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Abstract In this articlewe study the univariate and bivariate
truncated von Mises distribution, as a generalization of the
von Mises distribution. This implies the addition of two or
four new truncation parameters in the univariate and, bivari-
ate cases, respectively. The results include the definition,
properties of the distribution and maximum likelihood esti-
mators for the univariate andbivariate cases.Additionally, the
analysis of the bivariate case shows how the conditional dis-
tribution is a truncated von Mises distribution, whereas the
marginal is a generalization of the non-truncated marginal
distribution. From the viewpoint of applications, we test the
distribution with data regarding leaf inclination angles. This
research aims to assert this probability distribution as a poten-
tial option formodeling or simulating any kind of phenomena
where circular distributions are applicable.

Keywords Angular probability distributions · Directional
statistics · von Mises distribution · Truncated probability
distributions

1 Introduction

The von Mises distribution has received undisputed atten-
tion in the field of directional statistics [4] and in other areas
like supervised classification [5]. Thanks to desirable prop-
erties such as its symmetry, mathematical tractability and
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convergence to the wrapped normal distribution [6] for high
concentrations, it is a viable option for many statistical anal-
yses. However, angular phenomena may present constraints
on the outcomes that are not properly accounted for by the
density function of the von Mises probability distribution.
Thus, a truncated distribution with the capabilities of the von
Mises distribution is strongly suggested. Additionally, there
is hardly any literature in this direction, and to the best of our
knowledge, only one paper [2], proposes a definition of the
truncated von Mises distribution.

In this article, we propose a new definition of truncated
probability distribution for angular values whose parent dis-
tribution is the von Mises distribution. The univariate and
bivariate cases of this distribution are explicitly developed.

Section 2 introduces the definition for the univariate case
and derives some properties of the distribution, calculates
the maximum likelihood estimators of the parameters and
studies the distribution moments. Section 3 addresses the
definition of the bivariate truncated von Mises, maximum
likelihood estimation of the parameters and the definition and
study of the conditional andmarginal truncated distributions.
Section 4 shows real data application where the distribution
successfully models the data. Finally, Sect. 5 discusses the
summary and conclusions.

The first and second sections of the supplementary mate-
rial cover the simulations and additional experiments on real
datasets (for dihedral angles in protein chains in the bivariate
case). In the third section, the proofs of all results can be
found.

2 Univariate truncated von Mises distribution

Definition 2.1 The truncated von Mises distribution is pre-
sented as a four-parameter generalization of the non-trun-
cated case for truncation parameters a, b as
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Fig. 1 Several truncated von Mises distributions. Symmetrical func-
tion with maxima not at the extrema (thin continuous line), strictly
increasing function (dashed line), strictly decreasing function (thick
continuous line), unique critical point that is a minimum (dash-dot line)
and two critical points, a maximum and a minimum (dotted line)

ftvM(θ;μ, κ, a, b) =
{

eκ cos(θ−μ)∫ b
a eκ cos(θ−μ)dθ

if θ ∈ Oa,b

0 if θ ∈ Ob,a

(1)

where μ ∈ O is the location parameter, κ > 0 the concen-
tration parameter, O is the circular set of points (O : (x, y)
such that x2 + y2 = 1), Oa,b ⊂ O is obtained by select-
ing the points in the circular path from a ∈ O to b ∈ O

in the preferred direction (counterclockwise) and Ob,a is its
counterpart w.r.t. O.

Our proposed definition differs from Bistrian and Iakob
[2] in the circular definition of the truncation parameters, not
bounded to a linear definition involving the location param-
eter. The additional developments covered in this article can
also be considered a novelty.

To illustrate the differences with the non-truncated case
for these parameters, Fig. 1 represents multiple examples of
truncated von Mises distributions.

It is awell-known result [1] that 2π I0(κ) = ∫ 2π
0 eκ cos(θ−μ)

dθ , where I0(κ) is the modified Bessel function of the first
kind and order 0, that is,

I0(κ) =
∞∑

m=0

x2m

(m!)22m .

The above expression suffices for truncation parameters a, b
such thatOa,b = O. However, it is necessary to calculate the
general case for non-restricted truncation parameters. Taking
w = � n

2 � + mod n
2 − 1, we have obtained:

Lemma 2.1
∫ b
a eκ cos(θ−μ)dθ = I (b;μ, κ) − I (a;μ, κ),

where

I (θ; μ, κ)

=
∞∑
n=0

κn

n!

