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ABSTRACT
Tumor classification based on gene expression data can be
applied to set appropriate medical treatment according to
the specific tumor characteristics. In this paper we pro-
pose the use of estimation of distribution algorithms (EDAs)
to enhance the performance of affinity propagation (AP) in
classification problems. AP is an efficient clustering algo-
rithm based on message-passing methods and which auto-
matically identifies exemplars of each cluster. We introduce
an EDA-based procedure to compute the preferences used by
the AP algorithm. Our results show that AP performance
can be notably improved by using the introduced approach.
Furthermore, we present evidence that classification of new
data is improved by employing previously identified exem-
plars with only minor decrease in classification accuracy.

Categories and Subject Descriptors
G.1 [Optimization]: Global optimization; G.3 [ Proba-
bilistic methods]

General Terms
Algorithms

Keywords
Clustering, classification, estimation of distribution algo-
rithms, cancer, gene expression profiles

1. INTRODUCTION
The analysis of gene expression data can be used to iden-

tify the primary anatomical site of origin of human tumors.
This identification is important since different types of tu-
mors will require different treatment strategies. However,
there are a number of obstacles associated to the automatic
classification of new tumor samples. Similar tumors may
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be produced by different tumor pathways and have differ-
ent gene expression profiles. Furthermore, in many cases
the genes involved in the tumor pathways are only partially
known. Classification methods are required not only to dis-
tinguish between tumor subtypes, but also to identify ex-
emplary genetic profiles within the same class of tumor sub-
types. In this paper we propose a classification algorithm
that combines the application of affinity propagation, a very
efficient unsupervised classification method, with an estima-
tion of distribution algorithm.

Affinity propagation [5] is a message-passing-based clus-
tering algorithm that, given a set of points and a set of
similarity values between the points, finds clusters of similar
points, and for each cluster gives a representative example
or exemplar. The algorithm has been applied to a variety
of problems outperforming other traditional clustering algo-
rithms [5, 9, 18].

Estimation of distribution algorithms (EDAs) [8, 10] are
a class of evolutionary algorithms that apply probabilistic
modeling of the selected solutions instead of crossover op-
erators. The rationale behind probabilistic modeling is to
explicitly model the relationships between the variables of
the problem in terms of probabilistic dependencies which are
captured by probabilistic graphical models (PGMs). The
PGMs are employed to generate new solutions that will
likely resemble the selected points.

We apply AP to 12, 533 genes expressed in carcinomas of
the prostate, breast, lung, ovary, colorectum, kidney, liver,
pancreas, bladder/ureter, and gastroesophagus [20]. We in-
tend to investigate the use of clustering techniques in the
context of supervised classification. Our results show that
the quality of the affinity propagation clustering can be in-
creased by an automatic selection of its parameters. Con-
cerning the clustering of the gene expression data, even with-
out a previous filtering of genes, the algorithm can achieve
a high classification accuracy.

The paper is organized as follows: In the next section,
the affinity propagation algorithm is presented and its main
components are discussed. In Section 3 exemplar-based clas-
sification is introduced. Section 4 presents the estimation of
distribution algorithms used in our experiments and how to
combine affinity propagation with EDAs to improve classi-
fication accuracy. Section 5 introduces the tumor dataset
used for our experiments, the experimental framework to
evaluate our proposal, and the numerical results. The con-
clusions of our paper and some lines for future research are
given in Section 6.
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2. AFFINITY PROPAGATION
Clustering methods [6] are used to group objects into dif-

ferent sets or clusters, in such a way that each cluster com-
prises similar objects. Clusters can then be associated to
labels that are used to describe the data and identify their
general characteristics. Among the the best known cluster-
ing algorithms are k-means [7] and k-center clustering [1].

Affinity propagation takes as input a matrix of similarity
measures between each pair of points s(yi,yk). For each
data point yk, a real number s(yk,yk) is also entered as
an initial input. The s(yk,yk) values are called preferences
and are a measure of how likely each point is to be chosen
as exemplar. The algorithm works by exchanging messages
between the points until a stop condition, which reflects an
agreement between all the points with respect to the current
assignment of the exemplars, is satisfied. These messages
can be seen as the way the points share local information in
the gradual determination of the exemplars.

