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ABSTRACT
One of the uses of the probabilistic models learned by esti-
mation of distribution algorithms is to reveal previous un-
known information about the problem structure. In this pa-
per we investigate the mapping between the problem struc-
ture and the dependencies captured in the probabilistic mod-
els learned by EDAs for a set of multi-objective satisfiability
problems. We present and discuss the application of differ-
ent data mining and visualization techniques for processing
and visualizing relevant information from the structure of
the learned probabilistic models. We show that also in the
case of multi-objective optimization problems, some features
of the original problem structure can be translated to the
probabilistic models and unveiled by using algorithms that
mine the model structures.

Categories and Subject Descriptors
G.1 [Optimization]: Global optimization; G.3 [Probabilistic
methods]

General Terms
Algorithms

Keywords
Estimation of distribution algorithms, problem structure,
probabilistic modeling, visualization

1. INTRODUCTION
Estimation of distribution algorithms (EDAs) [14, 19, 21]

are evolutionary algorithms that use population of points
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and apply selection based on the fitness of the individu-
als. To this respect they are similar to genetic algorithms
(GAs) [7, 10]. However, they replace traditional crossover
operators used by GAs by the estimation and sampling of
probabilistic models.

An important characteristic of EDAs is their capacity to
learn a model of the problem during the search. Although
the main use of the probabilistic model learned by EDAs
is to sample new solutions, the model can be also used to
capture previously unknown information about the problem
structure. As a result, EDAs can be seen not only as an opti-
mization algorithm but also as a simulation tool to produce
information about the problem domain.

One of the factors that influences the extent to which
the information contained in the probabilistic models is ex-
ploited is the class of techniques available to preprocess and
visualize this information. The use of more sophisticated
preprocessing and visualization techniques can contribute
to increase the amount of information extracted from the
models, to enhance the quality of this information, and help
the user to transform this information into knowledge about
the problem.

In this paper we present and discuss the application of
methods for extracting, processing and visualizing relevant
information from the structure of the probabilistic models
learned. We show the way in which data preprocessing and
visualization techniques can help to reveal and elaborate this
information.

The information mined for the models can be applied in
a variety of ways: e.g. to evaluate the model accuracy in
capturing the original problem interactions, to improve the
EDA and design local optimization algorithms, to classify
the problem instances according to the structural patterns
extracted from the learned models, etc. However, the focus
of this paper is on expanding the set of current techniques
employed to analyze the probabilistic models in EDAs. Cur-
rently, the investigation is mainly based on the independent
analysis of the edge frequencies computed from the adja-
cency matrices that represent the structures of the proba-
bilistic models.

We extend the analysis of interactions between variables
to the analysis of interactions between edges, and present
techniques that allow to visualize these interactions globally
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(hierarchical association of edges in the models) and dynam-
ically (interactions between edges at different generations).
To illustrate the usefulness of these techniques, we search
for relationships between the original multi-objective satisfi-
ability problem structure and the structural characteristics
of the models learned by EDAs.

The paper is organized as follows: In the next section,
EDAs are presented and the Bayesian network-based EDA
used for the optimization of the multi-objective problems is
explained. Section 3 introduces a possible general strategy
to extract information from the models learned by EDAs.
Previous work on the analysis of the probabilistic models
learned in EDAs and discrete multi-objective problems trea-
ted with these algorithms is briefly reviewed in Section 4.
Section 5 presents the multi-objective satisfiability problem
and results obtained by analyzing the graphical models gen-
erated by EDAs in the solution of this problem. The con-
clusions of our paper and some lines for future research are
given in Section 6.

2. AN EDA FOR MULTI-OBJECTIVE PROB-
LEMS

Distinctive features of EDAs are the type of probabilis-
tic model, and the particular class of learning and sampling
methods. The models may differ in the order and number of
the probabilistic dependencies that they represent. A variety
of learning and sampling techniques can be used in accor-
dance to the type of representation and other characteristics
of the optimization problem. In particular, there may be im-
portant differences between EDA implementations for single
and multi-objective problems. Enforcing the population di-
versity needed to guarantee a good covering of the Pareto
set is particularly important for multi-objective problems
and specialized learning and sampling methods may be con-
ceived to fulfil this goal.