⎛
⎝sin(θ−μ)

w∑
i=0

⎛
⎝cosn−2i−1(θ − μ)

2i∏
j=0

(n − j)−(−1) j

⎞
⎠

+ ((−1)n + 1)
∏w

j=0(n − j)−(−1) j (θ − μ)

2

⎞
⎠ . (2)

I (θ;μ, κ) is the distribution function of the positive sup-
port of the truncated vonMises density. (Note then that while
truncation parameters are circular quantities, the values for
the integration coefficients are linear.)

Proof See supplementary material (Section 3.1). ��

2.1 Maximum likelihood estimation

Provided we have a sample of observations θ1, θ2, . . . , θn
from a truncated von Mises distribution (1), we obtain:

ln L(μ, κ, a, b; θ1, θ2, . . . , θn)

=
n∑

i=1

ln

(
eκ cos(θi−μ)∫ b

a eκ cos(θ−μ)dθ

)

=
n∑

i=1

κ cos(θi − μ) − n ln

(∫ b

a
eκ cos(θ−μ)dθ

)
, (3)

where ln L(μ, κ, a, b; θ1, θ2, . . . , θn) is the log-likelihood
function for the truncated von Mises distribution.

We now seek to solve the system of four log-likelihood
equations created by the four parameters of the distribution.
For parameters μ, κ , we have

∂ ln L

∂μ
= 0

∂ ln L

∂κ
= 0.

As parameters a, b, define the region of the greater-than-zero
density, we find that all θ1, . . . , θn observations neces-
sarily lie within the subset Oa,b. This, together with the
−n ln(

∫ b
a eκ cos(θ−μ)dθ) sub-term of (3), allows us to isolate

the estimators

Oâ,b̂ = argmax
a,b

(max({A(Oθ ′
1,θ

′
2
), . . . , A(Oθ ′

n−1,θ
′
n
),

A(Oθ ′
n ,θ

′
1
)})), (4)

where A(Oθ1,θ2) is the angle between θ1 and θ2, and
{θ ′

1, . . . , θ
′
n} is the sample sorted in ascending order. Intu-

itively, the truncation parameters are separated by the largest
angle and are contiguous in a sorted finite circular sample.
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From this result, we can say that the truncation parameters
of the truncated vonMises distribution have population-only
dependent maximum likelihood estimators. For parameters
μ and κ , interdependency is a consequence of the possibly
non-symmetrical shape of the distribution. If we observe the
expressions

1

n

n∑
i=1

sin(θi − μ) − eκ cos(a−μ) − eκ cos(b−μ)∫ b
a eκ cos(θ−μ)dθ

= 0

1

n

n∑
i=1

cos(θi − μ) −
∫ b
a cos(θ − μ)eκ cos(θ−μ)dθ∫ b

a eκ cos(θ−μ)dθ
= 0,

eκ cos(a−μ) − eκ cos(b−μ) = 0 holds if a, b are symmetrical
w.r.t. μ, reducing the location parameter estimator to that of
the non-truncated case [6], the circular sample mean μ̂. As
no population-only dependent expressions of the parameters
μ and κ were found, optimization techniques to maximize
the log-likelihood function for those parameters are needed.

2.2 Moments

The moments in circular statistics are particular values of the
characteristic function. The r th moment about a direction d
can be written as

mrtvM = E[eir(X−d)].

The first moment about the 0 direction for the truncated von
Mises is calculated as

m1tvM=
∫ b
a cos(θ)eκ cos(θ−μ)dθ∫ b

a eκ cos(θ−μ)dθ
+ i

∫ b
a sin(θ)eκ cos(θ−μ)dθ∫ b

a eκ cos(θ−μ)dθ
,

(5)

andwe can relate (5) to thefirstmoment about theμdirection,
denoted as m′

1tvM
as

m1tvM = eiμm′
1tvM . (6)

Notice that if cos(a − μ) = cos(b − μ), then m′
1tvM

=
∫ b
a cos(x−μ)eκ cos(x−μ)dθ∫ b

a eκ cos(x−μ)dθ
= R, the mean resultant length of

μ and thus m1tvM = eiμR.
An alternative expression for m1tvM can be found by con-

sidering equations E[cos(x)] = R′ cos(μ′) and E[sin(x)] =
R′ sin(μ′), where R′ and μ′ are the sample mean resultant
length and sample mean, respectively. We can then state

m1tvM = E[cos(x)] + iE[sin(x)]
= R′ cos(μ′) + i R′ sin(μ′) = R′eiμ′

. (7)

Thus, merging Eqs. (6) and (7), we obtain

ei(μ
′−μ)R′ = m′

1tvM ,

which can be seen as a valuable expression as it contains the
sample mean (μ′) and the location parameter of the distribu-
tion (μ).