There are two types of messages to be exchanged between
data points. The responsibility r(i, k), sent from data point
yi to candidate exemplar point yk, reflects the accumu-
lated evidence for how well-suited point yk is to serve as
the exemplar for point yi, taking into account other poten-
tial exemplars for point yi. The availability a(i, k), sent
from candidate exemplar point yk to point yi, reflects the
accumulated evidence for how appropriate it would be for
point yi to choose point yk as its exemplar, taking into ac-
count the support from other points that point yk should
be an exemplar.

The availabilities are initialized to zero: a(i, k) = 0. Then,
the responsibilities are computed using the rule:

r(i, k)← s(yi,yk)−maxk′|k′ �=k{a(i, k′) + s(yi,yk′
)} (1)

Equation (1) allows all the candidate exemplars to com-
pete for ownership of a data point. Evidence about whether
each candidate exemplar would be a good exemplar is ob-
tained from the application of the following availability up-
date:

a(i, k)← min

⎧⎨
⎩0, r(k, k) +

∑
i′|i′ �∈{i,k}

max{0, r(i′, k)}
⎫⎬
⎭ (2)

In Equation (2) only the positive portions of incoming
responsibilities are added, because it is only necessary for a
good exemplar to explain some data points (positive respon-
sibilities), regardless of how poorly it explains points with
negative responsibilities. To limit the influence of incoming
positive responsibilities, the total sum is thresholded so that
it cannot go above zero.

The self-availability a(k, k) is updated differently:

a(k, k) =
∑

i′|i′ �=k

max{0, r(i′, k)} (3)

For a point yi, the value of k that maximizes a(i, k) +
r(i, k) either identifies point yi as an exemplar if k = i (ci =
i, where ci refers to the exemplar of point i), or identifies
the data point that is the exemplar for point yi.

Update rules described by Equations (1), (2) and (3) re-
quire only local computations. Additionally, messages are
exchanged only between pairs of points with known similar-

ities. AP also takes advantage of a sparse matrix of similar-
ities when such distribution of similarity values is available.

The message-passing procedure may be terminated after a
fixed number of iterations, when changes in the messages fall
below a threshold, or after the local decisions stay constant
for some number of iterations. The pseudocode of affinity
propagation algorithm is shown in Algorithm 1.

Algorithm 1: Affinity propagation

1 Initialize availabilities a(i, k) to zero ∀i, k
2 do {
3 Update, using Equation (1), all the responsibilities

given the availabilities

4 Update, using Equation (2), all the availabilities
given the responsibilities

5 Combine availabilities and responsibilities to ob-
tain the exemplar decisions

6 } until Termination criterion is met

The measure used to compute the similarity between the
points and the preference values influence the outcome of
affinity propagation. Although a detailed investigation of
the effect of the different similarity measures in the conver-
gence results and accuracy of the algorithms has not been
conducted, it is clear that some similarity measures could
be more suitable to capture the commonalities between the
points. In the present work we have investigated the effect
of using four ways to measure the similarity between points.
These measures are computed from three distance measures
between points: Euclidean, cosine, and linear and Spearman
correlation.

The Euclidean distance E(i, j) is computed between vec-
tor points yi and yj . The cosine distance is equal to one
minus the cosine of the angle between vectors yi and yj . The
correlation distance between vector points yi and yj is sim-
ply one minus the linear and Spearman correlations c(i, j)
are computed taking as observations the components of the
vectors. We use as a similarity measure the maximum dis-
tance between any pair of points minus the distance between
each pair of points. This means that points at a smaller dis-
tance are more similar.

A heuristic method to compute initial values for prefer-
ence measures, is to take the median value of the similarity
matrix. This median similarity value is assigned as the pref-
erence value for all the points. In this setting, the algorithm
is told that all the points are equally likely to be selected as
exemplars.

We take the median similarity value as a base preference
value sb and consider three different ways to assign the pref-
erences to each point. Points can either have their prefer-
ence equal to the base preference value s(yk,yk) = sb, half
of this value (s(yk,yk) = sb

2
) or twice the base preference

value (s(yk,yk) = 2sb). These assignments intend to bias
the likelihood that a given point is an exemplar. The way
in which the different preferences are assigned to each point
is treated in Section 4.