The estimation of Bayesian networks algorithm (EBNA)
[5] learns a Bayesian network from the database contain-
ing the selected individuals at each generation. We have
adapted the EBNA algorithm to deal with multi-objective
problems by modifying the selection step.

The selection method employed uses Pareto ranking se-
lection where individuals are ordered according to the front
they belong to. Individuals in the first front (non-dominated
solutions) come first. Then individuals that are only domi-
nated by those in the first front and so on. Within each front,
they are ordered according to the average rank of their fit-
ness functions. After all the population has been ordered,
truncation selection of the T percentage of the population
is done.

A pseudocode of EBNA is shown in Algorithm 1. The
algorithm was implemented in Matlab using the MATEDA-
2.0 software [23]. The learning and sampling steps of the
Bayesian networks are implemented using the Matlab Bayes
Net (BNT) toolbox [20]. The scoring metric used was the
Bayesian metric with uniform priors, and each node was
allowed a maximum number of 5 parents.

3. STAGES IN THE ANALYSIS OF MOD-
ELS

We propose the following steps for the analysis of the in-
formation contained in the models:

Algorithm 1: EBNA

1 BN0 ← (S0, θ
0) where S0 is an arc-less DAG, and

θ0 is uniform

2 p0(x) =
Qn

i=1 p(xi) =
Qn

i=1
1
ri

3 D0 ← Sample M individuals from p0(x) and eval-
uate them

4 t ← 1

5 do {
6 DSe

t−1 ← Select N individuals from Dt−1 using
Pareto-ranking selection.

7 S∗
t ← Use local search to find one network

structure that optimizes scoring metric

8 θt← Calculate θt
ijk using DSe

t−1 as the data set

9 BNt ← (S∗
t , θt)

10 Dt ← Sample M individuals from BNt and
evaluate them

11 } until Stop criterion is met

• Extraction of the structures.

• Mining of the structures.

• Visualization of the relevant features.

3.1 Extraction of the structures
In some probabilistic models such as Bayesian and Gaus-

sian networks the identification of the model structure is
straightforward. However, some transformation may also be
needed. For instance, the direction of the arcs is usually
disregarded when the structure of the Bayesian network is
used for the analysis. Other models may require a step where
more sophisticated techniques are employed to identify the
structure. One example are correlation matrices used to rep-
resent interactions in continuous problems. In such models,
some underlying structure is assumed to exist but it has to
be recovered by means of some action, e.g. thresholding the
correlation values according to some parameter.

3.2 Mining of the structures
Once the structure has been extracted, the next step is to

mine it looking for some predefined characteristics or trying
to identify salient features. The type of search will depend
on whether we are trying to find clues about the behavior
of the algorithm such as the capacity of the probabilistic
model to represent the problem structure, the accuracy of
the model learning algorithm to detect the interactions, etc.
or whether we intend to reveal characteristic features about
the problem domain such as the set of variables that inter-
act, the hierarchical structure of the interactions, etc. No-
tice that although the structure mining step is related to
the structure extraction step, in the former we are making
a discrimination between the structures according to some
properties. On the other hand, the extraction step can be
also seen as the starting point for the more complex struc-
ture mining step.

There are several features that can be extracted from the
model structures, among them, the following:

• Number of edges.

• Distribution of the vertex degree.
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• Size of the maximum clique.

• Number of maximal cliques.

• Number and average size of connected components.

• Sets of interacting components.

These features can also support information about the
complexity of the problems. For example, the size of the
maximum clique has an important role in the complexity
of the sampling procedures and the critical population size
of EDAs. Other topological measures used to characterize
graphs and networks [1] (e.g. centrality of the graph, clus-
tering coefficient and average path length between vertices)
could be used to unveil relevant information about the prob-
lem from the analysis of the structures.