3 Bivariate truncated von Mises distribution

The non-truncated bivariate von Mises distribution was first
proposed by Singh [9] and extended and developed inMardia
et al. [7] and Mardia and Voss [8]. It is a unimodal/bi-modal
function on the torus fbtvM : O×O → R obtained by replac-
ing the quadratic and linear terms of the normal bivariate
distribution with their circular analogues. This distribution
is known as the “sin variant bivariate vonMises distribution”
and is defined for dependent pairs of angular variables. It is
expressed for variables θ1 and θ2, as

f (θ1, θ2) = Ceκ1 cos(θ1−μ1)+κ2 cos(θ2−μ2)+λ sin(θ1−μ1) sin(θ2−μ2),

where κ1, κ2 ≥ 0, λ ∈ R, μ1, μ2 ∈ O and C is the nor-
malization constant. We propose the density function for
the truncated case as a nine-parameter function with density
defined as follows.

Definition 3.1 The density function for the truncated case is
a nine-parameter function with density

fbtvM(θ1, θ2;W)

=
{ fubvM(θ1,θ2;W)∫ b1

a1

∫ b2
a2

fubvM(θ1,θ2;W)dθ2dθ1
if θ1 ∈ Oa1,b1 , θ2 ∈ Oa2,b2 ,

0 otherwise

(8)

whereW = {λ,μ1, μ2, κ1, κ2, a1, b1, a2, b2} is the parame-
ter vector and fubvM(θ1, θ2;W) =
eκ1 cos(θ1−μ1)+κ2 cos(θ2−μ2)+λ sin(θ1−μ1) sin(θ2−μ2) is the unnor-
malized bivariate von Mises distribution. Parameters μ1, μ2

and κ1, κ2 are analogous to parameters μ and κ , respec-
tively, in the univariate truncated case. Truncation parameters
a1, b1, a2 and b2 are similar to the univariate truncation
parameters. The λ ∈ R parameter accounts for the depen-
dency between the variable components (Fig. 2). If λ = 0,
then θ1 and θ2 are independent and each is distributed
as a univariate von Mises distribution. Also, if θ1, θ2 are
independent, then λ = 0.

Adesirable property of a joint distribution is having closed
distributions under marginalization and conditioning, i.e.,
the marginal and conditional distributions should also follow
the univariate distribution. Particularizing for the von Mises
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Fig. 2 Example of the bi-dimensional von Mises distribution showing
truncated bi-modality

family, the bivariate von Mises distribution presents closed
distributions only under conditioning as shown by Singh [9].
We want to find out whether this also holds for the truncated
case.

3.1 Maximum likelihood estimation

The maximum likelihood estimator for the bivariate distri-
bution takes data of the form {(θ1i , θ2i )} i = 1, . . . , n. The
resulting log-likelihood function is

ln L(W; (θ11, θ21), . . . , (θ1n, θ2n))

=
n∑

i=1

ln

(
eκ1 cos(θ1i−μ1)+κ2 cos(θ2i−μ2)+λ sin(θ1i−μ1) sin(θ2i−μ2)∫ b1

a1

∫ b2
a2

eκ1 cos(θ1−μ1)+κ2 cos(θ2−μ2)+λ sin(θ1−μ1) sin(θ2−μ2)dθ2dθ1

)

=
n∑

i=1

(κ1 cos(θ1i − μ1) + κ2 cos(θ2i − μ2)

+ λ sin(θ1i − μ1) sin(θ2i − μ2))

− n ln

(∫ b1

a1

∫ b2

a2
eκ1 cos(θ1−μ1)+κ2 cos(θ2−μ2)+λ sin(θ1−μ1) sin(θ2−μ2)dθ2dθ1

)
.