3. EXEMPLAR-BASED CLASSIFICATION
The affinity propagation algorithm will maximize the net

similarity S which is a sum of the similarity between each
point to its exemplar plus the preference values of the exem-
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BR10T BR14T BR20T

OV16T OV21T

BR8T BR16T BR17T BR6T

BR15T BR21T BR29T BR31T

BR32T LI34T

LI11T LI32T LI30T

LI35T LI13T

OV23T OV1AT OV3T

OV2AT OV8T OV7T

Figure 1: Example of clustering produced by affinity
propagation on a set of 26 points with a-priori known
classes. Each of the four charts corresponds to a
different cluster. The exemplar of each cluster is
highlighted with a black label over its name. Points
that belong to the same class are represented using
the same color.

plars. S can be used to measure the quality of the clustering
[5]. However, there are some situations where we would like
to take into consideration other criteria to evaluate the clus-
tering quality. One of these criteria can be the number of
clusters. The user may be interested in good clusterings that
have a constrained number of clusters. Furthermore, even
if AP is generally applied as an unsupervised classification
algorithm, it could be the case that some previous classifica-
tion is known for all or a subset of the points. The a priori
classification may not necessarily be related to the similar-
ity measure used for clustering, but we may be interested
in evaluating the clustering quality in terms of the known
classes.

3.1 Penalized exemplar-based accuracy
We propose a classification accuracy measure for affinity

propagation in the cases where a priori information about
the classes of the points is known. The measure simulta-
neously evaluates the capacity of AP to group in the same
cluster points that belong to the same (known) class, with
its capacity to produce small number of clusters.

The penalized exemplar-based accuracy is defined as:

EAcc =

(∑m
i=1

∑|Ci|
j=1 I(c(yj), c(ye))

)
−m

n
(4)

where m is the number of clusters, |Ci| is the number of
points assigned to cluster i, n is the number of points, and
I is the indicator function that is one when the (a-priori
known) class of point yj coincides with the class of the ex-
emplar point ye in cluster i, zero otherwise.

The key idea of the penalized exemplar-based accuracy
is to assign to each point, as a putative class, the class of
its exemplar. Then, to measure the accuracy of the classi-
fication, the number of points that are correctly classified
is counted. To account for the fact that the classes of the
exemplars are assumed to be known for classification, we

subtract the number of exemplars from the total number of
points correctly classified. This way, clusterings with a few
number of clusters are also favored.

Figure 1 shows an example of a possible clustering of 26
points for which the class is a-priori known. In terms of the
classification, a good cluster should comprise points that are
known to belong to the same class. To compute EAcc, we
calculate the number of points correctly classified by the
exemplar in each cluster, then EAcc = 3+9+5+6−4

26
= 0.73.

Notice that if the penalty on the number of clusters is not
considered, then the accuracy is higher (0.88), but this value
hides the fact that, since we are using the knowledge of the
true class in their classification, the class assignment for the
exemplars will be always correct.

4. ESTIMATION OF DISTRIBUTION ALGO-
RITHMS

We evaluate the influence that the preference assigned to
each point has on the convergence and accuracy of AP. To
this end, we will use EDAs to evolve set of preferences. The
optimization problem consists of finding an n-dimensional
vector s of initial preference configurations such that each
of its components si = s(yi,yi), i = 1, . . . , n and si ∈
{ sb

2
, sb, 2sb} and the EAcc measure is maximized. Let X

represent the vector of problem variables and X one of its
possible instantiations. We use a ternary representation
xi ∈ {0, 1, 2} to represent the possible assignments for si.
By using only three possible values for each variable, we
focus on analyzing the effect of the modification of the pref-
erence values above and below the median of the similarity
measures.

Three different variants of EDAs are used. Each variant
captures and uses different relationships between the prob-
lem variables, effectively implementing diverse search strate-
gies. The first variant uses a univariate marginal product
model in which all variables are independent, i.e. no de-
pendencies are represented in the model. The joint prob-
ability distribution of the univariate marginal distribution
algorithm (UMDA) [10] over x = (x1, . . . , xn) can be factor-
ized as follows:

pUMDA(x) =
n∏

i=1

p(xi). (5)

The second EDA learns a probabilistic model based on a
tree. In this model, each variable may depend on no more
than one variable that is called the parent. The probability
distribution pTree(x) used by Tree-EDA [19] is defined as

pTree(x) =
n∏

i=1

p(xi | pa(xi)), (6)

where pa(Xi) is the parent of variable Xi in the tree, and
p(xi | pa(xi)) = p(xi) when pa(Xi) = ∅, i.e. when Xi is the
root of the tree. Probabilistic trees can be represented by
directed acyclic graphs.