There are different algorithms that allow to extract from
the model structures the previously mentioned topological
features of the graphs. Some of the algorithms may be very
costly, as is the case with the methods used to find all the
maximal cliques or the maximum clique of a graph. If the
analysis of the models is done online, efficiency considera-
tions should be taken into account.

In this paper we will consider that the structure mining
step is done starting from the complete set of structures
learned by the EDA in one or more runs. We present results
in the identification of frequent subgraphs in the structures
of the models learned by EDAs and the relationships of these
subgraphs with the original structure of the problem.

3.3 Visualization of the relevant features
Visualization techniques are an important tool for inter-

pretation and understanding of data. Classical approaches
dealing with visualization of small, isolated problems have
recently shifted to the visualization of massive scale, dy-
namic data comprised of elements of varying levels of cer-
tainty and abstraction [25].

Now we consider the characteristics of the data generated
in EDAs. We use the following classification to distinguish
the way the different classes of data are produced:

• Data related to the points generated in relation to
the search space (e.g. number and distribution of the
points generated).

• Data related to the evaluation of the (possible multi-
ple) objective functions (e.g. quality of the solutions,
shape of the Pareto front approximations, etc.).

• Probabilistic models (e.g. structure and parameters of
the probabilistic models).

Notice that in opposition to other types of data derived
from physical processes (e.g. ecological and biological sys-
tems), EDAs, and in general evolutionary algorithms, are
algorithmic simulations. All the components of the algo-
rithm are well specified and the obtained data is produced
by the process itself. Therefore, the conditions of the sim-
ulations can be modified to study its influence in the data
obtained.

We will focus on the application of visualization tech-
niques to unveiling different features of the probabilistic
learned by EDAs. In the following we describe a number
of preprocessing and visualization techniques that will be
used in our experiments.

Among the visualization techniques used for multi-dimen-
sional categorical data are parallel coordinates, dendrograms
and glyphs.

In parallel coordinates [11], every observation is plotted
for each axis/variable, and a connecting line is drawn for
each observation between all the axes. This technique can
be used to identify outlier points, those that do not follow
the same trend than the rest. Dendrograms are graphs that
serves to represent hierarchical trees [12]. A dendrogram
consists of many U-shaped lines connecting objects in the
hierarchical tree. The height of each U represents the dis-
tance between the two objects being connected. A glyph is a
visual representation of a piece of data where the attributes
of a graphical entity (e.g. shape, size, color, and position)
are dictated by one or more attributes of a data record. The
placement or layout of glyphs on a display can communicate
significant information regarding the data values themselves
as well as relationships between data points [26].

Frequency matrices [4, 8, 24] are those where the fre-
quency in which each arc appears in the Bayesian network is
represented. The frequencies of the two arcs that involve the
same pair of variables are counted together. Frequency ma-
trices can be computed for a particular generation or taking
the information from all the generations.

The frequency matrix representation has two main limi-
tations. First, it is not possible to investigate the types of
structures learned at each generation. It has been early ob-
served that structures of the models learned by EDAs can
change along the evolution [2]. The other limitation of this
type of representation is that it is not possible to capture
interactions between different substructures of the problem.
For instance, if the frequency matrix shows that two edges
have occurred ten times in the structures learned, we can-
not determine how often they have appeared together in the
same structure.

4. PREVIOUS WORK
Our work is part of an ongoing research trend that uses the

analysis of the structures of the probabilistic models learned
by EDAs to investigate their relationship with the original
problem structure. A number of researchers have studied
the most frequent dependencies learned by the probabilis-
tic models in EDAs and analyzed their mapping with the
function structure [2, 17, 18, 24].

More recently, some work has been devoted to analyzing
the way in which the different components of the EDA in-
fluence the arousal of dependencies [8] and to use the prob-
abilistic models obtained by EDAs to speed up the solu-
tion of similar problems in the future [9]. Recently, it has
been shown [16] that the model quality in EDAs based on
Bayesian networks can be greatly influenced by the scoring
metric employed and the type of selection operator (and its
intensity).

