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ABSTRACT
k-order Markov models have been introduced to estimation
of distribution algorithms (EDAs) to solve a particular class
of optimization problems in which each variable depends
on its previous k variables in a given, fixed order. In this
paper we investigate the use of regularization as a way to
approximate k-order Markov models when k is increased.
The introduced regularized models are used to balance the
complexity and accuracy of the k-order Markov models. We
investigate the behavior of the EDAs in several instances of
the hydrophobic-polar (HP) protein problem, a simplified
protein folding model. Our preliminary results show that
EDAs that use regularized approximations of the k-order
Markov models offer a good compromise between complexity
and efficiency, and could be an appropriate choice when the
number of variables is increased.

Categories and Subject Descriptors
G.1 [Optimization]: Global optimization; G.3 [Probabilistic
methods]

General Terms
Algorithms

Keywords
Estimation of distribution algorithms, probabilistic model-
ing, HP protein model, Markov models

1. INTRODUCTION
Evolutionary algorithms (EAs) usually implicitly exploit

the relationships between the variables to discover promising
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areas of the search space. Traditional EAs such as genetic
algorithms (GAs) employ genetic operators for this purpose.
Advanced EAs, such as estimation of distribution algorithms
(EDAs) [13, 15, 16] learn a probabilistic model that explic-
itly models these relationships. EDAs have been successfully
applied to a variety of problems and they have been shown
to be particularly suitable for problems where strong depen-
dencies between the variables arise.

One particular class of EDAs uses models where each vari-
able depends on the k, k ∈ N , previous variables in a given
order. These models, that can be seen as a generalization of
chain shaped distributions [6], for which k = 1, were called in
[18] k-order Markov models. The term refers to the analogy
with Markov chains in which the state of variable Xi de-
pends on the states of its previous k variables in the chain.
This type of Markov models, which are different to Markov
networks also applied in EDAs [17, 22], have been reported
to be appropriate for problems where the assignment to a
given variable can be made to mainly depend on the assign-
ments of the previous k variables [2, 3, 18, 20]. Since EDAs
that use these models do not require structural learning, the
EDA learning step can be very efficient, particularly when
k is small (k ≤ 3). However, as k is increased, the com-
putational complexity of the algorithm grows exponentially.
This is so because the size of the conditional probability
tables associated to each random variable is exponential in
k. Therefore, in practice it is not feasible to investigate the
suitability of Markov models for higher values of k.

In this paper, we propose an alternative approach for mod-
eling the type of relationships the k-order Markov models
are intended for. Our approach is based on the idea of using
regression to predict each variable given some combination
of its previous k variables. Therefore, instead of learning a
conditional probability table for each variable, the parame-
ters of the regression are computed. In addition, regression
is applied using regularization methods [8, 9, 14, 25]. In reg-
ularization, the model estimation process is “regularized” by
using a specific penalization term on the values of these pa-
rameters. Although regularization has been applied in many
ways, and in several different contexts, in most of the cases
it is applied to regression formulas of the model parameters,
its score or its probability parameters (if they are different).
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In our approach to learn regularized models, the elastic-net
[25], a regularization and variable selection method which
encourages a grouping effect where strongly correlated pre-
dictors tend to be in or out of the model together, is used in
the framework of multinomial regression. Different variants
of regularized models have been recently proposed in EDAs
for discrete [23] and continuous problems [11].

To evaluate the performance of the introduced algorithms
we use several instances of the hydrophobic-polar (HP) model
[7]. This model is based on the fact that hydrophobic in-
teractions are a dominant force in protein folding. The
HP model has arisen as a suitable benchmark for cross-
disciplinary studies involving domains such as computational
biology, statistical and chemical physics and optimization.
In the optimization domain, the search for the protein struc-
ture is transformed into the search for the optimal configura-
tion given an energy function that takes into account the HP
interactions that arise in the model. The problem of finding
such a minimum energy configuration is NP-complete for
the 2-d [5] and 3-d [1] lattices.