The third EDA is the estimation of distribution Bayesian
algorithm (EBNA) [4]. A Bayesian network [12] can be seen
as a generalization of a tree where each variable can have
multiple parents. The structure St of a Bayesian network
is a directed acyclic graph (DAG) that represents a set of
conditional independence assertions about the variables on
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X. It represents the assertions that Xi and non-descendant
variables {X1, . . . , Xn}\PaSt

i are conditionally independent
given PaSt

i , i = 1, . . . , n. The set of variables PaSt
i are

called the parents of Xi. The parameters of the model
are the set of marginal and conditional probability distri-
butions p(Xi|PaSt

i corresponding to the (in)dependence re-
lationships represented in the structure.

4.1 EDA implementation
All the EDAs were implemented in MatlabR© using the

MATEDA-2.0 software [16]. Learning of the Bayesian net-
works within MATEDA-2.0 uses the Matlab Bayes Net (BNT)
toolbox [11]. The MatlabR© implementation of affinity prop-
agation provided by the authors [5] was used for the cluster-
ing experiments. The application of the affinity propagation
method is very efficient in terms of time. The computational
complexity of the EDA depends on the complexity of the
probabilistic models used [17].

4.2 Related work
In the context of evolutionary computation, affinity prop-

agation has been used to learn marginal product models in
the learning phase of estimation of distribution algorithms
[18].

In [2], the affinity propagation algorithm was applied to a
problem of breast cancer subtyping using traditional biologic
markers. The authors acknowledged the capacity of the al-
gorithm to automatically determine the number of profiles to
be considered. Leone et al [9] use a variant of affinity prop-
agation to classify a test dataset monitoring the expression
levels of more than 7000 genes for 42 patients with differ-
ent subtypes of brain cancer. The data had been previously
classified into five diagnosis types [15]. The authors inves-
tigate how the preferences influence the number of clusters,
but no automatic strategy was proposed to set these values.

5. EXPERIMENTS

5.1 Clustering of gene expression data
The tumor classification problem consists in classifying a

set of different carcinomas according to the gene expression
data from 12, 533 genes. We use the dataset of tumor gene
expression data, and the same partitioning strategy of the
cases previously used in [20]. In this dataset, the 174 samples
are divided into a training data set comprising 100 tumors
and a test data set with 74 tumors.

The training set of 100 primary carcinomas was used to
directly find the optimal set of preferences using EDAs. This
set of tumors comprised 10 prostate adenocarcinomas, 9
bladder/ureter carcinomas, 12 infiltrating ductal breast ade-
nocarcinomas, 10 colorectal adenocarcinomas, 11 gastroe-
sophageal adenocarcinomas, 10 clear cell carcinomas of the
kidney, 6 hepatocellular carcinomas, 9 serous papillary ovar-
ian adenocarcinomas, 6 pancreatic adenocarcinomas, and 17
lung carcinomas. The test set of of 74 tumors was used to
validate the results found by the EDAs.

5.2 Experimental framework
In the following experiments we investigate whether the

optimization of the preference values contributes to enhance
the performance of AP. Additionally, we study a number of
factors that influence the behavior of the enhanced AP: the
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Figure 2: Best penalized exemplar-based classifica-
tion values achieved by simple AP (without pref-
erence optimization) and average of the best clus-
tering values reached by all EDAs for all similarity
measures.

type of similarity measure, the class of probabilistic model
used by the EDA and the fitness evolution along generations.

We also analyze the composition of the optimal solutions
found by the algorithms, in particular the most frequent ex-
emplars identified by AP are computed and compared for
the different similarity measures. Finally, we select the sub-
type of infiltrating ductal breast adenocarcinomasand in-
spect the clusters in which the samples from this tumor class
are grouped. The analysis of the clusters reveals differences
in gene expression patterns of tumors assigned to different
clusters.