Perhaps the most common visualization technique used
to show the structural relationships in the model learned by
EDAs are frequency matrices [4, 8, 24] which are usually rep-
resented using choropleth maps (maps with color-shadings
to represent quantities) or contour plots.

Other visualization methods commonly used in EDAs are
dotplots, histograms, boxplots and scatter plots.

There is an extensive list of papers treating the appli-
cation of EDAs to discrete and continuous multi-objective
problems. The review of this work is beyond the scope of
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this paper. Relevant to our research is the application of
Bayesian network-based EDAs to discrete problems as done
in [13, 15, 22]. This work is focused on the solution of the
optimization problem and does not present a detailed anal-
ysis of the structures of the Bayesian networks learned by
the EDAs. The type of multi-objective problems used in our
experiments has been previously used to study EDAs in [3].

5. EXPERIMENTS
In this section, we investigate the arousal of dependen-

cies in EBNA for multi-objective problems by analyzing the
relationship between the structures learned by EBNA and
the structure of the original problem. The main objective
is to determine whether original interactions of the prob-
lem are translated in the models learned and in which way
these original structural relationships are reflected in the
learned models. We emphasize the role of the techniques for
extracting, processing and visualizing the information from
the models.

5.1 Multi-objective SAT problem
As a benchmark for our experiments we use a multi-objective

satisfiability (SAT) problem.
Let U = {U1, U2 · · ·Un} be a set of n Boolean variables.

A (partial) truth assignment for U is a (partial) function
T : U → {true, false}. Corresponding to each variable Ui

are two literals, ui and ¬ui. A literal ui (resp. ¬ui) is true
under T iff T (ui) = true (resp. T (ui) = false). A set of
literals is called a clause, and a set or sequence (tuple) of
clauses a formula φ. The satisfiability problem (SAT) is the
problem of finding a satisfying assignment for a formula.

We address the Max-SAT problem which consists of find-
ing an assignment of the literals that maximizes the number
of satisfied clauses. We focus on SAT problems where each
clause has exactly three literals (3-SAT). Besides, the single
objective problem is extended to the multi-objective domain
by considering a set of k formulas to be simultaneously sat-
isfied.

Let {φ1, . . . φk} be a set of formulas, we define the set
of functions {f1, . . . fk}, fi(x) → N , where fi(x) gives the
number of satisfied clauses in φi for the unique assignment
of the literals determined by x. x ∈ X = {0, 1}n and xi =
1→ Ui = ui, xi = 0→ Ui = ¬ui.

5.1.1 Function benchmark
We generate different classes of multi-objective satisfia-

bility problems trying to mimic different structural relation-
ships between the variables and formulas. Four classes of
problems are used. For each class, 10 instances of a multi-
objective 3-SAT problem are generated. Each problem has
20 variables and 10 formulas, with 20 clauses each one. The
classes were generated as follows:

• Class 1: For each formula, clauses are independently
and randomly generated.

• Class 2: Clauses are assigned different probabilities to
be included in a formula. The probability is higher if
the clause contains variables from a predefined set Z.
Formulas are independently generated.

• Class 3: Half of the formulas are generated as described
for class 2. Then, the rest of formulas are generated
by modifying previous formulas in the following way:
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Figure 1: Average number of vertices for each vertex
degree in the interaction graphs.

First a copy φj of formula φi is made, then a number
of variables are replaced by variables that are not in
the current formula.

• Class 4: Half of the formulas are generated as described
for class 2. Then, the rest of formulas are generated
by modifying previous formulas in the following way:
First a copy φj of formula φi is made, then a random
number literals are negated.

As an initial step to understand the characteristics of the
instances, we compute the interaction graphs corresponding
to each instance. In these graphs, two variables are joined
by an edge if they interact in the problem structure. For
the multi-objective SAT problem, we consider as interacting
variables those that appear together in at least one of the
clauses of any of the formulas. From these graphs, we com-
pute different statistics that can provide information about
particular characteristics of the problem. Figure 1 shows
the average vertex degree distribution in the four classes of
instances. It can be seen that there are important differ-
ences between the instances in the distribution of vertices
with different degrees. While for class 1, half of the total
number of vertices are connected to all the other vertices,
for class 3 the number of vertices with high degree is much
smaller. We expect these differences to have an influence in
the structures learned by the EDA.