Thus we have

∂

∂μ1
ln L(W; (θ11, θ21), . . . , (θ1n, θ2n)) = 0,

that is,

n∑
i=1

κ1 sin(θ1i − μ1) − λ cos(θ1i − μ1) sin(θ2i − μ2)

−
n

(∫ b2
a2

fubvM(a1, θ2) − fubvM(b1, θ2)dθ2
)

∫ b1
a1

∫ b2
a2

fubvM(θ1, θ2)dθ2dθ1
= 0,

where fubvM(θ1, θ2) is the following unnormalized bivariate
truncated von Mises function

fubvM(θ1, θ2) = eκ1 cos(θ1−μ1)+κ2 cos(θ2−μ2)+λ sin(θ1−μ1) sin(θ2−μ2).

Similarly, the partial derivate w.r.t. μ2 gives

n∑
i=1

κ2 sin(θ2i − μ2) − λ cos(θ2i − μ2) sin(θ1i − μ1)

−
n

(∫ b1
a1

fubvM(θ1, a2) − fubvM(θ1, b2)dθ1
)

∫ b1
a1

∫ b2
a2

fubvM(θ1, θ2)dθ2dθ1
= 0.

For κ1 we have

∂

∂κ1
ln L(W; (θ11, θ21), . . . , (θ1n, θ2n)) = 0,

that is,

1

n

n∑
i=1

cos(θ1i − μ1)

−
∫ b1
a1

∫ b2
a2

cos(θ1 − μ1) fubvM(θ1, θ2)dθ2dθ1∫ b1
a1

∫ b2
a2

fubvM(θ1, θ2)dθ2dθ1
= 0. (9)
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Similarly, the partial derivate w.r.t. κ2 gives

1

n

n∑
i=1

cos(θ2i − μ2)

−
∫ b1
a1

∫ b2
a2

cos(θ2 − μ2) fubvM(θ1, θ2)dθ2dθ1∫ b1
a1

∫ b2
a2

fubvM(θ1, θ2)dθ2dθ1
= 0. (10)

At this point, we can see that both equations (9) and
(10), involving κ1, κ2 parameters, respectively, preserve their
analogy with the univariate case. Their second addend cor-
responds to the definition of the estimators of E[cos(θ1 −
μ1)] and E[cos(θ2 − μ2)], respectively.

For the parameter λ we obtain

∂

∂λ
ln L(W; (θ11, θ21), . . . , (θ1n, θ2n)) = 0,

that is,

1

n

n∑
i=1

sin(θ1i − μ1) sin(θ2i − μ2)

−
∫ b1
a1

∫ b2
a2

sin(θ1 − μ1) sin(θ2 − μ2) fubvM(θ1, θ2)dθ2dθ1∫ b1
a1

∫ b2
a2

fubvM(θ1, θ2)dθ2dθ1
= 0,

which analogously corresponds to the estimator ofE[sin(θ1−
μ1) sin(θ2 − μ2)]. As in the univariate case, the truncation
parameters has the following isolated estimators

Oâ1,b̂1
= argmax

a1,b1

(
max

({
A

(
Oθ ′

11,θ
′
12

)
, . . . , A

(
Oθ ′

1n−1,θ
′
1n

)
,

A
(
Oθ ′

1n ,θ
′
11

)}))
Oâ2,b̂2

= argmax
a2,b2

(
max

({
A

(
Oθ ′

21,θ
′
22

)
, . . . , A

(
Oθ ′

2n−1,θ
′
2n

)
,

A
(
Oθ ′

2n ,θ
′
21

)}))
,

while as yielded by the above calculations, the expressions
regarding the non-truncation parameters exhibit interdepen-
dency.

3.2 Conditional truncated von Mises distribution

The density of the conditional truncated von Mises distribu-
tion is defined as:

Definition 3.2 The conditional truncated von Mises distri-
bution has density

fctvM(θ2|θ1; λ,μ1, μ2, κ2, a2, b2)

=
⎧⎨
⎩

eκ2 cos(θ2−μ2)+λ sin(θ1−μ1) sin(θ2−μ2)∫ b2
a2

eκ2 cos(θ2−μ2)+λ sin(θ1−μ1) sin(θ2−μ2)dθ2
if θ2 ∈ Oa2,b2 .