5.3 Classification experiments on the training
set

Initial experiments were conducted to apply AP to the
training set, i.e., 100 tumors were clustered according to
their expression levels. Four different distances were used to
compute the similarity measures between the 100 tumors.
These distances were: Euclidean, cosine, linear correlation
and Spearman correlation. From the number of clusters and
classification accuracy the clustering quality measure pro-
posed in Section 3.1 was computed.

In Figure 2 the blue bars indicate the EAcc values achieved
for each distance. It can be seen the figure that the best re-
sults are achieved using the Spearman correlation distance.
On the other hand, the lowest EAcc value was achieved using
the cosine distance. Below we analyze, how the number of
clusters and accuracy values determine the EAcc values for
the different measures.

In the next step, we use the different EDAs to find a set
of preferences that maximizes quality measure. We apply
UMDA, Tree-EDA and EBNA. All EDAs used a population
size of 200 individuals and a maximum of 25 generations.
Truncation selection with truncation parameter T = 0.5 was
applied. For each similarity measure and EDA, 30 experi-
ments were conducted. In Figure 2, the average best fitness
value found by the EDAs is shown for all combinations of
similarity measures and algorithms. All EDAs clearly im-
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Figure 3: Average fitness of the populations for
UMDA using different similarity measures.

prove the results achieved by the simple AP algorithm. In
terms of the best fitness, there are no important differences
between the performance of the different EDAs, and more
importantly, improvements are obtained for all similarity
measures.

Figures 3-5 respectively show the average fitness of the
population achieved by UMDA, Tree-EDA and EBNA in
each generation for all similarity measures. In terms of the
average fitness of the population, there are differences be-
tween the behavior of the algorithms for the similarity mea-
sures. The fitness values which are improved the most at
the first generations are those computed from the cosine dis-
tance. However, as generations advance the average fitness
computed from the cosine distance tends to stagnate and
those computed from the Spearman correlation continue to
improve. This behavior is particularly evident for EBNA
(see Figure 5). Regarding the differences between the EDAs,
there are no relevant differences although EBNA seems to
slightly outperform the other algorithms. Perhaps the most
important conclusion from the analysis of Figures 3-5 is that
all EDAs require a relatively small number of evaluations to
find preferences values that improve the penalized exemplar-
based classification.

5.4 Significant genes in clusters found by AP
The cluster composition may reveal unexpected patterns

shared by tumor samples. Particularly relevant is to investi-
gate the way in which tumors of the same class area spread
among different clusters. A further identification of the tu-
mor genes that are significantly different within the cluster
with respect to the other tumors could serve to discover
these characteristic patterns.

To illustrate this type of analysis, we considered the distri-
bution of the 12 infiltrating ductal breast adenocarcinomas
among clusters. We chose one of the clusterings with high
fitness (EAcc = 78). Figure 1(top) shows the two clusters
where the breast adenocarcinomas (represented with cyan
colors) are located. In the first cluster (Cluster I) there
are two ovarian samples mistakenly classified as breast ade-
nocarcinomas. Similarly, in the second cluster (Cluster II)
there is one liver tumor mistakenly classified as breast ade-
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Figure 4: Average fitness of the populations for
Tree-EDA using different similarity measures.

nocarcinome. However, all breast adenocarcinomas are cor-
rectly classified.

To investigate the causes that may determine splitting tu-
mors of the same class in two different clusters, we compute
the variables (gene expressions) which are significantly dif-
ferent within the clusters with respect to the rest of tumors
(i.e. all the tumors except those comprised in the cluster).
The Wilcoxon rank sum test for equal medians was applied.
We performed a two-sided rank sum test of the hypothesis
that the two independent samples, in the vectors X and Y ,
come from distributions with equal medians, and returned
the p-value from the test. For the sake of space, we report
for each cluster only the two most significant genes in terms
of the p-value.

For Cluster I, genes CDKN2B and CLCNKB have medi-
ans significantly under the values of the median for those tu-
mors that are not included in the cluster, p-values 0.0001777
and 0.0001779, respectively. In the case of Cluster II, genes
AI688098:wc92f08.x1 and HERV-K22 have medians signifi-
cantly over the values of the median for those tumors that
are not included in the cluster, p-values 0.000001967 and
0.000002265, respectively.