5.2 Design of the experiments
We use EBNA as described by Algorithm 1 to find Pareto

set approximations for the 40 problem instances. The algo-
rithm used a population size of 500 individuals and it was
allowed a maximum number of 50 generations. 30 indepen-
dent executions where conducted for each instance. In gen-
eral, the Pareto set approximations achieved by EBNA were
better (using different metrics of comparison) than those
achieved for the same problems with EDAs that used sim-
pler probabilistic models (data not shown).

The following analysis focuses on the Bayesian network
structures generated. The total number of such structures
was 60000.

5.3 Numerical results
We start from a set of initial experiments that show some

topological properties of the models learned by the algo-
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Figure 2: Average number of vertices for each vertex
degree in the learned structures.

rithm. Then, we investigate the relationship between the
original structure of the problem (the clauses in the original
formulas) and the most frequent clusters of three variables
found in the Bayesian networks learned by EBNA. Finally,
some of the visualization techniques are used to capture
more insight about the structural relationships between the
components of the Bayesian networks learned.

5.3.1 Complexity of the learned structures
In the first experiment the degree distribution from the

Bayesian learned structures is computed. For each instance,
we use the 1500 available structures to compute the corre-
sponding mean degree distribution. The obtained statistics
are used to find the degree distribution corresponding to
each class of problems. The results are shown in Figure 2.

It can be seen in Figure 2 that the distribution is similar
for classes 1,2 and 4. However, the degree distribution of
instances in class 3 is different, there are less vertices with
low distribution and more vertices with higher distribution.
Notice, that this is a behavior different from what expected
from considering the original problem degree distribution
shown in Figure 1. This could be explained by three rea-
sons: 1) The EDAs start from a uniform population and
initial structures contain few edges, i.e. the degree of all
vertices is very low. 2) The fact that two variables appear
together in a clause does not necessarily imply that these
variables have a high interaction. As a result the number of
edges in the probabilistic model, and the degree of the ver-
tices, can be smaller than in the original interaction graph.
3) The learning algorithm imposes constraints on the max-
imum number of parents for each variable in the Bayesian
network. Therefore, some of the original interactions may
not be represented.

The analysis of the degree distribution hints to the fact
that the structures learned for problems of class 3 are more
dense than for the rest of the problem. We analyze the
average number of edges learned for each class of problem
at each generation. These results are shown in Figure 3.
The number of dependencies learned increases over time. We
hypothesize that the increasing level of diversity enforced by
the application of the Pareto rank selection method induces
more complex models.
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Figure 3: Average number of edges learned at each
generation.
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Figure 4: Frequency of different sets of edges in the
learned structures.

5.3.2 Relationship with the original problem struc-
ture

We start by evaluating to which extent the original struc-
ture of the problem is translated to the Bayesian networks.
We hypothesize that the sets of three variables that belong
to a clause in any of the original formulas will appear to-
gether with higher frequency in the structures learned by
the models. Similarly, we expect this fact to occur for pairs
of variables that belong to the same clause. Therefore, for
each of the 40 instances we compute the frequency of ap-
pearance of each possible pair and triple of vertices in the
corresponding Bayesian networks. Notice that this implies
computing of possible cliques of size 3 in each of the net-
works. There are 210 possible pairs and 1140 triples. Then,
we compute the statistics for pairs that were in the original
structure and those that were not. These numbers were av-
eraged for each of the problem classes and the results are
shown in Figure 4.

In Figure 4, ”Edges: Spurious” means the pair of vertices
that were not together in any of the clauses of the original
problem. ”Edges: Orig>=1” means edges that were in at
least one of the clauses. ”Edges: Orig>1” means edges that
were in at least two of the original clauses. For triples the
interpretation of the legends is respectively the same.