0 otherwise

(11)

It is a six-parameter distribution where the parameters
hold the same meaning as in the bivariate case, with the
simplification of parameters κ1, a1, b1 for fctvM(θ2|θ1) (or
κ2, a2, b2 for fctvM(θ1|θ2)). Worthy of note, however, is
that θ1 ∈ Oa1,b1 in fctvM(θ2|θ1) since otherwise, by the
definition of the conditional distribution ( fctvM(θ2|θ1) =
fbtvM(θ2,θ1)
ftvM(θ1)

), fctvM(θ2|θ1) is not defined.
Theorem 3.1 A conditional truncated von Mises distribu-
tion corresponds to the univariate truncated von Mises
distribution

fctvM(θ2|θ1; λ,μ1, μ2, κ2, a2, b2)

= ftvM

(
θ2;μ2 + arctan

(
λ sin(θ1 − μ1)

κ2

)
,

×
√

κ2
2 + (λ sin(θ1 − μ1))2, a2, b2

)
,

which completely specifies the behavior and properties of
the conditional distribution and is analogous to the non-
truncated conditional case [9].

Proof See supplementary material (Section 3.2). ��

3.3 Marginal truncated von Mises distribution

We can define the density function of the marginal truncated
von Mises distribution as:

Definition 3.3 The density function of the marginal trun-
cated von Mises distribution can be written as

fmtvM(θ1;W) =

⎧⎪⎨
⎪⎩

∫ b2
a2

eκ1 cos(θ1−μ1)+κ2 cos(θ2−μ2)+λ sin(θ1−μ1) sin(θ2−μ2)dθ2∫ b1
a1

∫ b2
a2

eκ1 cos(θ1−μ1)+κ2 cos(θ2−μ2)+λ sin(θ1−μ1) sin(θ2−μ2)dθ2dθ1
if θ1 ∈ Oa1,b1

0 otherwise

(12)

It is a nine-parameter distribution that shares all the param-
eters with the bivariate truncated von Mises distribution. In
the original publication, Singh [9] studied the distribution
and reported the “frontiers” of bi-modality (for μ = 0) as

I1(κ2)

I0(κ2)
= κ1κ2

λ2
,
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Fig. 3 Several truncated marginal distributions showing unimodality
(continuous line), two equalmaxima (dashed line), truncated unimodal-
ity (dash-dot line) and two distinct maxima (dotted line)

where the distribution is unimodal if I1(κ2)
I0(κ2)

≥ κ1κ2
λ2

, and
bimodal with two equal maxima otherwise. Additionally, the
modes were calculated to be symmetrical w.r.t μ1 and at the
distance value θ∗

1 that solves the equation (for μ1 = 0):

A

(√
κ2 + λ2 sin2(θ∗

1 )

)
√

κ2 + λ2 sin2(θ∗
1 )

cos(θ∗
1 ) = κ1

λ2
,

where A(x) = I1(x)
I0(x)

. In order to generalize this analysis to
cover the truncated case in Eq. (12), we need to account for
the contribution made by the parameters μ2, a2 and b2 to the
shape of the distribution. Contrary to the non-truncated case,
a truncated marginal distribution that exhibits two maxima
may have only one global maximum, and the distribution is
not necessarily centered around themean (Fig. 3). Therefore,
our analysis determines the different parameter configura-
tions that produce the whole range of behaviors, focusing on
bi-modality/unimodality.

If, without loss of generality, we take θ1′ = θ1 − μ1, we
can postulate the following theorem:

Theorem 3.2 All different behaviorsw.r.t. the unimodality/bi-
modality of the marginal truncated von Mises distribution
can be accounted for as follows:

1. fmtvM(θ1′) is unimodal with mode (maximum) in μ1, if
and only if T (λ, μ2, κ1, κ2, a2, b2) < 0 and cos(b2 −
μ2) = cos(a2 − μ2).

2. fmtvM(θ1′) is bi-modal with equal maxima, if and only
if T (λ, μ2, κ1, κ2, a2, b2) > 0 and cos(b2 − μ2) =
cos(a2 − μ2). Also in this case, a minimum is found at
θ1′ = 0.