The paper is organized as follows. In the next section, k-
order Markov probability models are reviewed. In Section 3,
the regularized approximation of the k-order Markov prob-
ability models is introduced. Section 4 explains the main
components of the EDAs based on regularized Markov mod-
els. The HP protein model is introduced in Section 5. The
experimental framework and the numerical results are pre-
sented in Section 6. The conclusions and lines for future
research are discussed in Section 7.

2. K-ORDER MARKOV MODELS
We use Xi to represent a random variable. A possible

value ofXi is denoted xi. Similarly, we useX = (X1, . . . , Xn)
to represent an n-dimensional random variable and x =
(x1, . . . , xn) to represent one of its possible values.
Given an ordering of the variables, in the k-order Markov

model [18] the configuration of variable Xi depends on the
configuration of all the previous k variables, where k ≥ 0 is a
parameter of the model. When k > 0, the joint probability
distribution can be factorized as follows:

pMK(x) = p(x1, . . . , xk+1)

n∏
i=k+2

p(xi | xi−1, . . . , xi−k) (1)

otherwise, pMK(x) =
∏n

i=1 p(xi). The complexity of the
model depends on parameter k. Figure 1 shows k-order
Markov models of different complexity. Notice, that the
independence model can be representing by setting k = 0.

The pseudocode of the Markov EDA (Mk-EDAk) is shown
in Algorithm 1. The main step is the parametric learning of
the probabilistic model. Since the structure of the Markov
model is given, this step comprises to calculate the frequen-
cies from the set of selected individuals and to compute the
marginal and conditional probabilities. To sample a solu-
tion, first variables in the factor (x1, . . . , xk+1) are generated
and the rest of variables are sampled according to the order
specified by the Markov factorization.

3. REGULARIZED MARKOV MODELS
Our aim is to find feasible approximations of Markov mod-

els where the number of parameters required to approximate
the dependence between each variable Xi and previous k

� � � � � � � �
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� � � � � � � �

k=2 k=3

Figure 1: k-order Markov models of different com-
plexity.

Algorithm 1: Markov-EDA

1 D0←GenerateM individuals randomly and evaluate
them

2 t = 1
3 do {
4 Ds

t−1 ← Select N ≤M individuals from Dt−1 ac-
cording to a selection method

5 Compute the marginal and conditional probabil-
ities corresponding to each factor of factoriza-
tion (1)

6 Dt ← Sample M individuals (the new population)
from the k-order Markov model

7 } until A stop criterion is met

variables could be diminished. The approach will be regress-
ing Xi in terms of a combination of its previous k values. To
further enforce sparsity in the number of parameters regular-
ization is applied. In the following sections, we first explain
the regularization method of choice and then the way the
parameters that encode the dependence between Xi and its
k related variables are defined.

3.1 Regularized multi-logit regression
We consider the general case where the response variable

can have m possible values, i.e., the cardinality of Xi is
m ≥ 2. In this case, the multi-logit model is expressed as:

log
Pr(Xi = l|y)
Pr(Xi = m|y) = β0l + yTβl, l = 1, . . . ,m− 1 (2)

where βl0 and βl are the parameters of the linear model for
class l, and y is a p-vector of predictor variables. The way in
which predictor variables are selected is key to our proposal
and it is explained in the next section.

Following [8, 24],

Pr(Xi = l|y) = eβ0l+yT βl∑m
j=1 e

β0j+yT βj
(3)

The model is fitted using the regularized maximum multi-
logit likelihood by means of the elastic net approach [25].
This is an algorithm applied in different domains, that allows
to combine the lasso and ridge regularization and for which
an efficient implementation was available.
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LetN be the number of observations, and xj , j ∈ {1, . . . , N},
be the jth vector of variables. In addition, let pl = Pr(Xi =
l,yj) and gj = xj

i ∈ {1, . . . ,m}. The penalized loglikelihood

[
1

N

N∑
j=1

logpgj (y
j)− λ

m∑
l=1

Pα(βl)

]
, (4)

where

Pα(β) = (1− α)
1

2
||β||2l2 + α||β||l1 (5)

=

p∑
j=1

[
1

2
(1− α)β2

j + α|β|j
]

(6)

is maximized over {β0, β}m1 ∈ R
m(p+1) using the elastic

net [25].
Pα(β) is a compromise between the ridge-regression penalty

(α = 0) and the lasso penalty (α = 1). We have used the
implementation proposed in [8] which computes the models
using cyclical coordinate descent, applied along the regular-
ization path. More details about the model and the imple-
mentation can be found in [25].