The CDKN2B gene lies adjacent to the tumor suppres-
sor gene CDKN2A in a region that is frequently mutated
and deleted in a wide variety of tumors. It has been previ-
ously reported that intragenic mutations of CDKN2B and
CDKN2A occur in primary human esophageal cancers [22].
In humans, the CLCNKB gene encodes the chloride channel
Kb protein, also known as CLCNKB. In addition, CLCNKA
and CLCNKB are closely related (94% sequence identity)
and are both expressed in mammalian kidney. Chloride
channels regulate the movement of a major cellular anion
and maintain intracellular pH and cell volume. Recent work
suggest that several chloride channel families may contribute
to the cancer phenotype and serve as novel targets for pri-
mary cancer therapy [21].

In our analysis, we did not find direct associations be-
tween the AI688098:wc92f08.x1 gene and cancer in the lit-
erature. However, AI688098:wc92f08.x1 has been included
in a metagene approach for breast cancer recurrence prog-
nosis [14]. Metagenes are gene expression signatures derived
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Figure 5: Average fitness of the populations for
EBNA using different similarity measures.

from microarray analyses. The HERV-K22 gene are human
endogenous retroviruses (HERV) that are remnants of ex-
ogenous retroviruses that entered the germ line millions of
years ago. HERVs are believed to be possible pathogenic
agents in carcinogenesis [3].

The found genes can provide a possible direction for in-
vestigating causative genes and pathways in cancer. It is
remarkable the fact that in the two clusters considered, the
gene expressions of the significant genes have different signs
with respect to the other tumors. It is an open question to
investigate the similarity between tumor samples that are
mistakenly classified. Also, it will be convenient to use re-
sults from the literature to further classify the significant
genes found in each cluster in classical oncogenes or tumor
suppressor genes [13].

5.5 Influence of the similarity measures
A fundamental question is to know whether there are tu-

mor samples that clearly serve as exemplars accross the dif-
ferent used similarity measures. We consider that a tumor
sample is likely to be an exemplar if it is consistently as-
signed by the EDAs with a high preference value. Since
absolute preference values depend on similarity measures,
we use relative preference values to compute the exemplar
likelihood. Value 0 means that the point has, as preference
value, half of the median value, value 1 means that the point
has exactly the median value, and value 2 means that the
point has twice the median value. We compute the average
exemplar likelihood as the average of the relative preferences
values of the best solutions found in each of the 30 experi-
ments conducted for each EDA and similarity measure. An
average likelihood equal 2 means that in all runs the point
was assigned the highest preference value indicating its high
probability to be an exemplar.

Figure 6 shows the likelihoods that each tumor sample
becomes an exemplar for all tumors and all similarity mea-
sures. Candidates for being good exemplar accross differ-
ent similarity measures can be identified as having exemplar
likelihood values over 1.5 for two or more similarity mea-
sures. Additionally, from the analysis of Figure 6, different
patterns in the behavior of AP for the used similarity mea-
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Figure 6: Likelihood that each tumor sample be-
comes an exemplar. The likelihood is computed
from the set of best solutions found by all EDAs,
i.e. 120 solutions are used for each similarity mea-
sure.

sures can be extracted. It can be seen that the Euclidean
measures consistently identifies some tumor samples as less
likely to be an exemplar. This can be appreciated in the
large number of blue crosses whose likelihood is near to zero.
On the other hand, the cosine measure consistently identifies
the same set of tumor samples as likely to be an exemplar,
most of points with likelihood equal two are red triangles.
There is also a large concentration of points with likelihood
equal 0.5.

5.6 Classification experiments on the test set
The particular characteristics of the AP method make dif-

ficult a straightforward application of traditional validation
strategies. This can be done in a number of ways. However,
a necessary step to validate the AP clustering results is to
determine whether exemplars identified for the training set
are good at classifying other (unseen) tumor samples. Tu-
mors from the test data may be assigned to already found
exemplars based on the similarity to each exemplar. Never-
theless, this procedure does not use information about the
similarities among the new tumor samples.

A differente alternative is to apply AP on the whole set of
data, but biasing the preferences towards the values previ-
ously found on the training set. This way, we can evaluate
the benefits of the preference values learned using the train-
ing set but the algorithms will also use, for the classification
of the new samples, the similarities among them. In this
way, more information is infused into the classification pro-
cess.