3. fmtvM(θ1′) presents two differentiatedmaxima if and only
if one of the two following cases applies:
(a) cos(b2 −μ2) < cos(a2 −μ2) and f ′

umtvM(θ1′ ; λ,μ1,

μ2, κ1, κ2, μ2, a2, b2) has exactly two zero points in
θ1′ ∈ [−π

2 , 0].
(b) cos(b2 −μ2) > cos(a2 −μ2) and f ′

umtvM(θ1′ ; λ,μ1,

μ2, κ1, κ2, μ2, a2, b2) has exactly two zero points in
θ1′ ∈ [0, π

2 ].
4. fmtvM(θ1′) is unimodal with mode not atμ1 if the param-

eters do not match any of the above cases,
where T (λ, μ2, κ1, κ2, a2, b2) is the test function and is
defined as

T (λ, μ2, κ1, κ2, a2, b2)

= − κ1

λ2
+

∫ b2
a2

sin2(θ2 − μ2)eκ2 cos(θ2−μ2)dθ2∫ b2
a2

eκ2 cos(θ2−μ2)dθ2
, (13)

and f ′
umtvM(θ1′ ; λ,μ1, μ2, κ1, κ2, μ2, a2, b2) is the unnor-

malized truncated marginal von Mises derivative func-
tion.

Proof See supplementary material (Section 3.3). ��

Table 1 Parameter values obtained after conducting the first study

μ κ a b No. samples

All data 1.0063 5.9602 0 1.5708 741

Fig. 4 The study distribution and data representation of the entire
dataset. The estimated truncated von Mises distribution (lighter line)
clearly has higher density values than its associated von Mises distri-
bution (darker line). The data are grouped by value intervals in order to
observe its relative frequency (bars)
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Table 2 Modified Rayleigh statistic values for the second study

Truncated von Mises S∗ Non-truncated von Mises S∗

A. erioloba 3.014 3.5534

Grewia flava 0.0038 20.6273

A. leuderitzii 2.6073 10.1990

A. mellifera 1.3157 7.3046

Table 3 Parameter values yielded after conducting the second study

μ κ a b No. samples

A. erioloba 0.8516 11.1894 0 1.5359 100

Grewia flava 1.1261 5.2668 0 1.5708 254

A. leuderitzii 1.0706 5.5138 0 1.5708 184

A. mellifera 0.9125 5.7396 0 1.5708 203

4 Real data application

4.1 Leaf angle inclination

The data in Bowyer and Danson [3] was collected during a
safari along the Kalahari Transect, southwest Botswana in
2001. It contains measurements of leaf inclination angles of
four different woody plant species (Acacia erioloba, Grewia
flava, Acacia leuderitzii and Acacia mellifera) across three
different regions (Mabuasehube, Tsabong and Tshane). The
measurements were taken using a clinometer.

In order to formally test the goodness-of-fit of the esti-
mated distributions, we transform the data by means of the
random variable U = 2π [I (θ,μ,κ)−I (a,μ,κ)]∫ b

a eκ cos(θ−μ)dθ
mod 2π that

is applied over the sorted sample θ1, . . . , θn . If the data dis-
tribute according to the truncated vonMises distribution, then
the above random variable has a uniform distribution. As
shown in Mardia and Jupp [6], the modified Rayleigh statis-
tic S∗ = (1− 1

2n )2nR2+ nR4

2 , where n is the sample size and
R the mean resultant length, distributes as a χ2

2 distribution.

1. For the first study, the whole dataset containing a total
of 741 samples was observed (Table 1; Fig. 4). A visual
inspection of the plot clearly shows that the truncated
von Mises distribution performs better. Formally, for the
truncated case we have S∗ = 2.8887, which corresponds
to p-value ∈ (0.2, 0.3). For the non-truncated case, S∗ =
25.5028, with is a clear rejection p-value < 0.001. From
these resultswe conclude that the truncated distribution is
significantly better for these data. Truncation parameters
conform the circular interval O0, π

2
, which indicates no

angle greater than 90◦ was measured in this study.