3.2 Selection of the predictor variables
We consider three different variants to select the predictor

variables. Each variant corresponds to a model of different
complexity.

• Rgk: This is the simplest case. We will predict the
value of variable Xi given its previous k variables in
the ordering. Therefore, in this simple scenario y =
(xi−1, . . . , xi−k). The idea of this approximation is to
estimate the assignment of Xi as a linear combination
of each previous k variables.

• BivRgk: We also consider a more complex approxima-
tion in which Xi is expressed as a combination of all
pairwise interactions between its previous k variables.
In this case, y = (

⋃j=k
j=3 xi−2xi−j , . . . , xi−k+1xi−k) and⋃

is interpreted as the concatenation operator of all
the pairs in a vector.

• AllRgk: This corresponds to the most complex model.
Xi can be expressed as a combination of its previous
k variables, and their corresponding pairwise interac-
tions, i.e.:

y = (

j=k⋃
j=2

xi−1xi−j ,

j=k⋃
j=3

xi−2xi−j , . . . , xi−k+1xi−k) (7)

The order of the maximum number of parameters needed
to estimate the models of Rgk, BivRgk and AllRgk are, re-
spectively: O(k), O(k2), and O(k2) which compares favor-
ably with O(mk) which is the number of parameters that
would be needed to represent the joint probability table.
Also notice, that the regularization will set to zero those
parameters that do not contribute to the prediction. There-
fore, the number of required parameters can be further re-
duced.

By only including the estimation of pairwise interactions,
the prediction may be less accurate than if higher order in-
teractions were included. However, as shown in our exper-
iments, in some cases the approximation may be sufficient
to work in the context of the EDA optimization approach.

4. REGULARIZED MARKOV MODELS IN
EDAS

The pseudocode of the EDA with regularized models (MkRg-
EDA) is shown in Algorithm 2. The algorithm starts by ran-
domly sampling a population of points which are evaluated
according to the fitness function. Selection is accomplished
based on the fitness function of the individuals. In this paper
we use truncation selection although other selection meth-
ods can be used. The fundamental steps of MkRg-EDA are
the learning method (step 5), which receives as input the
selected population and outputs a set of local probabilistic
models and the sampling method (step 6), which receives the
set of probabilistic models and its parameters and outputs a
new generated population. These two steps are respectively
described in Algorithms 3 and 4. We use the maximum
number of generations as stop criterion.

Algorithm 2: MkRg-EDA

1 D0 ← Sample M individuals from a random uni-
form distribution and evaluate them

2 t ← 1
3 do {
4 DSe

t−1 ← Select N individuals from Dt−1

5 For each variable Xi, learn a regularized model
of Xi given its predictors

6 Using the set of regularized models, sample M
new individuals and evaluate them

7 } until Stop criterion is met

4.1 Learning
The elastic net procedure (Algorithm 3) computes the pre-

dictions of a given target variable for a decreasing set of
lambda values (lambda sequence). This means that for each
variable, the actual output of the method is a parameter-
ized set of predictions, one set of regression coefficients for
each lambda. We choose the lambda value that minimizes
the square error between the variable values and the predic-
tions.

Algorithm 3: MkRg-EDA learning

1 For i = 1 to n
2 Compute the predictors of Xi from the set

of previous variables Xi−1, . . . , Xi−t, t =
max(1, i− k)

3 Using the elastic-net procedure, learn a regu-
larized model of Xi given its predictors

We propose three different variants of MkRg-EDA that
will respectively use the Rgk, BivRgk and AllRgk models
described in Section 3.2. In the experiments, we will iden-
tify the variants of MkRg-EDA as MkRgk, MkBivRgk, and
MkAllRgk. Two different k parameters are used for each
regularized EDA, k = 3 and 5. In the experiments, the
six regularized k-Markov EDAs are compared to Mk-EDA1,
Mk-EDA2 and Mk-EDA3.