Therefore, we applied AP to the complete set of tumor
samples formed by 174 samples. Initially, the simple AP
with all preference values equal to the median of the sim-
ilarities, was applied. The results of the algorithm for all
similarity measures can be seen in Figure 7 where they are
represented using blue bars. It can be seen that clustering
quality measures are around 50 for all the similarity mea-
sures.

We then used the best solutions found by the application
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Figure 7: Extended set of tumor samples. Best clus-
tering quality values achieved by simple AP (with-
out preference optimization) and average of the best
clustering values reached by all EDAs for all simi-
larity measures.

of the EDAs on the training set as a way to bias the compu-
tation of the clusters. In this case, the preferences values of
the tumors in the training data (100 tumor samples) were
computed according to the relative preference value of the
best solutions (i.e., half, equal or twice the value of the me-
dian similarity value computed for the complete dataset).
The preference values of the other 74 were assigned nega-
tive preferences equal to twice the median of the similarity.
Negative preference values guaranteed that none of the new
points will be used as an exemplar. Therefore, new points
will be assigned to clusters whose exemplar belongs to the
training set. The algorithm does not use previously com-
puted clusters, the only bias is passed to AP in the prefer-
ences values.

Figure 7 shows the clustering quality results computed
from the best solutions found by all the EDAs and all the
similarity measures. Notice that in this case, the optimiza-
tion algorithms have not been applied to compute the pref-
erences. Previous results have been applied to the enlarged
dataset. However, it is clear that an improvement in the
clustering quality is achieved for three of the four similarity
measures used. A different behavior is shown for the cosine
measure for which there is no improvement by biasing the
preferences in the direction of the best solutions found for
the dataset. Notice also that the clustering quality values
are not as high as those found for the training set (see Fig-
ure 2. We could expect that these values could be improved
if optimization of preferences is conducted for the complete
dataset but this is against a blind validation approach.

5.7 Analysis of the clusters: test set
We further investigate the differences in the AP cluster-

ings found using the similarity measures. Figure 8 shows
the number of clusters versus the classification accuracy of
the clusterings found by AP on the complete dataset. This
figure helps to understand the reason in the poor clustering
quality of the cosine measure. Clusters found by AP using
these measures have a low accuracy and the number of clus-
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Figure 8: Number of clusters versus classification ac-
curacy for the clusterings found by AP on the com-
plete dataset. Preference values have been biased
according to the optimal solutions found by EDA
on the test dataset.

ters is smaller than the optimal one. Notice that, since there
are 10 different tumor sample classes, the minimum num-
ber of clusters required for an optimal classification must
have 10 or more clusters. When AP is applied using the co-
sine measure, no more than 9 clusters are found. Using the
correlation distances, high accuracy values with relatively
small number of clusters are found. The Euclidean distance
produces some clusters with high accuracy but the number
of clusters can also be high. Notice that accuracy values
can reach the 85%. This classification rate is not as high
as those obtained by the application of supervised classifica-
tion methods combined with feature selection [20]. However,
our evolutionary-enhanced AP approach is faster, it is not
so sensitive to redundant features, and more important, it
can also be improved by the application of feature selection
techniques.

6. CONCLUSIONS
In this paper we have presented an evolutionary approach

for improving the clustering quality of the affinity propaga-
tion algorithm. We have applied the proposal to the cluster-
ing of tumor samples from gene expression data. The main
contributions of the paper are the following:

• The penalized exemplar-based classification measure
has been introduced. This measure combines the ac-
curacy, computed from previous information about the
point classes, with a penalty on the size of the clusters.

• A method for automaticly finding a good set of prefer-
ence values for the AP algorithm have been proposed.
We have shown that evolved preference values improve
the clustering quality.

• We have shown that preference values learned on a
set of data can be reused to improve the clustering
of previously unseen data. This way, information is
transferred between problem domains.
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• Our results show that high classification accuracy can
be achieved from gene expression data in a very short
time without the need of a previous filtering step.

Another advantage of using AP clustering is that the iden-
tification of (exemplar) tumor samples which are good to
represent the characteristic features of a particular tumor
tissue may contribute to better characterizations of these
tissues. Since tumor samples from the same class may be
grouped in different clusters, it could also be possible to iden-
tify tumor subtypes and alternative sets of putative causal
genes for a common tumor class. Classification rules for the
identification of those genes that significantly contribute to
tumor classification can be extracted from the analysis of
the clusters.
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