2. For the second study, we grouped the data by plant types
without regard for region. This yielded four different
distributions. A visual inspection shows that the univari-
ate distributions are clearly better than the non-truncated
von Mises distribution at describing the resulting data
(Table 3; Fig. 5), except for the case of A. erioloba.
The goodness-of-fit tests (Table 2) revealed that the

Fig. 5 Studies of each type of
plant
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Fig. 6 Studies of each type of
plant in each region
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Table 4 Parameter values
yielded after conducting the
third study

Truncated von Mises S∗ Non-truncated von Mises S∗

A. erioloba, Mabuasehube 3.014 3.5534

Grewia flava, Mabuasehube 1.1543 8.9599

A. leuderitzii, Tsabong 2.0981 7.3115

Grewia flava, Tsabong 0.2050 3.8702

A. mellifera, Tsabong 0.1199 4.2131

Grewia flava(2), Tsabong 0.1165 9.7290

A. leuderitzii, Tshane 0.7002 2.8717

A. mellifera, Tshane 1.0525 10.2656

Table 5 Parameter values
yielded after conducting the
third study

μ κ a b No. samples

A. erioloba, Mabuasehube 0.8516 11.1894 0 1.5359 100

Grewia flava, Mabuasehube 1.1882 5.8142 0.0873 1.5708 50

A. leuderitzii, Tsabong 0.9712 4.8340 0.0873 1.5708 100

Grewia flava, Tsabong 1.1082 6.0832 0 1.5708 100

A. mellifera, Tsabong 0.6844 4.5884 0 1.4835 100

Grewia flava (2), Tsabong 1.1091 4.4078 0 1.5708 104

A. leuderitzii, Tshane 1.1474 7.4245 0.1920 1.5708 84

A. mellifera, Tshane 1.0525 10.2656 0.4014 1.5708 103

non-truncated distribution is rejected in all cases but in
A.erioloba, whereas the truncated distribution hypothesis
wasmore strongly accepted than that of the non-truncated
distribution in all cases. Thus we can conclude that,
for this study, the truncated distribution models the data
better.

Truncation parameters were consistently found to be inO0, π
2

except for A. erioloba, which also presented a significantly
higher concentration parameter than in any of the other esti-
mations. The irregularities in A. erioloba could partially be
explained by the small sample size, which causes the estima-
tions to be less reliable. On the whole, the remaining studies
show few variations in the location-concentration parame-
ters, which closely resemble the ones obtained in the first
study.

3. For the third study, fitted univariate truncated distribu-
tions for each plant in each region. Since not all plants
were measured in all regions, this procedure produced
eight different univariate truncated von Mises estima-
tions. The distributions are generally observed to clearly
differ from their associated non-truncated vonMises dis-
tribution, except in the first of the eight plots (Table 5;
Fig. 6). The goodness-of-fit tests (Table 4) are also con-
sistent with previous studies. All truncated von Mises
hypotheses were accepted, while around half of the non-
truncated distributions were rejected. Thus, there is a

strong suggestion that the truncated von Mises distribu-
tion properlymodels the underlying behavior that yielded
the data.

For this study, each distribution was estimated from a rel-
atively small sample size ranging from 50 to 104 samples,
which may have caused estimations to be less precise than
desired. The concentration parameter shows the highest vari-
ability across the different cases (from 4.4078 to 11.1894
across the whole study or even from 4.8340 to 7.4245 in the
case of A. leuderitzii). With more data it might be possible
to distinguish if the variations in the concentration parame-
ter are clearly influenced by the region of the plant species
or the small sample size. Regarding the location parame-
ter, there are few variations in the parameter value on the
whole, A. mellifera being the species that experienced the
highest variations w.r.t. one of the measurements in the first
study. Truncation parameters remained consistently within
the O0, π

2
interval.

5 Summary and conclusions

In this article, we developed the theoretical framework of the
univariate and the bivariate truncated vonMises distribution.
To do this, we gave

1. The definition of a truncated vonMises distribution in the
circleO. The circular distribution is defined by means of
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theO subset, as the periodicity and properties of the circle
have to be naturally acknowledged for.

2. The successfully determined expressions of the max-
imum likelihood estimators. For both univariate and
bivariate cases, solely sample-dependent maximum like-
lihood estimators of the truncation parameters were
found, while the other parameters showed interdepen-
dency.

3. The resultingmoments of the univariate case and existing
interrelationships.

4. The bivariate case and studies of the shape and behavior
ofmarginal and conditional distributions.We determined
that every conditional truncated von Mises distribution
is a univariate truncated von Mises distribution. For the
case of the marginal distribution, we concluded that only
for parameter λ = 0 does the distribution behave like a
truncated univariate von Mises distribution. When λ �=
0, the resultant marginal distribution is potentially bi-
maximal and not a von Mises distribution. The modality
behavior of this distribution has been accounted for in
Theorem 3.2.
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