The main conclusion from the analysis of Figure 4 is that
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Figure 5: Mapping between the expected and ob-
served probabilities of appearing in a learned struc-
ture for each original clause of all instances of prob-
lem class 3.

the pairs of vertices and triples in the learned structures
are more likely to be related in the original structure of the
problem. Also, if pairs and triples of variables appear more
often in the clauses they will have a higher probability to
be captured in the model. However, not all of the original
interactions have to be captured by the model. It can also
be observed that there are differences in the frequency of
the structures between the three classes of problems. In
particular, there are more pairs and triples for instances of
class 3. This is consistent with the experiments described
before.

We investigate now whether the frequency of triples can be
explained by the joint effect of the pairs of variables that are
comprised in each triple. This is, for every triple (xa, xb, xc)
corresponding to a clause in the original problem, we mea-
sure the correlation between the expected probability of the
triple pe(xa, xb, xc) = po(xa, xb) · po(xa, xc) · po(xb, xc) and
the observed probability po(xa, xb, xc). This computation is
done for all the triples in all the problem instances. The
probability values corresponding to the pairs and triples are
computed as explained in the previous experiment.

Figure 5 shows the mapping between pe(xa, xb, xc) and
po(xa, xb, xc) for all instances of problem class 3. The av-
erage correlation values are above 0.85 for all the instances.
This indicates that the univariate product of edges frequency
can be used to predict the appearance of the triples.

5.3.3 Application of the visualization techniques
The process in which small structural components (e.g.

the edges) are combined to form bigger structures in the
models is of particular interest. We have seen in the previ-
ous section that the appearance of a triple can be predicted
by looking at the frequencies of the edges that integrate it.
However, we would like to know the implication of this ag-
gregation effect for the emergence of larger structures and
the common appearance of groups of related triples.

It is difficult to detect how often different components
appear together forming increasingly complex substructures.
A statistical analysis of this kind is hard to carry out and
even for a single problem there arise obstacles to accurately
detect relationships between the structural components.
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Figure 6: Dendrogram visualization of the selected
edges of instance S3,2.

We use hierarchical clustering and dendrogram visualiza-
tion to show the way in which different components of the
problem are related in the structures learned. For one of
the instances (second instance of class 3, namely S3,2 in-
stance), we mine the 1500 structures corresponding to the
30 executions of EBNA for this problem. First, the triples
with a frequency of appearance above 0.25 are extracted and
the edges that form these triples are identified. There are
23 edges. For each of the 1500 structures, the substruc-
tures comprising the 23 edges are extracted, i.e. for each
structure, a binary vector indicating whether each edge was
learned in the corresponding Bayesian network is produced.

Finally, the 1500 substructures are clustered using hierar-
chical clustering and taking as the distance measure the op-
posite of the correlation between the observations, i.e. edges
that appear together in the structures with a high frequency
are closer. The hierarchical cluster obtained in this way is
shown in Figure 6. This graph gives an idea of the proximity
of the edges in terms of their frequency of appearing together
in the structures. Edges joining pair of variables that belong
to the same clause in the original problem tend to appear
together more frequently. More complex structures appear,
although less frequently. The important gain is that we can
identify how these more complex subgraphs are formed. The
same procedure can be used in other problems to display
the hierarchical organization of the interactions between the
problem components.

One limitation of the dendrogram visualization is that it is
not possible to observe the time (generation) at which two
or more edges appear together in the structures. We use
parallel coordinate visualization to reveal this information.
Using the same data set of substructures learned for instance
S3,2 and adding the generation at which each structure was
learned, we generate the parallel coordinates graph shown
in Figure 7 where edges are represented using their index in
an arbitrary ordering.

In this graph, there are only two possible types of lines
between two adjacent points representing different edges. If
there is a horizontal line between (x, g) and (x + 1, g), this
means that the edges x and x + 1 appear together in the
Bayesian network learned at generation g in at least one of
the 30 possible runs. If there is a line from (x, 0) to (x+1, g)
it means that in at least one of the structures, edge x appears
in the Bayesian network learned at generation g but edge
x + 1 is not present in the same structure.
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Figure 7: Parallel coordinate visualization of the se-
lected edges of instance S3,2.
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Figure 8: Glyph visualization of a number of exem-
plars for the selected edges of instance S3,2.