4.2 Sampling
The implementation of the sampling step is relatively sim-

ple. The regularized models assign a value to each variable
given their predictor values. However, the variables that are
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Figure 2: Two different types of probabilistic graph-
ical models according to their topology. (a) Central
model. (b) Markov model k = 1.

first in the sampling order will require some initial assign-
ment to be given to their predictors. This is a particular
case of the “sampling ordering” issue, that arises in sam-
pling methods where a sampling order that guarantees that
all the dependencies will be used for sampling is difficult or
impossible to find [17, 22].

To sample the initial (k) variables we propose the follow-
ing general alternatives: 1) Random initialization. 2) Use a
set of solutions previously evaluated, selected or full popu-
lation at time t− 1. 3) Initialization from sampling simpler
probabilistic models. 4) Random initialization followed by
the application of a local optimizer.

Randomly initialized values guarantees no bias in the sam-
pling process, but the values maybe too far from the optimal
ones, delaying the convergence of the algorithm. Using the
previous population will improve the quality of the initial
solutions but the algorithm may be biased towards regions
of the space already explored. Initialization from a sim-
pler probabilistic (e.g. a univariate probabilistic model) also
learned from the selected population, outperforms random
initialization in terms of the solution quality but learning of
a second model cannot be affordable in terms of time. Fi-
nally, we can generate the values corresponding to the initial
variables randomly and then apply some local optimizer on
these values. For the experiments presented in this paper,
we used the second method, initializing from the previous
selected population which is used as selection pool to choose
initial solutions for sampling.

Algorithm 4: ENReg-EDA sampling

1 Create the initial population randomly picking so-
lutions from the previous selected population

2 For j = 1 to n

3 Use the regularized model of Xi to estimate its
value xi from its predictors

4 Set Xi = xi

5 Apply the repair operator.

After solutions have been sampled, the repair operator
proposed in [3] is applied. The idea of the repair operator is
to correct self-intersecting solutions produced by sampling.
It is a problem specific operator. The method introduced in
[3] is more efficient that the one originally proposed in [4]
and subsequently applied in [18, 20, 19]. This backtrack-

ing algorithm guarantees that the HP sequence will not be
selfintersecting.

Finally, we discuss a characteristic of Markov models, re-
lated with the sampling process, and that makes a difference
to other classes of probabilistic models used in EDAs. We
call this issue, the propagation error question. It refers to the
potential unequal distribution of sampling errors due to the
propagation of early errors during sampling. To illustrate
this issue, Figure 2 shows two different models according to
their topology. In the “central model” shown in Figure 2a),
all the variables except X5 have the same probability of hav-
ing a wrong assignment during sampling.

We assume that the sampling error of a variable is the ex-
pected difference between a probability sample value and the
true value. In the central model, the sampling of all variables
except X5 are independent of each other and uniquely de-
pends on X5. On the contrary, in the Markov model shown
in Figure 2b), the assignment of variable X2 depends on X5

but every other variable depend on the assignments of the
previous variables in the order (notice that in this case the
order of the model does not agree with the enumeration of
variables). As a consequence, it is more likely to have a
sampling error for variable X3 than for variable X2. The in-
fluence of the propagation error question in the behavior of
the EDAs that use these Markov models is an open question.

5. HP PROTEIN MODEL
Under specific conditions, a protein sequence folds into a

native 3-d structure. The problem of determining the pro-
tein native structure from its sequence is known as the pro-
tein structure prediction problem. To solve this problem,
a protein model is chosen and an energy is associated to
each possible protein fold. The search for the protein struc-
ture is transformed into the search for the optimal protein
configuration given the energy function.

The HP simplified protein model [7] is used in bioinfor-
matics to investigate protein folding. In the HP model, a
protein is considered a sequence of hydrophobic (H) and hy-
drophilic or polar (P) residues which are located in regular
lattice models forming self-avoided paths. In the optimiza-
tion of the HP-protein model 2- and 3-dimensional lattices
are the most commonly used. Figure 3 shows the graphical
representations of two possible configurations for sequence
HHHPHPPPPPH in 2 dimensions.

