQP, which also had a good performance
in the case of QAOA. However, it is worth highlighting the
computation time demand of CG for p ≥ 1 and SLSQP for
p ≥ 6, which is improved by EGNA fs and SPEDA for p ≥ 6.
For a large number of layers (p ≥ 8) the expectation value
minimization of L BFGS B is slightly better compared to the
EDA variants, and its computation time is one of the best in
the overall comparison. Despite the fact that the gradient-free
optimizers achieve a low computation time compared to their
competitors, the mean expectation value is always worse than
that found by the different EDA variants.

From this analysis we conjecture that EGNA fs and SPEDA
are competitive optimizers for large number of layers (p ≥ 5)
if a trade-off between computation time and expectation value
minimization is desired, where its principal competitor is
L BFGS B. SPEDA is a better approach to minimize the
resources demand, as it needs less quantum circuit measure-
ments compared to EGNA fs. For lower values (p < 6),
UMDA improves the expectation values achieved by SPEDA
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Fig. 12. Critical difference diagram for the VQE TwoLocal ansatz parameter
tuning (p ≥ 6) in terms of expectation value minimization using the three
EDA variants.
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Fig. 13. Comparison of the mean number of cost function evaluations for
the VQE TwoLocal ansatz parameter tuning after executing each EDA variant
25 independent times. Each cost function evaluation involves a new ansatz
parameter configuration and measuring the quantum circuit N times.

and EGNA fs, being one of the best optimizers in the overall
comparison, although its computation time is worse in general.
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TABLE I
MEAN EXPECTATION VALUE (EQ. 1) ACHIEVED BY DIFFERENT

OPTIMIZERS FOR DIFFERENT VALUES OF ω ∈ [0, 1], WHERE BEST VALUES
ARE HIGHLIGHTED IN BLUE.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ADAM -1.12 -1.06 -1.09 -1.07 -1.09 -1.09 -1.08 -1.09 -1.09
AQGD -1.43 -1.23 -1.16 -1.10 -1.09 -1.08 -1.08 -1.08 -1.08
CG -1.03 -1.06 -1.10 -1.09 -1.08 -1.09 -1.09 -1.09 -1.09
COBYLA -1.42 -1.27 -1.18 -1.13 -1.11 -1.09 -1.09 -1.09 -1.09
EGNA fs -1.44 -1.26 -1.17 -1.13 -1.11 -1.10 -1.09 -1.09 -1.09
GradientDescent -1.22 -1.08 -1.08 -1.09 -1.09 -1.08 -1.09 -1.09 -1.09
L BFGS B -1.11 -1.07 -1.08 -1.09 -1.09 -1.09 -1.08 -1.09 -1.09
SLSQP -1.08 -1.06 -1.08 -1.07 -1.09 -1.09 -1.09 -1.09 -1.09
SPEDA -1.45 -1.26 -1.18 -1.13 -1.11 -1.10 -1.09 -1.09 -1.09
SPSA -1.42 -1.25 -1.17 -1.12 -1.10 -1.09 -1.09 -1.09 -1.09
UMDA -1.43 -1.26 -1.17 -1.13 -1.11 -1.10 -1.09 -1.09 -1.09

C. Molecule simulation with parametric quantum noise

Simulating molecules behaviour in the area of quantum
chemistry has gained a lot of attention in the last years due
to its advantage compared to the classical computation [27].
In this section, the VQE TwoLocal ansatz is used to simulate
the hydrogen molecule (H2), where the objective is to find
the ground state of the Hamiltonian that defines the molecule.
Furthermore, this simulation has been carried out considering
different intensities of a simulated quantum noise channel. The
depolarized noise [41], parameterised by ω ∈ [0, 1] has been
used, where ω = 0 implies no quantum noise and ω = 1
implies the maximum noise.

Table I shows the mean expectation value (Eq. 1) achieved
by the different optimizers for different values of ω. Note that
the COBYLA and EDA variants are the optimizers which
more resilience offer to quantum noise, being both able to
outperform the results of their competitors. AQGD is the worst
performing optimizer in general. Note that, for high noise
intensities (ω ≥ 0.7), all the algorithms tend to converge to
the same solutions, but for small ones (ω → 0), a greater
difference is noted between the results of the EDA variants
and the rest of competitors.

D. EDA hyper-parameter tuning

The results shown in Section IV-A and Section IV-B show
that the higher the number of layers (p), the higher the
expectation value E(·) is obtained being not able to reach
the values found in the cases of lower number of layers. This
factor is directly correlated to the population size (µ) defined
for the algorithm. In this section, we will comment on the
relationship between the hyper-parameters p and µ for the
specific case of SPEDA for QAOA, since UMDA and EGNA
have an equivalent behaviour in this aspect for both ansatz.
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Fig. 15. Left panel shows the mean expectation value tendency for different
values of p and µ. Right panel shows the linear dependency between the
number of layers and the optimum values of µ found. Both panels analyze
the QAOA and SPEDA case.

Fig. 15 (left) shows that regardless of the number of layers
(p) the expectation value is reduced by increasing the popula-
tion size (µ). Identifying the sweet spot between minimizing
E(·) but also µ, will lead to find the optimum value of µ.
The higher the µ values, the more evaluations are needed,
and thus, a higher computation time is required. Following a
similar procedure as in the elbow method for clustering, we
identify the most interesting population sizes for each p in
Fig. 15 (right). A linear dependency is observed between both
parameters although this is an approximation.

V. CONCLUSIONS

In this work, a deep study on the use of different variants
of EDAs for the VQA ansatz parameter tuning has been
performed, where the algorithms have been compared to other
state-of-the-art gradient-based and gradient-free alternatives
widely used. The UMDA, EGNA with a fixed structure
(EGNA fs) and SPEDA algorithms were tested to tune the
parameters of the QAOA and VQE ansatz.

In the case of QAOA, the three EDA alternatives offer
similar solutions in terms of expectation value minimization,
but EGNA fs is the one which needs less computation time
for convergence. The results have been validated to test the
null hypothesis of equal mean results versus different means
among the algorithms.

In the case of VQE, UMDA offers a statistically significant
advantage regardless of the number of layers, but requires a
longer computational time. However, for large values of p, this
advantage is not statistically significant, and SPEDA achieves
a notable improvement in computation time compared to the
other algorithms, offering competitive expectation value results
and needing the least cost function evaluations, compared to
EGNA fs and UMDA.

While it is not the objective of this study to find the
best EDA variant for the VQAs ansatz parameter tuning,
we have found that all three EDA variants perform better
than other gradient-free algorithms, and achieve competitive
solutions with gradient-based ones. UMDA stands out for
the quality of the solutions found, although it suffers from
computational speed. EGNA fs is the fastest in terms of
computation time, but SPEDA uses the fewest number of
cost function evaluations. Moreover, the three EDA variants,
together with COBYLA, have shown a better quantum noise
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resilience compared to the other competitors for the case of
molecule simulation.

As future steps in this research line we propose to study (i)
the different EDA variants for VQAs in which other types of
quantum noise is present; (ii) the presence of Barren Plateau
in the different scenarios; and (iii) the learned graph for larger
number of layers.
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CODE AVAILABILITY

The code of UMDA, EGNA and SPEDA is available in
the EDAspy Python package, which can be found at https:
//github.com/VicentePerezSoloviev/EDAspy and downloaded
from Pypi. Additionally, UMDA approach is already available
as an optimizer in Qiskit [37] library, and SPEDA and EGNA
approaches will be merged soon.
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