It can be observed that the frequent cone patterns indicate
that it is common to find, in the learned structures, only one
of the two edges represented by the adjacent points. How-
ever, this pattern is not shared by edge 19 and its adjacent
edge 20. In this case, the two edges seem to appear always
together (or be both absent) in the structures, at least this
can be clearly observed for generations above g = 15. For
g < 15, cluttering does not allow a clear visualization. The
relationship between these edges is the type of outliers that
can be detected with this type of techniques.

When the number of structures generated is too high it is
important the identification of a set of representative struc-
tures. We have applied a clustering algorithm that separates
the data into non-overlapping clusters and simultaneously
identify a characteristic member of the cluster or exemplar.
Affinity propagation [6] is applied to the set of 1500 sub-
structures obtained for instance S3,2.

The algorithm grouped the 1500 structures into 124 clus-
ters. We then computed the average generation for struc-
tures that belong to the same cluster. The idea was to de-
termine if the clustering was able to detect some common
pattern in the structures that could be associated to the
generation in which they were learned.

Figure 8 shows the star glyph representation of each ex-
emplar for the 12 clusters with more members. A star glyph

represents each observation as a ”star” whose i-th spoke is
proportional in length to the i-th coordinate of that obser-
vation. Each star has 27 spokes, one for each edge, and ob-
servations can only be one or zero respectively meaning that
the corresponding edge is present or absent in the structure
of the exemplar. At the bottom of each glyph, two values
are shown: The first one corresponds to the number of struc-
tures in the cluster, the second is the average generation in
which the structures in the cluster were learned.

The analysis of the glyphs provides information about the
similarities between the clusters. For example, it can be
appreciated that one empty structure is identified as the
exemplar of a cluster that comprises 24 structures. Not sur-
prisingly, the average generation in which the structures that
belong to this cluster were learned is very low (1.87). This
fact corresponds to the evidence that at the first generations
of the EDA the Bayesian networks structures contain very
few edges. Notice that the clustering algorithm does not em-
ploy information about the generations at which structures
were learned. In this and other similar problems, glyphs
constructed from the exemplars can help to reveal more so-
phisticated patterns in the structures.

6. CONCLUSIONS
EDAs have shown their capacity to solve optimization

problems. Still they are very useful at revealing details of
the problem structure. In order to enhance this capacity it
is important: 1) to develop the tools to extract and visual-
ize the information from the models, 2) to understand the
way in which the EDA components influence the arousal of
dependencies, 3) to expand the uses of the structural infor-
mation captured by the models in the conception of more
advanced (hybrid) optimization schemes.

In this paper we have investigated topics related to the
first two research lines mentioned above. We have shown
the way in which different data analysis and visualization
techniques can help to discover the structural relationships
in the models learned by EDAs. Although these techniques
are widely applied in other domains, they have not been
employed to investigate the data sets of graphical structures
generated by EDAs. Indeed, in this domain they are re-
quired to unveil meaningful information.

We have partially addressed the relationship between the
original interactions of multi-objective problems and the de-
pendencies that are captured by the Bayesian networks learned
in the evolution of EDAs. For the multi-objective SAT prob-
lems considered in this paper, we have shown that variables
that appear together in the formulas are more likely to be
related in the Bayesian networks. Nevertheless, the influ-
ence of the different objectives in the structures learned by
the models, and other factors related to multi-objective na-
ture of the problem have been not investigated. These are
relevant topics worth of future research.

7. ACKNOWLEDGMENTS
This work has been partially supported by the Etortek,

Saiotek and Research Groups 2007-2012 (IT-242-07) pro-
grams (Basque Government), TIN2008-06815-C02-01, TIN-
2008-06815-C02-02, TIN2007-62626 and Consolider Ingenio
2010 - CSD2007-00018 projects (Spanish Ministry of Science
and Innovation) and COMBIOMED network in computa-
tional biomedicine (Carlos III Health Institute).

451



8. REFERENCES
[1] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E.
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