Interactions between neighbor residues (adjacent in the
lattice but not connected in the sequence) contribute to the
total energy of the HP lattice configuration. The energy
values associated with the functional HP model [10] con-
tain both attractive εHH = −2 and repulsive interactions
(εPP = 1, εHP = 1, and εPH = 1). The HP problem consists
of finding the solution (HP chain topological configuration)
that minimizes the total energy. The energy that the func-
tional model protein associates with the configuration shown
in Figure 3a) is 1 because there is one HH interaction, one
HP interaction and two PP interactions.

An HP protein configuration can be represented as a walk
in the lattice (sequence of moves). In the sequence of moves,
the two initial residues are located adjacent in the lattice.
Each of the other residues is located to the left, to the right,
or forming a line with the previous two residues. For a given
HP sequence and lattice, Xi will represent the relative move
of residue i in relation to the previous two residues. Taking
as a reference the location of the previous two residues in
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Figure 3: (a): One possible configuration of se-
quence HHHPHPPPPPH in the HP functional
model. Hydrophobic proteins are represented by
black beads and polar proteins, by white beads.
There is one HH interaction (represented by a dot-
ted line with wide spaces), one HP interaction (rep-
resented by a dashed line) and two PP interactions
(represented by dotted lines) contacts. (b): Another
possible configuration of the same sequence with a
different pattern of interactions.

the lattice, Xi takes values in {0, 1, 2}. With respect to the
location of the previous two residues, xi = 0 means that
residue i is located to left, similarly xi = 1 and xi = 2 re-
spectively mean that residue i will be located in line with
the previous two residues and to their right. Values for X1

and X2 are meaningless, they are arbitrarily set to 0. This
codification is called relative encoding [12]. The represen-
tations of configurations in Figure 3 a) and b) are xi =
(0, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0) and xj = (0, 0, 2, 2, 0, 1, 0, 2, 2, 0, 0),
respectively.

6. EXPERIMENTS
In this section we evaluate the behavior of the introduced

EDAs. First, we introduce the function benchmark and the
parameters used by the algorithms. Then, we explain how
the experiments were designed. Finally, the results of the
experiments are presented.

6.1 Function benchmark and parameters of
the algorithms

Table 1 shows the HP instances used in our experiments.
The values shown in Table 1 correspond to the best-known
solutions (H(x∗)) for the 2-d regular lattice.
The parameters of the EDAs have been set as follows.

Truncation selection with parameter T has been used. In
this selection scheme, the best T ·N individuals of the pop-
ulation are selected to construct the probabilistic model. We
apply a replacement strategy called best elitism in which the
selected population at generation g is incorporated into the
population of generation g+ 1, keeping the best individuals
found so far and avoiding to revaluate their fitness function.
The algorithm stops when the maximum number of genera-
tions is reached. In all the experiments we use a population
size of N = 4ṅ and 500 generations.

To compare the results of the EDAs, we conducted 15
experiments for each HP instance and algorithm. A total
number of 9 × 9 × 15 = 1215 experiments were conducted.

Table 1: HP instances used in the experiments. The
search space of each instance is 2n where n is the size
of the instance.

inst. n H(x∗) sequence

s1 20 −9 {HP}2{PHH}2PHPHHPPHPH
s2 24 −9 HH(PPH)6H
s3 25 −8 PPHPPHHP 4HHP 4HHP 4HH
s4 36 −14 P 3{H2P 2}2P 3H7P 2H2P 3{PH2}2P 2

s5 48 −23 PPHPPHHPPHHP 5H10P 6

HHPPHHPPHPPH5

s6 50 −21 HHPHPHPHPH4PHP 3HP 3HP 4

HP 3HP 3HPH4{PH}4H
s7 60 −36 PPH3PH8P 3H10PHP 3

H12P 4H6PHHPHP

s8 64 −42 H12{PH}2{P 2H2}2PPH{P 2H2}2
PPH{PPHH}2PPHPHPH12

s9 85 −53 H4P 4H12P 6H12P 3H12P 3

H12P 3HP 2H2P 2H2P 2HPH
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Figure 4: Results achieved by the 9 EDAs in all the
instances.

The performance of the algorithms was evaluated consider-
ing the average best fitness obtained in the 15 experiments.
We do not compare the algorithms with respect to the best
known solutions because these optimal solutions have been
found using an unaffordable number of evaluations and/or
the intense application of local optimization procedures.

6.2 Numerical results
Our first objective was to evaluate the global behavior of

the EDAs that used regularized models. The main question
to answer is whether EDAs that use regularized models can
outperform the k-order Markov EDAs that use higher order
interactions. Other questions to discern are:

1. To what extent the regularized models that incorpo-
rate bivariate interactions can outperform the simpler
regularized models?

2. How do the EDAs that use regularized model rank
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Figure 5: Average fitness at each generation of the
EDAs for instance s1.

in comparison to Mk1EDA, the EDA that uses the
simplest model among all compared?

3. Do the results achieved by the EDAs that use regular-
ized models scale with the number of variables?

4. Do the regularized models capture any type of relevant
information about the problem?

Figure 4 shows the average best fitness achieved by all the
algorithms for all the instances. For instances s1, s2 and
s3, it is difficult to find clear differences between the algo-
rithms. These are the easiest problems and good results can
be achieved by all the algorithms. Notice however, that the
more complex models used by MkEDA2 and MkEDA3 do
not produce an important gain in the results. For instances
s4, . . . , s8, results achieved by MkEDA2 and MkEDA3 are
superior to the other algorithms. This is not surprising
since these algorithms are able to capture more informa-
tion about the problems. However, the results achieved by
the MkRg3EDA and MkRg5EDA algorithms for instances
s6, s7 and s9 are remarkable. For all these instances the
algorithms obtain an improvement over (MkEDA1). For in-
stance s6, the behavior of algorithm MkRg5EDA is very
close to MkEDA2 and MkEDA3. For the largest instance
(s9), MkRg3EDA and MkRg5EDA outperform MkEDA2.
Finally, for instance s7, the algorithms are also close to
MkEDA2 and MkEDA3.

We take a closer look to the behavior of the algorithms
by analyzing the average fitness of the population at each
generation. These results, for instances s1, s7, s8 and s9,
are shown in Figures 5-8. We have chosen one of easiest
problems and the three largest instances to analyze different
scenarios of the algorithms behavior.

The results shown in Figure 5 for instance s1 suggest that,
although the results for all the EDAs are similar, Mk3EDA
is able to reach an early advantage over the other algorithms.
It converges earlier to better solutions. However, as shown,
in Figure 7, in some cases Mk2EDA reaches better solu-
tions than Mk3EDA in later generations. Figures 6 and
Figure 8 also illustrate how MkRg3EDA and MkRg5EDA
achieve their good results for instances s7 and s9. They
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Figure 6: Average fitness at each generation of the
EDAs for instance s7.

start slower than Mk3EDA but keep the improvement of
the fitness at a better pace. This is particularly evident for
instance s7 for which the curves shown in Figure 6 indicate
that algorithms MkRg3EDA and MkRg5EDA could still im-
prove their results if more generations were allowed.

The results shown in Figures 4-8 help to answer some of
the questions posed at the beginning of this section. The
answer to the main question is negative. At least for the
instances considered, the EDAs that use regularized models
can not outperform EDAs that use models of higher com-
plexity. However, it is not clear whether these results could
change if more difficult instances were tested or a higher
number of generations were allowed.

The regularized models that incorporate bivariate inter-
actions do not seem to produce a gain in the quality of the
results achieved by MkRg3EDA and MkRg5EDA. More ex-
pressive models do not necessarily improve the optimization
results in EDAs due to issues like overfitting. The Markov
EDAs that use the linear regularized models clearly outper-
form the Mk1EDA for the largest instances (s6, s7, s8 and
s9). For the smaller instances, there is no a clear winner.
This means that the regressed models capture some sort
of relevant information about the interactions between the
variables and that this information is useful for the search.

We cannot affirm that the results achieved by MkRg3EDA
and MkRg5EDA scale with the number of variables since
we have not included a large number of instances in our
experiments. However, as noticed above, the best results
achieved by these algorithms are achieved for the largest
instance. Therefore, at least for the examples studied, the
results of the algorithms do not deteriorate with the number
of variables. It is important to note, that the population size
used by the EDAs has been set according to the number of
variables of each problems, i.e. N = 4n.

To answer the final question, we execute a new run of
MkRg3EDA, saving the regularized models learned in each
generation for each variable. The idea is to inspect the coeffi-
cients corresponding to each of the previous k values in order
to identify which of the previous variables are “the most in-
formative” for the model. We do not take into consideration
the sign of the coefficients. Figure 9 shows the results of
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Figure 7: Average fitness at each generation of the
EDAs for instance s8.
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Figure 8: Average fitness at each generation of the
EDAs for instance s9.

the experiment. In Figure 9, there are 3 coefficients for each
of the k variables. This is so because the multi-log model
uses three loglineal models to make the prediction. The first
group of three coefficients correspond to the variable that is
further away from variable Xi, i.e. Xi−k, the second group
corresponds to Xi−2 and the last group of coefficients cor-
respond to variable Xi−1. Light color correspond to greater
coefficient values. It can be seen that darker colors are con-
centrated in the columns corresponding to the first group
of coefficients. This fact is more or less consistent for all
the variables. This seems to indicate that as variables are
further away from Xi their contribution to the prediction is
less critical. The analysis of the coefficients could also be
used to “prune” the k-order Markov models, computing a
single value ki for each variable Xi. This way, only the most
informative ki values would be learned for each variable Xi.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have proposed the use of regularized

probabilistic graphical models to investigate the influence
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Figure 9: Coefficients associated to each of the
k variables in the multinomial regularized model
learned for algorithm MkRg3EDA.

of the complexity of k-order Markov models in the behavior
of EDAs that use these models. We have analyzed three
variants of the regularized models that comprise single inde-
pendent variable contributions, bivariate contributions and
the combination of these two models. Our results show that
EDAs that use regularized models based on linear combi-
nations of independent variables can improve the results of
Mk1EDA for difficult problems. They can also approximate
the results of MkEDAs for k = 2 and k = 3. However, in
none of the problems considered, the introduced regularized
k-order Markov EDAs were able to outperform MkEDA3,
the EDA that uses the higher order distributions. Experi-
ments using other functions benchmarks are needed to fully
validate the introduced algorithms.

One of the main contributions of the approach introduced
in this paper is that it allows to investigate what happens to
the performance of EDAs when the accuracy of the model es-
timation is relaxed using different types of approximations.
We have shown that the regularized models can support in-
formation about the role played by the previous k variables
in the Markov approximation. This information could be
used to refine the models.

Learning a regularized model implies to solve a convex op-
timization problem. This represents an additional cost for
EDAs which is increased because for each variable, a differ-
ent model is learned. Certainly, using a more complex phase
of parameter estimation, the benefits of avoiding structural
learning may deteriorate. However, there exist many com-
plex problems where the cost of the fitness evaluation jus-
tifies the use of more costly, but still feasible, estimation
and sampling techniques. Furthermore, other alternative,
less computationally expensive, ways of using regularization
have been recently investigated and could be tested in the
context of continuous k-order Markov models [11].

The regularized EDAs introduced in this paper can also
be seen as a particular way of hybridizing EDAs with other
traditional optimization algorithms, one of the areas where
research on EDAs seems to be more promising [21]. Future
research lines could include tuning the regularization param-
eter to improve accuracy in the approximation and develop-
ing a flexible k-order model able to identify k according to
the nature of the problem.
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Component weighting functions for adaptive search
with EDAs. In Proceedings of the 2008 Congress on
Evolutionary Computation CEC-2008, pages
4067–4074, Hong Kong, 2008. IEEE Press.
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